WorldWideScience

Sample records for genomics reveals selective

  1. Signatures of selection in tilapia revealed by whole genome resequencing.

    Science.gov (United States)

    Xia, Jun Hong; Bai, Zhiyi; Meng, Zining; Zhang, Yong; Wang, Le; Liu, Feng; Jing, Wu; Wan, Zi Yi; Li, Jiale; Lin, Haoran; Yue, Gen Hua

    2015-09-16

    Natural selection and selective breeding for genetic improvement have left detectable signatures within the genome of a species. Identification of selection signatures is important in evolutionary biology and for detecting genes that facilitate to accelerate genetic improvement. However, selection signatures, including artificial selection and natural selection, have only been identified at the whole genome level in several genetically improved fish species. Tilapia is one of the most important genetically improved fish species in the world. Using next-generation sequencing, we sequenced the genomes of 47 tilapia individuals. We identified a total of 1.43 million high-quality SNPs and found that the LD block sizes ranged from 10-100 kb in tilapia. We detected over a hundred putative selective sweep regions in each line of tilapia. Most selection signatures were located in non-coding regions of the tilapia genome. The Wnt signaling, gonadotropin-releasing hormone receptor and integrin signaling pathways were under positive selection in all improved tilapia lines. Our study provides a genome-wide map of genetic variation and selection footprints in tilapia, which could be important for genetic studies and accelerating genetic improvement of tilapia.

  2. Genomic signatures reveal geographic adaption and human selection in cattle

    Science.gov (United States)

    We investigated geographic adaptation and human selection using high-density SNP data of five diverse cattle breeds. Based on allele frequency differences, we detected hundreds of candidate regions under positive selection across Holstein, Angus, Charolais, Brahman, and N'Dama. In addition to well-k...

  3. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Foster, Brian; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary Ann; Shade, Ashley; Newton, Ryan J.; Stevens, Sarah; McMahon, Katherine D.; Malmstrom, Rex R.

    2014-06-18

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ‘ecotype model’ of diversification, but not previously observed in natural populations.

  4. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Foster, Brian; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary Ann; Shade, Ashley; Newton, Ryan J.; Stevens, Sarah; McMcahon, Katherine D.; Mamlstrom, Rex R.

    2014-05-12

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ecotype model? of diversification, but not previously observed in natural populations.

  5. High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model.

    Directory of Open Access Journals (Sweden)

    Chiao-Ling Lo

    2016-08-01

    Full Text Available Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP. This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross resulted in small haplotype blocks (HB with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS, were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50% of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284 and intronic regions (169 with the least in exon's (4, suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a, excitatory receptors (Grin2a, Gria3, Grip1, neurotransmitters (Pomc, and synapses (Snap29. This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits.

  6. High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model.

    Science.gov (United States)

    Lo, Chiao-Ling; Lossie, Amy C; Liang, Tiebing; Liu, Yunlong; Xuei, Xiaoling; Lumeng, Lawrence; Zhou, Feng C; Muir, William M

    2016-08-01

    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon's (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits.

  7. Genome Sequencing Reveals Loci under Artificial Selection that Underlie Disease Phenotypes in the Laboratory Rat

    NARCIS (Netherlands)

    Atanur, Santosh S.; Diaz, Ana Garcia; Maratou, Klio; Sarkis, Allison; Rotival, Maxime; Game, Laurence; Tschannen, Michael R.; Kaisaki, Pamela J.; Otto, Georg W.; Ma, Man Chun John; Keane, Thomas M.; Hummel, Oliver; Saar, Kathrin; Chen, Wei; Guryev, Victor; Gopalakrishnan, Kathirvel; Garrett, Michael R.; Joe, Bina; Citterio, Lorena; Bianchi, Giuseppe; McBride, Martin; Dominiczak, Anna; Adams, David J.; Serikawa, Tadao; Flicek, Paul; Cuppen, Edwin; Hubner, Norbert; Petretto, Enrico; Gauguier, Dominique; Kwitek, Anne; Jacob, Howard; Aitman, Timothy J.

    2013-01-01

    Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and ins

  8. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat

    NARCIS (Netherlands)

    Atanur, S.S.; Diaz, A.G.; Maratou, K.; Sarkis, A.; Rotival, M.; Game, L.; Tschannen, M.R.; Kaisaki, P.J.; Otto, G.W.; Ma, M.C.; Keane, T.M.; Hummel, O.; Saar, K.; Chen, W.; Guryev, V.; Gopalakrishnan, K.; Garrett, M.R.; Joe, B.; Citterio, L.; Bianchi, G.; McBride, M.; Dominiczak, A.; Adams, D.J.; Serikawa, T.; Flicek, P.; Cuppen, E.; Hubner, N.; Petretto, E.; Gauguier, D.; Kwitek, A.; Jacob, H.; Aitman, T.J.

    2013-01-01

    Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and ins

  9. Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification

    Directory of Open Access Journals (Sweden)

    Carolina M. Voloch

    2014-11-01

    Full Text Available Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G, RNA-dependent RNA polymerase (L and polymerase (P genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.

  10. Genome-wide association analysis of bacterial cold water disease resistance in rainbow trout reveals the potential of a hybrid approach between genomic selection and marker assisted selection

    Science.gov (United States)

    Genomic selection (GS) simultaneously incorporates dense SNP marker genotypes with phenotypic data from related animals to predict animal-specific genomic breeding value (GEBV), which circumvents the need to measure the disease phenotype in potential breeders. Marker assisted selection (MAS) involv...

  11. Genomic sequencing reveals historical, demographic and selective factors associated with the diversification of the fire-associated fungus Neurospora discreta.

    Science.gov (United States)

    Gladieux, Pierre; Wilson, Benjamin A; Perraudeau, Fanny; Montoya, Liliam A; Kowbel, David; Hann-Soden, Christopher; Fischer, Monika; Sylvain, Iman; Jacobson, David J; Taylor, John W

    2015-11-01

    Delineating microbial populations, discovering ecologically relevant phenotypes and identifying migrants, hybrids or admixed individuals have long proved notoriously difficult, thereby limiting our understanding of the evolutionary forces at play during the diversification of microbial species. However, recent advances in sequencing and computational methods have enabled an unbiased approach whereby incipient species and the genetic correlates of speciation can be identified by examining patterns of genomic variation within and between lineages. We present here a population genomic study of a phylogenetic species in the Neurospora discreta species complex, based on the resequencing of full genomes (~37 Mb) for 52 fungal isolates from nine sites in three continents. Population structure analyses revealed two distinct lineages in South-East Asia, and three lineages in North America/Europe with a broad longitudinal and latitudinal range and limited admixture between lineages. Genome scans for selective sweeps and comparisons of the genomic landscapes of diversity and recombination provided no support for a role of selection at linked sites on genomic heterogeneity in levels of divergence between lineages. However, demographic inference indicated that the observed genomic heterogeneity in divergence was generated by varying rates of gene flow between lineages following a period of isolation. Many putative cases of exchange of genetic material between phylogenetically divergent fungal lineages have been discovered, and our work highlights the quantitative importance of genetic exchanges between more closely related taxa to the evolution of fungal genomes. Our study also supports the role of allopatric isolation as a driver of diversification in saprobic microbes.

  12. Genome-wide analysis reveals selection for important traits in domestic horse breeds.

    Directory of Open Access Journals (Sweden)

    Jessica L Petersen

    Full Text Available Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an F(ST-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3. The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.

  13. Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds

    Science.gov (United States)

    Petersen, Jessica L.; Mickelson, James R.; Rendahl, Aaron K.; Valberg, Stephanie J.; Andersson, Lisa S.; Axelsson, Jeanette; Bailey, Ernie; Bannasch, Danika; Binns, Matthew M.; Borges, Alexandre S.; Brama, Pieter; da Câmara Machado, Artur; Capomaccio, Stefano; Cappelli, Katia; Cothran, E. Gus; Distl, Ottmar; Fox-Clipsham, Laura; Graves, Kathryn T.; Guérin, Gérard; Haase, Bianca; Hasegawa, Telhisa; Hemmann, Karin; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Lohi, Hannes; Lopes, Maria Susana; McGivney, Beatrice A.; Mikko, Sofia; Orr, Nicholas; Penedo, M. Cecilia T.; Piercy, Richard J.; Raekallio, Marja; Rieder, Stefan; Røed, Knut H.; Swinburne, June; Tozaki, Teruaki; Vaudin, Mark; Wade, Claire M.; McCue, Molly E.

    2013-01-01

    Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an FST-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse. PMID:23349635

  14. Genomic Comparison of Indigenous African and Northern European Chickens Reveals Putative Mechanisms of Stress Tolerance Related to Environmental Selection Pressure.

    Science.gov (United States)

    Fleming, Damarius S; Weigend, Steffen; Simianer, Henner; Weigend, Annett; Rothschild, Max; Schmidt, Carl; Ashwell, Chris; Persia, Mike; Reecy, James; Lamont, Susan J

    2017-05-05

    Global climate change is increasing the magnitude of environmental stressors, such as temperature, pathogens, and drought, that limit the survivability and sustainability of livestock production. Poultry production and its expansion is dependent upon robust animals that are able to cope with stressors in multiple environments. Understanding the genetic strategies that indigenous, noncommercial breeds have evolved to survive in their environment could help to elucidate molecular mechanisms underlying biological traits of environmental adaptation. We examined poultry from diverse breeds and climates of Africa and Northern Europe for selection signatures that have allowed them to adapt to their indigenous environments. Selection signatures were studied using a combination of population genomic methods that employed FST , integrated haplotype score (iHS), and runs of homozygosity (ROH) procedures. All the analyses indicated differences in environment as a driver of selective pressure in both groups of populations. The analyses revealed unique differences in the genomic regions under selection pressure from the environment for each population. The African chickens showed stronger selection toward stress signaling and angiogenesis, while the Northern European chickens showed more selection pressure toward processes related to energy homeostasis. The results suggest that chromosomes 2 and 27 are the most diverged between populations and the most selected upon within the African (chromosome 27) and Northern European (chromosome 2) birds. Examination of the divergent populations has provided new insight into genes under possible selection related to tolerance of a population's indigenous environment that may be baselines for examining the genomic contribution to tolerance adaptions. Copyright © 2017 Fleming et al.

  15. Genome-wide analyses reveal lineage specific contributions of positive selection and recombination to the evolution of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Sun Qi

    2008-08-01

    Full Text Available Abstract Background The genus Listeria includes two closely related pathogenic and non-pathogenic species, L. monocytogenes and L. innocua. L. monocytogenes is an opportunistic human foodborne and animal pathogen that includes two common lineages. While lineage I is more commonly found among human listeriosis cases, lineage II appears to be overrepresented among isolates from foods and environmental sources. This study used the genome sequences for one L. innocua strain and four L. monocytogenes strains representing lineages I and II, to characterize the contributions of positive selection and recombination to the evolution of the L. innocua/L. monocytogenes core genome. Results Among the 2267 genes in the L. monocytogenes/L. innocua core genome, 1097 genes showed evidence for recombination and 36 genes showed evidence for positive selection. Positive selection was strongly associated with recombination. Specifically, 29 of the 36 genes under positive selection also showed evidence for recombination. Recombination was more common among isolates in lineage II than lineage I; this trend was confirmed by sequencing five genes in a larger isolate set. Positive selection was more abundant in the ancestral branch of lineage II (20 genes as compared to the ancestral branch of lineage I (9 genes. Additional genes under positive selection were identified in the branch separating the two species; for this branch, genes in the role category "Cell wall and membrane biogenesis" were significantly more likely to have evidence for positive selection. Positive selection of three genes was confirmed in a larger isolate set, which also revealed occurrence of multiple premature stop codons in one positively selected gene involved in flagellar motility (flaR. Conclusion While recombination and positive selection both contribute to evolution of L. monocytogenes, the relative contributions of these evolutionary forces seem to differ by L. monocytogenes lineages and

  16. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection.

    Science.gov (United States)

    Kijas, James W; Lenstra, Johannes A; Hayes, Ben; Boitard, Simon; Porto Neto, Laercio R; San Cristobal, Magali; Servin, Bertrand; McCulloch, Russell; Whan, Vicki; Gietzen, Kimberly; Paiva, Samuel; Barendse, William; Ciani, Elena; Raadsma, Herman; McEwan, John; Dalrymple, Brian

    2012-02-01

    Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species.

  17. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection.

    Directory of Open Access Journals (Sweden)

    James W Kijas

    2012-02-01

    Full Text Available Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species.

  18. The Slow:Fast substitution ratio reveals changing patterns of natural selection in gamma-proteobacterial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric; Shapiro, B. Jesse

    2009-04-15

    Different microbial species are thought to occupy distinct ecological niches, subjecting each species to unique selective constraints, which may leave a recognizable signal in their genomes. Thus, it may be possible to extract insight into the genetic basis of ecological differences among lineages by identifying unusual patterns of substitutions in orthologous gene or protein sequences. We use the ratio of substitutions in slow versus fast-evolving sites (nucleotides in DNA, or amino acids in protein sequence) to quantify deviations from the typical pattern of selective constraint observed across bacterial lineages. We propose that elevated S:F in one branch (an excess of slow-site substitutions) can indicate a functionally-relevant change, due to either positive selection or relaxed evolutionary constraint. In a genome-wide comparative study of gamma-proteobacterial proteins, we find that cell-surface proteins involved with motility and secretion functions often have high S:F ratios, while information-processing genes do not. Change in evolutionary constraints in some species is evidenced by increased S:F ratios within functionally-related sets of genes (e.g., energy production in Pseudomonas fluorescens), while other species apparently evolve mostly by drift (e.g., uniformly elevated S:F across most genes in Buchnera spp.). Overall, S:F reveals several species-specific, protein-level changes with potential functional/ecological importance. As microbial genome projects yield more species-rich gene-trees, the S:F ratio will become an increasingly powerful tool for uncovering functional genetic differences among species.

  19. Whole-Genome Analysis Revealed the Positively Selected Genes during the Differentiation of indica and Temperate japonica Rice

    Science.gov (United States)

    Sun, Xinli; Jia, Qi; Guo, Yuchun; Zheng, Xiujuan; Liang, Kangjing

    2015-01-01

    To investigate the selective pressures acting on the protein-coding genes during the differentiation of indica and japonica, all of the possible orthologous genes between the Nipponbare and 93–11 genomes were identified and compared with each other. Among these genes, 8,530 pairs had identical sequences, and 27,384 pairs shared more than 90% sequence identity. Only 2,678 pairs of genes displaying a Ka/Ks ratio significantly greater than one were revealed, and most of these genes contained only nonsynonymous sites. The genes without synonymous site were further analyzed with the SNP data of 1529 O. sativa and O. rufipogon accessions, and 1068 genes were identified to be under positive selection during the differentiation of indica and temperate japonica. The positively selected genes (PSGs) are unevenly distributed on 12 chromosomes, and the proteins encoded by the PSGs are dominant with binding, transferase and hydrolase activities, and especially enriched in the plant responses to stimuli, biological regulations, and transport processes. Meanwhile, the most PSGs of the known function and/or expression were involved in the regulation of biotic/abiotic stresses. The evidence of pervasive positive selection suggested that many factors drove the differentiation of indica and japonica, which has already started in wild rice but is much lower than in cultivated rice. Lower differentiation and less PSGs revealed between the Or-It and Or-IIIt wild rice groups implied that artificial selection provides greater contribution on the differentiation than natural selection. In addition, the phylogenetic tree constructed with positively selected sites showed that the japonica varieties exhibited more diversity than indica on differentiation, and Or-III of O. rufipogon exhibited more than Or-I. PMID:25774680

  20. Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA.

    Directory of Open Access Journals (Sweden)

    Andreia J Amaral

    Full Text Available BACKGROUND: Artificial selection has caused rapid evolution in domesticated species. The identification of selection footprints across domesticated genomes can contribute to uncover the genetic basis of phenotypic diversity. METHODOLOGY/MAIN FINDINGS: Genome wide footprints of pig domestication and selection were identified using massive parallel sequencing of pooled reduced representation libraries (RRL representing ∼2% of the genome from wild boar and four domestic pig breeds (Large White, Landrace, Duroc and Pietrain which have been under strong selection for muscle development, growth, behavior and coat color. Using specifically developed statistical methods that account for DNA pooling, low mean sequencing depth, and sequencing errors, we provide genome-wide estimates of nucleotide diversity and genetic differentiation in pig. Widespread signals suggestive of positive and balancing selection were found and the strongest signals were observed in Pietrain, one of the breeds most intensively selected for muscle development. Most signals were population-specific but affected genomic regions which harbored genes for common biological categories including coat color, brain development, muscle development, growth, metabolism, olfaction and immunity. Genetic differentiation in regions harboring genes related to muscle development and growth was higher between breeds than between a given breed and the wild boar. CONCLUSIONS/SIGNIFICANCE: These results, suggest that although domesticated breeds have experienced similar selective pressures, selection has acted upon different genes. This might reflect the multiple domestication events of European breeds or could be the result of subsequent introgression of Asian alleles. Overall, it was estimated that approximately 7% of the porcine genome has been affected by selection events. This study illustrates that the massive parallel sequencing of genomic pools is a cost-effective approach to identify

  1. Chromosomal copy number variation, selection and uneven rates of recombination reveal cryptic genome diversity linked to pathogenicity.

    Directory of Open Access Journals (Sweden)

    Rhys A Farrer

    Full Text Available Pathogenic fungi constitute a growing threat to both plant and animal species on a global scale. Despite a clonal mode of reproduction dominating the population genetic structure of many fungi, putatively asexual species are known to adapt rapidly when confronted by efforts to control their growth and transmission. However, the mechanisms by which adaptive diversity is generated across a clonal background are often poorly understood. We sequenced a global panel of the emergent amphibian pathogen, Batrachochytrium dendrobatidis (Bd, to high depth and characterized rapidly changing features of its genome that we believe hold the key to the worldwide success of this organism. Our analyses show three processes that contribute to the generation of de novo diversity. Firstly, we show that the majority of wild isolates manifest chromosomal copy number variation that changes over short timescales. Secondly, we show that cryptic recombination occurs within all lineages of Bd, leading to large regions of the genome being in linkage equilibrium, and is preferentially associated with classes of genes of known importance for virulence in other pathosystems. Finally, we show that these classes of genes are under directional selection, and that this has predominantly targeted the Global Panzootic Lineage (BdGPL. Our analyses show that Bd manifests an unusually dynamic genome that may have been shaped by its association with the amphibian host. The rates of variation that we document likely explain the high levels of phenotypic variability that have been reported for Bd, and suggests that the dynamic genome of this pathogen has contributed to its success across multiple biomes and host-species.

  2. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export.

    Science.gov (United States)

    Karijolich, John; Zhao, Yang; Alla, Ravi; Glaunsinger, Britt

    2017-06-02

    Short interspersed nuclear elements (SINEs) are retrotransposons evolutionarily derived from endogenous RNA Polymerase III RNAs. Though SINE elements have undergone exaptation into gene regulatory elements, how transcribed SINE RNA impacts transcriptional and post-transcriptional regulation is largely unknown. This is partly due to a lack of information regarding which of the loci have transcriptional potential. Here, we present an approach (short interspersed nuclear element sequencing, SINE-seq), which selectively profiles RNA Polymerase III-derived SINE RNA, thereby identifying transcriptionally active SINE loci. Applying SINE-seq to monitor murine B2 SINE expression during a gammaherpesvirus infection revealed transcription from 28 270 SINE loci, with ∼50% of active SINE elements residing within annotated RNA Polymerase II loci. Furthermore, B2 RNA can form intermolecular RNA-RNA interactions with complementary mRNAs, leading to nuclear retention of the targeted mRNA via a mechanism involving p54nrb. These findings illuminate a pathway for the selective regulation of mRNA export during stress via retrotransposon activation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. A MITE-based genotyping method to reveal hundreds of DNA polymorphisms in an animal genome after a few generations of artificial selection

    Directory of Open Access Journals (Sweden)

    Tetreau Guillaume

    2008-10-01

    Full Text Available Abstract Background For most organisms, developing hundreds of genetic markers spanning the whole genome still requires excessive if not unrealistic efforts. In this context, there is an obvious need for methodologies allowing the low-cost, fast and high-throughput genotyping of virtually any species, such as the Diversity Arrays Technology (DArT. One of the crucial steps of the DArT technique is the genome complexity reduction, which allows obtaining a genomic representation characteristic of the studied DNA sample and necessary for subsequent genotyping. In this article, using the mosquito Aedes aegypti as a study model, we describe a new genome complexity reduction method taking advantage of the abundance of miniature inverted repeat transposable elements (MITEs in the genome of this species. Results Ae. aegypti genomic representations were produced following a two-step procedure: (1 restriction digestion of the genomic DNA and simultaneous ligation of a specific adaptor to compatible ends, and (2 amplification of restriction fragments containing a particular MITE element called Pony using two primers, one annealing to the adaptor sequence and one annealing to a conserved sequence motif of the Pony element. Using this protocol, we constructed a library comprising more than 6,000 DArT clones, of which at least 5.70% were highly reliable polymorphic markers for two closely related mosquito strains separated by only a few generations of artificial selection. Within this dataset, linkage disequilibrium was low, and marker redundancy was evaluated at 2.86% only. Most of the detected genetic variability was observed between the two studied mosquito strains, but individuals of the same strain could still be clearly distinguished. Conclusion The new complexity reduction method was particularly efficient to reveal genetic polymorphisms in Ae. egypti. Overall, our results testify of the flexibility of the DArT genotyping technique and open new

  4. Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity.

    Directory of Open Access Journals (Sweden)

    Stephen R Doyle

    2017-07-01

    Full Text Available Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana-exposed to more than a decade of regular ivermectin treatment-have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread.Pooled next generation sequencing (Pool-seq was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR and sub-optimal responder (SOR parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs, with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure had a significantly greater role in shaping genetic diversity than the evolution of SOR.This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic

  5. Genome-wide candidate regions for selective sweeps revealed through massive parallel sequencing of DNA across ten turkey populations

    NARCIS (Netherlands)

    Aslam, M.L.; Bastiaansen, J.W.M.; Megens, H.J.W.C.; Crooijmans, R.P.M.A.; Blomberg, L.; Groenen, M.

    2014-01-01

    Background The domestic turkey (Meleagris gallopavo) is an important agricultural species that is largely used as a meat-type bird. Characterizing genetic variation in populations of domesticated species and associating these variation patterns with the evolution, domestication, and selective breedi

  6. A genome wide dosage suppressor network reveals genomic robustness

    Science.gov (United States)

    Patra, Biranchi; Kon, Yoshiko; Yadav, Gitanjali; Sevold, Anthony W.; Frumkin, Jesse P.; Vallabhajosyula, Ravishankar R.; Hintze, Arend; Østman, Bjørn; Schossau, Jory; Bhan, Ashish; Marzolf, Bruz; Tamashiro, Jenna K.; Kaur, Amardeep; Baliga, Nitin S.; Grayhack, Elizabeth J.; Adami, Christoph; Galas, David J.; Raval, Alpan; Phizicky, Eric M.; Ray, Animesh

    2017-01-01

    Genomic robustness is the extent to which an organism has evolved to withstand the effects of deleterious mutations. We explored the extent of genomic robustness in budding yeast by genome wide dosage suppressor analysis of 53 conditional lethal mutations in cell division cycle and RNA synthesis related genes, revealing 660 suppressor interactions of which 642 are novel. This collection has several distinctive features, including high co-occurrence of mutant-suppressor pairs within protein modules, highly correlated functions between the pairs and higher diversity of functions among the co-suppressors than previously observed. Dosage suppression of essential genes encoding RNA polymerase subunits and chromosome cohesion complex suggests a surprising degree of functional plasticity of macromolecular complexes, and the existence of numerous degenerate pathways for circumventing the effects of potentially lethal mutations. These results imply that organisms and cancer are likely able to exploit the genomic robustness properties, due the persistence of cryptic gene and pathway functions, to generate variation and adapt to selective pressures. PMID:27899637

  7. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    DEFF Research Database (Denmark)

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand...... the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two...... misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan-and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity...

  8. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium.

    Science.gov (United States)

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.

  9. Genome size analyses of Pucciniales reveal the largest fungal genomes

    Directory of Open Access Journals (Sweden)

    Silvia eTavares

    2014-08-01

    Full Text Available Rust fungi (Basidiomycota, Pucciniales are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 151.5 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi. In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1,800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp. Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94 %. The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7,000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.

  10. Selective sweep analysis in the genomes of the 91-R and 91-C Drosophila melanogaster strains reveals few of the 'usual suspects' in dichlorodiphenyltrichloroethane (DDT) resistance.

    Science.gov (United States)

    Steele, Laura D; Coates, Brad; Valero, M Carmen; Sun, Weilin; Seong, Keon Mook; Muir, William M; Clark, John M; Pittendrigh, Barry R

    2015-01-01

    Adaptation of insect phenotypes for survival after exposure to xenobiotics can result from selection at multiple loci with additive genetic effects. To the authors' knowledge, no selective sweep analysis has been performed to identify such loci in highly dichlorodiphenyltrichloroethane (DDT) resistant insects. Here we compared a highly DDT resistant phenotype in the Drosophila melanogaster (Drosophila) 91-R strain to the DDT susceptible 91-C strain, both of common origin. Whole genome re-sequencing data from pools of individuals was generated separately for 91-R and 91-C, and mapped to the reference Drosophila genome assembly (v. 5.72). Thirteen major and three minor effect chromosome intervals with reduced nucleotide diversity (π) were identified only in the 91-R population. Estimates of Tajima's D (D) showed corresponding evidence of directional selection in these same genome regions of 91-R, however, no similar reductions in π or D estimates were detected in 91-C. An overabundance of non-synonymous proteins coding to synonymous changes were identified in putative open reading frames associated with 91-R. Except for NinaC and Cyp4g1, none of the identified genes were the 'usual suspects' previously observed to be associated with DDT resistance. Additionally, up-regulated ATP-binding cassette transporters have been previously associated with DDT resistance; however, here we identified a structurally altered MDR49 candidate resistance gene. The remaining fourteen genes have not previously been shown to be associated with DDT resistance. These results suggest hitherto unknown mechanisms of DDT resistance, most of which have been overlooked in previous transcriptional studies, with some genes having orthologs in mammals.

  11. The enigmatic mitochondrial genome of Rhabdopleura compacta (Pterobranchia reveals insights into selection of an efficient tRNA system and supports monophyly of Ambulacraria

    Directory of Open Access Journals (Sweden)

    Stadler Peter F

    2011-05-01

    Full Text Available Abstract Background The Hemichordata comprises solitary-living Enteropneusta and colonial-living Pterobranchia, sharing morphological features with both Chordata and Echinodermata. Despite their key role for understanding deuterostome evolution, hemichordate phylogeny is controversial and only few molecular data are available for phylogenetic analysis. Furthermore, mitochondrial sequences are completely lacking for pterobranchs. Therefore, we determined and analyzed the complete mitochondrial genome of the pterobranch Rhabdopleura compacta to elucidate deuterostome evolution. Thereby, we also gained important insights in mitochondrial tRNA evolution. Results The mitochondrial DNA of Rhabdopleura compacta corresponds in size and gene content to typical mitochondrial genomes of metazoans, but shows the strongest known strand-specific mutational bias in the nucleotide composition among deuterostomes with a very GT-rich main-coding strand. The order of the protein-coding genes in R. compacta is similar to that of the deuterostome ground pattern. However, the protein-coding genes have been highly affected by a strand-specific mutational pressure showing unusual codon frequency and amino acid composition. This composition caused extremely long branches in phylogenetic analyses. The unusual codon frequency points to a selection pressure on the tRNA translation system to codon-anticodon sequences of highest versatility instead of showing adaptations in anticodon sequences to the most frequent codons. Furthermore, an assignment of the codon AGG to Lysine has been detected in the mitochondrial genome of R. compacta, which is otherwise observed only in the mitogenomes of some arthropods. The genomes of these arthropods do not have such a strong strand-specific bias as found in R. compacta but possess an identical mutation in the anticodon sequence of the tRNALys. Conclusion A strong reversed asymmetrical mutational constraint in the mitochondrial genome of

  12. Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression

    DEFF Research Database (Denmark)

    Siersbæk, Majken; Loft, Anne; Jørgensen, Mads Malik Aagaard

    2012-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation and function. We and others have previously mapped PPARγ binding at a genome-wide level in murine and human adipocyte cell lines and in primary human adipocytes. However, little is known about...... how binding patterns of PPARγ differ between brown and white adipocytes and among different types of white adipocytes. Here we have employed chromatin immunoprecipitation combined with deep sequencing to map and compare PPARγ binding in in vitro differentiated primary mouse adipocytes isolated from...... epididymal, inguinal, and brown adipose tissues. While these PPARγ binding profiles are overall similar, there are clear depot-selective binding sites. Most PPARγ binding sites previously mapped in 3T3-L1 adipocytes can also be detected in primary adipocytes, but there are a large number of PPARγ binding...

  13. Comparative Genomics Reveals the Core and Accessory Genomes of Streptomyces Species.

    Science.gov (United States)

    Kim, Ji-Nu; Kim, Yeonbum; Jeong, Yujin; Roe, Jung-Hye; Kim, Byung-Gee; Cho, Byung-Kwan

    2015-10-01

    The development of rapid and efficient genome sequencing methods has enabled us to study the evolutionary background of bacterial genetic information. Here, we present comparative genomic analysis of 17 Streptomyces species, for which the genome has been completely sequenced, using the pan-genome approach. The analysis revealed that 34,592 ortholog clusters constituted the pan-genome of these Streptomyces species, including 2,018 in the core genome, 11,743 in the dispensable genome, and 20,831 in the unique genome. The core genome was converged to a smaller number of genes than reported previously, with 3,096 gene families. Functional enrichment analysis showed that genes involved in transcription were most abundant in the Streptomyces pan-genome. Finally, we investigated core genes for the sigma factors, mycothiol biosynthesis pathway, and secondary metabolism pathways; our data showed that many genes involved in stress response and morphological differentiation were commonly expressed in Streptomyces species. Elucidation of the core genome offers a basis for understanding the functional evolution of Streptomyces species and provides insights into target selection for the construction of industrial strains.

  14. Genomic selective constraints in murid noncoding DNA.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    2006-11-01

    Full Text Available Recent work has suggested that there are many more selectively constrained, functional noncoding than coding sites in mammalian genomes. However, little is known about how selective constraint varies amongst different classes of noncoding DNA. We estimated the magnitude of selective constraint on a large dataset of mouse-rat gene orthologs and their surrounding noncoding DNA. Our analysis indicates that there are more than three times as many selectively constrained, nonrepetitive sites within noncoding DNA as in coding DNA in murids. The majority of these constrained noncoding sites appear to be located within intergenic regions, at distances greater than 5 kilobases from known genes. Our study also shows that in murids, intron length and mean intronic selective constraint are negatively correlated with intron ordinal number. Our results therefore suggest that functional intronic sites tend to accumulate toward the 5' end of murid genes. Our analysis also reveals that mean number of selectively constrained noncoding sites varies substantially with the function of the adjacent gene. We find that, among others, developmental and neuronal genes are associated with the greatest numbers of putatively functional noncoding sites compared with genes involved in electron transport and a variety of metabolic processes. Combining our estimates of the total number of constrained coding and noncoding bases we calculate that over twice as many deleterious mutations have occurred in intergenic regions as in known genic sequence and that the total genomic deleterious point mutation rate is 0.91 per diploid genome, per generation. This estimated rate is over twice as large as a previous estimate in murids.

  15. Pervasive natural selection in the Drosophila genome?

    Directory of Open Access Journals (Sweden)

    Guy Sella

    2009-06-01

    Full Text Available Over the past four decades, the predominant view of molecular evolution saw little connection between natural selection and genome evolution, assuming that the functionally constrained fraction of the genome is relatively small and that adaptation is sufficiently infrequent to play little role in shaping patterns of variation within and even between species. Recent evidence from Drosophila, reviewed here, suggests that this view may be invalid. Analyses of genetic variation within and between species reveal that much of the Drosophila genome is under purifying selection, and thus of functional importance, and that a large fraction of coding and noncoding differences between species are adaptive. The findings further indicate that, in Drosophila, adaptations may be both common and strong enough that the fate of neutral mutations depends on their chance linkage to adaptive mutations as much as on the vagaries of genetic drift. The emerging evidence has implications for a wide variety of fields, from conservation genetics to bioinformatics, and presents challenges to modelers and experimentalists alike.

  16. Genome-wide association and genomic selection in animal breeding.

    Science.gov (United States)

    Hayes, Ben; Goddard, Mike

    2010-11-01

    Results from genome-wide association studies in livestock, and humans, has lead to the conclusion that the effect of individual quantitative trait loci (QTL) on complex traits, such as yield, are likely to be small; therefore, a large number of QTL are necessary to explain genetic variation in these traits. Given this genetic architecture, gains from marker-assisted selection (MAS) programs using only a small number of DNA markers to trace a limited number of QTL is likely to be small. This has lead to the development of alternative technology for using the available dense single nucleotide polymorphism (SNP) information, called genomic selection. Genomic selection uses a genome-wide panel of dense markers so that all QTL are likely to be in linkage disequilibrium with at least one SNP. The genomic breeding values are predicted to be the sum of the effect of these SNPs across the entire genome. In dairy cattle breeding, the accuracy of genomic estimated breeding values (GEBV) that can be achieved and the fact that these are available early in life have lead to rapid adoption of the technology. Here, we discuss the design of experiments necessary to achieve accurate prediction of GEBV in future generations in terms of the number of markers necessary and the size of the reference population where marker effects are estimated. We also present a simple method for implementing genomic selection using a genomic relationship matrix. Future challenges discussed include using whole genome sequence data to improve the accuracy of genomic selection and management of inbreeding through genomic relationships.

  17. Maximizing crossbred performance through purebred genomic selection

    DEFF Research Database (Denmark)

    Esfandyari, Hadi; Sørensen, Anders Christian; Bijma, Piter

    2015-01-01

    Background In livestock production, many animals are crossbred, with two distinct advantages: heterosis and breed complementarity. Genomic selection (GS) can be used to select purebred parental lines for crossbred performance (CP). Dominance being the likely genetic basis of heterosis, explicitly...

  18. Maximizing Crossbred Performance through Purebred Genomic Selection

    DEFF Research Database (Denmark)

    Esfandyari, Hadi; Sørensen, Anders Christian; Bijma, Pieter

    Genomic selection (GS) can be used to select purebreds for crossbred performance (CP). As dominance is the likely genetic basis of heterosis, explicitly including dominance in the GS model may be beneficial for selection of purebreds for CP, when estimating allelic effects from pure line data...

  19. Inbreeding in genome-wide selection

    NARCIS (Netherlands)

    Daetwyler, H.D.; Villanueva, B.; Bijma, P.; Woolliams, J.A.

    2007-01-01

    Traditional selection methods, such as sib and best linear unbiased prediction (BLUP) selection, which increased genetic gain by increasing accuracy of evaluation have also led to an increased rate of inbreeding per generation (¿FG). This is not necessarily the case with genome-wide selection, which

  20. Selective sweep analysis in the genomes of the 91-R and 91-C Drosophila melanogaster strains reveals few of the ‘usual suspects’ in Dichlorodiphenyltrichloroethane (DDT) resistance

    Science.gov (United States)

    Adaptation of insect phenotypes for survival after exposure to xenobiotics can result from selection at multiple loci with additive genetic effects. A high level dichlorodiphenyltrichloroethane (DDT) resistance phenotype in the Drosophila melanogaster strain 91-R has resulted due to continuous labo...

  1. New evidence for habitat-specific selection in Wadden Sea Zostera marina populations revealed by genome scanning using SNP and microsatellite markers

    NARCIS (Netherlands)

    Oetjen, Katharina; Ferber, Steven; Dankert, Ilka; Reusch, Thorsten B. H.

    2010-01-01

    Eelgrass Zostera marina is an ecosystem-engineering species of outstanding importance for coastal soft sediment habitats that lives in widely diverging habitats. Our first goal was to detect divergent selection and habitat adaptation at the molecular genetic level; hence, we compared three pairs of

  2. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    OpenAIRE

    Henrique Machado; Lone Gram

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationship...

  3. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, ...

  4. A new approach for using genome scans to detect recent positive selection in the human genome.

    Directory of Open Access Journals (Sweden)

    Kun Tang

    2007-07-01

    Full Text Available Genome-wide scanning for signals of recent positive selection is essential for a comprehensive and systematic understanding of human adaptation. Here, we present a genomic survey of recent local selective sweeps, especially aimed at those nearly or recently completed. A novel approach was developed for such signals, based on contrasting the extended haplotype homozygosity (EHH profiles between populations. We applied this method to the genome single nucleotide polymorphism (SNP data of both the International HapMap Project and Perlegen Sciences, and detected widespread signals of recent local selection across the genome, consisting of both complete and partial sweeps. A challenging problem of genomic scans of recent positive selection is to clearly distinguish selection from neutral effects, given the high sensitivity of the test statistics to departures from neutral demographic assumptions and the lack of a single, accurate neutral model of human history. We therefore developed a new procedure that is robust across a wide range of demographic and ascertainment models, one that indicates that certain portions of the genome clearly depart from neutrality. Simulations of positive selection showed that our tests have high power towards strong selection sweeps that have undergone fixation. Gene ontology analysis of the candidate regions revealed several new functional groups that might help explain some important interpopulation differences in phenotypic traits.

  5. Maximizing crossbred performance through purebred genomic selection

    NARCIS (Netherlands)

    Esfandyari, H.; Sorensen, A.C.; Bijma, P.

    2015-01-01

    Background: In livestock production, many animals are crossbred, with two distinct advantages: heterosis and breed complementarity. Genomic selection (GS) can be used to select purebred parental lines for crossbred performance (CP). Dominance being the likely genetic basis of heterosis, explicitly i

  6. Strong signatures of selection in the domestic pig genome

    NARCIS (Netherlands)

    Rubin, C.J.; Megens, H.J.W.C.; Barrio, del J.M.G.; Maqbol, K.; Sayyab, S.; Groenen, M.A.M.

    2012-01-01

    Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that under

  7. Advancing Eucalyptus Genomics: Cytogenomics Reveals Conservation of Eucalyptus Genomes

    Science.gov (United States)

    Ribeiro, Teresa; Barrela, Ricardo M.; Bergès, Hélène; Marques, Cristina; Loureiro, João; Morais-Cecílio, Leonor; Paiva, Jorge A. P.

    2016-01-01

    The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus. PMID:27148332

  8. Advancing Eucalyptus genomics: cytogenomics reveals conservation of Eucalyptus genomes

    Directory of Open Access Journals (Sweden)

    Teresa Mousinho Resina Ribeiro

    2016-04-01

    Full Text Available The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S locus while the AT-rich het pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich het, along with genome sizes estimations, supports the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich het was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1 previously assessed to linkage group 10 (LG10 was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus.

  9. Genome Polymorphisms Between Indica and Japonica Revealed by RFLP

    Institute of Scientific and Technical Information of China (English)

    WANG Song-wen; LIU Xia; XU Cai-guo; SHI Li-li; ZHANG Xin; DING De-liang; WANG Yong

    2007-01-01

    Revealing the genome polymorphisms between indica and japonica subspecies; RFLP markers, which are located across 12 chromosomes of rice, were used to analyze indica-japonica differentiation in different rice varieties. At the same time, genome sequence variations of screened loci were analyzed by bioinformatics method. Twenty-eight RFLP probes, which can classify indica-japonica rice, were confirmed. Subspecies genome polymorphisms of screened loci were found by analyzing the publication of the genome sequences data of rice. The study indicated that these screened markers can be used for classifying indica-japonica subspecies. With the publication of the genome sequences of rice, marker polymorphisms between indica and japonica subspecies can be revealed by genome differentiation.

  10. Annotation of selection strengths in viral genomes

    DEFF Research Database (Denmark)

    McCauley, Stephen; de Groot, Saskia; Mailund, Thomas

    2007-01-01

    Motivation: Viral genomes tend to code in overlapping reading frames to maximize information content. This may result in atypical codon bias and particular evolutionary constraints. Due to the fast mutation rate of viruses, there is additional strong evidence for varying selection between intra......- and intergenomic regions. The presence of multiple coding regions complicates the concept of Ka/Ks ratio, and thus begs for an alternative approach when investigating selection strengths. Building on the paper by McCauley & Hein (2006), we develop a method for annotating a viral genome coding in overlapping...... may thus achieve an annotation both of coding regions as well as selection strengths, allowing us to investigate different selection patterns and hypotheses. Results: We illustrate our method by applying it to a multiple alignment of four HIV2 sequences, as well as four Hepatitis B sequences. We...

  11. Genomic selection in small dairy cattle populations

    DEFF Research Database (Denmark)

    Thomasen, Jørn Rind

    Genomic selection provides more accurate estimation of genetic merit for breeding candidates without own recordings and is now an integrated part of most dairy breeding schemes. However, the method has turned out to be less efficient in the numerically smaler breeds. This thesis focuses on optimi......Genomic selection provides more accurate estimation of genetic merit for breeding candidates without own recordings and is now an integrated part of most dairy breeding schemes. However, the method has turned out to be less efficient in the numerically smaler breeds. This thesis focuses...... on optimization of genomc selction for a small dairy cattle breed such as Danish Jersey. Implementing genetic superior breeding schemes thus requires more accurate genomc predictions. Besides international collaboration, genotyping of cows is an efficient way to obtain more accurate genomic predictions...

  12. Genes but not genomes reveal bacterial domestication of Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Delphine Passerini

    Full Text Available BACKGROUND: The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE. METHODOLOGY/PRINCIPAL FINDINGS: The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST differing by up to 230 kb in genome size. CONCLUSION/SIGNIFICANCE: The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between "environmental" strains, the main contributors to the genetic diversity within the subspecies, and "domesticated" strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the "domesticated" strains essentially arose through substantial genomic flux within the dispensable

  13. Symbiodinium genomes reveal adaptive evolution of functions related to symbiosis

    KAUST Repository

    Liu, Huanle

    2017-10-06

    Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world\\'s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp), previously sequenced as strain CCMP2468, to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identified extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding Symbiodinium biology and the coral-algal symbiosis.

  14. Human-mouse comparative genomics: successes and failures to reveal functional regions of the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Baroukh, Nadine; Rubin, Edward M.

    2003-05-15

    Deciphering the genetic code embedded within the human genome remains a significant challenge despite the human genome consortium's recent success at defining its linear sequence (Lander et al. 2001; Venter et al. 2001). While useful strategies exist to identify a large percentage of protein encoding regions, efforts to accurately define functional sequences in the remaining {approx}97 percent of the genome lag. Our primary interest has been to utilize the evolutionary relationship and the universal nature of genomic sequence information in vertebrates to reveal functional elements in the human genome. This has been achieved through the combined use of vertebrate comparative genomics to pinpoint highly conserved sequences as candidates for biological activity and transgenic mouse studies to address the functionality of defined human DNA fragments. Accordingly, we describe strategies and insights into functional sequences in the human genome through the use of comparative genomics coupled wit h functional studies in the mouse.

  15. Maximizing crossbred performance through purebred genomic selection

    DEFF Research Database (Denmark)

    Esfandyari, Hadi; Sørensen, Anders Christian; Bijma, Piter

    2015-01-01

    Background In livestock production, many animals are crossbred, with two distinct advantages: heterosis and breed complementarity. Genomic selection (GS) can be used to select purebred parental lines for crossbred performance (CP). Dominance being the likely genetic basis of heterosis, explicitly...... to select purebred animals for CP, based on purebred phenotypic and genotypic information. A second objective was to compare the use of two separate pure line reference populations to that of a single reference population that combines both pure lines. These objectives were investigated under two conditions......, i.e. either a low or a high correlation of linkage disequilibrium (LD) phase between the pure lines. Results The results demonstrate that the gain in CP was higher when parental lines were selected for CP, rather than purebred performance, both with a low and a high correlation of LD phase...

  16. Selective pressures on genomes in molecular evolution

    CERN Document Server

    Ofria, C A; Collier, T C; Ofria, Charles; Adami, Christoph; Collier, Travis C.

    2003-01-01

    We describe the evolution of macromolecules as an information transmission process and apply tools from Shannon information theory to it. This allows us to isolate three independent, competing selective pressures that we term compression, transmission, and neutrality selection. The first two affect genome length: the pressure to conserve resources by compressing the code, and the pressure to acquire additional information that improves the channel, increasing the rate of information transmission into each offspring. Noisy transmission channels (replication with mutations) gives rise to a third pressure that acts on the actual encoding of information; it maximizes the fraction of mutations that are neutral with respect to the phenotype. This neutrality selection has important implications for the evolution of evolvability. We demonstrate each selective pressure in experiments with digital organisms.

  17. Positive selection on the human genome.

    Science.gov (United States)

    Vallender, Eric J; Lahn, Bruce T

    2004-10-01

    Positive selection has undoubtedly played a critical role in the evolution of Homo sapiens. Of the many phenotypic traits that define our species--notably the enormous brain, advanced cognitive abilities, complex vocal organs, bipedalism and opposable thumbs--most (if not all) are likely the product of strong positive selection. Many other aspects of human biology not necessarily related to the 'branding' of our species, such as host-pathogen interactions, reproduction, dietary adaptation and physical appearance, have also been the substrate of varying levels of positive selection. Comparative genetics/genomics studies in recent years have uncovered a growing list of genes that might have experienced positive selection during the evolution of human and/or primates. These genes offer valuable inroads into understanding the biological processes specific to humans, and the evolutionary forces that gave rise to them. Here, we present a comprehensive review of these genes, and their implications for human evolution.

  18. The genome of Tetranychus urticae reveals herbivorous pest adaptations

    Science.gov (United States)

    Grbić, Miodrag; Van Leeuwen, Thomas; Clark, Richard M.; Rombauts, Stephane; Rouzé, Pierre; Grbić, Vojislava; Osborne, Edward J.; Dermauw, Wannes; Ngoc, Phuong Cao Thi; Ortego, Félix; Hernández-Crespo, Pedro; Diaz, Isabel; Martinez, Manuel; Navajas, Maria; Sucena, Élio; Magalhães, Sara; Nagy, Lisa; Pace, Ryan M.; Djuranović, Sergej; Smagghe, Guy; Iga, Masatoshi; Christiaens, Olivier; Veenstra, Jan A.; Ewer, John; Villalobos, Rodrigo Mancilla; Hutter, Jeffrey L.; Hudson, Stephen D.; Velez, Marisela; Yi, Soojin V.; Zeng, Jia; Pires-daSilva, Andre; Roch, Fernando; Cazaux, Marc; Navarro, Marie; Zhurov, Vladimir; Acevedo, Gustavo; Bjelica, Anica; Fawcett, Jeffrey A.; Bonnet, Eric; Martens, Cindy; Baele, Guy; Wissler, Lothar; Sanchez-Rodriguez, Aminael; Tirry, Luc; Blais, Catherine; Demeestere, Kristof; Henz, Stefan R.; Gregory, T. Ryan; Mathieu, Johannes; Verdon, Lou; Farinelli, Laurent; Schmutz, Jeremy; Lindquist, Erika; Feyereisen, René; Van de Peer, Yves

    2016-01-01

    The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant–herbivore interactions, and provides unique opportunities for developing novel plant protection strategies. PMID:22113690

  19. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits.

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    2014-01-01

    Full Text Available Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains and one time-series transcriptome dataset for triacylglycerol (TAG synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2 in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels.

  20. A novel genomic selection method combining GBLUP and LASSO.

    Science.gov (United States)

    Li, Hengde; Wang, Jingwei; Bao, Zhenmin

    2015-06-01

    Genetic prediction of quantitative traits is a critical task in plant and animal breeding. Genomic selection is an accurate and efficient method of estimating genetic merits by using high-density genome-wide single nucleotide polymorphisms (SNP). In the framework of linear mixed models, we extended genomic best linear unbiased prediction (GBLUP) by including additional quantitative trait locus (QTL) information that was extracted from high-throughput SNPs by using least absolute shrinkage selection operator (LASSO). GBLUP was combined with three LASSO methods-standard LASSO (SLGBLUP), adaptive LASSO (ALGBLUP), and elastic net (ENGBLUP)-that were used for detecting QTLs, and these QTLs were fitted as fixed effects; the remaining SNPs were fitted using a realized genetic relationship matrix. Simulations performed under distinct scenarios revealed that (1) the prediction accuracy of SLGBLUP was the lowest; (2) the prediction accuracies of ALGBLUP and ENGBLUP were equivalent to or higher than that of GBLUP, except under scenarios in which the number of QTLs was large; and (3) the persistence of prediction accuracy over generations was strongest in the case of ENGBLUP. Building on the favorable computational characteristics of GBLUP, ENGBLUP enables robust modeling and efficient computation to be performed for genomic selection.

  1. Genome wide selection in Citrus breeding.

    Science.gov (United States)

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq(TM) (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  2. The cavefish genome reveals candidate genes for eye loss

    Science.gov (United States)

    McGaugh, Suzanne E.; Gross, Joshua B.; Aken, Bronwen; Blin, Maryline; Borowsky, Richard; Chalopin, Domitille; Hinaux, Hélène; Jeffery, William R.; Keene, Alex; Ma, Li; Minx, Patrick; Murphy, Daniel; O’Quin, Kelly E.; Rétaux, Sylvie; Rohner, Nicolas; Searle, Steve M. J.; Stahl, Bethany A.; Tabin, Cliff; Volff, Jean-Nicolas; Yoshizawa, Masato; Warren, Wesley C.

    2014-01-01

    Natural populations subjected to strong environmental selection pressures offer a window into the genetic underpinnings of evolutionary change. Cavefish populations, Astyanax mexicanus (Teleostei: Characiphysi), exhibit repeated, independent evolution for a variety of traits including eye degeneration, pigment loss, increased size and number of taste buds and mechanosensory organs, and shifts in many behavioural traits. Surface and cave forms are interfertile making this system amenable to genetic interrogation; however, lack of a reference genome has hampered efforts to identify genes responsible for changes in cave forms of A. mexicanus. Here we present the first de novo genome assembly for Astyanax mexicanus cavefish, contrast repeat elements to other teleost genomes, identify candidate genes underlying quantitative trait loci (QTL), and assay these candidate genes for potential functional and expression differences. We expect the cavefish genome to advance understanding of the evolutionary process, as well as, analogous human disease including retinal dysfunction. PMID:25329095

  3. Genome-Wide Scan Reveals Mutation Associated with Melanoma

    Science.gov (United States)

    ... Q R S T U V W X Y Z We want to hear from you You are here: News & Events 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 Spotlight on Research 2012 July 2012 (historical) Genome-Wide Scan Reveals Mutation Associated with Melanoma A team of ...

  4. Integrated genomics of Mucorales reveals novel therapeutic targets

    Science.gov (United States)

    Mucormycosis is a life-threatening infection caused by Mucorales fungi. We sequenced 30 fungal genomes and performed transcriptomics with three representative Rhizopus and Mucor strains with human airway epithelial cells during fungal invasion to reveal key host and fungal determinants contributing ...

  5. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; Skoglund, Pontus; Graf, Kelly E.

    2014-01-01

    ,000-year-old individual (MA-1), from Mal'ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic......The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24...... that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans....

  6. Analysis of phage Mu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements

    Indian Academy of Sciences (India)

    Jun Ge; Zheng Lou; Hong Cui; Lei Shang; Rasika M Harshey

    2011-09-01

    Of all known transposable elements, phage Mu exhibits the highest transposition efficiency and the lowest target specificity. In vitro, MuB protein is responsible for target choice. In this work, we provide a comprehensive assessment of the genome-wide distribution of MuB and its relationship to Mu target selection using high-resolution Escherichia coli tiling DNA arrays. We have also assessed how MuB binding and Mu transposition are influenced by chromosome-organizing elements such as AT-rich DNA signatures, or the binding of the nucleoid-associated protein Fis, or processes such as transcription. The results confirm and extend previous biochemical and lower resolution in vivo data. Despite the generally random nature of Mu transposition and MuB binding, there were hot and cold insertion sites and MuB binding sites in the genome, and differences between the hottest and coldest sites were large. The new data also suggest that MuB distribution and subsequent Mu integration is responsive to DNA sequences that contribute to the structural organization of the chromosome.

  7. Sequence analysis reveals mosaic genome of Aichi virus

    Directory of Open Access Journals (Sweden)

    Han Xiaohong

    2011-08-01

    Full Text Available Abstract Aichi virus is a positive-sense and single-stranded RNA virus, which demonstrated to be related to diarrhea of Children. In the present study, phylogenetic and recombination analysis based on the Aichi virus complete genomes available in GenBank reveal a mosaic genome sequence [GenBank: FJ890523], of which the nt 261-852 region (the nt position was based on the aligned sequence file shows close relationship with AB010145/Japan with 97.9% sequence identity, while the other genomic regions show close relationship with AY747174/German with 90.1% sequence identity. Our results will provide valuable hints for future research on Aichi virus diversity. Aichi virus is a member of the Kobuvirus genus of the Picornaviridae family 12 and belongs to a positive-sense and single-stranded RNA virus. Its presence in fecal specimens of children suffering from diarrhea has been demonstrated in several Asian countries 3456, in Brazil and German 7, in France 8 and in Tunisia 9. Some reports showed the high level of seroprevalence in adults 710, suggesting the widespread exposure to Aichi virus during childhood. The genome of Aichi virus contains 8,280 nucleotides and a poly(A tail. The single large open reading frame (nt 713-8014 according to the strain AB010145 encodes a polyprotein of 2,432 amino acids that is cleaved into the typical picornavirus structural proteins VP0, VP3, VP1, and nonstructural proteins 2A, 2B, 2C, 3A, 3B, 3C and 3D 211. Based on the phylogenetic analysis of 519-bp sequences at the 3C-3D (3CD junction, Aichi viruses can be divided into two genotypes A and B with approximately 90% sequence homology 12. Although only six complete genomes of Aichi virus were deposited in GenBank at present, mosaic genomes can be found in strains from different countries.

  8. Differential metabolism of Mycoplasma species as revealed by their genomes

    Directory of Open Access Journals (Sweden)

    Fabricio B.M. Arraes

    2007-01-01

    Full Text Available The annotation and comparative analyses of the genomes of Mycoplasma synoviae and Mycoplasma hyopneumonie, as well as of other Mollicutes (a group of bacteria devoid of a rigid cell wall, has set the grounds for a global understanding of their metabolism and infection mechanisms. According to the annotation data, M. synoviae and M. hyopneumoniae are able to perform glycolytic metabolism, but do not possess the enzymatic machinery for citrate and glyoxylate cycles, gluconeogenesis and the pentose phosphate pathway. Both can synthesize ATP by lactic fermentation, but only M. synoviae can convert acetaldehyde to acetate. Also, our genome analysis revealed that M. synoviae and M. hyopneumoniae are not expected to synthesize polysaccharides, but they can take up a variety of carbohydrates via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS. Our data showed that these two organisms are unable to synthesize purine and pyrimidine de novo, since they only possess the sequences which encode salvage pathway enzymes. Comparative analyses of M. synoviae and M. hyopneumoniae with other Mollicutes have revealed differential genes in the former two genomes coding for enzymes that participate in carbohydrate, amino acid and nucleotide metabolism and host-pathogen interaction. The identification of these metabolic pathways will provide a better understanding of the biology and pathogenicity of these organisms.

  9. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia

    OpenAIRE

    Iwata, Hiroyoshi; Hayashi, Takeshi; Terakami, Shingo; Takada, Norio; Sawamura, Yutaka; Yamamoto, Toshiya

    2013-01-01

    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding w...

  10. Genome divergence during evolutionary diversification as revealed in replicate lake-stream stickleback population pairs.

    Science.gov (United States)

    Roesti, Marius; Hendry, Andrew P; Salzburger, Walter; Berner, Daniel

    2012-06-01

    Evolutionary diversification is often initiated by adaptive divergence between populations occupying ecologically distinct environments while still exchanging genes. The genetic foundations of this divergence process are largely unknown and are here explored through genome scans in multiple independent lake-stream population pairs of threespine stickleback. We find that across the pairs, overall genomic divergence is associated with the magnitude of divergence in phenotypes known to be under divergent selection. Along this same axis of increasing diversification, genomic divergence becomes increasingly biased towards the centre of chromosomes as opposed to the peripheries. We explain this pattern by within-chromosome variation in the physical extent of hitchhiking, as recombination is greatly reduced in chromosome centres. Correcting for this effect suggests that a great number of genes distributed widely across the genome are involved in the divergence into lake vs. stream habitats. Analyzing additional allopatric population pairs, however, reveals that strong divergence in some genomic regions has been driven by selection unrelated to lake-stream ecology. Our study highlights a major contribution of large-scale variation in recombination rate to generating heterogeneous genomic divergence and indicates that elucidating the genetic basis of adaptive divergence might be more challenging than currently recognized.

  11. Genome-wide polymorphisms show unexpected targets of natural selection

    OpenAIRE

    Pespeni, Melissa H.; Garfield, David A.; Manier, Mollie K; Palumbi, Stephen R.

    2011-01-01

    Natural selection can act on all the expressed genes of an individual, leaving signatures of genetic differentiation or diversity at many loci across the genome. New power to assay these genome-wide effects of selection comes from associating multi-locus patterns of polymorphism with gene expression and function. Here, we performed one of the first genome-wide surveys in a marine species, comparing purple sea urchins, Strongylocentrotus purpuratus, from two distant locations along the species...

  12. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    LENUS (Irish Health Repository)

    Potnis, Neha

    2011-03-11

    Abstract Background Bacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10. Results We sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity. Conclusions Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster

  13. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    Directory of Open Access Journals (Sweden)

    Koebnik Ralf

    2011-03-01

    Full Text Available Abstract Background Bacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10. Results We sequenced the genomes of X. vesicatoria (Xv strain 1111 (ATCC 35937, X. perforans (Xp strain 91-118 and X. gardneri (Xg strain 101 (ATCC 19865. The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity. Conclusions Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the

  14. Development and application of a novel genome-wide SNP array reveals domestication history in soybean.

    Science.gov (United States)

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-02-09

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean.

  15. Genome-Wide Analysis Reveals Selective Modulation of microRNAs and mRNAs by Histone Deacetylase Inhibitor in B Cells Induced to Undergo Class-Switch DNA Recombination and Plasma Cell Differentiation.

    Science.gov (United States)

    Shen, Tian; Sanchez, Helia N; Zan, Hong; Casali, Paolo

    2015-01-01

    As we have suggested, epigenetic factors, such as microRNAs (miRNAs), can interact with genetic programs to regulate B cell functions, thereby informing antibody and autoantibody responses. We have shown that histone deacetylase (HDAC) inhibitors (HDI) inhibit the differentiation events critical to the maturation of the antibody response: class-switch DNA recombination (CSR), somatic hypermutation (SHM), and plasma cell differentiation, by modulating intrinsic B cell mechanisms. HDI repress the expression of AID and Blimp-1, which are critical for CSR/SHM and plasma cell differentiation, respectively, in mouse and human B cells by upregulating selected miRNAs that silenced AICDA/Aicda and PRDM1/Prdm1 mRNAs, as demonstrated by multiple qRT-PCRs (J Immunol 193:5933-5950, 2014). To further define the selectivity of HDI-mediated modulation of miRNA and gene expression, we performed genome-wide miRNA-Seq and mRNA-Seq analysis in B cells stimulated by LPS plus IL-4 and treated with HDI or nil. Consistent with what we have shown using qRT-PCR, these HDI-treated B cells displayed reduced expression of Aicda and Prdm1, and increased expression of miR-155, miR-181b, and miR-361, which target Aicda, and miR-23b, miR-30a, and miR-125b, which target Prdm1. In B cells induced to undergo CSR and plasma cell differentiation, about 23% of over 22,000 mRNAs analyzed were expressed at a significantly high copy number (more than 20 copies/cell). Only 18 (0.36%) of these highly expressed mRNAs, including Aicda, Prdm1, and Xbp1, were downregulated by HDI by 50% or more. Further, only 16 (0.30%) of the highly expressed mRNAs were upregulated (more than twofold) by HDI. The selectivity of HDI-mediated modulation of gene expression was emphasized by unchanged expression of the genes that are involved in regulation, targeting, or DNA repair processes of CSR, as well as unchanged expression of the genes encoding epigenetic regulators and factors that are important for cell signaling or

  16. Genome-wide analysis reveals selective modulation of microRNAs and mRNAs by histone deacetylase inhibitor in B cells induced to undergo class switch DNA recombination and plasma cell differentiation

    Directory of Open Access Journals (Sweden)

    Tian eShen

    2015-12-01

    Full Text Available As we have suggested, epigenetic factors, such as microRNAs (miRNAs, can interact with genetic programs to regulate B cell functions, thereby informing antibody and autoantibody responses. We have shown that histone deacetylase inhibitors (HDI inhibit the differentiation events critical to the maturation of the antibody response: class-switch DNA recombination (CSR, somatic hypermutation (SHM and plasma cell differentiation, by modulating intrinsic B cell mechanisms. HDI repress the expression of AID and Blimp-1, which are critical for CSR/SHM and plasma cell differentiation, respectively, in mouse and human B cells by upregulating selected miRNAs that silenced AICDA/Aicda and PRDM1/Prdm1 mRNAs, as demonstrated by multiple qRT-PCRs (J. Immunol. 193:5933-5950, 2014. To further define the selectivity of HDI-mediated modulation of miRNA and gene expression, we performed genome-wide miRNA-Seq and mRNA-Seq analysis in B cells stimulated by LPS plus IL-4 and treated with HDI or nil. Consistent with what we have shown using qRT-PCR, these HDI-treated B cells displayed reduced expression of Aicda and Prdm1, and increased expression of miR-155, miR-181b and miR-361, which target Aicda, and miR-23b, miR-30a and miR-125b, which target Prdm1. In B cells induced to undergo CSR and plasma cell differentiation, about 23% of over 22,000 mRNAs analyzed were expressed at a significantly high copy number (more than 20 copies/cell. Only 18 (0.36% of these highly expressed mRNAs, including Aicda, Prdm1 and Xbp1, were downregulated by HDI by 50% or more. Further, only 16 (0.30% of the highly expressed mRNAs were upregulated (more than twofold by HDI. The selectivity of HDI-mediated modulation of gene expression was emphasized by unchanged expression of the genes that are involved in regulation, targeting or DNA repair processes of CSR, as well as unchanged expression of the genes encoding epigenetic regulators and factors that are important for cell signaling or

  17. Genome-wide effects of long-term divergent selection.

    Directory of Open Access Journals (Sweden)

    Anna M Johansson

    2010-11-01

    Full Text Available To understand the genetic mechanisms leading to phenotypic differentiation, it is important to identify genomic regions under selection. We scanned the genome of two chicken lines from a single trait selection experiment, where 50 generations of selection have resulted in a 9-fold difference in body weight. Analyses of nearly 60,000 SNP markers showed that the effects of selection on the genome are dramatic. The lines were fixed for alternative alleles in more than 50 regions as a result of selection. Another 10 regions displayed strong evidence for ongoing differentiation during the last 10 generations. Many more regions across the genome showed large differences in allele frequency between the lines, indicating that the phenotypic evolution in the lines in 50 generations is the result of an exploitation of standing genetic variation at 100s of loci across the genome.

  18. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  19. Parameters affecting genome simulation for evaluating genomic selection method.

    Science.gov (United States)

    Nishio, Motohide; Satoh, Masahiro

    2014-10-01

    The present study investigated the parameter settings for obtaining a simulated genome at steady state of allele frequency (mutation-drift equilibrium) and linkage disequilibrium (LD), and evaluated the impact of whether or not the simulated genome reached steady state of allele frequency and LD on the accuracy of genomic estimated breeding values (GEBVs). After 500 to 50,000 historical generations, the base population and subsequent seven generations were generated as recent populations. The allele frequency distribution of the last generations of the historical population and LD in the base population were calculated when varying the values of five parameters: initial minor allele frequency, mutation rate, effective population size, number of markers and chromosome length. The accuracies of GEBVs in the last generation of the recent population were calculated by genomic best linear unbiased prediction. The number of historical generations required to reach mutation-drift equilibrium depended on the initial allele frequency and mutation rate. Regardless of the parameters, LD reached a steady state before allele frequency distribution reached mutation-drift equilibrium. The accuracies of GEBVs largely reflect the extent of linkage disequilibrium with the exception of varying chromosome length, although there were no associations between the accuracies of GEBVs and allele frequency distribution. © 2014 Japanese Society of Animal Science.

  20. Improving Genetic Gain with Genomic Selection in Autotetraploid Potato

    Directory of Open Access Journals (Sweden)

    Anthony T. Slater

    2016-11-01

    Full Text Available Potato ( L. breeders consider a large number of traits during cultivar development and progress in conventional breeding can be slow. There is accumulating evidence that some of these traits, such as yield, are affected by a large number of genes with small individual effects. Recently, significant efforts have been applied to the development of genomic resources to improve potato breeding, culminating in a draft genome sequence and the identification of a large number of single nucleotide polymorphisms (SNPs. The availability of these genome-wide SNPs is a prerequisite for implementing genomic selection for improvement of polygenic traits such as yield. In this review, we investigate opportunities for the application of genomic selection to potato, including novel breeding program designs. We have considered a number of factors that will influence this process, including the autotetraploid and heterozygous genetic nature of potato, the rate of decay of linkage disequilibrium, the number of required markers, the design of a reference population, and trait heritability. Based on estimates of the effective population size derived from a potato breeding program, we have calculated the expected accuracy of genomic selection for four key traits of varying heritability and propose that it will be reasonably accurate. We compared the expected genetic gain from genomic selection with the expected gain from phenotypic and pedigree selection, and found that genetic gain can be substantially improved by using genomic selection.

  1. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Copy-number variations (CNV, loss of heterozygosity (LOH, and uniparental disomy (UPD are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS, is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs. In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  2. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    Science.gov (United States)

    Wang, Yu; Li, Wei; Xia, Yingying; Wang, Chongzhi; Tang, Y Tom; Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2014-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  3. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA

    2015-10-24

    Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. Methods Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. Results Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30 % to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. Conclusions Our study demonstrated true levels of genetic diversity

  4. Supplementary Material for: Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA

    2015-01-01

    Abstract Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. Methods Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. Results Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30 % to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. Conclusions Our study demonstrated true levels of genetic

  5. Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat

    Directory of Open Access Journals (Sweden)

    Huajing Teng

    2016-07-01

    Full Text Available Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches.

  6. Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat.

    Science.gov (United States)

    Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Hou, Lingling; Guo, Hongling; Sun, Zhongsheng; Zhang, Jianxu

    2016-07-07

    Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches.

  7. Single-Cell (Meta-Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity

    Directory of Open Access Journals (Sweden)

    Beverly E. Flood

    2016-05-01

    Full Text Available The genus Thiomargarita includes the world’s largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria.Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence transposable elements and miniature inverted-repeat transposable elements (MITEs. In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsr

  8. Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity

    Science.gov (United States)

    Flood, Beverly E.; Fliss, Palmer; Jones, Daniel S.; Dick, Gregory J.; Jain, Sunit; Kaster, Anne-Kristin; Winkel, Matthias; Mußmann, Marc; Bailey, Jake

    2016-01-01

    The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group

  9. Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity.

    Science.gov (United States)

    Flood, Beverly E; Fliss, Palmer; Jones, Daniel S; Dick, Gregory J; Jain, Sunit; Kaster, Anne-Kristin; Winkel, Matthias; Mußmann, Marc; Bailey, Jake

    2016-01-01

    The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group

  10. Accuracy of genomic selection using different methods to define haplotypes

    NARCIS (Netherlands)

    Calus, M.P.L.; Meuwissen, T.H.E.; Roos, de S.; Veerkamp, R.F.

    2008-01-01

    Genomic selection uses total breeding values for juvenile animals, predicted from a large number of estimated marker haplotype effects across the whole genome. In this study the accuracy of predicting breeding values is compared for four different models including a large number of markers, at diffe

  11. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    Directory of Open Access Journals (Sweden)

    Gopala Krishnan S

    Full Text Available BACKGROUND: Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. RESULTS: We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts. Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. CONCLUSIONS: Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  12. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium

    Science.gov (United States)

    Iskandar, Christelle F.; Borges, Frédéric; Taminiau, Bernard; Daube, Georges; Zagorec, Monique; Remenant, Benoît; Leisner, Jørgen J.; Hansen, Martin A.; Sørensen, Søren J.; Mangavel, Cécile; Cailliez-Grimal, Catherine; Revol-Junelles, Anne-Marie

    2017-01-01

    Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium. PMID:28337181

  13. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Bruce A.; Tanifuji, Goro; Burki, Fabien; Gruber, Ansgar; Irimia, Manuuel; Maruyama, Shinichiro; Arias, Maria C.; Ball, Steven G.; Gile, Gillian H.; Hirakawa, Yoshihisa; Hopkins, Julia F.; Kuo, Alan; Rensing, Stefan A.; Schmutz, Jeremy; Symeonidi, Aikaterini; Elias, Marek; Eveleigh, Robert J. M.; Herman, Emily K.; Klute, Mary J.; Nakayama, Takuro; Obornik, Miroslav; Reyes-Prieto, Adrian; Armbrust, E. Virginia; Aves, Stephen J.; Beiko, Robert G.; Coutinho, Pedro; Dacks, Joel B.; Durnford, Dion G.; Fast, Naomi M.; Green, Beverley R.; Grisdale, Cameron J.; Hempel, Franziska; Henrissat, Bernard; Hoppner, Marc P.; Ishida, Ken-Ichiro; Kim, Eunsoo; Koreny, Ludek; Kroth, Peter G.; Liu, Yuan; Malik, Shehre-Banoo; Maier, Uwe G.; McRose, Darcy; Mock, Thomas; Neilson, Jonathan A. D.; Onodera, Naoko T.; Poole, Anthony M.; Pritham, Ellen J.; Richards, Thomas A.; Rocap, Gabrielle; Roy, Scott W.; Sarai, Chihiro; Schaack, Sarah; Shirato, Shu; Slamovits, Claudio H.; Spencer, Davie F.; Suzuki, Shigekatsu; Worden, Alexandra Z.; Zauner, Stefan; Barry, Kerrie; Bell, Callum; Bharti, Arvind K.; Crow, John A.; Grimwood, Jane; Kramer, Robin; Lindquist, Erika; Lucas, Susan; Salamov, Asaf; McFadden, Geoffrey I.; Lane, Christopher E.; Keeling, Patrick J.; Gray, Michael W.; Grigoriev, Igor V.; Archibald, John M.

    2012-08-10

    Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have 21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.

  14. Genomic analysis of primordial dwarfism reveals novel disease genes.

    Science.gov (United States)

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S

    2014-02-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.

  15. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria.

    Science.gov (United States)

    Sundararaman, Sesh A; Plenderleith, Lindsey J; Liu, Weimin; Loy, Dorothy E; Learn, Gerald H; Li, Yingying; Shaw, Katharina S; Ayouba, Ahidjo; Peeters, Martine; Speede, Sheri; Shaw, George M; Bushman, Frederic D; Brisson, Dustin; Rayner, Julian C; Sharp, Paul M; Hahn, Beatrice H

    2016-03-22

    African apes harbour at least six Plasmodium species of the subgenus Laverania, one of which gave rise to human Plasmodium falciparum. Here we use a selective amplification strategy to sequence the genome of chimpanzee parasites classified as Plasmodium reichenowi and Plasmodium gaboni based on the subgenomic fragments. Genome-wide analyses show that these parasites indeed represent distinct species, with no evidence of cross-species mating. Both P. reichenowi and P. gaboni are 10-fold more diverse than P. falciparum, indicating a very recent origin of the human parasite. We also find a remarkable Laverania-specific expansion of a multigene family involved in erythrocyte remodelling, and show that a short region on chromosome 4, which encodes two essential invasion genes, was horizontally transferred into a recent P. falciparum ancestor. Our results validate the selective amplification strategy for characterizing cryptic pathogen species, and reveal evolutionary events that likely predisposed the precursor of P. falciparum to colonize humans.

  16. Chromosomal imbalances revealed in primary rhabdomyosarcomas by comparative genomic hybridization

    Institute of Scientific and Technical Information of China (English)

    LI Qiao-xin; LIU Chun-xia; CHUN Cai-pu; QI Yan; CHANG Bin; LI Xin-xia; CHEN Yun-zhao; NONG Wei-xia; LI Hong-an; LI Feng

    2009-01-01

    Background Previous cytogenetic studies revealed aberrations varied among the throe subtypes of rhabdomyosarcoma. We profiled chromosomal imbalances in the different subtypes and investigated the relationships between clinical parameters and genomic aberrations.Methods Comparative genomic hybridization was used to investigate genomic imbalances in 25 cases of primary rhabdomyosarcomas and two rhabdomyosarcoma cell lines. Specimens were reviewed to determine histological type, pathological grading and clinical staging.Results Changes involving one or more regions of the genome were seen in all rhabdomyosarcomal patients. For rhabdomyosarcoma, DNA sequence gains were most frequently (>30%) seen in chromosomes 2p, 12q, 6p, 9q, 10q, 1p,2q, 6q, 8q, 15q and 18q; losses from 3p, 11p and 6p. In aggressive alveolar rhabdomyosarcoma, frequent gains were seen on chromosomes 12q, 2p, 6p, 2q, 4q, 10q and 15q; losses from 3p, 6p, 1q and 5q. For embryonic rhabdomyosarcoma, frequent gains were on 7p, 9q, 2p, 18q, 1p and 8q; losses only from 11p. Frequently gained chromosome arms of translocation associated with rhabdomyosarcoma were 12q, 2, 6, 10q, 4q and 15q; losses from 3p,6p and 5q. The frequently gained chromosome arms of nontranslocation associated with rhabdomyosarcoma were 2p,9q and 18q, while 11p and 14q were the frequently lost chromosome arms. Gains on chromosome 12q were significantly correlated with translocation type. Gains on chromosome 9q were significantly correlated with clinical staging. Conclusions Gains on chromosomes 2p, 12q, 6p, 9q, 10q, 1p, 2q, 6q, 8q, 15q and 18q and losses on chromosomes 3p, 11p and 6p may be related to rhabdomyosarcomal carcinogenesis. Furthermore, gains on chromosome 12q may be correlated with translocation and gains on chromosome 9q with the early stages of rhabdomyosarcoma.

  17. Integrating landscape genomics and spatially explicit approaches to detect loci under selection in clinal populations.

    Science.gov (United States)

    Jones, Matthew R; Forester, Brenna R; Teufel, Ashley I; Adams, Rachael V; Anstett, Daniel N; Goodrich, Betsy A; Landguth, Erin L; Joost, Stéphane; Manel, Stéphanie

    2013-12-01

    Uncovering the genetic basis of adaptation hinges on the ability to detect loci under selection. However, population genomics outlier approaches to detect selected loci may be inappropriate for clinal populations or those with unclear population structure because they require that individuals be clustered into populations. An alternate approach, landscape genomics, uses individual-based approaches to detect loci under selection and reveal potential environmental drivers of selection. We tested four landscape genomics methods on a simulated clinal population to determine their effectiveness at identifying a locus under varying selection strengths along an environmental gradient. We found all methods produced very low type I error rates across all selection strengths, but elevated type II error rates under "weak" selection. We then applied these methods to an AFLP genome scan of an alpine plant, Campanula barbata, and identified five highly supported candidate loci associated with precipitation variables. These loci also showed spatial autocorrelation and cline patterns indicative of selection along a precipitation gradient. Our results suggest that landscape genomics in combination with other spatial analyses provides a powerful approach for identifying loci potentially under selection and explaining spatially complex interactions between species and their environment.

  18. Integrating genomic selection into dairy cattle breeding programmes: a review.

    Science.gov (United States)

    Bouquet, A; Juga, J

    2013-05-01

    Extensive genetic progress has been achieved in dairy cattle populations on many traits of economic importance because of efficient breeding programmes. Success of these programmes has relied on progeny testing of the best young males to accurately assess their genetic merit and hence their potential for breeding. Over the last few years, the integration of dense genomic information into statistical tools used to make selection decisions, commonly referred to as genomic selection, has enabled gains in predicting accuracy of breeding values for young animals without own performance. The possibility to select animals at an early stage allows defining new breeding strategies aimed at boosting genetic progress while reducing costs. The first objective of this article was to review methods used to model and optimize breeding schemes integrating genomic selection and to discuss their relative advantages and limitations. The second objective was to summarize the main results and perspectives on the use of genomic selection in practical breeding schemes, on the basis of the example of dairy cattle populations. Two main designs of breeding programmes integrating genomic selection were studied in dairy cattle. Genomic selection can be used either for pre-selecting males to be progeny tested or for selecting males to be used as active sires in the population. The first option produces moderate genetic gains without changing the structure of breeding programmes. The second option leads to large genetic gains, up to double those of conventional schemes because of a major reduction in the mean generation interval, but it requires greater changes in breeding programme structure. The literature suggests that genomic selection becomes more attractive when it is coupled with embryo transfer technologies to further increase selection intensity on the dam-to-sire pathway. The use of genomic information also offers new opportunities to improve preservation of genetic variation. However

  19. Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Anderson, Iain; Rodriguez, Jason; Susanti, Dwi; Porat, Iris; Reich, Claudia; Ulrich, Luke E.; Elkins, James G.; Mavromatis, Kostas; Lykidis, Athanasios; Kim, Edwin; Thompson, Linda S.; Nolan, Matt; Land, Miriam; Copeland, Alex; Lapidus, Alla; Lucas, Susan; Detter, Chris; Zhulin, Igor B.; Olsen, Gary J.; Whitman, William; Mukhopadhyay, Biswarup; Bristow, James; Kyrpides, Nikos

    2008-01-01

    We report the complete genome of Thermofilum pendens, a deep-branching, hyperthermophilic member of the order Thermoproteales within the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features common among obligate parasites and thus does not appear to be in the process of becoming a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known to utilize peptides as an energy source, but the genome reveals substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may gain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogenlyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time this enzyme has been found outside of Methanosarcinales, and a presenilin-related protein. Predicted highly expressed proteins do not include housekeeping genes, and instead include ABC transporters for carbohydrates and peptides, and CRISPR-associated proteins.

  20. Recent and ongoing selection in the human genome

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Hellmann, Ines; Hubisz, Melissa

    2007-01-01

    The recent availability of genome-scale genotyping data has led to the identification of regions of the human genome that seem to have been targeted by selection. These findings have increased our understanding of the evolutionary forces that affect the human genome, have augmented our knowledge...... of gene function and promise to increase our understanding of the genetic basis of disease. However, inferences of selection are challenged by several confounding factors, especially the complex demographic history of human populations, and concordance between studies is variable. Although such studies...

  1. Strong genome-wide selection early in the evolution of Prochlorococcus resulted in a reduced genome through the loss of a large number of small effect genes.

    Directory of Open Access Journals (Sweden)

    Zhiyi Sun

    Full Text Available The smallest genomes of any photosynthetic organisms are found in a group of free-living marine cyanobacteria, Prochlorococcus. To determine the underlying evolutionary mechanisms, we developed a new method to reconstruct the steps leading to the Prochlorococcus genome reduction using 12 Prochlorococcus and 6 marine Synechococcus genomes. Our results reveal that small genome sizes within Prochlorococcus were largely determined shortly after the split of Prochlorococcus and Synechococcus (an early big shrink and thus for the first time decouple the genome reduction from Prochlorococcus diversification. A maximum likelihood approach was then used to estimate changes of nucleotide substitution rate and selection strength along Prochlorococcus evolution in a phylogenetic framework. Strong genome wide purifying selection was associated with the loss of many genes in the early evolutionary stage. The deleted genes were distributed around the genome, participated in many different functional categories and in general had been under relaxed selection pressure. We propose that shortly after Prochlorococcus diverged from its common ancestor with marine Synechococcus, its population size increased quickly thus increasing efficacy of selection. Due to limited nutrients and a relatively constant environment, selection favored a streamlined genome for maximum economy. Strong genome wide selection subsequently caused the loss of genes with small functional effect including the loss of some DNA repair genes. In summary, genome reduction in Prochlorococcus resulted in genome features that are similar to symbiotic bacteria and pathogens, however, the small genome sizes resulted from an increase in genome wide selection rather than a consequence of a reduced ecological niche or relaxed selection due to genetic drift.

  2. The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq

    Directory of Open Access Journals (Sweden)

    Loren H. Rieseberg

    2012-10-01

    Full Text Available Few studies have investigated the causes of evolutionary rate variation among plant nuclear genes, especially in recently diverged species still capable of hybridizing in the wild. The recent advent of Next Generation Sequencing (NGS permits investigation of genome wide rates of protein evolution and the role of selection in generating and maintaining divergence. Here, we use individual whole-transcriptome sequencing (RNAseq to refine our understanding of the population genomics of wild species of sunflowers (Helianthus spp. and the factors that affect rates of protein evolution. We aligned 35 GB of transcriptome sequencing data and identified 433,257 polymorphic sites (SNPs in a reference transcriptome comprising 16,312 genes. Using SNP markers, we identified strong population clustering largely corresponding to the three species analyzed here (Helianthus annuus, H. petiolaris, H. debilis, with one distinct early generation hybrid. Then, we calculated the proportions of adaptive substitution fixed by selection (alpha and identified gene ontology categories with elevated values of alpha. The “response to biotic stimulus” category had the highest mean alpha across the three interspecific comparisons, implying that natural selection imposed by other organisms plays an important role in driving protein evolution in wild sunflowers. Finally, we examined the relationship between protein evolution (dN/dS ratio and several genomic factors predicted to co-vary with protein evolution (gene expression level, divergence and specificity, genetic divergence [FST], and nucleotide diversity pi. We find that variation in rates of protein divergence was correlated with gene expression level and specificity, consistent with results from a broad range of taxa and timescales. This would in turn imply that these factors govern protein evolution both at a microevolutionary and macroevolutionary timescale. Our results contribute to a general understanding of the

  3. The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq.

    Science.gov (United States)

    Renaut, Sébastien; Grassa, Christopher J; Moyers, Brook T; Kane, Nolan C; Rieseberg, Loren H

    2012-10-25

    Few studies have investigated the causes of evolutionary rate variation among plant nuclear genes, especially in recently diverged species still capable of hybridizing in the wild. The recent advent of Next Generation Sequencing (NGS) permits investigation of genome wide rates of protein evolution and the role of selection in generating and maintaining divergence. Here, we use individual whole-transcriptome sequencing (RNAseq) to refine our understanding of the population genomics of wild species of sunflowers (Helianthus spp.) and the factors that affect rates of protein evolution. We aligned 35 GB of transcriptome sequencing data and identified 433,257 polymorphic sites (SNPs) in a reference transcriptome comprising 16,312 genes. Using SNP markers, we identified strong population clustering largely corresponding to the three species analyzed here (Helianthus annuus, H. petiolaris, H. debilis), with one distinct early generation hybrid. Then, we calculated the proportions of adaptive substitution fixed by selection (alpha) and identified gene ontology categories with elevated values of alpha. The "response to biotic stimulus" category had the highest mean alpha across the three interspecific comparisons, implying that natural selection imposed by other organisms plays an important role in driving protein evolution in wild sunflowers. Finally, we examined the relationship between protein evolution (dN/dS ratio) and several genomic factors predicted to co-vary with protein evolution (gene expression level, divergence and specificity, genetic divergence [FST], and nucleotide diversity pi). We find that variation in rates of protein divergence was correlated with gene expression level and specificity, consistent with results from a broad range of taxa and timescales. This would in turn imply that these factors govern protein evolution both at a microevolutionary and macroevolutionary timescale. Our results contribute to a general understanding of the determinants of

  4. Classic selective sweeps revealed by massive sequencing in cattle.

    Directory of Open Access Journals (Sweden)

    Saber Qanbari

    2014-02-01

    Full Text Available Human driven selection during domestication and subsequent breed formation has likely left detectable signatures within the genome of modern cattle. The elucidation of these signatures of selection is of interest from the perspective of evolutionary biology, and for identifying domestication-related genes that ultimately may help to further genetically improve this economically important animal. To this end, we employed a panel of more than 15 million autosomal SNPs identified from re-sequencing of 43 Fleckvieh animals. We mainly applied two somewhat complementary statistics, the integrated Haplotype Homozygosity Score (iHS reflecting primarily ongoing selection, and the Composite of Likelihood Ratio (CLR having the most power to detect completed selection after fixation of the advantageous allele. We find 106 candidate selection regions, many of which are harboring genes related to phenotypes relevant in domestication, such as coat coloring pattern, neurobehavioral functioning and sensory perception including KIT, MITF, MC1R, NRG4, Erbb4, TMEM132D and TAS2R16, among others. To further investigate the relationship between genes with signatures of selection and genes identified in QTL mapping studies, we use a sample of 3062 animals to perform four genome-wide association analyses using appearance traits, body size and somatic cell count. We show that regions associated with coat coloring significantly (P<0.0001 overlap with the candidate selection regions, suggesting that the selection signals we identify are associated with traits known to be affected by selection during domestication. Results also provide further evidence regarding the complexity of the genetics underlying coat coloring in cattle. This study illustrates the potential of population genetic approaches for identifying genomic regions affecting domestication-related phenotypes and further helps to identify specific regions targeted by selection during speciation, domestication and

  5. Natural selection on functional modules, a genome-wide analysis.

    Science.gov (United States)

    Serra, François; Arbiza, Leonardo; Dopazo, Joaquín; Dopazo, Hernán

    2011-03-01

    Classically, the functional consequences of natural selection over genomes have been analyzed as the compound effects of individual genes. The current paradigm for large-scale analysis of adaptation is based on the observed significant deviations of rates of individual genes from neutral evolutionary expectation. This approach, which assumed independence among genes, has not been able to identify biological functions significantly enriched in positively selected genes in individual species. Alternatively, pooling related species has enhanced the search for signatures of selection. However, grouping signatures does not allow testing for adaptive differences between species. Here we introduce the Gene-Set Selection Analysis (GSSA), a new genome-wide approach to test for evidences of natural selection on functional modules. GSSA is able to detect lineage specific evolutionary rate changes in a notable number of functional modules. For example, in nine mammal and Drosophilae genomes GSSA identifies hundreds of functional modules with significant associations to high and low rates of evolution. Many of the detected functional modules with high evolutionary rates have been previously identified as biological functions under positive selection. Notably, GSSA identifies conserved functional modules with many positively selected genes, which questions whether they are exclusively selected for fitting genomes to environmental changes. Our results agree with previous studies suggesting that adaptation requires positive selection, but not every mutation under positive selection contributes to the adaptive dynamical process of the evolution of species.

  6. Natural selection on functional modules, a genome-wide analysis.

    Directory of Open Access Journals (Sweden)

    François Serra

    2011-03-01

    Full Text Available Classically, the functional consequences of natural selection over genomes have been analyzed as the compound effects of individual genes. The current paradigm for large-scale analysis of adaptation is based on the observed significant deviations of rates of individual genes from neutral evolutionary expectation. This approach, which assumed independence among genes, has not been able to identify biological functions significantly enriched in positively selected genes in individual species. Alternatively, pooling related species has enhanced the search for signatures of selection. However, grouping signatures does not allow testing for adaptive differences between species. Here we introduce the Gene-Set Selection Analysis (GSSA, a new genome-wide approach to test for evidences of natural selection on functional modules. GSSA is able to detect lineage specific evolutionary rate changes in a notable number of functional modules. For example, in nine mammal and Drosophilae genomes GSSA identifies hundreds of functional modules with significant associations to high and low rates of evolution. Many of the detected functional modules with high evolutionary rates have been previously identified as biological functions under positive selection. Notably, GSSA identifies conserved functional modules with many positively selected genes, which questions whether they are exclusively selected for fitting genomes to environmental changes. Our results agree with previous studies suggesting that adaptation requires positive selection, but not every mutation under positive selection contributes to the adaptive dynamical process of the evolution of species.

  7. Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2009-09-01

    Full Text Available Abstract Background Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results This paper presents a new probe selection algorithm (PanArray that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pan-genome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on

  8. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication.

    Directory of Open Access Journals (Sweden)

    Li-Jun Ma

    2009-07-01

    Full Text Available Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called "zygomycetes," R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99-880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs, comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin-proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14alpha-demethylase (ERG11, could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.

  9. An experimental validation of genomic selection in octoploid strawberry

    Science.gov (United States)

    Gezan, Salvador A; Osorio, Luis F; Verma, Sujeet; Whitaker, Vance M

    2017-01-01

    The primary goal of genomic selection is to increase genetic gains for complex traits by predicting performance of individuals for which phenotypic data are not available. The objective of this study was to experimentally evaluate the potential of genomic selection in strawberry breeding and to define a strategy for its implementation. Four clonally replicated field trials, two in each of 2 years comprised of a total of 1628 individuals, were established in 2013–2014 and 2014–2015. Five complex yield and fruit quality traits with moderate to low heritability were assessed in each trial. High-density genotyping was performed with the Affymetrix Axiom IStraw90 single-nucleotide polymorphism array, and 17 479 polymorphic markers were chosen for analysis. Several methods were compared, including Genomic BLUP, Bayes B, Bayes C, Bayesian LASSO Regression, Bayesian Ridge Regression and Reproducing Kernel Hilbert Spaces. Cross-validation within training populations resulted in higher values than for true validations across trials. For true validations, Bayes B gave the highest predictive abilities on average and also the highest selection efficiencies, particularly for yield traits that were the lowest heritability traits. Selection efficiencies using Bayes B for parent selection ranged from 74% for average fruit weight to 34% for early marketable yield. A breeding strategy is proposed in which advanced selection trials are utilized as training populations and in which genomic selection can reduce the breeding cycle from 3 to 2 years for a subset of untested parents based on their predicted genomic breeding values. PMID:28090334

  10. Comparative genomics reveals evidence of marine adaptation in Salinispora species

    Science.gov (United States)

    2012-01-01

    Background Actinobacteria represent a consistent component of most marine bacterial communities yet little is known about the mechanisms by which these Gram-positive bacteria adapt to life in the marine environment. Here we employed a phylogenomic approach to identify marine adaptation genes in marine Actinobacteria. The focus was on the obligate marine actinomycete genus Salinispora and the identification of marine adaptation genes that have been acquired from other marine bacteria. Results Functional annotation, comparative genomics, and evidence of a shared evolutionary history with bacteria from hyperosmotic environments were used to identify a pool of more than 50 marine adaptation genes. An Actinobacterial species tree was used to infer the likelihood of gene gain or loss in accounting for the distribution of each gene. Acquired marine adaptation genes were associated with electron transport, sodium and ABC transporters, and channels and pores. In addition, the loss of a mechanosensitive channel gene appears to have played a major role in the inability of Salinispora strains to grow following transfer to low osmotic strength media. Conclusions The marine Actinobacteria for which genome sequences are available are broadly distributed throughout the Actinobacterial phylogenetic tree and closely related to non-marine forms suggesting they have been independently introduced relatively recently into the marine environment. It appears that the acquisition of transporters in Salinispora spp. represents a major marine adaptation while gene loss is proposed to play a role in the inability of this genus to survive outside of the marine environment. This study reveals fundamental differences between marine adaptations in Gram-positive and Gram-negative bacteria and no common genetic basis for marine adaptation among the Actinobacteria analyzed. PMID:22401625

  11. Comparative genomics reveals evidence of marine adaptation in Salinispora species.

    Science.gov (United States)

    Penn, Kevin; Jensen, Paul R

    2012-03-08

    Actinobacteria represent a consistent component of most marine bacterial communities yet little is known about the mechanisms by which these Gram-positive bacteria adapt to life in the marine environment. Here we employed a phylogenomic approach to identify marine adaptation genes in marine Actinobacteria. The focus was on the obligate marine actinomycete genus Salinispora and the identification of marine adaptation genes that have been acquired from other marine bacteria. Functional annotation, comparative genomics, and evidence of a shared evolutionary history with bacteria from hyperosmotic environments were used to identify a pool of more than 50 marine adaptation genes. An Actinobacterial species tree was used to infer the likelihood of gene gain or loss in accounting for the distribution of each gene. Acquired marine adaptation genes were associated with electron transport, sodium and ABC transporters, and channels and pores. In addition, the loss of a mechanosensitive channel gene appears to have played a major role in the inability of Salinispora strains to grow following transfer to low osmotic strength media. The marine Actinobacteria for which genome sequences are available are broadly distributed throughout the Actinobacterial phylogenetic tree and closely related to non-marine forms suggesting they have been independently introduced relatively recently into the marine environment. It appears that the acquisition of transporters in Salinispora spp. represents a major marine adaptation while gene loss is proposed to play a role in the inability of this genus to survive outside of the marine environment. This study reveals fundamental differences between marine adaptations in Gram-positive and Gram-negative bacteria and no common genetic basis for marine adaptation among the Actinobacteria analyzed.

  12. Comparative genomics reveals evidence of marine adaptation in Salinispora species

    Directory of Open Access Journals (Sweden)

    Penn Kevin

    2012-03-01

    Full Text Available Abstract Background Actinobacteria represent a consistent component of most marine bacterial communities yet little is known about the mechanisms by which these Gram-positive bacteria adapt to life in the marine environment. Here we employed a phylogenomic approach to identify marine adaptation genes in marine Actinobacteria. The focus was on the obligate marine actinomycete genus Salinispora and the identification of marine adaptation genes that have been acquired from other marine bacteria. Results Functional annotation, comparative genomics, and evidence of a shared evolutionary history with bacteria from hyperosmotic environments were used to identify a pool of more than 50 marine adaptation genes. An Actinobacterial species tree was used to infer the likelihood of gene gain or loss in accounting for the distribution of each gene. Acquired marine adaptation genes were associated with electron transport, sodium and ABC transporters, and channels and pores. In addition, the loss of a mechanosensitive channel gene appears to have played a major role in the inability of Salinispora strains to grow following transfer to low osmotic strength media. Conclusions The marine Actinobacteria for which genome sequences are available are broadly distributed throughout the Actinobacterial phylogenetic tree and closely related to non-marine forms suggesting they have been independently introduced relatively recently into the marine environment. It appears that the acquisition of transporters in Salinispora spp. represents a major marine adaptation while gene loss is proposed to play a role in the inability of this genus to survive outside of the marine environment. This study reveals fundamental differences between marine adaptations in Gram-positive and Gram-negative bacteria and no common genetic basis for marine adaptation among the Actinobacteria analyzed.

  13. A parts list for fungal cellulosomes revealed by comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Haitjema, Charles H.; Gilmore, Sean P.; Henske, John K.; Solomon, Kevin V.; de Groot, Randall; Kuo, Alan; Mondo, Stephen J.; Salamov, Asaf A.; LaButti, Kurt; Zhao, Zhiying; Chiniquy, Jennifer; Barry, Kerrie; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Hainaut, Matthieu; Boxma, Brigitte; van Alen, Theo; Hackstein, Johannes H. P.; Henrissat, Bernard; Baker, Scott E.; Grigoriev, Igor V.; O' Malley, Michelle A.

    2017-05-26

    Cellulosomes are large, multi-protein complexes that tether plant biomass degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria where species specific dockerin domains mediate assembly of enzymes onto complementary cohesin motifs interspersed within non-catalytic protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic protein-scale pathways2,3. For decades, analogous structures have been reported in the early branching anaerobic fungi, which are known to assemble by sequence divergent non-catalytic dockerin domains (NCDD)4. However, the enzyme components, modular assembly mechanism, and functional role of fungal cellulosomes remain unknown5,6. Here, we describe the comprehensive set of proteins critical to fungal cellulosome assembly, including novel, conserved scaffolding proteins unique to the Neocallimastigomycota. High quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single molecule technology to overcome their repeat-richness and extremely low GC content. Genomic analysis coupled with proteomic validation revealed an average 320 NCDD-containing proteins per fungal strain that were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across 4 genera that contain a conserved amino acid sequence repeat that binds to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. Though many catalytic domains are shared with bacteria, the biocatalytic activity of anaerobic fungi is expanded by the inclusion of GH3, GH6, and GH45 enzymes in the enzyme complexes. Collectively, these findings suggest that the fungal cellulosome is an evolutionarily

  14. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential

    Directory of Open Access Journals (Sweden)

    Siragusa Gregory R

    2011-06-01

    Full Text Available Abstract Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase and a holin (PF04531. Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1 strongly significant host-specific sequence variation within the endolysin, and 2 a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products.

  15. Complex evolutionary patterns revealed by mitochondrial genomes of the domestic horse.

    Science.gov (United States)

    Ning, T; Li, J; Lin, K; Xiao, H; Wylie, S; Hua, S; Li, H; Zhang, Y-P

    2014-01-01

    The domestic horse is the most widely used and important stock and recreational animal, valued for its strength and endurance. The energy required by the domestic horse is mainly supplied by mitochondria via oxidative phosphorylation. Thus, selection may have played an essential role in the evolution of the horse mitochondria. Besides, demographic events also affect the DNA polymorphic pattern on mitochondria. To understand the evolutionary patterns of the mitochondria of the domestic horse, we used a deep sequencing approach to obtain the complete sequences of 15 mitochondrial genomes, and four mitochondrial gene sequences, ND6, ATP8, ATP6 and CYTB, collected from 509, 363, 363 and 409 domestic horses, respectively. Evidence of strong substitution rate heterogeneity was found at nonsynonymous sites across the genomes. Signatures of recent positive selection on mtDNA of domestic horse were detected. Specifically, five amino acids in the four mitochondrial genes were identified as the targets of positive selection. Coalescentbased simulations imply that recent population expansion is the most probable explanation for the matrilineal population history for domestic horse. Our findings reveal a complex pattern of non-neutral evolution of the mitochondrial genome in the domestic horses.

  16. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.

    Science.gov (United States)

    Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun

    2014-11-25

    The prokaryotic pangenome partitions genes into core and dispensable genes. The order of core genes, albeit assumed to be stable under selection in general, is frequently interrupted by horizontal gene transfer and rearrangement, but how a core-gene-defined genome maintains its stability or flexibility remains to be investigated. Based on data from 30 species, including 425 genomes from six phyla, we grouped core genes into syntenic blocks in the context of a pangenome according to their stability across multiple isolates. A subset of the core genes, often species specific and lineage associated, formed a core-gene-defined genome organizational framework (cGOF). Such cGOFs are either single segmental (one-third of the species analyzed) or multisegmental (the rest). Multisegment cGOFs were further classified into symmetric or asymmetric according to segment orientations toward the origin-terminus axis. The cGOFs in Gram-positive species are exclusively symmetric and often reversible in orientation, as opposed to those of the Gram-negative bacteria, which are all asymmetric and irreversible. Meanwhile, all species showing strong strand-biased gene distribution contain symmetric cGOFs and often specific DnaE (α subunit of DNA polymerase III) isoforms. Furthermore, functional evaluations revealed that cGOF genes are hub associated with regard to cellular activities, and the stability of cGOF provides efficient indexes for scaffold orientation as demonstrated by assembling virtual and empirical genome drafts. cGOFs show species specificity, and the symmetry of multisegmental cGOFs is conserved among taxa and constrained by DNA polymerase-centric strand-biased gene distribution. The definition of species-specific cGOFs provides powerful guidance for genome assembly and other structure-based analysis. Prokaryotic genomes are frequently interrupted by horizontal gene transfer (HGT) and rearrangement. To know whether there is a set of genes not only conserved in position

  17. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate.

    Directory of Open Access Journals (Sweden)

    Benjamin Georgi

    2014-03-01

    Full Text Available Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders.

  18. Rapid cycling genomic selection in a multiparental tropical maize population

    Science.gov (United States)

    Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is th...

  19. Patterns of positive selection in six Mammalian genomes

    DEFF Research Database (Denmark)

    Kosiol, Carolin; Vinar, Tomás; da Fonseca, Rute R

    2008-01-01

    are significantly enriched for PSGs, but no evidence was found for an enrichment for PSGs among brain-specific genes. This study provides additional evidence for widespread positive selection in mammalian evolution and new genome-wide insights into the functional implications of positive selection.......Genome-wide scans for positively selected genes (PSGs) in mammals have provided insight into the dynamics of genome evolution, the genetic basis of differences between species, and the functions of individual genes. However, previous scans have been limited in power and accuracy owing to small...... several new lineage- and clade-specific tests to be applied. Of approximately 16,500 human genes with high-confidence orthologs in at least two other species, 400 genes showed significant evidence of positive selection (FDR

  20. Does genomic selection have a future in plant breeding?

    Science.gov (United States)

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2013-09-01

    Plant breeding largely depends on phenotypic selection in plots and only for some, often disease-resistance-related traits, uses genetic markers. The more recently developed concept of genomic selection, using a black box approach with no need of prior knowledge about the effect or function of individual markers, has also been proposed as a great opportunity for plant breeding. Several empirical and theoretical studies have focused on the possibility to implement this as a novel molecular method across various species. Although we do not question the potential of genomic selection in general, in this Opinion, we emphasize that genomic selection approaches from dairy cattle breeding cannot be easily applied to complex plant breeding.

  1. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans

    Directory of Open Access Journals (Sweden)

    Sherman David H

    2007-07-01

    Full Text Available Abstract Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Results We identified five large S. coelicolor genomic islands (larger than 25 kb and 18 smaller islets absent in S. lividans chromosome. Many of these regions show anomalous GC bias and codon usage patterns. Six of them are in close vicinity of tRNA genes while nine are flanked with near perfect repeat sequences indicating that these are probable recent evolutionary acquisitions into S. coelicolor. Embedded within these segments are at least four DNA methylases and two probable methyl-sensing restriction endonucleases. Comparison with S. coelicolor transcriptome and proteome data revealed that some of the missing genes are active during the course of growth and differentiation in S. coelicolor. In particular, a pair of methylmalonyl CoA mutase (mcm genes involved in polyketide precursor biosynthesis, an acyl-CoA dehydrogenase implicated in timing of actinorhodin synthesis and bldB, a developmentally significant regulator whose mutation causes complete abrogation of antibiotic synthesis belong to this category. Conclusion Our findings provide tangible hints for elucidating the genetic basis of important phenotypic differences between these two streptomycetes. Importantly, absence of certain genes in S. lividans identified here could potentially explain the relative ease of DNA transformations and the conditional lack of actinorhodin synthesis in S. lividans.

  2. A Primer on High-Throughput Computing for Genomic Selection

    Directory of Open Access Journals (Sweden)

    Xiao-Lin eWu

    2011-02-01

    Full Text Available High-throughput computing (HTC uses computer clusters to solve advanced computational problems, with the goal of accomplishing high throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general purpose computation on a graphics processing unit (GPU provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin – Madison, which can be leveraged for genomic selection, in terms of central processing unit (CPU capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of

  3. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1.

    Science.gov (United States)

    Kim, Eun Jin; Lee, Chan Hee; Nair, G Balakrish; Kim, Dong Wook

    2015-08-01

    The analysis of the whole-genome sequences of Vibrio cholerae strains from previous and current cholera pandemics has demonstrated that genomic changes and alterations in phage CTX (particularly in the gene encoding the B subunit of cholera toxin) were major features in the evolution of V. cholerae. Recent studies have revealed the genetic mechanisms in these bacteria by which new variants of V. cholerae are generated from type-specific strains; these mechanisms suggest that certain strains are selected by environmental or human factors over time. By understanding the mechanisms and driving forces of historical and current changes in the V. cholerae population, it would be possible to predict the direction of such changes and the evolution of new variants; this has implications for the battle against cholera. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Prior genetic architecture impacting genomic regions under selection: an example using genomic selection in two poultry breeds

    NARCIS (Netherlands)

    Zhang, X.; Misztal, I.; Heidaritabar, M.; Bastiaansen, J.W.M.; Borg, R.; Okimoto, R.

    2015-01-01

    Background The objective of this study is to investigate if selection on similar traits in different populations progress from selection on similar genes. With the aid of high-density genome wide single-nucleotide polymorphism (SNP) genotyping, it is possible to directly assess changes in allelic

  5. Complete mitochondrial genome sequencing reveals novel haplotypes in a Polynesian population.

    Directory of Open Access Journals (Sweden)

    Miles Benton

    Full Text Available The high risk of metabolic disease traits in Polynesians may be partly explained by elevated prevalence of genetic variants involved in energy metabolism. The genetics of Polynesian populations has been shaped by island hoping migration events which have possibly favoured thrifty genes. The aim of this study was to sequence the mitochondrial genome in a group of Maoris in an effort to characterise genome variation in this Polynesian population for use in future disease association studies. We sequenced the complete mitochondrial genomes of 20 non-admixed Maori subjects using Affymetrix technology. DNA diversity analyses showed the Maori group exhibited reduced mitochondrial genome diversity compared to other worldwide populations, which is consistent with historical bottleneck and founder effects. Global phylogenetic analysis positioned these Maori subjects specifically within mitochondrial haplogroup--B4a1a1. Interestingly, we identified several novel variants that collectively form new and unique Maori motifs--B4a1a1c, B4a1a1a3 and B4a1a1a5. Compared to ancestral populations we observed an increased frequency of non-synonymous coding variants of several mitochondrial genes in the Maori group, which may be a result of positive selection and/or genetic drift effects. In conclusion, this study reports the first complete mitochondrial genome sequence data for a Maori population. Overall, these new data reveal novel mitochondrial genome signatures in this Polynesian population and enhance the phylogenetic picture of maternal ancestry in Oceania. The increased frequency of several mitochondrial coding variants makes them good candidates for future studies aimed at assessment of metabolic disease risk in Polynesian populations.

  6. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus.

    Directory of Open Access Journals (Sweden)

    Kui Lin

    2014-01-01

    Full Text Available Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya.

  7. Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus

    Science.gov (United States)

    Zhang, Zhonghua; Ivanov, Sergey; Saunders, Diane G. O.; Mu, Desheng; Pang, Erli; Cao, Huifen; Cha, Hwangho; Lin, Tao; Zhou, Qian; Shang, Yi; Li, Ying; Sharma, Trupti; van Velzen, Robin; de Ruijter, Norbert; Aanen, Duur K.; Win, Joe; Kamoun, Sophien; Bisseling, Ton; Geurts, René; Huang, Sanwen

    2014-01-01

    Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya. PMID:24415955

  8. The genome of Tetranychus urticae reveals herbivorous pest adaptations

    NARCIS (Netherlands)

    Grbić, M.; Van Leeuwen, T.; Clark, R.M.; Rombauts, S.; Grbić, V.; Osborne, E.J.; Dermauw, W.; Phuong, C.T.N.; Ortego, F.; Hernández-Crespo, P.; Diaz, I.; Martinez, M.; Navajas, M.; Sucena, E.; Magalhães, S.; Nagy, L.; Pace, R.M.; Djuranović, S.; Smagghe, G.; Iga, M.; Christiaens, O.; Veenstra, J.A.; Ewer, J.; Villalobos, R.M.; Hutter, J.L.; Hudson, S.D.; Velez, M.; Yi, S.V.; Zeng, J.; Pires-dasilva, A.; Roch, F.; Cazaux, M.; Navarro, M.; Zhurov, V.; Acevedo, G.; Bjelica, A.; Fawcett, J.A.; Bonnet, E.; Martens, C.; Baele, G.; Wissler, L.; Sanchez-Rodriguez, A.; Tirry, L.; Blais, C.; Demeestere, K.; Henz, S.R.; Gregory, T.R.; Mathieu, J.; Verdon, L.; Farinelli, L.; Schmutz, J.; Lindquist, E.; Feyereisen, R.; Van de Peer, Y.

    2011-01-01

    The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T.

  9. The genome of Tetranychus urticae reveals herbivorous pest adaptations

    NARCIS (Netherlands)

    Grbić, M.; Van Leeuwen, T.; Clark, R.M.; Rombauts, S.; Grbić, V.; Osborne, E.J.; Dermauw, W.; Phuong, C.T.N.; Ortego, F.; Hernández-Crespo, P.; Diaz, I.; Martinez, M.; Navajas, M.; Sucena, E.; Magalhães, S.; Nagy, L.; Pace, R.M.; Djuranović, S.; Smagghe, G.; Iga, M.; Christiaens, O.; Veenstra, J.A.; Ewer, J.; Villalobos, R.M.; Hutter, J.L.; Hudson, S.D.; Velez, M.; Yi, S.V.; Zeng, J.; Pires-dasilva, A.; Roch, F.; Cazaux, M.; Navarro, M.; Zhurov, V.; Acevedo, G.; Bjelica, A.; Fawcett, J.A.; Bonnet, E.; Martens, C.; Baele, G.; Wissler, L.; Sanchez-Rodriguez, A.; Tirry, L.; Blais, C.; Demeestere, K.; Henz, S.R.; Gregory, T.R.; Mathieu, J.; Verdon, L.; Farinelli, L.; Schmutz, J.; Lindquist, E.; Feyereisen, R.; Van de Peer, Y.

    2011-01-01

    The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T.

  10. Pathogenicity determinants in smut fungi revealed by genome comparison.

    Science.gov (United States)

    Schirawski, Jan; Mannhaupt, Gertrud; Münch, Karin; Brefort, Thomas; Schipper, Kerstin; Doehlemann, Gunther; Di Stasio, Maurizio; Rössel, Nicole; Mendoza-Mendoza, Artemio; Pester, Doris; Müller, Olaf; Winterberg, Britta; Meyer, Elmar; Ghareeb, Hassan; Wollenberg, Theresa; Münsterkötter, Martin; Wong, Philip; Walter, Mathias; Stukenbrock, Eva; Güldener, Ulrich; Kahmann, Regine

    2010-12-10

    Biotrophic pathogens, such as the related maize pathogenic fungi Ustilago maydis and Sporisorium reilianum, establish an intimate relationship with their hosts by secreting protein effectors. Because secreted effectors interacting with plant proteins should rapidly evolve, we identified variable genomic regions by sequencing the genome of S. reilianum and comparing it with the U. maydis genome. We detected 43 regions of low sequence conservation in otherwise well-conserved syntenic genomes. These regions primarily encode secreted effectors and include previously identified virulence clusters. By deletion analysis in U. maydis, we demonstrate a role in virulence for four previously unknown diversity regions. This highlights the power of comparative genomics of closely related species for identification of virulence determinants.

  11. DNA Break Mapping Reveals Topoisomerase II Activity Genome-Wide

    Directory of Open Access Journals (Sweden)

    Laura Baranello

    2014-07-01

    Full Text Available Genomic DNA is under constant assault by endogenous and exogenous DNA damaging agents. DNA breakage can represent a major threat to genome integrity but can also be necessary for genome function. Here we present approaches to map DNA double-strand breaks (DSBs and single-strand breaks (SSBs at the genome-wide scale by two methods called DSB- and SSB-Seq, respectively. We tested these methods in human colon cancer cells and validated the results using the Topoisomerase II (Top2-poisoning agent etoposide (ETO. Our results show that the combination of ETO treatment with break-mapping techniques is a powerful method to elaborate the pattern of Top2 enzymatic activity across the genome.

  12. The Capsaspora genome reveals a complex unicellular prehistory of animals.

    Science.gov (United States)

    Suga, Hiroshi; Chen, Zehua; de Mendoza, Alex; Sebé-Pedrós, Arnau; Brown, Matthew W; Kramer, Eric; Carr, Martin; Kerner, Pierre; Vervoort, Michel; Sánchez-Pons, Núria; Torruella, Guifré; Derelle, Romain; Manning, Gerard; Lang, B Franz; Russ, Carsten; Haas, Brian J; Roger, Andrew J; Nusbaum, Chad; Ruiz-Trillo, Iñaki

    2013-01-01

    To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans' unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans.

  13. Identification of selective sweeps reveals divergent selection between Chinese Holstein and Simmental cattle populations

    DEFF Research Database (Denmark)

    Chen, Minhui; Pan, Dunfei; Ren, Hongyan;

    2016-01-01

    , including LRH, XP-EHH and FST, based on the Illumina 770K high-density single nucleotide polymorphism (SNP) array, to enable more comprehensive detection. RESULTS: We successfully constructed profiles of selective signals in both cattle populations. To further annotate these regions, we identified a set......-minor allele frequency bin, we found a higher proportion of low-FST SNPs in the exons of the bovine genome, which indicates strong purifying selection of the exons. CONCLUSIONS: The selection signatures identified in these two populations demonstrated positive selection pressure on a set of important genes...... with potential functions that are involved in many biological processes. We also demonstrated that in the bovine genome, exons were under strong purifying selection. Our findings provide insight into the mechanisms of artificial selection and will facilitate follow-up functional studies of potential candidate...

  14. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera.

    Science.gov (United States)

    Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-15

    Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes.

  15. Patterns of positive selection in six Mammalian genomes.

    Directory of Open Access Journals (Sweden)

    Carolin Kosiol

    Full Text Available Genome-wide scans for positively selected genes (PSGs in mammals have provided insight into the dynamics of genome evolution, the genetic basis of differences between species, and the functions of individual genes. However, previous scans have been limited in power and accuracy owing to small numbers of available genomes. Here we present the most comprehensive examination of mammalian PSGs to date, using the six high-coverage genome assemblies now available for eutherian mammals. The increased phylogenetic depth of this dataset results in substantially improved statistical power, and permits several new lineage- and clade-specific tests to be applied. Of approximately 16,500 human genes with high-confidence orthologs in at least two other species, 400 genes showed significant evidence of positive selection (FDR<0.05, according to a standard likelihood ratio test. An additional 144 genes showed evidence of positive selection on particular lineages or clades. As in previous studies, the identified PSGs were enriched for roles in defense/immunity, chemosensory perception, and reproduction, but enrichments were also evident for more specific functions, such as complement-mediated immunity and taste perception. Several pathways were strongly enriched for PSGs, suggesting possible co-evolution of interacting genes. A novel Bayesian analysis of the possible "selection histories" of each gene indicated that most PSGs have switched multiple times between positive selection and nonselection, suggesting that positive selection is often episodic. A detailed analysis of Affymetrix exon array data indicated that PSGs are expressed at significantly lower levels, and in a more tissue-specific manner, than non-PSGs. Genes that are specifically expressed in the spleen, testes, liver, and breast are significantly enriched for PSGs, but no evidence was found for an enrichment for PSGs among brain-specific genes. This study provides additional evidence for

  16. Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in Sorghum bicolor Reveals Signatures of Artificial Selection and Insights into Parallel Domestication in Cereal Crops.

    Science.gov (United States)

    Tao, Yongfu; Mace, Emma S; Tai, Shuaishuai; Cruickshank, Alan; Campbell, Bradley C; Zhao, Xianrong; Van Oosterom, Erik J; Godwin, Ian D; Botella, Jose R; Jordan, David R

    2017-01-01

    Seed size and seed weight are major quality attributes and important determinants of yield that have been strongly selected for during crop domestication. Limited information is available about the genetic control and genes associated with seed size and weight in sorghum. This study identified sorghum orthologs of genes with proven effects on seed size and weight in other plant species and searched for evidence of selection during domestication by utilizing resequencing data from a diversity panel. In total, 114 seed size candidate genes were identified in sorghum, 63 of which exhibited signals of purifying selection during domestication. A significant number of these genes also had domestication signatures in maize and rice, consistent with the parallel domestication of seed size in cereals. Seed size candidate genes that exhibited differentially high expression levels in seed were also found more likely to be under selection during domestication, supporting the hypothesis that modification to seed size during domestication preferentially targeted genes for intrinsic seed size rather than genes associated with physiological factors involved in the carbohydrate supply and transport. Our results provide improved understanding of the complex genetic control of seed size and weight and the impact of domestication on these genes.

  17. Direct selection on genetic robustness revealed in the yeast transcriptome.

    Directory of Open Access Journals (Sweden)

    Stephen R Proulx

    Full Text Available BACKGROUND: Evolutionary theory predicts that organisms should evolve the ability to produce high fitness phenotypes in the face of environmental disturbances (environmental robustness or genetic mutations (genetic robustness. While several studies have uncovered mechanisms that lead to both environmental and genetic robustness, we have yet to understand why some components of the genome are more robust than others. According to evolutionary theory, environmental and genetic robustness will have different responses to selective forces. Selection on environmental robustness for a trait is expected to be strong and related to the fitness costs of altering that trait. In contrast to environmental robustness, selection on genetic robustness for a trait is expected to be largely independent of the fitness cost of altering the trait and instead should correlate with the standing genetic variation for the trait that can potentially be buffered. Several mechanisms that provide both environmental and genetic robustness have been described, and this correlation could be explained by direct selection on both forms of robustness (direct selection hypothesis, or through selection on environmental robustness and a correlated response in genetic robustness (congruence hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: Using both published and novel data on gene expression in the yeast Saccharomyces cerevisiae, we find that genetic robustness is correlated with environmental robustness across the yeast genome as predicted by the congruence hypothesis. However, we also show that environmental robustness, but not genetic robustness, is related to per-gene fitness effects. In contrast, genetic robustness is significantly correlated with network position, suggesting that genetic robustness has been under direct selection. CONCLUSIONS/SIGNIFICANCE: We observed a significant correlation between our measures of genetic and environmental robustness, in agreement with the

  18. Coelacanth genome sequence reveals the evolutionary history of vertebrate genes.

    Science.gov (United States)

    Noonan, James P; Grimwood, Jane; Danke, Joshua; Schmutz, Jeremy; Dickson, Mark; Amemiya, Chris T; Myers, Richard M

    2004-12-01

    The coelacanth is one of the nearest living relatives of tetrapods. However, a teleost species such as zebrafish or Fugu is typically used as the outgroup in current tetrapod comparative sequence analyses. Such studies are complicated by the fact that teleost genomes have undergone a whole-genome duplication event, as well as individual gene-duplication events. Here, we demonstrate the value of coelacanth genome sequence by complete sequencing and analysis of the protocadherin gene cluster of the Indonesian coelacanth, Latimeria menadoensis. We found that coelacanth has 49 protocadherin cluster genes organized in the same three ordered subclusters, alpha, beta, and gamma, as the 54 protocadherin cluster genes in human. In contrast, whole-genome and tandem duplications have generated two zebrafish protocadherin clusters comprised of at least 97 genes. Additionally, zebrafish protocadherins are far more prone to homogenizing gene conversion events than coelacanth protocadherins, suggesting that recombination- and duplication-driven plasticity may be a feature of teleost genomes. Our results indicate that coelacanth provides the ideal outgroup sequence against which tetrapod genomes can be measured. We therefore present L. menadoensis as a candidate for whole-genome sequencing.

  19. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Luke M [West Virginia University, Morgantown; Slavov, Gancho [West Virginia University, Morgantown; Rodgers-Melnick, Eli [West Virginia University, Morgantown; Martin, Joel [U.S. Department of Energy, Joint Genome Institute; Ranjan, Priya [ORNL; Muchero, Wellington [ORNL; Brunner, Amy M. [Virginia Polytechnic Institute and State University; Schackwitz, Wendy [U.S. Department of Energy, Joint Genome Institute; Gunter, Lee E [ORNL; Chen, Jay [ORNL; Tuskan, Gerald A [ORNL; Difazio, Stephen P. [West Virginia University, Morgantown

    2014-01-01

    Forest trees are dominant components of terrestrial ecosystems that have global ecological and economic importance. Despite distributions that span wide environmental gradients, many tree populations are locally adapted, and mechanisms underlying this adaptation are poorly understood. Here we use a combination of whole-genome selection scans and association analyses of 544 Populus trichocarpa trees to reveal genomic bases of adaptive variation across a wide latitudinal range. Three hundred ninety-seven genomic regions showed evidence of recent positive and/or divergent selection and enrichment for associations with adaptive traits that also displayed patterns consistent with natural selection. These regions also provide unexpected insights into the evolutionary dynamics of duplicated genes and their roles in adaptive trait variation.

  20. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  1. A primer on high-throughput computing for genomic selection.

    Science.gov (United States)

    Wu, Xiao-Lin; Beissinger, Timothy M; Bauck, Stewart; Woodward, Brent; Rosa, Guilherme J M; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2011-01-01

    High-throughput computing (HTC) uses computer clusters to solve advanced computational problems, with the goal of accomplishing high-throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long, and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl, and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general-purpose computation on a graphics processing unit provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin-Madison, which can be leveraged for genomic selection, in terms of central processing unit capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general-purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of marker panels to realized

  2. Comparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates.

    Directory of Open Access Journals (Sweden)

    Bo Yuan

    2015-12-01

    Full Text Available Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100 is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases-about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual's susceptibility to acquiring disease-associated alleles.

  3. Association mapping and the genomic consequences of selection in sunflower.

    Directory of Open Access Journals (Sweden)

    Jennifer R Mandel

    2013-03-01

    Full Text Available The combination of large-scale population genomic analyses and trait-based mapping approaches has the potential to provide novel insights into the evolutionary history and genome organization of crop plants. Here, we describe the detailed genotypic and phenotypic analysis of a sunflower (Helianthus annuus L. association mapping population that captures nearly 90% of the allelic diversity present within the cultivated sunflower germplasm collection. We used these data to characterize overall patterns of genomic diversity and to perform association analyses on plant architecture (i.e., branching and flowering time, successfully identifying numerous associations underlying these agronomically and evolutionarily important traits. Overall, we found variable levels of linkage disequilibrium (LD across the genome. In general, islands of elevated LD correspond to genomic regions underlying traits that are known to have been targeted by selection during the evolution of cultivated sunflower. In many cases, these regions also showed significantly elevated levels of differentiation between the two major sunflower breeding groups, consistent with the occurrence of divergence due to strong selection. One of these regions, which harbors a major branching locus, spans a surprisingly long genetic interval (ca. 25 cM, indicating the occurrence of an extended selective sweep in an otherwise recombinogenic interval.

  4. Association mapping and the genomic consequences of selection in sunflower.

    Science.gov (United States)

    Mandel, Jennifer R; Nambeesan, Savithri; Bowers, John E; Marek, Laura F; Ebert, Daniel; Rieseberg, Loren H; Knapp, Steven J; Burke, John M

    2013-03-01

    The combination of large-scale population genomic analyses and trait-based mapping approaches has the potential to provide novel insights into the evolutionary history and genome organization of crop plants. Here, we describe the detailed genotypic and phenotypic analysis of a sunflower (Helianthus annuus L.) association mapping population that captures nearly 90% of the allelic diversity present within the cultivated sunflower germplasm collection. We used these data to characterize overall patterns of genomic diversity and to perform association analyses on plant architecture (i.e., branching) and flowering time, successfully identifying numerous associations underlying these agronomically and evolutionarily important traits. Overall, we found variable levels of linkage disequilibrium (LD) across the genome. In general, islands of elevated LD correspond to genomic regions underlying traits that are known to have been targeted by selection during the evolution of cultivated sunflower. In many cases, these regions also showed significantly elevated levels of differentiation between the two major sunflower breeding groups, consistent with the occurrence of divergence due to strong selection. One of these regions, which harbors a major branching locus, spans a surprisingly long genetic interval (ca. 25 cM), indicating the occurrence of an extended selective sweep in an otherwise recombinogenic interval.

  5. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    NARCIS (Netherlands)

    Ma, L.-J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B.; Houterman, P.M.; Kang, S.; Shim, W.B.; Woloshuk, C.; Xie, X.; Xu, J.-R; Antoniw, J.; Baker, S.E.; Bluhm, B.H.; Breakspear, A.; Brown, D.W.; Butchko, R.A.E.; Chapman, S.; Coulson, R.; Coutinho, P.M.; Danchin, E.G.J.; Diener, A.; Gale, L.R.; Gardiner, D.M.; Goff, S.; Hammond-Kosack, K.E.; Hilburn, K.; Hua-Van, A.; Jonkers, W.; Kazan, K.; Kodira, C.D.; Koehrsen, M.; Kumar, L.; Lee, Y.H.; Li, L.; Manners, J.M.; Miranda-Saavedra, D.; Mukherjee, M.; Park, G.; Park, J.; Park, S.Y.; Proctor, R.H.; Regev, A.; Ruiz-Roldan, M.C.; Sain, D.; Sakthikumar, S.; Sykes, S.; Schwartz, D.C.; Gillian Turgeon, B.; Wapinski, I.; Yoder, O.; Young, S.; Zeng, Q.; Zhou, S.; Galagan, J.; Cuomo, C.A.; Kistler, H.C.; Rep, M.

    2010-01-01

    Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum

  6. Phylogenetic clusters of rhizobia revealed by genome structures

    Institute of Scientific and Technical Information of China (English)

    ZHENG Junfang; LIU Guirong; ZHU Wanfu; ZHOU Yuguang; LIU Shulin

    2004-01-01

    Rhizobia, bacteria that fix atmospheric nitrogen, are important agricultural resources. In order to establish the evolutionary relationships among rhizobia isolated from different geographic regions and different plant hosts for systematic studies, we evaluated the use of physical structure of the rhizobial genomes as a phylogenetic marker to categorize these bacteria. In this work, we analyzed the features of genome structures of 64 rhizobial strains. These rhizobial strains were divided into 21 phylogenetic clusters according to the features of genome structures evaluated by the endonuclease I-CeuI. These clusters were supported by 16S rRNA comparisons and genomic sequences of four rhizobial strains, but they are largely different from those based on the current taxonomic scheme (except 16S rRNA).

  7. Selection at DNA level: Genomic selection brings about a revolution in animal breeding

    NARCIS (Netherlands)

    Calus, M.P.L.; Bastiaansen, J.W.M.; Meuwissen, T.H.E.; Veerkamp, R.F.

    2009-01-01

    10 years ago it was still a futuristic dream. Today, genomic selection is the hot topic in the world of animal breeding. But what precisely does it involve? Dutch researchers outline the background to this new technology.

  8. Genome-wide patterns of selection in 230 ancient Eurasians

    Science.gov (United States)

    Mathieson, Iain; Lazaridis, Iosif; Rohland, Nadin; Mallick, Swapan; Patterson, Nick; Roodenberg, Songül Alpaslan; Harney, Eadaoin; Stewardson, Kristin; Fernandes, Daniel; Novak, Mario; Sirak, Kendra; Gamba, Cristina; Jones, Eppie R.; Llamas, Bastien; Dryomov, Stanislav; Pickrel, Joseph; Arsuaga, Juan Luís; de Castro, José María Bermúdez; Carbonell, Eudald; Gerritsen, Fokke; Khokhlov, Aleksandr; Kuznetsov, Pavel; Lozano, Marina; Meller, Harald; Mochalov, Oleg; Moiseyev, Vayacheslav; Rojo Guerra, Manuel A.; Roodenberg, Jacob; Vergès, Josep Maria; Krause, Johannes; Cooper, Alan; Alt, Kurt W.; Brown, Dorcas; Anthony, David; Lalueza-Fox, Carles; Haak, Wolfgang; Pinhasi, Ron; Reich, David

    2016-01-01

    Ancient DNA makes it possible to directly witness natural selection by analyzing samples from populations before, during and after adaptation events. Here we report the first scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture whose genetic material we extracted from the DNA-rich petrous bone and who we show were members of the population that was the source of Europe’s first farmers. We also report a complete transect of the steppe region in Samara between 5500 and 1200 BCE that allows us to recognize admixture from at least two external sources into steppe populations during this period. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height. PMID:26595274

  9. Targets of balancing selection in the human genome

    DEFF Research Database (Denmark)

    Andrés, Aida M; Hubisz, Melissa J; Indap, Amit

    2009-01-01

    to maintaining phenotypic variation in natural populations. Nevertheless, its prevalence and specific targets in the human genome remain largely unknown. We have analyzed the patterns of diversity and divergence of 13,400 genes in two human populations using an unbiased single-nucleotide polymorphism data set......, a genome-wide approach, and a method that incorporates demography in neutrality tests. We identified an unbiased catalog of genes with signatures of long-term balancing selection, which includes immunity genes as well as genes encoding keratins and membrane channels; the catalog also shows enrichment...... in functional categories involved in cellular structure. Patterns are mostly concordant in the two populations, with a small fraction of genes showing population-specific signatures of selection. Power considerations indicate that our findings represent a subset of all targets in the genome, suggesting...

  10. Revised selection criteria for candidate restriction enzymes in genome walking.

    Science.gov (United States)

    Taheri, Ali; Robinson, Stephen J; Parkin, Isobel; Gruber, Margaret Y

    2012-01-01

    A new method to improve the efficiency of flanking sequence identification by genome walking was developed based on an expanded, sequential list of criteria for selecting candidate enzymes, plus several other optimization steps. These criteria include: step (1) initially choosing the most appropriate restriction enzyme according to the average fragment size produced by each enzyme determined using in silico digestion of genomic DNA, step (2) evaluating the in silico frequency of fragment size distribution between individual chromosomes, step (3) selecting those enzymes that generate fragments with the majority between 100 bp and 3,000 bp, step (4) weighing the advantages and disadvantages of blunt-end sites vs. cohesive-end sites, step (5) elimination of methylation sensitive enzymes with methylation-insensitive isoschizomers, and step (6) elimination of enzymes with recognition sites within the binary vector sequence (T-DNA and plasmid backbone). Step (7) includes the selection of a second restriction enzyme with highest number of recognition sites within regions not covered by the first restriction enzyme. Step (8) considers primer and adapter sequence optimization, selecting the best adapter-primer pairs according to their hairpin/dimers and secondary structure. In step (9), the efficiency of genomic library development was improved by column-filtration of digested DNA to remove restriction enzyme and phosphatase enzyme, and most important, to remove small genomic fragments (enzymes, NsiI and NdeI, fit these criteria for the Arabidopsis thaliana genome. Their efficiency was assessed using 54 T(3) lines from an Arabidopsis SK enhancer population. Over 70% success rate was achieved in amplifying the flanking sequences of these lines. This strategy was also tested with Brachypodium distachyon to demonstrate its applicability to other larger genomes.

  11. Comparative whole-genome analysis of clinical isolates reveals characteristic architecture of Mycobacterium tuberculosis pangenome.

    Science.gov (United States)

    Periwal, Vinita; Patowary, Ashok; Vellarikkal, Shamsudheen Karuthedath; Gupta, Anju; Singh, Meghna; Mittal, Ashish; Jeyapaul, Shamini; Chauhan, Rajendra Kumar; Singh, Ajay Vir; Singh, Pravin Kumar; Garg, Parul; Katoch, Viswa Mohan; Katoch, Kiran; Chauhan, Devendra Singh; Sivasubbu, Sridhar; Scaria, Vinod

    2015-01-01

    The tubercle complex consists of closely related mycobacterium species which appear to be variants of a single species. Comparative genome analysis of different strains could provide useful clues and insights into the genetic diversity of the species. We integrated genome assemblies of 96 strains from Mycobacterium tuberculosis complex (MTBC), which included 8 Indian clinical isolates sequenced and assembled in this study, to understand its pangenome architecture. We predicted genes for all the 96 strains and clustered their respective CDSs into homologous gene clusters (HGCs) to reveal a hard-core, soft-core and accessory genome component of MTBC. The hard-core (HGCs shared amongst 100% of the strains) was comprised of 2,066 gene clusters whereas the soft-core (HGCs shared amongst at least 95% of the strains) comprised of 3,374 gene clusters. The change in the core and accessory genome components when observed as a function of their size revealed that MTBC has an open pangenome. We identified 74 HGCs that were absent from reference strains H37Rv and H37Ra but were present in most of clinical isolates. We report PCR validation on 9 candidate genes depicting 7 genes completely absent from H37Rv and H37Ra whereas 2 genes shared partial homology with them accounting to probable insertion and deletion events. The pangenome approach is a promising tool for studying strain specific genetic differences occurring within species. We also suggest that since selecting appropriate target genes for typing purposes requires the expected target gene be present in all isolates being typed, therefore estimating the core-component of the species becomes a subject of prime importance.

  12. Comparative whole-genome analysis of clinical isolates reveals characteristic architecture of Mycobacterium tuberculosis pangenome.

    Directory of Open Access Journals (Sweden)

    Vinita Periwal

    Full Text Available The tubercle complex consists of closely related mycobacterium species which appear to be variants of a single species. Comparative genome analysis of different strains could provide useful clues and insights into the genetic diversity of the species. We integrated genome assemblies of 96 strains from Mycobacterium tuberculosis complex (MTBC, which included 8 Indian clinical isolates sequenced and assembled in this study, to understand its pangenome architecture. We predicted genes for all the 96 strains and clustered their respective CDSs into homologous gene clusters (HGCs to reveal a hard-core, soft-core and accessory genome component of MTBC. The hard-core (HGCs shared amongst 100% of the strains was comprised of 2,066 gene clusters whereas the soft-core (HGCs shared amongst at least 95% of the strains comprised of 3,374 gene clusters. The change in the core and accessory genome components when observed as a function of their size revealed that MTBC has an open pangenome. We identified 74 HGCs that were absent from reference strains H37Rv and H37Ra but were present in most of clinical isolates. We report PCR validation on 9 candidate genes depicting 7 genes completely absent from H37Rv and H37Ra whereas 2 genes shared partial homology with them accounting to probable insertion and deletion events. The pangenome approach is a promising tool for studying strain specific genetic differences occurring within species. We also suggest that since selecting appropriate target genes for typing purposes requires the expected target gene be present in all isolates being typed, therefore estimating the core-component of the species becomes a subject of prime importance.

  13. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions

    Science.gov (United States)

    Bellas, Christopher M.; Anesio, Alexandre M.; Barker, Gary

    2015-01-01

    Microbial communities in glacial ecosystems are diverse, active, and subjected to strong viral pressures and infection rates. In this study we analyse putative virus genomes assembled from three dsDNA viromes from cryoconite hole ecosystems of Svalbard and the Greenland Ice Sheet to assess the potential hosts and functional role viruses play in these habitats. We assembled 208 million reads from the virus-size fraction and developed a procedure to select genuine virus scaffolds from cellular contamination. Our curated virus library contained 546 scaffolds up to 230 Kb in length, 54 of which were circular virus consensus genomes. Analysis of virus marker genes revealed a wide range of viruses had been assembled, including bacteriophages, cyanophages, nucleocytoplasmic large DNA viruses and a virophage, with putative hosts identified as Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes, eukaryotic algae and amoebae. Whole genome comparisons revealed the majority of circular genome scaffolds (CGS) formed 12 novel groups, two of which contained multiple phage members with plasmid-like properties, including a group of phage-plasmids possessing plasmid-like partition genes and toxin-antitoxin addiction modules to ensure their replication and a satellite phage-plasmid group. Surprisingly we also assembled a phage that not only encoded plasmid partition genes, but a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas adaptive bacterial immune system. One of the spacers was an exact match for another phage in our virome, indicating that in a novel use of the system, the lysogen was potentially capable of conferring immunity on its bacterial host against other phage. Together these results suggest that highly novel and diverse groups of viruses are present in glacial environments, some of which utilize very unusual life strategies and genes to control their replication and maintain a long-term relationship with their hosts

  14. Genomic consequences of selection on self-incompatibility genes

    DEFF Research Database (Denmark)

    Schierup, Mikkel Heide; Vekemans, Xavier

    2008-01-01

    Frequency-dependent selection at plant self-incompatibility systems is inherent and well understood theoretically. A self-incompatibility locus leads to a strong peak of diversity in the genome, to a unique distribution of diversity across the species and possibly to increased introgression between...

  15. Genomic selection in dairy cattle: the USDA experience

    Science.gov (United States)

    Genomic selection has revolutionized dairy cattle breeding. Since 2000, assays have been developed to genotype large numbers of single nucleotide polymorphisms (SNP) at relatively low cost. The first commercial SNP genotyping chip was released with a set of 54,001 SNP in December 2007. Over 15,000 ...

  16. Bayesian genomic selection: the effect of haplotype lenghts and priors

    DEFF Research Database (Denmark)

    Villumsen, Trine Michelle; Janss, Luc

    2009-01-01

    Breeding values for animals with marker data are estimated using a genomic selection approach where data is analyzed using Bayesian multi-marker association models. Fourteen model scenarios with varying haplotype lengths, hyper parameter and prior distributions were compared to find the scenario ...

  17. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants

    Energy Technology Data Exchange (ETDEWEB)

    van Baren, Marijke J.; Bachy, Charles; Reistetter, Emily Nahas; Purvine, Samuel O.; Grimwood, Jane; Sudek, Sebastian; Yu, Hang; Poirier, Camille; Deerinck, Thomas J.; Kuo, Alan; Grigoriev, Igor V.; Wong, Chee-Hong; Smith, Richard D.; Callister, Stephen J.; Wei, Chia-Lin; Schmutz, Jeremy; Worden, Alexandra Z.

    2016-03-31

    Prasinophytes are widespread marine green algae that are related to plants. Abundance of the genus Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these organisms are important for marine ecology and understanding Virdiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb Micromonas commoda (RCC299) shows they share less than 8,142of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26%) GC splice donors. Micromonas has more genus-specific protein families (19%) than other genome sequenced prasinophytes (11%). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and most plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other claasses retain the entire PG pathway, like moss and glaucophyte algae. Multiple vascular plants that share a unique bi-domain protein also have the pathway, except the Penicillin-Binding-Protein. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in the PG-pathway retention and implicate a role in chloroplast structure of division in several extant Vridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their extensive divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the

  18. Comparative Genomics Including the Early-Diverging Smut Fungus Ceraceosorus bombacis Reveals Signatures of Parallel Evolution within Plant and Animal Pathogens of Fungi and Oomycetes.

    Science.gov (United States)

    Sharma, Rahul; Xia, Xiaojuan; Riess, Kai; Bauer, Robert; Thines, Marco

    2015-08-27

    Ceraceosorus bombacis is an early-diverging lineage of smut fungi and a pathogen of cotton trees (Bombax ceiba). To study the evolutionary genomics of smut fungi in comparison with other fungal and oomycete pathogens, the genome of C. bombacis was sequenced and comparative genomic analyses were performed. The genome of 26.09 Mb encodes for 8,024 proteins, of which 576 are putative-secreted effector proteins (PSEPs). Orthology analysis revealed 30 ortholog PSEPs among six Ustilaginomycotina genomes, the largest groups of which are lytic enzymes, such as aspartic peptidase and glycoside hydrolase. Positive selection analyses revealed the highest percentage of positively selected PSEPs in C. bombacis compared with other Ustilaginomycotina genomes. Metabolic pathway analyses revealed the absence of genes encoding for nitrite and nitrate reductase in the genome of the human skin pathogen Malassezia globosa, but these enzymes are present in the sequenced plant pathogens in smut fungi. Interestingly, these genes are also absent in cultivable oomycete animal pathogens, while nitrate reductase has been lost in cultivable oomycete plant pathogens. Similar patterns were also observed for obligate biotrophic and hemi-biotrophic fungal and oomycete pathogens. Furthermore, it was found that both fungal and oomycete animal pathogen genomes are lacking cutinases and pectinesterases. Overall, these findings highlight the parallel evolution of certain genomic traits, revealing potential common evolutionary trajectories among fungal and oomycete pathogens, shaping the pathogen genomes according to their lifestyle.

  19. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs.

    Science.gov (United States)

    Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; St John, John A; Capella-Gutiérrez, Salvador; Castoe, Todd A; Kern, Colin; Fujita, Matthew K; Opazo, Juan C; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Hubley, Robert M; Smit, Arian F; Platt, Roy N; Lavoie, Christine A; Ramakodi, Meganathan P; Finger, John W; Suh, Alexander; Isberg, Sally R; Miles, Lee; Chong, Amanda Y; Jaratlerdsiri, Weerachai; Gongora, Jaime; Moran, Christopher; Iriarte, Andrés; McCormack, John; Burgess, Shane C; Edwards, Scott V; Lyons, Eric; Williams, Christina; Breen, Matthew; Howard, Jason T; Gresham, Cathy R; Peterson, Daniel G; Schmitz, Jürgen; Pollock, David D; Haussler, David; Triplett, Eric W; Zhang, Guojie; Irie, Naoki; Jarvis, Erich D; Brochu, Christopher A; Schmidt, Carl J; McCarthy, Fiona M; Faircloth, Brant C; Hoffmann, Federico G; Glenn, Travis C; Gabaldón, Toni; Paten, Benedict; Ray, David A

    2014-12-12

    To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs. Copyright © 2014, American Association for the Advancement of Science.

  20. Detection of selection signatures in dairy and beef cattle using high-density genomic information.

    Science.gov (United States)

    Zhao, Fuping; McParland, Sinead; Kearney, Francis; Du, Lixin; Berry, Donagh P

    2015-06-19

    Artificial selection for economically important traits in cattle is expected to have left distinctive selection signatures on the genome. Access to high-density genotypes facilitates the accurate identification of genomic regions that have undergone positive selection. These findings help to better elucidate the mechanisms of selection and to identify candidate genes of interest to breeding programs. Information on 705 243 autosomal single nucleotide polymorphisms (SNPs) in 3122 dairy and beef male animals from seven cattle breeds (Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental) were used to detect selection signatures by applying two complementary methods, integrated haplotype score (iHS) and global fixation index (FST). To control for false positive results, we used false discovery rate (FDR) adjustment to calculate adjusted iHS within each breed and the genome-wide significance level was about 0.003. Using the iHS method, 83, 92, 91, 101, 85, 101 and 86 significant genomic regions were detected for Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental cattle, respectively. None of these regions was common to all seven breeds. Using the FST approach, 704 individual SNPs were detected across breeds. Annotation of the regions of the genome that showed selection signatures revealed several interesting candidate genes i.e. DGAT1, ABCG2, MSTN, CAPN3, FABP3, CHCHD7, PLAG1, JAZF1, PRKG2, ACTC1, TBC1D1, GHR, BMP2, TSG1, LYN, KIT and MC1R that play a role in milk production, reproduction, body size, muscle formation or coat color. Fifty-seven common candidate genes were found by both the iHS and global FST methods across the seven breeds. Moreover, many novel genomic regions and genes were detected within the regions that showed selection signatures; for some candidate genes, signatures of positive selection exist in the human genome. Multilevel bioinformatic analyses of the detected candidate genes

  1. Genome analysis of the platypus reveals unique signatures of evolution.

    Science.gov (United States)

    Warren, Wesley C; Hillier, LaDeana W; Marshall Graves, Jennifer A; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P; Miethke, Pat; Waters, Paul D; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S; López-Otín, Carlos; Ordóñez, Gonzalo R; Eichler, Evan E; Chen, Lin; Cheng, Ze; Deakin, Janine E; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T; Wakefield, Matthew J; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A; Smit, Arian F A; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A; Walker, Jerilyn A; Konkel, Miriam K; Harris, Robert S; Whittington, Camilla M; Wong, Emily S W; Gemmell, Neil J; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R; Ray, David A; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H; Taylor, James; Jones, Russell C; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N; Pohl, Craig S; Smith, Scott M; Hou, Shunfeng; Nefedov, Mikhail; de Jong, Pieter J; Renfree, Marilyn B; Mardis, Elaine R; Wilson, Richard K

    2008-05-08

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.

  2. The genomes of four tapeworm species reveal adaptations to parasitism.

    Science.gov (United States)

    Tsai, Isheng J; Zarowiecki, Magdalena; Holroyd, Nancy; Garciarrubio, Alejandro; Sanchez-Flores, Alejandro; Brooks, Karen L; Tracey, Alan; Bobes, Raúl J; Fragoso, Gladis; Sciutto, Edda; Aslett, Martin; Beasley, Helen; Bennett, Hayley M; Cai, Jianping; Camicia, Federico; Clark, Richard; Cucher, Marcela; De Silva, Nishadi; Day, Tim A; Deplazes, Peter; Estrada, Karel; Fernández, Cecilia; Holland, Peter W H; Hou, Junling; Hu, Songnian; Huckvale, Thomas; Hung, Stacy S; Kamenetzky, Laura; Keane, Jacqueline A; Kiss, Ferenc; Koziol, Uriel; Lambert, Olivia; Liu, Kan; Luo, Xuenong; Luo, Yingfeng; Macchiaroli, Natalia; Nichol, Sarah; Paps, Jordi; Parkinson, John; Pouchkina-Stantcheva, Natasha; Riddiford, Nick; Rosenzvit, Mara; Salinas, Gustavo; Wasmuth, James D; Zamanian, Mostafa; Zheng, Yadong; Cai, Xuepeng; Soberón, Xavier; Olson, Peter D; Laclette, Juan P; Brehm, Klaus; Berriman, Matthew

    2013-04-01

    Tapeworms (Cestoda) cause neglected diseases that can be fatal and are difficult to treat, owing to inefficient drugs. Here we present an analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115- to 141-megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways that are ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have specialized detoxification pathways, metabolism that is finely tuned to rely on nutrients scavenged from their hosts, and species-specific expansions of non-canonical heat shock proteins and families of known antigens. We identify new potential drug targets, including some on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control.

  3. Evolution of cancer suppression as revealed by mammalian comparative genomics.

    Science.gov (United States)

    Tollis, Marc; Schiffman, Joshua D; Boddy, Amy M

    2017-02-02

    Cancer suppression is an important feature in the evolution of large and long-lived animals. While some tumor suppression pathways are conserved among all multicellular organisms, others mechanisms of cancer resistance are uniquely lineage specific. Comparative genomics has become a powerful tool to discover these unique and shared molecular adaptations in respect to cancer suppression. These findings may one day be translated to human patients through evolutionary medicine. Here, we will review theory and methods of comparative cancer genomics and highlight major findings of cancer suppression across mammals. Our current knowledge of cancer genomics suggests that more efficient DNA repair and higher sensitivity to DNA damage may be the key to tumor suppression in large or long-lived mammals.

  4. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; Skoglund, Pontus; Graf, Kelly E.;

    2014-01-01

    The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24...... this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania......,000-year-old individual (MA-1), from Mal'ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic...

  5. Genome analysis of the platypus reveals unique signatures of evolution

    Science.gov (United States)

    Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P.; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T.; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S.; López-Otín, Carlos; Ordóñez, Gonzalo R.; Eichler, Evan E.; Chen, Lin; Cheng, Ze; Deakin, Janine E.; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T.; Wakefield, Matthew J.; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A.; Smit, Arian F. A.; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A.; Walker, Jerilyn A.; Konkel, Miriam K.; Harris, Robert S.; Whittington, Camilla M.; Wong, Emily S. W.; Gemmell, Neil J.; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M.; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P.; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J.; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M.; Sharp, Julie A.; Nicholas, Kevin R.; Ray, David A.; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H.; Taylor, James; Jones, Russell C.; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N.; Pohl, Craig S.; Smith, Scott M.; Hou, Shunfeng; Renfree, Marilyn B.; Mardis, Elaine R.; Wilson, Richard K.

    2009-01-01

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

  6. The genomes of four tapeworm species reveal adaptations to parasitism

    Science.gov (United States)

    Sánchez-Flores, Alejandro; Brooks, Karen L.; Tracey, Alan; Bobes, Raúl J.; Fragoso, Gladis; Sciutto, Edda; Aslett, Martin; Beasley, Helen; Bennett, Hayley M.; Cai, Xuepeng; Camicia, Federico; Clark, Richard; Cucher, Marcela; De Silva, Nishadi; Day, Tim A; Deplazes, Peter; Estrada, Karel; Fernández, Cecilia; Holland, Peter W. H.; Hou, Junling; Hu, Songnian; Huckvale, Thomas; Hung, Stacy S.; Kamenetzky, Laura; Keane, Jacqueline A.; Kiss, Ferenc; Koziol, Uriel; Lambert, Olivia; Liu, Kan; Luo, Xuenong; Luo, Yingfeng; Macchiaroli, Natalia; Nichol, Sarah; Paps, Jordi; Parkinson, John; Pouchkina-Stantcheva, Natasha; Riddiford, Nick; Rosenzvit, Mara; Salinas, Gustavo; Wasmuth, James D.; Zamanian, Mostafa; Zheng, Yadong; Cai, Jianping; Soberón, Xavier; Olson, Peter D.; Laclette, Juan P.; Brehm, Klaus; Berriman, Matthew

    2014-01-01

    Summary Tapeworms cause debilitating neglected diseases that can be deadly and often require surgery due to ineffective drugs. Here we present the first analysis of tapeworm genome sequences using the human-infective species Echinococcus multilocularis, E. granulosus, Taenia solium and the laboratory model Hymenolepis microstoma as examples. The 115-141 megabase genomes offer insights into the evolution of parasitism. Synteny is maintained with distantly related blood flukes but we find extreme losses of genes and pathways ubiquitous in other animals, including 34 homeobox families and several determinants of stem cell fate. Tapeworms have species-specific expansions of non-canonical heat shock proteins and families of known antigens; specialised detoxification pathways, and metabolism finely tuned to rely on nutrients scavenged from their hosts. We identify new potential drug targets, including those on which existing pharmaceuticals may act. The genomes provide a rich resource to underpin the development of urgently needed treatments and control. PMID:23485966

  7. Genomic Selection Improves Heat Tolerance in Dairy Cattle

    Science.gov (United States)

    Garner, J. B.; Douglas, M. L.; Williams, S. R. O; Wales, W. J.; Marett, L. C.; Nguyen, T. T. T.; Reich, C. M.; Hayes, B. J.

    2016-01-01

    Dairy products are a key source of valuable proteins and fats for many millions of people worldwide. Dairy cattle are highly susceptible to heat-stress induced decline in milk production, and as the frequency and duration of heat-stress events increases, the long term security of nutrition from dairy products is threatened. Identification of dairy cattle more tolerant of heat stress conditions would be an important progression towards breeding better adapted dairy herds to future climates. Breeding for heat tolerance could be accelerated with genomic selection, using genome wide DNA markers that predict tolerance to heat stress. Here we demonstrate the value of genomic predictions for heat tolerance in cohorts of Holstein cows predicted to be heat tolerant and heat susceptible using controlled-climate chambers simulating a moderate heatwave event. Not only was the heat challenge stimulated decline in milk production less in cows genomically predicted to be heat-tolerant, physiological indicators such as rectal and intra-vaginal temperatures had reduced increases over the 4 day heat challenge. This demonstrates that genomic selection for heat tolerance in dairy cattle is a step towards securing a valuable source of nutrition and improving animal welfare facing a future with predicted increases in heat stress events. PMID:27682591

  8. Complex Mutation and Weak Selection together Determined the Codon Usage Bias in Bryophyte Mitochondrial Genomes

    Institute of Scientific and Technical Information of China (English)

    Bin Wang; Jing Liu; Liang Jin; Xue-Ying Feng; Jian-Qun Chen

    2010-01-01

    Mutation and selection are two major forces causing codon usage biases. How these two forces influence the codon usages in green plant mitochondrial genomes has not been well investigated. In the present study, we surveyed five bryophyte mitochondrial genomes to reveal their codon usagepatterns as well as the determining forces. Three interesting findings were made. First, comparing to Chara vulgaris, an algal species sister to all extant land plants, bryophytes have more G, C-ending codon usages in their mitochondrial genes. This is consistent with the generally higher genomic GC content in bryophyte mitochondria, suggesting an increased mutational pressure toward GC. Second, as indicated by Wright's Nc-GC3s plot, mutation, not selection, is the major force affecting codon usages of bryophyte mitochondrial genes. However, the real mutational dynamics seem very complex. Context-dependent analysis indicated that nucleotide at the 2nd codon position would slightly affect synonymous codon choices. Finally, in bryophyte mitochondria, tRNA genes would apply a weak selection force to finetune the synonymous codon frequencies, as revealed by data of Ser4-Pro-Thr-Val families. In summary,complex mutation and weak selection together determined the codon usages in bryophyte mitochondrial genomes.

  9. An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong

    2011-01-01

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Abori......We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show...

  10. Culture Independent Genomic Comparisons Reveal Environmental Adaptations for Altiarchaeales.

    Science.gov (United States)

    Bird, Jordan T; Baker, Brett J; Probst, Alexander J; Podar, Mircea; Lloyd, Karen G

    2016-01-01

    The recently proposed candidatus order Altiarchaeales remains an uncultured archaeal lineage composed of genetically diverse, globally widespread organisms frequently observed in anoxic subsurface environments. In spite of 15 years of studies on the psychrophilic biofilm-producing Candidatus Altiarchaeum hamiconexum and its close relatives, very little is known about the phylogenetic and functional diversity of the widespread free-living marine members of this taxon. From methanogenic sediments in the White Oak River Estuary, NC, USA, we sequenced a single cell amplified genome (SAG), WOR_SM1_SCG, and used it to identify and refine two high-quality genomes from metagenomes, WOR_SM1_79 and WOR_SM1_86-2, from the same site. These three genomic reconstructions form a monophyletic group, which also includes three previously published genomes from metagenomes from terrestrial springs and a SAG from Sakinaw Lake in a group previously designated as pMC2A384. A synapomorphic mutation in the Altiarchaeales tRNA synthetase β subunit, pheT, caused the protein to be encoded as two subunits at non-adjacent loci. Consistent with the terrestrial spring clades, our estuarine genomes contained a near-complete autotrophic metabolism, H2 or CO as potential electron donors, a reductive acetyl-CoA pathway for carbon fixation, and methylotroph-like NADP(H)-dependent dehydrogenase. Phylogenies based on 16S rRNA genes and concatenated conserved proteins identified two distinct sub-clades of Altiarchaeales, Alti-1 populated by organisms from actively flowing springs, and Alti-2 which was more widespread, diverse, and not associated with visible mats. The core Alti-1 genome suggested Alti-1 is adapted for the stream environment with lipopolysaccharide production capacity and extracellular hami structures. The core Alti-2 genome suggested members of this clade are free-living with distinct mechanisms for energy maintenance, motility, osmoregulation, and sulfur redox reactions. These data

  11. Culture independent genomic comparisons reveal environmental adaptations for Altiarchaeales

    Directory of Open Access Journals (Sweden)

    Jordan T Bird

    2016-08-01

    Full Text Available The recently proposed candidatus order Altiarchaeales remains an uncultured archaeal lineage composed of genetically diverse, globally widespread organisms frequently observed in anoxic subsurface environments. In spite of 15 years of studies on the psychrophilic biofilm-producing Candidatus (Ca. Altiarchaeum hamiconexum and its close relatives, very little is known about the phylogenetic and functional diversity of the widespread free-living marine members of this taxon. From methanogenic sediments in the White Oak River Estuary, NC, we sequenced a single cell amplified genome (SAG, WOR_SCG_SM1, and used it to identify and refine two high-quality genomes from metagenomes, WOR_79 and WOR_86-2, from the same site in a different year. These three genomic reconstructions form a monophyletic group which also includes three previously published genomes from metagenomes from terrestrial springs and a SAG from Sakinaw Lake in a group previously designated as pMC2A384. A synapomorphic mutation in the Altiarchaeales tRNA synthetase β subunit, pheT, causes the protein to be encoded as two subunits at distant loci. Consistent with the terrestrial spring clades, our estuarine genomes contain a near-complete autotrophic metabolism, H2 or CO as potential electron donors, a reductive acetyl-CoA pathway for carbon fixation, and methylotroph-like NADP(H-dependent dehydrogenase. Phylogenies based on 16S rRNA genes and concatenated conserved proteins identify two distinct sub-clades of Altiarchaeales, Alti-1 populated by organisms from actively flowing springs, and Alti-2 which is more widespread, diverse, and not associated with visible mats. The core Alti-1 genome supports Alti-1 as adapted for the stream environment, with lipopolysaccharide production capacity, extracellular hami structures. The core Alti-2 genome members of this clade are free-living, with distinct mechanisms for energy maintenance, motility, osmoregulation, and sulfur redox reactions. These

  12. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits.

    Science.gov (United States)

    Biazzi, Elisa; Nazzicari, Nelson; Pecetti, Luciano; Brummer, E Charles; Palmonari, Alberto; Tava, Aldo; Annicchiarico, Paolo

    2017-01-01

    Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3-0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits

  13. Genomic Variants Revealed by Invariably Missing Genotypes in Nelore Cattle.

    Directory of Open Access Journals (Sweden)

    Joaquim Manoel da Silva

    Full Text Available High density genotyping panels have been used in a wide range of applications. From population genetics to genome-wide association studies, this technology still offers the lowest cost and the most consistent solution for generating SNP data. However, in spite of the application, part of the generated data is always discarded from final datasets based on quality control criteria used to remove unreliable markers. Some discarded data consists of markers that failed to generate genotypes, labeled as missing genotypes. A subset of missing genotypes that occur in the whole population under study may be caused by technical issues but can also be explained by the presence of genomic variations that are in the vicinity of the assayed SNP and that prevent genotyping probes from annealing. The latter case may contain relevant information because these missing genotypes might be used to identify population-specific genomic variants. In order to assess which case is more prevalent, we used Illumina HD Bovine chip genotypes from 1,709 Nelore (Bos indicus samples. We found 3,200 missing genotypes among the whole population. NGS re-sequencing data from 8 sires were used to verify the presence of genomic variations within their flanking regions in 81.56% of these missing genotypes. Furthermore, we discovered 3,300 novel SNPs/Indels, 31% of which are located in genes that may affect traits of importance for the genetic improvement of cattle production.

  14. Chimpanzee genomic diversity reveals ancient admixture with bonobos

    DEFF Research Database (Denmark)

    de Manuel, Marc; Kuhlwilm, Martin; Frandsen, Peter

    2016-01-01

    Our closest living relatives, chimpanzees and bonobos, have a complex demographic history. We analyzed the high-coverage whole genomes of 75 wild-born chimpanzees and bonobos from 10 countries in Africa. We found that chimpanzee population substructure makes genetic information a good predictor o...

  15. Feature selection and survival modeling in The Cancer Genome Atlas

    Directory of Open Access Journals (Sweden)

    Kim H

    2013-09-01

    Full Text Available Hyunsoo Kim,1 Markus Bredel2 1Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA; 2Department of Radiation Oncology, and Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, USA Purpose: Personalized medicine is predicated on the concept of identifying subgroups of a common disease for better treatment. Identifying biomarkers that predict disease subtypes has been a major focus of biomedical science. In the era of genome-wide profiling, there is controversy as to the optimal number of genes as an input of a feature selection algorithm for survival modeling. Patients and methods: The expression profiles and outcomes of 544 patients were retrieved from The Cancer Genome Atlas. We compared four different survival prediction methods: (1 1-nearest neighbor (1-NN survival prediction method; (2 random patient selection method and a Cox-based regression method with nested cross-validation; (3 least absolute shrinkage and selection operator (LASSO optimization using whole-genome gene expression profiles; or (4 gene expression profiles of cancer pathway genes. Results: The 1-NN method performed better than the random patient selection method in terms of survival predictions, although it does not include a feature selection step. The Cox-based regression method with LASSO optimization using whole-genome gene expression data demonstrated higher survival prediction power than the 1-NN method, but was outperformed by the same method when using gene expression profiles of cancer pathway genes alone. Conclusion: The 1-NN survival prediction method may require more patients for better performance, even when omitting censored data. Using preexisting biological knowledge for survival prediction is reasonable as a means to understand the biological system of a cancer, unless the analysis goal is to identify completely unknown genes relevant to cancer biology. Keywords: brain, feature selection

  16. Genomic and chromatin signals underlying transcription start-site selection.

    Science.gov (United States)

    Valen, Eivind; Sandelin, Albin

    2011-11-01

    A central question in cellular biology is how the cell regulates transcription and discerns when and where to initiate it. Locating transcription start sites (TSSs), the signals that specify them, and ultimately elucidating the mechanisms of regulated initiation has therefore been a recurrent theme. In recent years substantial progress has been made towards this goal, spurred by the possibility of applying genome-wide, sequencing-based analysis. We now have a large collection of high-resolution datasets identifying locations of TSSs, protein-DNA interactions, and chromatin features over whole genomes; the field is now faced with the daunting challenge of translating these descriptive maps into quantitative and predictive models describing the underlying biology. We review here the genomic and chromatin features that underlie TSS selection and usage, focusing on the differences between the major classes of core promoters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution.

    Science.gov (United States)

    El Baidouri, Moaine; Panaud, Olivier

    2013-01-01

    Long terminal repeat-retrotransposons (LTR-RTs) are the most abundant class of transposable elements (TEs) in plants. They strongly impact the structure, function, and evolution of their host genome, and, in particular, their role in genome size variation has been clearly established. However, the dynamics of the process through which LTR-RTs have differentially shaped plant genomes is still poorly understood because of a lack of comparative studies. Using a new robust and automated family classification procedure, we exhaustively characterized the LTR-RTs in eight plant genomes for which a high-quality sequence is available (i.e., Arabidopsis thaliana, A. lyrata, grapevine, soybean, rice, Brachypodium dystachion, sorghum, and maize). This allowed us to perform a comparative genome-wide study of the retrotranspositional landscape in these eight plant lineages from both monocots and dicots. We show that retrotransposition has recurrently occurred in all plant genomes investigated, regardless their size, and through bursts, rather than a continuous process. Moreover, in each genome, only one or few LTR-RT families have been active in the recent past, and the difference in genome size among the species studied could thus mostly be accounted for by the extent of the latest transpositional burst(s). Following these bursts, LTR-RTs are efficiently eliminated from their host genomes through recombination and deletion, but we show that the removal rate is not lineage specific. These new findings lead us to propose a new model of TE-driven genome evolution in plants.

  18. rRNA Pseudogenes in Filamentous Ascomycetes as Revealed by Genome Data

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-08-01

    Full Text Available The nuclear ribosomal DNA (rDNA is considered as a paradigm of concerted evolution. Components of the rDNA tandem repeats (45S are widely used in phylogenetic studies of different organisms and the internal transcribed spacer (ITS region was recently selected as a fungal DNA bar code. However, rRNA pseudogenes, as one kind of escape from concerted evolution, were reported in a wide range of organisms, especially in plants and animals. Moreover, large numbers of 5S rRNA pseudogenes were identified in several filamentous ascomycetes. To study whether rDNA evolves in a strict concerted manner and test whether rRNA pseudogenes exist in more species of ascomycetes, intragenomic rDNA polymorphisms were analyzed using whole genome sequences. Divergent rDNA paralogs were found to coexist within a single genome in seven filamentous ascomycetes examined. A great number of paralogs were identified as pseudogenes according to the mutation and secondary structure analyses. Phylogenetic analyses of the three rRNA coding regions of the 45S rDNA repeats, i.e., 18S, 5.8S, and 28S, revealed an interspecies clustering pattern of those different rDNA paralogs. The identified rRNA pseudogenic sequences were validated using specific primers designed. Mutation analyses revealed that the repeat-induced point (RIP mutation was probably responsible for the formation of those rRNA pseudogenes.

  19. Genome-wide detection of selective signature in Chinese Holstein.

    Directory of Open Access Journals (Sweden)

    Dunfei Pan

    Full Text Available Selective signatures in whole genome can help us understand the mechanisms of selection and target causal variants for breeding program. In present study, we performed Extended Haplotype Homozygosity (EHH tests to identify significant core regions harboring such signals in Chinese Holstein, and then verified the biological significance of these identified regions based on commonly-used bioinformatics analyses. Results showed a total of 125 significant regions in entire genome containing some of important functional genes such as LEP, ABCG2, CSN1S1, CSN3 and TNF based on the Gene Ontology database. Some of these annotated genes involved in the core regions overlapped with those identified in our previous GWAS as well as those involved in a recently constructed candidate gene database for cattle, further indicating these genes under positive selection maybe underlie milk production traits and other important traits in Chinese Holstein. Furthermore, in the enrichment analyses for the second level GO terms and pathways, we observed some significant terms over represented in these identified regions as compared to the entire bovine genome. This indicates that some functional genes associated with milk production traits, as reflected by GO terms, could be clustered in core regions, which provided promising evidence for the exploitability of the core regions identified by EHH tests. Findings in our study could help detect functional candidate genes under positive selection for further genetic and breeding research in Chinese Holstein.

  20. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa

    KAUST Repository

    Gallego Llorente, M.

    2015-10-09

    Characterizing genetic diversity in Africa is a crucial step for most analyses reconstructing the evolutionary history of anatomically modern humans. However, historic migrations from Eurasia into Africa have affected many contemporary populations, confounding inferences. Here, we present a 12.5×coverage ancient genome of an Ethiopian male ("Mota") who lived approximately 4500 years ago. We use this genome to demonstrate that the Eurasian backflow into Africa came from a population closely related to Early Neolithic farmers, who had colonized Europe 4000 years earlier. The extent of this backflow was much greater than previously reported, reaching all the way to Central, West, and Southern Africa, affecting even populations such as Yoruba and Mbuti, previously thought to be relatively unadmixed, who harbor 6 to 7% Eurasian ancestry.

  1. Registered Report: Melanoma genome sequencing reveals frequent PREX2 mutations

    OpenAIRE

    2015-01-01

    Authors: Denise Chroscinski, Darryl Sampey, Alex Hewitt, The Reproducibility Project: Cancer Biology† ### Abstract The [Reproducibility Project: Cancer Biology](https://osf.io/e81xl/wiki/home/) seeks to address growing concerns about reproducibility in scientific research by conducting replications of 50 papers in the field of cancer biology published between 2010 and 2012. This Registered Report describes the proposed replication plan of key experiments from “Melanoma genome sequenci...

  2. Upper Palaeolithic genomes reveal deep roots of modern Eurasians

    KAUST Repository

    Jones, Eppie R.

    2015-11-16

    We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic–Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers ~45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers ~25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe ~3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages.

  3. The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell.

    Science.gov (United States)

    Slabodnick, Mark M; Ruby, J Graham; Reiff, Sarah B; Swart, Estienne C; Gosai, Sager; Prabakaran, Sudhakaran; Witkowska, Ewa; Larue, Graham E; Fisher, Susan; Freeman, Robert M; Gunawardena, Jeremy; Chu, William; Stover, Naomi A; Gregory, Brian D; Nowacki, Mariusz; Derisi, Joseph; Roy, Scott W; Marshall, Wallace F; Sood, Pranidhi

    2017-02-20

    The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities-if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3]. These biologists were also drawn to Stentor because it exhibits a rich repertoire of behaviors, including light avoidance, mechanosensitive contraction, food selection, and even the ability to habituate to touch, a simple form of learning usually seen in higher organisms [4]. While early microsurgical approaches demonstrated a startling array of regenerative and morphogenetic processes in this single-celled organism, Stentor was never developed as a molecular model system. We report the sequencing of the Stentor coeruleus macronuclear genome and reveal key features of the genome. First, we find that Stentor uses the standard genetic code, suggesting that ciliate-specific genetic codes arose after Stentor branched from other ciliates. We also discover that ploidy correlates with Stentor's cell size. Finally, in the Stentor genome, we discover the smallest spliceosomal introns reported for any species. The sequenced genome opens the door to molecular analysis of single-cell regeneration in Stentor. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein.

    Science.gov (United States)

    Kankainen, Matti; Paulin, Lars; Tynkkynen, Soile; von Ossowski, Ingemar; Reunanen, Justus; Partanen, Pasi; Satokari, Reetta; Vesterlund, Satu; Hendrickx, Antoni P A; Lebeer, Sarah; De Keersmaecker, Sigrid C J; Vanderleyden, Jos; Hämäläinen, Tuula; Laukkanen, Suvi; Salovuori, Noora; Ritari, Jarmo; Alatalo, Edward; Korpela, Riitta; Mattila-Sandholm, Tiina; Lassig, Anna; Hatakka, Katja; Kinnunen, Katri T; Karjalainen, Heli; Saxelin, Maija; Laakso, Kati; Surakka, Anu; Palva, Airi; Salusjärvi, Tuomas; Auvinen, Petri; de Vos, Willem M

    2009-10-06

    To unravel the biological function of the widely used probiotic bacterium Lactobacillus rhamnosus GG, we compared its 3.0-Mbp genome sequence with the similarly sized genome of L. rhamnosus LC705, an adjunct starter culture exhibiting reduced binding to mucus. Both genomes demonstrated high sequence identity and synteny. However, for both strains, genomic islands, 5 in GG and 4 in LC705, punctuated the colinearity. A significant number of strain-specific genes were predicted in these islands (80 in GG and 72 in LC705). The GG-specific islands included genes coding for bacteriophage components, sugar metabolism and transport, and exopolysaccharide biosynthesis. One island only found in L. rhamnosus GG contained genes for 3 secreted LPXTG-like pilins (spaCBA) and a pilin-dedicated sortase. Using anti-SpaC antibodies, the physical presence of cell wall-bound pili was confirmed by immunoblotting. Immunogold electron microscopy showed that the SpaC pilin is located at the pilus tip but also sporadically throughout the structure. Moreover, the adherence of strain GG to human intestinal mucus was blocked by SpaC antiserum and abolished in a mutant carrying an inactivated spaC gene. Similarly, binding to mucus was demonstrated for the purified SpaC protein. We conclude that the presence of SpaC is essential for the mucus interaction of L. rhamnosus GG and likely explains its ability to persist in the human intestinal tract longer than LC705 during an intervention trial. The presence of mucus-binding pili on the surface of a nonpathogenic Gram-positive bacterial strain reveals a previously undescribed mechanism for the interaction of selected probiotic lactobacilli with host tissues.

  5. Selective microbial genomic DNA isolation using restriction endonucleases.

    Science.gov (United States)

    Barnes, Helen E; Liu, Guohong; Weston, Christopher Q; King, Paula; Pham, Long K; Waltz, Shannon; Helzer, Kimberly T; Day, Laura; Sphar, Dan; Yamamoto, Robert T; Forsyth, R Allyn

    2014-01-01

    To improve the metagenomic analysis of complex microbiomes, we have repurposed restriction endonucleases as methyl specific DNA binding proteins. As an example, we use DpnI immobilized on magnetic beads. The ten minute extraction technique allows specific binding of genomes containing the DpnI Gm6ATC motif common in the genomic DNA of many bacteria including γ-proteobacteria. Using synthetic genome mixtures, we demonstrate 80% recovery of Escherichia coli genomic DNA even when only femtogram quantities are spiked into 10 µg of human DNA background. Binding is very specific with less than 0.5% of human DNA bound. Next Generation Sequencing of input and enriched synthetic mixtures results in over 100-fold enrichment of target genomes relative to human and plant DNA. We also show comparable enrichment when sequencing complex microbiomes such as those from creek water and human saliva. The technique can be broadened to other restriction enzymes allowing for the selective enrichment of trace and unculturable organisms from complex microbiomes and the stratification of organisms according to restriction enzyme enrichment.

  6. Comparative Genomic and Phylogenomic Analyses Reveal a Conserved Core Genome Shared by Estuarine and Oceanic Cyanopodoviruses

    Science.gov (United States)

    Huang, Sijun; Zhang, Si; Jiao, Nianzhi; Chen, Feng

    2015-01-01

    Podoviruses are among the major viral groups that infect marine picocyanobacteria Prochlorococcus and Synechococcus. Here, we reported the genome sequences of five Synechococcus podoviruses isolated from the estuarine environment, and performed comparative genomic and phylogenomic analyses based on a total of 20 cyanopodovirus genomes. The genomes of all the known marine cyanopodoviruses are highly syntenic. A pan-genome of 349 clustered orthologous groups was determined, among which 15 were core genes. These core genes make up nearly half of each genome in length, reflecting the high level of genome conservation among this cyanophage type. The whole genome phylogenies based on concatenated core genes and gene content were highly consistent and confirmed the separation of two discrete marine cyanopodovirus clusters MPP-A and MPP-B. The genomes within cluster MPP-B grouped into subclusters mainly corresponding to Prochlorococcus or Synechococcus host types. Auxiliary metabolic genes tend to occur in a specific phylogenetic group of these cyanopodoviruses. All the MPP-B phages analyzed here encode the photosynthesis gene psbA, which are absent in all the MPP-A genomes thus far. Interestingly, all the MPP-B and two MPP-A Synechococcus podoviruses encode the thymidylate synthase gene thyX, while at the same genome locus all the MPP-B Prochlorococcus podoviruses encode the transaldolase gene talC. Both genes are hypothesized to have the potential to facilitate the biosynthesis of deoxynucleotide for phage replication. Inheritance of specific functional genes could be important to the evolution and ecological fitness of certain cyanophage genotypes. Our analyses demonstrate that cyanopodoviruses of estuarine and oceanic origins share a conserved core genome and suggest that accessory genes may be related to environmental adaptation. PMID:26569403

  7. Comparative Genomic and Phylogenomic Analyses Reveal a Conserved Core Genome Shared by Estuarine and Oceanic Cyanopodoviruses.

    Directory of Open Access Journals (Sweden)

    Sijun Huang

    Full Text Available Podoviruses are among the major viral groups that infect marine picocyanobacteria Prochlorococcus and Synechococcus. Here, we reported the genome sequences of five Synechococcus podoviruses isolated from the estuarine environment, and performed comparative genomic and phylogenomic analyses based on a total of 20 cyanopodovirus genomes. The genomes of all the known marine cyanopodoviruses are highly syntenic. A pan-genome of 349 clustered orthologous groups was determined, among which 15 were core genes. These core genes make up nearly half of each genome in length, reflecting the high level of genome conservation among this cyanophage type. The whole genome phylogenies based on concatenated core genes and gene content were highly consistent and confirmed the separation of two discrete marine cyanopodovirus clusters MPP-A and MPP-B. The genomes within cluster MPP-B grouped into subclusters mainly corresponding to Prochlorococcus or Synechococcus host types. Auxiliary metabolic genes tend to occur in a specific phylogenetic group of these cyanopodoviruses. All the MPP-B phages analyzed here encode the photosynthesis gene psbA, which are absent in all the MPP-A genomes thus far. Interestingly, all the MPP-B and two MPP-A Synechococcus podoviruses encode the thymidylate synthase gene thyX, while at the same genome locus all the MPP-B Prochlorococcus podoviruses encode the transaldolase gene talC. Both genes are hypothesized to have the potential to facilitate the biosynthesis of deoxynucleotide for phage replication. Inheritance of specific functional genes could be important to the evolution and ecological fitness of certain cyanophage genotypes. Our analyses demonstrate that cyanopodoviruses of estuarine and oceanic origins share a conserved core genome and suggest that accessory genes may be related to environmental adaptation.

  8. Genome-Wide Analysis Reveals Coating of the Mitochondrial Genome by TFAM

    OpenAIRE

    Wang, Yun E.; Marinov, Georgi K.; Wold, Barbara J.; Chan, David C.

    2013-01-01

    Mitochondria contain a 16.6 kb circular genome encoding 13 proteins as well as mitochondrial tRNAs and rRNAs. Copies of the genome are organized into nucleoids containing both DNA and proteins, including the machinery required for mtDNA replication and transcription. The transcription factor TFAM is critical for initiation of transcription and replication of the genome, and is also thought to perform a packaging function. Although specific binding sites required for initiation of transcriptio...

  9. USING POPULATION GENOMICS TO DETECT SELECTION IN NATURAL POPULATIONS: KEY CONCEPTS AND METHODOLOGICAL CONSIDERATIONS

    OpenAIRE

    Hohenlohe, Paul A.; Phillips, Patrick C.; Cresko, William A.

    2010-01-01

    Natural selection shapes patterns of genetic variation among individuals, populations, and species, and it does so differentially across genomes. The field of population genomics provides a comprehensive genome-scale view of the action of selection, even beyond traditional model organisms. However, even with nearly complete genomic sequence information, our ability to detect the signature of selection on specific genomic regions depends on choosing experimental and analytical tools appropriat...

  10. Genomic selection for fruit quality traits in apple (Malus×domestica Borkh..

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    Full Text Available The genome sequence of apple (Malus×domestica Borkh. was published more than a year ago, which helped develop an 8K SNP chip to assist in implementing genomic selection (GS. In apple breeding programmes, GS can be used to obtain genomic breeding values (GEBV for choosing next-generation parents or selections for further testing as potential commercial cultivars at a very early stage. Thus GS has the potential to accelerate breeding efficiency significantly because of decreased generation interval or increased selection intensity. We evaluated the accuracy of GS in a population of 1120 seedlings generated from a factorial mating design of four females and two male parents. All seedlings were genotyped using an Illumina Infinium chip comprising 8,000 single nucleotide polymorphisms (SNPs, and were phenotyped for various fruit quality traits. Random-regression best liner unbiased prediction (RR-BLUP and the Bayesian LASSO method were used to obtain GEBV, and compared using a cross-validation approach for their accuracy to predict unobserved BLUP-BV. Accuracies were very similar for both methods, varying from 0.70 to 0.90 for various fruit quality traits. The selection response per unit time using GS compared with the traditional BLUP-based selection were very high (>100% especially for low-heritability traits. Genome-wide average estimated linkage disequilibrium (LD between adjacent SNPs was 0.32, with a relatively slow decay of LD in the long range (r(2 = 0.33 and 0.19 at 100 kb and 1,000 kb respectively, contributing to the higher accuracy of GS. Distribution of estimated SNP effects revealed involvement of large effect genes with likely pleiotropic effects. These results demonstrated that genomic selection is a credible alternative to conventional selection for fruit quality traits.

  11. Long- and short-term selective forces on malaria parasite genomes

    DEFF Research Database (Denmark)

    Nygaard, Sanne; Braunstein, Alexander; Malsen, Gareth;

    2010-01-01

    a significant impact on malaria control, the selective pressures within Plasmodium genomes are poorly understood, particularly in the non-protein-coding portion of the genome. We use evolutionary methods to describe selective processes in both the coding and non-coding regions of these genomes. Based on genome...

  12. Comparative Genomic Analysis Reveals Habitat-Specific Genes and Regulatory Hubs within the Genus Novosphingobium

    Science.gov (United States)

    Kumar, Roshan; Verma, Helianthous; Haider, Shazia; Bajaj, Abhay; Sood, Utkarsh; Ponnusamy, Kalaiarasan; Nagar, Shekhar; Shakarad, Mallikarjun N.; Negi, Ram Krishan; Singh, Yogendra; Khurana, J. P.; Gilbert, Jack A.

    2017-01-01

    ABSTRACT Species belonging to the genus Novosphingobium are found in many different habitats and have been identified as metabolically versatile. Through comparative genomic analysis, we identified habitat-specific genes and regulatory hubs that could determine habitat selection for Novosphingobium spp. Genomes from 27 Novosphingobium strains isolated from diverse habitats such as rhizosphere soil, plant surfaces, heavily contaminated soils, and marine and freshwater environments were analyzed. Genome size and coding potential were widely variable, differing significantly between habitats. Phylogenetic relationships between strains were less likely to describe functional genotype similarity than the habitat from which they were isolated. In this study, strains (19 out of 27) with a recorded habitat of isolation, and at least 3 representative strains per habitat, comprised four ecological groups—rhizosphere, contaminated soil, marine, and freshwater. Sulfur acquisition and metabolism were the only core genomic traits to differ significantly in proportion between these ecological groups; for example, alkane sulfonate (ssuABCD) assimilation was found exclusively in all of the rhizospheric isolates. When we examined osmolytic regulation in Novosphingobium spp. through ectoine biosynthesis, which was assumed to be marine habitat specific, we found that it was also present in isolates from contaminated soil, suggesting its relevance beyond the marine system. Novosphingobium strains were also found to harbor a wide variety of mono- and dioxygenases, responsible for the metabolism of several aromatic compounds, suggesting their potential to act as degraders of a variety of xenobiotic compounds. Protein-protein interaction analysis revealed β-barrel outer membrane proteins as habitat-specific hubs in each of the four habitats—freshwater (Saro_1868), marine water (PP1Y_AT17644), rhizosphere (PMI02_00367), and soil (V474_17210). These outer membrane proteins could play a

  13. Comparative Genomic Analysis Reveals Habitat-Specific Genes and Regulatory Hubs within the Genus Novosphingobium.

    Science.gov (United States)

    Kumar, Roshan; Verma, Helianthous; Haider, Shazia; Bajaj, Abhay; Sood, Utkarsh; Ponnusamy, Kalaiarasan; Nagar, Shekhar; Shakarad, Mallikarjun N; Negi, Ram Krishan; Singh, Yogendra; Khurana, J P; Gilbert, Jack A; Lal, Rup

    2017-01-01

    Species belonging to the genus Novosphingobium are found in many different habitats and have been identified as metabolically versatile. Through comparative genomic analysis, we identified habitat-specific genes and regulatory hubs that could determine habitat selection for Novosphingobium spp. Genomes from 27 Novosphingobium strains isolated from diverse habitats such as rhizosphere soil, plant surfaces, heavily contaminated soils, and marine and freshwater environments were analyzed. Genome size and coding potential were widely variable, differing significantly between habitats. Phylogenetic relationships between strains were less likely to describe functional genotype similarity than the habitat from which they were isolated. In this study, strains (19 out of 27) with a recorded habitat of isolation, and at least 3 representative strains per habitat, comprised four ecological groups-rhizosphere, contaminated soil, marine, and freshwater. Sulfur acquisition and metabolism were the only core genomic traits to differ significantly in proportion between these ecological groups; for example, alkane sulfonate (ssuABCD) assimilation was found exclusively in all of the rhizospheric isolates. When we examined osmolytic regulation in Novosphingobium spp. through ectoine biosynthesis, which was assumed to be marine habitat specific, we found that it was also present in isolates from contaminated soil, suggesting its relevance beyond the marine system. Novosphingobium strains were also found to harbor a wide variety of mono- and dioxygenases, responsible for the metabolism of several aromatic compounds, suggesting their potential to act as degraders of a variety of xenobiotic compounds. Protein-protein interaction analysis revealed β-barrel outer membrane proteins as habitat-specific hubs in each of the four habitats-freshwater (Saro_1868), marine water (PP1Y_AT17644), rhizosphere (PMI02_00367), and soil (V474_17210). These outer membrane proteins could play a key role in

  14. Evidence of selection upon genomic GC-content in bacteria.

    Directory of Open Access Journals (Sweden)

    Falk Hildebrand

    2010-09-01

    Full Text Available The genomic GC-content of bacteria varies dramatically, from less than 20% to more than 70%. This variation is generally ascribed to differences in the pattern of mutation between bacteria. Here we test this hypothesis by examining patterns of synonymous polymorphism using datasets from 149 bacterial species. We find a large excess of synonymous GC→AT mutations over AT→GC mutations segregating in all but the most AT-rich bacteria, across a broad range of phylogenetically diverse species. We show that the excess of GC→AT mutations is inconsistent with mutation bias, since it would imply that most GC-rich bacteria are declining in GC-content; such a pattern would be unsustainable. We also show that the patterns are probably not due to translational selection or biased gene conversion, because optimal codons tend to be AT-rich, and the excess of GC→AT SNPs is observed in datasets with no evidence of recombination. We therefore conclude that there is selection to increase synonymous GC-content in many species. Since synonymous GC-content is highly correlated to genomic GC-content, we further conclude that there is selection on genomic base composition in many bacteria.

  15. Nationwide Genomic Study in Denmark Reveals Remarkable Population Homogeneity

    DEFF Research Database (Denmark)

    Athanasiadis, Georgios; Cheng, Jade Y; Vilhjálmsson, Bjarni J;

    2016-01-01

    polygenic predictions of phenotypic traits in adolescents. We observed remarkable homogeneity across different geographic regions, although we could still detect weak signals of genetic structure reflecting the history of the country. Denmark presented genomic affinity with primarily neighboring countries...... with overall resemblance of decreasing weight from Britain, Sweden, Norway, Germany and France. A Polish admixture signal was detected in Zealand and Funen and our date estimates coincided with historical evidence of Wend settlements in the south of Denmark. We also observed considerably diverse demographic...

  16. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia.

    Science.gov (United States)

    Iwata, Hiroyoshi; Hayashi, Takeshi; Terakami, Shingo; Takada, Norio; Sawamura, Yutaka; Yamamoto, Toshiya

    2013-03-01

    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding with 76 Japanese pear cultivars to detect significant associations of 162 markers with nine agronomic traits. We applied multilocus Bayesian models accounting for ordinal categorical phenotypes for GWAS and GS model training. Significant associations were detected at harvest time, black spot resistance and the number of spurs and two of the associations were closely linked to known loci. Genome-wide predictions for GS were accurate at the highest level (0.75) in harvest time, at medium levels (0.38-0.61) in resistance to black spot, firmness of flesh, fruit shape in longitudinal section, fruit size, acid content and number of spurs and at low levels (pear.

  17. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis.

    Directory of Open Access Journals (Sweden)

    Xue-Feng Ma

    Full Text Available We have created a high-resolution linkage map of Miscanthus sinensis, using genotyping-by-sequencing (GBS, identifying all 19 linkage groups for the first time. The result is technically significant since Miscanthus has a very large and highly heterozygous genome, but has no or limited genomics information to date. The composite linkage map containing markers from both parental linkage maps is composed of 3,745 SNP markers spanning 2,396 cM on 19 linkage groups with a 0.64 cM average resolution. Comparative genomics analyses of the M. sinensis composite linkage map to the genomes of sorghum, maize, rice, and Brachypodium distachyon indicate that sorghum has the closest syntenic relationship to Miscanthus compared to other species. The comparative results revealed that each pair of the 19 M. sinensis linkages aligned to one sorghum chromosome, except for LG8, which mapped to two sorghum chromosomes (4 and 7, presumably due to a chromosome fusion event after genome duplication. The data also revealed several other chromosome rearrangements relative to sorghum, including two telomere-centromere inversions of the sorghum syntenic chromosome 7 in LG8 of M. sinensis and two paracentric inversions of sorghum syntenic chromosome 4 in LG7 and LG8 of M. sinensis. The results clearly demonstrate, for the first time, that the diploid M. sinensis is tetraploid origin consisting of two sub-genomes. This complete and high resolution composite linkage map will not only serve as a useful resource for novel QTL discoveries, but also enable informed deployment of the wealth of existing genomics resources of other species to the improvement of Miscanthus as a high biomass energy crop. In addition, it has utility as a reference for genome sequence assembly for the forthcoming whole genome sequencing of the Miscanthus genus.

  18. Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens.

    Science.gov (United States)

    Lassalle, Florent; Campillo, Tony; Vial, Ludovic; Baude, Jessica; Costechareyre, Denis; Chapulliot, David; Shams, Malek; Abrouk, Danis; Lavire, Céline; Oger-Desfeux, Christine; Hommais, Florence; Guéguen, Laurent; Daubin, Vincent; Muller, Daniel; Nesme, Xavier

    2011-01-01

    The definition of bacterial species is based on genomic similarities, giving rise to the operational concept of genomic species, but the reasons of the occurrence of differentiated genomic species remain largely unknown. We used the Agrobacterium tumefaciens species complex and particularly the genomic species presently called genomovar G8, which includes the sequenced strain C58, to test the hypothesis of genomic species having specific ecological adaptations possibly involved in the speciation process. We analyzed the gene repertoire specific to G8 to identify potential adaptive genes. By hybridizing 25 strains of A. tumefaciens on DNA microarrays spanning the C58 genome, we highlighted the presence and absence of genes homologous to C58 in the taxon. We found 196 genes specific to genomovar G8 that were mostly clustered into seven genomic islands on the C58 genome-one on the circular chromosome and six on the linear chromosome-suggesting higher plasticity and a major adaptive role of the latter. Clusters encoded putative functional units, four of which had been verified experimentally. The combination of G8-specific functions defines a hypothetical species primary niche for G8 related to commensal interaction with a host plant. This supports that the G8 ancestor was able to exploit a new ecological niche, maybe initiating ecological isolation and thus speciation. Searching genomic data for synapomorphic traits is a powerful way to describe bacterial species. This procedure allowed us to find such phenotypic traits specific to genomovar G8 and thus propose a Latin binomial, Agrobacterium fabrum, for this bona fide genomic species.

  19. Extensive Hidden Genomic Mosaicism Revealed in Normal Tissue.

    Science.gov (United States)

    Vattathil, Selina; Scheet, Paul

    2016-03-03

    Genomic mosaicism arising from post-zygotic mutation has recently been demonstrated to occur in normal tissue of individuals ascertained with varied phenotypes, indicating that detectable mosaicism may be less an exception than a rule in the general population. A challenge to comprehensive cataloging of mosaic mutations and their consequences is the presence of heterogeneous mixtures of cells, rendering low-frequency clones difficult to discern. Here we applied a computational method using estimated haplotypes to characterize mosaic megabase-scale structural mutations in 31,100 GWA study subjects. We provide in silico validation of 293 previously identified somatic mutations and identify an additional 794 novel mutations, most of which exist at lower aberrant cell fractions than have been demonstrated in previous surveys. These mutations occurred across the genome but in a nonrandom manner, and several chromosomes and loci showed unusual levels of mutation. Our analysis supports recent findings about the relationship between clonal mosaicism and old age. Finally, our results, in which we demonstrate a nearly 3-fold higher rate of clonal mosaicism, suggest that SNP-based population surveys of mosaic structural mutations should be conducted with haplotypes for optimal discovery.

  20. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Ulrich, Luke E.; Lupa, Boguslaw; Susanti, Dwi; Porat, Iris; Hooper, Sean D.; Lykidis, Athanasios; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla; Saunders, Elizabeth; Han, Cliff; Land, Miriam; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William B.; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2009-05-01

    Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  1. Extensive Hidden Genomic Mosaicism Revealed in Normal Tissue

    Science.gov (United States)

    Vattathil, Selina; Scheet, Paul

    2016-01-01

    Genomic mosaicism arising from post-zygotic mutation has recently been demonstrated to occur in normal tissue of individuals ascertained with varied phenotypes, indicating that detectable mosaicism may be less an exception than a rule in the general population. A challenge to comprehensive cataloging of mosaic mutations and their consequences is the presence of heterogeneous mixtures of cells, rendering low-frequency clones difficult to discern. Here we applied a computational method using estimated haplotypes to characterize mosaic megabase-scale structural mutations in 31,100 GWA study subjects. We provide in silico validation of 293 previously identified somatic mutations and identify an additional 794 novel mutations, most of which exist at lower aberrant cell fractions than have been demonstrated in previous surveys. These mutations occurred across the genome but in a nonrandom manner, and several chromosomes and loci showed unusual levels of mutation. Our analysis supports recent findings about the relationship between clonal mosaicism and old age. Finally, our results, in which we demonstrate a nearly 3-fold higher rate of clonal mosaicism, suggest that SNP-based population surveys of mosaic structural mutations should be conducted with haplotypes for optimal discovery. PMID:26942289

  2. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Ulrich, Luke [ORNL; Lupa, Boguslaw [University of Georgia, Athens, GA; Susanti, Dwi [Virginia Polytechnic Institute and State University (Virginia Tech); Porat, I. [University of Georgia, Athens, GA; Hooper, Sean [U.S. Department of Energy, Joint Genome Institute; Lykidis, A [U.S. Department of Energy, Joint Genome Institute; Sieprawska-Lupa, Magdalena [University of Georgia, Athens, GA; Dharmarajan, Lakshmi [Virginia Polytechnic Institute and State University (Virginia Tech); Goltsman, Eugene [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Mukhopadhyay, Biswarup [Virginia Polytechnic Institute and State University (Virginia Tech); Whitman, William [ORNL; Woese, Carl [University of Illinois, Urbana-Champaign; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2009-01-01

    Background Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. Methodology/Principal Findings In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Conclusions/Significance Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  3. Genomic characterization of methanomicrobiales reveals three classes of methanogens.

    Science.gov (United States)

    Anderson, Iain; Ulrich, Luke E; Lupa, Boguslaw; Susanti, Dwi; Porat, Iris; Hooper, Sean D; Lykidis, Athanasios; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla; Saunders, Elizabeth; Han, Cliff; Land, Miriam; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William B; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2009-06-04

    Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  4. Genomic characterization of methanomicrobiales reveals three classes of methanogens.

    Directory of Open Access Journals (Sweden)

    Iain Anderson

    Full Text Available BACKGROUND: Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. METHODOLOGY/PRINCIPAL FINDINGS: In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. CONCLUSIONS/SIGNIFICANCE: Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II, and the Methanosarcinales (Class III.

  5. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations.

    Science.gov (United States)

    Edelmann, Jennifer; Holzmann, Karlheinz; Miller, Florian; Winkler, Dirk; Bühler, Andreas; Zenz, Thorsten; Bullinger, Lars; Kühn, Michael W M; Gerhardinger, Andreas; Bloehdorn, Johannes; Radtke, Ina; Su, Xiaoping; Ma, Jing; Pounds, Stanley; Hallek, Michael; Lichter, Peter; Korbel, Jan; Busch, Raymonde; Mertens, Daniel; Downing, James R; Stilgenbauer, Stephan; Döhner, Hartmut

    2012-12-06

    To identify genomic alterations in chronic lymphocytic leukemia (CLL), we performed single-nucleotide polymorphism-array analysis using Affymetrix Version 6.0 on 353 samples from untreated patients entered in the CLL8 treatment trial. Based on paired-sample analysis (n = 144), a mean of 1.8 copy number alterations per patient were identified; approximately 60% of patients carried no copy number alterations other than those detected by fluorescence in situ hybridization analysis. Copy-neutral loss-of-heterozygosity was detected in 6% of CLL patients and was found most frequently on 13q, 17p, and 11q. Minimally deleted regions were refined on 13q14 (deleted in 61% of patients) to the DLEU1 and DLEU2 genes, on 11q22.3 (27% of patients) to ATM, on 2p16.1-2p15 (gained in 7% of patients) to a 1.9-Mb fragment containing 9 genes, and on 8q24.21 (5% of patients) to a segment 486 kb proximal to the MYC locus. 13q deletions exhibited proximal and distal breakpoint cluster regions. Among the most common novel lesions were deletions at 15q15.1 (4% of patients), with the smallest deletion (70.48 kb) found in the MGA locus. Sequence analysis of MGA in 59 samples revealed a truncating mutation in one CLL patient lacking a 15q deletion. MNT at 17p13.3, which in addition to MGA and MYC encodes for the network of MAX-interacting proteins, was also deleted recurrently.

  6. Target selection and determination of function in structural genomics.

    Science.gov (United States)

    Watson, James D; Todd, Annabel E; Bray, James; Laskowski, Roman A; Edwards, Aled; Joachimiak, Andrzej; Orengo, Christine A; Thornton, Janet M

    2003-01-01

    The first crucial step in any structural genomics project is the selection and prioritization of target proteins for structure determination. There may be a number of selection criteria to be satisfied, including that the proteins have novel folds, that they be representatives of large families for which no structure is known, and so on. The better the selection at this stage, the greater is the value of the structures obtained at the end of the experimental process. This value can be further enhanced once the protein structures have been solved if the functions of the given proteins can also be determined. Here we describe the methods used at either end of the experimental process: firstly, sensitive sequence comparison techniques for selecting a high-quality list of target proteins, and secondly the various computational methods that can be applied to the eventual 3D structures to determine the most likely biochemical function of the proteins in question.

  7. The Laccaria and Tuber Genomes Reveal Unique Signatures of Mycorrhizal Symbiosis Evolution (2010 JGI User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Steve

    2010-03-24

    Francis Martin from the French agricultural research institute INRA talks on how "The Laccaria and Tuber genomes reveal unique signatures of mycorrhizal symbiosis evolution" on March 24, 2010 at the 5th Annual DOE JGI User Meeting

  8. Diminishing Marginal Returns From Genomic Selection As More Selection Candidates Are Phenotyped

    DEFF Research Database (Denmark)

    Okeno, Tobias O; Henryon, Mark; Sørensen, Anders Christian

    We used stochastic simulation to test hypotheses that, (i) phenotyping proportion of high ranking selection candidates based on estimated breeding values (EBV) before genotyping could realize as much genetic gains as phenotyping all candidates, and (ii) there is diminishing return to selection...... as more candidates are phenotyped in genomic breeding programs. Three phenotyping criteria, namely, random (RS), EBV and true breeding value (TBV) were investigated under two schemes (across-population and within-litter) using traditional-BLUP and genomic-BLUP models. The EBV ranked above RS and realized...

  9. Genomic signatures of strain selection and enhancement in Bacillus atrophaeus var. globigii, a historical biowarfare simulant.

    Directory of Open Access Journals (Sweden)

    Henry S Gibbons

    Full Text Available BACKGROUND: Despite the decades-long use of Bacillus atrophaeus var. globigii (BG as a simulant for biological warfare (BW agents, knowledge of its genome composition is limited. Furthermore, the ability to differentiate signatures of deliberate adaptation and selection from natural variation is lacking for most bacterial agents. We characterized a lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole-genome shotgun sequencing (WGS. RESULTS: Archival strains and two "present day" type strains were compared to simulant strains on different laboratory media. Several of the samples produced multiple colony morphotypes that differed from that of an archival isolate. To trace the microevolutionary history of these isolates, we obtained WGS data for several archival and present-day strains and morphotypes. Bacillus-wide phylogenetic analysis identified B. subtilis as the nearest neighbor to B. atrophaeus. The genome of B. atrophaeus is, on average, 86% identical to B. subtilis on the nucleotide level. WGS of variants revealed that several strains were mixed but highly related populations and uncovered a progressive accumulation of mutations among the "military" isolates. Metabolic profiling and microscopic examination of bacterial cultures revealed enhanced growth of "military" isolates on lactate-containing media, and showed that the "military" strains exhibited a hypersporulating phenotype. CONCLUSIONS: Our analysis revealed the genomic and phenotypic signatures of strain adaptation and deliberate selection for traits that were desirable in a simulant organism. Together, these results demonstrate the power of whole-genome and modern systems-level approaches to characterize microbial lineages to develop and validate forensic markers for strain discrimination and reveal signatures of deliberate adaptation.

  10. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level

    Science.gov (United States)

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea’s genetic data sources. PMID:27446038

  11. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level.

    Science.gov (United States)

    Tian, Xinpeng; Zhang, Zhewen; Yang, Tingting; Chen, Meili; Li, Jie; Chen, Fei; Yang, Jin; Li, Wenjie; Zhang, Bing; Zhang, Zhang; Wu, Jiayan; Zhang, Changsheng; Long, Lijuan; Xiao, Jingfa

    2016-01-01

    Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea's genetic data sources.

  12. Plasmodium knowlesi genome sequences from clinical isolates reveal extensive genomic dimorphism.

    Directory of Open Access Journals (Sweden)

    Miguel M Pinheiro

    Full Text Available Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and

  13. An Aboriginal Australian genome reveals separate human dispersals into Asia.

    Science.gov (United States)

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong; Lohmueller, Kirk E; Rasmussen, Simon; Albrechtsen, Anders; Skotte, Line; Lindgreen, Stinus; Metspalu, Mait; Jombart, Thibaut; Kivisild, Toomas; Zhai, Weiwei; Eriksson, Anders; Manica, Andrea; Orlando, Ludovic; De La Vega, Francisco M; Tridico, Silvana; Metspalu, Ene; Nielsen, Kasper; Ávila-Arcos, María C; Moreno-Mayar, J Víctor; Muller, Craig; Dortch, Joe; Gilbert, M Thomas P; Lund, Ole; Wesolowska, Agata; Karmin, Monika; Weinert, Lucy A; Wang, Bo; Li, Jun; Tai, Shuaishuai; Xiao, Fei; Hanihara, Tsunehiko; van Driem, George; Jha, Aashish R; Ricaut, François-Xavier; de Knijff, Peter; Migliano, Andrea B; Gallego Romero, Irene; Kristiansen, Karsten; Lambert, David M; Brunak, Søren; Forster, Peter; Brinkmann, Bernd; Nehlich, Olaf; Bunce, Michael; Richards, Michael; Gupta, Ramneek; Bustamante, Carlos D; Krogh, Anders; Foley, Robert A; Lahr, Marta M; Balloux, Francois; Sicheritz-Pontén, Thomas; Villems, Richard; Nielsen, Rasmus; Wang, Jun; Willerslev, Eske

    2011-10-07

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa.

  14. Genetic mapping and genomic selection using recombination breakpoint data.

    Science.gov (United States)

    Xu, Shizhong

    2013-11-01

    The correct models for quantitative trait locus mapping are the ones that simultaneously include all significant genetic effects. Such models are difficult to handle for high marker density. Improving statistical methods for high-dimensional data appears to have reached a plateau. Alternative approaches must be explored to break the bottleneck of genomic data analysis. The fact that all markers are located in a few chromosomes of the genome leads to linkage disequilibrium among markers. This suggests that dimension reduction can also be achieved through data manipulation. High-density markers are used to infer recombination breakpoints, which then facilitate construction of bins. The bins are treated as new synthetic markers. The number of bins is always a manageable number, on the order of a few thousand. Using the bin data of a recombinant inbred line population of rice, we demonstrated genetic mapping, using all bins in a simultaneous manner. To facilitate genomic selection, we developed a method to create user-defined (artificial) bins, in which breakpoints are allowed within bins. Using eight traits of rice, we showed that artificial bin data analysis often improves the predictability compared with natural bin data analysis. Of the eight traits, three showed high predictability, two had intermediate predictability, and two had low predictability. A binary trait with a known gene had predictability near perfect. Genetic mapping using bin data points to a new direction of genomic data analysis.

  15. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum.

    Science.gov (United States)

    Rao, Soumya; Nandineni, Madhusudan R

    2017-01-01

    Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.

  16. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes.

    Science.gov (United States)

    Huang, Shengfeng; Chen, Zelin; Yan, Xinyu; Yu, Ting; Huang, Guangrui; Yan, Qingyu; Pontarotti, Pierre Antoine; Zhao, Hongchen; Li, Jie; Yang, Ping; Wang, Ruihua; Li, Rui; Tao, Xin; Deng, Ting; Wang, Yiquan; Li, Guang; Zhang, Qiujin; Zhou, Sisi; You, Leiming; Yuan, Shaochun; Fu, Yonggui; Wu, Fenfang; Dong, Meiling; Chen, Shangwu; Xu, Anlong

    2014-12-19

    Vertebrates diverged from other chordates ~500 Myr ago and experienced successful innovations and adaptations, but the genomic basis underlying vertebrate origins are not fully understood. Here we suggest, through comparison with multiple lancelet (amphioxus) genomes, that ancient vertebrates experienced high rates of protein evolution, genome rearrangement and domain shuffling and that these rates greatly slowed down after the divergence of jawed and jawless vertebrates. Compared with lancelets, modern vertebrates retain, at least relatively, less protein diversity, fewer nucleotide polymorphisms, domain combinations and conserved non-coding elements (CNE). Modern vertebrates also lost substantial transposable element (TE) diversity, whereas lancelets preserve high TE diversity that includes even the long-sought RAG transposon. Lancelets also exhibit rapid gene turnover, pervasive transcription, fastest exon shuffling in metazoans and substantial TE methylation not observed in other invertebrates. These new lancelet genome sequences provide new insights into the chordate ancestral state and the vertebrate evolution.

  17. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome

    DEFF Research Database (Denmark)

    Lewis, Nathan E; Liu, Xin; Li, Yuxiang;

    2013-01-01

    Chinese hamster ovary (CHO) cells, first isolated in 1957, are the preferred production host for many therapeutic proteins. Although genetic heterogeneity among CHO cell lines has been well documented, a systematic, nucleotide-resolution characterization of their genotypic differences has been st...... of this genetic diversity highlight the value of the hamster genome as the reference upon which CHO cells can be studied and engineered for protein production....... stymied by the lack of a unifying genomic resource for CHO cells. Here we report a 2.4-Gb draft genome sequence of a female Chinese hamster, Cricetulus griseus, harboring 24,044 genes. We also resequenced and analyzed the genomes of six CHO cell lines from the CHO-K1, DG44 and CHO-S lineages...

  18. Genomic Selection for Drought Tolerance Using Genome-Wide SNPs in Maize

    Directory of Open Access Journals (Sweden)

    Thirunavukkarasu Nepolean

    2017-04-01

    Full Text Available Traditional breeding strategies for selecting superior genotypes depending on phenotypic traits have proven to be of limited success, as this direct selection is hindered by low heritability, genetic interactions such as epistasis, environmental-genotype interactions, and polygenic effects. With the advent of new genomic tools, breeders have paved a way for selecting superior breeds. Genomic selection (GS has emerged as one of the most important approaches for predicting genotype performance. Here, we tested the breeding values of 240 maize subtropical lines phenotyped for drought at different environments using 29,619 cured SNPs. Prediction accuracies of seven genomic selection models (ridge regression, LASSO, elastic net, random forest, reproducing kernel Hilbert space, Bayes A and Bayes B were tested for their agronomic traits. Though prediction accuracies of Bayes B, Bayes A and RKHS were comparable, Bayes B outperformed the other models by predicting highest Pearson correlation coefficient in all three environments. From Bayes B, a set of the top 1053 significant SNPs with higher marker effects was selected across all datasets to validate the genes and QTLs. Out of these 1053 SNPs, 77 SNPs associated with 10 drought-responsive transcription factors. These transcription factors were associated with different physiological and molecular functions (stomatal closure, root development, hormonal signaling and photosynthesis. Of several models, Bayes B has been shown to have the highest level of prediction accuracy for our data sets. Our experiments also highlighted several SNPs based on their performance and relative importance to drought tolerance. The result of our experiments is important for the selection of superior genotypes and candidate genes for breeding drought-tolerant maize hybrids.

  19. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states.

    Directory of Open Access Journals (Sweden)

    Kevin A Wilkinson

    2008-04-01

    Full Text Available Replication and pathogenesis of the human immunodeficiency virus (HIV is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001 SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further

  20. Rapid genome evolution in Pms1 region of rice revealed by comparative sequence analysis

    Institute of Scientific and Technical Information of China (English)

    YU JinSheng; FAN YouRong; LIU Nan; SHAN Yan; LI XiangHua; ZHANG QiFa

    2007-01-01

    Pms1, a locus for photoperiod sensitive genic male sterility in rice, was identified and mapped to chromosome 7 in previous studies. Here we report an effort to identify the candidate genes for Pms1 by comparative sequencing of BAC clones from two cultivars Minghui 63 and Nongken 58, the parents for the initial mapping population. Annotation and comparison of the sequences of the two clones resulted in a total of five potential candidates which should be functionally tested. We also conducted comparative analysis of sequences of these two cultivars with two other cultivars, Nipponbare and 93-11,for which sequence data were available in public databases. The analysis revealed large differences in sequence composition among the four genotypes in the Pms1 region primarily due to retroelement activity leading to rapid recent growth and divergence of the genomes. High levels of polymorphism in the forms of indels and SNPs were found both in intra- and inter-subspecific comparisons. Dating analysis using LTRs of the retroelements in this region showed that the substitution rate of LTRs was much higher than reported in the literature. The results provided strong evidence for rapid genomic evolution of this region as a consequence of natural and artificial selection.

  1. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation.

    Science.gov (United States)

    Baubec, Tuncay; Colombo, Daniele F; Wirbelauer, Christiane; Schmidt, Juliane; Burger, Lukas; Krebs, Arnaud R; Akalin, Altuna; Schübeler, Dirk

    2015-04-09

    DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined genomic binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG-dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity.

  2. Complex organizational structure of the genome revealed by genome-wide analysis of single and alternative promoters in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Zhu Qianqian

    2009-01-01

    Full Text Available Abstract Background The promoter is a critical necessary transcriptional cis-regulatory element. In addition to its role as an assembly site for the basal transcriptional apparatus, the promoter plays a key part in mediating temporal and spatial aspects of gene expression through differential binding of transcription factors and selective interaction with distal enhancers. Although many genes have multiple promoters, little attention has been focused on how these relate to one another; nor has much study been directed at relationships between promoters of adjacent genes. Results We have undertaken a systematic investigation of Drosophila promoters. We divided promoters into three groups: unique promoters, first alternative promoters (the most 5' of a gene's multiple promoters, and downstream alternative promoters (the remaining alternative promoters 3' to the first. We observed distinct nucleotide distribution and sequence motif preferences among these three classes. We also investigated the promoters of neighboring genes and found that a greater than expected number of adjacent genes have similar sequence motif profiles, which may allow the genes to be regulated in a coordinated fashion. Consistent with this, there is a positive correlation between similar promoter motifs and related gene expression profiles for these genes. Conclusions Our results suggest that different regulatory mechanisms may apply to each of the three promoter classes, and provide a mechanism for "gene expression neighborhoods," local clusters of co-expressed genes. As a whole, our data reveal an unexpected complexity of genomic organization at the promoter level with respect to both alternative and neighboring promoters.

  3. Genome-wide analysis reveals coating of the mitochondrial genome by TFAM.

    Directory of Open Access Journals (Sweden)

    Yun E Wang

    Full Text Available Mitochondria contain a 16.6 kb circular genome encoding 13 proteins as well as mitochondrial tRNAs and rRNAs. Copies of the genome are organized into nucleoids containing both DNA and proteins, including the machinery required for mtDNA replication and transcription. The transcription factor TFAM is critical for initiation of transcription and replication of the genome, and is also thought to perform a packaging function. Although specific binding sites required for initiation of transcription have been identified in the D-loop, little is known about the characteristics of TFAM binding in its nonspecific packaging state. In addition, it is unclear whether TFAM also plays a role in the regulation of nuclear gene expression. Here we investigate these questions by using ChIP-seq to directly localize TFAM binding to DNA in human cells. Our results demonstrate that TFAM uniformly coats the whole mitochondrial genome, with no evidence of robust TFAM binding to the nuclear genome. Our study represents the first high-resolution assessment of TFAM binding on a genome-wide scale in human cells.

  4. Genomic analysis reveals extensive gene duplication within the bovine TRB locus

    Directory of Open Access Journals (Sweden)

    Law Andy

    2009-04-01

    diverse functional TRBV genes, which is substantially larger than that described for humans and mice. Conclusion The analyses completed in this study reveal that, although the gene content and organization of the bovine TRB locus are broadly similar to that of humans and mice, multiple duplication events have led to a marked expansion in the number of TRB genes. Similar expansions in other ruminant TR loci suggest strong evolutionary pressures in this lineage have selected for the development of enlarged sets of TR genes that can contribute to diverse TR repertoires.

  5. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits

    Science.gov (United States)

    Pecetti, Luciano; Brummer, E. Charles; Palmonari, Alberto; Tava, Aldo

    2017-01-01

    Genetic progress for forage quality has been poor in alfalfa (Medicago sativa L.), the most-grown forage legume worldwide. This study aimed at exploring opportunities for marker-assisted selection (MAS) and genomic selection of forage quality traits based on breeding values of parent plants. Some 154 genotypes from a broadly-based reference population were genotyped by genotyping-by-sequencing (GBS), and phenotyped for leaf-to-stem ratio, leaf and stem contents of protein, neutral detergent fiber (NDF) and acid detergent lignin (ADL), and leaf and stem NDF digestibility after 24 hours (NDFD), of their dense-planted half-sib progenies in three growing conditions (summer harvest, full irrigation; summer harvest, suspended irrigation; autumn harvest). Trait-marker analyses were performed on progeny values averaged over conditions, owing to modest germplasm × condition interaction. Genomic selection exploited 11,450 polymorphic SNP markers, whereas a subset of 8,494 M. truncatula-aligned markers were used for a genome-wide association study (GWAS). GWAS confirmed the polygenic control of quality traits and, in agreement with phenotypic correlations, indicated substantially different genetic control of a given trait in stems and leaves. It detected several SNPs in different annotated genes that were highly linked to stem protein content. Also, it identified a small genomic region on chromosome 8 with high concentration of annotated genes associated with leaf ADL, including one gene probably involved in the lignin pathway. Three genomic selection models, i.e., Ridge-regression BLUP, Bayes B and Bayesian Lasso, displayed similar prediction accuracy, whereas SVR-lin was less accurate. Accuracy values were moderate (0.3–0.4) for stem NDFD and leaf protein content, modest for leaf ADL and NDFD, and low to very low for the other traits. Along with previous results for the same germplasm set, this study indicates that GBS data can be exploited to improve both quality traits

  6. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function

    Directory of Open Access Journals (Sweden)

    Antommattei Frances M

    2008-10-01

    Full Text Available Abstract Background Geobacter species are δ-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. Results The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (~70 homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively. Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors

  7. A map of recent positive selection in the human genome.

    Directory of Open Access Journals (Sweden)

    Benjamin F Voight

    2006-03-01

    Full Text Available The identification of signals of very recent positive selection provides information about the adaptation of modern humans to local conditions. We report here on a genome-wide scan for signals of very recent positive selection in favor of variants that have not yet reached fixation. We describe a new analytical method for scanning single nucleotide polymorphism (SNP data for signals of recent selection, and apply this to data from the International HapMap Project. In all three continental groups we find widespread signals of recent positive selection. Most signals are region-specific, though a significant excess are shared across groups. Contrary to some earlier low resolution studies that suggested a paucity of recent selection in sub-Saharan Africans, we find that by some measures our strongest signals of selection are from the Yoruba population. Finally, since these signals indicate the existence of genetic variants that have substantially different fitnesses, they must indicate loci that are the source of significant phenotypic variation. Though the relevant phenotypes are generally not known, such loci should be of particular interest in mapping studies of complex traits. For this purpose we have developed a set of SNPs that can be used to tag the strongest approximately 250 signals of recent selection in each population.

  8. The arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese.

    Directory of Open Access Journals (Sweden)

    Christophe Monnet

    Full Text Available Arthrobacter arilaitensis is one of the major bacterial species found at the surface of cheeses, especially in smear-ripened cheeses, where it contributes to the typical colour, flavour and texture properties of the final product. The A. arilaitensis Re117 genome is composed of a 3,859,257 bp chromosome and two plasmids of 50,407 and 8,528 bp. The chromosome shares large regions of synteny with the chromosomes of three environmental Arthrobacter strains for which genome sequences are available: A. aurescens TC1, A. chlorophenolicus A6 and Arthrobacter sp. FB24. In contrast however, 4.92% of the A. arilaitensis chromosome is composed of ISs elements, a portion that is at least 15 fold higher than for the other Arthrobacter strains. Comparative genomic analyses reveal an extensive loss of genes associated with catabolic activities, presumably as a result of adaptation to the properties of the cheese surface habitat. Like the environmental Arthrobacter strains, A. arilaitensis Re117 is well-equipped with enzymes required for the catabolism of major carbon substrates present at cheese surfaces such as fatty acids, amino acids and lactic acid. However, A. arilaitensis has several specificities which seem to be linked to its adaptation to its particular niche. These include the ability to catabolize D-galactonate, a high number of glycine betaine and related osmolyte transporters, two siderophore biosynthesis gene clusters and a high number of Fe(3+/siderophore transport systems. In model cheese experiments, addition of small amounts of iron strongly stimulated the growth of A. arilaitensis, indicating that cheese is a highly iron-restricted medium. We suggest that there is a strong selective pressure at the surface of cheese for strains with efficient iron acquisition and salt-tolerance systems together with abilities to catabolize substrates such as lactic acid, lipids and amino acids.

  9. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  10. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Jun, Se-Ran; Wassenaar, Trudy M; Nookaew, Intawat; Hauser, Loren; Wanchai, Visanu; Land, Miriam; Timm, Collin M; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A; Ussery, David W

    2015-10-30

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches, including the rhizosphere and endosphere of many plants. Their diversity influences the phylogenetic diversity and heterogeneity of these communities. On the basis of average amino acid identity, comparative genome analysis of >1,000 Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides (eastern cottonwood) trees resulted in consistent and robust genomic clusters with phylogenetic homogeneity. All Pseudomonas aeruginosa genomes clustered together, and these were clearly distinct from other Pseudomonas species groups on the basis of pangenome and core genome analyses. In contrast, the genomes of Pseudomonas fluorescens were organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. Most of our 21 Populus-associated isolates formed three distinct subgroups within the major P. fluorescens group, supported by pathway profile analysis, while two isolates were more closely related to Pseudomonas chlororaphis and Pseudomonas putida. Genes specific to Populus-associated subgroups were identified. Genes specific to subgroup 1 include several sensory systems that act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor. Genes specific to subgroup 2 contain hypothetical genes, and genes specific to subgroup 3 were annotated with hydrolase activity. This study justifies the need to sequence multiple isolates, especially from P. fluorescens, which displays the most genetic variation, in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants.

  11. Scanning for signatures of geographically restricted selection based on population genomics analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Natural selection, as the driving force of human evolution, has direct impact on population differentiation. However, it is still unclear to what extent the genetic differentiation has been caused by natural selection. To explore this question, we performed a genome-wide scan with single nucleotide polymorphism (SNP) data from the International HapMap Project. Single locus FST analysis was applied to assess the frequency difference among populations in autosomes. Based on the empirical distribution of FST, we identified 12669 SNPs correlating to population differentiation and 1853 candidate genes subjected to geographic restricted natural selection. Further interpretation of gene ontogeny revealed 121 categories of biological process with the enrichments of candidate genes. Our results suggest that natural selection may play an important role in human population differentiation. In addition, our analysis provides new clues as well as research methods for our understanding of population differentiation and natural selection.

  12. Pedigree-based analysis of derivation of genome segments of an elite rice reveals key regions during its breeding.

    Science.gov (United States)

    Zhou, Degui; Chen, Wei; Lin, Zechuan; Chen, Haodong; Wang, Chongrong; Li, Hong; Yu, Renbo; Zhang, Fengyun; Zhen, Gang; Yi, Junliang; Li, Kanghuo; Liu, Yaoguang; Terzaghi, William; Tang, Xiaoyan; He, Hang; Zhou, Shaochuan; Deng, Xing Wang

    2016-02-01

    Analyses of genome variations with high-throughput assays have improved our understanding of genetic basis of crop domestication and identified the selected genome regions, but little is known about that of modern breeding, which has limited the usefulness of massive elite cultivars in further breeding. Here we deploy pedigree-based analysis of an elite rice, Huanghuazhan, to exploit key genome regions during its breeding. The cultivars in the pedigree were resequenced with 7.6× depth on average, and 2.1 million high-quality single nucleotide polymorphisms (SNPs) were obtained. Tracing the derivation of genome blocks with pedigree and information on SNPs revealed the chromosomal recombination during breeding, which showed that 26.22% of Huanghuazhan genome are strictly conserved key regions. These major effect regions were further supported by a QTL mapping of 260 recombinant inbred lines derived from the cross of Huanghuazhan and a very dissimilar cultivar, Shuanggui 36, and by the genome profile of eight cultivars and 36 elite lines derived from Huanghuazhan. Hitting these regions with the cloned genes revealed they include numbers of key genes, which were then applied to demonstrate how Huanghuazhan were bred after 30 years of effort and to dissect the deficiency of artificial selection. We concluded the regions are helpful to the further breeding based on this pedigree and performing breeding by design. Our study provides genetic dissection of modern rice breeding and sheds new light on how to perform genomewide breeding by design. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Genome resequencing in Populus: Revealing large-scale genome variation and implications on specialized-trait genomics

    Energy Technology Data Exchange (ETDEWEB)

    Muchero, Wellington [ORNL; Labbe, Jessy L [ORNL; Priya, Ranjan [University of Tennessee, Knoxville (UTK); DiFazio, Steven P [West Virginia University, Morgantown; Tuskan, Gerald A [ORNL

    2014-01-01

    To date, Populus ranks among a few plant species with a complete genome sequence and other highly developed genomic resources. With the first genome sequence among all tree species, Populus has been adopted as a suitable model organism for genomic studies in trees. However, far from being just a model species, Populus is a key renewable economic resource that plays a significant role in providing raw materials for the biofuel and pulp and paper industries. Therefore, aside from leading frontiers of basic tree molecular biology and ecological research, Populus leads frontiers in addressing global economic challenges related to fuel and fiber production. The latter fact suggests that research aimed at improving quality and quantity of Populus as a raw material will likely drive the pursuit of more targeted and deeper research in order to unlock the economic potential tied in molecular biology processes that drive this tree species. Advances in genome sequence-driven technologies, such as resequencing individual genotypes, which in turn facilitates large scale SNP discovery and identification of large scale polymorphisms are key determinants of future success in these initiatives. In this treatise we discuss implications of genome sequence-enable technologies on Populus genomic and genetic studies of complex and specialized-traits.

  14. Improving virus production through quasispecies genomic selection and molecular breeding.

    Science.gov (United States)

    Pérez-Rodríguez, Francisco J; D'Andrea, Lucía; de Castellarnau, Montserrat; Costafreda, Maria Isabel; Guix, Susana; Ribes, Enric; Quer, Josep; Gregori, Josep; Bosch, Albert; Pintó, Rosa M

    2016-11-03

    Virus production still is a challenging issue in antigen manufacture, particularly with slow-growing viruses. Deep-sequencing of genomic regions indicative of efficient replication may be used to identify high-fitness minority individuals suppressed by the ensemble of mutants in a virus quasispecies. Molecular breeding of quasispecies containing colonizer individuals, under regimes allowing more than one replicative cycle, is a strategy to select the fittest competitors among the colonizers. A slow-growing cell culture-adapted hepatitis A virus strain was employed as a model for this strategy. Using genomic selection in two regions predictive of efficient translation, the internal ribosome entry site and the VP1-coding region, high-fitness minority colonizer individuals were identified in a population adapted to conditions of artificially-induced cellular transcription shut-off. Molecular breeding of this population with a second one, also adapted to transcription shut-off and showing an overall colonizer phenotype, allowed the selection of a fast-growing population of great biotechnological potential.

  15. LASSO with cross-validation for genomic selection.

    Science.gov (United States)

    Usai, M Graziano; Goddard, Mike E; Hayes, Ben J

    2009-12-01

    We used a least absolute shrinkage and selection operator (LASSO) approach to estimate marker effects for genomic selection. The least angle regression (LARS) algorithm and cross-validation were used to define the best subset of markers to include in the model. The LASSO-LARS approach was tested on two data sets: a simulated data set with 5865 individuals and 6000 Single Nucleotide Polymorphisms (SNPs); and a mouse data set with 1885 individuals genotyped for 10 656 SNPs and phenotyped for a number of quantitative traits. In the simulated data, three approaches were used to split the reference population into training and validation subsets for cross-validation: random splitting across the whole population; random sampling of validation set from the last generation only, either within or across families. The highest accuracy was obtained by random splitting across the whole population. The accuracy of genomic estimated breeding values (GEBVs) in the candidate population obtained by LASSO-LARS was 0.89 with 156 explanatory SNPs. This value was higher than those obtained by Best Linear Unbiased Prediction (BLUP) and a Bayesian method (BayesA), which were 0.75 and 0.84, respectively. In the mouse data, 1600 individuals were randomly allocated to the reference population. The GEBVs for the remaining 285 individuals estimated by LASSO-LARS were more accurate than those obtained by BLUP and BayesA for weight at six weeks and slightly lower for growth rate and body length. It was concluded that LASSO-LARS approach is a good alternative method to estimate marker effects for genomic selection, particularly when the cost of genotyping can be reduced by using a limited subset of markers.

  16. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome

    DEFF Research Database (Denmark)

    Lewis, Nathan E; Liu, Xin; Li, Yuxiang;

    2013-01-01

    Chinese hamster ovary (CHO) cells, first isolated in 1957, are the preferred production host for many therapeutic proteins. Although genetic heterogeneity among CHO cell lines has been well documented, a systematic, nucleotide-resolution characterization of their genotypic differences has been...... stymied by the lack of a unifying genomic resource for CHO cells. Here we report a 2.4-Gb draft genome sequence of a female Chinese hamster, Cricetulus griseus, harboring 24,044 genes. We also resequenced and analyzed the genomes of six CHO cell lines from the CHO-K1, DG44 and CHO-S lineages....... This analysis identified hamster genes missing in different CHO cell lines, and detected >3.7 million single-nucleotide polymorphisms (SNPs), 551,240 indels and 7,063 copy number variations. Many mutations are located in genes with functions relevant to bioprocessing, such as apoptosis. The details...

  17. A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the Turkey and Chicken genomes

    Directory of Open Access Journals (Sweden)

    Vereijken Addie

    2010-11-01

    Full Text Available Abstract Background The turkey (Meleagris gallopavo is an important agricultural species that is the second largest contributor to the world's poultry meat production. The genomic resources of turkey provide turkey breeders with tools needed for the genetic improvement of commercial breeds of turkey for economically important traits. A linkage map of turkey is essential not only for the mapping of quantitative trait loci, but also as a framework to enable the assignment of sequence contigs to specific chromosomes. Comparative genomics with chicken provides insight into mechanisms of genome evolution and helps in identifying rare genomic events such as genomic rearrangements and duplications/deletions. Results Eighteen full sib families, comprising 1008 (35 F1 and 973 F2 birds, were genotyped for 775 single nucleotide polymorphisms (SNPs. Of the 775 SNPs, 570 were informative and used to construct a linkage map in turkey. The final map contains 531 markers in 28 linkage groups. The total genetic distance covered by these linkage groups is 2,324 centimorgans (cM with the largest linkage group (81 loci measuring 326 cM. Average marker interval for all markers across the 28 linkage groups is 4.6 cM. Comparative mapping of turkey and chicken revealed two inter-, and 57 intrachromosomal rearrangements between these two species. Conclusion Our turkey genetic map of 531 markers reveals a genome length of 2,324 cM. Our linkage map provides an improvement of previously published maps because of the more even distribution of the markers and because the map is completely based on SNP markers enabling easier and faster genotyping assays than the microsatellitemarkers used in previous linkage maps. Turkey and chicken are shown to have a highly conserved genomic structure with a relatively low number of inter-, and intrachromosomal rearrangements.

  18. Relaxation of selective constraints causes independent selenoprotein extinction in insect genomes.

    Directory of Open Access Journals (Sweden)

    Charles E Chapple

    Full Text Available BACKGROUND: Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. CONCLUSIONS/SIGNIFICANCE: Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may

  19. Comparative genomics of flatworms (platyhelminthes) reveals shared genomic features of ecto- and endoparastic neodermata.

    Science.gov (United States)

    Hahn, Christoph; Fromm, Bastian; Bachmann, Lutz

    2014-05-01

    The ectoparasitic Monogenea comprise a major part of the obligate parasitic flatworm diversity. Although genomic adaptations to parasitism have been studied in the endoparasitic tapeworms (Cestoda) and flukes (Trematoda), no representative of the Monogenea has been investigated yet. We present the high-quality draft genome of Gyrodactylus salaris, an economically important monogenean ectoparasite of wild Atlantic salmon (Salmo salar). A total of 15,488 gene models were identified, of which 7,102 were functionally annotated. The controversial phylogenetic relationships within the obligate parasitic Neodermata were resolved in a phylogenomic analysis using 1,719 gene models (alignment length of >500,000 amino acids) for a set of 16 metazoan taxa. The Monogenea were found basal to the Cestoda and Trematoda, which implies ectoparasitism being plesiomorphic within the Neodermata and strongly supports a common origin of complex life cycles. Comparative analysis of seven parasitic flatworm genomes identified shared genomic features for the ecto- and endoparasitic lineages, such as a substantial reduction of the core bilaterian gene complement, including the homeodomain-containing genes, and a loss of the piwi and vasa genes, which are considered essential for animal development. Furthermore, the shared loss of functional fatty acid biosynthesis pathways and the absence of peroxisomes, the latter organelles presumed ubiquitous in eukaryotes except for parasitic protozoans, were inferred. The draft genome of G. salaris opens for future in-depth analyses of pathogenicity and host specificity of poorly characterized G. salaris strains, and will enhance studies addressing the genomics of host-parasite interactions and speciation in the highly diverse monogenean flatworms.

  20. Comparative Genomics of Flatworms (Platyhelminthes) Reveals Shared Genomic Features of Ecto- and Endoparastic Neodermata

    Science.gov (United States)

    Hahn, Christoph; Fromm, Bastian; Bachmann, Lutz

    2014-01-01

    The ectoparasitic Monogenea comprise a major part of the obligate parasitic flatworm diversity. Although genomic adaptations to parasitism have been studied in the endoparasitic tapeworms (Cestoda) and flukes (Trematoda), no representative of the Monogenea has been investigated yet. We present the high-quality draft genome of Gyrodactylus salaris, an economically important monogenean ectoparasite of wild Atlantic salmon (Salmo salar). A total of 15,488 gene models were identified, of which 7,102 were functionally annotated. The controversial phylogenetic relationships within the obligate parasitic Neodermata were resolved in a phylogenomic analysis using 1,719 gene models (alignment length of >500,000 amino acids) for a set of 16 metazoan taxa. The Monogenea were found basal to the Cestoda and Trematoda, which implies ectoparasitism being plesiomorphic within the Neodermata and strongly supports a common origin of complex life cycles. Comparative analysis of seven parasitic flatworm genomes identified shared genomic features for the ecto- and endoparasitic lineages, such as a substantial reduction of the core bilaterian gene complement, including the homeodomain-containing genes, and a loss of the piwi and vasa genes, which are considered essential for animal development. Furthermore, the shared loss of functional fatty acid biosynthesis pathways and the absence of peroxisomes, the latter organelles presumed ubiquitous in eukaryotes except for parasitic protozoans, were inferred. The draft genome of G. salaris opens for future in-depth analyses of pathogenicity and host specificity of poorly characterized G. salaris strains, and will enhance studies addressing the genomics of host–parasite interactions and speciation in the highly diverse monogenean flatworms. PMID:24732282

  1. Genomic and chromatin signals underlying transcription start-site selection

    DEFF Research Database (Denmark)

    Valen, Eivind; Sandelin, Albin Gustav

    2011-01-01

    A central question in cellular biology is how the cell regulates transcription and discerns when and where to initiate it. Locating transcription start sites (TSSs), the signals that specify them, and ultimately elucidating the mechanisms of regulated initiation has therefore been a recurrent theme......; the field is now faced with the daunting challenge of translating these descriptive maps into quantitative and predictive models describing the underlying biology. We review here the genomic and chromatin features that underlie TSS selection and usage, focusing on the differences between the major classes...

  2. Comparative genomics of 274 Vibrio cholerae genomes reveals mobile functions structuring three niche dimensions

    NARCIS (Netherlands)

    Dutilh, Bas E; Thompson, Cristiane C; Vicente, Ana C P; Marin, Michel A; Lee, Clarence; Silva, Genivaldo G Z; Schmieder, Robert; Andrade, Bruno G N; Chimetto, Luciane; Cuevas, Daniel; Garza, Daniel R; Okeke, Iruka N; Aboderin, Aaron Oladipo; Spangler, Jessica; Ross, Tristen; Dinsdale, Elizabeth A; Thompson, Fabiano L; Harkins, Timothy T; Edwards, Robert A

    2014-01-01

    BACKGROUND: Vibrio cholerae is a globally dispersed pathogen that has evolved with humans for centuries, but also includes non-pathogenic environmental strains. Here, we identify the genomic variability underlying this remarkable persistence across the three major niche dimensions space, time, and h

  3. Comparative genomics of 274 Vibrio cholerae genomes reveals mobile functions structuring three niche dimensions

    NARCIS (Netherlands)

    Dutilh, B.E.; Thompson, C.C.; Vicente, A.C.; Marin, M.A.; Lee, C.; Silva, G.G.; Schmieder, R.; Andrade, B.G.; Chimetto, L.; Cuevas, D.; Garza, D.R.; Okeke, I.N.; Aboderin, A.O.; Spangler, J.; Ross, T.; Dinsdale, E.A.; Thompson, F.L.; Harkins, T.T.; Edwards, R.A.

    2014-01-01

    BACKGROUND: Vibrio cholerae is a globally dispersed pathogen that has evolved with humans for centuries, but also includes non-pathogenic environmental strains. Here, we identify the genomic variability underlying this remarkable persistence across the three major niche dimensions space, time, and

  4. Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy

    DEFF Research Database (Denmark)

    Kaas, Christian Schrøder; Kristensen, Claus; Betenbaugh, Michael J.

    2015-01-01

    Background: The DHFR negative CHO DXB11 cell line (also known as DUX-B11 and DUKX) was historically the first CHO cell line to be used for large scale production of heterologous proteins and is still used for production of a number of complex proteins.  Results: Here we present the genomic sequen...

  5. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome.

    Science.gov (United States)

    Lewis, Nathan E; Liu, Xin; Li, Yuxiang; Nagarajan, Harish; Yerganian, George; O'Brien, Edward; Bordbar, Aarash; Roth, Anne M; Rosenbloom, Jeffrey; Bian, Chao; Xie, Min; Chen, Wenbin; Li, Ning; Baycin-Hizal, Deniz; Latif, Haythem; Forster, Jochen; Betenbaugh, Michael J; Famili, Iman; Xu, Xun; Wang, Jun; Palsson, Bernhard O

    2013-08-01

    Chinese hamster ovary (CHO) cells, first isolated in 1957, are the preferred production host for many therapeutic proteins. Although genetic heterogeneity among CHO cell lines has been well documented, a systematic, nucleotide-resolution characterization of their genotypic differences has been stymied by the lack of a unifying genomic resource for CHO cells. Here we report a 2.4-Gb draft genome sequence of a female Chinese hamster, Cricetulus griseus, harboring 24,044 genes. We also resequenced and analyzed the genomes of six CHO cell lines from the CHO-K1, DG44 and CHO-S lineages. This analysis identified hamster genes missing in different CHO cell lines, and detected >3.7 million single-nucleotide polymorphisms (SNPs), 551,240 indels and 7,063 copy number variations. Many mutations are located in genes with functions relevant to bioprocessing, such as apoptosis. The details of this genetic diversity highlight the value of the hamster genome as the reference upon which CHO cells can be studied and engineered for protein production.

  6. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing

    DEFF Research Database (Denmark)

    Li, Ying-hui; Zhao, Shan-cen; Ma, Jian-xin;

    2013-01-01

    BACKGROUND:Artificial selection played an important role in the origin of modern Glycine max cultivars from the wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication and modern improvement of soybean, 25 new and 30 published whole-genome re...

  7. A genome scan for positive selection in thoroughbred horses.

    Directory of Open Access Journals (Sweden)

    Jingjing Gu

    Full Text Available Thoroughbred horses have been selected for exceptional racing performance resulting in system-wide structural and functional adaptations contributing to elite athletic phenotypes. Because selection has been recent and intense in a closed population that stems from a small number of founder animals Thoroughbreds represent a unique population within which to identify genomic contributions to exercise-related traits. Employing a population genetics-based hitchhiking mapping approach we performed a genome scan using 394 autosomal and X chromosome microsatellite loci and identified positively selected loci in the extreme tail-ends of the empirical distributions for (1 deviations from expected heterozygosity (Ewens-Watterson test in Thoroughbred (n = 112 and (2 global differentiation among four geographically diverse horse populations (F(ST. We found positively selected genomic regions in Thoroughbred enriched for phosphoinositide-mediated signalling (3.2-fold enrichment; P<0.01, insulin receptor signalling (5.0-fold enrichment; P<0.01 and lipid transport (2.2-fold enrichment; P<0.05 genes. We found a significant overrepresentation of sarcoglycan complex (11.1-fold enrichment; P<0.05 and focal adhesion pathway (1.9-fold enrichment; P<0.01 genes highlighting the role for muscle strength and integrity in the Thoroughbred athletic phenotype. We report for the first time candidate athletic-performance genes within regions targeted by selection in Thoroughbred horses that are principally responsible for fatty acid oxidation, increased insulin sensitivity and muscle strength: ACSS1 (acyl-CoA synthetase short-chain family member 1, ACTA1 (actin, alpha 1, skeletal muscle, ACTN2 (actinin, alpha 2, ADHFE1 (alcohol dehydrogenase, iron containing, 1, MTFR1 (mitochondrial fission regulator 1, PDK4 (pyruvate dehydrogenase kinase, isozyme 4 and TNC (tenascin C. Understanding the genetic basis for exercise adaptation will be crucial for the identification of genes

  8. Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2004-07-14

    The structural genomics project is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy which is medically and biologically relevant, of good value, and tractable. As an option to consider, we present the Pfam5000 strategy, which involves selecting the 5000 most important families from the Pfam database as sources for targets. We compare the Pfam5000 strategy to several other proposed strategies that would require similar numbers of targets. These include including complete solution of several small to moderately sized bacterial proteomes, partial coverage of the human proteome, and random selection of approximately 5000 targets from sequenced genomes. We measure the impact that successful implementation of these strategies would have upon structural interpretation of the proteins in Swiss-Prot, TrEMBL, and 131 complete proteomes (including 10 of eukaryotes) from the Proteome Analysis database at EBI. Solving the structures of proteins from the 5000 largest Pfam families would allow accurate fold assignment for approximately 68 percent of all prokaryotic proteins (covering 59 percent of residues) and 61 percent of eukaryotic proteins (40 percent of residues). More fine-grained coverage which would allow accurate modeling of these proteins would require an order of magnitude more targets. The Pfam5000 strategy may be modified in several ways, for example to focus on larger families, bacterial sequences, or eukaryotic sequences; as long as secondary consideration is given to large families within Pfam, coverage results vary only slightly. In contrast, focusing structural genomics on a single tractable genome would have only a limited impact in structural knowledge of other proteomes: a significant fraction (about 30-40 percent of the proteins, and 40-60 percent of the residues) of each proteome is classified in small

  9. Comparative genomics of eukaryotic small nucleolar RNAs reveals deep evolutionary ancestry amidst ongoing intragenomic mobility

    Directory of Open Access Journals (Sweden)

    Hoeppner Marc P

    2012-09-01

    Full Text Available Abstract Background Small nucleolar (snoRNAs are required for posttranscriptional processing and modification of ribosomal, spliceosomal and messenger RNAs. Their presence in both eukaryotes and archaea indicates that snoRNAs are evolutionarily ancient. The location of some snoRNAs within the introns of ribosomal protein genes has been suggested to belie an RNA world origin, with the exons of the earliest protein-coding genes having evolved around snoRNAs after the advent of templated protein synthesis. Alternatively, this intronic location may reflect more recent selection for coexpression of snoRNAs and ribosomal components, ensuring rRNA modification by snoRNAs during ribosome synthesis. To gain insight into the evolutionary origins of this genetic organization, we examined the antiquity of snoRNA families and the stability of their genomic location across 44 eukaryote genomes. Results We report that dozens of snoRNA families are traceable to the Last Eukaryotic Common Ancestor (LECA, but find only weak similarities between the oldest eukaryotic snoRNAs and archaeal snoRNA-like genes. Moreover, many of these LECA snoRNAs are located within the introns of host genes independently traceable to the LECA. Comparative genomic analyses reveal the intronic location of LECA snoRNAs is not ancestral however, suggesting the pattern we observe is the result of ongoing intragenomic mobility. Analysis of human transcriptome data indicates that the primary requirement for hosting intronic snoRNAs is a broad expression profile. Consistent with ongoing mobility across broadly-expressed genes, we report a case of recent migration of a non-LECA snoRNA from the intron of a ubiquitously expressed non-LECA host gene into the introns of two LECA genes during the evolution of primates. Conclusions Our analyses show that snoRNAs were a well-established family of RNAs at the time when eukaryotes began to diversify. While many are intronic, this association is not

  10. Directional postcopulatory sexual selection revealed by artificial insemination.

    Science.gov (United States)

    Evans, Jonathan P; Zane, Lorenzo; Francescato, Samuela; Pilastro, Andrea

    2003-01-23

    Postcopulatory sexual selection comprises both sperm competition, where the sperm from different males compete for fertilization, and cryptic female choice, where females bias sperm use in favour of particular males. Despite intense current interest in both processes as potential agents of directional sexual selection, few studies have attributed the success of attractive males to events that occur exclusively after insemination. This is because the interactions between pre- and post-insemination episodes of sexual selection can be important sources of variation in paternity. The use of artificial insemination overcomes this difficulty because it controls for variation in male fertilization success attributable to the female's perception of male quality, as well as effects due to mating order and the relative contribution of sperm from competing males. Here, we adopt this technique and show that in guppies, when equal numbers of sperm from two males compete for fertilization, relatively colourful individuals achieve greater parentage than their less ornamented counterparts. This finding indicates that precopulatory female mating preferences can be reinforced exclusively through postcopulatory processes occurring at a physiological level. Our analysis also revealed that relatively small individuals were advantaged in sperm competition, suggesting a possible trade-off between sperm competitive ability and body growth.

  11. Genome Neighborhood Network Reveals Insights into Enediyne Biosynthesis and Facilitates Prediction and Prioritization for Discovery

    Science.gov (United States)

    Rudolf, Jeffrey D.; Yan, Xiaohui; Shen, Ben

    2015-01-01

    The enediynes are one of the most fascinating families of bacterial natural products given their unprecedented molecular architecture and extraordinary cytotoxicity. Enediynes are rare with only 11 structurally characterized members and four additional members isolated in their cycloaromatized form. Recent advances in DNA sequencing have resulted in an explosion of microbial genomes. A virtual survey of the GenBank and JGI genome databases revealed 87 enediyne biosynthetic gene clusters from 78 bacteria strains, implying enediynes are more common than previously thought. Here we report the construction and analysis of an enediyne genome neighborhood network (GNN) as a high-throughput approach to analyze secondary metabolite gene clusters. Analysis of the enediyne GNN facilitated rapid gene cluster annotation, revealed genetic trends in enediyne biosynthetic gene clusters resulting in a simple prediction scheme to determine 9- vs 10-membered enediyne gene clusters, and supported a genomic-based strain prioritization method for enediyne discovery. PMID:26318027

  12. Comparative genomics reveals convergent rates of evolution in ant-plant mutualisms.

    Science.gov (United States)

    Rubin, Benjamin E R; Moreau, Corrie S

    2016-08-25

    Symbiosis-the close and often long-term interaction of species-is predicted to drive genome evolution in a variety of ways. For example, parasitic interactions have been shown to increase rates of molecular evolution, a trend generally attributed to the Red Queen Hypothesis. However, it is much less clear how mutualisms impact the genome, as both increased and reduced rates of change have been predicted. Here we sequence the genomes of seven species of ants, three that have convergently evolved obligate plant-ant mutualism and four closely related species of non-mutualists. Comparing these sequences, we investigate how genome evolution is shaped by mutualistic behaviour. We find that rates of molecular evolution are higher in the mutualists genome wide, a characteristic apparently not the result of demography. Our results suggest that the intimate relationships of obligate mutualists may lead to selective pressures similar to those seen in parasites, thereby increasing rates of evolution.

  13. Assessing the genomic evidence for conserved transcribed pseudogenes under selection

    Directory of Open Access Journals (Sweden)

    Harrison Paul M

    2009-09-01

    Full Text Available Abstract Background Transcribed pseudogenes are copies of protein-coding genes that have accumulated indicators of coding-sequence decay (such as frameshifts and premature stop codons, but nonetheless remain transcribed. Recent experimental evidence indicates that transcribed pseudogenes may regulate the expression of homologous genes, through antisense interference, or generation of small interfering RNAs (siRNAs. Here, we assessed the genomic evidence for such transcribed pseudogenes of potential functional importance, in the human genome. The most obvious indicators of such functional importance are significant evidence of conservation and selection pressure. Results A variety of pseudogene annotations from multiple sources were pooled and filtered to obtain a subset of sequences that have significant mid-sequence disablements (frameshifts and premature stop codons, and that have clear evidence of full-length mRNA transcription. We found 1750 such transcribed pseudogene annotations (TPAs in the human genome (corresponding to ~11.5% of human pseudogene annotations. We checked for syntenic conservation of TPAs in other mammals (rhesus monkey, mouse, rat, dog and cow. About half of the human TPAs are conserved in rhesus monkey, but strikingly, very few in mouse (~3%. The TPAs conserved in rhesus monkey show evidence of selection pressure (relative to surrounding intergenic DNA on: (i their GC content, and (ii their rate of nucleotide substitution. This is in spite of distributions of Ka/Ks (ratios of non-synonymous to synonymous substitution rates, congruent with a lack of protein-coding ability. Furthermore, we have identified 68 human TPAs that are syntenically conserved in at least two other mammals. Interestingly, we observe three TPA sequences conserved in dog that have intermediate character (i.e., evidence of both protein-coding ability and pseudogenicity, and discuss the implications of this. Conclusion Through evolutionary analysis, we

  14. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication.

    Science.gov (United States)

    Wu, G Albert; Prochnik, Simon; Jenkins, Jerry; Salse, Jerome; Hellsten, Uffe; Murat, Florent; Perrier, Xavier; Ruiz, Manuel; Scalabrin, Simone; Terol, Javier; Takita, Marco Aurélio; Labadie, Karine; Poulain, Julie; Couloux, Arnaud; Jabbari, Kamel; Cattonaro, Federica; Del Fabbro, Cristian; Pinosio, Sara; Zuccolo, Andrea; Chapman, Jarrod; Grimwood, Jane; Tadeo, Francisco R; Estornell, Leandro H; Muñoz-Sanz, Juan V; Ibanez, Victoria; Herrero-Ortega, Amparo; Aleza, Pablo; Pérez-Pérez, Julián; Ramón, Daniel; Brunel, Dominique; Luro, François; Chen, Chunxian; Farmerie, William G; Desany, Brian; Kodira, Chinnappa; Mohiuddin, Mohammed; Harkins, Tim; Fredrikson, Karin; Burns, Paul; Lomsadze, Alexandre; Borodovsky, Mark; Reforgiato, Giuseppe; Freitas-Astúa, Juliana; Quetier, Francis; Navarro, Luis; Roose, Mikeal; Wincker, Patrick; Schmutz, Jeremy; Morgante, Michele; Machado, Marcos Antonio; Talon, Manuel; Jaillon, Olivier; Ollitrault, Patrick; Gmitter, Frederick; Rokhsar, Daniel

    2014-07-01

    Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes--a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-orange genomes--and show that cultivated types derive from two progenitor species. Although cultivated pummelos represent selections from one progenitor species, Citrus maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species Citrus reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, thus implying that wild mandarins were part of the early breeding germplasm. A Chinese wild 'mandarin' diverges substantially from C. reticulata, thus suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and facilitates sequence-directed genetic improvement.

  15. Complete mitochondrial genomes reveal neolithic expansion into Europe.

    Directory of Open Access Journals (Sweden)

    Qiaomei Fu

    Full Text Available The Neolithic transition from hunting and gathering to farming and cattle breeding marks one of the most drastic cultural changes in European prehistory. Short stretches of ancient mitochondrial DNA (mtDNA from skeletons of pre-Neolithic hunter-gatherers as well as early Neolithic farmers support the demic diffusion model where a migration of early farmers from the Near East and a replacement of pre-Neolithic hunter-gatherers are largely responsible for cultural innovation and changes in subsistence strategies during the Neolithic revolution in Europe. In order to test if a signal of population expansion is still present in modern European mitochondrial DNA, we analyzed a comprehensive dataset of 1,151 complete mtDNAs from present-day Europeans. Relying upon ancient DNA data from previous investigations, we identified mtDNA haplogroups that are typical for early farmers and hunter-gatherers, namely H and U respectively. Bayesian skyline coalescence estimates were then used on subsets of complete mtDNAs from modern populations to look for signals of past population expansions. Our analyses revealed a population expansion between 15,000 and 10,000 years before present (YBP in mtDNAs typical for hunters and gatherers, with a decline between 10,000 and 5,000 YBP. These corresponded to an analogous population increase approximately 9,000 YBP for mtDNAs typical of early farmers. The observed changes over time suggest that the spread of agriculture in Europe involved the expansion of farming populations into Europe followed by the eventual assimilation of resident hunter-gatherers. Our data show that contemporary mtDNA datasets can be used to study ancient population history if only limited ancient genetic data is available.

  16. Interplay of recombination and selection in the genomes of Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Dean Deborah

    2011-05-01

    Full Text Available Abstract Background Chlamydia trachomatis is an obligate intracellular bacterial parasite, which causes several severe and debilitating diseases in humans. This study uses comparative genomic analyses of 12 complete published C. trachomatis genomes to assess the contribution of recombination and selection in this pathogen and to understand the major evolutionary forces acting on the genome of this bacterium. Results The conserved core genes of C. trachomatis are a large proportion of the pan-genome: we identified 836 core genes in C. trachomatis out of a range of 874-927 total genes in each genome. The ratio of recombination events compared to mutation (ρ/θ was 0.07 based on ancestral reconstructions using the ClonalFrame tool, but recombination had a significant effect on genetic diversification (r/m = 0.71. The distance-dependent decay of linkage disequilibrium also indicated that C. trachomatis populations behaved intermediately between sexual and clonal extremes. Fifty-five genes were identified as having a history of recombination and 92 were under positive selection based on statistical tests. Twenty-three genes showed evidence of being under both positive selection and recombination, which included genes with a known role in virulence and pathogencity (e.g., ompA, pmps, tarp. Analysis of inter-clade recombination flux indicated non-uniform currents of recombination between clades, which suggests the possibility of spatial population structure in C. trachomatis infections. Conclusions C. trachomatis is the archetype of a bacterial species where recombination is relatively frequent yet gene gains by horizontal gene transfer (HGT and losses (by deletion are rare. Gene conversion occurs at sites across the whole C. trachomatis genome but may be more often fixed in genes that are under diversifying selection. Furthermore, genome sequencing will reveal patterns of serotype specific gene exchange and selection that will generate important

  17. Human embryonic stem cells reveal recurrent genomic instability at 20q11.21.

    Science.gov (United States)

    Lefort, Nathalie; Feyeux, Maxime; Bas, Cécile; Féraud, Olivier; Bennaceur-Griscelli, Annelise; Tachdjian, Gerard; Peschanski, Marc; Perrier, Anselme L

    2008-12-01

    By analyzing five human embryonic stem (hES) cell lines over long-term culture, we identified a recurrent genomic instability in the human genome. An amplification of 2.5-4.6 Mb at 20q11.21, encompassing approximately 23 genes in common, was detected in four cell lines of different origins. This amplification, which has been associated with oncogenic transformation, may provide a selective advantage to hES cells in culture.

  18. Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycine max L.).

    Science.gov (United States)

    Ma, Yansong; Reif, Jochen C; Jiang, Yong; Wen, Zixiang; Wang, Dechun; Liu, Zhangxiong; Guo, Yong; Wei, Shuhong; Wang, Shuming; Yang, Chunming; Wang, Huicai; Yang, Chunyan; Lu, Weiguo; Xu, Ran; Zhou, Rong; Wang, Ruizhen; Sun, Zudong; Chen, Huaizhu; Zhang, Wanhai; Wu, Jian; Hu, Guohua; Liu, Chunyan; Luan, Xiaoyan; Fu, Yashu; Guo, Tai; Han, Tianfu; Zhang, Mengchen; Sun, Bincheng; Zhang, Lei; Chen, Weiyuan; Wu, Cunxiang; Sun, Shi; Yuan, Baojun; Zhou, Xinan; Han, Dezhi; Yan, Hongrui; Li, Wenbin; Qiu, Lijuan

    Genomic selection is a promising molecular breeding strategy enhancing genetic gain per unit time. The objectives of our study were to (1) explore the prediction accuracy of genomic selection for plant height and yield per plant in soybean [Glycine max (L.) Merr.], (2) discuss the relationship between prediction accuracy and numbers of markers, and (3) evaluate the effect of marker preselection based on different methods on the prediction accuracy. Our study is based on a population of 235 soybean varieties which were evaluated for plant height and yield per plant at multiple locations and genotyped by 5361 single nucleotide polymorphism markers. We applied ridge regression best linear unbiased prediction coupled with fivefold cross-validations and evaluated three strategies of marker preselection. For plant height, marker density and marker preselection procedure impacted prediction accuracy only marginally. In contrast, for grain yield, prediction accuracy based on markers selected with a haplotype block analyses-based approach increased by approximately 4 % compared with random or equidistant marker sampling. Thus, applying marker preselection based on haplotype blocks is an interesting option for a cost-efficient implementation of genomic selection for grain yield in soybean breeding.

  19. Functional Genomic and Advanced Genetic Studies Reveal Novel Insights into the Metabolism, Regulation, and Biology of Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Jörg Soppa

    2011-01-01

    Full Text Available The genome sequence of Haloferax volcanii is available and several comparative genomic in silico studies were performed that yielded novel insight for example into protein export, RNA modifications, small non-coding RNAs, and ubiquitin-like Small Archaeal Modifier Proteins. The full range of functional genomic methods has been established and results from transcriptomic, proteomic and metabolomic studies are discussed. Notably, Hfx. volcanii is together with Halobacterium salinarum the only prokaryotic species for which a translatome analysis has been performed. The results revealed that the fraction of translationally-regulated genes in haloarchaea is as high as in eukaryotes. A highly efficient genetic system has been established that enables the application of libraries as well as the parallel generation of genomic deletion mutants. Facile mutant generation is complemented by the possibility to culture Hfx. volcanii in microtiter plates, allowing the phenotyping of mutant collections. Genetic approaches are currently used to study diverse biological questions–from replication to posttranslational modification—and selected results are discussed. Taken together, the wealth of functional genomic and genetic tools make Hfx. volcanii a bona fide archaeal model species, which has enabled the generation of important results in recent years and will most likely generate further breakthroughs in the future.

  20. Comparative Genome Analyses of Vibrio anguillarum Strains Reveal a Link with Pathogenicity Traits

    Science.gov (United States)

    Castillo, Daniel; Alvise, Paul D.; Xu, Ruiqi; Zhang, Faxing; Middelboe, Mathias

    2017-01-01

    ABSTRACT Vibrio anguillarum is a marine bacterium that can cause vibriosis in many fish and shellfish species, leading to high mortalities and economic losses in aquaculture. Although putative virulence factors have been identified, the mechanism of pathogenesis of V. anguillarum is not fully understood. Here, we analyzed whole-genome sequences of a collection of V. anguillarum strains and compared them to virulence of the strains as determined in larval challenge assays. Previously identified virulence factors were globally distributed among the strains, with some genetic diversity. However, the pan-genome revealed that six out of nine high-virulence strains possessed a unique accessory genome that was attributed to pathogenic genomic islands, prophage-like elements, virulence factors, and a new set of gene clusters involved in biosynthesis, modification, and transport of polysaccharides. In contrast, V. anguillarum strains that were medium to nonvirulent had a high degree of genomic homogeneity. Finally, we found that a phylogeny based on the core genomes clustered the strains with moderate to no virulence, while six out of nine high-virulence strains represented phylogenetically separate clusters. Hence, we suggest a link between genotype and virulence characteristics of Vibrio anguillarum, which can be used to unravel the molecular evolution of V. anguillarum and can also be important from survey and diagnostic perspectives. IMPORTANCE Comparative genome analysis of strains of a pathogenic bacterial species can be a powerful tool to discover acquisition of mobile genetic elements related to virulence. Here, we compared 28 V. anguillarum strains that differed in virulence in fish larval models. By pan-genome analyses, we found that six of nine highly virulent strains had a unique core and accessory genome. In contrast, V. anguillarum strains that were medium to nonvirulent had low genomic diversity. Integration of genomic and phenotypic features provides

  1. Comparative Genome Analyses of Vibrio anguillarum Strains Reveal a Link with Pathogenicity Traits.

    Science.gov (United States)

    Castillo, Daniel; Alvise, Paul D; Xu, Ruiqi; Zhang, Faxing; Middelboe, Mathias; Gram, Lone

    2017-01-01

    Vibrio anguillarum is a marine bacterium that can cause vibriosis in many fish and shellfish species, leading to high mortalities and economic losses in aquaculture. Although putative virulence factors have been identified, the mechanism of pathogenesis of V. anguillarum is not fully understood. Here, we analyzed whole-genome sequences of a collection of V. anguillarum strains and compared them to virulence of the strains as determined in larval challenge assays. Previously identified virulence factors were globally distributed among the strains, with some genetic diversity. However, the pan-genome revealed that six out of nine high-virulence strains possessed a unique accessory genome that was attributed to pathogenic genomic islands, prophage-like elements, virulence factors, and a new set of gene clusters involved in biosynthesis, modification, and transport of polysaccharides. In contrast, V. anguillarum strains that were medium to nonvirulent had a high degree of genomic homogeneity. Finally, we found that a phylogeny based on the core genomes clustered the strains with moderate to no virulence, while six out of nine high-virulence strains represented phylogenetically separate clusters. Hence, we suggest a link between genotype and virulence characteristics of Vibrio anguillarum, which can be used to unravel the molecular evolution of V. anguillarum and can also be important from survey and diagnostic perspectives. IMPORTANCE Comparative genome analysis of strains of a pathogenic bacterial species can be a powerful tool to discover acquisition of mobile genetic elements related to virulence. Here, we compared 28 V. anguillarum strains that differed in virulence in fish larval models. By pan-genome analyses, we found that six of nine highly virulent strains had a unique core and accessory genome. In contrast, V. anguillarum strains that were medium to nonvirulent had low genomic diversity. Integration of genomic and phenotypic features provides insights

  2. Comparative Genomics of the Extreme Acidophile Acidithiobacillus thiooxidans Reveals Intraspecific Divergence and Niche Adaptation

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2016-08-01

    Full Text Available Acidithiobacillus thiooxidans known for its ubiquity in diverse acidic and sulfur-bearing environments worldwide was used as the research subject in this study. To explore the genomic fluidity and intraspecific diversity of Acidithiobacillus thiooxidans (A. thiooxidans species, comparative genomics based on nine draft genomes was performed. Phylogenomic scrutiny provided first insights into the multiple groupings of these strains, suggesting that genetic diversity might be potentially correlated with their geographic distribution as well as geochemical conditions. While these strains shared a large number of common genes, they displayed differences in gene content. Functional assignment indicated that the core genome was essential for microbial basic activities such as energy acquisition and uptake of nutrients, whereas the accessory genome was thought to be involved in niche adaptation. Comprehensive analysis of their predicted central metabolism revealed that few differences were observed among these strains. Further analyses showed evidences of relevance between environmental conditions and genomic diversification. Furthermore, a diverse pool of mobile genetic elements including insertion sequences and genomic islands in all A. thiooxidans strains probably demonstrated the frequent genetic flow (such as lateral gene transfer in the extremely acidic environments. From another perspective, these elements might endow A. thiooxidans species with capacities to withstand the chemical constraints of their natural habitats. Taken together, our findings bring some valuable data to better understand the genomic diversity and econiche adaptation within A. thiooxidans strains.

  3. Comparative Genomics of the Extreme Acidophile Acidithiobacillus thiooxidans Reveals Intraspecific Divergence and Niche Adaptation.

    Science.gov (United States)

    Zhang, Xian; Feng, Xue; Tao, Jiemeng; Ma, Liyuan; Xiao, Yunhua; Liang, Yili; Liu, Xueduan; Yin, Huaqun

    2016-08-19

    Acidithiobacillus thiooxidans known for its ubiquity in diverse acidic and sulfur-bearing environments worldwide was used as the research subject in this study. To explore the genomic fluidity and intraspecific diversity of Acidithiobacillus thiooxidans (A. thiooxidans) species, comparative genomics based on nine draft genomes was performed. Phylogenomic scrutiny provided first insights into the multiple groupings of these strains, suggesting that genetic diversity might be potentially correlated with their geographic distribution as well as geochemical conditions. While these strains shared a large number of common genes, they displayed differences in gene content. Functional assignment indicated that the core genome was essential for microbial basic activities such as energy acquisition and uptake of nutrients, whereas the accessory genome was thought to be involved in niche adaptation. Comprehensive analysis of their predicted central metabolism revealed that few differences were observed among these strains. Further analyses showed evidences of relevance between environmental conditions and genomic diversification. Furthermore, a diverse pool of mobile genetic elements including insertion sequences and genomic islands in all A. thiooxidans strains probably demonstrated the frequent genetic flow (such as lateral gene transfer) in the extremely acidic environments. From another perspective, these elements might endow A. thiooxidans species with capacities to withstand the chemical constraints of their natural habitats. Taken together, our findings bring some valuable data to better understand the genomic diversity and econiche adaptation within A. thiooxidans strains.

  4. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly

    Science.gov (United States)

    Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain

    2016-01-01

    Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail. PMID:27255426

  5. Whole-genome resequencing of honeybee drones to detect genomic selection in a population managed for royal jelly.

    Science.gov (United States)

    Wragg, David; Marti-Marimon, Maria; Basso, Benjamin; Bidanel, Jean-Pierre; Labarthe, Emmanuelle; Bouchez, Olivier; Le Conte, Yves; Vignal, Alain

    2016-06-03

    Four main evolutionary lineages of A. mellifera have been described including eastern Europe (C) and western and northern Europe (M). Many apiculturists prefer bees from the C lineage due to their docility and high productivity. In France, the routine importation of bees from the C lineage has resulted in the widespread admixture of bees from the M lineage. The haplodiploid nature of the honeybee Apis mellifera, and its small genome size, permits affordable and extensive genomics studies. As a pilot study of a larger project to characterise French honeybee populations, we sequenced 60 drones sampled from two commercial populations managed for the production of honey and royal jelly. Results indicate a C lineage origin, whilst mitochondrial analysis suggests two drones originated from the O lineage. Analysis of heterozygous SNPs identified potential copy number variants near to genes encoding odorant binding proteins and several cytochrome P450 genes. Signatures of selection were detected using the hapFLK haplotype-based method, revealing several regions under putative selection for royal jelly production. The framework developed during this study will be applied to a broader sampling regime, allowing the genetic diversity of French honeybees to be characterised in detail.

  6. Effect of reference genome selection on the performance of computational methods for genome-wide protein-protein interaction prediction.

    Directory of Open Access Journals (Sweden)

    Vijaykumar Yogesh Muley

    Full Text Available BACKGROUND: Recent progress in computational methods for predicting physical and functional protein-protein interactions has provided new insights into the complexity of biological processes. Most of these methods assume that functionally interacting proteins are likely to have a shared evolutionary history. This history can be traced out for the protein pairs of a query genome by correlating different evolutionary aspects of their homologs in multiple genomes known as the reference genomes. These methods include phylogenetic profiling, gene neighborhood and co-occurrence of the orthologous protein coding genes in the same cluster or operon. These are collectively known as genomic context methods. On the other hand a method called mirrortree is based on the similarity of phylogenetic trees between two interacting proteins. Comprehensive performance analyses of these methods have been frequently reported in literature. However, very few studies provide insight into the effect of reference genome selection on detection of meaningful protein interactions. METHODS: We analyzed the performance of four methods and their variants to understand the effect of reference genome selection on prediction efficacy. We used six sets of reference genomes, sampled in accordance with phylogenetic diversity and relationship between organisms from 565 bacteria. We used Escherichia coli as a model organism and the gold standard datasets of interacting proteins reported in DIP, EcoCyc and KEGG databases to compare the performance of the prediction methods. CONCLUSIONS: Higher performance for predicting protein-protein interactions was achievable even with 100-150 bacterial genomes out of 565 genomes. Inclusion of archaeal genomes in the reference genome set improves performance. We find that in order to obtain a good performance, it is better to sample few genomes of related genera of prokaryotes from the large number of available genomes. Moreover, such a sampling

  7. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites.

    Directory of Open Access Journals (Sweden)

    Philipp Wiemann

    Full Text Available The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs, but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19 and another that includes a non-ribosomal peptide synthetase gene (NRPS31 are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary

  8. Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites

    Science.gov (United States)

    Studt, Lena; Niehaus, Eva-Maria; Espino, Jose J.; Huß, Kathleen; Michielse, Caroline B.; Albermann, Sabine; Wagner, Dominik; Bergner, Sonja V.; Connolly, Lanelle R.; Fischer, Andreas; Reuter, Gunter; Kleigrewe, Karin; Bald, Till; Wingfield, Brenda D.; Ophir, Ron; Freeman, Stanley; Hippler, Michael; Smith, Kristina M.; Brown, Daren W.; Proctor, Robert H.; Münsterkötter, Martin; Freitag, Michael; Humpf, Hans-Ulrich; Güldener, Ulrich; Tudzynski, Bettina

    2013-01-01

    The fungus Fusarium fujikuroi causes “bakanae” disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F

  9. Genomic selection improves response to selection in resilience by exploiting genotype by environment interactions

    Directory of Open Access Journals (Sweden)

    Han Mulder

    2016-10-01

    Full Text Available Genotype by environment interactions (GxE are very common in livestock and hamper genetic improvement. On the other hand, GxE is a source of genetic variation: genetic variation in response to environment, e.g. environmental perturbations such as heat stress or disease. In livestock breeding, there is tendency to ignore GxE because of increased complexity of models for genetic evaluations and lack of accuracy in extreme environments. GxE, however, creates opportunities to increase resilience of animals towards environmental perturbations. The main aim of the paper is to investigate to which extent GxE can be exploited with traditional and genomic selection methods. Furthermore, we investigated the benefit of reaction norm models compared to conventional methods ignoring GxE. The questions were addressed with selection index theory. GxE was modelled according to a linear reaction norm model in which the environmental gradient is the contemporary group mean. Economic values were based on linear and non-linear profit equations.Accuracies of environment-specific (GEBV were highest in intermediate environments and lowest in extreme environments. Reaction norm models had higher accuracies of (GEBV in extreme environments than conventional models ignoring GxE. Genomic selection always resulted in higher response to selection in all environments than sib or progeny testing schemes. The increase in response was with genomic selection between 9% and 140% compared to sib testing and between 11% and 114% compared to progeny testing when the reference population consisted of 1 million animals across all environments. When the aim was to decrease environmental sensitivity, the response in slope of the reaction norm model with genomic selection was between 1.09 and 319 times larger than with sib or progeny testing and in the right direction in contrast to sib and progeny testing that still increased environmental sensitivity. This shows that genomic selection

  10. Genomic Selection Improves Response to Selection in Resilience by Exploiting Genotype by Environment Interactions

    Science.gov (United States)

    Mulder, Han A.

    2016-01-01

    Genotype by environment interactions (GxE) are very common in livestock and hamper genetic improvement. On the other hand, GxE is a source of genetic variation: genetic variation in response to environment, e.g., environmental perturbations such as heat stress or disease. In livestock breeding, there is tendency to ignore GxE because of increased complexity of models for genetic evaluations and lack of accuracy in extreme environments. GxE, however, creates opportunities to increase resilience of animals toward environmental perturbations. The main aim of the paper is to investigate to which extent GxE can be exploited with traditional and genomic selection methods. Furthermore, we investigated the benefit of reaction norm (RN) models compared to conventional methods ignoring GxE. The questions were addressed with selection index theory. GxE was modeled according to a linear RN model in which the environmental gradient is the contemporary group mean. Economic values were based on linear and non-linear profit equations. Accuracies of environment-specific (G)EBV were highest in intermediate environments and lowest in extreme environments. RN models had higher accuracies of (G)EBV in extreme environments than conventional models ignoring GxE. Genomic selection always resulted in higher response to selection in all environments than sib or progeny testing schemes. The increase in response was with genomic selection between 9 and 140% compared to sib testing and between 11 and 114% compared to progeny testing when the reference population consisted of 1 million animals across all environments. When the aim was to decrease environmental sensitivity, the response in slope of the RN model with genomic selection was between 1.09 and 319 times larger than with sib or progeny testing and in the right direction in contrast to sib and progeny testing that still increased environmental sensitivity. This shows that genomic selection with large reference populations offers great

  11. Accuracy of multi-trait genomic selection using different methods

    Directory of Open Access Journals (Sweden)

    Veerkamp Roel F

    2011-07-01

    Full Text Available Abstract Background Genomic selection has become a very important tool in animal genetics and is rapidly emerging in plant genetics. It holds the promise to be particularly beneficial to select for traits that are difficult or expensive to measure, such as traits that are measured in one environment and selected for in another environment. The objective of this paper was to develop three models that would permit multi-trait genomic selection by combining scarcely recorded traits with genetically correlated indicator traits, and to compare their performance to single-trait models, using simulated datasets. Methods Three (SNP Single Nucleotide Polymorphism based models were used. Model G and BCπ0 assumed that contributed (covariances of all SNP are equal. Model BSSVS sampled SNP effects from a distribution with large (or small effects to model SNP that are (or not associated with a quantitative trait locus. For reasons of comparison, model A including pedigree but not SNP information was fitted as well. Results In terms of accuracies for animals without phenotypes, the models generally ranked as follows: BSSVS > BCπ0 > G > > A. Using multi-trait SNP-based models, the accuracy for juvenile animals without any phenotypes increased up to 0.10. For animals with phenotypes on an indicator trait only, accuracy increased up to 0.03 and 0.14, for genetic correlations with the evaluated trait of 0.25 and 0.75, respectively. Conclusions When the indicator trait had a genetic correlation lower than 0.5 with the trait of interest in our simulated data, the accuracy was higher if genotypes rather than phenotypes were obtained for the indicator trait. However, when genetic correlations were higher than 0.5, using an indicator trait led to higher accuracies for selection candidates. For different combinations of traits, the level of genetic correlation below which genotyping selection candidates is more effective than obtaining phenotypes for an indicator

  12. Probing protein flexibility reveals a mechanism for selective promiscuity

    Science.gov (United States)

    Pabon, Nicolas A; Camacho, Carlos J

    2017-01-01

    Many eukaryotic regulatory proteins adopt distinct bound and unbound conformations, and use this structural flexibility to bind specifically to multiple partners. However, we lack an understanding of how an interface can select some ligands, but not others. Here, we present a molecular dynamics approach to identify and quantitatively evaluate the interactions responsible for this selective promiscuity. We apply this approach to the anticancer target PD-1 and its ligands PD-L1 and PD-L2. We discover that while unbound PD-1 exhibits a hard-to-drug hydrophilic interface, conserved specific triggers encoded in the cognate ligands activate a promiscuous binding pathway that reveals a flexible hydrophobic binding cavity. Specificity is then established by additional contacts that stabilize the PD-1 cavity into distinct bound-like modes. Collectively, our studies provide insight into the structural basis and evolution of multiple binding partners, and also suggest a biophysical approach to exploit innate binding pathways to drug seemingly undruggable targets. DOI: http://dx.doi.org/10.7554/eLife.22889.001 PMID:28432789

  13. Genomic analysis reveals major determinants of cis-regulatory variation in Capsella grandiflora.

    Science.gov (United States)

    Steige, Kim A; Laenen, Benjamin; Reimegård, Johan; Scofield, Douglas G; Slotte, Tanja

    2017-01-31

    Understanding the causes of cis-regulatory variation is a long-standing aim in evolutionary biology. Although cis-regulatory variation has long been considered important for adaptation, we still have a limited understanding of the selective importance and genomic determinants of standing cis-regulatory variation. To address these questions, we studied the prevalence, genomic determinants, and selective forces shaping cis-regulatory variation in the outcrossing plant Capsella grandiflora We first identified a set of 1,010 genes with common cis-regulatory variation using analyses of allele-specific expression (ASE). Population genomic analyses of whole-genome sequences from 32 individuals showed that genes with common cis-regulatory variation (i) are under weaker purifying selection and (ii) undergo less frequent positive selection than other genes. We further identified genomic determinants of cis-regulatory variation. Gene body methylation (gbM) was a major factor constraining cis-regulatory variation, whereas presence of nearby transposable elements (TEs) and tissue specificity of expression increased the odds of ASE. Our results suggest that most common cis-regulatory variation in C. grandiflora is under weak purifying selection, and that gene-specific functional constraints are more important for the maintenance of cis-regulatory variation than genome-scale variation in the intensity of selection. Our results agree with previous findings that suggest TE silencing affects nearby gene expression, and provide evidence for a link between gbM and cis-regulatory constraint, possibly reflecting greater dosage sensitivity of body-methylated genes. Given the extensive conservation of gbM in flowering plants, this suggests that gbM could be an important predictor of cis-regulatory variation in a wide range of plant species.

  14. Looking into the genome of Thermosynechococcus elongatus (thermophilic cyanobacteria) with codon selection and usage perspective.

    Science.gov (United States)

    Prabha, Ratna; Singh, Dhananjaya P; Rai, Anil

    2015-01-01

    Genome analysis of thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1 revealed factors ruling choices of codons in this organism. Multiple parameters like Nc, GC3s, RSCU, Codon Adaptation Index (CAI), optimal and rare codons, codon-pair context and amino acid usage were analysed and compositional constraint was identified as major factor. Wide range of Nc values for the same GC3 content suggested the role of translational selection. Mutational bias is suggested at synonymous position. Among optimal codons for translation, most were GC-ending. Seven codons (AGA, AGG, AUA, UAA, UAG, UCA and UGA) were found to have least occurrence in the entire genome and except stop codons all were A-ending (exception AGG). Most widely used codon-pair in the genome are G-ending or C-ending and A-ending or U-ending codons make pair with G-ending or C-ending codons. Amino acids which are largely distributed in T. elongatus tend to use G-ending or C-ending codons most frequently. Findings showed cumulative role of translational selection, translational accuracy and gene expression levels with mutational bias as key player in codon selection pattern of this organism.

  15. Genome-wide analysis reveals a complex pattern of genomic imprinting in mice.

    Directory of Open Access Journals (Sweden)

    Jason B Wolf

    2008-06-01

    Full Text Available Parent-of-origin-dependent gene expression resulting from genomic imprinting plays an important role in modulating complex traits ranging from developmental processes to cognitive abilities and associated disorders. However, while gene-targeting techniques have allowed for the identification of imprinted loci, very little is known about the contribution of imprinting to quantitative variation in complex traits. Most studies, furthermore, assume a simple pattern of imprinting, resulting in either paternal or maternal gene expression; yet, more complex patterns of effects also exist. As a result, the distribution and number of different imprinting patterns across the genome remain largely unexplored. We address these unresolved issues using a genome-wide scan for imprinted quantitative trait loci (iQTL affecting body weight and growth in mice using a novel three-generation design. We identified ten iQTL that display much more complex and diverse effect patterns than previously assumed, including four loci with effects similar to the callipyge mutation found in sheep. Three loci display a new phenotypic pattern that we refer to as bipolar dominance, where the two heterozygotes are different from each other while the two homozygotes are identical to each other. Our study furthermore detected a paternally expressed iQTL on Chromosome 7 in a region containing a known imprinting cluster with many paternally expressed genes. Surprisingly, the effects of the iQTL were mostly restricted to traits expressed after weaning. Our results imply that the quantitative effects of an imprinted allele at a locus depend both on its parent of origin and the allele it is paired with. Our findings also show that the imprinting pattern of a locus can be variable over ontogenetic time and, in contrast to current views, may often be stronger at later stages in life.

  16. Long- and short-term selective forces on malaria parasite genomes

    DEFF Research Database (Denmark)

    Nygaard, Sanne; Braunstein, Alexander; Malsen, Gareth

    2010-01-01

    Plasmodium parasites, the causal agents of malaria, result in more than 1 million deaths annually. Plasmodium are unicellular eukaryotes with small ~23 Mb genomes encoding ~5200 protein-coding genes. The protein-coding genes comprise about half of these genomes. Although evolutionary processes have...... a significant impact on malaria control, the selective pressures within Plasmodium genomes are poorly understood, particularly in the non-protein-coding portion of the genome. We use evolutionary methods to describe selective processes in both the coding and non-coding regions of these genomes. Based on genome...

  17. Annotation-Based Whole Genomic Prediction and Selection

    DEFF Research Database (Denmark)

    Kadarmideen, Haja; Do, Duy Ngoc; Janss, Luc;

    in their contribution to estimated genomic variances and in prediction of genomic breeding values by applying SNP annotation approaches to feed efficiency. Ensembl Variant Predictor (EVP) and Pig QTL database were used as the source of genomic annotation for 60K chip. Genomic prediction was performed using the Bayes...... prove useful for less heritable traits such as diseases and fertility...

  18. Strong signatures of selection in the domestic pig genome

    DEFF Research Database (Denmark)

    Rubin, Carl-Johan; Megens, Hendrik-Jan; Barrio, Alvaro Martinez;

    2012-01-01

    or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response....... We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white...

  19. Adaptations to a Subterranean Environment and Longevity Revealed by the Analysis of Mole Rat Genomes

    Directory of Open Access Journals (Sweden)

    Xiaodong Fang

    2014-09-01

    Full Text Available Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber. Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.

  20. On the Selective Packaging of Genomic RNA by HIV-1

    Directory of Open Access Journals (Sweden)

    Mauricio Comas-Garcia

    2016-09-01

    Full Text Available Like other retroviruses, human immunodeficiency virus type 1 (HIV-1 selectively packages genomic RNA (gRNA during virus assembly. However, in the absence of the gRNA, cellular messenger RNAs (mRNAs are packaged. While the gRNA is selected because of its cis-acting packaging signal, the mechanism of this selection is not understood. The affinity of Gag (the viral structural protein for cellular RNAs at physiological ionic strength is not much higher than that for the gRNA. However, binding to the gRNA is more salt-resistant, implying that it has a higher non-electrostatic component. We have previously studied the spacer 1 (SP1 region of Gag and showed that it can undergo a concentration-dependent conformational transition. We proposed that this transition represents the first step in assembly, i.e., the conversion of Gag to an assembly-ready state. To explain selective packaging of gRNA, we suggest here that binding of Gag to gRNA, with its high non-electrostatic component, triggers this conversion more readily than binding to other RNAs; thus we predict that a Gag–gRNA complex will nucleate particle assembly more efficiently than other Gag–RNA complexes. New data shows that among cellular mRNAs, those with long 3′-untranslated regions (UTR are selectively packaged. It seems plausible that the 3′-UTR, a stretch of RNA not occupied by ribosomes, offers a favorable binding site for Gag.

  1. The Complete Genome Sequences, Unique Mutational Spectra, and Developmental Potency of Adult Neurons Revealed by Cloning.

    Science.gov (United States)

    Hazen, Jennifer L; Faust, Gregory G; Rodriguez, Alberto R; Ferguson, William C; Shumilina, Svetlana; Clark, Royden A; Boland, Michael J; Martin, Greg; Chubukov, Pavel; Tsunemoto, Rachel K; Torkamani, Ali; Kupriyanov, Sergey; Hall, Ira M; Baldwin, Kristin K

    2016-03-16

    Somatic mutation in neurons is linked to neurologic disease and implicated in cell-type diversification. However, the origin, extent, and patterns of genomic mutation in neurons remain unknown. We established a nuclear transfer method to clonally amplify the genomes of neurons from adult mice for whole-genome sequencing. Comprehensive mutation detection and independent validation revealed that individual neurons harbor ∼100 unique mutations from all classes but lack recurrent rearrangements. Most neurons contain at least one gene-disrupting mutation and rare (0-2) mobile element insertions. The frequency and gene bias of neuronal mutations differ from other lineages, potentially due to novel mechanisms governing postmitotic mutation. Fertile mice were cloned from several neurons, establishing the compatibility of mutated adult neuronal genomes with reprogramming to pluripotency and development.

  2. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates

    Directory of Open Access Journals (Sweden)

    Shuiquan eTang

    2016-02-01

    Full Text Available The genomes of two closely related Dehalobacter strains (strain CF and strain DCA were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF, 1,1,1-trichloroethane (1,1,1-TCA and 1,1-dichloroethane (1,1-DCA. The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA and strain DCA (that dechlorinates 1,1-DCA each contain 17 putative reductive dehalogenase homologous (rdh genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB, and to the genomes of Dehalococcoides mccartyi strain 195 and Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and greater than 99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1 and corrinoid biosynthesis pathways (strains E1 and PER-K23. The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to Dehalococcoides mccartyi

  3. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates.

    Science.gov (United States)

    Tang, Shuiquan; Wang, Po Hsiang; Higgins, Steven A; Löffler, Frank E; Edwards, Elizabeth A

    2016-01-01

    The genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 and Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a complete heme biosynthesis

  4. Transcriptome analysis reveals positive selection on the divergent between topmouth culter and zebrafish.

    Science.gov (United States)

    Ren, Li; Tan, Xing-Jun; Xiong, Ya-Feng; Xu, Kang; Zhou, Yi; Zhong, Huan; Liu, Yun; Hong, Yun-Han; Liu, Shao-Jun

    2014-12-01

    The topmouth culter (Erythroculter ilishaeformis) is a predatory cyprinid fish that distributes widely in the East Asia. Here we report the liver transcriptome in this organism as a model of predatory fish. Sequencing of 5 Gb raw reads led to 27,741 unigenes and produced 11,131 annotatable genes. A total of 7093 (63.7%) genes were found to have putative functions by gene ontology analysis. Importantly, a blast search revealed 4033 culter genes that were orthologous to the zebrafish. Extracted from 38 candidate positive selection genes, 4 genes exhibit strong positive selection based on the ratio of nonsynonymous (Ka) to synonymous substitutions (Ks). In addition, the four genes also indicated the strong positive selection by comparing them between blunt snout bream (Megalobrama amblycephala) and zebrafish. These genes were involved in activator of gene expression, metabolic processes and development. The transcriptome variation may be reflective of natural selection in the early life history of Cyprinidae. Based on Ks ratios, date of the separation between topmouth culter and zebrafish is approximately 64 million years ago. We conclude that natural selection acts in diversifying the genomes between topmouth culter and zebrafish.

  5. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    KAUST Repository

    Otto, Thomas D.

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching.

  6. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts.

    Science.gov (United States)

    Otto, Thomas D; Rayner, Julian C; Böhme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, François; Thomas, Alan W; Prugnolle, Franck; Conway, David J; Newbold, Chris; Berriman, Matthew

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host-parasite interface may have mediated host switching.

  7. Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles.

    Science.gov (United States)

    Orozco-terWengel, Pablo; Kapun, Martin; Nolte, Viola; Kofler, Robert; Flatt, Thomas; Schlötterer, Christian

    2012-10-01

    The genomic basis of adaptation to novel environments is a fundamental problem in evolutionary biology that has gained additional importance in the light of the recent global change discussion. Here, we combined laboratory natural selection (experimental evolution) in Drosophila melanogaster with genome-wide next generation sequencing of DNA pools (Pool-Seq) to identify alleles that are favourable in a novel laboratory environment and traced their trajectories during the adaptive process. Already after 15 generations, we identified a pronounced genomic response to selection, with almost 5000 single nucleotide polymorphisms (SNP; genome-wide false discovery rates heterogeneous, with the alleles falling into two distinct classes: (i) alleles that continuously rise in frequency; and (ii) alleles that at first increase rapidly but whose frequencies then reach a plateau. Our data thus suggest that the genomic response to selection can involve a large number of selected SNPs that show unexpectedly complex evolutionary trajectories, possibly due to nonadditive effects.

  8. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome.

    Directory of Open Access Journals (Sweden)

    Keyan Zhao

    Full Text Available BACKGROUND: The domestication of Asian rice (Oryza sativa was a complex process punctuated by episodes of introgressive hybridization among and between subpopulations. Deep genetic divergence between the two main varietal groups (Indica and Japonica suggests domestication from at least two distinct wild populations. However, genetic uniformity surrounding key domestication genes across divergent subpopulations suggests cultural exchange of genetic material among ancient farmers. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we utilize a novel 1,536 SNP panel genotyped across 395 diverse accessions of O. sativa to study genome-wide patterns of polymorphism, to characterize population structure, and to infer the introgression history of domesticated Asian rice. Our population structure analyses support the existence of five major subpopulations (indica, aus, tropical japonica, temperate japonica and GroupV consistent with previous analyses. Our introgression analysis shows that most accessions exhibit some degree of admixture, with many individuals within a population sharing the same introgressed segment due to artificial selection. Admixture mapping and association analysis of amylose content and grain length illustrate the potential for dissecting the genetic basis of complex traits in domesticated plant populations. CONCLUSIONS/SIGNIFICANCE: Genes in these regions control a myriad of traits including plant stature, blast resistance, and amylose content. These analyses highlight the power of population genomics in agricultural systems to identify functionally important regions of the genome and to decipher the role of human-directed breeding in refashioning the genomes of a domesticated species.

  9. Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development

    Energy Technology Data Exchange (ETDEWEB)

    Vamathevan, Jessica J., E-mail: jessica.j.vamathevan@gsk.com [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom); Hall, Matthew D.; Hasan, Samiul; Woollard, Peter M. [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom); Xu, Meng; Yang, Yulan; Li, Xin; Wang, Xiaoli [BGI-Shenzen, Shenzhen (China); Kenny, Steve [Safety Assessment, PTS, GlaxoSmithKline, Ware (United Kingdom); Brown, James R. [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, PA (United States); Huxley-Jones, Julie [UK Platform Technology Sciences (PTS) Operations and Planning, PTS, GlaxoSmithKline, Stevenage (United Kingdom); Lyon, Jon; Haselden, John [Safety Assessment, PTS, GlaxoSmithKline, Ware (United Kingdom); Min, Jiumeng [BGI-Shenzen, Shenzhen (China); Sanseau, Philippe [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom)

    2013-07-15

    Improving drug attrition remains a challenge in pharmaceutical discovery and development. A major cause of early attrition is the demonstration of safety signals which can negate any therapeutic index previously established. Safety attrition needs to be put in context of clinical translation (i.e. human relevance) and is negatively impacted by differences between animal models and human. In order to minimize such an impact, an earlier assessment of pharmacological target homology across animal model species will enhance understanding of the context of animal safety signals and aid species selection during later regulatory toxicology studies. Here we sequenced the genomes of the Sus scrofa Göttingen minipig and the Canis familiaris beagle, two widely used animal species in regulatory safety studies. Comparative analyses of these new genomes with other key model organisms, namely mouse, rat, cynomolgus macaque, rhesus macaque, two related breeds (S. scrofa Duroc and C. familiaris boxer) and human reveal considerable variation in gene content. Key genes in toxicology and metabolism studies, such as the UGT2 family, CYP2D6, and SLCO1A2, displayed unique duplication patterns. Comparisons of 317 known human drug targets revealed surprising variation such as species-specific positive selection, duplication and higher occurrences of pseudogenized targets in beagle (41 genes) relative to minipig (19 genes). These data will facilitate the more effective use of animals in biomedical research. - Highlights: • Genomes of the minipig and beagle dog, two species used in pharmaceutical studies. • First systematic comparative genome analysis of human and six experimental animals. • Key drug toxicology genes display unique duplication patterns across species. • Comparison of 317 drug targets show species-specific evolutionary patterns.

  10. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing

    DEFF Research Database (Denmark)

    Li, Ying-hui; Zhao, Shan-cen; Ma, Jian-xin

    2013-01-01

    BACKGROUND:Artificial selection played an important role in the origin of modern Glycine max cultivars from the wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication and modern improvement of soybean, 25 new and 30 published whole-genome re......-sequencing accessions, which represent wild, domesticated landrace, and Chinese elite soybean populations were analyzed.RESULTS:A total of 5,102,244 single nucleotide polymorphisms (SNPs) and 707,969 insertion/deletions were identified. Among the SNPs detected, 25.5% were not described previously. We found...... that artificial selection during domestication led to more pronounced reduction in the genetic diversity of soybean than the switch from landraces to elite cultivars. Only a small proportion (2.99%) of the whole genomic regions appear to be affected by artificial selection for preferred agricultural traits...

  11. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire.

    Science.gov (United States)

    The P. ultimum DAOM BR144 (=CBS 805.95 = ATCC200006) genome (42.8 Mb) encodes 15,290 genes, and has extensive sequence similarity and synteny with related Phytophthora spp., including the potato late blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86 % o...

  12. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    Science.gov (United States)

    Kim, Sang Woo; Fishilevich, Elane; Arango-Argoty, Gustavo; Lin, Yuefeng; Liu, Guodong; Li, Zhihua; Monaghan, A Paula; Nichols, Mark; John, Bino

    2015-01-01

    Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT), in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  13. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    Directory of Open Access Journals (Sweden)

    Sang Woo Kim

    Full Text Available Non-coding RNAs (ncRNAs play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT, in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  14. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

    NARCIS (Netherlands)

    Olsen, Jeanine; Rouzé, Pierre; Verhelst, Bram; Lin, Yao-Cheng; Bayer, Till; Collen, Jonas; Dattolo, Emanuela; De Paoli, Emanuele; Dittami, Simon; Maumus, Florian; Michel, Gurvan; Kersting, Anna; Lauritano, Chiara; Lohaus, Rolf; Töpel, Mats; Tonon, Thierry; Vanneste, Kevin; Amirebrahimi, Mojgan; Brakel, Janina; Boström, Christoffer; Chovatia, Mansi; Grimwood, Jane; Jenkins, Jerry W; Jueterbock, Alexander; Mraz, Amy; Stam, Wytze T; Tice, Hope; Bornberg-Bauer, Erich; Green, Pamela J; Pearson, Gareth A; Procaccini, Gabriele; Duarte, Carlos M; Schmutz, Jeremy; Reusch, Thorsten B H; Van de Peer, Yves

    2016-01-01

    Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals u

  15. Comparative Genomic Analysis of Clinical and Environmental Vibrio Vulnificus Isolates Revealed Biotype 3 Evolutionary Relationships

    Directory of Open Access Journals (Sweden)

    Yael eKotton

    2015-01-01

    Full Text Available In 1996 a common-source outbreak of severe soft tissue and bloodstream infections erupted among Israeli fish farmers and fish consumers due to changes in fish marketing policies. The causative pathogen was a new strain of Vibrio vulnificus, named biotype 3, which displayed a unique biochemical and genotypic profile. Initial observations suggested that the pathogen erupted as a result of genetic recombination between two distinct populations. We applied a whole genome shotgun sequencing approach using several V. vulnificus strains from Israel in order to study the pan genome of V. vulnificus and determine the phylogenetic relationship of biotype 3 with existing populations. The core genome of V. vulnificus based on 16 draft and complete genomes consisted of 3068 genes, representing between 59% and 78% of the whole genome of 16 strains. The accessory genome varied in size from 781 kbp to 2044 kbp. Phylogenetic analysis based on whole, core, and accessory genomes displayed similar clustering patterns with two main clusters, clinical (C and environmental (E, all biotype 3 strains formed a distinct group within the E cluster. Annotation of accessory genomic regions found in biotype 3 strains and absent from the core genome yielded 1732 genes, of which the vast majority encoded hypothetical proteins, phage-related proteins, and mobile element proteins. A total of 1916 proteins (including 713 hypothetical proteins were present in all human pathogenic strains (both biotype 3 and non-biotype 3 and absent from the environmental strains. Clustering analysis of the non-hypothetical proteins revealed 148 protein clusters shared by all human pathogenic strains; these included transcriptional regulators, arylsulfatases, methyl-accepting chemotaxis proteins, acetyltransferases, GGDEF family proteins, transposases, type IV secretory system (T4SS proteins, and integrases. Our study showed that V. vulnificus biotype 3 evolved from environmental populations and

  16. Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs

    Science.gov (United States)

    2014-01-01

    Background An initial comparative genomic study of the malaria vector Anopheles gambiae and the yellow fever mosquito Aedes aegypti revealed striking differences in the genome assembly size and in the abundance of transposable elements between the two species. However, the chromosome arms homology between An. gambiae and Ae. aegypti, as well as the distribution of genes and repetitive elements in chromosomes of Ae. aegypti, remained largely unexplored because of the lack of a detailed physical genome map for the yellow fever mosquito. Results Using a molecular landmark-guided fluorescent in situ hybridization approach, we mapped 624 Mb of the Ae. aegypti genome to mitotic chromosomes. We used this map to analyze the distribution of genes, tandem repeats and transposable elements along the chromosomes and to explore the patterns of chromosome homology and rearrangements between Ae. aegypti and An. gambiae. The study demonstrated that the q arm of the sex-determining chromosome 1 had the lowest gene content and the highest density of minisatellites. A comparative genomic analysis with An. gambiae determined that the previously proposed whole-arm synteny is not fully preserved; a number of pericentric inversions have occurred between the two species. The sex-determining chromosome 1 had a higher rate of genome rearrangements than observed in autosomes 2 and 3 of Ae. aegypti. Conclusions The study developed a physical map of 45% of the Ae. aegypti genome and provided new insights into genomic composition and evolution of Ae. aegypti chromosomes. Our data suggest that minisatellites rather than transposable elements played a major role in rapid evolution of chromosome 1 in the Aedes lineage. The research tools and information generated by this study contribute to a more complete understanding of the genome organization and evolution in mosquitoes. PMID:24731704

  17. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication.

    Science.gov (United States)

    Montague, Michael J; Li, Gang; Gandolfi, Barbara; Khan, Razib; Aken, Bronwen L; Searle, Steven M J; Minx, Patrick; Hillier, LaDeana W; Koboldt, Daniel C; Davis, Brian W; Driscoll, Carlos A; Barr, Christina S; Blackistone, Kevin; Quilez, Javier; Lorente-Galdos, Belen; Marques-Bonet, Tomas; Alkan, Can; Thomas, Gregg W C; Hahn, Matthew W; Menotti-Raymond, Marilyn; O'Brien, Stephen J; Wilson, Richard K; Lyons, Leslie A; Murphy, William J; Warren, Wesley C

    2014-12-02

    Little is known about the genetic changes that distinguish domestic cat populations from their wild progenitors. Here we describe a high-quality domestic cat reference genome assembly and comparative inferences made with other cat breeds, wildcats, and other mammals. Based upon these comparisons, we identified positively selected genes enriched for genes involved in lipid metabolism that underpin adaptations to a hypercarnivorous diet. We also found positive selection signals within genes underlying sensory processes, especially those affecting vision and hearing in the carnivore lineage. We observed an evolutionary tradeoff between functional olfactory and vomeronasal receptor gene repertoires in the cat and dog genomes, with an expansion of the feline chemosensory system for detecting pheromones at the expense of odorant detection. Genomic regions harboring signatures of natural selection that distinguish domestic cats from their wild congeners are enriched in neural crest-related genes associated with behavior and reward in mouse models, as predicted by the domestication syndrome hypothesis. Our description of a previously unidentified allele for the gloving pigmentation pattern found in the Birman breed supports the hypothesis that cat breeds experienced strong selection on specific mutations drawn from random bred populations. Collectively, these findings provide insight into how the process of domestication altered the ancestral wildcat genome and build a resource for future disease mapping and phylogenomic studies across all members of the Felidae.

  18. A genome-wide association study reveals a novel candidate gene for sperm motility in pigs

    NARCIS (Netherlands)

    Diniz, D.B.; Lopes, M.S.; Broekhuijse, M.L.W.J.; Lopes, P.S.; Harlizius, B.; Guimaraes, S.E.F.; Duijvesteijn, N.; Knol, E.F.; Silva, F.F.

    2014-01-01

    Sperm motility is one of the most widely used parameters in order to evaluate boar semen quality. However, this trait can only be measured after puberty. Thus, the use of genomic information appears as an appealing alternative to evaluate and improve selection for boar fertility traits earlier in li

  19. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication

    Science.gov (United States)

    Cultivated citrus are selections from, or hybrids of, wild progenitor species whose identities and contributions to citrus domestication remain controversial. Here we sequence and compare citrus genomes—a high-quality reference haploid clementine genome and mandarin, pummelo, sweet-orange and sour-o...

  20. The Methanosarcina barkeri genome: comparative analysis withMethanosarcina acetivorans and Methanosarcina mazei reveals extensiverearrangement within methanosarcinal genomes

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Dennis L.; Anderson, Iain; Brettin, Thomas S.; Bruce,David C.; Gilna, Paul; Han, Cliff S.; Lapidus, Alla; Metcalf, William W.; Saunders, Elizabeth; Tapia, Roxanne; Sowers, Kevin R.

    2006-05-19

    We report here a comparative analysis of the genome sequence of Methanosarcina barkeri with those of Methanosarcina acetivorans and Methanosarcina mazei. All three genomes share a conserved double origin of replication and many gene clusters. M. barkeri is distinguished by having an organization that is well conserved with respect to the other Methanosarcinae in the region proximal to the origin of replication with interspecies gene similarities as high as 95%. However it is disordered and marked by increased transposase frequency and decreased gene synteny and gene density in the proximal semi-genome. Of the 3680 open reading frames in M. barkeri, 678 had paralogs with better than 80% similarity to both M. acetivorans and M. mazei while 128 nonhypothetical orfs were unique (non-paralogous) amongst these species including a complete formate dehydrogenase operon, two genes required for N-acetylmuramic acid synthesis, a 14 gene gas vesicle cluster and a bacterial P450-specific ferredoxin reductase cluster not previously observed or characterized in this genus. A cryptic 36 kbp plasmid sequence was detected in M. barkeri that contains an orc1 gene flanked by a presumptive origin of replication consisting of 38 tandem repeats of a 143 nt motif. Three-way comparison of these genomes reveals differing mechanisms for the accrual of changes. Elongation of the large M. acetivorans is the result of multiple gene-scale insertions and duplications uniformly distributed in that genome, while M. barkeri is characterized by localized inversions associated with the loss of gene content. In contrast, the relatively short M. mazei most closely approximates the ancestral organizational state.

  1. Northern Bobwhite (Colinus virginianus Mitochondrial Population Genomics Reveals Structure, Divergence, and Evidence for Heteroplasmy.

    Directory of Open Access Journals (Sweden)

    Yvette A Halley

    Full Text Available Herein, we evaluated the concordance of population inferences and conclusions resulting from the analysis of short mitochondrial fragments (i.e., partial or complete D-Loop nucleotide sequences versus complete mitogenome sequences for 53 bobwhites representing six ecoregions across TX and OK (USA. Median joining (MJ haplotype networks demonstrated that analyses performed using small mitochondrial fragments were insufficient for estimating the true (i.e., complete mitogenome haplotype structure, corresponding levels of divergence, and maternal population history of our samples. Notably, discordant demographic inferences were observed when mismatch distributions of partial (i.e., partial D-Loop versus complete mitogenome sequences were compared, with the reduction in mitochondrial genomic information content observed to encourage spurious inferences in our samples. A probabilistic approach to variant prediction for the complete bobwhite mitogenomes revealed 344 segregating sites corresponding to 347 total mutations, including 49 putative nonsynonymous single nucleotide variants (SNVs distributed across 12 protein coding genes. Evidence of gross heteroplasmy was observed for 13 bobwhites, with 10 of the 13 heteroplasmies involving one moderate to high frequency SNV. Haplotype network and phylogenetic analyses for the complete bobwhite mitogenome sequences revealed two divergent maternal lineages (dXY = 0.00731; FST = 0.849; P < 0.05, thereby supporting the potential for two putative subspecies. However, the diverged lineage (n = 103 variants almost exclusively involved bobwhites geographically classified as Colinus virginianus texanus, which is discordant with the expectations of previous geographic subspecies designations. Tests of adaptive evolution for functional divergence (MKT, frequency distribution tests (D, FS and phylogenetic analyses (RAxML provide no evidence for positive selection or hybridization with the sympatric scaled quail

  2. Detecting signatures of positive selection associated with musical aptitude in the human genome

    Science.gov (United States)

    Liu, Xuanyao; Kanduri, Chakravarthi; Oikkonen, Jaana; Karma, Kai; Raijas, Pirre; Ukkola-Vuoti, Liisa; Teo, Yik-Ying; Järvelä, Irma

    2016-01-01

    Abilities related to musical aptitude appear to have a long history in human evolution. To elucidate the molecular and evolutionary background of musical aptitude, we compared genome-wide genotyping data (641 K SNPs) of 148 Finnish individuals characterized for musical aptitude. We assigned signatures of positive selection in a case-control setting using three selection methods: haploPS, XP-EHH and FST. Gene ontology classification revealed that the positive selection regions contained genes affecting inner-ear development. Additionally, literature survey has shown that several of the identified genes were known to be involved in auditory perception (e.g. GPR98, USH2A), cognition and memory (e.g. GRIN2B, IL1A, IL1B, RAPGEF5), reward mechanisms (RGS9), and song perception and production of songbirds (e.g. FOXP1, RGS9, GPR98, GRIN2B). Interestingly, genes related to inner-ear development and cognition were also detected in a previous genome-wide association study of musical aptitude. However, the candidate genes detected in this study were not reported earlier in studies of musical abilities. Identification of genes related to language development (FOXP1 and VLDLR) support the popular hypothesis that music and language share a common genetic and evolutionary background. The findings are consistent with the evolutionary conservation of genes related to auditory processes in other species and provide first empirical evidence for signatures of positive selection for abilities that contribute to musical aptitude. PMID:26879527

  3. Detecting signatures of positive selection associated with musical aptitude in the human genome.

    Science.gov (United States)

    Liu, Xuanyao; Kanduri, Chakravarthi; Oikkonen, Jaana; Karma, Kai; Raijas, Pirre; Ukkola-Vuoti, Liisa; Teo, Yik-Ying; Järvelä, Irma

    2016-02-16

    Abilities related to musical aptitude appear to have a long history in human evolution. To elucidate the molecular and evolutionary background of musical aptitude, we compared genome-wide genotyping data (641 K SNPs) of 148 Finnish individuals characterized for musical aptitude. We assigned signatures of positive selection in a case-control setting using three selection methods: haploPS, XP-EHH and FST. Gene ontology classification revealed that the positive selection regions contained genes affecting inner-ear development. Additionally, literature survey has shown that several of the identified genes were known to be involved in auditory perception (e.g. GPR98, USH2A), cognition and memory (e.g. GRIN2B, IL1A, IL1B, RAPGEF5), reward mechanisms (RGS9), and song perception and production of songbirds (e.g. FOXP1, RGS9, GPR98, GRIN2B). Interestingly, genes related to inner-ear development and cognition were also detected in a previous genome-wide association study of musical aptitude. However, the candidate genes detected in this study were not reported earlier in studies of musical abilities. Identification of genes related to language development (FOXP1 and VLDLR) support the popular hypothesis that music and language share a common genetic and evolutionary background. The findings are consistent with the evolutionary conservation of genes related to auditory processes in other species and provide first empirical evidence for signatures of positive selection for abilities that contribute to musical aptitude.

  4. Diversifying selection and host adaptation in two endosymbiont genomes

    Directory of Open Access Journals (Sweden)

    Slatko Barton

    2007-04-01

    Full Text Available Abstract Background The endosymbiont Wolbachia pipientis infects a broad range of arthropod and filarial nematode hosts. These diverse associations form an attractive model for understanding host:symbiont coevolution. Wolbachia's ubiquity and ability to dramatically alter host reproductive biology also form the foundation of research strategies aimed at controlling insect pests and vector-borne disease. The Wolbachia strains that infect nematodes are phylogenetically distinct, strictly vertically transmitted, and required by their hosts for growth and reproduction. Insects in contrast form more fluid associations with Wolbachia. In these taxa, host populations are most often polymorphic for infection, horizontal transmission occurs between distantly related hosts, and direct fitness effects on hosts are mild. Despite extensive interest in the Wolbachia system for many years, relatively little is known about the molecular mechanisms that mediate its varied interactions with different hosts. We have compared the genomes of the Wolbachia that infect Drosophila melanogaster, wMel and the nematode Brugia malayi, wBm to that of an outgroup Anaplasma marginale to identify genes that have experienced diversifying selection in the Wolbachia lineages. The goal of the study was to identify likely molecular mechanisms of the symbiosis and to understand the nature of the diverse association across different hosts. Results The prevalence of selection was far greater in wMel than wBm. Genes contributing to DNA metabolism, cofactor biosynthesis, and secretion were positively selected in both lineages. In wMel there was a greater emphasis on DNA repair, cell division, protein stability, and cell envelope synthesis. Conclusion Secretion pathways and outer surface protein encoding genes are highly affected by selection in keeping with host:parasite theory. If evidence of selection on various cofactor molecules reflects possible provisioning, then both insect as

  5. Comparison of assembled Clostridium botulinum A1 genomes revealed their evolutionary relationship.

    Science.gov (United States)

    Ng, Virginia; Lin, Wei-Jen

    2014-01-01

    Clostridium botulinum encompasses bacteria that produce at least one of the seven serotypes of botulinum neurotoxin (BoNT/A-G). The availability of genome sequences of four closely related Type A1 or A1(B) strains, as well as the A1-specific microarray, allowed the analysis of their genomic organizations and evolutionary relationship. The four genomes share >90% core genes and >96% functional groups. Phylogenetic analysis based on COG shows closer relations of the A1(B) strain, NCTC 2916, to B1 and F1 than A1 strains. Alignment of the genomes of the three A1 strains revealed a highly similar chromosomal structure with three small gaps in the genome of ATCC 19397 and one additional gap in the genome of Hall A, suggesting ATCC 19379 as an evolutionary intermediate between Hall A and ATCC 3502. Analyses of the four gap regions indicated potential horizontal gene transfer and recombination events important for the evolution of A1 strains.

  6. Next generation sequencing reveals the antibiotic resistant variants in the genome of Pseudomonas aeruginosa.

    Science.gov (United States)

    Ramanathan, Babu; Jindal, Hassan Mahmood; Le, Cheng Foh; Gudimella, Ranganath; Anwar, Arif; Razali, Rozaimi; Poole-Johnson, Johan; Manikam, Rishya; Sekaran, Shamala Devi

    2017-01-01

    Rapid progress in next generation sequencing and allied computational tools have aided in identification of single nucleotide variants in genomes of several organisms. In the present study, we have investigated single nucleotide polymorphism (SNP) in ten multi-antibiotic resistant Pseudomonas aeruginosa clinical isolates. All the draft genomes were submitted to Rapid Annotations using Subsystems Technology (RAST) web server and the predicted protein sequences were used for comparison. Non-synonymous single nucleotide polymorphism (nsSNP) found in the clinical isolates compared to the reference genome (PAO1), and the comparison of nsSNPs between antibiotic resistant and susceptible clinical isolates revealed insights into the genome variation. These nsSNPs identified in the multi-drug resistant clinical isolates were found to be altering a single amino acid in several antibiotic resistant genes. We found mutations in genes encoding efflux pump systems, cell wall, DNA replication and genes involved in repair mechanism. In addition, nucleotide deletions in the genome and mutations leading to generation of stop codons were also observed in the antibiotic resistant clinical isolates. Next generation sequencing is a powerful tool to compare the whole genomes and analyse the single base pair variations found within the antibiotic resistant genes. We identified specific mutations within antibiotic resistant genes compared to the susceptible strain of the same bacterial species and these findings may provide insights to understand the role of single nucleotide variants in antibiotic resistance.

  7. The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae

    Directory of Open Access Journals (Sweden)

    David B. Neale

    2017-09-01

    Full Text Available A reference genome sequence for Pseudotsuga menziesii var. menziesii (Mirb. Franco (Coastal Douglas-fir is reported, thus providing a reference sequence for a third genus of the family Pinaceae. The contiguity and quality of the genome assembly far exceeds that of other conifer reference genome sequences (contig N50 = 44,136 bp and scaffold N50 = 340,704 bp. Incremental improvements in sequencing and assembly technologies are in part responsible for the higher quality reference genome, but it may also be due to a slightly lower exact repeat content in Douglas-fir vs. pine and spruce. Comparative genome annotation with angiosperm species reveals gene-family expansion and contraction in Douglas-fir and other conifers which may account for some of the major morphological and physiological differences between the two major plant groups. Notable differences in the size of the NDH-complex gene family and genes underlying the functional basis of shade tolerance/intolerance were observed. This reference genome sequence not only provides an important resource for Douglas-fir breeders and geneticists but also sheds additional light on the evolutionary processes that have led to the divergence of modern angiosperms from the more ancient gymnosperms.

  8. GRAbB : Selective Assembly of Genomic Regions, a New Niche for Genomic Research

    NARCIS (Netherlands)

    Brankovics, Balázs; Zhang, Hao; van Diepeningen, Anne D; van der Lee, Theo A J; Waalwijk, Cees; de Hoog, G Sybren

    2016-01-01

    GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often negle

  9. USING POPULATION GENOMICS TO DETECT SELECTION IN NATURAL POPULATIONS: KEY CONCEPTS AND METHODOLOGICAL CONSIDERATIONS.

    Science.gov (United States)

    Hohenlohe, Paul A; Phillips, Patrick C; Cresko, William A

    2010-11-01

    Natural selection shapes patterns of genetic variation among individuals, populations, and species, and it does so differentially across genomes. The field of population genomics provides a comprehensive genome-scale view of the action of selection, even beyond traditional model organisms. However, even with nearly complete genomic sequence information, our ability to detect the signature of selection on specific genomic regions depends on choosing experimental and analytical tools appropriate to the biological situation. For example, processes that occur at different timescales, such as sorting of standing genetic variation, mutation-selection balance, or fixed interspecific divergence, have different consequences for genomic patterns of variation. Inappropriate experimental or analytical approaches may fail to detect even strong selection or falsely identify a signature of selection. Here we outline the conceptual framework of population genomics, relate genomic patterns of variation to evolutionary processes, and identify major biological factors to be considered in studies of selection. As data-gathering technology continues to advance, our ability to understand selection in natural populations will be limited more by conceptual and analytical weaknesses than by the amount of molecular data. Our aim is to bring critical biological considerations to the fore in population genomics research and to spur the development and application of analytical tools appropriate to diverse biological systems.

  10. Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data.

    Science.gov (United States)

    Rosenblum, Erica Bree; James, Timothy Y; Zamudio, Kelly R; Poorten, Thomas J; Ilut, Dan; Rodriguez, David; Eastman, Jonathan M; Richards-Hrdlicka, Katy; Joneson, Suzanne; Jenkinson, Thomas S; Longcore, Joyce E; Parra Olea, Gabriela; Toledo, Luís Felipe; Arellano, Maria Luz; Medina, Edgar M; Restrepo, Silvia; Flechas, Sandra Victoria; Berger, Lee; Briggs, Cheryl J; Stajich, Jason E

    2013-06-01

    Understanding the evolutionary history of microbial pathogens is critical for mitigating the impacts of emerging infectious diseases on economically and ecologically important host species. We used a genome resequencing approach to resolve the evolutionary history of an important microbial pathogen, the chytrid Batrachochytrium dendrobatidis (Bd), which has been implicated in amphibian declines worldwide. We sequenced the genomes of 29 isolates of Bd from around the world, with an emphasis on North, Central, and South America because of the devastating effect that Bd has had on amphibian populations in the New World. We found a substantial amount of evolutionary complexity in Bd with deep phylogenetic diversity that predates observed global amphibian declines. By investigating the entire genome, we found that even the most recently evolved Bd clade (termed the global panzootic lineage) contained more genetic variation than previously reported. We also found dramatic differences among isolates and among genomic regions in chromosomal copy number and patterns of heterozygosity, suggesting complex and heterogeneous genome dynamics. Finally, we report evidence for selection acting on the Bd genome, supporting the hypothesis that protease genes are important in evolutionary transitions in this group. Bd is considered an emerging pathogen because of its recent effects on amphibians, but our data indicate that it has a complex evolutionary history that predates recent disease outbreaks. Therefore, it is important to consider the contemporary effects of Bd in a broader evolutionary context and identify specific mechanisms that may have led to shifts in virulence in this system.

  11. Genome-wide differential expression reveals candidate genes involved in the pathogenesis of lupus and lupus nephritis.

    Science.gov (United States)

    AlFadhli, Suad; Ghanem, Aqeel A M; Nizam, Rasheeba

    2016-01-01

    Systemic lupus erythematosus (lupus) is an autoimmune disease characterized by multiorgan pathology, accelerated apoptosis and hyper-autoantibody production against self-components. The root cause of lupus remains unknown, although multiple susceptibility factors have been reported in different ethnic group. We aimed to explore the genome-wide differential expression spectrum of lupus and its severe form lupus nephritis (LN) in Arab females. A total of 98 subjects: 40 lupus, 18 LN and 40 age/gender/ethnically matched healthy controls (HC) were recruited. Carefully chosen subjects (n = 11) were employed for whole human-genome expression profiling using high-density Human Exon 1.0.ST arrays (Affymetrix) and statistical analysis was carried out using appropriate software. Validation cohorts (n = 98) were investigated to quantify the expression of the nine selected candidate genes relative to GAPDH as endogenous control. Genome-wide differential analysis revealed seven candidate genes in lupus and 36 in LN, when individually compared to HC (anova Welch t-test, P ≤ 0.005, Tukey's honestly post hoc analysis). Analysis of differentially expressed genes with a fold change of 2, revealed 16 Gene Ontology terms satisfying a P ≤ 0.05. We further detected five distinct inflammatory and metabolic pathways such as TWEAK, osteopontin, endochondral ossification, fluropyrimidine activity and urea cycle and metabolism of amino groups that significantly contribute to the pathogenesis of lupus (P Rheumatology and Wiley Publishing Asia Pty Ltd.

  12. Size-selected genomic libraries: the distribution and size-fractionation of restricted genomic DNA fragments by gel electrophoresis.

    Science.gov (United States)

    Gondo, Y

    1995-02-01

    By using one-dimensional genome scanning, it is possible to directly identify the restricted genomic DNA fragment that reflects the site of genetic change. The subsequent strategies to obtain the molecular clones of the corresponding restriction fragment are usually as follows: (i) the restriction of a mass quantity of an appropriate genomic DNA, (ii) the size-fractionation of the restricted DNA on a preparative electrophoresis gel in order to enrich the corresponding restriction fragment, (iii) the construction of the size-selected libraries from the fractionated genomic DNA, and (iv) the screening of the library to obtain an objective clone which is identified on the analytical genome scanning gel. A knowledge of the size distribution pattern of restriction fragments of the genomic DNA makes it possible to calculate the heterogeneity or complexity of the restriction fragment in each size-fraction. This manuscript first describes the distribution of the restriction fragments with respect to their length. Some examples of the practical application of this theory to genome scanning is then discussed using presumptive genome scanning gels. The way to calculate such DNA complexities in the prepared size-fractionated samples is also demonstrated. Such information should greatly facilitate the design of experimental strategies for the cloning of a certain size of genomic DNA after digestion with restriction enzyme(s) as is the case with genome scanning.

  13. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui

    2011-01-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations....... these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination...

  14. Selection Under Domestication: Evidence for a Sweep in the Rice Waxy Genomic Region

    Science.gov (United States)

    Olsen, Kenneth M.; Caicedo, Ana L.; Polato, Nicholas; McClung, Anna; McCouch, Susan; Purugganan, Michael D.

    2006-01-01

    Rice (Oryza sativa) was cultivated by Asian Neolithic farmers >11,000 years ago, and different cultures have selected for divergent starch qualities in the rice grain during and after the domestication process. An intron 1 splice donor site mutation of the Waxy gene is responsible for the absence of amylose in glutinous rice varieties. This mutation appears to have also played an important role in the origin of low amylose, nonglutinous temperate japonica rice varieties, which form a primary component of Northeast Asian cuisines. Waxy DNA sequence analyses indicate that the splice donor mutation is prevalent in temperate japonica rice varieties, but rare or absent in tropical japonica, indica, aus, and aromatic varieties. Sequence analysis across a 500-kb genomic region centered on Waxy reveals patterns consistent with a selective sweep in the temperate japonicas associated with the mutation. The size of the selective sweep (>250 kb) indicates very strong selection in this region, with an inferred selection coefficient that is higher than similar estimates from maize domestication genes or wild species. These findings demonstrate that selection pressures associated with crop domestication regimes can exceed by one to two orders of magnitude those observed for genes under even strong selection in natural systems. PMID:16547098

  15. Annotation-Based Whole Genomic Prediction and Selection

    DEFF Research Database (Denmark)

    Kadarmideen, Haja; Do, Duy Ngoc; Janss, Luc

    Cπ method and applied to 1,272 Duroc pigs with both genotypic and phenotypic records including residual (RFI) and daily feed intake (DFI), average daily gain (ADG) and back fat (BF)). Records were split into a training (968 pigs) and a validation dataset (304 pigs). SNPs were annotated by 14 different...... groups. Genomic prediction has accuracy comparable to an own phenotype and use of genomic prediction can be cost effective by replacing feed intake measurement. Use of genomic annotation of SNPs and QTL information had no largely significant impact on predictive accuracy for the current traits but may...... in their contribution to estimated genomic variances and in prediction of genomic breeding values by applying SNP annotation approaches to feed efficiency. Ensembl Variant Predictor (EVP) and Pig QTL database were used as the source of genomic annotation for 60K chip. Genomic prediction was performed using the Bayes...

  16. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Alfred Amambua-Ngwa

    Full Text Available Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3, and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%, indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing

  17. Accounting for genomic pre-selection in national BLUP evaluations in dairy cattle

    Directory of Open Access Journals (Sweden)

    Patry Clotilde

    2011-08-01

    Full Text Available Abstract Background In future Best Linear Unbiased Prediction (BLUP evaluations of dairy cattle, genomic selection of young sires will cause evaluation biases and loss of accuracy once the selected ones get progeny. Methods To avoid such bias in the estimation of breeding values, we propose to include information on all genotyped bulls, including the culled ones, in BLUP evaluations. Estimated breeding values based on genomic information were converted into genomic pseudo-performances and then analyzed simultaneously with actual performances. Using simulations based on actual data from the French Holstein population, bias and accuracy of BLUP evaluations were computed for young sires undergoing progeny testing or genomic pre-selection. For bulls pre-selected based on their genomic profile, three different types of information can be included in the BLUP evaluations: (1 data from pre-selected genotyped candidate bulls with actual performances on their daughters, (2 data from bulls with both actual and genomic pseudo-performances, or (3 data from all the genotyped candidates with genomic pseudo-performances. The effects of different levels of heritability, genomic pre-selection intensity and accuracy of genomic evaluation were considered. Results Including information from all the genotyped candidates, i.e. genomic pseudo-performances for both selected and culled candidates, removed bias from genetic evaluation and increased accuracy. This approach was effective regardless of the magnitude of the initial bias and as long as the accuracy of the genomic evaluations was sufficiently high. Conclusions The proposed method can be easily and quickly implemented in BLUP evaluations at the national level, although some improvement is necessary to more accurately propagate genomic information from genotyped to non-genotyped animals. In addition, it is a convenient method to combine direct genomic, phenotypic and pedigree-based information in a multiple

  18. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants

    Energy Technology Data Exchange (ETDEWEB)

    Rensing, Stefan A.; Lang, Daniel; Zimmer, Andreas D.; Terry, Astrid; Salamov, Asaf; Shapiro, Harris; Nishiyama, Tomaoki; Perroud, Pierre-Francois; Lindquist, Erika A.; Kamisugi, Yasuko; Tanahashi, Takako; Sakakibara, Keiko; Fujita, Tomomichi; Oishi, Kazuko; Shin, Tadasu; Kuroki, Yoko; Toyoda, Atsushi; Suzuki, Yutaka; Hashimoto, Shin-ichi; Yamaguchi, Kazuo; Sugano, Sumio; Kohara, Yuji; Fujiyama, Asao; Anterola, Aldwin; Aoki, Setsuyuki; Ashton, Neil; Barbazuk, W. Brad; Barker, Elizabeth; Bennetzen, Jeffrey L.; Blankenship, Robert; Cho, Sung Hyun; Dutcher, Susan K.; Estelle, Mark; Fawcett, Jeffrey A.; Gundlach, Heidrum; Hanada, Kousuke; Melkozernov, Alexander; Murata, Takashi; Nelson, David R.; Pils, Birgit; Prigge, Michael; Reiss, Bernd; Renner, Tanya; Rombauts, Stephane; Rushton, Paul J.; Sanderfoot, Anton; Schween, Gabriele; Shiu, Shin-Han; Stueber, Kurt; Theodoulou, Frederica L.; Tu, Hank; Van de Peer, Yves; Verrier, Paul J.; Waters, Elizabeth; Wood, Andrew; Yang, Lixing; Cove, David; Cuming, Andrew C.; Hasebe, Mitsayasu; Lucas, Susan; Mishler, Brent D.; Reski, Ralf; Grigoriev, Igor V.; Quatrano, Rakph S.; Boore, Jeffrey L.

    2007-09-18

    We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.

  19. The Causal Meaning of Genomic Predictors and How It Affects Construction and Comparison of Genome-Enabled Selection Models

    Science.gov (United States)

    Valente, Bruno D.; Morota, Gota; Peñagaricano, Francisco; Gianola, Daniel; Weigel, Kent; Rosa, Guilherme J. M.

    2015-01-01

    The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability. PMID:25908318

  20. Signatures of selection in the genomes of commercial and non-commercial chicken breeds

    NARCIS (Netherlands)

    Elferink, M.G.; Megens, H.J.W.C.; Vereijken, A.; Crooijmans, R.P.M.A.; Groenen, M.A.M.

    2012-01-01

    Identifying genomics regions that are affected by selection is important to understand the domestication and selection history of the domesticated chicken, as well as understanding molecular pathways underlying phenotypic traits and breeding goals. While whole-genome approaches, either high-density

  1. Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200.

    Science.gov (United States)

    Zhang, Sheng-Da; Santini, Claire-Lise; Zhang, Wei-Jia; Barbe, Valérie; Mangenot, Sophie; Guyomar, Charlotte; Garel, Marc; Chen, Hai-Tao; Li, Xue-Gong; Yin, Qun-Jian; Zhao, Yuan; Armengaud, Jean; Gaillard, Jean-Charles; Martini, Séverine; Pradel, Nathalie; Vidaud, Claude; Alberto, François; Médigue, Claudine; Tamburini, Christian; Wu, Long-Fei

    2016-05-01

    Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.

  2. De Novo Sequences of Haloquadratum walsbyi from Lake Tyrrell, Australia, Reveal a Variable Genomic Landscape

    Directory of Open Access Journals (Sweden)

    Benjamin J. Tully

    2015-01-01

    Full Text Available Hypersaline systems near salt saturation levels represent an extreme environment, in which organisms grow and survive near the limits of life. One of the abundant members of the microbial communities in hypersaline systems is the square archaeon, Haloquadratum walsbyi. Utilizing a short-read metagenome from Lake Tyrrell, a hypersaline ecosystem in Victoria, Australia, we performed a comparative genomic analysis of H. walsbyi to better understand the extent of variation between strains/subspecies. Results revealed that previously isolated strains/subspecies do not fully describe the complete repertoire of the genomic landscape present in H. walsbyi. Rearrangements, insertions, and deletions were observed for the Lake Tyrrell derived Haloquadratum genomes and were supported by environmental de novo sequences, including shifts in the dominant genomic landscape of the two most abundant strains. Analysis pertaining to halomucins indicated that homologs for this large protein are not a feature common for all species of Haloquadratum. Further, we analyzed ATP-binding cassette transporters (ABC-type transporters for evidence of niche partitioning between different strains/subspecies. We were able to identify unique and variable transporter subunits from all five genomes analyzed and the de novo environmental sequences, suggesting that differences in nutrient and carbon source acquisition may play a role in maintaining distinct strains/subspecies.

  3. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis.

    Science.gov (United States)

    Malmstrom, Rex R; Rodrigue, Sébastien; Huang, Katherine H; Kelly, Libusha; Kern, Suzanne E; Thompson, Anne; Roggensack, Sara; Berube, Paul M; Henn, Matthew R; Chisholm, Sallie W

    2013-01-01

    Prochlorococcus is the numerically dominant photosynthetic organism throughout much of the world's oceans, yet little is known about the ecology and genetic diversity of populations inhabiting tropical waters. To help close this gap, we examined natural Prochlorococcus communities in the tropical Pacific Ocean using a single-cell whole-genome amplification and sequencing. Analysis of the gene content of just 10 single cells from these waters added 394 new genes to the Prochlorococcus pan-genome--that is, genes never before seen in a Prochlorococcus cell. Analysis of marker genes, including the ribosomal internal transcribed sequence, from dozens of individual cells revealed several representatives from two uncultivated clades of Prochlorococcus previously identified as HNLC1 and HNLC2. While the HNLC clades can dominate Prochlorococcus communities under certain conditions, their overall geographic distribution was highly restricted compared with other clades of Prochlorococcus. In the Atlantic and Pacific oceans, these clades were only found in warm waters with low Fe and high inorganic P levels. Genomic analysis suggests that at least one of these clades thrives in low Fe environments by scavenging organic-bound Fe, a process previously unknown in Prochlorococcus. Furthermore, the capacity to utilize organic-bound Fe appears to have been acquired horizontally and may be exchanged among other clades of Prochlorococcus. Finally, one of the single Prochlorococcus cells sequenced contained a partial genome of what appears to be a prophage integrated into the genome.

  4. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs

    Directory of Open Access Journals (Sweden)

    Elisabeth eJonas

    2015-02-01

    Full Text Available Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies. It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating genomic selection into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken and fish. It outlines tasks to help understanding possible consequences when applying genomic information in

  5. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Raquel S Linheiro

    Full Text Available Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.

  6. Whole-genome sequencing of uropathogenic Escherichia coli reveals long evolutionary history of diversity and virulence.

    Science.gov (United States)

    Lo, Yancy; Zhang, Lixin; Foxman, Betsy; Zöllner, Sebastian

    2015-08-01

    Uropathogenic Escherichia coli (UPEC) are phenotypically and genotypically very diverse. This diversity makes it challenging to understand the evolution of UPEC adaptations responsible for causing urinary tract infections (UTI). To gain insight into the relationship between evolutionary divergence and adaptive paths to uropathogenicity, we sequenced at deep coverage (190×) the genomes of 19 E. coli strains from urinary tract infection patients from the same geographic area. Our sample consisted of 14 UPEC isolates and 5 non-UTI-causing (commensal) rectal E. coli isolates. After identifying strain variants using de novo assembly-based methods, we clustered the strains based on pairwise sequence differences using a neighbor-joining algorithm. We examined evolutionary signals on the whole-genome phylogeny and contrasted these signals with those found on gene trees constructed based on specific uropathogenic virulence factors. The whole-genome phylogeny showed that the divergence between UPEC and commensal E. coli strains without known UPEC virulence factors happened over 32 million generations ago. Pairwise diversity between any two strains was also high, suggesting multiple genetic origins of uropathogenic strains in a small geographic region. Contrasting the whole-genome phylogeny with three gene trees constructed from common uropathogenic virulence factors, we detected no selective advantage of these virulence genes over other genomic regions. These results suggest that UPEC acquired uropathogenicity long time ago and used it opportunistically to cause extraintestinal infections.

  7. A genome-wide scan of selective sweeps in two broiler chicken lines divergently selected for abdominal fat content.

    Science.gov (United States)

    Zhang, Hui; Wang, Shou-Zhi; Wang, Zhi-Peng; Da, Yang; Wang, Ning; Hu, Xiao-Xiang; Zhang, Yuan-Dan; Wang, Yu-Xiang; Leng, Li; Tang, Zhi-Quan; Li, Hui

    2012-12-15

    Genomic regions controlling abdominal fatness (AF) were studied in the Northeast Agricultural University broiler line divergently selected for AF. In this study, the chicken 60KSNP chip and extended haplotype homozygosity (EHH) test were used to detect genome-wide signatures of AF. A total of 5357 and 5593 core regions were detected in the lean and fat lines, and 51 and 57 reached a significant level (Pchickens. We provide a genome-wide map of selection signatures in the chicken genome, and make a contribution to the better understanding the mechanisms of selection for AF content in chickens. The selection for low AF in commercial breeding using this information will accelerate the breeding progress.

  8. A draft de novo genome assembly for the northern bobwhite (Colinus virginianus reveals evidence for a rapid decline in effective population size beginning in the Late Pleistocene.

    Directory of Open Access Journals (Sweden)

    Yvette A Halley

    Full Text Available Wild populations of northern bobwhites (Colinus virginianus; hereafter bobwhite have declined across nearly all of their U.S. range, and despite their importance as an experimental wildlife model for ecotoxicology studies, no bobwhite draft genome assembly currently exists. Herein, we present a bobwhite draft de novo genome assembly with annotation, comparative analyses including genome-wide analyses of divergence with the chicken (Gallus gallus and zebra finch (Taeniopygia guttata genomes, and coalescent modeling to reconstruct the demographic history of the bobwhite for comparison to other birds currently in decline (i.e., scarlet macaw; Ara macao. More than 90% of the assembled bobwhite genome was captured within 14,000 unique genes and proteins. Bobwhite analyses of divergence with the chicken and zebra finch genomes revealed many extremely conserved gene sequences, and evidence for lineage-specific divergence of noncoding regions. Coalescent models for reconstructing the demographic history of the bobwhite and the scarlet macaw provided evidence for population bottlenecks which were temporally coincident with human colonization of the New World, the late Pleistocene collapse of the megafauna, and the last glacial maximum. Demographic trends predicted for the bobwhite and the scarlet macaw also were concordant with how opposing natural selection strategies (i.e., skewness in the r-/K-selection continuum would be expected to shape genome diversity and the effective population sizes in these species, which is directly relevant to future conservation efforts.

  9. A draft de novo genome assembly for the northern bobwhite (Colinus virginianus) reveals evidence for a rapid decline in effective population size beginning in the Late Pleistocene.

    Science.gov (United States)

    Halley, Yvette A; Dowd, Scot E; Decker, Jared E; Seabury, Paul M; Bhattarai, Eric; Johnson, Charles D; Rollins, Dale; Tizard, Ian R; Brightsmith, Donald J; Peterson, Markus J; Taylor, Jeremy F; Seabury, Christopher M

    2014-01-01

    Wild populations of northern bobwhites (Colinus virginianus; hereafter bobwhite) have declined across nearly all of their U.S. range, and despite their importance as an experimental wildlife model for ecotoxicology studies, no bobwhite draft genome assembly currently exists. Herein, we present a bobwhite draft de novo genome assembly with annotation, comparative analyses including genome-wide analyses of divergence with the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes, and coalescent modeling to reconstruct the demographic history of the bobwhite for comparison to other birds currently in decline (i.e., scarlet macaw; Ara macao). More than 90% of the assembled bobwhite genome was captured within 14,000 unique genes and proteins. Bobwhite analyses of divergence with the chicken and zebra finch genomes revealed many extremely conserved gene sequences, and evidence for lineage-specific divergence of noncoding regions. Coalescent models for reconstructing the demographic history of the bobwhite and the scarlet macaw provided evidence for population bottlenecks which were temporally coincident with human colonization of the New World, the late Pleistocene collapse of the megafauna, and the last glacial maximum. Demographic trends predicted for the bobwhite and the scarlet macaw also were concordant with how opposing natural selection strategies (i.e., skewness in the r-/K-selection continuum) would be expected to shape genome diversity and the effective population sizes in these species, which is directly relevant to future conservation efforts.

  10. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication

    Science.gov (United States)

    Wu, G. Albert; Prochnik, Simon; Jenkins, Jerry; Salse, Jerome; Hellsten, Uffe; Murat, Florent; Perrier, Xavier; Ruiz, Manuel; Scalabrin, Simone; Terol, Javier; Takita, Marco Aurélio; Labadie, Karine; Poulain, Julie; Couloux, Arnaud; Jabbari, Kamel; Cattonaro, Federica; Del Fabbro, Cristian; Pinosio, Sara; Zuccolo, Andrea; Chapman, Jarrod; Grimwood, Jane; Tadeo, Francisco R.; Estornell, Leandro H.; Muñoz-Sanz, Juan V.; Ibanez, Victoria; Herrero-Ortega, Amparo; Aleza, Pablo; Pérez-Pérez, Julián; Ramón, Daniel; Brunel, Dominique; Luro, François; Chen, Chunxian; Farmerie, William G.; Desany, Brian; Kodira, Chinnappa; Mohiuddin, Mohammed; Harkins, Tim; Fredrikson, Karin; Burns, Paul; Lomsadze, Alexandre; Borodovsky, Mark; Reforgiato, Giuseppe; Freitas-Astúa, Juliana; Quetier, Francis; Navarro, Luis; Roose, Mikeal; Wincker, Patrick; Schmutz, Jeremy; Morgante, Michele; Machado, Marcos Antonio; Talon, Manuel; Jaillon, Olivier; Ollitrault, Patrick; Gmitter, Frederick; Rokhsar, Daniel

    2014-01-01

    The domestication of citrus, is poorly understood. Cultivated types are selections from, or hybrids of, wild progenitor species, whose identities and contributions remain controversial. By comparative analysis of a collection of citrus genomes, including a high quality haploid reference, we show that cultivated types were derived from two progenitor species. Though cultivated pummelos represent selections from a single progenitor species, C. maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species, C. reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, implying that wild mandarins were part of the early breeding germplasm. A wild “mandarin” from China exhibited substantial divergence from C. reticulata, suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and enables sequence-directed genetic improvement. PMID:24908277

  11. Genome-wide location analysis reveals a role for Sub1 in RNA polymerase III transcription

    Science.gov (United States)

    Tavenet, Arounie; Suleau, Audrey; Dubreuil, Géraldine; Ferrari, Roberto; Ducrot, Cécile; Michaut, Magali; Aude, Jean-Christophe; Dieci, Giorgio; Lefebvre, Olivier; Conesa, Christine; Acker, Joël

    2009-01-01

    Human PC4 and the yeast ortholog Sub1 have multiple functions in RNA polymerase II transcription. Genome-wide mapping revealed that Sub1 is present on Pol III-transcribed genes. Sub1 was found to interact with components of the Pol III transcription system and to stimulate the initiation and reinitiation steps in a system reconstituted with all recombinant factors. Sub1 was required for optimal Pol III gene transcription in exponentially growing cells. PMID:19706510

  12. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax.

    Science.gov (United States)

    Li, Kexin; Hong, Wei; Jiao, Hengwu; Wang, Guo-Dong; Rodriguez, Karl A; Buffenstein, Rochelle; Zhao, Yang; Nevo, Eviatar; Zhao, Huabin

    2015-09-22

    Sympatric speciation (SS), i.e., speciation within a freely breeding population or in contiguous populations, was first proposed by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection] and is still controversial despite theoretical support [Gavrilets S (2004) Fitness Landscapes and the Origin of Species (MPB-41)] and mounting empirical evidence. Speciation of subterranean mammals generally, including the genus Spalax, was considered hitherto allopatric, whereby new species arise primarily through geographic isolation. Here we show in Spalax a case of genome-wide divergence analysis in mammals, demonstrating that SS in continuous populations, with gene flow, encompasses multiple widespread genomic adaptive complexes, associated with the sharply divergent ecologies. The two abutting soil populations of S. galili in northern Israel habituate the ancestral Senonian chalk population and abutting derivative Plio-Pleistocene basalt population. Population divergence originated ∼0.2-0.4 Mya based on both nuclear and mitochondrial genome analyses. Population structure analysis displayed two distinctly divergent clusters of chalk and basalt populations. Natural selection has acted on 300+ genes across the genome, diverging Spalax chalk and basalt soil populations. Gene ontology enrichment analysis highlights strong but differential soil population adaptive complexes: in basalt, sensory perception, musculature, metabolism, and energetics, and in chalk, nutrition and neurogenetics are outstanding. Population differentiation of chemoreceptor genes suggests intersoil population's mate and habitat choice substantiating SS. Importantly, distinctions in protein degradation may also contribute to SS. Natural selection and natural genetic engineering [Shapiro JA (2011) Evolution: A View From the 21st Century] overrule gene flow, evolving divergent ecological adaptive complexes. Sharp ecological divergences abound in nature; therefore, SS appears to be an

  13. Genome-wide selection of superior reference genes for expression studies in Ganoderma lucidum.

    Science.gov (United States)

    Xu, Zhichao; Xu, Jiang; Ji, Aijia; Zhu, Yingjie; Zhang, Xin; Hu, Yuanlei; Song, Jingyuan; Chen, Shilin

    2015-12-15

    Quantitative real-time polymerase chain reaction (qRT-PCR) is widely used for the accurate analysis of gene expression. However, high homology among gene families might result in unsuitability of reference genes, which leads to the inaccuracy of qRT-PCR analysis. The release of the Ganoderma lucidum genome has triggered numerous studies to be done on the homology among gene families with the purpose of selecting reliable reference genes. Based on the G. lucdum genome and transcriptome database, 38 candidate reference genes including 28 novel genes were systematically selected and evaluated for qRT-PCR normalization. The result indicated that commonly used polyubiquitin (PUB), beta-actin (BAT), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were unsuitable reference genes because of the high sequence similarity and low primer specificity. According to the evaluation of RefFinder, cyclophilin 5 (CYP5) was ranked as the most stable reference gene for 27 tested samples under all experimental conditions and eighteen mycelial samples. Based on sequence analysis and expression analysis, our study suggested that gene characteristic, primer specificity of high homologous genes, allele-specificity expression of candidate genes and under-evaluation of reference genes influenced the accuracy and sensitivity of qRT-PCR analysis. This investigation not only revealed potential factors influencing the unsuitability of reference genes but also selected the superior reference genes from more candidate genes and testing samples than those used in the previous study. Furthermore, our study established a model for reference gene analysis by using the genomic sequence.

  14. Long- and short-term selective forces on malaria parasite genomes

    KAUST Repository

    Nygaard, Sanne

    2010-09-09

    Plasmodium parasites, the causal agents of malaria, result in more than 1 million deaths annually. Plasmodium are unicellular eukaryotes with small ~23 Mb genomes encoding ~5200 protein-coding genes. The protein-coding genes comprise about half of these genomes. Although evolutionary processes have a significant impact on malaria control, the selective pressures within Plasmodium genomes are poorly understood, particularly in the non-protein-coding portion of the genome. We use evolutionary methods to describe selective processes in both the coding and non-coding regions of these genomes. Based on genome alignments of seven Plasmodium species, we show that protein-coding, intergenic and intronic regions are all subject to purifying selection and we identify 670 conserved non-genic elements. We then use genome-wide polymorphism data from P. falciparum to describe short-term selective processes in this species and identify some candidate genes for balancing (diversifying) selection. Our analyses suggest that there are many functional elements in the non-genic regions of these genomes and that adaptive evolution has occurred more frequently in the protein-coding regions of the genome. © 2010 Nygaard et al.

  15. Genomes of Gardnerella Strains Reveal an Abundance of Prophages within the Bladder Microbiome.

    Science.gov (United States)

    Malki, Kema; Shapiro, Jason W; Price, Travis K; Hilt, Evann E; Thomas-White, Krystal; Sircar, Trina; Rosenfeld, Amy B; Kuffel, Gina; Zilliox, Michael J; Wolfe, Alan J; Putonti, Catherine

    2016-01-01

    Bacterial surveys of the vaginal and bladder human microbiota have revealed an abundance of many similar bacterial taxa. As the bladder was once thought to be sterile, the complex interactions between microbes within the bladder have yet to be characterized. To initiate this process, we have begun sequencing isolates, including the clinically relevant genus Gardnerella. Herein, we present the genomic sequences of four Gardnerella strains isolated from the bladders of women with symptoms of urgency urinary incontinence; these are the first Gardnerella genomes produced from this niche. Congruent to genomic characterization of Gardnerella isolates from the reproductive tract, isolates from the bladder reveal a large pangenome, as well as evidence of high frequency horizontal gene transfer. Prophage gene sequences were found to be abundant amongst the strains isolated from the bladder, as well as amongst publicly available Gardnerella genomes from the vagina and endometrium, motivating an in depth examination of these sequences. Amongst the 39 Gardnerella strains examined here, there were more than 400 annotated prophage gene sequences that we could cluster into 95 homologous groups; 49 of these groups were unique to a single strain. While many of these prophages exhibited no sequence similarity to any lytic phage genome, estimation of the rate of phage acquisition suggests both vertical and horizontal acquisition. Furthermore, bioinformatic evidence indicates that prophage acquisition is ongoing within both vaginal and bladder Gardnerella populations. The abundance of prophage sequences within the strains examined here suggests that phages could play an important role in the species' evolutionary history and in its interactions within the complex communities found in the female urinary and reproductive tracts.

  16. Genomes of Gardnerella Strains Reveal an Abundance of Prophages within the Bladder Microbiome

    Science.gov (United States)

    Malki, Kema; Shapiro, Jason W.; Price, Travis K.; Hilt, Evann E.; Thomas-White, Krystal; Sircar, Trina; Rosenfeld, Amy B.; Kuffel, Gina; Zilliox, Michael J.; Wolfe, Alan J.; Putonti, Catherine

    2016-01-01

    Bacterial surveys of the vaginal and bladder human microbiota have revealed an abundance of many similar bacterial taxa. As the bladder was once thought to be sterile, the complex interactions between microbes within the bladder have yet to be characterized. To initiate this process, we have begun sequencing isolates, including the clinically relevant genus Gardnerella. Herein, we present the genomic sequences of four Gardnerella strains isolated from the bladders of women with symptoms of urgency urinary incontinence; these are the first Gardnerella genomes produced from this niche. Congruent to genomic characterization of Gardnerella isolates from the reproductive tract, isolates from the bladder reveal a large pangenome, as well as evidence of high frequency horizontal gene transfer. Prophage gene sequences were found to be abundant amongst the strains isolated from the bladder, as well as amongst publicly available Gardnerella genomes from the vagina and endometrium, motivating an in depth examination of these sequences. Amongst the 39 Gardnerella strains examined here, there were more than 400 annotated prophage gene sequences that we could cluster into 95 homologous groups; 49 of these groups were unique to a single strain. While many of these prophages exhibited no sequence similarity to any lytic phage genome, estimation of the rate of phage acquisition suggests both vertical and horizontal acquisition. Furthermore, bioinformatic evidence indicates that prophage acquisition is ongoing within both vaginal and bladder Gardnerella populations. The abundance of prophage sequences within the strains examined here suggests that phages could play an important role in the species’ evolutionary history and in its interactions within the complex communities found in the female urinary and reproductive tracts. PMID:27861551

  17. Partial sequencing of the bottle gourd genome reveals markers useful for phylogenetic analysis and breeding

    Directory of Open Access Journals (Sweden)

    Wang Sha

    2011-09-01

    Full Text Available Abstract Background Bottle gourd [Lagenaria siceraria (Mol. Standl.] is an important cucurbit crop worldwide. Archaeological research indicates that bottle gourd was domesticated more than 10,000 years ago, making it one of the earliest plants cultivated by man. In spite of its widespread importance and long history of cultivation almost nothing has been known about the genome of this species thus far. Results We report here the partial sequencing of bottle gourd genome using the 454 GS-FLX Titanium sequencing platform. A total of 150,253 sequence reads, which were assembled into 3,994 contigs and 82,522 singletons were generated. The total length of the non-redundant singletons/assemblies is 32 Mb, theoretically covering ~ 10% of the bottle gourd genome. Functional annotation of the sequences revealed a broad range of functional types, covering all the three top-level ontologies. Comparison of the gene sequences between bottle gourd and the model cucurbit cucumber (Cucumis sativus revealed a 90% sequence similarity on average. Using the sequence information, 4395 microsatellite-containing sequences were identified and 400 SSR markers were developed, of which 94% amplified bands of anticipated sizes. Transferability of these markers to four other cucurbit species showed obvious decline with increasing phylogenetic distance. From analyzing polymorphisms of a subset of 14 SSR markers assayed on 44 representative China bottle gourd varieties/landraces, a principal coordinates (PCo analysis output and a UPGMA-based dendrogram were constructed. Bottle gourd accessions tended to group by fruit shape rather than geographic origin, although in certain subclades the lines from the same or close origin did tend to cluster. Conclusions This work provides an initial basis for genome characterization, gene isolation and comparative genomics analysis in bottle gourd. The SSR markers developed would facilitate marker assisted breeding schemes for efficient

  18. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Zhao-Ming Gao; Jiang-Tao Li; Salim Bougouffa; Ren Mao Tian; Vladimir B.Bajic; Pei-Yuan Qian

    2016-01-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum,of which the metabolic processes and ecological importance remain unclear.In the present study,we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method.Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments.Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla.The genome of TCS1 (at least 1.27 Mbp)contains a full set of genes encoding core metabolic pathways,including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate.The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat.Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism.The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood-Ljungdahl pathway were also found in the genome.Phylogenetic study of the essential genes for the Wood-Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens.Compared with genomes of acetogenic bacteria,Aerophobetes bacterium TCS 1 genome lacks the genes involved in nitrogen metabolism,sulfur metabolism,signal transduction and cell motility.The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2,hydrogen and sugars,and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps.

  19. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    KAUST Repository

    Wang, Yong

    2016-07-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic pathways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat. Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood–Ljungdahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood–Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aerophobetes bacterium TCS1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal transduction and cell motility. The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg.

  20. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints.

    Directory of Open Access Journals (Sweden)

    Yuchun Guo

    Full Text Available An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method, genome wide event finding and motif discovery (GEM. GEM resolves ChIP data into explanatory motifs and binding events at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new motifs for factors with unknown binding specificity. GEM's adaptive learning of binding-event read distributions allows it to further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found 37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding, including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help elucidate genome function and the

  1. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints.

    Science.gov (United States)

    Guo, Yuchun; Mahony, Shaun; Gifford, David K

    2012-01-01

    An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method, genome wide event finding and motif discovery (GEM). GEM resolves ChIP data into explanatory motifs and binding events at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new motifs for factors with unknown binding specificity. GEM's adaptive learning of binding-event read distributions allows it to further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found 37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding, including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help elucidate genome function and the implementation of combinatorial

  2. Natural selection and the distribution of identity-by-descent in the human genome

    DEFF Research Database (Denmark)

    Albrechtsen, Anders; Moltke, Ida; Nielsen, Rasmus

    2010-01-01

    There has recently been considerable interest in detecting natural selection in the human genome. Selection will usually tend to increase identity-by-descent (IBD) among individuals in a population, and many methods for detecting recent and ongoing positive selection indirectly take advantage......, we use a recently developed method for identifying IBD sharing among individuals from genome-wide data to scan populations from the new HapMap phase 3 project for regions with excess IBD sharing in order to identify regions in the human genome that have been under strong, very recent selection....... The HLA region is by far the region showing the most extreme signal, suggesting that much of the strong recent selection acting on the human genome has been immune related and acting on HLA loci. As equilibrium overdominance does not tend to increase IBD, we argue that this type of selection cannot...

  3. Genomic identification of founding haplotypes reveals the history of the selfing species Capsella rubella.

    Directory of Open Access Journals (Sweden)

    Yaniv Brandvain

    Full Text Available The shift from outcrossing to self-fertilization is among the most common evolutionary transitions in flowering plants. Until recently, however, a genome-wide view of this transition has been obscured by both a dearth of appropriate data and the lack of appropriate population genomic methods to interpret such data. Here, we present a novel population genomic analysis detailing the origin of the selfing species, Capsella rubella, which recently split from its outcrossing sister, Capsella grandiflora. Due to the recency of the split, much of the variation within C. rubella is also found within C. grandiflora. We can therefore identify genomic regions where two C. rubella individuals have inherited the same or different segments of ancestral diversity (i.e. founding haplotypes present in C. rubella's founder(s. Based on this analysis, we show that C. rubella was founded by multiple individuals drawn from a diverse ancestral population closely related to extant C. grandiflora, that drift and selection have rapidly homogenized most of this ancestral variation since C. rubella's founding, and that little novel variation has accumulated within this time. Despite the extensive loss of ancestral variation, the approximately 25% of the genome for which two C. rubella individuals have inherited different founding haplotypes makes up roughly 90% of the genetic variation between them. To extend these findings, we develop a coalescent model that utilizes the inferred frequency of founding haplotypes and variation within founding haplotypes to estimate that C. rubella was founded by a potentially large number of individuals between 50 and 100 kya, and has subsequently experienced a twenty-fold reduction in its effective population size. As population genomic data from an increasing number of outcrossing/selfing pairs are generated, analyses like the one developed here will facilitate a fine-scaled view of the evolutionary and demographic impact of the

  4. Insights into the Dekkera bruxellensis genomic landscape: comparative genomics reveals variations in ploidy and nutrient utilisation potential amongst wine isolates.

    Directory of Open Access Journals (Sweden)

    Anthony R Borneman

    2014-02-01

    Full Text Available The yeast Dekkera bruxellensis is a major contaminant of industrial fermentations, such as those used for the production of biofuel and wine, where it outlasts and, under some conditions, outcompetes the major industrial yeast Saccharomyces cerevisiae. In order to investigate the level of inter-strain variation that is present within this economically important species, the genomes of four diverse D. bruxellensis isolates were compared. While each of the four strains was shown to contain a core diploid genome, which is clearly sufficient for survival, two of the four isolates have a third haploid complement of chromosomes. The sequences of these additional haploid genomes were both highly divergent from those comprising the diploid core and divergent between the two triploid strains. Similar to examples in the Saccharomyces spp. clade, where some allotriploids have arisen on the basis of enhanced ability to survive a range of environmental conditions, it is likely these strains are products of two independent hybridisation events that may have involved multiple species or distinct sub-species of Dekkera. Interestingly these triploid strains represent the vast majority (92% of isolates from across the Australian wine industry, suggesting that the additional set of chromosomes may confer a selective advantage in winery environments that has resulted in these hybrid strains all-but replacing their diploid counterparts in Australian winery settings. In addition to the apparent inter-specific hybridisation events, chromosomal aberrations such as strain-specific insertions and deletions and loss-of-heterozygosity by gene conversion were also commonplace. While these events are likely to have affected many phenotypes across these strains, we have been able to link a specific deletion to the inability to utilise nitrate by some strains of D. bruxellensis, a phenotype that may have direct impacts in the ability for these strains to compete with S

  5. Insights into the Dekkera bruxellensis genomic landscape: comparative genomics reveals variations in ploidy and nutrient utilisation potential amongst wine isolates.

    Science.gov (United States)

    Borneman, Anthony R; Zeppel, Ryan; Chambers, Paul J; Curtin, Chris D

    2014-02-01

    The yeast Dekkera bruxellensis is a major contaminant of industrial fermentations, such as those used for the production of biofuel and wine, where it outlasts and, under some conditions, outcompetes the major industrial yeast Saccharomyces cerevisiae. In order to investigate the level of inter-strain variation that is present within this economically important species, the genomes of four diverse D. bruxellensis isolates were compared. While each of the four strains was shown to contain a core diploid genome, which is clearly sufficient for survival, two of the four isolates have a third haploid complement of chromosomes. The sequences of these additional haploid genomes were both highly divergent from those comprising the diploid core and divergent between the two triploid strains. Similar to examples in the Saccharomyces spp. clade, where some allotriploids have arisen on the basis of enhanced ability to survive a range of environmental conditions, it is likely these strains are products of two independent hybridisation events that may have involved multiple species or distinct sub-species of Dekkera. Interestingly these triploid strains represent the vast majority (92%) of isolates from across the Australian wine industry, suggesting that the additional set of chromosomes may confer a selective advantage in winery environments that has resulted in these hybrid strains all-but replacing their diploid counterparts in Australian winery settings. In addition to the apparent inter-specific hybridisation events, chromosomal aberrations such as strain-specific insertions and deletions and loss-of-heterozygosity by gene conversion were also commonplace. While these events are likely to have affected many phenotypes across these strains, we have been able to link a specific deletion to the inability to utilise nitrate by some strains of D. bruxellensis, a phenotype that may have direct impacts in the ability for these strains to compete with S. cerevisiae.

  6. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood.

    Science.gov (United States)

    Toperoff, Gidon; Aran, Dvir; Kark, Jeremy D; Rosenberg, Michael; Dubnikov, Tatyana; Nissan, Batel; Wainstein, Julio; Friedlander, Yechiel; Levy-Lahad, Ephrat; Glaser, Benjamin; Hellman, Asaf

    2012-01-15

    Inter-individual DNA methylation variations were frequently hypothesized to alter individual susceptibility to Type 2 Diabetes Mellitus (T2DM). Sequence-influenced methylations were described in T2DM-associated genomic regions, but evidence for direct, sequence-independent association with disease risk is missing. Here, we explore disease-contributing DNA methylation through a stepwise study design: first, a pool-based, genome-scale screen among 1169 case and control individuals revealed an excess of differentially methylated sites in genomic regions that were previously associated with T2DM through genetic studies. Next, in-depth analyses were performed at selected top-ranking regions. A CpG site in the first intron of the FTO gene showed small (3.35%) but significant (P = 0.000021) hypomethylation of cases relative to controls. The effect was independent of the sequence polymorphism in the region and persists among individuals carrying the sequence-risk alleles. The odds of belonging to the T2DM group increased by 6.1% for every 1% decrease in methylation (OR = 1.061, 95% CI: 1.032-1.090), the odds ratio for decrease of 1 standard deviation of methylation (adjusted to gender) was 1.5856 (95% CI: 1.2824-1.9606) and the sensitivity (area under the curve = 0.638, 95% CI: 0.586-0.690; males = 0.675, females = 0.609) was better than that of the strongest known sequence variant. Furthermore, a prospective study in an independent population cohort revealed significant hypomethylation of young individuals that later progressed to T2DM, relative to the individuals who stayed healthy. Further genomic analysis revealed co-localization with gene enhancers and with binding sites for methylation-sensitive transcriptional regulators. The data showed that low methylation level at the analyzed sites is an early marker of T2DM and suggests a novel mechanism by which early-onset, inter-individual methylation variation at isolated non-promoter genomic sites predisposes to T2DM.

  7. Genomic profiling of plasmablastic lymphoma using array comparative genomic hybridization (aCGH: revealing significant overlapping genomic lesions with diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Lu Xin-Yan

    2009-11-01

    Full Text Available Abstract Background Plasmablastic lymphoma (PL is a subtype of diffuse large B-cell lymphoma (DLBCL. Studies have suggested that tumors with PL morphology represent a group of neoplasms with clinopathologic characteristics corresponding to different entities including extramedullary plasmablastic tumors associated with plasma cell myeloma (PCM. The goal of the current study was to evaluate the genetic similarities and differences among PL, DLBCL (AIDS-related and non AIDS-related and PCM using array-based comparative genomic hybridization. Results Examination of genomic data in PL revealed that the most frequent segmental gain (> 40% include: 1p36.11-1p36.33, 1p34.1-1p36.13, 1q21.1-1q23.1, 7q11.2-7q11.23, 11q12-11q13.2 and 22q12.2-22q13.3. This correlated with segmental gains occurring in high frequency in DLBCL (AIDS-related and non AIDS-related cases. There were some segmental gains and some segmental loss that occurred in PL but not in the other types of lymphoma suggesting that these foci may contain genes responsible for the differentiation of this lymphoma. Additionally, some segmental gains and some segmental loss occurred only in PL and AIDS associated DLBCL suggesting that these foci may be associated with HIV infection. Furthermore, some segmental gains and some segmental loss occurred only in PL and PCM suggesting that these lesions may be related to plasmacytic differentiation. Conclusion To the best of our knowledge, the current study represents the first genomic exploration of PL. The genomic aberration pattern of PL appears to be more similar to that of DLBCL (AIDS-related or non AIDS-related than to PCM. Our findings suggest that PL may remain best classified as a subtype of DLBCL at least at the genome level.

  8. Advances in the translational genomics of neuroblastoma: From improving risk stratification and revealing novel biology to identifying actionable genomic alterations.

    Science.gov (United States)

    Bosse, Kristopher R; Maris, John M

    2016-01-01

    Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus and not only has catalyzed a more comprehensive understanding of neuroblastoma tumorigenesis but also has revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog) amplification, for risk stratification. Given the relative paucity of recurrent, activating, somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed toward aberrantly regulated pathways in relapsed disease. This review summarizes the current state of knowledge about neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma.

  9. Searching for Footprints of Positive Selection in Whole-Genome SNP Data From Nonequilibrium Populations

    OpenAIRE

    Pavlidis, Pavlos; Jensen, Jeffrey D.; Stephan, Wolfgang

    2010-01-01

    A major goal of population genomics is to reconstruct the history of natural populations and to infer the neutral and selective scenarios that can explain the present-day polymorphism patterns. However, the separation between neutral and selective hypotheses has proven hard, mainly because both may predict similar patterns in the genome. This study focuses on the development of methods that can be used to distinguish neutral from selective hypotheses in equilibrium and nonequilibrium populati...

  10. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora.

    Science.gov (United States)

    Fernández-Fueyo, Elena; Ruiz-Dueñas, Francisco J; Miki, Yuta; Martínez, María Jesús; Hammel, Kenneth E; Martínez, Angel T

    2012-05-11

    The white-rot fungus Ceriporiopsis subvermispora delignifies lignocellulose with high selectivity, but until now it has appeared to lack the specialized peroxidases, termed lignin peroxidases (LiPs) and versatile peroxidases (VPs), that are generally thought important for ligninolysis. We screened the recently sequenced C. subvermispora genome for genes that encode peroxidases with a potential ligninolytic role. A total of 26 peroxidase genes was apparent after a structural-functional classification based on homology modeling and a search for diagnostic catalytic amino acid residues. In addition to revealing the presence of nine heme-thiolate peroxidase superfamily members and the unexpected absence of the dye-decolorizing peroxidase superfamily, the search showed that the C. subvermispora genome encodes 16 class II enzymes in the plant-fungal-bacterial peroxidase superfamily, where LiPs and VPs are classified. The 16 encoded enzymes include 13 putative manganese peroxidases and one generic peroxidase but most notably two peroxidases containing the catalytic tryptophan characteristic of LiPs and VPs. We expressed these two enzymes in Escherichia coli and determined their substrate specificities on typical LiP/VP substrates, including nonphenolic lignin model monomers and dimers, as well as synthetic lignin. The results show that the two newly discovered C. subvermispora peroxidases are functionally competent LiPs and also suggest that they are phylogenetically and catalytically intermediate between classical LiPs and VPs. These results offer new insight into selective lignin degradation by C. subvermispora.

  11. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity

    Science.gov (United States)

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F; Abbazia, Patrick; Ababio, Amma; Adam, Naazneen

    2015-01-01

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery. DOI: http://dx.doi.org/10.7554/eLife.06416.001 PMID:25919952

  12. A novel genome-wide full- length kinesin prediction analysis reveals additional mammalian kinesins

    Institute of Scientific and Technical Information of China (English)

    XUE Yu; LIU Dan; FU Chuanhai; DOU Zhen; ZHOU Qing; YAO Xuebiao

    2006-01-01

    Kinesin superfamily of microtubule- based motor orchestrates a variety of cellular processes. Recent availability of mammalian genomes has enabled analyses of kinesins on the whole genome. Here we present a novel full-length kinesin prediction program (FKPP) for mammalian kinesin gene discovery based on a comparative genomics approach. Contrary to previous predictions of 94 kinesins, we identify a total of 134 potentially kinesin genes from mammalian genomes, including 45 from mouse, 45 from rat and 44 from human. In addition, FKPP synthesizes 25 potentially full-length mammalian kinesins based on the partial sequences in the database. Surprisingly, FKPP reveals that full-length human CENP-E contains 2701 aa rather than 2663 aa in the database. Experimentation using sequence specific antibody and cDNA sequencing of human CENP-E validates the accuracy of FKPP. Given the remarkable computing efficiency and accuracy of FKPP, we reclassify the mammalian kinesin superfamily. Since current databases contain many incomplete sequences, FKPP may provide a novel approach for molecular delineation of kinesins and other protein families.

  13. A korarchaeal genome reveals insights into the evolution of the Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain J; Elkins, James G.; Podar, Mircea; Graham, David E.; Makarova, Kira S.; Wolf, Yuri; Randau, Lennart; Hedlund, Brian P.; Brochier-Armanet, Celine; Kunin, Victor; Anderson, Iain; Lapidus, Alla; Goltsman, Eugene; Barry, Kerrie; Koonin, Eugene V.; Hugenholtz, Phil; Kyrpides, Nikos; Wanner, Gerhard; Richardson, Paul; Keller, Martin; Stetter, Karl O.

    2008-06-05

    The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name,"Candidatus Korarchaeum cryptofilum," which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49percent. Of the 1,617 predicted protein-coding genes, 1,382 (85percent) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.

  14. A Korarchael Genome Reveals Insights into the Evolution of the Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla; Elkins, James G.; Podar, Mircea; Graham, David E.; Makarova, Kira S.; Wolf, Yuri; Randau, Lennart; Hedlund, Brian P.; Brochier-Armanet, Celine; Kunin, Victor; Anderson, Iain; Lapidus, Alla; Goltsman, Eugene; Barry, Kerrie; Koonin, Eugene V.; Hugenholtz, Phil; Kyrpides, Nikos; Wanner, Gerhard; Richardson, Paul; Keller, Martin; Stetter, Karl O.

    2008-01-07

    The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, ?Candidatus Korarchaeum cryptofilum,? which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49percent. Of the 1,617 predicted protein-coding genes, 1,382 (85percent) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.

  15. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells.

    Science.gov (United States)

    Chiarle, Roberto; Zhang, Yu; Frock, Richard L; Lewis, Susanna M; Molinie, Benoit; Ho, Yu-Jui; Myers, Darienne R; Choi, Vivian W; Compagno, Mara; Malkin, Daniel J; Neuberg, Donna; Monti, Stefano; Giallourakis, Cosmas C; Gostissa, Monica; Alt, Frederick W

    2011-09-30

    Whereas chromosomal translocations are common pathogenetic events in cancer, mechanisms that promote them are poorly understood. To elucidate translocation mechanisms in mammalian cells, we developed high-throughput, genome-wide translocation sequencing (HTGTS). We employed HTGTS to identify tens of thousands of independent translocation junctions involving fixed I-SceI meganuclease-generated DNA double-strand breaks (DSBs) within the c-myc oncogene or IgH locus of B lymphocytes induced for activation-induced cytidine deaminase (AID)-dependent IgH class switching. DSBs translocated widely across the genome but were preferentially targeted to transcribed chromosomal regions. Additionally, numerous AID-dependent and AID-independent hot spots were targeted, with the latter comprising mainly cryptic I-SceI targets. Comparison of translocation junctions with genome-wide nuclear run-ons revealed a marked association between transcription start sites and translocation targeting. The majority of translocation junctions were formed via end-joining with short microhomologies. Our findings have implications for diverse fields, including gene therapy and cancer genomics.

  16. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice.

    Science.gov (United States)

    Tong, Wei; He, Qiang; Park, Yong-Jin

    2017-03-03

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucleotide diversity than landrace and/or weedy, and landrace rice has higher diversity than weedy rice. Genetic distance was suggestive of a high level of breeding between landrace and weedy rice, and the landrace showing a closer association with wild rice than weedy rice. Population structure and principal component analyses showed no obvious difference in the genetic backgrounds of landrace and weedy rice in mitochondrial genome level. Phylogenetic, population split, and haplotype network evaluations were suggestive of independent origins of the indica and japonica varieties. The origin of weedy rice is supposed to be more likely from cultivated rice rather than from wild rice in mitochondrial genome level.

  17. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice

    Science.gov (United States)

    Tong, Wei; He, Qiang; Park, Yong-Jin

    2017-01-01

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucleotide diversity than landrace and/or weedy, and landrace rice has higher diversity than weedy rice. Genetic distance was suggestive of a high level of breeding between landrace and weedy rice, and the landrace showing a closer association with wild rice than weedy rice. Population structure and principal component analyses showed no obvious difference in the genetic backgrounds of landrace and weedy rice in mitochondrial genome level. Phylogenetic, population split, and haplotype network evaluations were suggestive of independent origins of the indica and japonica varieties. The origin of weedy rice is supposed to be more likely from cultivated rice rather than from wild rice in mitochondrial genome level. PMID:28256554

  18. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations

    Directory of Open Access Journals (Sweden)

    Légaré Danielle

    2011-10-01

    Full Text Available Abstract Background Several mutations were present in the genome of Streptococcus pneumoniae linezolid-resistant strains but the role of several of these mutations had not been experimentally tested. To analyze the role of these mutations, we reconstituted resistance by serial whole genome transformation of a novel resistant isolate into two strains with sensitive background. We sequenced the parent mutant and two independent transformants exhibiting similar minimum inhibitory concentration to linezolid. Results Comparative genomic analyses revealed that transformants acquired G2576T transversions in every gene copy of 23S rRNA and that the number of altered copies correlated with the level of linezolid resistance and cross-resistance to florfenicol and chloramphenicol. One of the transformants also acquired a mutation present in the parent mutant leading to the overexpression of an ABC transporter (spr1021. The acquisition of these mutations conferred a fitness cost however, which was further enhanced by the acquisition of a mutation in a RNA methyltransferase implicated in resistance. Interestingly, the fitness of the transformants could be restored in part by the acquisition of altered copies of the L3 and L16 ribosomal proteins and by mutations leading to the overexpression of the spr1887 ABC transporter that were present in the original linezolid-resistant mutant. Conclusions Our results demonstrate the usefulness of whole genome approaches at detecting major determinants of resistance as well as compensatory mutations that alleviate the fitness cost associated with resistance.

  19. Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen.

    Science.gov (United States)

    Nobu, Masaru Konishi; Narihiro, Takashi; Kuroda, Kyohei; Mei, Ran; Liu, Wen-Tso

    2016-10-01

    The ecophysiology of one candidate methanogen class WSA2 (or Arc I) remains largely uncharacterized, despite the long history of research on Euryarchaeota methanogenesis. To expand our understanding of methanogen diversity and evolution, we metagenomically recover eight draft genomes for four WSA2 populations. Taxonomic analyses indicate that WSA2 is a distinct class from other Euryarchaeota. None of genomes harbor pathways for CO2-reducing and aceticlastic methanogenesis, but all possess H2 and CO oxidation and energy conservation through H2-oxidizing electron confurcation and internal H2 cycling. As the only discernible methanogenic outlet, they consistently encode a methylated thiol coenzyme M methyltransferase. Although incomplete, all draft genomes point to the proposition that WSA2 is the first discovered methanogen restricted to methanogenesis through methylated thiol reduction. In addition, the genomes lack pathways for carbon fixation, nitrogen fixation and biosynthesis of many amino acids. Acetate, malonate and propionate may serve as carbon sources. Using methylated thiol reduction, WSA2 may not only bridge the carbon and sulfur cycles in eutrophic methanogenic environments, but also potentially compete with CO2-reducing methanogens and even sulfate reducers. These findings reveal a remarkably unique methanogen 'Candidatus Methanofastidiosum methylthiophilus' as the first insight into the sixth class of methanogens 'Candidatus Methanofastidiosa'.

  20. Unique features of a Japanese 'Candidatus Liberibacter asiaticus' strain revealed by whole genome sequencing.

    Directory of Open Access Journals (Sweden)

    Hiroshi Katoh

    Full Text Available Citrus greening (huanglongbing is the most destructive disease of citrus worldwide. It is spread by citrus psyllids and is associated with phloem-limited bacteria of three species of α-Proteobacteria, namely, 'Candidatus Liberibacter asiaticus', 'Ca. L. americanus', and 'Ca. L. africanus'. Recent findings suggested that some Japanese strains lack the bacteriophage-type DNA polymerase region (DNA pol, in contrast to the Floridian psy62 strain. The whole genome sequence of the pol-negative 'Ca. L. asiaticus' Japanese isolate Ishi-1 was determined by metagenomic analysis of DNA extracted from 'Ca. L. asiaticus'-infected psyllids and leaf midribs. The 1.19-Mb genome has an average 36.32% GC content. Annotation revealed 13 operons encoding rRNA and 44 tRNA genes, but no typical bacterial pathogenesis-related genes were located within the genome, similar to the Floridian psy62 and Chinese gxpsy. In contrast to other 'Ca. L. asiaticus' strains, the genome of the Japanese Ishi-1 strain lacks a prophage-related region.

  1. Comparative Analysis of 35 Basidiomycete Genomes Reveals Diversity and Uniqueness of the Phylum

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Otillar, Robert; Fagnan, Kirsten; Boussau, Bastien; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Held, Benjamin; Nagy, Laszlo; Floudas, Dimitris; Morin, Emmanuelle; Manning, Gerard; Baker, Scott; Martin, Francis; Blanchette, Robert; Hibbett, David; Grigoriev, Igor V.

    2013-03-11

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprobes including wood decaying fungi. To better understand the diversity of this phylum we compared the genomes of 35 basidiomycete fungi including 6 newly sequenced genomes. The genomes of basidiomycetes span extremes of genome size, gene number, and repeat content. A phylogenetic tree of Basidiomycota was generated using the Phyldog software, which uses all available protein sequence data to simultaneously infer gene and species trees. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) comprising proteins found in only one organism. Phylogenetic patterns of plant biomass-degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay among the members of Agaricomycotina subphylum. There is a correlation of the profile of certain gene families to nutritional mode in Agaricomycotina. Based on phylogenetically-informed PCA analysis of such profiles, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has liginolytic class II fungal peroxidases. Furthermore, we find that both fungi exhibit wood decay with white rot-like characteristics in growth assays. Analysis of the rate of discovery of proteins with no or few homologs suggests the high value of continued sequencing of basidiomycete fungi.

  2. Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection.

    Science.gov (United States)

    Kuroda, Makoto; Yamashita, Atsushi; Hirakawa, Hideki; Kumano, Miyuki; Morikawa, Kazuya; Higashide, Masato; Maruyama, Atsushi; Inose, Yumiko; Matoba, Kimio; Toh, Hidehiro; Kuhara, Satoru; Hattori, Masahira; Ohta, Toshiko

    2005-09-13

    Staphylococcus saprophyticus is a uropathogenic Staphylococcus frequently isolated from young female outpatients presenting with uncomplicated urinary tract infections. We sequenced the whole genome of S. saprophyticus type strain ATCC 15305, which harbors a circular chromosome of 2,516,575 bp with 2,446 ORFs and two plasmids. Comparative genomic analyses with the strains of two other species, Staphylococcus aureus and Staphylococcus epidermidis, as well as experimental data, revealed the following characteristics of the S. saprophyticus genome. S. saprophyticus does not possess any virulence factors found in S. aureus, such as coagulase, enterotoxins, exoenzymes, and extracellular matrix-binding proteins, although it does have a remarkable paralog expansion of transport systems related to highly variable ion contents in the urinary environment. A further unique feature is that only a single ORF is predictable as a cell wall-anchored protein, and it shows positive hemagglutination and adherence to human bladder cell associated with initial colonization in the urinary tract. It also shows significantly high urease activity in S. saprophyticus. The uropathogenicity of S. saprophyticus can be attributed to its genome that is needed for its survival in the human urinary tract by means of novel cell wall-anchored adhesin and redundant uro-adaptive transport systems, together with urease.

  3. Ultra Deep Sequencing of a Baculovirus Population Reveals Widespread Genomic Variations

    Directory of Open Access Journals (Sweden)

    Aurélien Chateigner

    2015-07-01

    Full Text Available Viruses rely on widespread genetic variation and large population size for adaptation. Large DNA virus populations are thought to harbor little variation though natural populations may be polymorphic. To measure the genetic variation present in a dsDNA virus population, we deep sequenced a natural strain of the baculovirus Autographa californica multiple nucleopolyhedrovirus. With 124,221X average genome coverage of our 133,926 bp long consensus, we could detect low frequency mutations (0.025%. K-means clustering was used to classify the mutations in four categories according to their frequency in the population. We found 60 high frequency non-synonymous mutations under balancing selection distributed in all functional classes. These mutants could alter viral adaptation dynamics, either through competitive or synergistic processes. Lastly, we developed a technique for the delimitation of large deletions in next generation sequencing data. We found that large deletions occur along the entire viral genome, with hotspots located in homologous repeat regions (hrs. Present in 25.4% of the genomes, these deletion mutants presumably require functional complementation to complete their infection cycle. They might thus have a large impact on the fitness of the baculovirus population. Altogether, we found a wide breadth of genomic variation in the baculovirus population, suggesting it has high adaptive potential.

  4. Accounting for Linkage Disequilibrium in genome scans for selection without individual genotypes: the local score approach.

    Science.gov (United States)

    Fariello, María Inés; Boitard, Simon; Mercier, Sabine; Robelin, David; Faraut, Thomas; Arnould, Cécile; Recoquillay, Julien; Bouchez, Olivier; Salin, Gérald; Dehais, Patrice; Gourichon, David; Leroux, Sophie; Pitel, Frédérique; Leterrier, Christine; SanCristobal, Magali

    2017-04-10

    Detecting genomic footprints of selection is an important step in the understanding of evolution. Accounting for linkage disequilibrium in genome scans increases detection power, but haplotype-based methods require individual genotypes and are not applicable on pool-sequenced samples. We propose to take advantage of the local score approach to account for linkage disequilibrium in genome scans for selection, cumulating (possibly small) signals from single markers over a genomic segment, to clearly pinpoint a selection signal. Using computer simulations, we demonstrate that this approach detects selection with higher power than several state-of-the-art single marker, windowing or haplotype-based approaches. We illustrate this on two benchmark data sets including individual genotypes, for which we obtain similar results with the local score and one haplotype-based approach. Finally, we apply the local score approach to Pool-Seq data obtained from a divergent selection experiment on behavior in quail, and obtain precise and biologically coherent selection signals: while competing methods fail to highlight any clear selection signature, our method detects several regions involving genes known to act on social responsiveness or autistic traits. Although we focus here on the detection of positive selection from multiple population data, the local score approach is general and can be applied to other genome scans for selection or other genome-wide analyses such as GWAS. This article is protected by copyright. All rights reserved.

  5. Complexity of genome evolution by segmental rearrangement in Brassica rapa revealed by sequence-level analysis

    Directory of Open Access Journals (Sweden)

    Paterson Andrew H

    2009-11-01

    Full Text Available Abstract Background The Brassica species, related to Arabidopsis thaliana, include an important group of crops and represent an excellent system for studying the evolutionary consequences of polyploidy. Previous studies have led to a proposed structure for an ancestral karyotype and models for the evolution of the B. rapa genome by triplication and segmental rearrangement, but these have not been validated at the sequence level. Results We developed computational tools to analyse the public collection of B. rapa BAC end sequence, in order to identify candidates for representing collinearity discontinuities between the genomes of B. rapa and A. thaliana. For each putative discontinuity, one of the BACs was sequenced and analysed for collinearity with the genome of A. thaliana. Additional BAC clones were identified and sequenced as part of ongoing efforts to sequence four chromosomes of B. rapa. Strikingly few of the 19 inter-chromosomal rearrangements corresponded to the set of collinearity discontinuities anticipated on the basis of previous studies. Our analyses revealed numerous instances of newly detected collinearity blocks. For B. rapa linkage group A8, we were able to develop a model for the derivation of the chromosome from the ancestral karyotype. We were also able to identify a rearrangement event in the ancestor of B. rapa that was not shared with the ancestor of A. thaliana, and is represented in triplicate in the B. rapa genome. In addition to inter-chromosomal rearrangements, we identified and analysed 32 BACs containing the end points of segmental inversion events. Conclusion Our results show that previous studies of segmental collinearity between the A. thaliana, Brassica and ancestral karyotype genomes, although very useful, represent over-simplifications of their true relationships. The presence of numerous cryptic collinear genome segments and the frequent occurrence of segmental inversions mean that inference of the positions

  6. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda revealed from complete mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Lin Feng-Jiau

    2012-11-01

    Full Text Available Abstract Background The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. Results We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea, Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea. All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major and two Axiidea species (N. glyptocercus and N. thermophiles share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Conclusions Phylogenetic analyses on the mt genome

  7. Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity.

    Science.gov (United States)

    Xin, D; Wang, H; Yang, J; Su, Y-F; Fan, G-W; Wang, Y-F; Zhu, Y; Gao, X-M

    2010-02-01

    The seed of Psoralea corylifolia L. (PCL), a well-known traditional Chinese medicine, has been applied as a tonic or an aphrodisiac agent and commonly used as a remedy for bone fracture, osteomalacia and osteoporosis in China. In our study, the estrogen receptor subtype-selective activities of the extracts and compounds derived from PCL were analyzed using the HeLa cell assay. The different fractions including petroleum ether, CH(2)Cl(2) and EtOAc fractions of the EtOH extract of PCL showed significant activity in activating either ERalpha or ERbeta whereas the n-BuOH fraction showed no estrogenic activity. Further chromatographic purification of the active fractions yielded seven compounds including the two coumarins isopsoralen and psoralen, the four flavonoids isobavachalcone, bavachin, corylifol A and neobavaisoflavone, and the meroterpene phenol, bakuchiol. In reporter gene assay, the two coumarins (10(-8)-10(-5)M) acted as ERalpha-selective agonists while the other compounds (10(-9)-10(-6)M) activated both ERalpha and ERbeta. The estrogenic activities of all compounds could be completely suppressed by the pure estrogen antagonist, ICI 182,780, suggesting that the compounds exert their activities through ER. Only psoralen and isopsoralen as ERalpha agonists promoted MCF-7 cell proliferation significantly. Although all the compounds have estrogenic activity, they may exert different biological effects. In conclusion, both ER subtype-selective and nonselective activities in compounds derived from PCL suggested that PCL could be a new source for selective estrogen-receptor modulators.

  8. Association Mapping and the Genomic Consequences of Selection in Sunflower

    OpenAIRE

    Mandel, Jennifer R.; Savithri Nambeesan; Bowers, John E; Laura F Marek; Daniel Ebert; Loren H. Rieseberg; Knapp, Steven J.; Burke, John M.

    2013-01-01

    The combination of large-scale population genomic analyses and trait-based mapping approaches has the potential to provide novel insights into the evolutionary history and genome organization of crop plants. Here, we describe the detailed genotypic and phenotypic analysis of a sunflower (Helianthus annuus L.) association mapping population that captures nearly 90% of the allelic diversity present within the cultivated sunflower germplasm collection. We used these data to characterize overall ...

  9. Comparative genomic analysis reveals a distant liver enhancer upstream of the COUP-TFII gene

    Energy Technology Data Exchange (ETDEWEB)

    Baroukh, Nadine; Ahituv, Nadav; Chang, Jessie; Shoukry, Malak; Afzal, Veena; Rubin, Edward M.; Pennacchio, Len A.

    2004-08-20

    COUP-TFII is a central nuclear hormone receptor that tightly regulates the expression of numerous target lipid metabolism genes in vertebrates. However, it remains unclear how COUP-TFII itself is transcriptionally controlled since studies with its promoter and upstream region fail to recapitulate the genes liver expression. In an attempt to identify liver enhancers in the vicinity of COUP-TFII, we employed a comparative genomic approach. Initial comparisons between humans and mice of the 3,470kb gene poor region surrounding COUP-TFII revealed 2,023 conserved non-coding elements. To prioritize a subset of these elements for functional studies, we performed further genomic comparisons with the orthologous pufferfish (Fugu rubripes) locus and uncovered two anciently conserved non-coding sequences (CNS) upstream of COUP-TFII (CNS-62kb and CNS-66kb). Testing these two elements using reporter constructs in liver (HepG2) cells revealed that CNS-66kb, but not CNS-62kb, yielded robust in vitro enhancer activity. In addition, an in vivo reporter assay using naked DNA transfer with CNS-66kb linked to luciferase displayed strong reproducible liver expression in adult mice, further supporting its role as a liver enhancer. Together, these studies further support the utility of comparative genomics to uncover gene regulatory sequences based on evolutionary conservation and provide the substrates to better understand the regulation and expression of COUP-TFII.

  10. Population genomics reveals a possible history of backcrossing and recombination in the gynogenetic fish Poecilia formosa.

    Science.gov (United States)

    Alberici da Barbiano, Laura; Gompert, Zachariah; Aspbury, Andrea S; Gabor, Caitlin R; Nice, Chris C

    2013-08-20

    Unisexual sperm-dependent vertebrates are of hybrid origins, rare, and predicted to be short-lived as a result of several challenges arising from their mode of reproduction. In particular, because of a lack of recombination, clonal species are predicted to have a low potential to respond to natural selection. However, many unisexual sperm-dependent species persist, and assessing the genetic diversity present in these species is fundamental to understanding how they avoid extinction. We used population genomic methods to assess genotypic variation within the unisexual fish Poecilia formosa. Measures of admixture and population differentiation, as well as clustering analyses, indicate that the genomes of individuals of P. formosa are admixed and intermediate between Poecilia latipinna and Poecilia mexicana, consistent with the hypothesis of their hybrid origins. Bayesian genomic cline analyses indicate that about 12% of sampled loci exhibit patterns consistent with inheritance from only one parent. The estimation of observed heterozygosity clearly suggests that P. formosa is not comprised of direct descendants of a single nonrecombining asexual F1 hybrid individual. Additionally, the estimation of observed heterozygosity provides support for the hypothesis that the history of this unisexual species has included backcrossing with the parent species before the onset of gynogenesis. We also document high levels of variation among asexual individuals, which is attributable to recombination (historical or ongoing) and the accumulation of mutations. The high genetic variation suggests that this unisexual vertebrate has more potential to respond to natural selection than if they were frozen F1 hybrids.

  11. Analysis of segmental duplications reveals a distinct pattern of continuation-of-synteny between human and mouse genomes.

    Science.gov (United States)

    Mehan, Michael R; Almonte, Maricel; Slaten, Erin; Freimer, Nelson B; Rao, P Nagesh; Ophoff, Roel A

    2007-03-01

    About 5% of the human genome consists of large-scale duplicated segments of almost identical sequences. Segmental duplications (SDs) have been proposed to be involved in non-allelic homologous recombination leading to recurrent genomic variation and disease. It has also been suggested that these SDs are associated with syntenic rearrangements that have shaped the human genome. We have analyzed 14 members of a single family of closely related SDs in the human genome, some of which are associated with common inversion polymorphisms at chromosomes 8p23 and 4p16. Comparative analysis with the mouse genome revealed syntenic inversions for these two human polymorphic loci. In addition, 12 of the 14 SDs, while absent in the mouse genome, occur at the breaks of synteny; suggesting a non-random involvement of these sequences in genome evolution. Furthermore, we observed a syntenic familial relationship between 8 and 12 breakpoint-loci, where broken synteny that ends at one family member resumes at another, even across different chromosomes. Subsequent genome-wide assessment revealed that this relationship, which we named continuation-of-synteny, is not limited to the 8p23 family and occurs 46 times in the human genome with high frequency at specific chromosomes. Our analysis supports a non-random breakage model of genomic evolution with an active involvement of segmental duplications for specific regions of the human genome.

  12. Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles

    Science.gov (United States)

    Orozco-terWengel, Pablo; Kapun, Martin; Nolte, Viola; Kofler, Robert; Flatt, Thomas; Schlötterer, Christian

    2012-01-01

    The genomic basis of adaptation to novel environments is a fundamental problem in evolutionary biology that has gained additional importance in the light of the recent global change discussion. Here, we combined laboratory natural selection (experimental evolution) in Drosophila melanogaster with genome-wide next generation sequencing of DNA pools (Pool-Seq) to identify alleles that are favourable in a novel laboratory environment and traced their trajectories during the adaptive process. Already after 15 generations, we identified a pronounced genomic response to selection, with almost 5000 single nucleotide polymorphisms (SNP; genome-wide false discovery rates < 0.005%) deviating from neutral expectation. Importantly, the evolutionary trajectories of the selected alleles were heterogeneous, with the alleles falling into two distinct classes: (i) alleles that continuously rise in frequency; and (ii) alleles that at first increase rapidly but whose frequencies then reach a plateau. Our data thus suggest that the genomic response to selection can involve a large number of selected SNPs that show unexpectedly complex evolutionary trajectories, possibly due to nonadditive effects. PMID:22726122

  13. Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty.

    Science.gov (United States)

    Carnes, Jason; Anupama, Atashi; Balmer, Oliver; Jackson, Andrew; Lewis, Michael; Brown, Rob; Cestari, Igor; Desquesnes, Marc; Gendrin, Claire; Hertz-Fowler, Christiane; Imamura, Hideo; Ivens, Alasdair; Kořený, Luděk; Lai, De-Hua; MacLeod, Annette; McDermott, Suzanne M; Merritt, Chris; Monnerat, Severine; Moon, Wonjong; Myler, Peter; Phan, Isabelle; Ramasamy, Gowthaman; Sivam, Dhileep; Lun, Zhao-Rong; Lukeš, Julius; Stuart, Ken; Schnaufer, Achim

    2015-01-01

    Two key biological features distinguish Trypanosoma evansi from the T. brucei group: independence from the tsetse fly as obligatory vector, and independence from the need for functional mitochondrial DNA (kinetoplast or kDNA). In an effort to better understand the molecular causes and consequences of these differences, we sequenced the genome of an akinetoplastic T. evansi strain from China and compared it to the T. b. brucei reference strain. The annotated T. evansi genome shows extensive similarity to the reference, with 94.9% of the predicted T. b. brucei coding sequences (CDS) having an ortholog in T. evansi, and 94.6% of the non-repetitive orthologs having a nucleotide identity of 95% or greater. Interestingly, several procyclin-associated genes (PAGs) were disrupted or not found in this T. evansi strain, suggesting a selective loss of function in the absence of the insect life-cycle stage. Surprisingly, orthologous sequences were found in T. evansi for all 978 nuclear CDS predicted to represent the mitochondrial proteome in T. brucei, although a small number of these may have lost functionality. Consistent with previous results, the F1FO-ATP synthase γ subunit was found to have an A281 deletion, which is involved in generation of a mitochondrial membrane potential in the absence of kDNA. Candidates for CDS that are absent from the reference genome were identified in supplementary de novo assemblies of T. evansi reads. Phylogenetic analyses show that the sequenced strain belongs to a dominant group of clonal T. evansi strains with worldwide distribution that also includes isolates classified as T. equiperdum. At least three other types of T. evansi or T. equiperdum have emerged independently. Overall, the elucidation of the T. evansi genome sequence reveals extensive similarity of T. brucei and supports the contention that T. evansi should be classified as a subspecies of T. brucei.

  14. Genome patterns of selection and introgression of haplotypes in natural populations of the house mouse (Mus musculus.

    Directory of Open Access Journals (Sweden)

    Fabian Staubach

    Full Text Available General parameters of selection, such as the frequency and strength of positive selection in natural populations or the role of introgression, are still insufficiently understood. The house mouse (Mus musculus is a particularly well-suited model system to approach such questions, since it has a defined history of splits into subspecies and populations and since extensive genome information is available. We have used high-density single-nucleotide polymorphism (SNP typing arrays to assess genomic patterns of positive selection and introgression of alleles in two natural populations of each of the subspecies M. m. domesticus and M. m. musculus. Applying different statistical procedures, we find a large number of regions subject to apparent selective sweeps, indicating frequent positive selection on rare alleles or novel mutations. Genes in the regions include well-studied imprinted loci (e.g. Plagl1/Zac1, homologues of human genes involved in adaptations (e.g. alpha-amylase genes or in genetic diseases (e.g. Huntingtin and Parkin. Haplotype matching between the two subspecies reveals a large number of haplotypes that show patterns of introgression from specific populations of the respective other subspecies, with at least 10% of the genome being affected by partial or full introgression. Using neutral simulations for comparison, we find that the size and the fraction of introgressed haplotypes are not compatible with a pure migration or incomplete lineage sorting model. Hence, it appears that introgressed haplotypes can rise in frequency due to positive selection and thus can contribute to the adaptive genomic landscape of natural populations. Our data support the notion that natural genomes are subject to complex adaptive processes, including the introgression of haplotypes from other differentiated populations or species at a larger scale than previously assumed for animals. This implies that some of the admixture found in inbred strains of mice

  15. Illumina based whole mitochondrial genome of Junonia iphita reveals minor intraspecific variation

    Directory of Open Access Journals (Sweden)

    Catherine Vanlalruati

    2015-12-01

    Full Text Available In the present study, the near complete mitochondrial genome (mitogenome of Junonia iphita (Lepidoptera: Nymphalidae: Nymphalinae was determined to be 14,892 bp. The gene order and orientation are identical to those in other butterfly species. The phylogenetic tree constructed from the whole mitogenomes using the 13 protein coding genes (PCGs defines the genetic relatedness of the two J. iphita species collected from two different regions. All the Junonia species clustered together, and were further subdivided into clade one consisting of J. almana and J. orithya and clade two comprising of the two J. iphita which were collected from Indo and Indochinese subregions separated by river barrier. Comparison between the two J. iphita sequences revealed minor variations and Single Nucleotide Polymorphisms were identified at 51 sites amounting to 0.4% of the entire mitochondrial genome.

  16. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Sabeeha S

    2007-04-09

    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

  17. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut.

    Directory of Open Access Journals (Sweden)

    Francesca Bottacini

    Full Text Available Bifidobacteria are known as anaerobic/microaerophilic and fermentative microorganisms, which commonly inhabit the gastrointestinal tract of various animals and insects. Analysis of the 2,167,301 bp genome of Bifidobacterium asteroides PRL2011, a strain isolated from the hindgut of Apis mellifera var. ligustica, commonly known as the honey bee, revealed its predicted capability for respiratory metabolism. Conservation of the latter gene clusters in various B. asteroides strains enforces the notion that respiration is a common metabolic feature of this ancient bifidobacterial species, which has been lost in currently known mammal-derived Bifidobacterium species. In fact, phylogenomic based analyses suggested an ancient origin of B. asteroides and indicates it as an ancestor of the genus Bifidobacterium. Furthermore, the B. asteroides PRL2011 genome encodes various enzymes for coping with toxic products that arise as a result of oxygen-mediated respiration.

  18. Ancient mitochondrial genome reveals trace of prehistoric migration in the east Pamir by pastoralists.

    Science.gov (United States)

    Ning, Chao; Gao, Shizhu; Deng, Boping; Zheng, Hongxiang; Wei, Dong; Lv, Haoze; Li, Hongjie; Song, Li; Wu, Yong; Zhou, Hui; Cui, Yinqiu

    2016-02-01

    The complete mitochondrial genome of one 700-year-old individual found in Tashkurgan, Xinjiang was target enriched and sequenced in order to shed light on the population history of Tashkurgan and determine the phylogenetic relationship of haplogroup U5a. The ancient sample was assigned to a subclade of haplogroup U5a2a1, which is defined by two rare and stable transversions at 16114A and 13928C. Phylogenetic analysis shows a distribution pattern for U5a2a that is indicative of an origin in the Volga-Ural region and exhibits a clear eastward geographical expansion that correlates with the pastoral culture also entering the Eurasian steppe. The haplogroup U5a2a present in the ancient Tashkurgan individual reveals prehistoric migration in the East Pamir by pastoralists. This study shows that studying an ancient mitochondrial genome is a useful approach for studying the evolutionary process and population history of Eastern Pamir.

  19. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution.

    Science.gov (United States)

    Palmenberg, Ann C; Spiro, David; Kuzmickas, Ryan; Wang, Shiliang; Djikeng, Appolinaire; Rathe, Jennifer A; Fraser-Liggett, Claire M; Liggett, Stephen B

    2009-04-03

    Infection by human rhinovirus (HRV) is a major cause of upper and lower respiratory tract disease worldwide and displays considerable phenotypic variation. We examined diversity by completing the genome sequences for all known serotypes (n = 99). Superimposition of capsid crystal structure and optimal-energy RNA configurations established alignments and phylogeny. These revealed conserved motifs; clade-specific diversity, including a potential newly identified species (HRV-D); mutations in field isolates; and recombination. In analogy with poliovirus, a hypervariable 5' untranslated region tract may affect virulence. A configuration consistent with nonscanning internal ribosome entry was found in all HRVs and may account for rapid translation. The data density from complete sequences of the reference HRVs provided high resolution for this degree of modeling and serves as a platform for full genome-based epidemiologic studies and antiviral or vaccine development.

  20. Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut.

    Science.gov (United States)

    Bottacini, Francesca; Milani, Christian; Turroni, Francesca; Sánchez, Borja; Foroni, Elena; Duranti, Sabrina; Serafini, Fausta; Viappiani, Alice; Strati, Francesco; Ferrarini, Alberto; Delledonne, Massimo; Henrissat, Bernard; Coutinho, Pedro; Fitzgerald, Gerald F; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2012-01-01

    Bifidobacteria are known as anaerobic/microaerophilic and fermentative microorganisms, which commonly inhabit the gastrointestinal tract of various animals and insects. Analysis of the 2,167,301 bp genome of Bifidobacterium asteroides PRL2011, a strain isolated from the hindgut of Apis mellifera var. ligustica, commonly known as the honey bee, revealed its predicted capability for respiratory metabolism. Conservation of the latter gene clusters in various B. asteroides strains enforces the notion that respiration is a common metabolic feature of this ancient bifidobacterial species, which has been lost in currently known mammal-derived Bifidobacterium species. In fact, phylogenomic based analyses suggested an ancient origin of B. asteroides and indicates it as an ancestor of the genus Bifidobacterium. Furthermore, the B. asteroides PRL2011 genome encodes various enzymes for coping with toxic products that arise as a result of oxygen-mediated respiration.

  1. Conditional Epistatic Interaction Maps Reveal Global Functional Rewiring of Genome Integrity Pathways in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar

    2016-01-01

    Full Text Available As antibiotic resistance is increasingly becoming a public health concern, an improved understanding of the bacterial DNA damage response (DDR, which is commonly targeted by antibiotics, could be of tremendous therapeutic value. Although the genetic components of the bacterial DDR have been studied extensively in isolation, how the underlying biological pathways interact functionally remains unclear. Here, we address this by performing systematic, unbiased, quantitative synthetic genetic interaction (GI screens and uncover widespread changes in the GI network of the entire genomic integrity apparatus of Escherichia coli under standard and DNA-damaging growth conditions. The GI patterns of untreated cultures implicated two previously uncharacterized proteins (YhbQ and YqgF as nucleases, whereas reorganization of the GI network after DNA damage revealed DDR roles for both annotated and uncharacterized genes. Analyses of pan-bacterial conservation patterns suggest that DDR mechanisms and functional relationships are near universal, highlighting a modular and highly adaptive genomic stress response.

  2. Most of the benefits from genomic selection can be realised by genotyping a proportion of selection candidates

    DEFF Research Database (Denmark)

    Henryon, Mark; Berg, Peer; Sørensen, Anders Christian

    2012-01-01

    We reasoned that there are diminishing marginal returns from genomic selection as the proportion of genotyped selection candidates is increased and breeding values based on a priori information are used to choose the candidates that are genotyped. We tested this premise by stochastic simulation...... of breeding schemes that resembled those used for pigs. We estimated rates of genetic gain and inbreeding realized by genomic selection in breeding schemes where candidates were phenotyped before genotyping and 0-100% of the candidates were genotyped based on predicted breeding values. Genotypings were...... allocated to male and female candidates at ratios of 100:0, 75:25, 50:50, 25:75, and 0:100. For genotyped candidates, a direct-genomic value (DGV) was sampled with reliabilities 0.10, 0.50, and 0.90. Ten sires and 300 dams with the highest breeding values after genotyping were selected at each generation...

  3. Genomic prediction for Nordic Red Cattle using one-step and selection index blending

    DEFF Research Database (Denmark)

    Guosheng, Su; Madsen, Per; Nielsen, Ulrik Sander

    2012-01-01

    This study investigated the accuracy of direct genomic breeding values (DGV) using a genomic BLUP model, genomic enhanced breeding values (GEBV) using a one-step blending approach, and GEBV using a selection index blending approach for 15 traits of Nordic Red Cattle. The data comprised 6,631 bull......-step blending approach is a good alternative to predict GEBV in practical genetic evaluation program....

  4. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle.

    Science.gov (United States)

    Załuga, Joanna; Stragier, Pieter; Baeyen, Steve; Haegeman, Annelies; Van Vaerenbergh, Johan; Maes, Martine; De Vos, Paul

    2014-05-22

    The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and

  5. Hidden histories of gene flow in highland birds revealed with genomic markers.

    Science.gov (United States)

    Zarza, Eugenia; Faircloth, Brant C; Tsai, Whitney L E; Bryson, Robert W; Klicka, John; McCormack, John E

    2016-10-01

    Genomic studies are revealing that divergence and speciation are marked by gene flow, but it is not clear whether gene flow has played a prominent role during the generation of biodiversity in species-rich regions of the world where vicariance is assumed to be the principal mode by which new species form. We revisit a well-studied organismal system in the Mexican Highlands, Aphelocoma jays, to test for gene flow among Mexican sierras. Prior results from mitochondrial DNA (mtDNA) largely conformed to the standard model of allopatric divergence, although there was also evidence for more obscure histories of gene flow in a small sample of nuclear markers. We tested for these 'hidden histories' using genomic markers known as ultraconserved elements (UCEs) in concert with phylogenies, clustering algorithms and newer introgression tests specifically designed to detect ancient gene flow (e.g. ABBA/BABA tests). Results based on 4303 UCE loci and 2500 informative SNPs are consistent with varying degrees of gene flow among highland areas. In some cases, gene flow has been extensive and recent (although perhaps not ongoing today), whereas in other cases there is only a trace signature of ancient gene flow among species that diverged as long as 5 million years ago. These results show how a species complex thought to be a model for vicariance can reveal a more reticulate history when a broader portion of the genome is queried. As more organisms are studied with genomic data, we predict that speciation-with-bouts-of-gene-flow will turn out to be a common mode of speciation.

  6. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Nicolas M Berbenetz

    2010-09-01

    Full Text Available Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers positions nucleosomes adjacent to the origin to promote replication origin function.

  7. Genome mining reveals the biosynthetic potential of the marine-derived strain Streptomyces marokkonensis M10

    Directory of Open Access Journals (Sweden)

    Liangyu Chen

    2016-03-01

    Full Text Available Marine streptomycetes are rich sources of natural products with novel structures and interesting biological activities, and genome mining of marine streptomycetes facilitates rapid discovery of their useful products. In this study, a marine-derived Streptomyces sp. M10 was revealed to share a 99.02% 16S rDNA sequence identity with that of Streptomyces marokkonensis Ap1T, and was thus named S. marokkonensis M10. To further evaluate its biosynthetic potential, the 7,207,169 bps of S. marokkonensis M10 genome was sequenced. Genomic sequence analysis for potential secondary metabolite-associated gene clusters led to the identification of at least three polyketide synthases (PKSs, six non-ribosomal peptide synthases (NRPSs, one hybrid NRPS-PKS, two lantibiotic and five terpene biosynthetic gene clusters. One type I PKS gene cluster was revealed to share high nucleotide similarity with the candicidin/FR008 gene cluster, indicating the capacity of this microorganism to produce polyene macrolides. This assumption was further verified by isolation of two polyene family compounds PF1 and PF2, which have the characteristic UV adsorption at 269, 278, 290 nm (PF1 and 363, 386 and 408 nm (PF2, respectively. S. marokkonensis M10 is therefore a new source of polyene metabolites. Further studies on S. marokkonensis M10 will provide more insights into natural product biosynthesis potential of related streptomycetes. This is also the first report to describe the genome sequence of S. marokkonensis-related strain.

  8. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    Full Text Available Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs, carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.

  9. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes.

    Science.gov (United States)

    Castoe, Todd A; de Koning, A P Jason; Hall, Kathryn T; Card, Daren C; Schield, Drew R; Fujita, Matthew K; Ruggiero, Robert P; Degner, Jack F; Daza, Juan M; Gu, Wanjun; Reyes-Velasco, Jacobo; Shaney, Kyle J; Castoe, Jill M; Fox, Samuel E; Poole, Alex W; Polanco, Daniel; Dobry, Jason; Vandewege, Michael W; Li, Qing; Schott, Ryan K; Kapusta, Aurélie; Minx, Patrick; Feschotte, Cédric; Uetz, Peter; Ray, David A; Hoffmann, Federico G; Bogden, Robert; Smith, Eric N; Chang, Belinda S W; Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Richardson, Michael K; Mackessy, Stephen P; Bronikowski, Anne M; Bronikowsi, Anne M; Yandell, Mark; Warren, Wesley C; Secor, Stephen M; Pollock, David D

    2013-12-17

    Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.

  10. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes

    Science.gov (United States)

    Castoe, Todd A.; de Koning, A. P. Jason; Hall, Kathryn T.; Card, Daren C.; Schield, Drew R.; Fujita, Matthew K.; Ruggiero, Robert P.; Degner, Jack F.; Daza, Juan M.; Gu, Wanjun; Reyes-Velasco, Jacobo; Shaney, Kyle J.; Castoe, Jill M.; Fox, Samuel E.; Poole, Alex W.; Polanco, Daniel; Dobry, Jason; Vandewege, Michael W.; Li, Qing; Schott, Ryan K.; Kapusta, Aurélie; Minx, Patrick; Feschotte, Cédric; Uetz, Peter; Ray, David A.; Hoffmann, Federico G.; Bogden, Robert; Smith, Eric N.; Chang, Belinda S. W.; Vonk, Freek J.; Casewell, Nicholas R.; Henkel, Christiaan V.; Richardson, Michael K.; Mackessy, Stephen P.; Bronikowski, Anne M.; Yandell, Mark; Warren, Wesley C.; Secor, Stephen M.; Pollock, David D.

    2013-01-01

    Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome. PMID:24297902

  11. Prehistoric genomes reveal the genetic foundation and cost of horse domestication.

    Science.gov (United States)

    Schubert, Mikkel; Jónsson, Hákon; Chang, Dan; Der Sarkissian, Clio; Ermini, Luca; Ginolhac, Aurélien; Albrechtsen, Anders; Dupanloup, Isabelle; Foucal, Adrien; Petersen, Bent; Fumagalli, Matteo; Raghavan, Maanasa; Seguin-Orlando, Andaine; Korneliussen, Thorfinn S; Velazquez, Amhed M V; Stenderup, Jesper; Hoover, Cindi A; Rubin, Carl-Johan; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; MacHugh, David E; Kalbfleisch, Ted; MacLeod, James N; Rubin, Edward M; Sicheritz-Ponten, Thomas; Andersson, Leif; Hofreiter, Michael; Marques-Bonet, Tomas; Gilbert, M Thomas P; Nielsen, Rasmus; Excoffier, Laurent; Willerslev, Eske; Shapiro, Beth; Orlando, Ludovic

    2014-12-30

    The domestication of the horse ∼ 5.5 kya and the emergence of mounted riding, chariotry, and cavalry dramatically transformed human civilization. However, the genetics underlying horse domestication are difficult to reconstruct, given the near extinction of wild horses. We therefore sequenced two ancient horse genomes from Taymyr, Russia (at 7.4- and 24.3-fold coverage), both predating the earliest archeological evidence of domestication. We compared these genomes with genomes of domesticated horses and the wild Przewalski's horse and found genetic structure within Eurasia in the Late Pleistocene, with the ancient population contributing significantly to the genetic variation of domesticated breeds. We furthermore identified a conservative set of 125 potential domestication targets using four complementary scans for genes that have undergone positive selection. One group of genes is involved in muscular and limb development, articular junctions, and the cardiac system, and may represent physiological adaptations to human utilization. A second group consists of genes with cognitive functions, including social behavior, learning capabilities, fear response, and agreeableness, which may have been key for taming horses. We also found that domestication is associated with inbreeding and an excess of deleterious mutations. This genetic load is in line with the "cost of domestication" hypothesis also reported for rice, tomatoes, and dogs, and it is generally attributed to the relaxation of purifying selection resulting from the strong demographic bottlenecks accompanying domestication. Our work demonstrates the power of ancient genomes to reconstruct the complex genetic changes that transformed wild animals into their domesticated forms, and the population context in which this process took place.

  12. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable rates of evolution within a core genome

    Science.gov (United States)

    Background: Biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context. We sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricu...

  13. Using genomics to enhance selection of novel traits in North American dairy cattle

    Science.gov (United States)

    Genomics offers new opportunities for the effective selection of novel traits. For traits such as mastitis resistance, hoof health, or the prediction of milk composition from mid-infrared (MIR) data, for example, enough records are usually available to carry out genomic evaluations using sire genoty...

  14. Strength and tempo of selection revealed in viral gene genealogies.

    Science.gov (United States)

    Bedford, Trevor; Cobey, Sarah; Pascual, Mercedes

    2011-07-25

    RNA viruses evolve extremely quickly, allowing them to rapidly adapt to new environmental conditions. Viral pathogens, such as influenza virus, exploit this capacity for evolutionary change to persist within the human population despite substantial immune pressure. Understanding the process of adaptation in these viral systems is essential to our efforts to combat infectious disease. Through analysis of simulated populations and sequence data from influenza A (H3N2) and measles virus, we show how phylogenetic and population genetic techniques can be used to assess the strength and temporal pattern of adaptive evolution. The action of natural selection affects the shape of the genealogical tree connecting members of an evolving population, causing deviations from the neutral expectation. The magnitude and distribution of these deviations lends insight into the historical pattern of evolution and adaptation in the viral population. We quantify the degree of ongoing adaptation in influenza and measles virus through comparison of census population size and effective population size inferred from genealogical patterns, finding a 60-fold greater deviation in influenza than in measles. We also examine the tempo of adaptation in influenza, finding evidence for both continuous and episodic change. Our results have important consequences for understanding the epidemiological and evolutionary dynamics of the influenza virus. Additionally, these general techniques may prove useful to assess the strength and pattern of adaptive evolution in a variety of evolving systems. They are especially powerful when assessing selection in fast-evolving populations, where temporal patterns become highly visible.

  15. Strength and tempo of selection revealed in viral gene genealogies

    Directory of Open Access Journals (Sweden)

    Cobey Sarah

    2011-07-01

    Full Text Available Abstract Background RNA viruses evolve extremely quickly, allowing them to rapidly adapt to new environmental conditions. Viral pathogens, such as influenza virus, exploit this capacity for evolutionary change to persist within the human population despite substantial immune pressure. Understanding the process of adaptation in these viral systems is essential to our efforts to combat infectious disease. Results Through analysis of simulated populations and sequence data from influenza A (H3N2 and measles virus, we show how phylogenetic and population genetic techniques can be used to assess the strength and temporal pattern of adaptive evolution. The action of natural selection affects the shape of the genealogical tree connecting members of an evolving population, causing deviations from the neutral expectation. The magnitude and distribution of these deviations lends insight into the historical pattern of evolution and adaptation in the viral population. We quantify the degree of ongoing adaptation in influenza and measles virus through comparison of census population size and effective population size inferred from genealogical patterns, finding a 60-fold greater deviation in influenza than in measles. We also examine the tempo of adaptation in influenza, finding evidence for both continuous and episodic change. Conclusions Our results have important consequences for understanding the epidemiological and evolutionary dynamics of the influenza virus. Additionally, these general techniques may prove useful to assess the strength and pattern of adaptive evolution in a variety of evolving systems. They are especially powerful when assessing selection in fast-evolving populations, where temporal patterns become highly visible.

  16. Identification of Promising Mutants Associated with Egg Production Traits Revealed by Genome-Wide Association Study.

    Directory of Open Access Journals (Sweden)

    Jingwei Yuan

    Full Text Available Egg number (EN, egg laying rate (LR and age at first egg (AFE are important production traits related to egg production in poultry industry. To better understand the knowledge of genetic architecture of dynamic EN during the whole laying cycle and provide the precise positions of associated variants for EN, LR and AFE, laying records from 21 to 72 weeks of age were collected individually for 1,534 F2 hens produced by reciprocal crosses between White Leghorn and Dongxiang Blue-shelled chicken, and their genotypes were assayed by chicken 600 K Affymetrix high density genotyping arrays. Subsequently, pedigree and SNP-based genetic parameters were estimated and a genome-wide association study (GWAS was conducted on EN, LR and AFE. The heritability estimates were similar between pedigree and SNP-based estimates varying from 0.17 to 0.36. In the GWA analysis, we identified nine genome-wide significant loci associated with EN of the laying periods from 21 to 26 weeks, 27 to 36 weeks and 37 to 72 weeks. Analysis of GTF2A1 and CLSPN suggested that they influenced the function of ovary and uterus, and may be considered as relevant candidates. The identified SNP rs314448799 for accumulative EN from 21 to 40 weeks on chromosome 5 created phenotypic differences of 6.86 eggs between two homozygous genotypes, which could be potentially applied to the molecular breeding for EN selection. Moreover, our finding showed that LR was a moderate polygenic trait. The suggestive significant region on chromosome 16 for AFE suggested the relationship between sex maturity and immune in the current population. The present study comprehensively evaluates the role of genetic variants in the development of egg laying. The findings will be helpful to investigation of causative genes function and future marker-assisted selection and genomic selection in chickens.

  17. Genomic comparison of invasive and rare non-invasive strains reveals Porphyromonas gingivalis genetic polymorphisms

    Directory of Open Access Journals (Sweden)

    Svetlana Dolgilevich

    2011-03-01

    Full Text Available Porphyromonas gingivalis strains are shown to invade human cells in vitro with different invasion efficiencies, varying by up to three orders of magnitude.We tested the hypothesis that invasion-associated interstrain genomic polymorphisms are present in P. gingivalis and that putative invasion-associated genes can contribute to P. gingivalis invasion.Using an invasive (W83 and the only available non-invasive P. gingivalis strain (AJW4 and whole genome microarrays followed by two separate software tools, we carried out comparative genomic hybridization (CGH analysis.We identified 68 annotated and 51 hypothetical open reading frames (ORFs that are polymorphic between these strains. Among these are surface proteins, lipoproteins, capsular polysaccharide biosynthesis enzymes, regulatory and immunoreactive proteins, integrases, and transposases often with abnormal GC content and clustered on the chromosome. Amplification of selected ORFs was used to validate the approach and the selection. Eleven clinical strains were investigated for the presence of selected ORFs. The putative invasion-associated ORFs were present in 10 of the isolates. The invasion ability of three isogenic mutants, carrying deletions in PG0185, PG0186, and PG0982 was tested. The PG0185 (ragA and PG0186 (ragB mutants had 5.1×103-fold and 3.6×103-fold decreased in vitro invasion ability, respectively.The annotation of divergent ORFs suggests deficiency in multiple genes as a basis for P. gingivalis non-invasive phenotype. Access the supplementary material to this article: Supplement, table (see Supplementary files under Reading Tools online.

  18. Scanning the landscape of genome architecture of non-O1 and non-O139 Vibrio cholerae by whole genome mapping reveals extensive population genetic diversity.

    Directory of Open Access Journals (Sweden)

    Carol Chapman

    Full Text Available Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping based bar coding produces a high resolution, ordered restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.

  19. Scanning the landscape of genome architecture of non-O1 and non-O139 Vibrio cholerae by whole genome mapping reveals extensive population genetic diversity.

    Science.gov (United States)

    Chapman, Carol; Henry, Matthew; Bishop-Lilly, Kimberly A; Awosika, Joy; Briska, Adam; Ptashkin, Ryan N; Wagner, Trevor; Rajanna, Chythanya; Tsang, Hsinyi; Johnson, Shannon L; Mokashi, Vishwesh P; Chain, Patrick S G; Sozhamannan, Shanmuga

    2015-01-01

    Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping) based bar coding produces a high resolution, ordered restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.

  20. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection.

    Science.gov (United States)

    Li, Zitong; Sillanpää, Mikko J

    2012-08-01

    Quantitative trait loci (QTL)/association mapping aims at finding genomic loci associated with the phenotypes, whereas genomic selection focuses on breeding value prediction based on genomic data. Variable selection is a key to both of these tasks as it allows to (1) detect clear mapping signals of QTL activity, and (2) predict the genome-enhanced breeding values accurately. In this paper, we provide an overview of a statistical method called least absolute shrinkage and selection operator (LASSO) and two of its generalizations named elastic net and adaptive LASSO in the contexts of QTL mapping and genomic breeding value prediction in plants (or animals). We also briefly summarize the Bayesian interpretation of LASSO, and the inspired hierarchical Bayesian models. We illustrate the implementation and examine the performance of methods using three public data sets: (1) North American barley data with 127 individuals and 145 markers, (2) a simulated QTLMAS XII data with 5,865 individuals and 6,000 markers for both QTL mapping and genomic selection, and (3) a wheat data with 599 individuals and 1,279 markers only for genomic selection.

  1. Representational difference analysis reveals genomic differences between Q. robur and Q. suber: implications for the study of genome evolution in the genus Quercus.

    Science.gov (United States)

    Zoldos, V; Siljak-Yakovlev, S; Papes, D; Sarr, A; Panaud, O

    2001-04-01

    Very similar genome sizes, similar karyotypes and heterochromatin organisation, and identical number/position of ribosomal loci characterise the common oak (Q. robur) and the cork oak (Q. suber), two distantly related oak species. Representational Difference Analysis (RDA) was used to subtract the genome of Q. suber from the genome of Q. robur in order to search for genome differentiation. A library of 400 clones (bearing RDA fragments) representing genome differences between the two species was obtained. Seven Q. robur-specific DNA sequences were analysed with respect to their molecular and chromosome organisation. All belong to the dispersed repetitive component of the genome, as revealed by Southern hybridisation and in situ hybridisation. They are present in the Q. robur genome in between 100 and 700 copies, and are distributed along the length of almost all chromosomes. A search for homologies between RDA fragments and sequences in Genbank revealed similarities of all RDA fragments with known retrotransposons. The RDA fragments were also tested for their presence/absence in the genomes of six additional oak species belonging to different phylogenetic groups, in order to examine the evolutionary dynamics of these DNA sequences.

  2. Structural Genomics Reveals EVE as a New ASCH/PUA-Related Domain

    Energy Technology Data Exchange (ETDEWEB)

    Bertonati, C.; Punta, M; Fischer, M; Yachdav, G; Forouhar, F; Hunt, J; Tong, L; Montelione, G; Rost, B; et. al.

    2008-01-01

    We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE. Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links.

  3. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea.

    Science.gov (United States)

    Olsen, Jeanine L; Rouzé, Pierre; Verhelst, Bram; Lin, Yao-Cheng; Bayer, Till; Collen, Jonas; Dattolo, Emanuela; De Paoli, Emanuele; Dittami, Simon; Maumus, Florian; Michel, Gurvan; Kersting, Anna; Lauritano, Chiara; Lohaus, Rolf; Töpel, Mats; Tonon, Thierry; Vanneste, Kevin; Amirebrahimi, Mojgan; Brakel, Janina; Boström, Christoffer; Chovatia, Mansi; Grimwood, Jane; Jenkins, Jerry W; Jueterbock, Alexander; Mraz, Amy; Stam, Wytze T; Tice, Hope; Bornberg-Bauer, Erich; Green, Pamela J; Pearson, Gareth A; Procaccini, Gabriele; Duarte, Carlos M; Schmutz, Jeremy; Reusch, Thorsten B H; Van de Peer, Yves

    2016-02-18

    Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.

  4. ‘Candidatus Competibacter'-lineage genomes retrieved from metagenomes reveal functional metabolic diversity

    Science.gov (United States)

    McIlroy, Simon J; Albertsen, Mads; Andresen, Eva K; Saunders, Aaron M; Kristiansen, Rikke; Stokholm-Bjerregaard, Mikkel; Nielsen, Kåre L; Nielsen, Per H

    2014-01-01

    The glycogen-accumulating organism (GAO) ‘Candidatus Competibacter' (Competibacter) uses aerobically stored glycogen to enable anaerobic carbon uptake, which is subsequently stored as polyhydroxyalkanoates (PHAs). This biphasic metabolism is key for the Competibacter to survive under the cyclic anaerobic-‘feast': aerobic-‘famine' regime of enhanced biological phosphorus removal (EBPR) wastewater treatment systems. As they do not contribute to phosphorus (P) removal, but compete for resources with the polyphosphate-accumulating organisms (PAO), thought responsible for P removal, their proliferation theoretically reduces the EBPR capacity. In this study, two complete genomes from Competibacter were obtained from laboratory-scale enrichment reactors through metagenomics. Phylogenetic analysis identified the two genomes, ‘Candidatus Competibacter denitrificans' and ‘Candidatus Contendobacter odensis', as being affiliated with Competibacter-lineage subgroups 1 and 5, respectively. Both have genes for glycogen and PHA cycling and for the metabolism of volatile fatty acids. Marked differences were found in their potential for the Embden–Meyerhof–Parnas and Entner–Doudoroff glycolytic pathways, as well as for denitrification, nitrogen fixation, fermentation, trehalose synthesis and utilisation of glucose and lactate. Genetic comparison of P metabolism pathways with sequenced PAOs revealed the absence of the Pit phosphate transporter in the Competibacter-lineage genomes—identifying a key metabolic difference with the PAO physiology. These genomes are the first from any GAO organism and provide new insights into the complex interaction and niche competition between PAOs and GAOs in EBPR systems. PMID:24173461

  5. Genome comparison of Candida orthopsilosis clinical strains reveals the existence of hybrids between two distinct subspecies.

    Science.gov (United States)

    Pryszcz, Leszek P; Németh, Tibor; Gácser, Attila; Gabaldón, Toni

    2014-05-01

    The Candida parapsilosis species complex comprises a group of emerging human pathogens of varying virulence. This complex was recently subdivided into three different species: C. parapsilosis sensu stricto, C. metapsilosis, and C. orthopsilosis. Within the latter, at least two clearly distinct subspecies seem to be present among clinical isolates (Type 1 and Type 2). To gain insight into the genomic differences between these subspecies, we undertook the sequencing of a clinical isolate classified as Type 1 and compared it with the available sequence of a Type 2 clinical strain. Unexpectedly, the analysis of the newly sequenced strain revealed a highly heterozygous genome, which we show to be the consequence of a hybridization event between both identified subspecies. This implicitly suggests that C. orthopsilosis is able to mate, a so-far unanswered question. The resulting hybrid shows a chimeric genome that maintains a similar gene dosage from both parental lineages and displays ongoing loss of heterozygosity. Several of the differences found between the gene content in both strains relate to virulent-related families, with the hybrid strain presenting a higher copy number of genes coding for efflux pumps or secreted lipases. Remarkably, two clinical strains isolated from distant geographical locations (Texas and Singapore) are descendants of the same hybrid line, raising the intriguing possibility of a relationship between the hybridization event and the global spread of a virulent clone.

  6. Phylogeny of a genomically diverse group of elymus (poaceae allopolyploids reveals multiple levels of reticulation.

    Directory of Open Access Journals (Sweden)

    Roberta J Mason-Gamer

    Full Text Available The grass tribe Triticeae (=Hordeeae comprises only about 300 species, but it is well known for the economically important crop plants wheat, barley, and rye. The group is also recognized as a fascinating example of evolutionary complexity, with a history shaped by numerous events of auto- and allopolyploidy and apparent introgression involving diploids and polyploids. The genus Elymus comprises a heterogeneous collection of allopolyploid genome combinations, all of which include at least one set of homoeologs, designated St, derived from Pseudoroegneria. The current analysis includes a geographically and genomically diverse collection of 21 tetraploid Elymus species, and a single hexaploid species. Diploid and polyploid relationships were estimated using four molecular data sets, including one that combines two regions of the chloroplast genome, and three from unlinked nuclear genes: phosphoenolpyruvate carboxylase, β-amylase, and granule-bound starch synthase I. Four gene trees were generated using maximum likelihood, and the phylogenetic placement of the polyploid sequences reveals extensive reticulation beyond allopolyploidy alone. The trees were interpreted with reference to numerous phenomena known to complicate allopolyploid phylogenies, and introgression was identified as a major factor in their history. The work illustrates the interpretation of complicated phylogenetic results through the sequential consideration of numerous possible explanations, and the results highlight the value of careful inspection of multiple independent molecular phylogenetic estimates, with particular focus on the differences among them.

  7. Phylogeny of a genomically diverse group of elymus (poaceae) allopolyploids reveals multiple levels of reticulation.

    Science.gov (United States)

    Mason-Gamer, Roberta J

    2013-01-01

    The grass tribe Triticeae (=Hordeeae) comprises only about 300 species, but it is well known for the economically important crop plants wheat, barley, and rye. The group is also recognized as a fascinating example of evolutionary complexity, with a history shaped by numerous events of auto- and allopolyploidy and apparent introgression involving diploids and polyploids. The genus Elymus comprises a heterogeneous collection of allopolyploid genome combinations, all of which include at least one set of homoeologs, designated St, derived from Pseudoroegneria. The current analysis includes a geographically and genomically diverse collection of 21 tetraploid Elymus species, and a single hexaploid species. Diploid and polyploid relationships were estimated using four molecular data sets, including one that combines two regions of the chloroplast genome, and three from unlinked nuclear genes: phosphoenolpyruvate carboxylase, β-amylase, and granule-bound starch synthase I. Four gene trees were generated using maximum likelihood, and the phylogenetic placement of the polyploid sequences reveals extensive reticulation beyond allopolyploidy alone. The trees were interpreted with reference to numerous phenomena known to complicate allopolyploid phylogenies, and introgression was identified as a major factor in their history. The work illustrates the interpretation of complicated phylogenetic results through the sequential consideration of numerous possible explanations, and the results highlight the value of careful inspection of multiple independent molecular phylogenetic estimates, with particular focus on the differences among them.

  8. Genome scan for nonadditive heterotic trait loci reveals mainly underdominant effects in Saccharomyces cerevisiae.

    Science.gov (United States)

    Laiba, Efrat; Glikaite, Ilana; Levy, Yael; Pasternak, Zohar; Fridman, Eyal

    2016-04-01

    The overdominant model of heterosis explains the superior phenotype of hybrids by synergistic allelic interaction within heterozygous loci. To map such genetic variation in yeast, we used a population doubling time dataset of Saccharomyces cerevisiae 16 × 16 diallel and searched for major contributing heterotic trait loci (HTL). Heterosis was observed for the majority of hybrids, as they surpassed their best parent growth rate. However, most of the local heterozygous loci identified by genome scan were surprisingly underdominant, i.e., reduced growth. We speculated that in these loci adverse effects on growth resulted from incompatible allelic interactions. To test this assumption, we eliminated these allelic interactions by creating hybrids with local hemizygosity for the underdominant HTLs, as well as for control random loci. Growth of hybrids was indeed elevated for most hemizygous to HTL genes but not for control genes, hence validating the results of our genome scan. Assessing the consequences of local heterozygosity by reciprocal hemizygosity and allele replacement assays revealed the influence of genetic background on the underdominant effects of HTLs. Overall, this genome-wide study on a multi-parental hybrid population provides a strong argument against single gene overdominance as a major contributor to heterosis, and favors the dominance complementation model.

  9. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.

    Science.gov (United States)

    Wang, Liying; Wang, Jin; Jing, Chuanyong

    2017-01-01

    Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC-like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC-like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens, and Citrobacter freundii. During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As. PMID:28377759

  10. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.

    Science.gov (United States)

    Wang, Liying; Wang, Jin; Jing, Chuanyong

    2017-01-01

    Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC-like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC-like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens, and Citrobacter freundii. During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As.

  11. Characterization and phylogenetic analysis of -gliadin gene sequences reveals significant genomic divergence in Triticeae species

    Indian Academy of Sciences (India)

    Guang-Rong Li; Tao Lang; En-Nian Yang; Cheng Liu; Zu-Jun Yang

    2014-12-01

    Although the unique properties of wheat -gliadin gene family are well characterized, little is known about the evolution and genomic divergence of -gliadin gene family within the Triticeae. We isolated a total of 203 -gliadin gene sequences from 11 representative diploid and polyploid Triticeae species, and found 108 sequences putatively functional. Our results indicate that -gliadin genes may have possibly originated from wild Secale species, where the sequences contain the shortest repetitive domains and display minimum variation. A miniature inverted-repeat transposable element insertion is reported for the first time in -gliadin gene sequence of Thinopyrum intermedium in this study, indicating that the transposable element might have contributed to the diversification of -gliadin genes family among Triticeae genomes. The phylogenetic analyses revealed that the -gliadin gene sequences of Dasypyrum, Australopyrum, Lophopyrum, Eremopyrum and Pseudoroengeria species have amplified several times. A search for four typical toxic epitopes for celiac disease within the Triticeae -gliadin gene sequences showed that the -gliadins of wild Secale, Australopyrum and Agropyron genomes lack all four epitopes, while other Triticeae species have accumulated these epitopes, suggesting that the evolution of these toxic epitopes sequences occurred during the course of speciation, domestication or polyploidization of Triticeae.

  12. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

    KAUST Repository

    Olsen, Jeanine L.

    2016-01-27

    Seagrasses colonized the sea1 on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet2. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes3, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae4 and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming5, 6, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants7.

  13. Correction: Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis.

    Science.gov (United States)

    Alqahtani, Norah; Porwal, Suheel K; James, Elle D; Bis, Dana M; Karty, Jonathan A; Lane, Amy L; Viswanathan, Rajesh

    2015-09-21

    Correction for 'Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis' by Norah Alqahtani et al., Org. Biomol. Chem., 2015, 13, 7177-7192.

  14. Single Step, a general approach for genomic selection

    DEFF Research Database (Denmark)

    Legarra, Andres; Christensen, Ole Fredslund; Aguilar, Ignacio;

    2014-01-01

    Genomic evaluation methods assume that the reference population is genotyped and phenotyped. This is most often false and the generation of pseudo-phenotypes is uncertain and inaccurate. However, markers obey transmission rules and therefore the covariances of marker genotypes across individuals ...

  15. A review of genomic selection - Implications for the South African ...

    African Journals Online (AJOL)

    2013-03-09

    Mar 9, 2013 ... On a technological level the development of polymerase ... Human Genome project most farm animal species have been sequenced .... included in the model to account for genetic variation that is ..... available number of breeding animals with records for maternal, reproduction and growth efficiency traits is.

  16. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription

    Science.gov (United States)

    Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Szalaj, Przemyslaw; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Penrad-Mobayed, May; Sachs, Laurent M.; Ruan, Xiaoan; Wei, Chia-Lin; Liu, Edison T.; Wilczynski, Grzegorz M.; Plewczynski, Dariusz; Li, Guoliang; Ruan, Yijun

    2015-01-01

    Summary Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced ChIA-PET strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CTCF and RNAPII with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes towards CTCF-foci for coordinated transcription. Furthermore, we show that haplotype-variants and allelic-interactions have differential effects on chromosome configuration influencing gene expression and may provide mechanistic insights into functions associated with disease susceptibility. 3D-genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D-genome strategy thus provides unique insights in the topological mechanism of human variations and diseases. PMID:26686651

  17. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription.

    Science.gov (United States)

    Tang, Zhonghui; Luo, Oscar Junhong; Li, Xingwang; Zheng, Meizhen; Zhu, Jacqueline Jufen; Szalaj, Przemyslaw; Trzaskoma, Pawel; Magalska, Adriana; Wlodarczyk, Jakub; Ruszczycki, Blazej; Michalski, Paul; Piecuch, Emaly; Wang, Ping; Wang, Danjuan; Tian, Simon Zhongyuan; Penrad-Mobayed, May; Sachs, Laurent M; Ruan, Xiaoan; Wei, Chia-Lin; Liu, Edison T; Wilczynski, Grzegorz M; Plewczynski, Dariusz; Li, Guoliang; Ruan, Yijun

    2015-12-17

    Spatial genome organization and its effect on transcription remains a fundamental question. We applied an advanced chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) strategy to comprehensively map higher-order chromosome folding and specific chromatin interactions mediated by CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) with haplotype specificity and nucleotide resolution in different human cell lineages. We find that CTCF/cohesin-mediated interaction anchors serve as structural foci for spatial organization of constitutive genes concordant with CTCF-motif orientation, whereas RNAPII interacts within these structures by selectively drawing cell-type-specific genes toward CTCF foci for coordinated transcription. Furthermore, we show that haplotype variants and allelic interactions have differential effects on chromosome configuration, influencing gene expression, and may provide mechanistic insights into functions associated with disease susceptibility. 3D genome simulation suggests a model of chromatin folding around chromosomal axes, where CTCF is involved in defining the interface between condensed and open compartments for structural regulation. Our 3D genome strategy thus provides unique insights in the topological mechanism of human variations and diseases.

  18. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas

    Energy Technology Data Exchange (ETDEWEB)

    Worden, Alexandra Z.; Lee, Jae-Hyeok; Mock, Thomas; Rouze, Pierre; Simmons, Melinda P.; Aerts, Andrea L.; Allen, Andrew E.; Cuvelier, Marie L.; Derelle, Evelyne; Everett, Meredieht V.; Foulon, Elodie; Grimwood, Jane; Gundlach, Heidrun; Henrissat, Bernard; Napoli, Carolyn; McDonald, Sarah M.; Parker, Micaela S.; Rombauts, Stephane; Salamov, Asaf; von Dassow, Peter; Badger, Jonathan G,; Coutinho, Pedro M.; Demir, Elif; Dubchak, Inna; Gentemann, Chelle; Eikrem, Wenche; Gready, Jill E.; John, Uwe; Lanier, William; Lindquist, Erika A.; Lucas, Susan; Mayer, Kluas F. X.; Moreau, Herve; Not, Fabrice; Otillar, Robert; Panaud, Olivier; Pangilinan, Jasmyn; Paulsen, Ian; Piegu, Benoit; Poliakov, Aaron; Robbens, Steven; Schmutz, Jeremy; Roulza, Eve; Wyss, Tania; Zelensky, Alexander; Zhou, Kemin; Armbrust, E. Virginia; Bhattacharya, Debashish; Goodenough, Ursula W.; Van de Peer, Yves; Grigoriev, Igor V.

    2009-10-14

    Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90percent of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.

  19. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds.

    Directory of Open Access Journals (Sweden)

    James W Kijas

    Full Text Available The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability.

  20. Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers.

    Science.gov (United States)

    Shepherd, Ross K; Meuwissen, Theo H E; Woolliams, John A

    2010-10-22

    The information provided by dense genome-wide markers using high throughput technology is of considerable potential in human disease studies and livestock breeding programs. Genome-wide association studies relate individual single nucleotide polymorphisms (SNP) from dense SNP panels to individual measurements of complex traits, with the underlying assumption being that any association is caused by linkage disequilibrium (LD) between SNP and quantitative trait loci (QTL) affecting the trait. Often SNP are in genomic regions of no trait variation. Whole genome Bayesian models are an effective way of incorporating this and other important prior information into modelling. However a full Bayesian analysis is often not feasible due to the large computational time involved. This article proposes an expectation-maximization (EM) algorithm called emBayesB which allows only a proportion of SNP to be in LD with QTL and incorporates prior information about the distribution of SNP effects. The posterior probability of being in LD with at least one QTL is calculated for each SNP along with estimates of the hyperparameters for the mixture prior. A simulated example of genomic selection from an international workshop is used to demonstrate the features of the EM algorithm. The accuracy of prediction is comparable to a full Bayesian analysis but the EM algorithm is considerably faster. The EM algorithm was accurate in locating QTL which explained more than 1% of the total genetic variation. A computational algorithm for very large SNP panels is described. emBayesB is a fast and accurate EM algorithm for implementing genomic selection and predicting complex traits by mapping QTL in genome-wide dense SNP marker data. Its accuracy is similar to Bayesian methods but it takes only a fraction of the time.

  1. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes

    Directory of Open Access Journals (Sweden)

    Shewmaker Christine K

    2010-10-01

    Full Text Available Abstract Background Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD 2 and fatty acid elongase (FAE 1, which revealed unexpected complexity in the C. sativa genome. Results In C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome. Conclusions There is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general

  2. Demographically-Based Evaluation of Genomic Regions under Selection in Domestic Dogs.

    Directory of Open Access Journals (Sweden)

    Adam H Freedman

    2016-03-01

    Full Text Available Controlling for background demographic effects is important for accurately identifying loci that have recently undergone positive selection. To date, the effects of demography have not yet been explicitly considered when identifying loci under selection during dog domestication. To investigate positive selection on the dog lineage early in the domestication, we examined patterns of polymorphism in six canid genomes that were previously used to infer a demographic model of dog domestication. Using an inferred demographic model, we computed false discovery rates (FDR and identified 349 outlier regions consistent with positive selection at a low FDR. The signals in the top 100 regions were frequently centered on candidate genes related to brain function and behavior, including LHFPL3, CADM2, GRIK3, SH3GL2, MBP, PDE7B, NTAN1, and GLRA1. These regions contained significant enrichments in behavioral ontology categories. The 3rd top hit, CCRN4L, plays a major role in lipid metabolism, that is supported by additional metabolism related candidates revealed in our scan, including SCP2D1 and PDXC1. Comparing our method to an empirical outlier approach that does not directly account for demography, we found only modest overlaps between the two methods, with 60% of empirical outliers having no overlap with our demography-based outlier detection approach. Demography-aware approaches have lower-rates of false discovery. Our top candidates for selection, in addition to expanding the set of neurobehavioral candidate genes, include genes related to lipid metabolism, suggesting a dietary target of selection that was important during the period when proto-dogs hunted and fed alongside hunter-gatherers.

  3. Experimental evidence for ecological selection on genome variation in the wild.

    Science.gov (United States)

    Gompert, Zachariah; Comeault, Aaron A; Farkas, Timothy E; Feder, Jeffrey L; Parchman, Thomas L; Buerkle, C Alex; Nosil, Patrik

    2014-03-01

    Understanding natural selection's effect on genetic variation is a major goal in biology, but the genome-scale consequences of contemporary selection are not well known. In a release and recapture field experiment we transplanted stick insects to native and novel host plants and directly measured allele frequency changes within a generation at 186,576 genetic loci. We observed substantial, genome-wide allele frequency changes during the experiment, most of which could be attributed to random mortality (genetic drift). However, we also documented that selection affected multiple genetic loci distributed across the genome, particularly in transplants to the novel host. Host-associated selection affecting the genome acted on both a known colour-pattern trait as well as other (unmeasured) phenotypes. We also found evidence that selection associated with elevation affected genome variation, although our experiment was not designed to test this. Our results illustrate how genomic data can identify previously underappreciated ecological sources and phenotypic targets of selection. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  4. Comparative Genome of GK and Wistar Rats Reveals Genetic Basis of Type 2 Diabetes.

    Directory of Open Access Journals (Sweden)

    Tiancheng Liu

    Full Text Available The Goto-Kakizaki (GK rat, which has been developed by repeated inbreeding of glucose-intolerant Wistar rats, is the most widely studied rat model for Type 2 diabetes (T2D. However, the detailed genetic background of T2D phenotype in GK rats is still largely unknown. We report a survey of T2D susceptible variations based on high-quality whole genome sequencing of GK and Wistar rats, which have generated a list of GK-specific variations (228 structural variations, 2660 CNV amplification and 2834 CNV deletion, 1796 protein affecting SNVs or indels by comparative genome analysis and identified 192 potential T2D-associated genes. The genes with variants are further refined with prior knowledge and public resource including variant polymorphism of rat strains, protein-protein interactions and differential gene expression. Finally we have identified 15 genetic mutant genes which include seven known T2D related genes (Tnfrsf1b, Scg5, Fgb, Sell, Dpp4, Icam1, and Pkd2l1 and eight high-confidence new candidate genes (Ldlr, Ccl2, Erbb3, Akr1b1, Pik3c2a, Cd5, Eef2k, and Cpd. Our result reveals that the T2D phenotype may be caused by the accumulation of multiple variations in GK rat, and that the mutated genes may affect biological functions including adipocytokine signaling, glycerolipid metabolism, PPAR signaling, T cell receptor signaling and insulin signaling pathways. We present the genomic difference between two closely related rat strains (GK and Wistar and narrow down the scope of susceptible loci. It also requires further experimental study to understand and validate the relationship between our candidate variants and T2D phenotype. Our findings highlight the importance of sequenced-based comparative genomics for investigating disease susceptibility loci in inbreeding animal models.

  5. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Neil F.W.; Thomas, Torsten; Curmi, Paul M.G.; Mattick, John S.; Kuczek, Elizabeth; Slade, Rob; Davis, John; Franzmann, Peter; Boone, David; Rusterholtz, Karl; Feldman, Robert; Gates, Chris; Bench, Shellie; Sowers, Kevin; Kadner, Kristen; Aerts, Andrea; Dehal, Paramvir; Detter, Chris; Glavina, Tijana; Lucas, Susan; Richardson, Paul; Larimer, Frank; Hauser , Frank; Hauser, Loren; Land, Miriam; Cavicchioli, Richard

    2003-03-01

    We generated draft genome sequences for two cold-adapted Archaea, Methanogenium frigidum and Methanococcoides burtonii, to identify genotypic characteristics that distinguish them from Archaea with a higher optimal growth temperature (OGT). Comparative genomics revealed trends in amino acid and tRNA composition, and structural features of proteins. Proteins from the cold-adapted Archaea are characterized by a higher content of non-charged polar amino acids, particularly Gln and Thr and a lower content of hydrophobic amino acids, particularly Leu. Sequence data from nine methanogen genomes (OGT 15-98 C) was used to generate 1 111 modeled protein structures. Analysis of the models from the cold-adapted Archaea showed a strong tendency in the solvent accessible area for more Gln, Thr an hydrophobic residues and fewer charged residues. A cold shock domain (CSD) protein (CspA homolog) was identified in M. frigidum, two hypothetical proteins with CSD-folds in M. burtonii, and a unique winged helix DNA-binding domain protein in M. burtonii. This suggests that these types of nucleic acid binding proteins have a critical role in cold-adapted Archaea. Structural analysis of tRNA sequences from the Archaea indicated that GC content is the major factor influencing tRNA stability in hyperthermophiles, but not in the psychrophiles, mesophiles or moderate thermophiles. Below an OGT of 60 C, the GC content in tRNA was largely unchanged, indicating that any requirement for flexibility of tRNA in psychrophiles is mediated by other means. This is the first time that comparisons have been performed with genome data from Archaea spanning the growth temperature extremes from psychrophiles to hyperthermophiles.

  6. Genome Analysis of Two Pseudonocardia Phylotypes Associated with Acromyrmex Leafcutter Ants Reveals Their Biosynthetic Potential.

    Science.gov (United States)

    Holmes, Neil A; Innocent, Tabitha M; Heine, Daniel; Bassam, Mahmoud Al; Worsley, Sarah F; Trottmann, Felix; Patrick, Elaine H; Yu, Douglas W; Murrell, J C; Schiøtt, Morten; Wilkinson, Barrie; Boomsma, Jacobus J; Hutchings, Matthew I

    2016-01-01

    The attine ants of South and Central America are ancient farmers, having evolved a symbiosis with a fungal food crop >50 million years ago. The most evolutionarily derived attines are the Atta and Acromyrmex leafcutter ants, which harvest fresh leaves to feed their fungus. Acromyrmex and many other attines vertically transmit a mutualistic strain of Pseudonocardia and use antifungal compounds made by these bacteria to protect their fungal partner against co-evolved fungal pathogens of the genus Escovopsis. Pseudonocardia mutualists associated with the attines Apterostigma dentigerum and Trachymyrmex cornetzi make novel cyclic depsipeptide compounds called gerumycins, while a mutualist strain isolated from derived Acromyrmex octospinosus makes an unusual polyene antifungal called nystatin P1. The novelty of these antimicrobials suggests there is merit in exploring secondary metabolites of Pseudonocardia on a genome-wide scale. Here, we report a genomic analysis of the Pseudonocardia phylotypes Ps1 and Ps2 that are consistently associated with Acromyrmex ants collected in Gamboa, Panama. These were previously distinguished solely on the basis of 16S rRNA gene sequencing but genome sequencing of five Ps1 and five Ps2 strains revealed that the phylotypes are distinct species and each encodes between 11 and 15 secondary metabolite biosynthetic gene clusters (BGCs). There are signature BGCs for Ps1 and Ps2 strains and some that are conserved in both. Ps1 strains all contain BGCs encoding nystatin P1-like antifungals, while the Ps2 strains encode novel nystatin-like molecules. Strains show variations in the arrangement of these BGCs that resemble those seen in gerumycin gene clusters. Genome analyses and invasion assays support our hypothesis that vertically transmitted Ps1 and Ps2 strains have antibacterial activity that could help shape the cuticular microbiome. Thus, our work defines the Pseudonocardia species associated with Acromyrmex ants and supports the hypothesis

  7. Genome and transcriptome sequences reveal the specific parasitism of the nematophagous Purpureocillium lilacinum 36-1

    Directory of Open Access Journals (Sweden)

    Jialian Xie

    2016-07-01

    Full Text Available Purpureocillium lilacinum is a promising nematophagous ascomycete able to adapt diverse environments and it is also an opportunistic fungus that infects humans. A microbial inoculant of P. lilacinum has been registered to control plant parasitic nematodes. However, the molecular mechanism of the toxicological processes is still unclear because of the relatively few reports on the subject. In this study, using Illumina paired-end sequencing, the draft genome sequence and the transcriptome of P. lilacinum strain 36-1 infecting nematode-eggs were determined. Whole genome alignment indicated that P. lilacinum 36-1 possessed a more dynamic genome in comparison with P. lilacinum India strain. Moreover, a phylogenetic analysis showed that the P. lilacinum 36-1 had a closer relation to entomophagous fungi. The protein-coding genes in P. lilacinum 36-1 occurred much more frequently than they did in other fungi, which was a result of the depletion of repeat-induced point mutations (RIP. Comparative genome and transcriptome analyses revealed the genes that were involved in pathogenicity, particularly in the recognition, adhesion of nematode-eggs, downstream signal transduction pathways and hydrolase genes. By contrast, certain numbers of cellulose and xylan degradation genes and a lack of polysaccharide lyase genes showed the potential of P. lilacinum 36-1 as an endophyte. Notably, the expression of appressorium-formation and antioxidants-related genes exhibited similar infection patterns in P. lilacinum strain 36-1 to those of the model entomophagous fungi Metarhizium spp. These results uncovered the specific parasitism of P. lilacinum and presented the genes responsible for the infection of nematode-eggs.

  8. A survey of genomic traces reveals a common sequencing error, RNA editing, and DNA editing.

    Directory of Open Access Journals (Sweden)