WorldWideScience

Sample records for genomics developing tools

  1. Dcode.org anthology of comparative genomic tools.

    Science.gov (United States)

    Loots, Gabriela G; Ovcharenko, Ivan

    2005-07-01

    Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the non-coding encryption of gene regulation across genomes. To facilitate the practical application of comparative sequence analysis to genetics and genomics, we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools, zPicture and Mulan; a phylogenetic shadowing tool, eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools, rVista and multiTF; a tool for extracting cis-regulatory modules governing the expression of co-regulated genes, Creme 2.0; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here, we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ website.

  2. Application of Genomic Tools in Plant Breeding

    OpenAIRE

    Pérez-de-Castro, A.M.; Vilanova, S.; Cañizares, J.; Pascual, L.; Blanca, J.M.; Díez, M.J.; Prohens, J.; Picó, B.

    2012-01-01

    Plant breeding has been very successful in developing improved varieties using conventional tools and methodologies. Nowadays, the availability of genomic tools and resources is leading to a new revolution of plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. Next Generation Sequencing (NGS) technologies are allowing the mass sequencing of genomes and transcriptomes, which is producing a vast array of genomic...

  3. GenomePeek—an online tool for prokaryotic genome and metagenome analysis

    Directory of Open Access Journals (Sweden)

    Katelyn McNair

    2015-06-01

    Full Text Available As more and more prokaryotic sequencing takes place, a method to quickly and accurately analyze this data is needed. Previous tools are mainly designed for metagenomic analysis and have limitations; such as long runtimes and significant false positive error rates. The online tool GenomePeek (edwards.sdsu.edu/GenomePeek was developed to analyze both single genome and metagenome sequencing files, quickly and with low error rates. GenomePeek uses a sequence assembly approach where reads to a set of conserved genes are extracted, assembled and then aligned against the highly specific reference database. GenomePeek was found to be faster than traditional approaches while still keeping error rates low, as well as offering unique data visualization options.

  4. Application of genomic tools in plant breeding.

    Science.gov (United States)

    Pérez-de-Castro, A M; Vilanova, S; Cañizares, J; Pascual, L; Blanca, J M; Díez, M J; Prohens, J; Picó, B

    2012-05-01

    Plant breeding has been very successful in developing improved varieties using conventional tools and methodologies. Nowadays, the availability of genomic tools and resources is leading to a new revolution of plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. Next Generation Sequencing (NGS) technologies are allowing the mass sequencing of genomes and transcriptomes, which is producing a vast array of genomic information. The analysis of NGS data by means of bioinformatics developments allows discovering new genes and regulatory sequences and their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Genomic approaches include TILLING and EcoTILLING, which make possible to screen mutant and germplasm collections for allelic variants in target genes. Re-sequencing of genomes is very useful for the genome-wide discovery of markers amenable for high-throughput genotyping platforms, like SSRs and SNPs, or the construction of high density genetic maps. All these tools and resources facilitate studying the genetic diversity, which is important for germplasm management, enhancement and use. Also, they allow the identification of markers linked to genes and QTLs, using a diversity of techniques like bulked segregant analysis (BSA), fine genetic mapping, or association mapping. These new markers are used for marker assisted selection, including marker assisted backcross selection, 'breeding by design', or new strategies, like genomic selection. In conclusion, advances in genomics are providing breeders with new tools and methodologies that allow a great leap forward in plant breeding, including the 'superdomestication' of crops and the genetic dissection and breeding for complex traits.

  5. GAViT: Genome Assembly Visualization Tool for Short Read Data

    Energy Technology Data Exchange (ETDEWEB)

    Syed, Aijazuddin; Shapiro, Harris; Tu, Hank; Pangilinan, Jasmyn; Trong, Stephan

    2008-03-14

    It is a challenging job for genome analysts to accurately debug, troubleshoot, and validate genome assembly results. Genome analysts rely on visualization tools to help validate and troubleshoot assembly results, including such problems as mis-assemblies, low-quality regions, and repeats. Short read data adds further complexity and makes it extremely challenging for the visualization tools to scale and to view all needed assembly information. As a result, there is a need for a visualization tool that can scale to display assembly data from the new sequencing technologies. We present Genome Assembly Visualization Tool (GAViT), a highly scalable and interactive assembly visualization tool developed at the DOE Joint Genome Institute (JGI).

  6. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.

    Science.gov (United States)

    Li, Kaifeng; Cai, Dongbo; Wang, Zhangqian; He, Zhili; Chen, Shouwen

    2018-03-15

    Bacillus strains are important industrial bacteria that can produce various biochemical products. However, low transformation efficiencies and a lack of effective genome editing tools have hindered its widespread application. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 techniques have been utilized in many organisms as genome editing tools because of their high efficiency and easy manipulation. In this study, an efficient genome editing method was developed for Bacillus licheniformis using a CRISPR-Cas9 nickase integrated into the genome of B. licheniformis DW2 with overexpression driven by the P43 promoter. The yvmC gene was deleted using the CRISPR-Cas9n technique with homology arms of 1.0 kb as a representative example, and an efficiency of 100% was achieved. In addition, two genes were simultaneously disrupted with an efficiency of 11.6%, and the large DNA fragment bacABC (42.7 kb) was deleted with an efficiency of 79.0%. Furthermore, the heterologous reporter gene aprN , which codes for nattokinase in Bacillus subtilis , was inserted into the chromosome of B. licheniformis with an efficiency of 76.5%. The activity of nattokinase in the DWc9nΔ7/pP43SNT-S sacC strain reached 59.7 fibrinolytic units (FU)/ml, which was 25.7% higher than that of DWc9n/pP43SNT-S sacC Finally, the engineered strain DWc9nΔ7 (Δ epr Δ wprA Δ mpr Δ aprE Δ vpr Δ bprA Δ bacABC ), with multiple disrupted genes, was constructed using the CRISPR-Cas9n technique. Taken together, we have developed an efficient genome editing tool based on CRISPR-Cas9n in B. licheniformis This tool could be applied to strain improvement for future research. IMPORTANCE As important industrial bacteria, Bacillus strains have attracted significant attention due to their production of biological products. However, genetic manipulation of these bacteria is difficult. The CRISPR-Cas9 system has been applied to genome editing in some bacteria, and CRISPR-Cas9n was proven to

  7. Development of Genomic and Genetic Tools for Foxtail Millet, and Use of These Tools in the Improvement of Biomass Production for Bioenergy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Doust, Andrew, N.

    2011-11-11

    The overall aim of this research was to develop genomic and genetic tools in foxtail millet that will be useful in improving biomass production in bioenergy crops such as switchgrass, napier grass, and pearl millet. A variety of approaches have been implemented, and our lab has been primarily involved in genome analysis and quantitative genetic analysis. Our progress in these activities has been substantially helped by the genomic sequence of foxtail millet produced by the Joint Genome Institute (Bennetzen et al., in prep). In particular, the annotation and analysis of candidate genes for architecture, biomass production and flowering has led to new insights into the control of branching and flowering time, and has shown how closely related flowering time is to vegetative architectural development and biomass accumulation. The differences in genetic control identified at high and low density plantings have direct relevance to the breeding of bioenergy grasses that are tolerant of high planting densities. The developmental analyses have shown how plant architecture changes over time and may indicate which genes may best be manipulated at various times during development to obtain required biomass characteristics. This data contributes to the overall aim of significantly improving genetic and genomic tools in foxtail millet that can be directed to improvement of bioenergy grasses such as switchgrass, where it is important to maximize vegetative growth for greatest biomass production.

  8. QUAST: quality assessment tool for genome assemblies.

    Science.gov (United States)

    Gurevich, Alexey; Saveliev, Vladislav; Vyahhi, Nikolay; Tesler, Glenn

    2013-04-15

    Limitations of genome sequencing techniques have led to dozens of assembly algorithms, none of which is perfect. A number of methods for comparing assemblers have been developed, but none is yet a recognized benchmark. Further, most existing methods for comparing assemblies are only applicable to new assemblies of finished genomes; the problem of evaluating assemblies of previously unsequenced species has not been adequately considered. Here, we present QUAST-a quality assessment tool for evaluating and comparing genome assemblies. This tool improves on leading assembly comparison software with new ideas and quality metrics. QUAST can evaluate assemblies both with a reference genome, as well as without a reference. QUAST produces many reports, summary tables and plots to help scientists in their research and in their publications. In this study, we used QUAST to compare several genome assemblers on three datasets. QUAST tables and plots for all of them are available in the Supplementary Material, and interactive versions of these reports are on the QUAST website. http://bioinf.spbau.ru/quast . Supplementary data are available at Bioinformatics online.

  9. BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal M.

    2015-08-18

    Background Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). Results The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON’s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced. Conclusions We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/

  10. BEACON: automated tool for Bacterial GEnome Annotation ComparisON.

    Science.gov (United States)

    Kalkatawi, Manal; Alam, Intikhab; Bajic, Vladimir B

    2015-08-18

    Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON's utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27%, while the number of genes without any function assignment is reduced. We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  11. GAPIT: genome association and prediction integrated tool.

    Science.gov (United States)

    Lipka, Alexander E; Tian, Feng; Wang, Qishan; Peiffer, Jason; Li, Meng; Bradbury, Peter J; Gore, Michael A; Buckler, Edward S; Zhang, Zhiwu

    2012-09-15

    Software programs that conduct genome-wide association studies and genomic prediction and selection need to use methodologies that maximize statistical power, provide high prediction accuracy and run in a computationally efficient manner. We developed an R package called Genome Association and Prediction Integrated Tool (GAPIT) that implements advanced statistical methods including the compressed mixed linear model (CMLM) and CMLM-based genomic prediction and selection. The GAPIT package can handle large datasets in excess of 10 000 individuals and 1 million single-nucleotide polymorphisms with minimal computational time, while providing user-friendly access and concise tables and graphs to interpret results. http://www.maizegenetics.net/GAPIT. zhiwu.zhang@cornell.edu Supplementary data are available at Bioinformatics online.

  12. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

    Science.gov (United States)

    Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  13. PSAT: A web tool to compare genomic neighborhoods of multiple prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Wasnick Michael

    2008-03-01

    Full Text Available Abstract Background The conservation of gene order among prokaryotic genomes can provide valuable insight into gene function, protein interactions, or events by which genomes have evolved. Although some tools are available for visualizing and comparing the order of genes between genomes of study, few support an efficient and organized analysis between large numbers of genomes. The Prokaryotic Sequence homology Analysis Tool (PSAT is a web tool for comparing gene neighborhoods among multiple prokaryotic genomes. Results PSAT utilizes a database that is preloaded with gene annotation, BLAST hit results, and gene-clustering scores designed to help identify regions of conserved gene order. Researchers use the PSAT web interface to find a gene of interest in a reference genome and efficiently retrieve the sequence homologs found in other bacterial genomes. The tool generates a graphic of the genomic neighborhood surrounding the selected gene and the corresponding regions for its homologs in each comparison genome. Homologs in each region are color coded to assist users with analyzing gene order among various genomes. In contrast to common comparative analysis methods that filter sequence homolog data based on alignment score cutoffs, PSAT leverages gene context information for homologs, including those with weak alignment scores, enabling a more sensitive analysis. Features for constraining or ordering results are designed to help researchers browse results from large numbers of comparison genomes in an organized manner. PSAT has been demonstrated to be useful for helping to identify gene orthologs and potential functional gene clusters, and detecting genome modifications that may result in loss of function. Conclusion PSAT allows researchers to investigate the order of genes within local genomic neighborhoods of multiple genomes. A PSAT web server for public use is available for performing analyses on a growing set of reference genomes through any

  14. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii.

    Science.gov (United States)

    Di Rienzi, Sara C; Lindstrom, Kimberly C; Lancaster, Ragina; Rolczynski, Lisa; Raghuraman, M K; Brewer, Bonita J

    2011-02-01

    Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution. 2010 John Wiley & Sons, Ltd.

  15. A Simulation Tool for the Study of Symmetric Inversions in Bacterial Genomes

    Science.gov (United States)

    Dias, Ulisses; Dias, Zanoni; Setubal, João C.

    We present the tool SIB that simulates genomic inversions in bacterial chromosomes. The tool simulates symmetric inversions but allows the appearance of nonsymmetric inversions by simulating small syntenic blocks frequently observed on bacterial genome comparisons. We evaluate SIB by comparing its results to real genome alignments. We develop measures that allow quantitative comparisons between real pairwise alignments (in terms of dotplots) and simulated ones. These measures allow an evaluation of SIB in terms of dendrograms. We evaluate SIB by comparing its results to whole chromosome alignments and maximum likelihood trees for three bacterial groups (the Pseudomonadaceae family and the Xanthomonas and Shewanella genera). We demonstrate an application of SIB by using it to evaluate the ancestral genome reconstruction tool MGR.

  16. VISTA - computational tools for comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Kelly A.; Pachter, Lior; Poliakov, Alexander; Rubin,Edward M.; Dubchak, Inna

    2004-01-01

    Comparison of DNA sequences from different species is a fundamental method for identifying functional elements in genomes. Here we describe the VISTA family of tools created to assist biologists in carrying out this task. Our first VISTA server at http://www-gsd.lbl.gov/VISTA/ was launched in the summer of 2000 and was designed to align long genomic sequences and visualize these alignments with associated functional annotations. Currently the VISTA site includes multiple comparative genomics tools and provides users with rich capabilities to browse pre-computed whole-genome alignments of large vertebrate genomes and other groups of organisms with VISTA Browser, submit their own sequences of interest to several VISTA servers for various types of comparative analysis, and obtain detailed comparative analysis results for a set of cardiovascular genes. We illustrate capabilities of the VISTA site by the analysis of a 180 kilobase (kb) interval on human chromosome 5 that encodes for the kinesin family member3A (KIF3A) protein.

  17. Genephony: a knowledge management tool for genome-wide research

    Directory of Open Access Journals (Sweden)

    Riva Alberto

    2009-09-01

    Full Text Available Abstract Background One of the consequences of the rapid and widespread adoption of high-throughput experimental technologies is an exponential increase of the amount of data produced by genome-wide experiments. Researchers increasingly need to handle very large volumes of heterogeneous data, including both the data generated by their own experiments and the data retrieved from publicly available repositories of genomic knowledge. Integration, exploration, manipulation and interpretation of data and information therefore need to become as automated as possible, since their scale and breadth are, in general, beyond the limits of what individual researchers and the basic data management tools in normal use can handle. This paper describes Genephony, a tool we are developing to address these challenges. Results We describe how Genephony can be used to manage large datesets of genomic information, integrating them with existing knowledge repositories. We illustrate its functionalities with an example of a complex annotation task, in which a set of SNPs coming from a genotyping experiment is annotated with genes known to be associated to a phenotype of interest. We show how, thanks to the modular architecture of Genephony and its user-friendly interface, this task can be performed in a few simple steps. Conclusion Genephony is an online tool for the manipulation of large datasets of genomic information. It can be used as a browser for genomic data, as a high-throughput annotation tool, and as a knowledge discovery tool. It is designed to be easy to use, flexible and extensible. Its knowledge management engine provides fine-grained control over individual data elements, as well as efficient operations on large datasets.

  18. Public data and open source tools for multi-assay genomic investigation of disease.

    Science.gov (United States)

    Kannan, Lavanya; Ramos, Marcel; Re, Angela; El-Hachem, Nehme; Safikhani, Zhaleh; Gendoo, Deena M A; Davis, Sean; Gomez-Cabrero, David; Castelo, Robert; Hansen, Kasper D; Carey, Vincent J; Morgan, Martin; Culhane, Aedín C; Haibe-Kains, Benjamin; Waldron, Levi

    2016-07-01

    Molecular interrogation of a biological sample through DNA sequencing, RNA and microRNA profiling, proteomics and other assays, has the potential to provide a systems level approach to predicting treatment response and disease progression, and to developing precision therapies. Large publicly funded projects have generated extensive and freely available multi-assay data resources; however, bioinformatic and statistical methods for the analysis of such experiments are still nascent. We review multi-assay genomic data resources in the areas of clinical oncology, pharmacogenomics and other perturbation experiments, population genomics and regulatory genomics and other areas, and tools for data acquisition. Finally, we review bioinformatic tools that are explicitly geared toward integrative genomic data visualization and analysis. This review provides starting points for accessing publicly available data and tools to support development of needed integrative methods. © The Author 2015. Published by Oxford University Press.

  19. Tools for the Validation of Genomes and Transcriptomes with Proteomics data

    DEFF Research Database (Denmark)

    Pang, Chi Nam Ignatius; Aya, Carlos; Tay, Aidan

    data generated from protein mass spectrometry. We are developing a set of tools which allow users to: •Co-visualise genomics, transcriptomics, and proteomics data using the Integrated Genomics Viewer (IGV).1 •Validate the existence of genes and mRNAs using peptides identified from mass spectrometry...

  20. DFAST and DAGA: web-based integrated genome annotation tools and resources.

    Science.gov (United States)

    Tanizawa, Yasuhiro; Fujisawa, Takatomo; Kaminuma, Eli; Nakamura, Yasukazu; Arita, Masanori

    2016-01-01

    Quality assurance and correct taxonomic affiliation of data submitted to public sequence databases have been an everlasting problem. The DDBJ Fast Annotation and Submission Tool (DFAST) is a newly developed genome annotation pipeline with quality and taxonomy assessment tools. To enable annotation of ready-to-submit quality, we also constructed curated reference protein databases tailored for lactic acid bacteria. DFAST was developed so that all the procedures required for DDBJ submission could be done seamlessly online. The online workspace would be especially useful for users not familiar with bioinformatics skills. In addition, we have developed a genome repository, DFAST Archive of Genome Annotation (DAGA), which currently includes 1,421 genomes covering 179 species and 18 subspecies of two genera, Lactobacillus and Pediococcus , obtained from both DDBJ/ENA/GenBank and Sequence Read Archive (SRA). All the genomes deposited in DAGA were annotated consistently and assessed using DFAST. To assess the taxonomic position based on genomic sequence information, we used the average nucleotide identity (ANI), which showed high discriminative power to determine whether two given genomes belong to the same species. We corrected mislabeled or misidentified genomes in the public database and deposited the curated information in DAGA. The repository will improve the accessibility and reusability of genome resources for lactic acid bacteria. By exploiting the data deposited in DAGA, we found intraspecific subgroups in Lactobacillus gasseri and Lactobacillus jensenii , whose variation between subgroups is larger than the well-accepted ANI threshold of 95% to differentiate species. DFAST and DAGA are freely accessible at https://dfast.nig.ac.jp.

  1. Genomic tools in pearl millet breeding for drought tolerance: Status and prospects

    Directory of Open Access Journals (Sweden)

    Desalegn Debelo Serba

    2016-11-01

    Full Text Available Pearl millet (Penisetum glaucum (L R. Br. is a hardy cereal crop grown in the arid and semiarid tropics where other cereals are likely to fail to produce economic yields due to drought and heat stresses. Adaptive evolution, a form of natural selection shaped the crop to grow and yield satisfactorily with limited moisture supply or under periodic water deficits in the soil. Drought tolerance is a complex polygenic trait that various morphological and physiological responses are controlled by hundreds of genes and significantly influenced by the environment. The development of genomic tools will have enormous potential to improve the efficiency and precision of conventional breeding. The apparent independent domestication events, highly outcrossing nature and traditional cultivation in stressful environments maintained tremendous amount of polymorphism in pearl millet. This high polymorphism of the crop has been revealed by genome mapping that in turn stimulated the mapping and tagging of genomic regions controlling important traits such as drought tolerance. Mapping of a major QTL for terminal drought tolerance in independent populations envisaged the prospect for the development of molecular breeding in pearl millet. To accelerate genetic gains for drought tolerance targeted novel approaches such as establishment of marker-trait associations, genomic selection tools, genome sequence and genotyping-by-sequencing are still limited. Development and application of high throughput genomic tools need to be intensified to improve the breeding efficiency of pearl millet to minimize the impact of climate change on its production.

  2. Genomic-based-breeding tools for tropical maize improvement.

    Science.gov (United States)

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-12-01

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in

  3. Supplementary Material for: BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal M.; Alam, Intikhab; Bajic, Vladimir B.

    2015-01-01

    Abstract Background Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). Results The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACONâ s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced. Conclusions We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  4. CRISPR-Cas9: tool for qualitative and quantitative plant genome editing

    Directory of Open Access Journals (Sweden)

    Ali Noman

    2016-11-01

    Full Text Available Genome editing advancements have made many unachievable ideas practical. Increased adoption of genome editing has been geared by swiftly developing CRISPR-Cas9 technology. This technique is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR mediated genome editing is being used for rapid, easy and efficient alteration of indigenous genes among diverse plant species. With approximate completion of conceptual work about CRISPR/Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of CRISPR-Cas9 systems for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but also in crop plants. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with GM Plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR/Cas9 technology in plants has been summarized and discussed. We review potential of CRISPR/Cas9 for different aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques e.g. ZFNs and TALENs and potential challenges in coming decades have been described.

  5. Genomic Islands: an overview of current software tools and future improvements

    Directory of Open Access Journals (Sweden)

    Soares Siomar de Castro

    2016-03-01

    Full Text Available Microbes are highly diverse and widely distributed organisms. They account for ~60% of Earth’s biomass and new predictions point for the existence of 1011 to 1012 species, which are constantly sharing genes through several different mechanisms. Genomic Islands (GI are critical in this context, as they are large regions acquired through horizontal gene transfer. Also, they present common features like genomic signature deviation, transposase genes, flanking tRNAs and insertion sequences. GIs carry large numbers of genes related to specific lifestyle and are commonly classified in Pathogenicity, Resistance, Metabolic or Symbiotic Islands. With the advent of the next-generation sequencing technologies and the deluge of genomic data, many software tools have been developed that aim to tackle the problem of GI prediction and they are all based on the prediction of GI common features. However, there is still room for the development of new software tools that implements new approaches, such as, machine learning and pangenomics based analyses. Finally, GIs will always hold a potential application in every newly invented genomic approach as they are directly responsible for much of the genomic plasticity of bacteria.

  6. Genomic Islands: an overview of current software tools and future improvements.

    Science.gov (United States)

    Soares, Siomar de Castro; Oliveira, Letícia de Castro; Jaiswal, Arun Kumar; Azevedo, Vasco

    2016-03-01

    Microbes are highly diverse and widely distributed organisms. They account for ~60% of Earth's biomass and new predictions point for the existence of 1011 to 1012 species, which are constantly sharing genes through several different mechanisms. Genomic Islands (GI) are critical in this context, as they are large regions acquired through horizontal gene transfer. Also, they present common features like genomic signature deviation, transposase genes, flanking tRNAs and insertion sequences. GIs carry large numbers of genes related to specific lifestyle and are commonly classified in Pathogenicity, Resistance, Metabolic or Symbiotic Islands. With the advent of the next-generation sequencing technologies and the deluge of genomic data, many software tools have been developed that aim to tackle the problem of GI prediction and they are all based on the prediction of GI common features. However, there is still room for the development of new software tools that implements new approaches, such as, machine learning and pangenomics based analyses. Finally, GIs will always hold a potential application in every newly invented genomic approach as they are directly responsible for much of the genomic plasticity of bacteria.

  7. VarB Plus: An Integrated Tool for Visualization of Genome Variation Datasets

    KAUST Repository

    Hidayah, Lailatul

    2012-07-01

    Research on genomic sequences has been improving significantly as more advanced technology for sequencing has been developed. This opens enormous opportunities for sequence analysis. Various analytical tools have been built for purposes such as sequence assembly, read alignments, genome browsing, comparative genomics, and visualization. From the visualization perspective, there is an increasing trend towards use of large-scale computation. However, more than power is required to produce an informative image. This is a challenge that we address by providing several ways of representing biological data in order to advance the inference endeavors of biologists. This thesis focuses on visualization of variations found in genomic sequences. We develop several visualization functions and embed them in an existing variation visualization tool as extensions. The tool we improved is named VarB, hence the nomenclature for our enhancement is VarB Plus. To the best of our knowledge, besides VarB, there is no tool that provides the capability of dynamic visualization of genome variation datasets as well as statistical analysis. Dynamic visualization allows users to toggle different parameters on and off and see the results on the fly. The statistical analysis includes Fixation Index, Relative Variant Density, and Tajima’s D. Hence we focused our efforts on this tool. The scope of our work includes plots of per-base genome coverage, Principal Coordinate Analysis (PCoA), integration with a read alignment viewer named LookSeq, and visualization of geo-biological data. In addition to description of embedded functionalities, significance, and limitations, future improvements are discussed. The result is four extensions embedded successfully in the original tool, which is built on the Qt framework in C++. Hence it is portable to numerous platforms. Our extensions have shown acceptable execution time in a beta testing with various high-volume published datasets, as well as positive

  8. The CRISPR/Cas genome-editing tool: application in improvement of crops

    Directory of Open Access Journals (Sweden)

    SURENDER eKHATODIA

    2016-04-01

    Full Text Available The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR associated Cas9/sgRNA system is a novel fledgling targeted genome-editing technique from bacterial immune system, which is a cheap, easy and most rapidly adopted genome editing tool transforming to revolutionary paradigm. Cas9 protein is an RNA guided endonuclease utilized for creating targeted double stranded breaks with only a short RNA sequence to confer recognition of the target in animals and plants. Development of genetically edited (GE crops similar to those developed by conventional or mutation breeding using this potential technique makes it a promising and extremely versatile tool for providing sustainable productive agriculture for better feeding of rapidly growing population in changing climate. The emerging areas of research for the genome editing in plants are like, interrogating gene function, rewiring the regulatory signaling networks, sgRNA library for high-throughput loss-of-function screening. In this review, we will discuss the broad applicability of the Cas9 nuclease mediated targeted plant genome editing for development of designer crops. The regulatory uncertainty and social acceptance of plant breeding by Cas9 genome editing have also been discussed. The non-GM designer genetically edited plants could prospect climate resilient and sustainable energy agriculture in coming future for maximizing the yield by combating abiotic and biotic stresses with this new innovative plant breeding technique.

  9. Developing Cancer Informatics Applications and Tools Using the NCI Genomic Data Commons API.

    Science.gov (United States)

    Wilson, Shane; Fitzsimons, Michael; Ferguson, Martin; Heath, Allison; Jensen, Mark; Miller, Josh; Murphy, Mark W; Porter, James; Sahni, Himanso; Staudt, Louis; Tang, Yajing; Wang, Zhining; Yu, Christine; Zhang, Junjun; Ferretti, Vincent; Grossman, Robert L

    2017-11-01

    The NCI Genomic Data Commons (GDC) was launched in 2016 and makes available over 4 petabytes (PB) of cancer genomic and associated clinical data to the research community. This dataset continues to grow and currently includes over 14,500 patients. The GDC is an example of a biomedical data commons, which collocates biomedical data with storage and computing infrastructure and commonly used web services, software applications, and tools to create a secure, interoperable, and extensible resource for researchers. The GDC is (i) a data repository for downloading data that have been submitted to it, and also a system that (ii) applies a common set of bioinformatics pipelines to submitted data; (iii) reanalyzes existing data when new pipelines are developed; and (iv) allows users to build their own applications and systems that interoperate with the GDC using the GDC Application Programming Interface (API). We describe the GDC API and how it has been used both by the GDC itself and by third parties. Cancer Res; 77(21); e15-18. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Genomic suppression subtractive hybridization as a tool to identify differences in mycorrhizal fungal genomes.

    Science.gov (United States)

    Murat, Claude; Zampieri, Elisa; Vallino, Marta; Daghino, Stefania; Perotto, Silvia; Bonfante, Paola

    2011-05-01

    Characterization of genomic variation among different microbial species, or different strains of the same species, is a field of significant interest with a wide range of potential applications. We have investigated the genomic variation in mycorrhizal fungal genomes through genomic suppressive subtractive hybridization. The comparison was between phylogenetically distant and close truffle species (Tuber spp.), and between isolates of the ericoid mycorrhizal fungus Oidiodendron maius featuring different degrees of metal tolerance. In the interspecies experiment, almost all the sequences that were identified in the Tuber melanosporum genome and absent in Tuber borchii and Tuber indicum corresponded to transposable elements. In the intraspecies comparison, some specific sequences corresponded to regions coding for enzymes, among them a glutathione synthetase known to be involved in metal tolerance. This approach is a quick and rather inexpensive tool to develop molecular markers for mycorrhizal fungi tracking and barcoding, to identify functional genes and to investigate the genome plasticity, adaptation and evolution. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. MaGnET: Malaria Genome Exploration Tool.

    Science.gov (United States)

    Sharman, Joanna L; Gerloff, Dietlind L

    2013-09-15

    The Malaria Genome Exploration Tool (MaGnET) is a software tool enabling intuitive 'exploration-style' visualization of functional genomics data relating to the malaria parasite, Plasmodium falciparum. MaGnET provides innovative integrated graphic displays for different datasets, including genomic location of genes, mRNA expression data, protein-protein interactions and more. Any selection of genes to explore made by the user is easily carried over between the different viewers for different datasets, and can be changed interactively at any point (without returning to a search). Free online use (Java Web Start) or download (Java application archive and MySQL database; requires local MySQL installation) at http://malariagenomeexplorer.org joanna.sharman@ed.ac.uk or dgerloff@ffame.org Supplementary data are available at Bioinformatics online.

  12. Genovar: a detection and visualization tool for genomic variants.

    Science.gov (United States)

    Jung, Kwang Su; Moon, Sanghoon; Kim, Young Jin; Kim, Bong-Jo; Park, Kiejung

    2012-05-08

    Along with single nucleotide polymorphisms (SNPs), copy number variation (CNV) is considered an important source of genetic variation associated with disease susceptibility. Despite the importance of CNV, the tools currently available for its analysis often produce false positive results due to limitations such as low resolution of array platforms, platform specificity, and the type of CNV. To resolve this problem, spurious signals must be separated from true signals by visual inspection. None of the previously reported CNV analysis tools support this function and the simultaneous visualization of comparative genomic hybridization arrays (aCGH) and sequence alignment. The purpose of the present study was to develop a useful program for the efficient detection and visualization of CNV regions that enables the manual exclusion of erroneous signals. A JAVA-based stand-alone program called Genovar was developed. To ascertain whether a detected CNV region is a novel variant, Genovar compares the detected CNV regions with previously reported CNV regions using the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation) and the Single Nucleotide Polymorphism Database (dbSNP). The current version of Genovar is capable of visualizing genomic data from sources such as the aCGH data file and sequence alignment format files. Genovar is freely accessible and provides a user-friendly graphic user interface (GUI) to facilitate the detection of CNV regions. The program also provides comprehensive information to help in the elimination of spurious signals by visual inspection, making Genovar a valuable tool for reducing false positive CNV results. http://genovar.sourceforge.net/.

  13. BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal M.; Alam, Intikhab; Bajic, Vladimir B.

    2015-01-01

    We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/

  14. MODEST: a web-based design tool for oligonucleotide-mediated genome engineering and recombineering

    DEFF Research Database (Denmark)

    Bonde, Mads; Klausen, Michael Schantz; Anderson, Mads Valdemar

    2014-01-01

    Recombineering and multiplex automated genome engineering (MAGE) offer the possibility to rapidly modify multiple genomic or plasmid sites at high efficiencies. This enables efficient creation of genetic variants including both single mutants with specifically targeted modifications as well......, which confers the corresponding genetic change, is performed manually. To address these challenges, we have developed the MAGE Oligo Design Tool (MODEST). This web-based tool allows designing of MAGE oligos for (i) tuning translation rates by modifying the ribosomal binding site, (ii) generating...

  15. DivStat: a user-friendly tool for single nucleotide polymorphism analysis of genomic diversity.

    Directory of Open Access Journals (Sweden)

    Inês Soares

    Full Text Available Recent developments have led to an enormous increase of publicly available large genomic data, including complete genomes. The 1000 Genomes Project was a major contributor, releasing the results of sequencing a large number of individual genomes, and allowing for a myriad of large scale studies on human genetic variation. However, the tools currently available are insufficient when the goal concerns some analyses of data sets encompassing more than hundreds of base pairs and when considering haplotype sequences of single nucleotide polymorphisms (SNPs. Here, we present a new and potent tool to deal with large data sets allowing the computation of a variety of summary statistics of population genetic data, increasing the speed of data analysis.

  16. Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-Function Space and Genome Context to Discover Novel Functions.

    Science.gov (United States)

    Gerlt, John A

    2017-08-22

    The exponentially increasing number of protein and nucleic acid sequences provides opportunities to discover novel enzymes, metabolic pathways, and metabolites/natural products, thereby adding to our knowledge of biochemistry and biology. The challenge has evolved from generating sequence information to mining the databases to integrating and leveraging the available information, i.e., the availability of "genomic enzymology" web tools. Web tools that allow identification of biosynthetic gene clusters are widely used by the natural products/synthetic biology community, thereby facilitating the discovery of novel natural products and the enzymes responsible for their biosynthesis. However, many novel enzymes with interesting mechanisms participate in uncharacterized small-molecule metabolic pathways; their discovery and functional characterization also can be accomplished by leveraging information in protein and nucleic acid databases. This Perspective focuses on two genomic enzymology web tools that assist the discovery novel metabolic pathways: (1) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating sequence similarity networks to visualize and analyze sequence-function space in protein families and (2) Enzyme Function Initiative-Genome Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks to visualize and analyze the genome context in microbial and fungal genomes. Both tools have been adapted to other applications to facilitate target selection for enzyme discovery and functional characterization. As the natural products community has demonstrated, the enzymology community needs to embrace the essential role of web tools that allow the protein and genome sequence databases to be leveraged for novel insights into enzymological problems.

  17. GREAT: a web portal for Genome Regulatory Architecture Tools.

    Science.gov (United States)

    Bouyioukos, Costas; Bucchini, François; Elati, Mohamed; Képès, François

    2016-07-08

    GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Viral Cre-LoxP tools aid genome engineering in mammalian cells.

    Science.gov (United States)

    Sengupta, Ranjita; Mendenhall, Amy; Sarkar, Nandita; Mukherjee, Chandreyee; Afshari, Amirali; Huang, Joseph; Lu, Biao

    2017-01-01

    Targeted nucleases have transformed genome editing technology, providing more efficient methods to make targeted changes in mammalian genome. In parallel, there is an increasing demand of Cre-LoxP technology for complex genome manipulation such as large deletion, addition, gene fusion and conditional removal of gene sequences at the target site. However, an efficient and easy-to-use Cre-recombinase delivery system remains lacking. We designed and constructed two sets of expression vectors for Cre-recombinase using two highly efficient viral systems, the integrative lentivirus and non-integrative adeno associated virus. We demonstrate the effectiveness of those methods in Cre-delivery into stably-engineered HEK293 cells harboring LoxP-floxed red fluorescent protein (RFP) and puromycin (Puro) resistant reporters. The delivered Cre recombinase effectively excised the floxed RFP-Puro either directly or conditionally, therefore validating the function of these molecular tools. Given the convenient options of two selections markers, these viral-based systems offer a robust and easy-to-use tool for advanced genome editing, expanding complicated genome engineering to a variety of cell types and conditions. We have developed and functionally validated two viral-based Cre-recombinase delivery systems for efficient genome manipulation in various mammalian cells. The ease of gene delivery with the built-in reporters and inducible element enables live cell monitoring, drug selection and temporal knockout, broadening applications of genome editing.

  19. Intervene: a tool for intersection and visualization of multiple gene or genomic region sets.

    Science.gov (United States)

    Khan, Aziz; Mathelier, Anthony

    2017-05-31

    A common task for scientists relies on comparing lists of genes or genomic regions derived from high-throughput sequencing experiments. While several tools exist to intersect and visualize sets of genes, similar tools dedicated to the visualization of genomic region sets are currently limited. To address this gap, we have developed the Intervene tool, which provides an easy and automated interface for the effective intersection and visualization of genomic region or list sets, thus facilitating their analysis and interpretation. Intervene contains three modules: venn to generate Venn diagrams of up to six sets, upset to generate UpSet plots of multiple sets, and pairwise to compute and visualize intersections of multiple sets as clustered heat maps. Intervene, and its interactive web ShinyApp companion, generate publication-quality figures for the interpretation of genomic region and list sets. Intervene and its web application companion provide an easy command line and an interactive web interface to compute intersections of multiple genomic and list sets. They have the capacity to plot intersections using easy-to-interpret visual approaches. Intervene is developed and designed to meet the needs of both computer scientists and biologists. The source code is freely available at https://bitbucket.org/CBGR/intervene , with the web application available at https://asntech.shinyapps.io/intervene .

  20. A Tool for Multiple Targeted Genome Deletions that Is Precise, Scar-Free, and Suitable for Automation.

    Directory of Open Access Journals (Sweden)

    Wayne Aubrey

    Full Text Available Many advances in synthetic biology require the removal of a large number of genomic elements from a genome. Most existing deletion methods leave behind markers, and as there are a limited number of markers, such methods can only be applied a fixed number of times. Deletion methods that recycle markers generally are either imprecise (remove untargeted sequences, or leave scar sequences which can cause genome instability and rearrangements. No existing marker recycling method is automation-friendly. We have developed a novel openly available deletion tool that consists of: 1 a method for deleting genomic elements that can be repeatedly used without limit, is precise, scar-free, and suitable for automation; and 2 software to design the method's primers. Our tool is sequence agnostic and could be used to delete large numbers of coding sequences, promoter regions, transcription factor binding sites, terminators, etc in a single genome. We have validated our tool on the deletion of non-essential open reading frames (ORFs from S. cerevisiae. The tool is applicable to arbitrary genomes, and we provide primer sequences for the deletion of: 90% of the ORFs from the S. cerevisiae genome, 88% of the ORFs from S. pombe genome, and 85% of the ORFs from the L. lactis genome.

  1. iPat: intelligent prediction and association tool for genomic research.

    Science.gov (United States)

    Chen, Chunpeng James; Zhang, Zhiwu

    2018-06-01

    The ultimate goal of genomic research is to effectively predict phenotypes from genotypes so that medical management can improve human health and molecular breeding can increase agricultural production. Genomic prediction or selection (GS) plays a complementary role to genome-wide association studies (GWAS), which is the primary method to identify genes underlying phenotypes. Unfortunately, most computing tools cannot perform data analyses for both GWAS and GS. Furthermore, the majority of these tools are executed through a command-line interface (CLI), which requires programming skills. Non-programmers struggle to use them efficiently because of the steep learning curves and zero tolerance for data formats and mistakes when inputting keywords and parameters. To address these problems, this study developed a software package, named the Intelligent Prediction and Association Tool (iPat), with a user-friendly graphical user interface. With iPat, GWAS or GS can be performed using a pointing device to simply drag and/or click on graphical elements to specify input data files, choose input parameters and select analytical models. Models available to users include those implemented in third party CLI packages such as GAPIT, PLINK, FarmCPU, BLINK, rrBLUP and BGLR. Users can choose any data format and conduct analyses with any of these packages. File conversions are automatically conducted for specified input data and selected packages. A GWAS-assisted genomic prediction method was implemented to perform genomic prediction using any GWAS method such as FarmCPU. iPat was written in Java for adaptation to multiple operating systems including Windows, Mac and Linux. The iPat executable file, user manual, tutorials and example datasets are freely available at http://zzlab.net/iPat. zhiwu.zhang@wsu.edu.

  2. Comparative genomics using data mining tools

    Indian Academy of Sciences (India)

    We have analysed the genomes of representatives of three kingdoms of life, namely, archaea, eubacteria and eukaryota using data mining tools based on compositional analyses of the protein sequences. The representatives chosen in this analysis were Methanococcus jannaschii, Haemophilus influenzae and ...

  3. CRISPR-Cpf1: A New Tool for Plant Genome Editing

    KAUST Repository

    Zaidi, Syed Shan-e-Ali; Mahfouz, Magdy M.; Mansoor, Shahid

    2017-01-01

    Clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated proteins (CRISPR-Cas), a groundbreaking genome-engineering tool, has facilitated targeted trait improvement in plants. Recently, CRISPR-CRISPR from Prevotella and Francisella 1 (Cpf1) has emerged as a new tool for efficient genome editing, including DNA-free editing in plants, with higher efficiency, specificity, and potentially wider applications than CRISPR-Cas9.

  4. CRISPR-Cpf1: A New Tool for Plant Genome Editing

    KAUST Repository

    Zaidi, Syed Shan-e-Ali

    2017-05-19

    Clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated proteins (CRISPR-Cas), a groundbreaking genome-engineering tool, has facilitated targeted trait improvement in plants. Recently, CRISPR-CRISPR from Prevotella and Francisella 1 (Cpf1) has emerged as a new tool for efficient genome editing, including DNA-free editing in plants, with higher efficiency, specificity, and potentially wider applications than CRISPR-Cas9.

  5. Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the classification of transposable elements in eukaryotic genomes.

    Science.gov (United States)

    Feschotte, Cédric; Keswani, Umeshkumar; Ranganathan, Nirmal; Guibotsy, Marcel L; Levine, David

    2009-07-23

    Eukaryotic genomes contain large amount of repetitive DNA, most of which is derived from transposable elements (TEs). Progress has been made to develop computational tools for ab initio identification of repeat families, but there is an urgent need to develop tools to automate the annotation of TEs in genome sequences. Here we introduce REPCLASS, a tool that automates the classification of TE sequences. Using control repeat libraries, we show that the program can classify accurately virtually any known TE types. Combining REPCLASS to ab initio repeat finding in the genomes of Caenorhabditis elegans and Drosophila melanogaster allowed us to recover the contrasting TE landscape characteristic of these species. Unexpectedly, REPCLASS also uncovered several novel TE families in both genomes, augmenting the TE repertoire of these model species. When applied to the genomes of distant Caenorhabditis and Drosophila species, the approach revealed a remarkable conservation of TE composition profile within each genus, despite substantial interspecific covariations in genome size and in the number of TEs and TE families. Lastly, we applied REPCLASS to analyze 10 fungal genomes from a wide taxonomic range, most of which have not been analyzed for TE content previously. The results showed that TE diversity varies widely across the fungi "kingdom" and appears to positively correlate with genome size, in particular for DNA transposons. Together, these data validate REPCLASS as a powerful tool to explore the repetitive DNA landscapes of eukaryotes and to shed light onto the evolutionary forces shaping TE diversity and genome architecture.

  6. Accessing the SEED genome databases via Web services API: tools for programmers.

    Science.gov (United States)

    Disz, Terry; Akhter, Sajia; Cuevas, Daniel; Olson, Robert; Overbeek, Ross; Vonstein, Veronika; Stevens, Rick; Edwards, Robert A

    2010-06-14

    The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST) server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups. The currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java. We present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online.

  7. Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools.

    Science.gov (United States)

    Kisand, Veljo; Lettieri, Teresa

    2013-04-01

    De novo genome sequencing of previously uncharacterized microorganisms has the potential to open up new frontiers in microbial genomics by providing insight into both functional capabilities and biodiversity. Until recently, Roche 454 pyrosequencing was the NGS method of choice for de novo assembly because it generates hundreds of thousands of long reads (tools for processing NGS data are increasingly free and open source and are often adopted for both their high quality and role in promoting academic freedom. The error rate of pyrosequencing the Alcanivorax borkumensis genome was such that thousands of insertions and deletions were artificially introduced into the finished genome. Despite a high coverage (~30 fold), it did not allow the reference genome to be fully mapped. Reads from regions with errors had low quality, low coverage, or were missing. The main defect of the reference mapping was the introduction of artificial indels into contigs through lower than 100% consensus and distracting gene calling due to artificial stop codons. No assembler was able to perform de novo assembly comparable to reference mapping. Automated annotation tools performed similarly on reference mapped and de novo draft genomes, and annotated most CDSs in the de novo assembled draft genomes. Free and open source software (FOSS) tools for assembly and annotation of NGS data are being developed rapidly to provide accurate results with less computational effort. Usability is not high priority and these tools currently do not allow the data to be processed without manual intervention. Despite this, genome assemblers now readily assemble medium short reads into long contigs (>97-98% genome coverage). A notable gap in pyrosequencing technology is the quality of base pair calling and conflicting base pairs between single reads at the same nucleotide position. Regardless, using draft whole genomes that are not finished and remain fragmented into tens of contigs allows one to characterize

  8. Analysis tools for the interplay between genome layout and regulation.

    Science.gov (United States)

    Bouyioukos, Costas; Elati, Mohamed; Képès, François

    2016-06-06

    Genome layout and gene regulation appear to be interdependent. Understanding this interdependence is key to exploring the dynamic nature of chromosome conformation and to engineering functional genomes. Evidence for non-random genome layout, defined as the relative positioning of either co-functional or co-regulated genes, stems from two main approaches. Firstly, the analysis of contiguous genome segments across species, has highlighted the conservation of gene arrangement (synteny) along chromosomal regions. Secondly, the study of long-range interactions along a chromosome has emphasised regularities in the positioning of microbial genes that are co-regulated, co-expressed or evolutionarily correlated. While one-dimensional pattern analysis is a mature field, it is often powerless on biological datasets which tend to be incomplete, and partly incorrect. Moreover, there is a lack of comprehensive, user-friendly tools to systematically analyse, visualise, integrate and exploit regularities along genomes. Here we present the Genome REgulatory and Architecture Tools SCAN (GREAT:SCAN) software for the systematic study of the interplay between genome layout and gene expression regulation. SCAN is a collection of related and interconnected applications currently able to perform systematic analyses of genome regularities as well as to improve transcription factor binding sites (TFBS) and gene regulatory network predictions based on gene positional information. We demonstrate the capabilities of these tools by studying on one hand the regular patterns of genome layout in the major regulons of the bacterium Escherichia coli. On the other hand, we demonstrate the capabilities to improve TFBS prediction in microbes. Finally, we highlight, by visualisation of multivariate techniques, the interplay between position and sequence information for effective transcription regulation.

  9. Current development and application of soybean genomics

    Institute of Scientific and Technical Information of China (English)

    Lingli HE; Jing ZHAO; Man ZHAO; Chaoying HE

    2011-01-01

    Soybean (Glycine max),an important domesticated species originated in China,constitutes a major source of edible oils and high-quality plant proteins worldwide.In spite of its complex genome as a consequence of an ancient tetraploidilization,platforms for map-based genomics,sequence-based genomics,comparative genomics and functional genomics have been well developed in the last decade,thus rich repertoires of genomic tools and resources are available,which have been influencing the soybean genetic improvement.Here we mainly review the progresses of soybean (including its wild relative Glycine soja) genomics and its impetus for soybean breeding,and raise the major biological questions needing to be addressed.Genetic maps,physical maps,QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine.Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes,which are instrumental to comparative genomics and functional genomics.Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process.Microarrays resources,mutagenesis and efficient transformation systems become essential components of soybean functional genomics.Furthermore,phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development,in response to abiotic stresses,functioning in plant-pathogenic microbe interactions,and controlling the oil and protein content of seed.These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.

  10. Next generation tools for genomic data generation, distribution, and visualization.

    Science.gov (United States)

    Nix, David A; Di Sera, Tonya L; Dalley, Brian K; Milash, Brett A; Cundick, Robert M; Quinn, Kevin S; Courdy, Samir J

    2010-09-09

    With the rapidly falling cost and availability of high throughput sequencing and microarray technologies, the bottleneck for effectively using genomic analysis in the laboratory and clinic is shifting to one of effectively managing, analyzing, and sharing genomic data. Here we present three open-source, platform independent, software tools for generating, analyzing, distributing, and visualizing genomic data. These include a next generation sequencing/microarray LIMS and analysis project center (GNomEx); an application for annotating and programmatically distributing genomic data using the community vetted DAS/2 data exchange protocol (GenoPub); and a standalone Java Swing application (GWrap) that makes cutting edge command line analysis tools available to those who prefer graphical user interfaces. Both GNomEx and GenoPub use the rich client Flex/Flash web browser interface to interact with Java classes and a relational database on a remote server. Both employ a public-private user-group security model enabling controlled distribution of patient and unpublished data alongside public resources. As such, they function as genomic data repositories that can be accessed manually or programmatically through DAS/2-enabled client applications such as the Integrated Genome Browser. These tools have gained wide use in our core facilities, research laboratories and clinics and are freely available for non-profit use. See http://sourceforge.net/projects/gnomex/, http://sourceforge.net/projects/genoviz/, and http://sourceforge.net/projects/useq.

  11. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects.

    Science.gov (United States)

    Holt, Carson; Yandell, Mark

    2011-12-22

    Second-generation sequencing technologies are precipitating major shifts with regards to what kinds of genomes are being sequenced and how they are annotated. While the first generation of genome projects focused on well-studied model organisms, many of today's projects involve exotic organisms whose genomes are largely terra incognita. This complicates their annotation, because unlike first-generation projects, there are no pre-existing 'gold-standard' gene-models with which to train gene-finders. Improvements in genome assembly and the wide availability of mRNA-seq data are also creating opportunities to update and re-annotate previously published genome annotations. Today's genome projects are thus in need of new genome annotation tools that can meet the challenges and opportunities presented by second-generation sequencing technologies. We present MAKER2, a genome annotation and data management tool designed for second-generation genome projects. MAKER2 is a multi-threaded, parallelized application that can process second-generation datasets of virtually any size. We show that MAKER2 can produce accurate annotations for novel genomes where training-data are limited, of low quality or even non-existent. MAKER2 also provides an easy means to use mRNA-seq data to improve annotation quality; and it can use these data to update legacy annotations, significantly improving their quality. We also show that MAKER2 can evaluate the quality of genome annotations, and identify and prioritize problematic annotations for manual review. MAKER2 is the first annotation engine specifically designed for second-generation genome projects. MAKER2 scales to datasets of any size, requires little in the way of training data, and can use mRNA-seq data to improve annotation quality. It can also update and manage legacy genome annotation datasets.

  12. The Dockstore: enabling modular, community-focused sharing of Docker-based genomics tools and workflows.

    Science.gov (United States)

    O'Connor, Brian D; Yuen, Denis; Chung, Vincent; Duncan, Andrew G; Liu, Xiang Kun; Patricia, Janice; Paten, Benedict; Stein, Lincoln; Ferretti, Vincent

    2017-01-01

    As genomic datasets continue to grow, the feasibility of downloading data to a local organization and running analysis on a traditional compute environment is becoming increasingly problematic. Current large-scale projects, such as the ICGC PanCancer Analysis of Whole Genomes (PCAWG), the Data Platform for the U.S. Precision Medicine Initiative, and the NIH Big Data to Knowledge Center for Translational Genomics, are using cloud-based infrastructure to both host and perform analysis across large data sets. In PCAWG, over 5,800 whole human genomes were aligned and variant called across 14 cloud and HPC environments; the processed data was then made available on the cloud for further analysis and sharing. If run locally, an operation at this scale would have monopolized a typical academic data centre for many months, and would have presented major challenges for data storage and distribution. However, this scale is increasingly typical for genomics projects and necessitates a rethink of how analytical tools are packaged and moved to the data. For PCAWG, we embraced the use of highly portable Docker images for encapsulating and sharing complex alignment and variant calling workflows across highly variable environments. While successful, this endeavor revealed a limitation in Docker containers, namely the lack of a standardized way to describe and execute the tools encapsulated inside the container. As a result, we created the Dockstore ( https://dockstore.org), a project that brings together Docker images with standardized, machine-readable ways of describing and running the tools contained within. This service greatly improves the sharing and reuse of genomics tools and promotes interoperability with similar projects through emerging web service standards developed by the Global Alliance for Genomics and Health (GA4GH).

  13. Next generation tools for genomic data generation, distribution, and visualization

    Directory of Open Access Journals (Sweden)

    Nix David A

    2010-09-01

    Full Text Available Abstract Background With the rapidly falling cost and availability of high throughput sequencing and microarray technologies, the bottleneck for effectively using genomic analysis in the laboratory and clinic is shifting to one of effectively managing, analyzing, and sharing genomic data. Results Here we present three open-source, platform independent, software tools for generating, analyzing, distributing, and visualizing genomic data. These include a next generation sequencing/microarray LIMS and analysis project center (GNomEx; an application for annotating and programmatically distributing genomic data using the community vetted DAS/2 data exchange protocol (GenoPub; and a standalone Java Swing application (GWrap that makes cutting edge command line analysis tools available to those who prefer graphical user interfaces. Both GNomEx and GenoPub use the rich client Flex/Flash web browser interface to interact with Java classes and a relational database on a remote server. Both employ a public-private user-group security model enabling controlled distribution of patient and unpublished data alongside public resources. As such, they function as genomic data repositories that can be accessed manually or programmatically through DAS/2-enabled client applications such as the Integrated Genome Browser. Conclusions These tools have gained wide use in our core facilities, research laboratories and clinics and are freely available for non-profit use. See http://sourceforge.net/projects/gnomex/, http://sourceforge.net/projects/genoviz/, and http://sourceforge.net/projects/useq.

  14. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, Luay

    2014-03-12

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.

  15. Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases

    Science.gov (United States)

    Amos, Christopher I.; Bafna, Vineet; Hauser, Elizabeth R.; Hernandez, Ryan D.; Li, Chun; Liberles, David A.; McAllister, Kimberly; Moore, Jason H.; Paltoo, Dina N.; Papanicolaou, George J.; Peng, Bo; Ritchie, Marylyn D.; Rosenfeld, Gabriel; Witte, John S.

    2014-01-01

    Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled “Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases” at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to: (i) identify opportunities, challenges and resource needs for the development and application of genetic simulation models; (ii) improve the integration of tools for modeling and analysis of simulated data; and (iii) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation. PMID:25371374

  16. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  17. KAIKObase: An integrated silkworm genome database and data mining tool

    Directory of Open Access Journals (Sweden)

    Nagaraju Javaregowda

    2009-10-01

    Full Text Available Abstract Background The silkworm, Bombyx mori, is one of the most economically important insects in many developing countries owing to its large-scale cultivation for silk production. With the development of genomic and biotechnological tools, B. mori has also become an important bioreactor for production of various recombinant proteins of biomedical interest. In 2004, two genome sequencing projects for B. mori were reported independently by Chinese and Japanese teams; however, the datasets were insufficient for building long genomic scaffolds which are essential for unambiguous annotation of the genome. Now, both the datasets have been merged and assembled through a joint collaboration between the two groups. Description Integration of the two data sets of silkworm whole-genome-shotgun sequencing by the Japanese and Chinese groups together with newly obtained fosmid- and BAC-end sequences produced the best continuity (~3.7 Mb in N50 scaffold size among the sequenced insect genomes and provided a high degree of nucleotide coverage (88% of all 28 chromosomes. In addition, a physical map of BAC contigs constructed by fingerprinting BAC clones and a SNP linkage map constructed using BAC-end sequences were available. In parallel, proteomic data from two-dimensional polyacrylamide gel electrophoresis in various tissues and developmental stages were compiled into a silkworm proteome database. Finally, a Bombyx trap database was constructed for documenting insertion positions and expression data of transposon insertion lines. Conclusion For efficient usage of genome information for functional studies, genomic sequences, physical and genetic map information and EST data were compiled into KAIKObase, an integrated silkworm genome database which consists of 4 map viewers, a gene viewer, and sequence, keyword and position search systems to display results and data at the level of nucleotide sequence, gene, scaffold and chromosome. Integration of the

  18. GEnomes Management Application (GEM.app): a new software tool for large-scale collaborative genome analysis.

    Science.gov (United States)

    Gonzalez, Michael A; Lebrigio, Rafael F Acosta; Van Booven, Derek; Ulloa, Rick H; Powell, Eric; Speziani, Fiorella; Tekin, Mustafa; Schüle, Rebecca; Züchner, Stephan

    2013-06-01

    Novel genes are now identified at a rapid pace for many Mendelian disorders, and increasingly, for genetically complex phenotypes. However, new challenges have also become evident: (1) effectively managing larger exome and/or genome datasets, especially for smaller labs; (2) direct hands-on analysis and contextual interpretation of variant data in large genomic datasets; and (3) many small and medium-sized clinical and research-based investigative teams around the world are generating data that, if combined and shared, will significantly increase the opportunities for the entire community to identify new genes. To address these challenges, we have developed GEnomes Management Application (GEM.app), a software tool to annotate, manage, visualize, and analyze large genomic datasets (https://genomics.med.miami.edu/). GEM.app currently contains ∼1,600 whole exomes from 50 different phenotypes studied by 40 principal investigators from 15 different countries. The focus of GEM.app is on user-friendly analysis for nonbioinformaticians to make next-generation sequencing data directly accessible. Yet, GEM.app provides powerful and flexible filter options, including single family filtering, across family/phenotype queries, nested filtering, and evaluation of segregation in families. In addition, the system is fast, obtaining results within 4 sec across ∼1,200 exomes. We believe that this system will further enhance identification of genetic causes of human disease. © 2013 Wiley Periodicals, Inc.

  19. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.

    Science.gov (United States)

    Cao, Yinhe; Tung, Wen-Wen; Gao, J B

    2004-01-01

    With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.

  20. A comparative evaluation of genome assembly reconciliation tools.

    Science.gov (United States)

    Alhakami, Hind; Mirebrahim, Hamid; Lonardi, Stefano

    2017-05-18

    The majority of eukaryotic genomes are unfinished due to the algorithmic challenges of assembling them. A variety of assembly and scaffolding tools are available, but it is not always obvious which tool or parameters to use for a specific genome size and complexity. It is, therefore, common practice to produce multiple assemblies using different assemblers and parameters, then select the best one for public release. A more compelling approach would allow one to merge multiple assemblies with the intent of producing a higher quality consensus assembly, which is the objective of assembly reconciliation. Several assembly reconciliation tools have been proposed in the literature, but their strengths and weaknesses have never been compared on a common dataset. We fill this need with this work, in which we report on an extensive comparative evaluation of several tools. Specifically, we evaluate contiguity, correctness, coverage, and the duplication ratio of the merged assembly compared to the individual assemblies provided as input. None of the tools we tested consistently improved the quality of the input GAGE and synthetic assemblies. Our experiments show an increase in contiguity in the consensus assembly when the original assemblies already have high quality. In terms of correctness, the quality of the results depends on the specific tool, as well as on the quality and the ranking of the input assemblies. In general, the number of misassemblies ranges from being comparable to the best of the input assembly to being comparable to the worst of the input assembly.

  1. The Switchgrass Genome: Tools and Strategies

    Directory of Open Access Journals (Sweden)

    Michael D. Casler

    2011-11-01

    Full Text Available Switchgrass ( L. is a perennial grass species receiving significant focus as a potential bioenergy crop. In the last 5 yr the switchgrass research community has produced a genetic linkage map, an expressed sequence tag (EST database, a set of single nucleotide polymorphism (SNP markers that are distributed across the 18 linkage groups, 4x sampling of the AP13 genome in 400-bp reads, and bacterial artificial chromosome (BAC libraries containing over 200,000 clones. These studies have revealed close collinearity of the switchgrass genome with those of sorghum [ (L. Moench], rice ( L., and (L. P. Beauv. Switchgrass researchers have also developed several microarray technologies for gene expression studies. Switchgrass genomic resources will accelerate the ability of plant breeders to enhance productivity, pest resistance, and nutritional quality. Because switchgrass is a relative newcomer to the genomics world, many secrets of the switchgrass genome have yet to be revealed. To continue to efficiently explore basic and applied topics in switchgrass, it will be critical to capture and exploit the knowledge of plant geneticists and breeders on the next logical steps in the development and utilization of genomic resources for this species. To this end, the community has established a switchgrass genomics executive committee and work group ( [verified 28 Oct. 2011].

  2. Development of genome- and transcriptome-derived microsatellites in related species of snapping shrimps with highly duplicated genomes.

    Science.gov (United States)

    Gaynor, Kaitlyn M; Solomon, Joseph W; Siller, Stefanie; Jessell, Linnet; Duffy, J Emmett; Rubenstein, Dustin R

    2017-11-01

    Molecular markers are powerful tools for studying patterns of relatedness and parentage within populations and for making inferences about social evolution. However, the development of molecular markers for simultaneous study of multiple species presents challenges, particularly when species exhibit genome duplication or polyploidy. We developed microsatellite markers for Synalpheus shrimp, a genus in which species exhibit not only great variation in social organization, but also interspecific variation in genome size and partial genome duplication. From the four primary clades within Synalpheus, we identified microsatellites in the genomes of four species and in the consensus transcriptome of two species. Ultimately, we designed and tested primers for 143 microsatellite markers across 25 species. Although the majority of markers were disomic, many markers were polysomic for certain species. Surprisingly, we found no relationship between genome size and the number of polysomic markers. As expected, markers developed for a given species amplified better for closely related species than for more distant relatives. Finally, the markers developed from the transcriptome were more likely to work successfully and to be disomic than those developed from the genome, suggesting that consensus transcriptomes are likely to be conserved across species. Our findings suggest that the transcriptome, particularly consensus sequences from multiple species, can be a valuable source of molecular markers for taxa with complex, duplicated genomes. © 2017 John Wiley & Sons Ltd.

  3. Cost-effective cloud computing: a case study using the comparative genomics tool, roundup.

    Science.gov (United States)

    Kudtarkar, Parul; Deluca, Todd F; Fusaro, Vincent A; Tonellato, Peter J; Wall, Dennis P

    2010-12-22

    Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource-Roundup-using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon's Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon's computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure.

  4. Developing tools for the study of molluscan immunity: The sequencing of the genome of the eastern oyster, Crassostrea virginica.

    Science.gov (United States)

    Gómez-Chiarri, Marta; Warren, Wesley C; Guo, Ximing; Proestou, Dina

    2015-09-01

    The eastern oyster, Crassostrea virginica, provides important ecological and economical services, making it the target of restoration projects and supporting a significant fishery/aquaculture industry with landings valued at more than $100 million in 2012 in the United States of America. Due to the impact of infectious diseases on wild, restored, and cultured populations, the eastern oyster has been the focus of studies on host-pathogen interactions and immunity, as well as the target of selective breeding efforts for disease resistant oyster lines. Despite these efforts, relatively little is known about the genetic basis of resistance to diseases or environmental stress, not only in eastern oyster, but also in other molluscan species of commercial interest worldwide. In order to develop tools and resources to assist in the elucidation of the genomic basis of traits of commercial, biological, and ecological interest in oysters, a team of genome and bioinformatics experts, in collaboration with the oyster research community, is sequencing, assembling, and annotating the first reference genome for the eastern oyster and producing an exhaustive transcriptome from a variety of oyster developmental stages and tissues in response to a diverse set of environmentally-relevant stimuli. These transcriptomes and reference genome for the eastern oyster, added to the already available genome and transcriptomes for the Pacific oyster (Crassostrea gigas) and other bivalve species, will be an essential resource for the discovery of candidate genes and markers associated with traits of commercial, biological, and ecologic importance in bivalve molluscs, including those related to host-pathogen interactions and immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Correcting Inconsistencies and Errors in Bacterial Genome Metadata Using an Automated Curation Tool in Excel (AutoCurE).

    Science.gov (United States)

    Schmedes, Sarah E; King, Jonathan L; Budowle, Bruce

    2015-01-01

    Whole-genome data are invaluable for large-scale comparative genomic studies. Current sequencing technologies have made it feasible to sequence entire bacterial genomes with relative ease and time with a substantially reduced cost per nucleotide, hence cost per genome. More than 3,000 bacterial genomes have been sequenced and are available at the finished status. Publically available genomes can be readily downloaded; however, there are challenges to verify the specific supporting data contained within the download and to identify errors and inconsistencies that may be present within the organizational data content and metadata. AutoCurE, an automated tool for bacterial genome database curation in Excel, was developed to facilitate local database curation of supporting data that accompany downloaded genomes from the National Center for Biotechnology Information. AutoCurE provides an automated approach to curate local genomic databases by flagging inconsistencies or errors by comparing the downloaded supporting data to the genome reports to verify genome name, RefSeq accession numbers, the presence of archaea, BioProject/UIDs, and sequence file descriptions. Flags are generated for nine metadata fields if there are inconsistencies between the downloaded genomes and genomes reports and if erroneous or missing data are evident. AutoCurE is an easy-to-use tool for local database curation for large-scale genome data prior to downstream analyses.

  6. RatMap--rat genome tools and data.

    Science.gov (United States)

    Petersen, Greta; Johnson, Per; Andersson, Lars; Klinga-Levan, Karin; Gómez-Fabre, Pedro M; Ståhl, Fredrik

    2005-01-01

    The rat genome database RatMap (http://ratmap.org or http://ratmap.gen.gu.se) has been one of the main resources for rat genome information since 1994. The database is maintained by CMB-Genetics at Goteborg University in Sweden and provides information on rat genes, polymorphic rat DNA-markers and rat quantitative trait loci (QTLs), all curated at RatMap. The database is under the supervision of the Rat Gene and Nomenclature Committee (RGNC); thus much attention is paid to rat gene nomenclature. RatMap presents information on rat idiograms, karyotypes and provides a unified presentation of the rat genome sequence and integrated rat linkage maps. A set of tools is also available to facilitate the identification and characterization of rat QTLs, as well as the estimation of exon/intron number and sizes in individual rat genes. Furthermore, comparative gene maps of rat in regard to mouse and human are provided.

  7. RatMap—rat genome tools and data

    Science.gov (United States)

    Petersen, Greta; Johnson, Per; Andersson, Lars; Klinga-Levan, Karin; Gómez-Fabre, Pedro M.; Ståhl, Fredrik

    2005-01-01

    The rat genome database RatMap (http://ratmap.org or http://ratmap.gen.gu.se) has been one of the main resources for rat genome information since 1994. The database is maintained by CMB–Genetics at Göteborg University in Sweden and provides information on rat genes, polymorphic rat DNA-markers and rat quantitative trait loci (QTLs), all curated at RatMap. The database is under the supervision of the Rat Gene and Nomenclature Committee (RGNC); thus much attention is paid to rat gene nomenclature. RatMap presents information on rat idiograms, karyotypes and provides a unified presentation of the rat genome sequence and integrated rat linkage maps. A set of tools is also available to facilitate the identification and characterization of rat QTLs, as well as the estimation of exon/intron number and sizes in individual rat genes. Furthermore, comparative gene maps of rat in regard to mouse and human are provided. PMID:15608244

  8. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing.

    Science.gov (United States)

    Straub, Shannon C K; Fishbein, Mark; Livshultz, Tatyana; Foster, Zachary; Parks, Matthew; Weitemier, Kevin; Cronn, Richard C; Liston, Aaron

    2011-05-04

    Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first

  9. DNA Microarrays: a Powerful Genomic Tool for Biomedical and Clinical Research

    OpenAIRE

    Trevino, Victor; Falciani, Francesco; Barrera-Saldaña, Hugo A

    2007-01-01

    Among the many benefits of the Human Genome Project are new and powerful tools such as the genome-wide hybridization devices referred to as microarrays. Initially designed to measure gene transcriptional levels, microarray technologies are now used for comparing other genome features among individuals and their tissues and cells. Results provide valuable information on disease subcategories, disease prognosis, and treatment outcome. Likewise, they reveal differences in genetic makeup, regulat...

  10. Development of Bioinformatics Infrastructure for Genomics Research.

    Science.gov (United States)

    Mulder, Nicola J; Adebiyi, Ezekiel; Adebiyi, Marion; Adeyemi, Seun; Ahmed, Azza; Ahmed, Rehab; Akanle, Bola; Alibi, Mohamed; Armstrong, Don L; Aron, Shaun; Ashano, Efejiro; Baichoo, Shakuntala; Benkahla, Alia; Brown, David K; Chimusa, Emile R; Fadlelmola, Faisal M; Falola, Dare; Fatumo, Segun; Ghedira, Kais; Ghouila, Amel; Hazelhurst, Scott; Isewon, Itunuoluwa; Jung, Segun; Kassim, Samar Kamal; Kayondo, Jonathan K; Mbiyavanga, Mamana; Meintjes, Ayton; Mohammed, Somia; Mosaku, Abayomi; Moussa, Ahmed; Muhammd, Mustafa; Mungloo-Dilmohamud, Zahra; Nashiru, Oyekanmi; Odia, Trust; Okafor, Adaobi; Oladipo, Olaleye; Osamor, Victor; Oyelade, Jellili; Sadki, Khalid; Salifu, Samson Pandam; Soyemi, Jumoke; Panji, Sumir; Radouani, Fouzia; Souiai, Oussama; Tastan Bishop, Özlem

    2017-06-01

    Although pockets of bioinformatics excellence have developed in Africa, generally, large-scale genomic data analysis has been limited by the availability of expertise and infrastructure. H3ABioNet, a pan-African bioinformatics network, was established to build capacity specifically to enable H3Africa (Human Heredity and Health in Africa) researchers to analyze their data in Africa. Since the inception of the H3Africa initiative, H3ABioNet's role has evolved in response to changing needs from the consortium and the African bioinformatics community. H3ABioNet set out to develop core bioinformatics infrastructure and capacity for genomics research in various aspects of data collection, transfer, storage, and analysis. Various resources have been developed to address genomic data management and analysis needs of H3Africa researchers and other scientific communities on the continent. NetMap was developed and used to build an accurate picture of network performance within Africa and between Africa and the rest of the world, and Globus Online has been rolled out to facilitate data transfer. A participant recruitment database was developed to monitor participant enrollment, and data is being harmonized through the use of ontologies and controlled vocabularies. The standardized metadata will be integrated to provide a search facility for H3Africa data and biospecimens. Because H3Africa projects are generating large-scale genomic data, facilities for analysis and interpretation are critical. H3ABioNet is implementing several data analysis platforms that provide a large range of bioinformatics tools or workflows, such as Galaxy, the Job Management System, and eBiokits. A set of reproducible, portable, and cloud-scalable pipelines to support the multiple H3Africa data types are also being developed and dockerized to enable execution on multiple computing infrastructures. In addition, new tools have been developed for analysis of the uniquely divergent African data and for

  11. GMATA: An Integrated Software Package for Genome-Scale SSR Mining, Marker Development and Viewing.

    Science.gov (United States)

    Wang, Xuewen; Wang, Le

    2016-01-01

    Simple sequence repeats (SSRs), also referred to as microsatellites, are highly variable tandem DNAs that are widely used as genetic markers. The increasing availability of whole-genome and transcript sequences provides information resources for SSR marker development. However, efficient software is required to efficiently identify and display SSR information along with other gene features at a genome scale. We developed novel software package Genome-wide Microsatellite Analyzing Tool Package (GMATA) integrating SSR mining, statistical analysis and plotting, marker design, polymorphism screening and marker transferability, and enabled simultaneously display SSR markers with other genome features. GMATA applies novel strategies for SSR analysis and primer design in large genomes, which allows GMATA to perform faster calculation and provides more accurate results than existing tools. Our package is also capable of processing DNA sequences of any size on a standard computer. GMATA is user friendly, only requires mouse clicks or types inputs on the command line, and is executable in multiple computing platforms. We demonstrated the application of GMATA in plants genomes and reveal a novel distribution pattern of SSRs in 15 grass genomes. The most abundant motifs are dimer GA/TC, the A/T monomer and the GCG/CGC trimer, rather than the rich G/C content in DNA sequence. We also revealed that SSR count is a linear to the chromosome length in fully assembled grass genomes. GMATA represents a powerful application tool that facilitates genomic sequence analyses. GAMTA is freely available at http://sourceforge.net/projects/gmata/?source=navbar.

  12. Genomic Tools in Pea Breeding Programs: Status and Perspectives

    Science.gov (United States)

    Tayeh, Nadim; Aubert, Grégoire; Pilet-Nayel, Marie-Laure; Lejeune-Hénaut, Isabelle; Warkentin, Thomas D.; Burstin, Judith

    2015-01-01

    Pea (Pisum sativum L.) is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22–25% protein, complex starch and fiber constituents, and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tons produced in 2013. Pea breeding has achieved great success since the time of Mendel's experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress toward deciphering the pea genome. PMID:26640470

  13. Genomic tools in pea breeding programs: status and perspectives

    Directory of Open Access Journals (Sweden)

    Nadim eTAYEH

    2015-11-01

    Full Text Available Pea (Pisum sativum L. is an annual cool-season legume and one of the oldest domesticated crops. Dry pea seeds contain 22-25 percent protein, complex starch and fibre constituents and a rich array of vitamins, minerals, and phytochemicals which make them a valuable source for human consumption and livestock feed. Dry pea ranks third to common bean and chickpea as the most widely grown pulse in the world with more than 11 million tonnes produced in 2013. Pea breeding has achieved great success since the time of Mendel’s experiments in the mid-1800s. However, several traits still require significant improvement for better yield stability in a larger growing area. Key breeding objectives in pea include improving biotic and abiotic stress resistance and enhancing yield components and seed quality. Taking advantage of the diversity present in the pea genepool, many mapping populations have been constructed in the last decades and efforts have been deployed to identify loci involved in the control of target traits and further introgress them into elite breeding materials. Pea now benefits from next-generation sequencing and high-throughput genotyping technologies that are paving the way for genome-wide association studies and genomic selection approaches. This review covers the significant development and deployment of genomic tools for pea breeding in recent years. Future prospects are discussed especially in light of current progress towards deciphering the pea genome.

  14. Building a model: developing genomic resources for common milkweed (Asclepias syriaca with low coverage genome sequencing

    Directory of Open Access Journals (Sweden)

    Weitemier Kevin

    2011-05-01

    Full Text Available Abstract Background Milkweeds (Asclepias L. have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L. could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp and 5S rDNA (120 bp sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp, with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae unigenes (median coverage of 0.29× and 66% of single copy orthologs (COSII in asterids (median coverage of 0.14×. From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites and phylogenetics (low-copy nuclear genes studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species

  15. Databases and web tools for cancer genomics study.

    Science.gov (United States)

    Yang, Yadong; Dong, Xunong; Xie, Bingbing; Ding, Nan; Chen, Juan; Li, Yongjun; Zhang, Qian; Qu, Hongzhu; Fang, Xiangdong

    2015-02-01

    Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data comprehensiveness, and user experience. The resources reviewed include data repository and analysis tools; and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  16. Development of functional genomic tools in trematodes: RNA interference and luciferase reporter gene activity in Fasciola hepatica.

    Directory of Open Access Journals (Sweden)

    Gabriel Rinaldi

    2008-07-01

    Full Text Available The growing availability of sequence information from diverse parasites through genomic and transcriptomic projects offer new opportunities for the identification of key mediators in the parasite-host interaction. Functional genomics approaches and methods for the manipulation of genes are essential tools for deciphering the roles of genes and to identify new intervention targets in parasites. Exciting advances in functional genomics for parasitic helminths are starting to occur, with transgene expression and RNA interference (RNAi reported in several species of nematodes, but the area is still in its infancy in flatworms, with reports in just three species. While advancing in model organisms, there is a need to rapidly extend these technologies to other parasites responsible for several chronic diseases of humans and cattle. In order to extend these approaches to less well studied parasitic worms, we developed a test method for the presence of a viable RNAi pathway by silencing the exogenous reporter gene, firefly luciferase (fLUC. We established the method in the human blood fluke Schistosoma mansoni and then confirmed its utility in the liver fluke Fasciola hepatica. We transformed newly excysted juveniles of F. hepatica by electroporation with mRNA of fLUC and three hours later were able to detect luciferase enzyme activity, concentrated mainly in the digestive ceca. Subsequently, we tested the presence of an active RNAi pathway in F. hepatica by knocking down the exogenous luciferase activity by introduction into the transformed parasites of double-stranded RNA (dsRNA specific for fLUC. In addition, we tested the RNAi pathway targeting an endogenous F. hepatica gene encoding leucine aminopeptidase (FhLAP, and observed a significant reduction in specific mRNA levels. In summary, these studies demonstrated the utility of RNAi targeting reporter fLUC as a reporter gene assay to establish the presence of an intact RNAi pathway in helminth

  17. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics

    Directory of Open Access Journals (Sweden)

    Richard Mark Leggett

    2013-12-01

    Full Text Available The processes of quality assessment and control are an active area of research at The Genome Analysis Centre (TGAC. Unlike other sequencing centres that often concentrate on a certain species or technology, TGAC applies expertise in genomics and bioinformatics to a wide range of projects, often requiring bespoke wet lab and in silico workflows. TGAC is fortunate to have access to a diverse range of sequencing and analysis platforms, and we are at the forefront of investigations into library quality and sequence data assessment. We have developed and implemented a number of algorithms, tools, pipelines and packages to ascertain, store, and expose quality metrics across a number of next-generation sequencing platforms, allowing rapid and in-depth cross-platform QC bioinformatics. In this review, we describe these tools as a vehicle for data-driven informatics, offering the potential to provide richer context for downstream analysis and to inform experimental design.

  18. Mi-DISCOVERER: A bioinformatics tool for the detection of mi-RNA in human genome.

    Science.gov (United States)

    Arshad, Saadia; Mumtaz, Asia; Ahmad, Freed; Liaquat, Sadia; Nadeem, Shahid; Mehboob, Shahid; Afzal, Muhammad

    2010-11-27

    MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs.

  19. Stakeholder engagement in policy development: challenges and opportunities for human genomics.

    Science.gov (United States)

    Lemke, Amy A; Harris-Wai, Julie N

    2015-12-01

    Along with rapid advances in human genomics, policies governing genomic data and clinical technologies have proliferated. Stakeholder engagement is widely lauded as an important methodology for improving clinical, scientific, and public health policy decision making. The purpose of this paper is to examine how stakeholder engagement is used to develop policies in genomics research and public health areas, as well as to identify future priorities for conducting evidence-based stakeholder engagements. We focus on exemplars in biobanking and newborn screening to illustrate a variety of current stakeholder engagement in policy-making efforts. Each setting provides an important context for examining the methods of obtaining and integrating informed stakeholder voices into the policy-making process. While many organizations have an interest in engaging stakeholders with regard to genomic policy issues, there is broad divergence with respect to the stakeholders involved, the purpose of engagements, when stakeholders are engaged during policy development, methods of engagement, and the outcomes reported. Stakeholder engagement in genomics policy development is still at a nascent stage. Several challenges of using stakeholder engagement as a tool for genomics policy development remain, and little evidence regarding how to best incorporate stakeholder feedback into policy-making processes is currently available.

  20. GACT: a Genome build and Allele definition Conversion Tool for SNP imputation and meta-analysis in genetic association studies.

    Science.gov (United States)

    Sulovari, Arvis; Li, Dawei

    2014-07-19

    Genome-wide association studies (GWAS) have successfully identified genes associated with complex human diseases. Although much of the heritability remains unexplained, combining single nucleotide polymorphism (SNP) genotypes from multiple studies for meta-analysis will increase the statistical power to identify new disease-associated variants. Meta-analysis requires same allele definition (nomenclature) and genome build among individual studies. Similarly, imputation, commonly-used prior to meta-analysis, requires the same consistency. However, the genotypes from various GWAS are generated using different genotyping platforms, arrays or SNP-calling approaches, resulting in use of different genome builds and allele definitions. Incorrect assumptions of identical allele definition among combined GWAS lead to a large portion of discarded genotypes or incorrect association findings. There is no published tool that predicts and converts among all major allele definitions. In this study, we have developed a tool, GACT, which stands for Genome build and Allele definition Conversion Tool, that predicts and inter-converts between any of the common SNP allele definitions and between the major genome builds. In addition, we assessed several factors that may affect imputation quality, and our results indicated that inclusion of singletons in the reference had detrimental effects while ambiguous SNPs had no measurable effect. Unexpectedly, exclusion of genotypes with missing rate > 0.001 (40% of study SNPs) showed no significant decrease of imputation quality (even significantly higher when compared to the imputation with singletons in the reference), especially for rare SNPs. GACT is a new, powerful, and user-friendly tool with both command-line and interactive online versions that can accurately predict, and convert between any of the common allele definitions and between genome builds for genome-wide meta-analysis and imputation of genotypes from SNP-arrays or deep

  1. Development and Application of Camelid Molecular Cytogenetic Tools

    Science.gov (United States)

    Avila, Felipe; Das, Pranab J.; Kutzler, Michelle; Owens, Elaine; Perelman, Polina; Rubes, Jiri; Hornak, Miroslav; Johnson, Warren E.

    2014-01-01

    Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human–camel zoo-fluorescence in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly. PMID:23109720

  2. Molecular Tools for Exploring Polyploid Genomes in Plants

    Directory of Open Access Journals (Sweden)

    Domenico Carputo

    2012-08-01

    Full Text Available Polyploidy is a very common phenomenon in the plant kingdom, where even diploid species are often described as paleopolyploids. The polyploid condition may bring about several advantages compared to the diploid state. Polyploids often show phenotypes that are not present in their diploid progenitors or exceed the range of the contributing species. Some of these traits may play a role in heterosis or could favor adaptation to new ecological niches. Advances in genomics and sequencing technology may create unprecedented opportunities for discovering and monitoring the molecular effects of polyploidization. Through this review, we provide an overview of technologies and strategies that may allow an in-depth analysis of polyploid genomes. After introducing some basic aspects on the origin and genetics of polyploids, we highlight the main tools available for genome and gene expression analysis and summarize major findings. In the last part of this review, the implications of next generation sequencing are briefly discussed. The accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists to understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  3. Agrobacterium-mediated transformation as a tool for functional genomics in fungi

    NARCIS (Netherlands)

    Michielse, C.B.; Hooykaas, P.J.J.; Hondel, C.A.M.J.J. van den; Ram, A.F.J.

    2005-01-01

    In the era of functional genomics, the need for tools to perform large-scale targeted and random mutagenesis is increasing. A potential tool is Agrobacterium-mediated fungal transformation. A. tumefaciens is able to transfer a part of its DNA (transferred DNA; T-DNA) to a wide variety of fungi and

  4. GenomeCAT: a versatile tool for the analysis and integrative visualization of DNA copy number variants.

    Science.gov (United States)

    Tebel, Katrin; Boldt, Vivien; Steininger, Anne; Port, Matthias; Ebert, Grit; Ullmann, Reinhard

    2017-01-06

    The analysis of DNA copy number variants (CNV) has increasing impact in the field of genetic diagnostics and research. However, the interpretation of CNV data derived from high resolution array CGH or NGS platforms is complicated by the considerable variability of the human genome. Therefore, tools for multidimensional data analysis and comparison of patient cohorts are needed to assist in the discrimination of clinically relevant CNVs from others. We developed GenomeCAT, a standalone Java application for the analysis and integrative visualization of CNVs. GenomeCAT is composed of three modules dedicated to the inspection of single cases, comparative analysis of multidimensional data and group comparisons aiming at the identification of recurrent aberrations in patients sharing the same phenotype, respectively. Its flexible import options ease the comparative analysis of own results derived from microarray or NGS platforms with data from literature or public depositories. Multidimensional data obtained from different experiment types can be merged into a common data matrix to enable common visualization and analysis. All results are stored in the integrated MySQL database, but can also be exported as tab delimited files for further statistical calculations in external programs. GenomeCAT offers a broad spectrum of visualization and analysis tools that assist in the evaluation of CNVs in the context of other experiment data and annotations. The use of GenomeCAT does not require any specialized computer skills. The various R packages implemented for data analysis are fully integrated into GenomeCATs graphical user interface and the installation process is supported by a wizard. The flexibility in terms of data import and export in combination with the ability to create a common data matrix makes the program also well suited as an interface between genomic data from heterogeneous sources and external software tools. Due to the modular architecture the functionality of

  5. CGUG: in silico proteome and genome parsing tool for the determination of "core" and unique genes in the analysis of genomes up to ca. 1.9 Mb

    Directory of Open Access Journals (Sweden)

    Mahadevan Padmanabhan

    2009-08-01

    Full Text Available Abstract Background Viruses and small-genome bacteria (~2 megabases and smaller comprise a considerable population in the biosphere and are of interest to many researchers. These genomes are now sequenced at an unprecedented rate and require complementary computational tools to analyze. "CoreGenesUniqueGenes" (CGUG is an in silico genome data mining tool that determines a "core" set of genes from two to five organisms with genomes in this size range. Core and unique genes may reflect similar niches and needs, and may be used in classifying organisms. Findings CGUG is available at http://binf.gmu.edu/geneorder.html as a web-based on-the-fly tool that performs iterative BLASTP analyses using a reference genome and up to four query genomes to provide a table of genes common to these genomes. The result is an in silico display of genomes and their proteomes, allowing for further analysis. CGUG can be used for "genome annotation by homology", as demonstrated with Chlamydophila and Francisella genomes. Conclusion CGUG is used to reanalyze the ICTV-based classifications of bacteriophages, to reconfirm long-standing relationships and to explore new classifications. These genomes have been problematic in the past, due largely to horizontal gene transfers. CGUG is validated as a tool for reannotating small genome bacteria using more up-to-date annotations by similarity or homology. These serve as an entry point for wet-bench experiments to confirm the functions of these "hypothetical" and "unknown" proteins.

  6. GenPlay Multi-Genome, a tool to compare and analyze multiple human genomes in a graphical interface.

    Science.gov (United States)

    Lajugie, Julien; Fourel, Nicolas; Bouhassira, Eric E

    2015-01-01

    Parallel visualization of multiple individual human genomes is a complex endeavor that is rapidly gaining importance with the increasing number of personal, phased and cancer genomes that are being generated. It requires the display of variants such as SNPs, indels and structural variants that are unique to specific genomes and the introduction of multiple overlapping gaps in the reference sequence. Here, we describe GenPlay Multi-Genome, an application specifically written to visualize and analyze multiple human genomes in parallel. GenPlay Multi-Genome is ideally suited for the comparison of allele-specific expression and functional genomic data obtained from multiple phased genomes in a graphical interface with access to multiple-track operation. It also allows the analysis of data that have been aligned to custom genomes rather than to a standard reference and can be used as a variant calling format file browser and as a tool to compare different genome assembly, such as hg19 and hg38. GenPlay is available under the GNU public license (GPL-3) from http://genplay.einstein.yu.edu. The source code is available at https://github.com/JulienLajugie/GenPlay. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. CRISPR-Cas9; an efficient tool for precise plant genome editing.

    Science.gov (United States)

    Islam, Waqar

    2018-04-03

    Efficient plant genome editing is dependent upon induction of double stranded DNA breaks (DSBs) through site specified nucleases. These DSBs initiate the process of DNA repair which can either base upon homologous recombination (HR) or non-homologous end jointing (NHEJ). Recently, CRISPR-Cas9 mechanism got highlighted as revolutionizing genetic tool due to its simpler frame work along with the broad range of adaptability and applications. So, in this review, I have tried to sum up the application of this biotechnological tool in plant genome editing. Furthermore, I have tried to explain successful adaptation of CRISPR in various plant species where it is used for the successful generation of stable mutations in a steadily growing number of species through NHEJ. The review also sheds light upon other biotechnological approaches relying upon single DNA lesion induction such as genomic deletion or pair wise nickases for evasion of offsite effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. CHESS (CgHExpreSS): a comprehensive analysis tool for the analysis of genomic alterations and their effects on the expression profile of the genome.

    Science.gov (United States)

    Lee, Mikyung; Kim, Yangseok

    2009-12-16

    test. By successive operations of two modules, users can clarify how gene expression levels are affected by the phenotype specific genomic alterations. As CHESS was developed in both Java application and web environments, it can be run on a web browser or a local machine. It also supports all experimental platforms if a properly formatted text file is provided to include the chromosomal position of probes and their gene identifiers. CHESS is a user-friendly tool for investigating disease specific genomic alterations and quantitative relationships between those genomic alterations and genome-wide gene expression profiling.

  9. [CRISPR/CAS9, the King of Genome Editing Tools].

    Science.gov (United States)

    Bannikov, A V; Lavrov, A V

    2017-01-01

    The discovery of CRISPR/Cas9 brought a hope for having an efficient, reliable, and readily available tool for genome editing. CRISPR/Cas9 is certainly easy to use, while its efficiency and reliability remain the focus of studies. The review describes the general principles of the organization and function of Cas nucleases and a number of important issues to be considered while planning genome editing experiments with CRISPR/Cas9. The issues include evaluation of the efficiency and specificity for Cas9, sgRNA selection, Cas9 variants designed artificially, and use of homologous recombination and nonhomologous end joining in DNA editing.

  10. MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands

    Science.gov (United States)

    Ou, Hong-Yu; He, Xinyi; Harrison, Ewan M.; Kulasekara, Bridget R.; Thani, Ali Bin; Kadioglu, Aras; Lory, Stephen; Hinton, Jay C. D.; Barer, Michael R.; Rajakumar, Kumar

    2007-01-01

    MobilomeFINDER (http://mml.sjtu.edu.cn/MobilomeFINDER) is an interactive online tool that facilitates bacterial genomic island or ‘mobile genome’ (mobilome) discovery; it integrates the ArrayOme and tRNAcc software packages. ArrayOme utilizes a microarray-derived comparative genomic hybridization input data set to generate ‘inferred contigs’ produced by merging adjacent genes classified as ‘present’. Collectively these ‘fragments’ represent a hypothetical ‘microarray-visualized genome (MVG)’. ArrayOme permits recognition of discordances between physical genome and MVG sizes, thereby enabling identification of strains rich in microarray-elusive novel genes. Individual tRNAcc tools facilitate automated identification of genomic islands by comparative analysis of the contents and contexts of tRNA sites and other integration hotspots in closely related sequenced genomes. Accessory tools facilitate design of hotspot-flanking primers for in silico and/or wet-science-based interrogation of cognate loci in unsequenced strains and analysis of islands for features suggestive of foreign origins; island-specific and genome-contextual features are tabulated and represented in schematic and graphical forms. To date we have used MobilomeFINDER to analyse several Enterobacteriaceae, Pseudomonas aeruginosa and Streptococcus suis genomes. MobilomeFINDER enables high-throughput island identification and characterization through increased exploitation of emerging sequence data and PCR-based profiling of unsequenced test strains; subsequent targeted yeast recombination-based capture permits full-length sequencing and detailed functional studies of novel genomic islands. PMID:17537813

  11. A Novel Tool for Microbial Genome Editing Using the Restriction-Modification System.

    Science.gov (United States)

    Bai, Hua; Deng, Aihua; Liu, Shuwen; Cui, Di; Qiu, Qidi; Wang, Laiyou; Yang, Zhao; Wu, Jie; Shang, Xiuling; Zhang, Yun; Wen, Tingyi

    2018-01-19

    Scarless genetic manipulation of genomes is an essential tool for biological research. The restriction-modification (R-M) system is a defense system in bacteria that protects against invading genomes on the basis of its ability to distinguish foreign DNA from self DNA. Here, we designed an R-M system-mediated genome editing (RMGE) technique for scarless genetic manipulation in different microorganisms. For bacteria with Type IV REase, an RMGE technique using the inducible DNA methyltransferase gene, bceSIIM (RMGE-bceSIIM), as the counter-selection cassette was developed to edit the genome of Escherichia coli. For bacteria without Type IV REase, an RMGE technique based on a restriction endonuclease (RMGE-mcrA) was established in Bacillus subtilis. These techniques were successfully used for gene deletion and replacement with nearly 100% counter-selection efficiencies, which were higher and more stable compared to conventional methods. Furthermore, precise point mutation without limiting sites was achieved in E. coli using RMGE-bceSIIM to introduce a single base mutation of A128C into the rpsL gene. In addition, the RMGE-mcrA technique was applied to delete the CAN1 gene in Saccharomyces cerevisiae DAY414 with 100% counter-selection efficiency. The effectiveness of the RMGE technique in E. coli, B. subtilis, and S. cerevisiae suggests the potential universal usefulness of this technique for microbial genome manipulation.

  12. The Dockstore: enabling modular, community-focused sharing of Docker-based genomics tools and workflows [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Brian D. O'Connor

    2017-01-01

    Full Text Available As genomic datasets continue to grow, the feasibility of downloading data to a local organization and running analysis on a traditional compute environment is becoming increasingly problematic. Current large-scale projects, such as the ICGC PanCancer Analysis of Whole Genomes (PCAWG, the Data Platform for the U.S. Precision Medicine Initiative, and the NIH Big Data to Knowledge Center for Translational Genomics, are using cloud-based infrastructure to both host and perform analysis across large data sets. In PCAWG, over 5,800 whole human genomes were aligned and variant called across 14 cloud and HPC environments; the processed data was then made available on the cloud for further analysis and sharing. If run locally, an operation at this scale would have monopolized a typical academic data centre for many months, and would have presented major challenges for data storage and distribution. However, this scale is increasingly typical for genomics projects and necessitates a rethink of how analytical tools are packaged and moved to the data. For PCAWG, we embraced the use of highly portable Docker images for encapsulating and sharing complex alignment and variant calling workflows across highly variable environments. While successful, this endeavor revealed a limitation in Docker containers, namely the lack of a standardized way to describe and execute the tools encapsulated inside the container. As a result, we created the Dockstore (https://dockstore.org, a project that brings together Docker images with standardized, machine-readable ways of describing and running the tools contained within. This service greatly improves the sharing and reuse of genomics tools and promotes interoperability with similar projects through emerging web service standards developed by the Global Alliance for Genomics and Health (GA4GH.

  13. VCFtoTree: a user-friendly tool to construct locus-specific alignments and phylogenies from thousands of anthropologically relevant genome sequences.

    Science.gov (United States)

    Xu, Duo; Jaber, Yousef; Pavlidis, Pavlos; Gokcumen, Omer

    2017-09-26

    Constructing alignments and phylogenies for a given locus from large genome sequencing studies with relevant outgroups allow novel evolutionary and anthropological insights. However, no user-friendly tool has been developed to integrate thousands of recently available and anthropologically relevant genome sequences to construct complete sequence alignments and phylogenies. Here, we provide VCFtoTree, a user friendly tool with a graphical user interface that directly accesses online databases to download, parse and analyze genome variation data for regions of interest. Our pipeline combines popular sequence datasets and tree building algorithms with custom data parsing to generate accurate alignments and phylogenies using all the individuals from the 1000 Genomes Project, Neanderthal and Denisovan genomes, as well as reference genomes of Chimpanzee and Rhesus Macaque. It can also be applied to other phased human genomes, as well as genomes from other species. The output of our pipeline includes an alignment in FASTA format and a tree file in newick format. VCFtoTree fulfills the increasing demand for constructing alignments and phylogenies for a given loci from thousands of available genomes. Our software provides a user friendly interface for a wider audience without prerequisite knowledge in programming. VCFtoTree can be accessed from https://github.com/duoduoo/VCFtoTree_3.0.0 .

  14. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  15. Comparing genomes: databases and computational tools for comparative analysis of prokaryotic genomes - DOI: 10.3395/reciis.v1i2.Sup.105en

    Directory of Open Access Journals (Sweden)

    Marcos Catanho

    2007-12-01

    Full Text Available Since the 1990's, the complete genetic code of more than 600 living organisms has been deciphered, such as bacteria, yeasts, protozoan parasites, invertebrates and vertebrates, including Homo sapiens, and plants. More than 2,000 other genome projects representing medical, commercial, environmental and industrial interests, or comprising model organisms, important for the development of the scientific research, are currently in progress. The achievement of complete genome sequences of numerous species combined with the tremendous progress in computation that occurred in the last few decades allowed the use of new holistic approaches in the study of genome structure, organization and evolution, as well as in the field of gene prediction and functional classification. Numerous public or proprietary databases and computational tools have been created attempting to optimize the access to this information through the web. In this review, we present the main resources available through the web for comparative analysis of prokaryotic genomes. We concentrated on the group of mycobacteria that contains important human and animal pathogens. The birth of Bioinformatics and Computational Biology and the contributions of these disciplines to the scientific development of this field are also discussed.

  16. Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions.

    Science.gov (United States)

    Senol Cali, Damla; Kim, Jeremie S; Ghose, Saugata; Alkan, Can; Mutlu, Onur

    2018-04-02

    Nanopore sequencing technology has the potential to render other sequencing technologies obsolete with its ability to generate long reads and provide portability. However, high error rates of the technology pose a challenge while generating accurate genome assemblies. The tools used for nanopore sequence analysis are of critical importance, as they should overcome the high error rates of the technology. Our goal in this work is to comprehensively analyze current publicly available tools for nanopore sequence analysis to understand their advantages, disadvantages and performance bottlenecks. It is important to understand where the current tools do not perform well to develop better tools. To this end, we (1) analyze the multiple steps and the associated tools in the genome assembly pipeline using nanopore sequence data, and (2) provide guidelines for determining the appropriate tools for each step. Based on our analyses, we make four key observations: (1) the choice of the tool for basecalling plays a critical role in overcoming the high error rates of nanopore sequencing technology. (2) Read-to-read overlap finding tools, GraphMap and Minimap, perform similarly in terms of accuracy. However, Minimap has a lower memory usage, and it is faster than GraphMap. (3) There is a trade-off between accuracy and performance when deciding on the appropriate tool for the assembly step. The fast but less accurate assembler Miniasm can be used for quick initial assembly, and further polishing can be applied on top of it to increase the accuracy, which leads to faster overall assembly. (4) The state-of-the-art polishing tool, Racon, generates high-quality consensus sequences while providing a significant speedup over another polishing tool, Nanopolish. We analyze various combinations of different tools and expose the trade-offs between accuracy, performance, memory usage and scalability. We conclude that our observations can guide researchers and practitioners in making conscious

  17. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development.

    Science.gov (United States)

    Cui, Miao; Lin, Che-Yi; Su, Yi-Hsien

    2017-09-01

    Studies on the gene regulatory networks (GRNs) of sea urchin embryos have provided a basic understanding of the molecular mechanisms controlling animal development. The causal links in GRNs have been verified experimentally through perturbation of gene functions. Microinjection of antisense morpholino oligonucleotides (MOs) into the egg is the most widely used approach for gene knockdown in sea urchin embryos. The modification of MOs into a membrane-permeable form (vivo-MOs) has allowed gene knockdown at later developmental stages. Recent advances in genome editing tools, such as zinc-finger nucleases, transcription activator-like effector-based nucleases and the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) system, have provided methods for gene knockout in sea urchins. Here, we review the use of vivo-MOs and genome editing tools in sea urchin studies since the publication of its genome in 2006. Various applications of the CRISPR/Cas9 system and their potential in studying sea urchin development are also discussed. These new tools will provide more sophisticated experimental methods for studying sea urchin development. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Recent updates and developments to plant genome size databases

    Science.gov (United States)

    Garcia, Sònia; Leitch, Ilia J.; Anadon-Rosell, Alba; Canela, Miguel Á.; Gálvez, Francisco; Garnatje, Teresa; Gras, Airy; Hidalgo, Oriane; Johnston, Emmeline; Mas de Xaxars, Gemma; Pellicer, Jaume; Siljak-Yakovlev, Sonja; Vallès, Joan; Vitales, Daniel; Bennett, Michael D.

    2014-01-01

    Two plant genome size databases have been recently updated and/or extended: the Plant DNA C-values database (http://data.kew.org/cvalues), and GSAD, the Genome Size in Asteraceae database (http://www.asteraceaegenomesize.com). While the first provides information on nuclear DNA contents across land plants and some algal groups, the second is focused on one of the largest and most economically important angiosperm families, Asteraceae. Genome size data have numerous applications: they can be used in comparative studies on genome evolution, or as a tool to appraise the cost of whole-genome sequencing programs. The growing interest in genome size and increasing rate of data accumulation has necessitated the continued update of these databases. Currently, the Plant DNA C-values database (Release 6.0, Dec. 2012) contains data for 8510 species, while GSAD has 1219 species (Release 2.0, June 2013), representing increases of 17 and 51%, respectively, in the number of species with genome size data, compared with previous releases. Here we provide overviews of the most recent releases of each database, and outline new features of GSAD. The latter include (i) a tool to visually compare genome size data between species, (ii) the option to export data and (iii) a webpage containing information about flow cytometry protocols. PMID:24288377

  19. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes.

    Directory of Open Access Journals (Sweden)

    Laura J Marinelli

    Full Text Available Advances in DNA sequencing technology have facilitated the determination of hundreds of complete genome sequences both for bacteria and their bacteriophages. Some of these bacteria have well-developed and facile genetic systems for constructing mutants to determine gene function, and recombineering is a particularly effective tool. However, generally applicable methods for constructing defined mutants of bacteriophages are poorly developed, in part because of the inability to use selectable markers such as drug resistance genes during viral lytic growth. Here we describe a method for simple and effective directed mutagenesis of bacteriophage genomes using Bacteriophage Recombineering of Electroporated DNA (BRED, in which a highly efficient recombineering system is utilized directly on electroporated phage DNA; no selection is required and mutants can be readily detected by PCR. We describe the use of BRED to construct unmarked gene deletions, in-frame internal deletions, base substitutions, precise gene replacements, and the addition of gene tags.

  20. Limited resources of genome sequencing in developing countries: Challenges and solutions

    Directory of Open Access Journals (Sweden)

    Mohamed Helmy

    2016-06-01

    Full Text Available The differences between countries in national income, growth, human development and many other factors are used to classify countries into developed and developing countries. There are several classification systems that use different sets of measures and criteria. The most common classifications are the United Nations (UN and the World Bank (WB systems. The UN classification system uses the UN Human Development Index (HDI, an indicator that uses statistic of life expectancy, education, and income per capita for countries' classification. While the WB system uses gross national income (GNI per capita that is calculated using the World Bank Atlas method. According to the UN and WB classification systems, there are 151 and 134 developing countries, respectively, with 89% overlap between the two systems. Developing countries have limited human development, and limited expenditure in education and research, among several other limitations. The biggest challenge facing genomic researchers and clinicians is limited resources. As a result, genomic tools, specifically genome sequencing technologies, which are rapidly becoming indispensable, are not widely available. In this report, we explore the current status of sequencing technologies in developing countries, describe the associated challenges and emphasize potential solutions.

  1. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Wenyu Zhang

    Full Text Available The advent of next-generation sequencing technologies is accompanied with the development of many whole-genome sequence assembly methods and software, especially for de novo fragment assembly. Due to the poor knowledge about the applicability and performance of these software tools, choosing a befitting assembler becomes a tough task. Here, we provide the information of adaptivity for each program, then above all, compare the performance of eight distinct tools against eight groups of simulated datasets from Solexa sequencing platform. Considering the computational time, maximum random access memory (RAM occupancy, assembly accuracy and integrity, our study indicate that string-based assemblers, overlap-layout-consensus (OLC assemblers are well-suited for very short reads and longer reads of small genomes respectively. For large datasets of more than hundred millions of short reads, De Bruijn graph-based assemblers would be more appropriate. In terms of software implementation, string-based assemblers are superior to graph-based ones, of which SOAPdenovo is complex for the creation of configuration file. Our comparison study will assist researchers in selecting a well-suited assembler and offer essential information for the improvement of existing assemblers or the developing of novel assemblers.

  2. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome.

    Science.gov (United States)

    Garazha, Andrew; Ivanova, Alena; Suntsova, Maria; Malakhova, Galina; Roumiantsev, Sergey; Zhavoronkov, Alex; Buzdin, Anton

    2015-01-01

    Endogenous retroviruses (ERVs) and LTR retrotransposons (LRs) occupy ∼8% of human genome. Deep sequencing technologies provide clues to understanding of functional relevance of individual ERVs/LRs by enabling direct identification of transcription factor binding sites (TFBS) and other landmarks of functional genomic elements. Here, we performed the genome-wide identification of human ERVs/LRs containing TFBS according to the ENCODE project. We created the first interactive ERV/LRs database that groups the individual inserts according to their familial nomenclature, number of mapped TFBS and divergence from their consensus sequence. Information on any particular element can be easily extracted by the user. We also created a genome browser tool, which enables quick mapping of any ERV/LR insert according to genomic coordinates, known human genes and TFBS. These tools can be used to easily explore functionally relevant individual ERV/LRs, and for studying their impact on the regulation of human genes. Overall, we identified ∼110,000 ERV/LR genomic elements having TFBS. We propose a hypothesis of "domestication" of ERV/LR TFBS by the genome milieu including subsequent stages of initial epigenetic repression, partial functional release, and further mutation-driven reshaping of TFBS in tight coevolution with the enclosing genomic loci.

  3. Rainbow: a tool for large-scale whole-genome sequencing data analysis using cloud computing.

    Science.gov (United States)

    Zhao, Shanrong; Prenger, Kurt; Smith, Lance; Messina, Thomas; Fan, Hongtao; Jaeger, Edward; Stephens, Susan

    2013-06-27

    Technical improvements have decreased sequencing costs and, as a result, the size and number of genomic datasets have increased rapidly. Because of the lower cost, large amounts of sequence data are now being produced by small to midsize research groups. Crossbow is a software tool that can detect single nucleotide polymorphisms (SNPs) in whole-genome sequencing (WGS) data from a single subject; however, Crossbow has a number of limitations when applied to multiple subjects from large-scale WGS projects. The data storage and CPU resources that are required for large-scale whole genome sequencing data analyses are too large for many core facilities and individual laboratories to provide. To help meet these challenges, we have developed Rainbow, a cloud-based software package that can assist in the automation of large-scale WGS data analyses. Here, we evaluated the performance of Rainbow by analyzing 44 different whole-genome-sequenced subjects. Rainbow has the capacity to process genomic data from more than 500 subjects in two weeks using cloud computing provided by the Amazon Web Service. The time includes the import and export of the data using Amazon Import/Export service. The average cost of processing a single sample in the cloud was less than 120 US dollars. Compared with Crossbow, the main improvements incorporated into Rainbow include the ability: (1) to handle BAM as well as FASTQ input files; (2) to split large sequence files for better load balance downstream; (3) to log the running metrics in data processing and monitoring multiple Amazon Elastic Compute Cloud (EC2) instances; and (4) to merge SOAPsnp outputs for multiple individuals into a single file to facilitate downstream genome-wide association studies. Rainbow is a scalable, cost-effective, and open-source tool for large-scale WGS data analysis. For human WGS data sequenced by either the Illumina HiSeq 2000 or HiSeq 2500 platforms, Rainbow can be used straight out of the box. Rainbow is available

  4. HEP Computing Tools, Grid and Supercomputers for Genome Sequencing Studies

    Science.gov (United States)

    De, K.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Novikov, A.; Poyda, A.; Tertychnyy, I.; Wenaus, T.

    2017-10-01

    PanDA - Production and Distributed Analysis Workload Management System has been developed to address ATLAS experiment at LHC data processing and analysis challenges. Recently PanDA has been extended to run HEP scientific applications on Leadership Class Facilities and supercomputers. The success of the projects to use PanDA beyond HEP and Grid has drawn attention from other compute intensive sciences such as bioinformatics. Recent advances of Next Generation Genome Sequencing (NGS) technology led to increasing streams of sequencing data that need to be processed, analysed and made available for bioinformaticians worldwide. Analysis of genomes sequencing data using popular software pipeline PALEOMIX can take a month even running it on the powerful computer resource. In this paper we will describe the adaptation the PALEOMIX pipeline to run it on a distributed computing environment powered by PanDA. To run pipeline we split input files into chunks which are run separately on different nodes as separate inputs for PALEOMIX and finally merge output file, it is very similar to what it done by ATLAS to process and to simulate data. We dramatically decreased the total walltime because of jobs (re)submission automation and brokering within PanDA. Using software tools developed initially for HEP and Grid can reduce payload execution time for Mammoths DNA samples from weeks to days.

  5. Decoding the genome with an integrative analysis tool: combinatorial CRM Decoder.

    Science.gov (United States)

    Kang, Keunsoo; Kim, Joomyeong; Chung, Jae Hoon; Lee, Daeyoup

    2011-09-01

    The identification of genome-wide cis-regulatory modules (CRMs) and characterization of their associated epigenetic features are fundamental steps toward the understanding of gene regulatory networks. Although integrative analysis of available genome-wide information can provide new biological insights, the lack of novel methodologies has become a major bottleneck. Here, we present a comprehensive analysis tool called combinatorial CRM decoder (CCD), which utilizes the publicly available information to identify and characterize genome-wide CRMs in a species of interest. CCD first defines a set of the epigenetic features which is significantly associated with a set of known CRMs as a code called 'trace code', and subsequently uses the trace code to pinpoint putative CRMs throughout the genome. Using 61 genome-wide data sets obtained from 17 independent mouse studies, CCD successfully catalogued ∼12 600 CRMs (five distinct classes) including polycomb repressive complex 2 target sites as well as imprinting control regions. Interestingly, we discovered that ∼4% of the identified CRMs belong to at least two different classes named 'multi-functional CRM', suggesting their functional importance for regulating spatiotemporal gene expression. From these examples, we show that CCD can be applied to any potential genome-wide datasets and therefore will shed light on unveiling genome-wide CRMs in various species.

  6. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.

    Science.gov (United States)

    Liu, Jiao; Wang, Yu; Lu, Yujiao; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2017-11-16

    Corynebacterium glutamicum is an important industrial workhorse and advanced genetic engineering tools are urgently demanded. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) have revolutionized the field of genome engineering. The CRISPR/Cas9 system that utilizes NGG as protospacer adjacent motif (PAM) and has good targeting specificity can be developed into a powerful tool for efficient and precise genome editing of C. glutamicum. Herein, we developed a versatile CRISPR/Cas9 genome editing toolbox for C. glutamicum. Cas9 and gRNA expression cassettes were reconstituted to combat Cas9 toxicity and facilitate effective termination of gRNA transcription. Co-transformation of Cas9 and gRNA expression plasmids was exploited to overcome high-frequency mutation of cas9, allowing not only highly efficient gene deletion and insertion with plasmid-borne editing templates (efficiencies up to 60.0 and 62.5%, respectively) but also simple and time-saving operation. Furthermore, CRISPR/Cas9-mediated ssDNA recombineering was developed to precisely introduce small modifications and single-nucleotide changes into the genome of C. glutamicum with efficiencies over 80.0%. Notably, double-locus editing was also achieved in C. glutamicum. This toolbox works well in several C. glutamicum strains including the widely-used strains ATCC 13032 and ATCC 13869. In this study, we developed a CRISPR/Cas9 toolbox that could facilitate markerless gene deletion, gene insertion, precise base editing, and double-locus editing in C. glutamicum. The CRISPR/Cas9 toolbox holds promise for accelerating the engineering of C. glutamicum and advancing its application in the production of biochemicals and biofuels.

  7. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  8. LEMONS - A Tool for the Identification of Splice Junctions in Transcriptomes of Organisms Lacking Reference Genomes.

    Directory of Open Access Journals (Sweden)

    Liron Levin

    Full Text Available RNA-seq is becoming a preferred tool for genomics studies of model and non-model organisms. However, DNA-based analysis of organisms lacking sequenced genomes cannot rely on RNA-seq data alone to isolate most genes of interest, as DNA codes both exons and introns. With this in mind, we designed a novel tool, LEMONS, that exploits the evolutionary conservation of both exon/intron boundary positions and splice junction recognition signals to produce high throughput splice-junction predictions in the absence of a reference genome. When tested on multiple annotated vertebrate mRNA data, LEMONS accurately identified 87% (average of the splice-junctions. LEMONS was then applied to our updated Mediterranean chameleon transcriptome, which lacks a reference genome, and predicted a total of 90,820 exon-exon junctions. We experimentally verified these splice-junction predictions by amplifying and sequencing twenty randomly selected genes from chameleon DNA templates. Exons and introns were detected in 19 of 20 of the positions predicted by LEMONS. To the best of our knowledge, LEMONS is currently the only experimentally verified tool that can accurately predict splice-junctions in organisms that lack a reference genome.

  9. Comparative Genome Viewer

    International Nuclear Information System (INIS)

    Molineris, I.; Sales, G.

    2009-01-01

    The amount of information about genomes, both in the form of complete sequences and annotations, has been exponentially increasing in the last few years. As a result there is the need for tools providing a graphical representation of such information that should be comprehensive and intuitive. Visual representation is especially important in the comparative genomics field since it should provide a combined view of data belonging to different genomes. We believe that existing tools are limited in this respect as they focus on a single genome at a time (conservation histograms) or compress alignment representation to a single dimension. We have therefore developed a web-based tool called Comparative Genome Viewer (Cgv): it integrates a bidimensional representation of alignments between two regions, both at small and big scales, with the richness of annotations present in other genome browsers. We give access to our system through a web-based interface that provides the user with an interactive representation that can be updated in real time using the mouse to move from region to region and to zoom in on interesting details.

  10. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances.

    Science.gov (United States)

    Xu, Jianping

    2006-06-01

    Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic

  11. Savant Genome Browser 2: visualization and analysis for population-scale genomics.

    Science.gov (United States)

    Fiume, Marc; Smith, Eric J M; Brook, Andrew; Strbenac, Dario; Turner, Brian; Mezlini, Aziz M; Robinson, Mark D; Wodak, Shoshana J; Brudno, Michael

    2012-07-01

    High-throughput sequencing (HTS) technologies are providing an unprecedented capacity for data generation, and there is a corresponding need for efficient data exploration and analysis capabilities. Although most existing tools for HTS data analysis are developed for either automated (e.g. genotyping) or visualization (e.g. genome browsing) purposes, such tools are most powerful when combined. For example, integration of visualization and computation allows users to iteratively refine their analyses by updating computational parameters within the visual framework in real-time. Here we introduce the second version of the Savant Genome Browser, a standalone program for visual and computational analysis of HTS data. Savant substantially improves upon its predecessor and existing tools by introducing innovative visualization modes and navigation interfaces for several genomic datatypes, and synergizing visual and automated analyses in a way that is powerful yet easy even for non-expert users. We also present a number of plugins that were developed by the Savant Community, which demonstrate the power of integrating visual and automated analyses using Savant. The Savant Genome Browser is freely available (open source) at www.savantbrowser.com.

  12. Genome engineering in Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Skovgaard, Ole; Ducos-Galand, Magaly

    2012-01-01

    Although bacteria with multipartite genomes are prevalent, our knowledge of the mechanisms maintaining their genome is very limited, and much remains to be learned about the structural and functional interrelationships of multiple chromosomes. Owing to its bi-chromosomal genome architecture and its....... This difficulty was surmounted using a unique and powerful strategy based on massive rearrangement of prokaryotic genomes. We developed a site-specific recombination-based engineering tool, which allows targeted, oriented, and reciprocal DNA exchanges. Using this genetic tool, we obtained a panel of V. cholerae...

  13. Visualization for genomics: the Microbial Genome Viewer.

    NARCIS (Netherlands)

    Kerkhoven, R.; Enckevort, F.H.J. van; Boekhorst, J.; Molenaar, D; Siezen, R.J.

    2004-01-01

    SUMMARY: A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a

  14. PAPA: a flexible tool for identifying pleiotropic pathways using genome-wide association study summaries.

    Science.gov (United States)

    Wen, Yan; Wang, Wenyu; Guo, Xiong; Zhang, Feng

    2016-03-15

    : Pleiotropy is common in the genetic architectures of complex diseases. To the best of our knowledge, no analysis tool has been developed for identifying pleiotropic pathways using multiple genome-wide association study (GWAS) summaries by now. Here, we present PAPA, a flexible tool for pleiotropic pathway analysis utilizing GWAS summary results. The performance of PAPA was validated using publicly available GWAS summaries of body mass index and waist-hip ratio of the GIANT datasets. PAPA identified a set of pleiotropic pathways, which have been demonstrated to be involved in the development of obesity. PAPA program, document and illustrative example are available at http://sourceforge.net/projects/papav1/files/ : fzhxjtu@mail.xjtu.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. New developments of RNAi in Paracoccidioides brasiliensis: prospects for high-throughput, genome-wide, functional genomics.

    Directory of Open Access Journals (Sweden)

    Tercio Goes

    2014-10-01

    Full Text Available The Fungal Genome Initiative of the Broad Institute, in partnership with the Paracoccidioides research community, has recently sequenced the genome of representative isolates of this human-pathogen dimorphic fungus: Pb18 (S1, Pb03 (PS2 and Pb01. The accomplishment of future high-throughput, genome-wide, functional genomics will rely upon appropriate molecular tools and straightforward techniques to streamline the generation of stable loss-of-function phenotypes. In the past decades, RNAi has emerged as the most robust genetic technique to modulate or to suppress gene expression in diverse eukaryotes, including fungi. These molecular tools and techniques, adapted for RNAi, were up until now unavailable for P. brasiliensis.In this paper, we report Agrobacterium tumefaciens mediated transformation of yeast cells for high-throughput applications with which higher transformation frequencies of 150±24 yeast cell transformants per 1×106 viable yeast cells were obtained. Our approach is based on a bifunctional selective marker fusion protein consisted of the Streptoalloteichus hindustanus bleomycin-resistance gene (Shble and the intrinsically fluorescent monomeric protein mCherry which was codon-optimized for heterologous expression in P. brasiliensis. We also report successful GP43 gene knock-down through the expression of intron-containing hairpin RNA (ihpRNA from a Gateway-adapted cassette (cALf which was purpose-built for gene silencing in a high-throughput manner. Gp43 transcript levels were reduced by 73.1±22.9% with this approach.We have a firm conviction that the genetic transformation technique and the molecular tools herein described will have a relevant contribution in future Paracoccidioides spp. functional genomics research.

  16. Sequencing Single Cell Microbial Genomes with Microfluidic Amplifications Tools (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Quake, Steve

    2011-10-12

    Stanford University's Steve Quake on "Sequencing Single Cell Microbial Genomes with Microfluidic Amplification Tools" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  17. MP3: a software tool for the prediction of pathogenic proteins in genomic and metagenomic data.

    Science.gov (United States)

    Gupta, Ankit; Kapil, Rohan; Dhakan, Darshan B; Sharma, Vineet K

    2014-01-01

    The identification of virulent proteins in any de-novo sequenced genome is useful in estimating its pathogenic ability and understanding the mechanism of pathogenesis. Similarly, the identification of such proteins could be valuable in comparing the metagenome of healthy and diseased individuals and estimating the proportion of pathogenic species. However, the common challenge in both the above tasks is the identification of virulent proteins since a significant proportion of genomic and metagenomic proteins are novel and yet unannotated. The currently available tools which carry out the identification of virulent proteins provide limited accuracy and cannot be used on large datasets. Therefore, we have developed an MP3 standalone tool and web server for the prediction of pathogenic proteins in both genomic and metagenomic datasets. MP3 is developed using an integrated Support Vector Machine (SVM) and Hidden Markov Model (HMM) approach to carry out highly fast, sensitive and accurate prediction of pathogenic proteins. It displayed Sensitivity, Specificity, MCC and accuracy values of 92%, 100%, 0.92 and 96%, respectively, on blind dataset constructed using complete proteins. On the two metagenomic blind datasets (Blind A: 51-100 amino acids and Blind B: 30-50 amino acids), it displayed Sensitivity, Specificity, MCC and accuracy values of 82.39%, 97.86%, 0.80 and 89.32% for Blind A and 71.60%, 94.48%, 0.67 and 81.86% for Blind B, respectively. In addition, the performance of MP3 was validated on selected bacterial genomic and real metagenomic datasets. To our knowledge, MP3 is the only program that specializes in fast and accurate identification of partial pathogenic proteins predicted from short (100-150 bp) metagenomic reads and also performs exceptionally well on complete protein sequences. MP3 is publicly available at http://metagenomics.iiserb.ac.in/mp3/index.php.

  18. Cytoscape: the network visualization tool for GenomeSpace workflows [v2; ref status: indexed, http://f1000r.es/47f

    Directory of Open Access Journals (Sweden)

    Barry Demchak

    2014-08-01

    Full Text Available Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013.

  19. Cytoscape: the network visualization tool for GenomeSpace workflows [v1; ref status: indexed, http://f1000r.es/3ph

    Directory of Open Access Journals (Sweden)

    Barry Demchak

    2014-07-01

    Full Text Available Modern genomic analysis often requires workflows incorporating multiple best-ofbreed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded it over 850 times since the release of its first version in September, 2013.

  20. MobilomeFINDER: web-based tools for in silico and experimental discovery of bacterial genomic islands

    OpenAIRE

    Ou, Hong-Yu; He, Xinyi; Harrison, Ewan M.; Kulasekara, Bridget R.; Thani, Ali Bin; Kadioglu, Aras; Lory, Stephen; Hinton, Jay C. D.; Barer, Michael R.; Deng, Zixin; Rajakumar, Kumar

    2007-01-01

    MobilomeFINDER (http://mml.sjtu.edu.cn/MobilomeFINDER) is an interactive online tool that facilitates bacterial genomic island or ‘mobile genome’ (mobilome) discovery; it integrates the ArrayOme and tRNAcc software packages. ArrayOme utilizes a microarray-derived comparative genomic hybridization input data set to generate ‘inferred contigs’ produced by merging adjacent genes classified as ‘present’. Collectively these ‘fragments’ represent a hypothetical ‘microarray-visualized genome (MVG)’....

  1. Genome editing in plants: Advancing crop transformation and overview of tools.

    Science.gov (United States)

    Shah, Tariq; Andleeb, Tayyaba; Lateef, Sadia; Noor, Mehmood Ali

    2018-05-07

    Genome manipulation technology is one of emerging field which brings real revolution in genetic engineering and biotechnology. Targeted editing of genomes pave path to address a wide range of goals not only to improve quality and productivity of crops but also permit to investigate the fundamental roots of biological systems. These goals includes creation of plants with valued compositional properties and with characters that confer resistance to numerous biotic and abiotic stresses. Numerous novel genome editing systems have been introduced during the past few years; these comprise zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing technique is consistent for improving average yield to achieve the growing demands of the world's existing food famine and to launch a feasible and environmentally safe agriculture scheme, to more specific, productive, cost-effective and eco-friendly. These exciting novel methods, concisely reviewed herein, have verified themselves as efficient and reliable tools for the genetic improvement of plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Development of Genome Engineering Tools from Plant-Specific PPR Proteins Using Animal Cultured Cells.

    Science.gov (United States)

    Kobayashi, Takehito; Yagi, Yusuke; Nakamura, Takahiro

    2016-01-01

    The pentatricopeptide repeat (PPR) motif is a sequence-specific RNA/DNA-binding module. Elucidation of the RNA/DNA recognition mechanism has enabled engineering of PPR motifs as new RNA/DNA manipulation tools in living cells, including for genome editing. However, the biochemical characteristics of PPR proteins remain unknown, mostly due to the instability and/or unfolding propensities of PPR proteins in heterologous expression systems such as bacteria and yeast. To overcome this issue, we constructed reporter systems using animal cultured cells. The cell-based system has highly attractive features for PPR engineering: robust eukaryotic gene expression; availability of various vectors, reagents, and antibodies; highly efficient DNA delivery ratio (>80 %); and rapid, high-throughput data production. In this chapter, we introduce an example of such reporter systems: a PPR-based sequence-specific translational activation system. The cell-based reporter system can be applied to characterize plant genes of interested and to PPR engineering.

  3. Genomic signal processing

    CERN Document Server

    Shmulevich, Ilya

    2007-01-01

    Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathema

  4. GENEPEASE Genomic tools for assessment of pesticide effects on the agricultural soil ecosystem

    DEFF Research Database (Denmark)

    Jacobsen, Carsten Suhr; Feld, Louise; Hjelmsø, Mathis Hjort

    The project focussed on validating RNA based methods as potential genomic tools in assessment of agricultural soil ecosystems. It was shown that the mRNA based technique was very sensitive and the effects was seen in the same situations as when the OECD nitrification assay showed an effect. 16S r......RNA based pyrosequencing of bacterial communities in soil was shown to report different than just DNA based analysis and indicated unlike the DNA measurement that the community was developing. Finally microarray analysis was compared to traditional test for toxicity testing of Folsomia candida and showed...

  5. DNAqua-Net: Developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe

    Directory of Open Access Journals (Sweden)

    Florian Leese

    2016-11-01

    Full Text Available The protection, preservation and restoration of aquatic ecosystems and their functions are of global importance. For European states it became legally binding mainly through the EU-Water Framework Directive (WFD. In order to assess the ecological status of a given water body, aquatic biodiversity data are obtained and compared to a reference water body. The quantified mismatch obtained determines the extent of potential management actions. The current approach to biodiversity assessment is based on morpho-taxonomy. This approach has many drawbacks such as being time consuming, limited in temporal and spatial resolution, and error-prone due to the varying individual taxonomic expertise of the analysts. Novel genomic tools can overcome many of the aforementioned problems and could complement or even replace traditional bioassessment. Yet, a plethora of approaches are independently developed in different institutions, thereby hampering any concerted routine application. The goal of this Action is to nucleate a group of researchers across disciplines with the task to identify gold-standard genomic tools and novel eco-genomic indices for routine application in biodiversity assessments of European fresh- and marine water bodies. Furthermore, DNAqua-Net will provide a platform for training of the next generation of European researchers preparing them for the new technologies. Jointly with water managers, politicians, and other stakeholders, the group will develop a conceptual framework for the standard application of eco-genomic tools as part of legally binding assessments.

  6. webMGR: an online tool for the multiple genome rearrangement problem.

    Science.gov (United States)

    Lin, Chi Ho; Zhao, Hao; Lowcay, Sean Harry; Shahab, Atif; Bourque, Guillaume

    2010-02-01

    The algorithm MGR enables the reconstruction of rearrangement phylogenies based on gene or synteny block order in multiple genomes. Although MGR has been successfully applied to study the evolution of different sets of species, its utilization has been hampered by the prohibitive running time for some applications. In the current work, we have designed new heuristics that significantly speed up the tool without compromising its accuracy. Moreover, we have developed a web server (webMGR) that includes elaborate web output to facilitate navigation through the results. webMGR can be accessed via http://www.gis.a-star.edu.sg/~bourque. The source code of the improved standalone version of MGR is also freely available from the web site. Supplementary data are available at Bioinformatics online.

  7. An automated annotation tool for genomic DNA sequences using

    Indian Academy of Sciences (India)

    Genomic sequence data are often available well before the annotated sequence is published. We present a method for analysis of genomic DNA to identify coding sequences using the GeneScan algorithm and characterize these resultant sequences by BLAST. The routines are used to develop a system for automated ...

  8. Tools to covisualize and coanalyze proteomic data with genomes and transcriptomes: validation of genes and alternative mRNA splicing.

    Science.gov (United States)

    Pang, Chi Nam Ignatius; Tay, Aidan P; Aya, Carlos; Twine, Natalie A; Harkness, Linda; Hart-Smith, Gene; Chia, Samantha Z; Chen, Zhiliang; Deshpande, Nandan P; Kaakoush, Nadeem O; Mitchell, Hazel M; Kassem, Moustapha; Wilkins, Marc R

    2014-01-03

    Direct links between proteomic and genomic/transcriptomic data are not frequently made, partly because of lack of appropriate bioinformatics tools. To help address this, we have developed the PG Nexus pipeline. The PG Nexus allows users to covisualize peptides in the context of genomes or genomic contigs, along with RNA-seq reads. This is done in the Integrated Genome Viewer (IGV). A Results Analyzer reports the precise base position where LC-MS/MS-derived peptides cover genes or gene isoforms, on the chromosomes or contigs where this occurs. In prokaryotes, the PG Nexus pipeline facilitates the validation of genes, where annotation or gene prediction is available, or the discovery of genes using a "virtual protein"-based unbiased approach. We illustrate this with a comprehensive proteogenomics analysis of two strains of Campylobacter concisus . For higher eukaryotes, the PG Nexus facilitates gene validation and supports the identification of mRNA splice junction boundaries and splice variants that are protein-coding. This is illustrated with an analysis of splice junctions covered by human phosphopeptides, and other examples of relevance to the Chromosome-Centric Human Proteome Project. The PG Nexus is open-source and available from https://github.com/IntersectAustralia/ap11_Samifier. It has been integrated into Galaxy and made available in the Galaxy tool shed.

  9. Do online prognostication tools represent a valid alternative to genomic profiling in the context of adjuvant treatment of early breast cancer? A systematic review of the literature.

    Science.gov (United States)

    El Hage Chehade, Hiba; Wazir, Umar; Mokbel, Kinan; Kasem, Abdul; Mokbel, Kefah

    2018-01-01

    Decision-making regarding adjuvant chemotherapy has been based on clinical and pathological features. However, such decisions are seldom consistent. Web-based predictive models have been developed using data from cancer registries to help determine the need for adjuvant therapy. More recently, with the recognition of the heterogenous nature of breast cancer, genomic assays have been developed to aid in the therapeutic decision-making. We have carried out a comprehensive literature review regarding online prognostication tools and genomic assays to assess whether online tools could be used as valid alternatives to genomic profiling in decision-making regarding adjuvant therapy in early breast cancer. Breast cancer has been recently recognized as a heterogenous disease based on variations in molecular characteristics. Online tools are valuable in guiding adjuvant treatment, especially in resource constrained countries. However, in the era of personalized therapy, molecular profiling appears to be superior in predicting clinical outcome and guiding therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. DECIDE: a Decision Support Tool to Facilitate Parents' Choices Regarding Genome-Wide Sequencing.

    Science.gov (United States)

    Birch, Patricia; Adam, S; Bansback, N; Coe, R R; Hicklin, J; Lehman, A; Li, K C; Friedman, J M

    2016-12-01

    We describe the rationale, development, and usability testing for an integrated e-learning tool and decision aid for parents facing decisions about genome-wide sequencing (GWS) for their children with a suspected genetic condition. The online tool, DECIDE, is designed to provide decision-support and to promote high quality decisions about undergoing GWS with or without return of optional incidental finding results. DECIDE works by integrating educational material with decision aids. Users may tailor their learning by controlling both the amount of information and its format - text and diagrams and/or short videos. The decision aid guides users to weigh the importance of various relevant factors in their own lives and circumstances. After considering the pros and cons of GWS and return of incidental findings, DECIDE summarizes the user's responses and apparent preferred choices. In a usability study of 16 parents who had already chosen GWS after conventional genetic counselling, all participants found DECIDE to be helpful. Many would have been satisfied to use it alone to guide their GWS decisions, but most would prefer to have the option of consulting a health care professional as well to aid their decision. Further testing is necessary to establish the effectiveness of using DECIDE as an adjunct to or instead of conventional pre-test genetic counselling for clinical genome-wide sequencing.

  11. MicroScope: a platform for microbial genome annotation and comparative genomics.

    Science.gov (United States)

    Vallenet, D; Engelen, S; Mornico, D; Cruveiller, S; Fleury, L; Lajus, A; Rouy, Z; Roche, D; Salvignol, G; Scarpelli, C; Médigue, C

    2009-01-01

    The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of software is available to the scientific community, and can be used to identify genomic objects, before predicting their biological functions. However, only a limited number of biologically interesting features can be revealed from an isolated sequence. Comparative genomics tools, on the other hand, by bringing together the information contained in numerous genomes simultaneously, allow annotators to make inferences based on the idea that evolution and natural selection are central to the definition of all biological processes. We have developed the MicroScope platform in order to offer a web-based framework for the systematic and efficient revision of microbial genome annotation and comparative analysis (http://www.genoscope.cns.fr/agc/microscope). Starting with the description of the flow chart of the annotation processes implemented in the MicroScope pipeline, and the development of traditional and novel microbial annotation and comparative analysis tools, this article emphasizes the essential role of expert annotation as a complement of automatic annotation. Several examples illustrate the use of implemented tools for the review and curation of annotations of both new and publicly available microbial genomes within MicroScope's rich integrated genome framework. The platform is used as a viewer in order to browse updated annotation information of available microbial genomes (more than 440 organisms to date), and in the context of new annotation projects (117 bacterial genomes). The human expertise gathered in the MicroScope database (about 280,000 independent annotations) contributes to improve the quality of

  12. Development of genomic tools for verification of hybrids and selfed ...

    African Journals Online (AJOL)

    The petiole color trait was also used to verify TMS 96/1089A X TME117 where the pink color of the male parent was dominant over the female's green color. The pace of genomic analysis of populations used in the study was enhanced using a modified , quicker DNA isolation protocol which slashed extraction time by 60%.

  13. PIPEMicroDB: microsatellite database and primer generation tool for pigeonpea genome.

    Science.gov (United States)

    Sarika; Arora, Vasu; Iquebal, M A; Rai, Anil; Kumar, Dinesh

    2013-01-01

    Molecular markers play a significant role for crop improvement in desirable characteristics, such as high yield, resistance to disease and others that will benefit the crop in long term. Pigeonpea (Cajanus cajan L.) is the recently sequenced legume by global consortium led by ICRISAT (Hyderabad, India) and been analysed for gene prediction, synteny maps, markers, etc. We present PIgeonPEa Microsatellite DataBase (PIPEMicroDB) with an automated primer designing tool for pigeonpea genome, based on chromosome wise as well as location wise search of primers. Total of 123 387 Short Tandem Repeats (STRs) were extracted from pigeonpea genome, available in public domain using MIcroSAtellite tool (MISA). The database is an online relational database based on 'three-tier architecture' that catalogues information of microsatellites in MySQL and user-friendly interface is developed using PHP. Search for STRs may be customized by limiting their location on chromosome as well as number of markers in that range. This is a novel approach and is not been implemented in any of the existing marker database. This database has been further appended with Primer3 for primer designing of selected markers with left and right flankings of size up to 500 bp. This will enable researchers to select markers of choice at desired interval over the chromosome. Furthermore, one can use individual STRs of a targeted region over chromosome to narrow down location of gene of interest or linked Quantitative Trait Loci (QTLs). Although it is an in silico approach, markers' search based on characteristics and location of STRs is expected to be beneficial for researchers. Database URL: http://cabindb.iasri.res.in/pigeonpea/

  14. MutaNET: a tool for automated analysis of genomic mutations in gene regulatory networks.

    Science.gov (United States)

    Hollander, Markus; Hamed, Mohamed; Helms, Volkhard; Neininger, Kerstin

    2018-03-01

    Mutations in genomic key elements can influence gene expression and function in various ways, and hence greatly contribute to the phenotype. We developed MutaNET to score the impact of individual mutations on gene regulation and function of a given genome. MutaNET performs statistical analyses of mutations in different genomic regions. The tool also incorporates the mutations in a provided gene regulatory network to estimate their global impact. The integration of a next-generation sequencing pipeline enables calling mutations prior to the analyses. As application example, we used MutaNET to analyze the impact of mutations in antibiotic resistance (AR) genes and their potential effect on AR of bacterial strains. MutaNET is freely available at https://sourceforge.net/projects/mutanet/. It is implemented in Python and supported on Mac OS X, Linux and MS Windows. Step-by-step instructions are available at http://service.bioinformatik.uni-saarland.de/mutanet/. volkhard.helms@bioinformatik.uni-saarland.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. UniPrimer: A Web-Based Primer Design Tool for Comparative Analyses of Primate Genomes

    Directory of Open Access Journals (Sweden)

    Nomin Batnyam

    2012-01-01

    Full Text Available Whole genome sequences of various primates have been released due to advanced DNA-sequencing technology. A combination of computational data mining and the polymerase chain reaction (PCR assay to validate the data is an excellent method for conducting comparative genomics. Thus, designing primers for PCR is an essential procedure for a comparative analysis of primate genomes. Here, we developed and introduced UniPrimer for use in those studies. UniPrimer is a web-based tool that designs PCR- and DNA-sequencing primers. It compares the sequences from six different primates (human, chimpanzee, gorilla, orangutan, gibbon, and rhesus macaque and designs primers on the conserved region across species. UniPrimer is linked to RepeatMasker, Primer3Plus, and OligoCalc softwares to produce primers with high accuracy and UCSC In-Silico PCR to confirm whether the designed primers work. To test the performance of UniPrimer, we designed primers on sample sequences using UniPrimer and manually designed primers for the same sequences. The comparison of the two processes showed that UniPrimer was more effective than manual work in terms of saving time and reducing errors.

  16. The Princeton Protein Orthology Database (P-POD): a comparative genomics analysis tool for biologists.

    OpenAIRE

    Sven Heinicke; Michael S Livstone; Charles Lu; Rose Oughtred; Fan Kang; Samuel V Angiuoli; Owen White; David Botstein; Kara Dolinski

    2007-01-01

    Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu), a user-friendly database system that allows users to find and visualize the phylogenetic r...

  17. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives

    Science.gov (United States)

    Boukar, Ousmane; Fatokun, Christian A.; Huynh, Bao-Lam; Roberts, Philip A.; Close, Timothy J.

    2016-01-01

    Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds, and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP) genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS)-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS), promises an increase in the number of improved

  18. Genomic tools in cowpea breeding programs: status and perspectives

    Directory of Open Access Journals (Sweden)

    Ousmane eBoukar

    2016-06-01

    Full Text Available Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA. It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS, promises an increase in the number of

  19. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    KAUST Repository

    Bracken-Grissom, Heather

    2013-12-12

    Over 95% of all metazoan (animal) species comprise the invertebrates, but very few genomes from these organisms have been sequenced. We have, therefore, formed a Global Invertebrate Genomics Alliance (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site () has been launched to facilitate this collaborative venture.

  20. Genome Editing: A New Approach to Human Therapeutics.

    Science.gov (United States)

    Porteus, Matthew

    2016-01-01

    The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.

  1. Development and characterization of genomic SSR markers in Cynodon transvaalensis Burtt-Davy.

    Science.gov (United States)

    Tan, Chengcheng; Wu, Yanqi; Taliaferro, Charles M; Bell, Greg E; Martin, Dennis L; Smith, Mike W

    2014-08-01

    Simple sequence repeat (SSR) markers are a major molecular tool for genetic and genomic research that have been extensively developed and used in major crops. However, few are available in African bermudagrass (Cynodon transvaalensis Burtt-Davy), an economically important warm-season turfgrass species. African bermudagrass is mainly used for hybridizations with common bermudagrass [C. dactylon var. dactylon (L.) Pers.] in the development of superior interspecific hybrid turfgrass cultivars. Accordingly, the major objective of this study was to develop and characterize a large set of SSR markers. Genomic DNA of C. transvaalensis '4200TN 24-2' from an Oklahoma State University (OSU) turf nursery was extracted for construction of four SSR genomic libraries enriched with [CA](n), [GA](n), [AAG](n), and [AAT](n) as core repeat motifs. A total of 3,064 clones were sequenced at the OSU core facility. The sequences were categorized into singletons and contiguous sequences to exclude redundancy. From the two sequence categories, 1,795 SSR loci were identified. After excluding duplicate SSRs by comparison with previously developed SSR markers using a nucleotide basic local alignment tool, 1,426 unique primer pairs (PPs) were designed. Out of the 1,426 designed PPs, 981 (68.8 %) amplified alleles of the expected size in the donor DNA. Polymorphisms of the SSR PPs tested in eight C. transvaalensis plants were 93 % polymorphic with 544 markers effective in all genotypes. Inheritance of the SSRs was examined in six F(1) progeny of African parents 'T577' × 'Uganda', indicating 917 markers amplified heritable alleles. The SSR markers developed in the study are the first large set of co-dominant markers in African bermudagrass and should be highly valuable for molecular and traditional breeding research.

  2. Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications.

    Science.gov (United States)

    Christen, Matthias; Del Medico, Luca; Christen, Heinz; Christen, Beat

    2017-01-01

    Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.

  3. Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications.

    Directory of Open Access Journals (Sweden)

    Matthias Christen

    Full Text Available Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.

  4. GenHtr: a tool for comparative assessment of genetic heterogeneity in microbial genomes generated by massive short-read sequencing

    Directory of Open Access Journals (Sweden)

    Yu GongXin

    2010-10-01

    Full Text Available Abstract Background Microevolution is the study of short-term changes of alleles within a population and their effects on the phenotype of organisms. The result of the below-species-level evolution is heterogeneity, where populations consist of subpopulations with a large number of structural variations. Heterogeneity analysis is thus essential to our understanding of how selective and neutral forces shape bacterial populations over a short period of time. The Solexa Genome Analyzer, a next-generation sequencing platform, allows millions of short sequencing reads to be obtained with great accuracy, allowing for the ability to study the dynamics of the bacterial population at the whole genome level. The tool referred to as GenHtr was developed for genome-wide heterogeneity analysis. Results For particular bacterial strains, GenHtr relies on a set of Solexa short reads on given bacteria pathogens and their isogenic reference genome to identify heterogeneity sites, the chromosomal positions with multiple variants of genes in the bacterial population, and variations that occur in large gene families. GenHtr accomplishes this by building and comparatively analyzing genome-wide heterogeneity genotypes for both the newly sequenced genomes (using massive short-read sequencing and their isogenic reference (using simulated data. As proof of the concept, this approach was applied to SRX007711, the Solexa sequencing data for a newly sequenced Staphylococcus aureus subsp. USA300 cell line, and demonstrated that it could predict such multiple variants. They include multiple variants of genes critical in pathogenesis, e.g. genes encoding a LysR family transcriptional regulator, 23 S ribosomal RNA, and DNA mismatch repair protein MutS. The heterogeneity results in non-synonymous and nonsense mutations, leading to truncated proteins for both LysR and MutS. Conclusion GenHtr was developed for genome-wide heterogeneity analysis. Although it is much more time

  5. Development of a fluorescence-activated cell sorting method coupled with whole genome amplification to analyze minority and trace Dehalococcoides genomes in microbial communities.

    Science.gov (United States)

    Lee, Patrick K H; Men, Yujie; Wang, Shanquan; He, Jianzhong; Alvarez-Cohen, Lisa

    2015-02-03

    Dehalococcoides mccartyi are functionally important bacteria that catalyze the reductive dechlorination of chlorinated ethenes. However, these anaerobic bacteria are fastidious to isolate, making downstream genomic characterization challenging. In order to facilitate genomic analysis, a fluorescence-activated cell sorting (FACS) method was developed in this study to separate D. mccartyi cells from a microbial community, and the DNA of the isolated cells was processed by whole genome amplification (WGA) and hybridized onto a D. mccartyi microarray for comparative genomics against four sequenced strains. First, FACS was successfully applied to a D. mccartyi isolate as positive control, and then microarray results verified that WGA from 10(6) cells or ∼1 ng of genomic DNA yielded high-quality coverage detecting nearly all genes across the genome. As expected, some inter- and intrasample variability in WGA was observed, but these biases were minimized by performing multiple parallel amplifications. Subsequent application of the FACS and WGA protocols to two enrichment cultures containing ∼10% and ∼1% D. mccartyi cells successfully enabled genomic analysis. As proof of concept, this study demonstrates that coupling FACS with WGA and microarrays is a promising tool to expedite genomic characterization of target strains in environmental communities where the relative concentrations are low.

  6. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    NARCIS (Netherlands)

    Chagné, D.; Crowhurst, R.N.; Troggio, M.; Davey, M.W.; Gilmore, B.; Lawley, C.; Vanderzande, S.; Hellens, R.P.; Kumar, S.; Cestaro, A.; Velasco, R.; Main, D.; Rees, J.D.; Iezzoni, A.F.; Mockler, T.; Wilhelm, L.; Weg, van de W.E.; Gardiner, S.E.; Bassil, N.; Peace, C.

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide

  7. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Zhang, Yanli; Sastre, Danuta; Wang, Feng

    2018-01-01

    Induced pluripotent stem cells hold tremendous potential for biological and therapeutic applications. The development of efficient technologies for targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. The revolutionary technology for genome editing known as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) system is recently recognized as a powerful tool for editing DNA at specific loci. The ease of use of the CRISPR-Cas9 technology will allow us to improve our understanding of genomic variation in disease processes via cellular and animal models. More recently, this system was modified to repress (CRISPR interference, CRISPRi) or activate (CRISPR activation, CRISPRa) gene expression without alterations in the DNA, which amplified the scope of applications of CRISPR systems for stem cell biology. Here, we highlight latest advances of CRISPR-associated applications in human pluripotent stem cells. The challenges and future prospects of CRISPR-based systems for human research are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative

    Directory of Open Access Journals (Sweden)

    Wim Degrave

    1997-11-01

    Full Text Available Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given

  9. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  10. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes.

    Science.gov (United States)

    Rauscher, Gilda; Simko, Ivan

    2013-01-22

    Lettuce (Lactuca sativa L.) is the major crop from the group of leafy vegetables. Several types of molecular markers were developed that are effectively used in lettuce breeding and genetic studies. However only a very limited number of microsattelite-based markers are publicly available. We have employed the method of enriched microsatellite libraries to develop 97 genomic SSR markers. Testing of newly developed markers on a set of 36 Lactuca accession (33 L. sativa, and one of each L. serriola L., L. saligna L., and L. virosa L.) revealed that both the genetic heterozygosity (UHe = 0.56) and the number of loci per SSR (Na = 5.50) are significantly higher for genomic SSR markers than for previously developed EST-based SSR markers (UHe = 0.32, Na = 3.56). Fifty-four genomic SSR markers were placed on the molecular linkage map of lettuce. Distribution of markers in the genome appeared to be random, with the exception of possible cluster on linkage group 6. Any combination of 32 genomic SSRs was able to distinguish genotypes of all 36 accessions. Fourteen of newly developed SSR markers originate from fragments with high sequence similarity to resistance gene candidates (RGCs) and RGC pseudogenes. Analysis of molecular variance (AMOVA) of L. sativa accessions showed that approximately 3% of genetic diversity was within accessions, 79% among accessions, and 18% among horticultural types. The newly developed genomic SSR markers were added to the pool of previously developed EST-SSRs markers. These two types of SSR-based markers provide useful tools for lettuce cultivar fingerprinting, development of integrated molecular linkage maps, and mapping of genes.

  11. Impact of genomics on microbial food safety

    NARCIS (Netherlands)

    Abee, T.; Schaik, van W.; Siezen, R.J.

    2004-01-01

    Genome sequences are now available for many of the microbes that cause food-borne diseases. The information contained in pathogen genome sequences, together with the development of themed and whole-genome DNA microarrays and improved proteomics techniques, might provide tools for the rapid detection

  12. Community annotation and bioinformatics workforce development in concert--Little Skate Genome Annotation Workshops and Jamborees.

    Science.gov (United States)

    Wang, Qinghua; Arighi, Cecilia N; King, Benjamin L; Polson, Shawn W; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F; Page, Shallee T; Rendino, Marc Farnum; Thomas, William Kelley; Udwary, Daniel W; Wu, Cathy H

    2012-01-01

    Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome.

  13. Community annotation and bioinformatics workforce development in concert—Little Skate Genome Annotation Workshops and Jamborees

    Science.gov (United States)

    Wang, Qinghua; Arighi, Cecilia N.; King, Benjamin L.; Polson, Shawn W.; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F.; Page, Shallee T.; Farnum Rendino, Marc; Thomas, William Kelley; Udwary, Daniel W.; Wu, Cathy H.

    2012-01-01

    Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome. PMID:22434832

  14. Genomics Portals: integrative web-platform for mining genomics data.

    Science.gov (United States)

    Shinde, Kaustubh; Phatak, Mukta; Johannes, Freudenberg M; Chen, Jing; Li, Qian; Vineet, Joshi K; Hu, Zhen; Ghosh, Krishnendu; Meller, Jaroslaw; Medvedovic, Mario

    2010-01-13

    A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis. The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  15. Visualization for genomics: the Microbial Genome Viewer.

    Science.gov (United States)

    Kerkhoven, Robert; van Enckevort, Frank H J; Boekhorst, Jos; Molenaar, Douwe; Siezen, Roland J

    2004-07-22

    A Web-based visualization tool, the Microbial Genome Viewer, is presented that allows the user to combine complex genomic data in a highly interactive way. This Web tool enables the interactive generation of chromosome wheels and linear genome maps from genome annotation data stored in a MySQL database. The generated images are in scalable vector graphics (SVG) format, which is suitable for creating high-quality scalable images and dynamic Web representations. Gene-related data such as transcriptome and time-course microarray experiments can be superimposed on the maps for visual inspection. The Microbial Genome Viewer 1.0 is freely available at http://www.cmbi.kun.nl/MGV

  16. BFAST: an alignment tool for large scale genome resequencing.

    Directory of Open Access Journals (Sweden)

    Nils Homer

    2009-11-01

    Full Text Available The new generation of massively parallel DNA sequencers, combined with the challenge of whole human genome resequencing, result in the need for rapid and accurate alignment of billions of short DNA sequence reads to a large reference genome. Speed is obviously of great importance, but equally important is maintaining alignment accuracy of short reads, in the 25-100 base range, in the presence of errors and true biological variation.We introduce a new algorithm specifically optimized for this task, as well as a freely available implementation, BFAST, which can align data produced by any of current sequencing platforms, allows for user-customizable levels of speed and accuracy, supports paired end data, and provides for efficient parallel and multi-threaded computation on a computer cluster. The new method is based on creating flexible, efficient whole genome indexes to rapidly map reads to candidate alignment locations, with arbitrary multiple independent indexes allowed to achieve robustness against read errors and sequence variants. The final local alignment uses a Smith-Waterman method, with gaps to support the detection of small indels.We compare BFAST to a selection of large-scale alignment tools -- BLAT, MAQ, SHRiMP, and SOAP -- in terms of both speed and accuracy, using simulated and real-world datasets. We show BFAST can achieve substantially greater sensitivity of alignment in the context of errors and true variants, especially insertions and deletions, and minimize false mappings, while maintaining adequate speed compared to other current methods. We show BFAST can align the amount of data needed to fully resequence a human genome, one billion reads, with high sensitivity and accuracy, on a modest computer cluster in less than 24 hours. BFAST is available at (http://bfast.sourceforge.net.

  17. Accelerating Genome Editing in CHO Cells Using CRISPR Cas9 and CRISPy, a Web-Based Target Finding Tool

    DEFF Research Database (Denmark)

    Ronda, Carlotta; Pedersen, Lasse Ebdrup; Hansen, Henning Gram

    2014-01-01

    of the CRISPR Cas9 technology in CHO cells by generating site-specific gene disruptions in COSMC and FUT8, both of which encode proteins involved in glycosylation. The tested single guide RNAs (sgRNAs) created an indel frequency up to 47.3% in COSMC, while an indel frequency up to 99.7% in FUT8 was achieved...... mutations at the target sites, with a strong preference for single base indels. Finally, we have developed a user-friendly bioinformatics tool, named “CRISPy” for rapid identification of sgRNA target sequences in the CHO-K1 genome. The CRISPy tool identified 1,970,449 CRISPR targets divided into 27...

  18. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy.

    Science.gov (United States)

    Rittmann, Bruce E; Krajmalnik-Brown, Rosa; Halden, Rolf U

    2008-08-01

    Microorganisms can produce renewable energy in large quantities and without damaging the environment or disrupting food supply. The microbial communities must be robust and self-stabilizing, and their essential syntrophies must be managed. Pre-genomic, genomic and post-genomic tools can provide crucial information about the structure and function of these microbial communities. Applying these tools will help accelerate the rate at which microbial bioenergy processes move from intriguing science to real-world practice.

  19. Genomics Portals: integrative web-platform for mining genomics data

    Directory of Open Access Journals (Sweden)

    Ghosh Krishnendu

    2010-01-01

    Full Text Available Abstract Background A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Results Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc, and the integration with an extensive knowledge base that can be used in such analysis. Conclusion The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  20. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data.

    Science.gov (United States)

    de Andrade, Roberto R S; Vaslin, Maite F S

    2014-03-07

    Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/.

  1. DEFINING THE CHEMICAL SPACE OF PUBLIC GENOMIC ...

    Science.gov (United States)

    The current project aims to chemically index the genomics content of public genomic databases to make these data accessible in relation to other publicly available, chemically-indexed toxicological information. By defining the chemical space of public genomic data, it is possible to identify classes of chemicals on which to develop methodologies for the integration of chemogenomic data into predictive toxicology. The chemical space of public genomic data will be presented as well as the methodologies and tools developed to identify this chemical space.

  2. Ensembl Genomes 2013: scaling up access to genome-wide data.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael

    2014-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.

  3. Advances in editing microalgae genomes

    OpenAIRE

    Daboussi, Fayza

    2017-01-01

    There have been significant advances in microalgal genomics over the last decade. Nevertheless, there are still insufficient tools for the manipulation of microalgae genomes and the development of microalgae as industrial biofactories. Several research groups have recently contributed to progress by demonstrating that particular nucleases can be used for targeted and stable modifications of the genomes of some microalgae species. The nucleases include Meganucleases, Zinc Finger nucleases, TAL...

  4. [Genome editing of industrial microorganism].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  5. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    Science.gov (United States)

    Kirchner, Marion; Schneider, Sabine

    2015-11-09

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  7. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  8. Reconstruction of Ancestral Genomes in Presence of Gene Gain and Loss.

    Science.gov (United States)

    Avdeyev, Pavel; Jiang, Shuai; Aganezov, Sergey; Hu, Fei; Alekseyev, Max A

    2016-03-01

    Since most dramatic genomic changes are caused by genome rearrangements as well as gene duplications and gain/loss events, it becomes crucial to understand their mechanisms and reconstruct ancestral genomes of the given genomes. This problem was shown to be NP-complete even in the "simplest" case of three genomes, thus calling for heuristic rather than exact algorithmic solutions. At the same time, a larger number of input genomes may actually simplify the problem in practice as it was earlier illustrated with MGRA, a state-of-the-art software tool for reconstruction of ancestral genomes of multiple genomes. One of the key obstacles for MGRA and other similar tools is presence of breakpoint reuses when the same breakpoint region is broken by several different genome rearrangements in the course of evolution. Furthermore, such tools are often limited to genomes composed of the same genes with each gene present in a single copy in every genome. This limitation makes these tools inapplicable for many biological datasets and degrades the resolution of ancestral reconstructions in diverse datasets. We address these deficiencies by extending the MGRA algorithm to genomes with unequal gene contents. The developed next-generation tool MGRA2 can handle gene gain/loss events and shares the ability of MGRA to reconstruct ancestral genomes uniquely in the case of limited breakpoint reuse. Furthermore, MGRA2 employs a number of novel heuristics to cope with higher breakpoint reuse and process datasets inaccessible for MGRA. In practical experiments, MGRA2 shows superior performance for simulated and real genomes as compared to other ancestral genome reconstruction tools.

  9. Genomic selection to improve livestock production in developing countries with a focus on India

    DEFF Research Database (Denmark)

    Kadarmideen, Haja; Do, Duy Ngoc

    2015-01-01

    growth will increase the demand for food as well as animal products, particularly in emerging economic giants like India. Moreover, the urbanization has considerable impact on patterns of food consumption in general and on demand for livestock products, in particular and the increased income growth led......Global livestock production has increased substantially during the last decades, in both number of animals and productivity. Meanwhile, the human population is projected to reach 9.6 billions by 2050 and most of the increase in the projection takes place in developing countries. Rapid population...... production (OPU-IVP) of embryos will have a considerable impact in the future. This paper attempts to provide basic concepts of using genomic tools for livestock production with the focus on genomic prediction and selection methods and discuss about the potential application of genomic selection to increase...

  10. Genome bioinformatics of tomato and potato

    NARCIS (Netherlands)

    Datema, E.

    2011-01-01

    In the past two decades genome sequencing has developed from a laborious and costly technology employed by large international consortia to a widely used, automated and affordable tool used worldwide by many individual research groups. Genome sequences of many food animals and crop plants have

  11. DEVELOPMENT OF GENOMIC AND GENETIC TOOLS FOR FOXTAIL MILLET, AND USE OF THESE TOOLS IN THE IMPROVEMENT OF BIOMASS PRODUCTION FOR BIOENERGY CROPS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xinlu; Zale, Janice; Chen, Feng

    2013-01-22

    Foxtail millet (Setaria italica L.) is a warm-season, C4 annual crop commonly grown for grain and forage worldwide. It has a relatively short generation time, yet produces hundreds of seeds per inflorescence. The crop is inbred and it has a small-size genome (~500 Mb). These features make foxtail millet an attractive grass model, especially for bioenergy crops. While a number of genomic tools have been established for foxtail millet, including a fully sequenced genome and molecular markers, the objectives of this project were to develop a tissue culture system, determine the best explant(s) for tissue culture, optimize transient gene expression, and establish a stable transformation system for foxtail millet cultivar Yugu1. In optimizing a tissue culture medium for the induction of calli and somatic embryos from immature inflorescences and mature seed explants, Murashige and Skoog medium containing 2.5 mg l-1 2,4-dichlorophenoxyacetic acid and 0.6 mg l-1 6- benzylaminopurine was determined to be optimal for callus induction of foxtail millet. The efficiency of callus induction from explants of immature inflorescences was significantly higher at 76% compared to that of callus induction from mature seed explants at 68%. The calli induced from this medium were regenerated into plants at high frequency (~100%) using 0.2 mg l-1 kinetin in the regeneration media. For performing transient gene expression, immature embryos were first isolated from inflorescences. Transient expression of the GUS reporter gene in immature embryos was significantly increased after sonication, a vacuum treatment, centrifugation and the addition of L-cysteine and dithiothreitol, which led to the efficiency of transient expression at levels greater than 70% after Agrobacterium inoculation. Inoculation with Agrobacterium was also tested with germinated seeds. The radicals of germinated seeds were pierced with needles and dipped into Agrobacterium solution. This method achieved a 10% transient

  12. A tutorial of diverse genome analysis tools found in the CoGe web-platform using Plasmodium spp. as a model

    Science.gov (United States)

    Castillo, Andreina I; Nelson, Andrew D L; Haug-Baltzell, Asher K; Lyons, Eric

    2018-01-01

    Abstract Integrated platforms for storage, management, analysis and sharing of large quantities of omics data have become fundamental to comparative genomics. CoGe (https://genomevolution.org/coge/) is an online platform designed to manage and study genomic data, enabling both data- and hypothesis-driven comparative genomics. CoGe’s tools and resources can be used to organize and analyse both publicly available and private genomic data from any species. Here, we demonstrate the capabilities of CoGe through three example workflows using 17 Plasmodium genomes as a model. Plasmodium genomes present unique challenges for comparative genomics due to their rapidly evolving and highly variable genomic AT/GC content. These example workflows are intended to serve as templates to help guide researchers who would like to use CoGe to examine diverse aspects of genome evolution. In the first workflow, trends in genome composition and amino acid usage are explored. In the second, changes in genome structure and the distribution of synonymous (Ks) and non-synonymous (Kn) substitution values are evaluated across species with different levels of evolutionary relatedness. In the third workflow, microsyntenic analyses of multigene families’ genomic organization are conducted using two Plasmodium-specific gene families—serine repeat antigen, and cytoadherence-linked asexual gene—as models. In general, these example workflows show how to achieve quick, reproducible and shareable results using the CoGe platform. We were able to replicate previously published results, as well as leverage CoGe’s tools and resources to gain additional insight into various aspects of Plasmodium genome evolution. Our results highlight the usefulness of the CoGe platform, particularly in understanding complex features of genome evolution. Database URL: https://genomevolution.org/coge/

  13. Toward mapping the biology of the genome.

    Science.gov (United States)

    Chanock, Stephen

    2012-09-01

    This issue of Genome Research presents new results, methods, and tools from The ENCODE Project (ENCyclopedia of DNA Elements), which collectively represents an important step in moving beyond a parts list of the genome and promises to shape the future of genomic research. This collection sheds light on basic biological questions and frames the current debate over the optimization of tools and methodological challenges necessary to compare and interpret large complex data sets focused on how the genome is organized and regulated. In a number of instances, the authors have highlighted the strengths and limitations of current computational and technical approaches, providing the community with useful standards, which should stimulate development of new tools. In many ways, these papers will ripple through the scientific community, as those in pursuit of understanding the "regulatory genome" will heavily traverse the maps and tools. Similarly, the work should have a substantive impact on how genetic variation contributes to specific diseases and traits by providing a compendium of functional elements for follow-up study. The success of these papers should not only be measured by the scope of the scientific insights and tools but also by their ability to attract new talent to mine existing and future data.

  14. The Banana Genome Hub

    Science.gov (United States)

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  15. Whole Genome Sequence Analysis Using JSpecies Tool Establishes Clonal Relationships between Listeria monocytogenes Strains from Epidemiologically Unrelated Listeriosis Outbreaks.

    Directory of Open Access Journals (Sweden)

    Laurel S Burall

    Full Text Available In an effort to build a comprehensive genomic approach to food safety challenges, the FDA has implemented a whole genome sequencing effort, GenomeTrakr, which involves the sequencing and analysis of genomes of foodborne pathogens. As a part of this effort, we routinely sequence whole genomes of Listeria monocytogenes (Lm isolates associated with human listeriosis outbreaks, as well as those isolated through other sources. To rapidly establish genetic relatedness of these genomes, we evaluated tetranucleotide frequency analysis via the JSpecies program to provide a cursory analysis of strain relatedness. The JSpecies tetranucleotide (tetra analysis plots standardized (z-score tetramer word frequencies of two strains against each other and uses linear regression analysis to determine similarity (r2. This tool was able to validate the close relationships between outbreak related strains from four different outbreaks. Included in this study was the analysis of Lm strains isolated during the recent caramel apple outbreak and stone fruit incident in 2014. We identified that many of the isolates from these two outbreaks shared a common 4b variant (4bV serotype, also designated as IVb-v1, using a qPCR protocol developed in our laboratory. The 4bV serotype is characterized by the presence of a 6.3 Kb DNA segment normally found in serotype 1/2a, 3a, 1/2c and 3c strains but not in serotype 4b or 1/2b strains. We decided to compare these strains at a genomic level using the JSpecies Tetra tool. Specifically, we compared several 4bV and 4b isolates and identified a high level of similarity between the stone fruit and apple 4bV strains, but not the 4b strains co-identified in the caramel apple outbreak or other 4b or 4bV strains in our collection. This finding was further substantiated by a SNP-based analysis. Additionally, we were able to identify close relatedness between isolates from clinical cases from 1993-1994 and a single case from 2011 as well as

  16. Observing copepods through a genomic lens

    Directory of Open Access Journals (Sweden)

    Johnson Stewart C

    2011-09-01

    Full Text Available Abstract Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to

  17. Observing copepods through a genomic lens

    Science.gov (United States)

    2011-01-01

    Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to provide genomics tools for

  18. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    Science.gov (United States)

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.

  19. Statistical Viewer: a tool to upload and integrate linkage and association data as plots displayed within the Ensembl genome browser

    Directory of Open Access Journals (Sweden)

    Hauser Elizabeth R

    2005-04-01

    Full Text Available Abstract Background To facilitate efficient selection and the prioritization of candidate complex disease susceptibility genes for association analysis, increasingly comprehensive annotation tools are essential to integrate, visualize and analyze vast quantities of disparate data generated by genomic screens, public human genome sequence annotation and ancillary biological databases. We have developed a plug-in package for Ensembl called "Statistical Viewer" that facilitates the analysis of genomic features and annotation in the regions of interest defined by linkage analysis. Results Statistical Viewer is an add-on package to the open-source Ensembl Genome Browser and Annotation System that displays disease study-specific linkage and/or association data as 2 dimensional plots in new panels in the context of Ensembl's Contig View and Cyto View pages. An enhanced upload server facilitates the upload of statistical data, as well as additional feature annotation to be displayed in DAS tracts, in the form of Excel Files. The Statistical View panel, drawn directly under the ideogram, illustrates lod score values for markers from a study of interest that are plotted against their position in base pairs. A module called "Get Map" easily converts the genetic locations of markers to genomic coordinates. The graph is placed under the corresponding ideogram features a synchronized vertical sliding selection box that is seamlessly integrated into Ensembl's Contig- and Cyto- View pages to choose the region to be displayed in Ensembl's "Overview" and "Detailed View" panels. To resolve Association and Fine mapping data plots, a "Detailed Statistic View" plot corresponding to the "Detailed View" may be displayed underneath. Conclusion Features mapping to regions of linkage are accentuated when Statistic View is used in conjunction with the Distributed Annotation System (DAS to display supplemental laboratory information such as differentially expressed disease

  20. GenColors-based comparative genome databases for small eukaryotic genomes.

    Science.gov (United States)

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.

  1. YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.

    Science.gov (United States)

    Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh

    2015-01-16

    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the

  2. Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2009-06-01

    Full Text Available Abstract Background Transgenic approaches provide a powerful tool for gene function investigations in plants. However, some legumes are still recalcitrant to current transformation technologies, limiting the extent to which functional genomic studies can be performed on. Superroot of Lotus corniculatus is a continuous root cloning system allowing direct somatic embryogenesis and mass regeneration of plants. Recently, a technique to obtain transgenic L. corniculatus plants from Superroot-derived leaves through A. tumefaciens-mediated transformation was described. However, transformation efficiency was low and it took about six months from gene transfer to PCR identification. Results In the present study, we developed an A. rhizogenes-mediated transformation of Superroot-derived L. corniculatus for gene function investigation, combining the efficient A. rhizogenes-mediated transformation and the rapid regeneration system of Superroot. The transformation system using A. rhizogenes K599 harbouring pGFPGUSPlus was improved by validating some parameters which may influence the transformation frequency. Using stem sections with one node as explants, a 2-day pre-culture of explants, infection with K599 at OD600 = 0.6, and co-cultivation on medium (pH 5.4 at 22°C for 2 days enhanced the transformation frequency significantly. As proof of concept, Superroot-derived L. corniculatus was transformed with a gene from wheat encoding an Na+/H+ antiporter (TaNHX2 using the described system. Transgenic Superroot plants were obtained and had increased salt tolerance, as expected from the expression of TaNHX2. Conclusion A rapid and efficient tool for gene function investigation in L. corniculatus was developed, combining the simplicity and high efficiency of the Superroot regeneration system and the availability of A. rhizogenes-mediated transformation. This system was improved by validating some parameters influencing the transformation frequency, which could

  3. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome

    Science.gov (United States)

    CRISPR/Cas9 has been recently demonstrated as an effective and popular genome editing tool for modifying genomes of human, animals, microorganisms, and plants. Success of such genome editing is highly dependent on the availability of suitable target sites in the genomes to be edited. Many specific t...

  4. Genomic insight into the common carp (Cyprinus carpio genome by sequencing analysis of BAC-end sequences

    Directory of Open Access Journals (Sweden)

    Wang Jintu

    2011-04-01

    Full Text Available Abstract Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio, a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3

  5. Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences

    Science.gov (United States)

    2011-01-01

    Background Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding. Result To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp. Conclusion BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of

  6. Development and application of Human Genome Epidemiology

    Science.gov (United States)

    Xu, Jingwen

    2017-12-01

    Epidemiology is a science that studies distribution of diseases and health in population and its influencing factors, it also studies how to prevent and cure disease and promote health strategies and measures. Epidemiology has developed rapidly in recent years and it is an intercross subject with various other disciplines to form a series of branch disciplines such as Genetic epidemiology, molecular epidemiology, drug epidemiology and tumor epidemiology. With the implementation and completion of Human Genome Project (HGP), Human Genome Epidemiology (HuGE) has emerged at this historic moment. In this review, the development of Human Genome Epidemiology, research content, the construction and structure of relevant network, research standards, as well as the existing results and problems are briefly outlined.

  7. MIPS: a database for genomes and protein sequences.

    Science.gov (United States)

    Mewes, H W; Frishman, D; Güldener, U; Mannhaupt, G; Mayer, K; Mokrejs, M; Morgenstern, B; Münsterkötter, M; Rudd, S; Weil, B

    2002-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz-Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91-93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155-158; Barker et al. (2001) Nucleic Acids Res., 29, 29-32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de).

  8. Genomes correction and assembling: present methods and tools

    Science.gov (United States)

    Wojcieszek, Michał; Pawełkowicz, Magdalena; Nowak, Robert; Przybecki, Zbigniew

    2014-11-01

    Recent rapid development of next generation sequencing (NGS) technologies provided significant impact into genomics field of study enabling implementation of many de novo sequencing projects of new species which was previously confined by technological costs. Along with advancement of NGS there was need for adjustment in assembly programs. New algorithms must cope with massive amounts of data computation in reasonable time limits and processing power and hardware is also an important factor. In this paper, we address the issue of assembly pipeline for de novo genome assembly provided by programs presently available for scientist both as commercial and as open - source software. The implementation of four different approaches - Greedy, Overlap - Layout - Consensus (OLC), De Bruijn and Integrated resulting in variation of performance is the main focus of our discussion with additional insight into issue of short and long reads correction.

  9. CoCoNUT: an efficient system for the comparison and analysis of genomes

    Directory of Open Access Journals (Sweden)

    Kurtz Stefan

    2008-11-01

    Full Text Available Abstract Background Comparative genomics is the analysis and comparison of genomes from different species. This area of research is driven by the large number of sequenced genomes and heavily relies on efficient algorithms and software to perform pairwise and multiple genome comparisons. Results Most of the software tools available are tailored for one specific task. In contrast, we have developed a novel system CoCoNUT (Computational Comparative geNomics Utility Toolkit that allows solving several different tasks in a unified framework: (1 finding regions of high similarity among multiple genomic sequences and aligning them, (2 comparing two draft or multi-chromosomal genomes, (3 locating large segmental duplications in large genomic sequences, and (4 mapping cDNA/EST to genomic sequences. Conclusion CoCoNUT is competitive with other software tools w.r.t. the quality of the results. The use of state of the art algorithms and data structures allows CoCoNUT to solve comparative genomics tasks more efficiently than previous tools. With the improved user interface (including an interactive visualization component, CoCoNUT provides a unified, versatile, and easy-to-use software tool for large scale studies in comparative genomics.

  10. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple.

    Directory of Open Access Journals (Sweden)

    David Chagné

    Full Text Available As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of 'Golden Delicious', SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional, and genomic selection in apple.

  11. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    Science.gov (United States)

    Chagné, David; Crowhurst, Ross N.; Troggio, Michela; Davey, Mark W.; Gilmore, Barbara; Lawley, Cindy; Vanderzande, Stijn; Hellens, Roger P.; Kumar, Satish; Cestaro, Alessandro; Velasco, Riccardo; Main, Dorrie; Rees, Jasper D.; Iezzoni, Amy; Mockler, Todd; Wilhelm, Larry; Van de Weg, Eric; Gardiner, Susan E.; Bassil, Nahla; Peace, Cameron

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple. PMID:22363718

  12. Genome Editing Redefines Precision Medicine in the Cardiovascular Field

    Directory of Open Access Journals (Sweden)

    Elda Dzilic

    2018-01-01

    Full Text Available Genome editing is a powerful tool to study the function of specific genes and proteins important for development or disease. Recent technologies, especially CRISPR/Cas9 which is characterized by convenient handling and high precision, revolutionized the field of genome editing. Such tools have enormous potential for basic science as well as for regenerative medicine. Nevertheless, there are still several hurdles that have to be overcome, but patient-tailored therapies, termed precision medicine, seem to be within reach. In this review, we focus on the achievements and limitations of genome editing in the cardiovascular field. We explore different areas of cardiac research and highlight the most important developments: (1 the potential of genome editing in human pluripotent stem cells in basic research for disease modelling, drug screening, or reprogramming approaches and (2 the potential and remaining challenges of genome editing for regenerative therapies. Finally, we discuss social and ethical implications of these new technologies.

  13. Single virus genomics: a new tool for virus discovery.

    Directory of Open Access Journals (Sweden)

    Lisa Zeigler Allen

    Full Text Available Whole genome amplification and sequencing of single microbial cells has significantly influenced genomics and microbial ecology by facilitating direct recovery of reference genome data. However, viral genomics continues to suffer due to difficulties related to the isolation and characterization of uncultivated viruses. We report here on a new approach called 'Single Virus Genomics', which enabled the isolation and complete genome sequencing of the first single virus particle. A mixed assemblage comprised of two known viruses; E. coli bacteriophages lambda and T4, were sorted using flow cytometric methods and subsequently immobilized in an agarose matrix. Genome amplification was then achieved in situ via multiple displacement amplification (MDA. The complete lambda phage genome was recovered with an average depth of coverage of approximately 437X. The isolation and genome sequencing of uncultivated viruses using Single Virus Genomics approaches will enable researchers to address questions about viral diversity, evolution, adaptation and ecology that were previously unattainable.

  14. From hacking the human genome to editing organs.

    Science.gov (United States)

    Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra

    2015-01-01

    In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies.

  15. Dissecting diabetes/metabolic disease mechanisms using pluripotent stem cells and genome editing tools

    Directory of Open Access Journals (Sweden)

    Adrian Kee Keong Teo

    2015-09-01

    Major conclusions: hPSCs and the advancing genome editing tools appear to be a timely and potent combination for probing molecular mechanism(s underlying diseases such as diabetes and metabolic syndromes. The knowledge gained from these hiPSC-based disease modeling studies can potentially be translated into the clinics by guiding clinicians on the appropriate type of medication to use for each condition based on the mechanism of action of the disease.

  16. Development of Genomic Resources in the Species of Trifolium L. and Its Application in Forage Legume Breeding

    Directory of Open Access Journals (Sweden)

    Leif Skøt

    2012-05-01

    Full Text Available Clovers (genus Trifolium are a large and widespread genus of legumes. A number of clovers are of agricultural importance as forage crops in grassland agriculture, particularly temperate areas. White clover (Trifolium repens L. is used in grazed pasture and red clover (T. pratense L. is widely cut and conserved as a winter feed. For the diploid red clover, genetic and genomic tools and resources have developed rapidly over the last five years including genetic and physical maps, BAC (bacterial artificial chromosome end sequence and transcriptome sequence information. This has paved the way for the use of genome wide selection and high throughput phenotyping in germplasm development. For the allotetraploid white clover progress has been slower although marker assisted selection is in use and relatively robust genetic maps and QTL (quantitative trait locus information now exist. For both species the sequencing of the model legume Medicago truncatula gene space is an important development to aid genomic, biological and evolutionary studies. The first genetic maps of another species, subterranean clover (Trifolium subterraneum L. have also been published and its comparative genomics with red clover and M. truncatula conducted. Next generation sequencing brings the potential to revolutionize clover genomics, but international consortia and effective use of germplasm, novel population structures and phenomics will be required to carry out effective translation into breeding. Another avenue for clover genomic and genetic improvement is interspecific hybridization. This approach has considerable potential with regard to crop improvement but also opens windows of opportunity for studies of biological and evolutionary processes.

  17. CAGO: a software tool for dynamic visual comparison and correlation measurement of genome organization.

    Directory of Open Access Journals (Sweden)

    Yi-Feng Chang

    Full Text Available CAGO (Comparative Analysis of Genome Organization is developed to address two critical shortcomings of conventional genome atlas plotters: lack of dynamic exploratory functions and absence of signal analysis for genomic properties. With dynamic exploratory functions, users can directly manipulate chromosome tracks of a genome atlas and intuitively identify distinct genomic signals by visual comparison. Signal analysis of genomic properties can further detect inconspicuous patterns from noisy genomic properties and calculate correlations between genomic properties across various genomes. To implement dynamic exploratory functions, CAGO presents each genome atlas in Scalable Vector Graphics (SVG format and allows users to interact with it using a SVG viewer through JavaScript. Signal analysis functions are implemented using R statistical software and a discrete wavelet transformation package waveslim. CAGO is not only a plotter for generating complex genome atlases, but also a platform for exploring genome atlases with dynamic exploratory functions for visual comparison and with signal analysis for comparing genomic properties across multiple organisms. The web-based application of CAGO, its source code, user guides, video demos, and live examples are publicly available and can be accessed at http://cbs.ym.edu.tw/cago.

  18. A comprehensive crop genome research project: the Superhybrid Rice Genome Project in China.

    Science.gov (United States)

    Yu, Jun; Wong, Gane Ka-Shu; Liu, Siqi; Wang, Jian; Yang, Huanming

    2007-06-29

    In May 2000, the Beijing Institute of Genomics formally announced the launch of a comprehensive crop genome research project on rice genomics, the Chinese Superhybrid Rice Genome Project. SRGP is not simply a sequencing project targeted to a single rice (Oryza sativa L.) genome, but a full-swing research effort with an ultimate goal of providing inclusive basic genomic information and molecular tools not only to understand biology of the rice, both as an important crop species and a model organism of cereals, but also to focus on a popular superhybrid rice landrace, LYP9. We have completed the first phase of SRGP and provide the rice research community with a finished genome sequence of an indica variety, 93-11 (the paternal cultivar of LYP9), together with ample data on subspecific (between subspecies) polymorphisms, transcriptomes and proteomes, useful for within-species comparative studies. In the second phase, we have acquired the genome sequence of the maternal cultivar, PA64S, together with the detailed catalogues of genes uniquely expressed in the parental cultivars and the hybrid as well as allele-specific markers that distinguish parental alleles. Although SRGP in China is not an open-ended research programme, it has been designed to pave a way for future plant genomics research and application, such as to interrogate fundamentals of plant biology, including genome duplication, polyploidy and hybrid vigour, as well as to provide genetic tools for crop breeding and to carry along a social burden-leading a fight against the world's hunger. It began with genomics, the newly developed and industry-scale research field, and from the world's most populous country. In this review, we summarize our scientific goals and noteworthy discoveries that exploit new territories of systematic investigations on basic and applied biology of rice and other major cereal crops.

  19. A review of genomic data warehousing systems.

    Science.gov (United States)

    Triplet, Thomas; Butler, Gregory

    2014-07-01

    To facilitate the integration and querying of genomics data, a number of generic data warehousing frameworks have been developed. They differ in their design and capabilities, as well as their intended audience. We provide a comprehensive and quantitative review of those genomic data warehousing frameworks in the context of large-scale systems biology. We reviewed in detail four genomic data warehouses (BioMart, BioXRT, InterMine and PathwayTools) freely available to the academic community. We quantified 20 aspects of the warehouses, covering the accuracy of their responses, their computational requirements and development efforts. Performance of the warehouses was evaluated under various hardware configurations to help laboratories optimize hardware expenses. Each aspect of the benchmark may be dynamically weighted by scientists using our online tool BenchDW (http://warehousebenchmark.fungalgenomics.ca/benchmark/) to build custom warehouse profiles and tailor our results to their specific needs.

  20. Genome-wide analysis of signatures of selection in populations of African honey bees (Apis mellifera) using new web-based tools.

    Science.gov (United States)

    Fuller, Zachary L; Niño, Elina L; Patch, Harland M; Bedoya-Reina, Oscar C; Baumgarten, Tracey; Muli, Elliud; Mumoki, Fiona; Ratan, Aakrosh; McGraw, John; Frazier, Maryann; Masiga, Daniel; Schuster, Stephen; Grozinger, Christina M; Miller, Webb

    2015-07-10

    With the development of inexpensive, high-throughput sequencing technologies, it has become feasible to examine questions related to population genetics and molecular evolution of non-model species in their ecological contexts on a genome-wide scale. Here, we employed a newly developed suite of integrated, web-based programs to examine population dynamics and signatures of selection across the genome using several well-established tests, including F ST, pN/pS, and McDonald-Kreitman. We applied these techniques to study populations of honey bees (Apis mellifera) in East Africa. In Kenya, there are several described A. mellifera subspecies, which are thought to be localized to distinct ecological regions. We performed whole genome sequencing of 11 worker honey bees from apiaries distributed throughout Kenya and identified 3.6 million putative single-nucleotide polymorphisms. The dense coverage allowed us to apply several computational procedures to study population structure and the evolutionary relationships among the populations, and to detect signs of adaptive evolution across the genome. While there is considerable gene flow among the sampled populations, there are clear distinctions between populations from the northern desert region and those from the temperate, savannah region. We identified several genes showing population genetic patterns consistent with positive selection within African bee populations, and between these populations and European A. mellifera or Asian Apis florea. These results lay the groundwork for future studies of adaptive ecological evolution in honey bees, and demonstrate the use of new, freely available web-based tools and workflows ( http://usegalaxy.org/r/kenyanbee ) that can be applied to any model system with genomic information.

  1. [Development of Plant Metabolomics and Medicinal Plant Genomics].

    Science.gov (United States)

    Saito, Kazuki

    2018-01-01

     A variety of chemicals produced by plants, often referred to as 'phytochemicals', have been used as medicines, food, fuels and industrial raw materials. Recent advances in the study of genomics and metabolomics in plant science have accelerated our understanding of the mechanisms, regulation and evolution of the biosynthesis of specialized plant products. We can now address such questions as how the metabolomic diversity of plants is originated at the levels of genome, and how we should apply this knowledge to drug discovery, industry and agriculture. Our research group has focused on metabolomics-based functional genomics over the last 15 years and we have developed a new research area called 'Phytochemical Genomics'. In this review, the development of a research platform for plant metabolomics is discussed first, to provide a better understanding of the chemical diversity of plants. Then, representative applications of metabolomics to functional genomics in a model plant, Arabidopsis thaliana, are described. The extension of integrated multi-omics analyses to non-model specialized plants, e.g., medicinal plants, is presented, including the identification of novel genes, metabolites and networks for the biosynthesis of flavonoids, alkaloids, sulfur-containing metabolites and terpenoids. Further, functional genomics studies on a variety of medicinal plants is presented. I also discuss future trends in pharmacognosy and related sciences.

  2. From plant genomes to phenotypes

    OpenAIRE

    Bolger, Marie; Gundlach, Heidrun; Scholz, Uwe; Mayer, Klaus; Usadel, Björn; Schwacke, Rainer; Schmutzer, Thomas; Chen, Jinbo; Arend, Daniel; Oppermann, Markus; Weise, Stephan; Lange, Matthias; Fiorani, Fabio; Spannagl, Manuel

    2017-01-01

    Recent advances in sequencing technologies have greatly accelerated the rate of plant genome and applied breeding research. Despite this advancing trend, plant genomes continue to present numerous difficulties to the standard tools and pipelines not only for genome assembly but also gene annotation and downstream analysis.Here we give a perspective on tools, resources and services necessary to assemble and analyze plant genomes and link them to plant phenotypes.

  3. Dereplication, Aggregation and Scoring Tool (DAS Tool) v1.0

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-01

    Communities of uncultivated microbes are critical to ecosystem function and microorganism health, and a key objective of metagenomic studies is to analyze organism-specific metabolic pathways and reconstruct community interaction networks. This requires accurate assignment of genes to genomes, yet existing binning methods often fail to predict a reasonable number of genomes and report many bins of low quality and completeness. Furthermore, the performance of existing algorithms varies between samples and biotypes. Here, we present a dereplication, aggregation and scoring strategy, DAS Tool, that combines the strengths of a flexible set of established binning algorithms. DAS Tools applied to a constructed community generated more accurate bins than any automated method. Further, when applied to samples of different complexity, including soil, natural oil seeps, and the human gut, DAS Tool recovered substantially more near-complete genomes than any single binning method alone. Included were three genomes from a novel lineage . The ability to reconstruct many near-complete genomes from metagenomics data will greatly advance genome-centric analyses of ecosystems.

  4. TALENs: customizable molecular DNA scissors for genome engineering of plants.

    Science.gov (United States)

    Chen, Kunling; Gao, Caixia

    2013-06-20

    Precise genome modification with engineered nucleases is a powerful tool for studying basic biology and applied biotechnology. Transcription activator-like effector nucleases (TALENs), consisting of an engineered specific (TALE) DNA binding domain and a Fok I cleavage domain, are newly developed versatile reagents for genome engineering in different organisms. Because of the simplicity of the DNA recognition code and their modular assembly, TALENs can act as customizable molecular DNA scissors inducing double-strand breaks (DSBs) at given genomic location. Thus, they provide a valuable approach to targeted genome modifications such as mutations, insertions, replacements or chromosome rearrangements. In this article, we review the development of TALENs, and summarize the principles and tools for TALEN-mediated gene targeting in plant cells, as well as current and potential strategies for use in plant research and crop improvement. Copyright © 2013. Published by Elsevier Ltd.

  5. Marine Genomics: A clearing-house for genomic and transcriptomic data of marine organisms

    Directory of Open Access Journals (Sweden)

    Trent Harold F

    2005-03-01

    Full Text Available Abstract Background The Marine Genomics project is a functional genomics initiative developed to provide a pipeline for the curation of Expressed Sequence Tags (ESTs and gene expression microarray data for marine organisms. It provides a unique clearing-house for marine specific EST and microarray data and is currently available at http://www.marinegenomics.org. Description The Marine Genomics pipeline automates the processing, maintenance, storage and analysis of EST and microarray data for an increasing number of marine species. It currently contains 19 species databases (over 46,000 EST sequences that are maintained by registered users from local and remote locations in Europe and South America in addition to the USA. A collection of analysis tools are implemented. These include a pipeline upload tool for EST FASTA file, sequence trace file and microarray data, an annotative text search, automated sequence trimming, sequence quality control (QA/QC editing, sequence BLAST capabilities and a tool for interactive submission to GenBank. Another feature of this resource is the integration with a scientific computing analysis environment implemented by MATLAB. Conclusion The conglomeration of multiple marine organisms with integrated analysis tools enables users to focus on the comprehensive descriptions of transcriptomic responses to typical marine stresses. This cross species data comparison and integration enables users to contain their research within a marine-oriented data management and analysis environment.

  6. Environmental tools in product development

    DEFF Research Database (Denmark)

    Wenzel, Henrik; Hauschild, Michael Zwicky; Jørgensen, Jørgen

    1994-01-01

    A precondition for design of environmentally friendly products is that the design team has access to methods and tools supporting the introduction of environmental criteria in product development. A large Danish program, EDIP, is being carried out by the Institute for Product Development, Technical...... University of Denmark, in cooperation with 5 major Danish companies aiming at the development and testing of such tools. These tools are presented in this paper...

  7. CRISPR/Cas9 based genome editing of Penicillium chrysogenum

    NARCIS (Netherlands)

    Pohl, Carsten; Kiel, Jan A K W; Driessen, Arnold J M; Bovenberg, Roel A L; Nygård, Yvonne

    2016-01-01

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially

  8. Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological Genomics Approach

    Directory of Open Access Journals (Sweden)

    Claudia Bartoli

    2017-05-01

    Full Text Available The emergence and re-emergence of plant pathogenic microorganisms are processes that imply perturbations in both host and pathogen ecological niches. Global change is largely assumed to drive the emergence of new etiological agents by altering the equilibrium of the ecological habitats which in turn places hosts more in contact with pathogen reservoirs. In this context, the number of epidemics is expected to increase dramatically in the next coming decades both in wild and crop plants. Under these considerations, the identification of the genetic variants underlying natural variation of resistance is a pre-requisite to estimate the adaptive potential of wild plant populations and to develop new breeding resistant cultivars. On the other hand, the prediction of pathogen's genetic determinants underlying disease emergence can help to identify plant resistance alleles. In the genomic era, whole genome sequencing combined with the development of statistical methods led to the emergence of Genome Wide Association (GWA mapping, a powerful tool for detecting genomic regions associated with natural variation of disease resistance in both wild and cultivated plants. However, GWA mapping has been less employed for the detection of genetic variants associated with pathogenicity in microbes. Here, we reviewed GWA studies performed either in plants or in pathogenic microorganisms (bacteria, fungi and oomycetes. In addition, we highlighted the benefits and caveats of the emerging joint GWA mapping approach that allows for the simultaneous identification of genes interacting between genomes of both partners. Finally, based on co-evolutionary processes in wild populations, we highlighted a phenotyping-free joint GWA mapping approach as a promising tool for describing the molecular landscape underlying plant - microbe interactions.

  9. Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level

    Directory of Open Access Journals (Sweden)

    Zixi Chen

    2017-09-01

    Full Text Available Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS, and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented.

  10. Human Ageing Genomic Resources: Integrated databases and tools for the biology and genetics of ageing

    Science.gov (United States)

    Tacutu, Robi; Craig, Thomas; Budovsky, Arie; Wuttke, Daniel; Lehmann, Gilad; Taranukha, Dmitri; Costa, Joana; Fraifeld, Vadim E.; de Magalhães, João Pedro

    2013-01-01

    The Human Ageing Genomic Resources (HAGR, http://genomics.senescence.info) is a freely available online collection of research databases and tools for the biology and genetics of ageing. HAGR features now several databases with high-quality manually curated data: (i) GenAge, a database of genes associated with ageing in humans and model organisms; (ii) AnAge, an extensive collection of longevity records and complementary traits for >4000 vertebrate species; and (iii) GenDR, a newly incorporated database, containing both gene mutations that interfere with dietary restriction-mediated lifespan extension and consistent gene expression changes induced by dietary restriction. Since its creation about 10 years ago, major efforts have been undertaken to maintain the quality of data in HAGR, while further continuing to develop, improve and extend it. This article briefly describes the content of HAGR and details the major updates since its previous publications, in terms of both structure and content. The completely redesigned interface, more intuitive and more integrative of HAGR resources, is also presented. Altogether, we hope that through its improvements, the current version of HAGR will continue to provide users with the most comprehensive and accessible resources available today in the field of biogerontology. PMID:23193293

  11. The genome BLASTatlas - a GeneWiz extension for visualization of whole-genome homology

    DEFF Research Database (Denmark)

    Hallin, Peter Fischer; Binnewies, Tim Terence; Ussery, David

    2008-01-01

    ://www.cbs.dtu.dk/ws/BLASTatlas), where programming examples are available in Perl. By providing an interoperable method to carry out whole genome visualization of homology, this service offers bioinformaticians as well as biologists an easy-to-adopt workflow that can be directly called from the programming language of the user, hence......The development of fast and inexpensive methods for sequencing bacterial genomes has led to a wealth of data, often with many genomes being sequenced of the same species or closely related organisms. Thus, there is a need for visualization methods that will allow easy comparison of many sequenced...... genomes to a defined reference strain. The BLASTatlas is one such tool that is useful for mapping and visualizing whole genome homology of genes and proteins within a reference strain compared to other strains or species of one or more prokaryotic organisms. We provide examples of BLASTatlases, including...

  12. Exploration of plant genomes in the FLAGdb++ environment

    Directory of Open Access Journals (Sweden)

    Leplé Jean-Charles

    2011-03-01

    Full Text Available Abstract Background In the contexts of genomics, post-genomics and systems biology approaches, data integration presents a major concern. Databases provide crucial solutions: they store, organize and allow information to be queried, they enhance the visibility of newly produced data by comparing them with previously published results, and facilitate the exploration and development of both existing hypotheses and new ideas. Results The FLAGdb++ information system was developed with the aim of using whole plant genomes as physical references in order to gather and merge available genomic data from in silico or experimental approaches. Available through a JAVA application, original interfaces and tools assist the functional study of plant genes by considering them in their specific context: chromosome, gene family, orthology group, co-expression cluster and functional network. FLAGdb++ is mainly dedicated to the exploration of large gene groups in order to decipher functional connections, to highlight shared or specific structural or functional features, and to facilitate translational tasks between plant species (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. Conclusion Combining original data with the output of experts and graphical displays that differ from classical plant genome browsers, FLAGdb++ presents a powerful complementary tool for exploring plant genomes and exploiting structural and functional resources, without the need for computer programming knowledge. First launched in 2002, a 15th version of FLAGdb++ is now available and comprises four model plant genomes and over eight million genomic features.

  13. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases.

    Science.gov (United States)

    Periwal, Vinita

    2017-07-01

    Genome editing with engineered nucleases (zinc finger nucleases, TAL effector nucleases s and Clustered regularly inter-spaced short palindromic repeats/CRISPR-associated) has recently been shown to have great promise in a variety of therapeutic and biotechnological applications. However, their exploitation in genetic analysis and clinical settings largely depends on their specificity for the intended genomic target. Large and complex genomes often contain highly homologous/repetitive sequences, which limits the specificity of genome editing tools and could result in off-target activity. Over the past few years, various computational approaches have been developed to assist the design process and predict/reduce the off-target activity of these nucleases. These tools could be efficiently used to guide the design of constructs for engineered nucleases and evaluate results after genome editing. This review provides a comprehensive overview of various databases, tools, web servers and resources for genome editing and compares their features and functionalities. Additionally, it also describes tools that have been developed to analyse post-genome editing results. The article also discusses important design parameters that could be considered while designing these nucleases. This review is intended to be a quick reference guide for experimentalists as well as computational biologists working in the field of genome editing with engineered nucleases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis

    Science.gov (United States)

    Gomez, Gabriel; Adams, Leslie G.; Rice-Ficht, Allison; Ficht, Thomas A.

    2013-01-01

    Vaccination is the most important approach to counteract infectious diseases. Thus, the development of new and improved vaccines for existing, emerging, and re-emerging diseases is an area of great interest to the scientific community and general public. Traditional approaches to subunit antigen discovery and vaccine development lack consideration for the critical aspects of public safety and activation of relevant protective host immunity. The availability of genomic sequences for pathogenic Brucella spp. and their hosts have led to development of systems-wide analytical tools that have provided a better understanding of host and pathogen physiology while also beginning to unravel the intricacies at the host-pathogen interface. Advances in pathogen biology, host immunology, and host-agent interactions have the potential to serve as a platform for the design and implementation of better-targeted antigen discovery approaches. With emphasis on Brucella spp., we probe the biological aspects of host and pathogen that merit consideration in the targeted design of subunit antigen discovery and vaccine development. PMID:23720712

  15. Genomic research perspectives in Kazakhstan

    Directory of Open Access Journals (Sweden)

    Ainur Akilzhanova

    2014-01-01

    Full Text Available Introduction: Technological advancements rapidly propel the field of genome research. Advances in genetics and genomics such as the sequence of the human genome, the human haplotype map, open access databases, cheaper genotyping and chemical genomics, have transformed basic and translational biomedical research. Several projects in the field of genomic and personalized medicine have been conducted at the Center for Life Sciences in Nazarbayev University. The prioritized areas of research include: genomics of multifactorial diseases, cancer genomics, bioinformatics, genetics of infectious diseases and population genomics. At present, DNA-based risk assessment for common complex diseases, application of molecular signatures for cancer diagnosis and prognosis, genome-guided therapy, and dose selection of therapeutic drugs are the important issues in personalized medicine. Results: To further develop genomic and biomedical projects at Center for Life Sciences, the development of bioinformatics research and infrastructure and the establishment of new collaborations in the field are essential. Widespread use of genetic tools will allow the identification of diseases before the onset of clinical symptoms, the individualization of drug treatment, and could induce individual behavioral changes on the basis of calculated disease risk. However, many challenges remain for the successful translation of genomic knowledge and technologies into health advances, such as medicines and diagnostics. It is important to integrate research and education in the fields of genomics, personalized medicine, and bioinformatics, which will be possible with opening of the new Medical Faculty at Nazarbayev University. People in practice and training need to be educated about the key concepts of genomics and engaged so they can effectively apply their knowledge in a matter that will bring the era of genomic medicine to patient care. This requires the development of well

  16. The MICROBE Project, A Report from the Interagency Working Group on Microbial Genomics

    Science.gov (United States)

    2001-01-01

    functional genomics tools (gene chips, technologies, etc.), comparative genomics, proteomics tools, novel culture techniques, in situ analyses, and...interested in supporting microarray/chip development for gene expression analysis for agricultural microbes, bioinformatics, and proteomics , and the...including one fungus ) in various stages of progress. The closely integrated Natural and Accelerated Bioremediation Research Program in the Office of

  17. Genome analysis and DNA marker-based characterisation of pathogenic trypanosomes

    NARCIS (Netherlands)

    Agbo, Edwin Chukwura

    2003-01-01

    The advances in genomics technologies and genome analysis methods that offer new leads for accelerating discovery of putative targets for developing overall control tools are reviewed in Chapter 1. In Chapter 2, a PCR typing method based on restriction fragment length polymorphism analysis of the

  18. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    Directory of Open Access Journals (Sweden)

    Pablo H C G de Sá

    Full Text Available The advent of NGS (Next Generation Sequencing technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  19. Development of Chloroplast Genomic Resources in Chinese Yam (Dioscorea polystachya

    Directory of Open Access Journals (Sweden)

    Junling Cao

    2018-01-01

    Full Text Available Chinese yam has been used both as a food and in traditional herbal medicine. Developing more effective genetic markers in this species is necessary to assess its genetic diversity and perform cultivar identification. In this study, new chloroplast genomic resources were developed using whole chloroplast genomes from six genotypes originating from different geographical locations. The Dioscorea polystachya chloroplast genome is a circular molecule consisting of two single-copy regions separated by a pair of inverted repeats. Comparative analyses of six D. polystachya chloroplast genomes revealed 141 single nucleotide polymorphisms (SNPs. Seventy simple sequence repeats (SSRs were found in the six genotypes, including 24 polymorphic SSRs. Forty-three common indels and five small inversions were detected. Phylogenetic analysis based on the complete chloroplast genome provided the best resolution among the genotypes. Our evaluation of chloroplast genome resources among these genotypes led us to consider the complete chloroplast genome sequence of D. polystachya as a source of reliable and valuable molecular markers for revealing biogeographical structure and the extent of genetic variation in wild populations and for identifying different cultivars.

  20. Windows Developer Power Tools Turbocharge Windows development with more than 170 free and open source tools

    CERN Document Server

    Avery, James

    2007-01-01

    Software developers need to work harder and harder to bring value to their development process in order to build high quality applications and remain competitive. Developers can accomplish this by improving their productivity, quickly solving problems, and writing better code. A wealth of open source and free software tools are available for developers who want to improve the way they create, build, deploy, and use software. Tools, components, and frameworks exist to help developers at every point in the development process. Windows Developer Power Tools offers an encyclopedic guide to m

  1. System analysis: Developing tools for the future

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, K.; clever, J.; Draper, J.V.; Davies, B.; Lonks, A.

    1996-02-01

    This report introduces and evaluates system analysis tools that were developed, or are under development, for the Robotics Technology Development Program (RTDP). Additionally, it discusses system analysis work completed using these tools aimed at completing a system analysis of the retrieval of waste from underground storage tanks on the Hanford Reservation near Richland, Washington. The tools developed and evaluated include a mixture of commercially available tools adapted to RTDP requirements, and some tools developed in house. The tools that are included in this report include: a Process Diagramming Tool, a Cost Modeling Tool, an Amortization Modeling Tool, a graphical simulation linked to the Cost Modeling Tool, a decision assistance tool, and a system thinking tool. Additionally, the importance of performance testing to the RTDP and the results of such testing executed is discussed. Further, the results of the Tank Waste Retrieval (TWR) System Diagram, the TWR Operations Cost Model, and the TWR Amortization Model are presented, and the implication of the results are discussed. Finally, the RTDP system analysis tools are assessed and some recommendations are made regarding continuing development of the tools and process.

  2. A general pipeline for the development of anchor markers for comparative genomics in plants

    Directory of Open Access Journals (Sweden)

    Stougaard Jens

    2006-08-01

    Full Text Available Abstract Background Complete or near-complete genomic sequence information is presently only available for a few plant species representing a large phylogenetic diversity among plants. In order to effectively transfer this information to species lacking sequence information, comparative genomic tools need to be developed. Molecular markers permitting cross-species mapping along co-linear genomic regions are central to comparative genomics. These "anchor" markers, defining unique loci in genetic linkage maps of multiple species, are gene-based and possess a number of features that make them relatively sparse. To identify potential anchor marker sequences more efficiently, we have established an automated bioinformatic pipeline that combines multi-species Expressed Sequence Tags (EST and genome sequence data. Results Taking advantage of sequence data from related species, the pipeline identifies evolutionarily conserved sequences that are likely to define unique orthologous loci in most species of the same phylogenetic clade. The key features are the identification of evolutionarily conserved sequences followed by automated design of intron-flanking Polymerase Chain Reaction (PCR primer pairs. Polymorphisms can subsequently be identified by size- or sequence variation of PCR products, amplified from mapping parents or populations. We illustrate our procedure in legumes and grasses and exemplify its application in legumes, where model plant studies and the genome- and EST-sequence data available have a potential impact on the breeding of crop species and on our understanding of the evolution of this large and diverse family. Conclusion We provide a database of 459 candidate anchor loci which have the potential to serve as map anchors in more than 18,000 legume species, a number of which are of agricultural importance. For grasses, the database contains 1335 candidate anchor loci. Based on this database, we have evaluated 76 candidate anchor loci

  3. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform.

    Science.gov (United States)

    Zheng, Wenning; Mutha, Naresh V R; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah; Choo, Siew Woh

    2016-01-01

    Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor

  4. NeisseriaBase: a specialised Neisseria genomic resource and analysis platform

    Directory of Open Access Journals (Sweden)

    Wenning Zheng

    2016-03-01

    Full Text Available Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%, predicted hydrophobicity and molecular weight (Da using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1 client workstation, (2 web server, (3 application server, and (4 database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs, 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence

  5. GDR (Genome Database for Rosaceae: integrated web resources for Rosaceae genomics and genetics research

    Directory of Open Access Journals (Sweden)

    Ficklin Stephen

    2004-09-01

    Full Text Available Abstract Background Peach is being developed as a model organism for Rosaceae, an economically important family that includes fruits and ornamental plants such as apple, pear, strawberry, cherry, almond and rose. The genomics and genetics data of peach can play a significant role in the gene discovery and the genetic understanding of related species. The effective utilization of these peach resources, however, requires the development of an integrated and centralized database with associated analysis tools. Description The Genome Database for Rosaceae (GDR is a curated and integrated web-based relational database. GDR contains comprehensive data of the genetically anchored peach physical map, an annotated peach EST database, Rosaceae maps and markers and all publicly available Rosaceae sequences. Annotations of ESTs include contig assembly, putative function, simple sequence repeats, and anchored position to the peach physical map where applicable. Our integrated map viewer provides graphical interface to the genetic, transcriptome and physical mapping information. ESTs, BACs and markers can be queried by various categories and the search result sites are linked to the integrated map viewer or to the WebFPC physical map sites. In addition to browsing and querying the database, users can compare their sequences with the annotated GDR sequences via a dedicated sequence similarity server running either the BLAST or FASTA algorithm. To demonstrate the utility of the integrated and fully annotated database and analysis tools, we describe a case study where we anchored Rosaceae sequences to the peach physical and genetic map by sequence similarity. Conclusions The GDR has been initiated to meet the major deficiency in Rosaceae genomics and genetics research, namely a centralized web database and bioinformatics tools for data storage, analysis and exchange. GDR can be accessed at http://www.genome.clemson.edu/gdr/.

  6. GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research.

    Science.gov (United States)

    Jung, Sook; Jesudurai, Christopher; Staton, Margaret; Du, Zhidian; Ficklin, Stephen; Cho, Ilhyung; Abbott, Albert; Tomkins, Jeffrey; Main, Dorrie

    2004-09-09

    Peach is being developed as a model organism for Rosaceae, an economically important family that includes fruits and ornamental plants such as apple, pear, strawberry, cherry, almond and rose. The genomics and genetics data of peach can play a significant role in the gene discovery and the genetic understanding of related species. The effective utilization of these peach resources, however, requires the development of an integrated and centralized database with associated analysis tools. The Genome Database for Rosaceae (GDR) is a curated and integrated web-based relational database. GDR contains comprehensive data of the genetically anchored peach physical map, an annotated peach EST database, Rosaceae maps and markers and all publicly available Rosaceae sequences. Annotations of ESTs include contig assembly, putative function, simple sequence repeats, and anchored position to the peach physical map where applicable. Our integrated map viewer provides graphical interface to the genetic, transcriptome and physical mapping information. ESTs, BACs and markers can be queried by various categories and the search result sites are linked to the integrated map viewer or to the WebFPC physical map sites. In addition to browsing and querying the database, users can compare their sequences with the annotated GDR sequences via a dedicated sequence similarity server running either the BLAST or FASTA algorithm. To demonstrate the utility of the integrated and fully annotated database and analysis tools, we describe a case study where we anchored Rosaceae sequences to the peach physical and genetic map by sequence similarity. The GDR has been initiated to meet the major deficiency in Rosaceae genomics and genetics research, namely a centralized web database and bioinformatics tools for data storage, analysis and exchange. GDR can be accessed at http://www.genome.clemson.edu/gdr/.

  7. Fueling the Future with Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  8. Developing a common framework for evaluating the implementation of genomic medicine interventions in clinical care: the IGNITE Network's Common Measures Working Group.

    Science.gov (United States)

    Orlando, Lori A; Sperber, Nina R; Voils, Corrine; Nichols, Marshall; Myers, Rachel A; Wu, R Ryanne; Rakhra-Burris, Tejinder; Levy, Kenneth D; Levy, Mia; Pollin, Toni I; Guan, Yue; Horowitz, Carol R; Ramos, Michelle; Kimmel, Stephen E; McDonough, Caitrin W; Madden, Ebony B; Damschroder, Laura J

    2018-06-01

    PurposeImplementation research provides a structure for evaluating the clinical integration of genomic medicine interventions. This paper describes the Implementing Genomics in Practice (IGNITE) Network's efforts to promote (i) a broader understanding of genomic medicine implementation research and (ii) the sharing of knowledge generated in the network.MethodsTo facilitate this goal, the IGNITE Network Common Measures Working Group (CMG) members adopted the Consolidated Framework for Implementation Research (CFIR) to guide its approach to identifying constructs and measures relevant to evaluating genomic medicine as a whole, standardizing data collection across projects, and combining data in a centralized resource for cross-network analyses.ResultsCMG identified 10 high-priority CFIR constructs as important for genomic medicine. Of those, eight did not have standardized measurement instruments. Therefore, we developed four survey tools to address this gap. In addition, we identified seven high-priority constructs related to patients, families, and communities that did not map to CFIR constructs. Both sets of constructs were combined to create a draft genomic medicine implementation model.ConclusionWe developed processes to identify constructs deemed valuable for genomic medicine implementation and codified them in a model. These resources are freely available to facilitate knowledge generation and sharing across the field.

  9. Genome-wide characterization of microsatelittes and marker development in the carcinogenic liver fluke Clonorchis sinensis

    Science.gov (United States)

    Nguyen, Thao T.B.; Arimatsu, Yuji; Hong, Sung-Jong; Brindley, Paul J.; Blair, David; Laha, Thewarach; Sripa, Banchob

    2015-01-01

    Clonorchis sinensis is an important carcinogenic human liver fluke endemic in East and Southeast Asia. There are several conventional molecular markers have been used for identification and genetic diversity, however, no information about microsatellites of this liver fluke published so far. We here report microsatellite characterization and marker development for genetic diversity study in C. sinensis using genome-wide bioinformatics approach. Based on our search criteria, a total of 256,990 microsatellites (≥ 12 base pairs) were identified from genome database of C. sinensis with hexa-nucleotide motif being the most abundant (51%) followed by penta-nucleotide (18.3%) and tri-nucleotide (12.7%). The tetra-nucleotide, di-nucleotide and mononucleotide motifs accounted for 9.75 %, 7.63% and 0.14%, respectively. The total length of all microsatellites accounts for 0. 72 % of 547 Mb of the whole genome size and the frequency of microsatellites were found to be one microsatellite in every 2.13 kb of DNA. For the di-, tri, and tetra-nucleotide, the repeat numbers redundant are six (28%), four (45%) and three (76%), respectively. The ATC repeat is the most abundant microsatellites followed by AT, AAT and AC, respectively. Within 40 microsatellite loci developed, 24 microsatellite markers showed potential to differentiate between C. sinensis and O. viverrini. Seven out of 24 loci showed heterozygous with observed heterozygosity ranged from 0.467 to 1. Four-primer sets could amplify both C. sinensis and O. viverrini DNA with different sizes. This study provides basic information of C. sinensis microsatellites and the genome-wide markers developed may be a useful tool for genetic study of C. sinensis. PMID:25782682

  10. Genome-wide characterization of microsatellites and marker development in the carcinogenic liver fluke Clonorchis sinensis.

    Science.gov (United States)

    Nguyen, Thao T B; Arimatsu, Yuji; Hong, Sung-Jong; Brindley, Paul J; Blair, David; Laha, Thewarach; Sripa, Banchob

    2015-06-01

    Clonorchis sinensis is an important carcinogenic human liver fluke endemic in East and Southeast Asia. There are several conventional molecular markers that have been used for identification and genetic diversity; however, no information about microsatellites of this liver fluke is published so far. We here report microsatellite characterization and marker development for a genetic diversity study in C. sinensis, using a genome-wide bioinformatics approach. Based on our search criteria, a total of 256,990 microsatellites (≥12 base pairs) were identified from a genome database of C. sinensis, with hexanucleotide motif being the most abundant (51%) followed by pentanucleotide (18.3%) and trinucleotide (12.7%). The tetranucleotide, dinucleotide, and mononucleotide motifs accounted for 9.75, 7.63, and 0.14%, respectively. The total length of all microsatellites accounts for 0. 72% of 547 Mb of the whole genome size, and the frequency of microsatellites was found to be one microsatellite in every 2.13 kb of DNA. For the di-, tri-, and tetranucleotide, the repeat numbers redundant are six (28%), four (45%), and three (76%), respectively. The ATC repeat is the most abundant microsatellites followed by AT, AAT, and AC, respectively. Within 40 microsatellite loci developed, 24 microsatellite markers showed potential to differentiate between C. sinensis and Opisthorchis viverrini. Seven out of 24 loci showed to be heterozygous with observed heterozygosity that ranged from 0.467 to 1. Four primer sets could amplify both C. sinensis and O. viverrini DNA with different sizes. This study provides basic information of C. sinensis microsatellites, and the genome-wide markers developed may be a useful tool for the genetic study of C. sinensis.

  11. A web-based multi-genome synteny viewer for customized data

    Directory of Open Access Journals (Sweden)

    Revanna Kashi V

    2012-08-01

    Full Text Available Abstract Background Web-based synteny visualization tools are important for sharing data and revealing patterns of complicated genome conservation and rearrangements. Such tools should allow biologists to upload genomic data for their own analysis. This requirement is critical because individual biologists are generating large amounts of genomic sequences that quickly overwhelm any centralized web resources to collect and display all those data. Recently, we published a web-based synteny viewer, GSV, which was designed to satisfy the above requirement. However, GSV can only compare two genomes at a given time. Extending the functionality of GSV to visualize multiple genomes is important to meet the increasing demand of the research community. Results We have developed a multi-Genome Synteny Viewer (mGSV. Similar to GSV, mGSV is a web-based tool that allows users to upload their own genomic data files for visualization. Multiple genomes can be presented in a single integrated view with an enhanced user interface. Users can navigate through all the selected genomes in either pairwise or multiple viewing mode to examine conserved genomic regions as well as the accompanying genome annotations. Besides serving users who manually interact with the web server, mGSV also provides Web Services for machine-to-machine communication to accept data sent by other remote resources. The entire mGSV package can also be downloaded for easy local installation. Conclusions mGSV significantly enhances the original functionalities of GSV. A web server hosting mGSV is provided at http://cas-bioinfo.cas.unt.edu/mgsv.

  12. CHOgenome.org 2.0: Genome resources and website updates.

    Science.gov (United States)

    Kremkow, Benjamin G; Baik, Jong Youn; MacDonald, Madolyn L; Lee, Kelvin H

    2015-07-01

    Chinese hamster ovary (CHO) cells are a major host cell line for the production of therapeutic proteins, and CHO cell and Chinese hamster (CH) genomes have recently been sequenced using next-generation sequencing methods. CHOgenome.org was launched in 2011 (version 1.0) to serve as a database repository and to provide bioinformatics tools for the CHO community. CHOgenome.org (version 1.0) maintained GenBank CHO-K1 genome data, identified CHO-omics literature, and provided a CHO-specific BLAST service. Recent major updates to CHOgenome.org (version 2.0) include new sequence and annotation databases for both CHO and CH genomes, a more user-friendly website, and new research tools, including a proteome browser and a genome viewer. CHO cell-line specific sequences and annotations facilitate cell line development opportunities, several of which are discussed. Moving forward, CHOgenome.org will host the increasing amount of CHO-omics data and continue to make useful bioinformatics tools available to the CHO community. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. EggLib: processing, analysis and simulation tools for population genetics and genomics

    Directory of Open Access Journals (Sweden)

    De Mita Stéphane

    2012-04-01

    Full Text Available Abstract Background With the considerable growth of available nucleotide sequence data over the last decade, integrated and flexible analytical tools have become a necessity. In particular, in the field of population genetics, there is a strong need for automated and reliable procedures to conduct repeatable and rapid polymorphism analyses, coalescent simulations, data manipulation and estimation of demographic parameters under a variety of scenarios. Results In this context, we present EggLib (Evolutionary Genetics and Genomics Library, a flexible and powerful C++/Python software package providing efficient and easy to use computational tools for sequence data management and extensive population genetic analyses on nucleotide sequence data. EggLib is a multifaceted project involving several integrated modules: an underlying computationally efficient C++ library (which can be used independently in pure C++ applications; two C++ programs; a Python package providing, among other features, a high level Python interface to the C++ library; and the egglib script which provides direct access to pre-programmed Python applications. Conclusions EggLib has been designed aiming to be both efficient and easy to use. A wide array of methods are implemented, including file format conversion, sequence alignment edition, coalescent simulations, neutrality tests and estimation of demographic parameters by Approximate Bayesian Computation (ABC. Classes implementing different demographic scenarios for ABC analyses can easily be developed by the user and included to the package. EggLib source code is distributed freely under the GNU General Public License (GPL from its website http://egglib.sourceforge.net/ where a full documentation and a manual can also be found and downloaded.

  14. EggLib: processing, analysis and simulation tools for population genetics and genomics.

    Science.gov (United States)

    De Mita, Stéphane; Siol, Mathieu

    2012-04-11

    With the considerable growth of available nucleotide sequence data over the last decade, integrated and flexible analytical tools have become a necessity. In particular, in the field of population genetics, there is a strong need for automated and reliable procedures to conduct repeatable and rapid polymorphism analyses, coalescent simulations, data manipulation and estimation of demographic parameters under a variety of scenarios. In this context, we present EggLib (Evolutionary Genetics and Genomics Library), a flexible and powerful C++/Python software package providing efficient and easy to use computational tools for sequence data management and extensive population genetic analyses on nucleotide sequence data. EggLib is a multifaceted project involving several integrated modules: an underlying computationally efficient C++ library (which can be used independently in pure C++ applications); two C++ programs; a Python package providing, among other features, a high level Python interface to the C++ library; and the egglib script which provides direct access to pre-programmed Python applications. EggLib has been designed aiming to be both efficient and easy to use. A wide array of methods are implemented, including file format conversion, sequence alignment edition, coalescent simulations, neutrality tests and estimation of demographic parameters by Approximate Bayesian Computation (ABC). Classes implementing different demographic scenarios for ABC analyses can easily be developed by the user and included to the package. EggLib source code is distributed freely under the GNU General Public License (GPL) from its website http://egglib.sourceforge.net/ where a full documentation and a manual can also be found and downloaded.

  15. Annotating functional RNAs in genomes using Infernal.

    Science.gov (United States)

    Nawrocki, Eric P

    2014-01-01

    Many different types of functional non-coding RNAs participate in a wide range of important cellular functions but the large majority of these RNAs are not routinely annotated in published genomes. Several programs have been developed for identifying RNAs, including specific tools tailored to a particular RNA family as well as more general ones designed to work for any family. Many of these tools utilize covariance models (CMs), statistical models of the conserved sequence, and structure of an RNA family. In this chapter, as an illustrative example, the Infernal software package and CMs from the Rfam database are used to identify RNAs in the genome of the archaeon Methanobrevibacter ruminantium, uncovering some additional RNAs not present in the genome's initial annotation. Analysis of the results and comparison with family-specific methods demonstrate some important strengths and weaknesses of this general approach.

  16. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Science.gov (United States)

    Talukder, Shyamal K.; Saha, Malay C.

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. PMID:28798766

  17. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Shyamal K. Talukder

    2017-07-01

    Full Text Available Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs. Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.

  18. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis.

    Science.gov (United States)

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain; Jelinsky, Scott A

    2017-05-01

    The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. © The Author 2017. Published by Oxford University Press.

  19. Gene hunting: molecular analysis of the chicken genome

    NARCIS (Netherlands)

    Crooijmans, R.P.M.A.

    2000-01-01

    This dissertation describes the development of molecular tools to identify genes that are involved in production and health traits in poultry. To unravel the chicken genome, fluorescent molecular markers (microsatellite markers) were developed and optimized to perform high throughput

  20. GAAP: Genome-organization-framework-Assisted Assembly Pipeline for prokaryotic genomes.

    Science.gov (United States)

    Yuan, Lina; Yu, Yang; Zhu, Yanmin; Li, Yulai; Li, Changqing; Li, Rujiao; Ma, Qin; Siu, Gilman Kit-Hang; Yu, Jun; Jiang, Taijiao; Xiao, Jingfa; Kang, Yu

    2017-01-25

    Next-generation sequencing (NGS) technologies have greatly promoted the genomic study of prokaryotes. However, highly fragmented assemblies due to short reads from NGS are still a limiting factor in gaining insights into the genome biology. Reference-assisted tools are promising in genome assembly, but tend to result in false assembly when the assigned reference has extensive rearrangements. Herein, we present GAAP, a genome assembly pipeline for scaffolding based on core-gene-defined Genome Organizational Framework (cGOF) described in our previous study. Instead of assigning references, we use the multiple-reference-derived cGOFs as indexes to assist in order and orientation of the scaffolds and build a skeleton structure, and then use read pairs to extend scaffolds, called local scaffolding, and distinguish between true and chimeric adjacencies in the scaffolds. In our performance tests using both empirical and simulated data of 15 genomes in six species with diverse genome size, complexity, and all three categories of cGOFs, GAAP outcompetes or achieves comparable results when compared to three other reference-assisted programs, AlignGraph, Ragout and MeDuSa. GAAP uses both cGOF and pair-end reads to create assemblies in genomic scale, and performs better than the currently available reference-assisted assembly tools as it recovers more assemblies and makes fewer false locations, especially for species with extensive rearranged genomes. Our method is a promising solution for reconstruction of genome sequence from short reads of NGS.

  1. G-InforBIO: integrated system for microbial genomics

    Directory of Open Access Journals (Sweden)

    Abe Takashi

    2006-08-01

    Full Text Available Abstract Background Genome databases contain diverse kinds of information, including gene annotations and nucleotide and amino acid sequences. It is not easy to integrate such information for genomic study. There are few tools for integrated analyses of genomic data, therefore, we developed software that enables users to handle, manipulate, and analyze genome data with a variety of sequence analysis programs. Results The G-InforBIO system is a novel tool for genome data management and sequence analysis. The system can import genome data encoded as eXtensible Markup Language documents as formatted text documents, including annotations and sequences, from DNA Data Bank of Japan and GenBank encoded as flat files. The genome database is constructed automatically after importing, and the database can be exported as documents formatted with eXtensible Markup Language or tab-deliminated text. Users can retrieve data from the database by keyword searches, edit annotation data of genes, and process data with G-InforBIO. In addition, information in the G-InforBIO database can be analyzed seamlessly with nine different software programs, including programs for clustering and homology analyses. Conclusion The G-InforBIO system simplifies genome analyses by integrating several available software programs to allow efficient handling and manipulation of genome data. G-InforBIO is freely available from the download site.

  2. Generation of a BAC-based physical map of the melon genome

    Directory of Open Access Journals (Sweden)

    Puigdomènech Pere

    2010-05-01

    Full Text Available Abstract Background Cucumis melo (melon belongs to the Cucurbitaceae family, whose economic importance among horticulture crops is second only to Solanaceae. Melon has high intra-specific genetic variation, morphologic diversity and a small genome size (450 Mb, which make this species suitable for a great variety of molecular and genetic studies that can lead to the development of tools for breeding varieties of the species. A number of genetic and genomic resources have already been developed, such as several genetic maps and BAC genomic libraries. These tools are essential for the construction of a physical map, a valuable resource for map-based cloning, comparative genomics and assembly of whole genome sequencing data. However, no physical map of any Cucurbitaceae has yet been developed. A project has recently been started to sequence the complete melon genome following a whole-genome shotgun strategy, which makes use of massive sequencing data. A BAC-based melon physical map will be a useful tool to help assemble and refine the draft genome data that is being produced. Results A melon physical map was constructed using a 5.7 × BAC library and a genetic map previously developed in our laboratories. High-information-content fingerprinting (HICF was carried out on 23,040 BAC clones, digesting with five restriction enzymes and SNaPshot labeling, followed by contig assembly with FPC software. The physical map has 1,355 contigs and 441 singletons, with an estimated physical length of 407 Mb (0.9 × coverage of the genome and the longest contig being 3.2 Mb. The anchoring of 845 BAC clones to 178 genetic markers (100 RFLPs, 76 SNPs and 2 SSRs also allowed the genetic positioning of 183 physical map contigs/singletons, representing 55 Mb (12% of the melon genome, to individual chromosomal loci. The melon FPC database is available for download at http://melonomics.upv.es/static/files/public/physical_map/. Conclusions Here we report the construction

  3. SWPhylo - A Novel Tool for Phylogenomic Inferences by Comparison of Oligonucleotide Patterns and Integration of Genome-Based and Gene-Based Phylogenetic Trees.

    Science.gov (United States)

    Yu, Xiaoyu; Reva, Oleg N

    2018-01-01

    Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA.

  4. SNUGB: a versatile genome browser supporting comparative and functional fungal genomics

    Directory of Open Access Journals (Sweden)

    Kim Seungill

    2008-12-01

    Full Text Available Abstract Background Since the full genome sequences of Saccharomyces cerevisiae were released in 1996, genome sequences of over 90 fungal species have become publicly available. The heterogeneous formats of genome sequences archived in different sequencing centers hampered the integration of the data for efficient and comprehensive comparative analyses. The Comparative Fungal Genomics Platform (CFGP was developed to archive these data via a single standardized format that can support multifaceted and integrated analyses of the data. To facilitate efficient data visualization and utilization within and across species based on the architecture of CFGP and associated databases, a new genome browser was needed. Results The Seoul National University Genome Browser (SNUGB integrates various types of genomic information derived from 98 fungal/oomycete (137 datasets and 34 plant and animal (38 datasets species, graphically presents germane features and properties of each genome, and supports comparison between genomes. The SNUGB provides three different forms of the data presentation interface, including diagram, table, and text, and six different display options to support visualization and utilization of the stored information. Information for individual species can be quickly accessed via a new tool named the taxonomy browser. In addition, SNUGB offers four useful data annotation/analysis functions, including 'BLAST annotation.' The modular design of SNUGB makes its adoption to support other comparative genomic platforms easy and facilitates continuous expansion. Conclusion The SNUGB serves as a powerful platform supporting comparative and functional genomics within the fungal kingdom and also across other kingdoms. All data and functions are available at the web site http://genomebrowser.snu.ac.kr/.

  5. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.

    Science.gov (United States)

    Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay

    2015-12-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Analysis of Multiple Genomic Sequence Alignments: A Web Resource, Online Tools, and Lessons Learned From Analysis of Mammalian SCL Loci

    Science.gov (United States)

    Chapman, Michael A.; Donaldson, Ian J.; Gilbert, James; Grafham, Darren; Rogers, Jane; Green, Anthony R.; Göttgens, Berthold

    2004-01-01

    Comparative analysis of genomic sequences is becoming a standard technique for studying gene regulation. However, only a limited number of tools are currently available for the analysis of multiple genomic sequences. An extensive data set for the testing and training of such tools is provided by the SCL gene locus. Here we have expanded the data set to eight vertebrate species by sequencing the dog SCL locus and by annotating the dog and rat SCL loci. To provide a resource for the bioinformatics community, all SCL sequences and functional annotations, comprising a collation of the extensive experimental evidence pertaining to SCL regulation, have been made available via a Web server. A Web interface to new tools specifically designed for the display and analysis of multiple sequence alignments was also implemented. The unique SCL data set and new sequence comparison tools allowed us to perform a rigorous examination of the true benefits of multiple sequence comparisons. We demonstrate that multiple sequence alignments are, overall, superior to pairwise alignments for identification of mammalian regulatory regions. In the search for individual transcription factor binding sites, multiple alignments markedly increase the signal-to-noise ratio compared to pairwise alignments. PMID:14718377

  7. [Acute lymphoblastic leukemia: a genomic perspective].

    Science.gov (United States)

    Jiménez-Morales, Silvia; Hidalgo-Miranda, Alfredo; Ramírez-Bello, Julián

    In parallel to the human genome sequencing project, several technological platforms have been developed that let us gain insight into the genome structure of human entities, as well as evaluate their usefulness in the clinical approach of the patient. Thus, in acute lymphoblastic leukemia (ALL), the most common pediatric malignancy, genomic tools promise to be useful to detect patients at high risk of relapse, either at diagnosis or during treatment (minimal residual disease), and they also increase the possibility to identify cases at risk of adverse reactions to chemotherapy. Therefore, the physician could offer patient-tailored therapeutic schemes. A clear example of the useful genomic tools is the identification of single nucleotide polymorphisms (SNPs) in the thiopurine methyl transferase (TPMT) gene, where the presence of two null alleles (homozygous or compound heterozygous) indicates the need to reduce the dose of mercaptopurine by up to 90% to avoid toxic effects which could lead to the death of the patient. In this review, we provide an overview of the genomic perspective of ALL, describing some strategies that contribute to the identification of biomarkers with potential clinical application. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  8. The evolution of genome mining in microbes – a review

    DEFF Research Database (Denmark)

    Ziemert, Nadine; Alanjary, Mohammad; Weber, Tilmann

    2016-01-01

    Covering: 2006 to 2016. The computational mining of genomes has become an important part in the discovery of novel natural products as drug leads. Thousands of bacterial genome sequences are publically available these days containing an even larger number and diversity of secondary metabolite gene...... clusters that await linkage to their encoded natural products. With the development of high-throughput sequencing methods and the wealth of DNA data available, a variety of genome mining methods and tools have been developed to guide discovery and characterisation of these compounds. This article reviews...

  9. Fungal Genomics for Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  10. The IGNITE network: a model for genomic medicine implementation and research.

    Science.gov (United States)

    Weitzel, Kristin Wiisanen; Alexander, Madeline; Bernhardt, Barbara A; Calman, Neil; Carey, David J; Cavallari, Larisa H; Field, Julie R; Hauser, Diane; Junkins, Heather A; Levin, Phillip A; Levy, Kenneth; Madden, Ebony B; Manolio, Teri A; Odgis, Jacqueline; Orlando, Lori A; Pyeritz, Reed; Wu, R Ryanne; Shuldiner, Alan R; Bottinger, Erwin P; Denny, Joshua C; Dexter, Paul R; Flockhart, David A; Horowitz, Carol R; Johnson, Julie A; Kimmel, Stephen E; Levy, Mia A; Pollin, Toni I; Ginsburg, Geoffrey S

    2016-01-05

    Patients, clinicians, researchers and payers are seeking to understand the value of using genomic information (as reflected by genotyping, sequencing, family history or other data) to inform clinical decision-making. However, challenges exist to widespread clinical implementation of genomic medicine, a prerequisite for developing evidence of its real-world utility. To address these challenges, the National Institutes of Health-funded IGNITE (Implementing GeNomics In pracTicE; www.ignite-genomics.org ) Network, comprised of six projects and a coordinating center, was established in 2013 to support the development, investigation and dissemination of genomic medicine practice models that seamlessly integrate genomic data into the electronic health record and that deploy tools for point of care decision making. IGNITE site projects are aligned in their purpose of testing these models, but individual projects vary in scope and design, including exploring genetic markers for disease risk prediction and prevention, developing tools for using family history data, incorporating pharmacogenomic data into clinical care, refining disease diagnosis using sequence-based mutation discovery, and creating novel educational approaches. This paper describes the IGNITE Network and member projects, including network structure, collaborative initiatives, clinical decision support strategies, methods for return of genomic test results, and educational initiatives for patients and providers. Clinical and outcomes data from individual sites and network-wide projects are anticipated to begin being published over the next few years. The IGNITE Network is an innovative series of projects and pilot demonstrations aiming to enhance translation of validated actionable genomic information into clinical settings and develop and use measures of outcome in response to genome-based clinical interventions using a pragmatic framework to provide early data and proofs of concept on the utility of these

  11. Genomics of Volvocine Algae

    Science.gov (United States)

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  12. Genome-wide screening and identification of antigens for rickettsial vaccine development

    Science.gov (United States)

    The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of complete microbial genome sequences coupled to rapid proteomic and bioinformatic analysis. Critical to this genome-wide screening is in vivo testing in the context o...

  13. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing.

    Science.gov (United States)

    Thoendel, Matthew; Jeraldo, Patricio R; Greenwood-Quaintance, Kerryl E; Yao, Janet Z; Chia, Nicholas; Hanssen, Arlen D; Abdel, Matthew P; Patel, Robin

    2016-08-01

    Metagenomic whole genome sequencing for detection of pathogens in clinical samples is an exciting new area for discovery and clinical testing. A major barrier to this approach is the overwhelming ratio of human to pathogen DNA in samples with low pathogen abundance, which is typical of most clinical specimens. Microbial DNA enrichment methods offer the potential to relieve this limitation by improving this ratio. Two commercially available enrichment kits, the NEBNext Microbiome DNA Enrichment Kit and the Molzym MolYsis Basic kit, were tested for their ability to enrich for microbial DNA from resected arthroplasty component sonicate fluids from prosthetic joint infections or uninfected sonicate fluids spiked with Staphylococcus aureus. Using spiked uninfected sonicate fluid there was a 6-fold enrichment of bacterial DNA with the NEBNext kit and 76-fold enrichment with the MolYsis kit. Metagenomic whole genome sequencing of sonicate fluid revealed 13- to 85-fold enrichment of bacterial DNA using the NEBNext enrichment kit. The MolYsis approach achieved 481- to 9580-fold enrichment, resulting in 7 to 59% of sequencing reads being from the pathogens known to be present in the samples. These results demonstrate the usefulness of these tools when testing clinical samples with low microbial burden using next generation sequencing. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Comparison of the most used game development tools

    OpenAIRE

    Soukup, Martin

    2017-01-01

    This thesis deals with comparison of most used game development tools. Author places game development tools in context of today´s game industry, analyses state of the market and the latest trends in the field of game development tools. The largest part of this thesis is aimed at comparing game development tools, where five tools are selected, overviewed and compared by specified criteria. Author demonstrates several basic features of chosen game development tool on development of a simple And...

  15. Whole Genome Sequencing of Enterovirus species C Isolates by High-throughput Sequencing: Development of Generic Primers

    Directory of Open Access Journals (Sweden)

    Maël Bessaud

    2016-08-01

    Full Text Available Enteroviruses are among the most common viruses infecting humans and can cause diverse clinical syndromes ranging from minor febrile illness to severe and potentially fatal diseases. Enterovirus species C (EV-C consists of more than 20 types, among which the 3 serotypes of polioviruses, the etiological agents of poliomyelitis, are included. Biodiversity and evolution of EV-C genomes are shaped by frequent recombination events. Therefore, identification and characterization of circulating EV-C strains require the sequencing of different genomic regions.A simple method was developed to sequence quickly the entire genome of EV-C isolates. Four overlapping fragments were produced separately by RT-PCR performed with generic primers. The four amplicons were then pooled and purified prior to be sequenced by high-throughput technique.The method was assessed on a panel of EV-Cs belonging to a wide-range of types. It can be used to determine full-length genome sequences through de novo assembly of thousands of reads. It was also able to discriminate reads from closely related viruses in mixtures.By decreasing the workload compared to classical Sanger-based techniques, this method will serve as a precious tool for sequencing large panels of EV-Cs isolated in cell cultures during environmental surveillance or from patients, including vaccine-derived polioviruses.

  16. Programming biological operating systems: genome design, assembly and activation.

    Science.gov (United States)

    Gibson, Daniel G

    2014-05-01

    The DNA technologies developed over the past 20 years for reading and writing the genetic code converged when the first synthetic cell was created 4 years ago. An outcome of this work has been an extraordinary set of tools for synthesizing, assembling, engineering and transplanting whole bacterial genomes. Technical progress, options and applications for bacterial genome design, assembly and activation are discussed.

  17. Empowered genome community: leveraging a bioinformatics platform as a citizen–scientist collaboration tool

    Directory of Open Access Journals (Sweden)

    Katherine Wendelsdorf

    2015-09-01

    Full Text Available There is on-going effort in the biomedical research community to leverage Next Generation Sequencing (NGS technology to identify genetic variants that affect our health. The main challenge facing researchers is getting enough samples from individuals either sick or healthy – to be able to reliably identify the few variants that are causal for a phenotype among all other variants typically seen among individuals. At the same time, more and more individuals are having their genome sequenced either out of curiosity or to identify the cause of an illness. These individuals may benefit from of a way to view and understand their data. QIAGEN's Ingenuity Variant Analysis is an online application that allows users with and without extensive bioinformatics training to incorporate information from published experiments, genetic databases, and a variety of statistical models to identify variants, from a long list of candidates, that are most likely causal for a phenotype as well as annotate variants with what is already known about them in the literature and databases. Ingenuity Variant Analysis is also an information sharing platform where users may exchange samples and analyses. The Empowered Genome Community (EGC is a new program in which QIAGEN is making this on-line tool freely available to any individual who wishes to analyze their own genetic sequence. EGC members are then able to make their data available to other Ingenuity Variant Analysis users to be used in research. Here we present and describe the Empowered Genome Community in detail. We also present a preliminary, proof-of-concept study that utilizes the 200 genomes currently available through the EGC. The goal of this program is to allow individuals to access and understand their own data as well as facilitate citizen–scientist collaborations that can drive research forward and spur quality scientific dialogue in the general public.

  18. Empowered genome community: leveraging a bioinformatics platform as a citizen-scientist collaboration tool.

    Science.gov (United States)

    Wendelsdorf, Katherine; Shah, Sohela

    2015-09-01

    There is on-going effort in the biomedical research community to leverage Next Generation Sequencing (NGS) technology to identify genetic variants that affect our health. The main challenge facing researchers is getting enough samples from individuals either sick or healthy - to be able to reliably identify the few variants that are causal for a phenotype among all other variants typically seen among individuals. At the same time, more and more individuals are having their genome sequenced either out of curiosity or to identify the cause of an illness. These individuals may benefit from of a way to view and understand their data. QIAGEN's Ingenuity Variant Analysis is an online application that allows users with and without extensive bioinformatics training to incorporate information from published experiments, genetic databases, and a variety of statistical models to identify variants, from a long list of candidates, that are most likely causal for a phenotype as well as annotate variants with what is already known about them in the literature and databases. Ingenuity Variant Analysis is also an information sharing platform where users may exchange samples and analyses. The Empowered Genome Community (EGC) is a new program in which QIAGEN is making this on-line tool freely available to any individual who wishes to analyze their own genetic sequence. EGC members are then able to make their data available to other Ingenuity Variant Analysis users to be used in research. Here we present and describe the Empowered Genome Community in detail. We also present a preliminary, proof-of-concept study that utilizes the 200 genomes currently available through the EGC. The goal of this program is to allow individuals to access and understand their own data as well as facilitate citizen-scientist collaborations that can drive research forward and spur quality scientific dialogue in the general public.

  19. Developing a Modeling Tool Using Eclipse

    NARCIS (Netherlands)

    Kirtley, Nick; Waqas Kamal, Ahmad; Avgeriou, Paris

    2008-01-01

    Tool development using an open source platform provides autonomy to users to change, use, and develop cost-effective software with freedom from licensing requirements. However, open source tool development poses a number of challenges, such as poor documentation and continuous evolution. In this

  20. DOMINO: development of informative molecular markers for phylogenetic and genome-wide population genetic studies in non-model organisms.

    Science.gov (United States)

    Frías-López, Cristina; Sánchez-Herrero, José F; Guirao-Rico, Sara; Mora, Elisa; Arnedo, Miquel A; Sánchez-Gracia, Alejandro; Rozas, Julio

    2016-12-15

    The development of molecular markers is one of the most important challenges in phylogenetic and genome wide population genetics studies, especially in studies with non-model organisms. A highly promising approach for obtaining suitable markers is the utilization of genomic partitioning strategies for the simultaneous discovery and genotyping of a large number of markers. Unfortunately, not all markers obtained from these strategies provide enough information for solving multiple evolutionary questions at a reasonable taxonomic resolution. We have developed Development Of Molecular markers In Non-model Organisms (DOMINO), a bioinformatics tool for informative marker development from both next generation sequencing (NGS) data and pre-computed sequence alignments. The application implements popular NGS tools with new utilities in a highly versatile pipeline specifically designed to discover or select personalized markers at different levels of taxonomic resolution. These markers can be directly used to study the taxa surveyed for their design, utilized for further downstream PCR amplification in a broader set taxonomic scope, or exploited as suitable templates to bait design for target DNA enrichment techniques. We conducted an exhaustive evaluation of the performance of DOMINO via computer simulations and illustrate its utility to find informative markers in an empirical dataset. DOMINO is freely available from www.ub.edu/softevol/domino CONTACT: elsanchez@ub.edu or jrozas@ub.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Developing a Social Media Marketing tool

    OpenAIRE

    Valova, Olga

    2015-01-01

    The objective of the thesis is to develop a better, easier to use social media marketing tool that could be utilised in any business. By understanding and analysing how business uses social media as well as currently available social media marketing tools, design a tool with the maximum amount of features, but with a simple and intuitive User Interface. An agile software development life cycle was used throughout the creation of the tool. Qualitative analysis was used to analyse existing ...

  2. PanCoreGen – profiling, detecting, annotating protein-coding genes in microbial genomes

    Science.gov (United States)

    Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V.

    2015-01-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen – a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars – Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. PMID:26456591

  3. Complete in vitro life cycle of Trypanosoma congolense: development of genetic tools.

    Directory of Open Access Journals (Sweden)

    Virginie Coustou

    Full Text Available BACKGROUND: Animal African trypanosomosis, a disease mainly caused by the protozoan parasite Trypanosoma congolense, is a major constraint to livestock productivity and has a significant impact in the developing countries of Africa. RNA interference (RNAi has been used to study gene function and identify drug and vaccine targets in a variety of organisms including trypanosomes. However, trypanosome RNAi studies have mainly been conducted in T. brucei, as a model for human infection, largely ignoring livestock parasites of economical importance such as T. congolense, which displays different pathogenesis profiles. The whole T. congolense life cycle can be completed in vitro, but this attractive model displayed important limitations: (i genetic tools were currently limited to insect forms and production of modified infectious BSF through differentiation was never achieved, (ii in vitro differentiation techniques lasted several months, (iii absence of long-term bloodstream forms (BSF in vitro culture prevented genomic analyses. METHODOLOGY/PRINCIPAL FINDINGS: We optimized culture conditions for each developmental stage and secured the differentiation steps. Specifically, we devised a medium adapted for the strenuous development of stable long-term BSF culture. Using Amaxa nucleofection technology, we greatly improved the transfection rate of the insect form and designed an inducible transgene expression system using the IL3000 reference strain. We tested it by expression of reporter genes and through RNAi. Subsequently, we achieved the complete in vitro life cycle with dramatically shortened time requirements for various wild type and transgenic strains. Finally, we established the use of modified strains for experimental infections and underlined a host adaptation phase requirement. CONCLUSIONS/SIGNIFICANCE: We devised an improved T. congolense model, which offers the opportunity to perform functional genomics analyses throughout the whole life

  4. SWPhylo – A Novel Tool for Phylogenomic Inferences by Comparison of Oligonucleotide Patterns and Integration of Genome-Based and Gene-Based Phylogenetic Trees

    Science.gov (United States)

    Yu, Xiaoyu; Reva, Oleg N

    2018-01-01

    Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA. PMID:29511354

  5. Functional assessment of human enhancer activities using whole-genome STARR-sequencing.

    Science.gov (United States)

    Liu, Yuwen; Yu, Shan; Dhiman, Vineet K; Brunetti, Tonya; Eckart, Heather; White, Kevin P

    2017-11-20

    Genome-wide quantification of enhancer activity in the human genome has proven to be a challenging problem. Recent efforts have led to the development of powerful tools for enhancer quantification. However, because of genome size and complexity, these tools have yet to be applied to the whole human genome.  In the current study, we use a human prostate cancer cell line, LNCaP as a model to perform whole human genome STARR-seq (WHG-STARR-seq) to reliably obtain an assessment of enhancer activity. This approach builds upon previously developed STARR-seq in the fly genome and CapSTARR-seq techniques in targeted human genomic regions. With an improved library preparation strategy, our approach greatly increases the library complexity per unit of starting material, which makes it feasible and cost-effective to explore the landscape of regulatory activity in the much larger human genome. In addition to our ability to identify active, accessible enhancers located in open chromatin regions, we can also detect sequences with the potential for enhancer activity that are located in inaccessible, closed chromatin regions. When treated with the histone deacetylase inhibitor, Trichostatin A, genes nearby this latter class of enhancers are up-regulated, demonstrating the potential for endogenous functionality of these regulatory elements. WHG-STARR-seq provides an improved approach to current pipelines for analysis of high complexity genomes to gain a better understanding of the intricacies of transcriptional regulation.

  6. PWMScan: a fast tool for scanning entire genomes with a position-specific weight matrix.

    Science.gov (United States)

    Ambrosini, Giovanna; Groux, Romain; Bucher, Philipp

    2018-03-05

    Transcription factors (TFs) regulate gene expression by binding to specific short DNA sequences of 5 to 20-bp to regulate the rate of transcription of genetic information from DNA to messenger RNA. We present PWMScan, a fast web-based tool to scan server-resident genomes for matches to a user-supplied PWM or TF binding site model from a public database. The web server and source code are available at http://ccg.vital-it.ch/pwmscan and https://sourceforge.net/projects/pwmscan, respectively. giovanna.ambrosini@epfl.ch. SUPPLEMENTARY DATA ARE AVAILABLE AT BIOINFORMATICS ONLINE.

  7. Agricultural genomics and sustainable development: perspectives ...

    African Journals Online (AJOL)

    Administrator

    era is to establish how genes and proteins function to bring about changes in phenotype. Some of ... within the context of sustainable development of African economies. The greatest .... these strategies, the genomes of many organisms have now been ... gene structure and order, e.g. between rice, wheat, corn, millets and ...

  8. Materials Genome Initiative

    Science.gov (United States)

    Vickers, John

    2015-01-01

    The Materials Genome Initiative (MGI) project element is a cross-Center effort that is focused on the integration of computational tools to simulate manufacturing processes and materials behavior. These computational simulations will be utilized to gain understanding of processes and materials behavior to accelerate process development and certification to more efficiently integrate new materials in existing NASA projects and to lead to the design of new materials for improved performance. This NASA effort looks to collaborate with efforts at other government agencies and universities working under the national MGI. MGI plans to develop integrated computational/experimental/ processing methodologies for accelerating discovery and insertion of materials to satisfy NASA's unique mission demands. The challenges include validated design tools that incorporate materials properties, processes, and design requirements; and materials process control to rapidly mature emerging manufacturing methods and develop certified manufacturing processes

  9. Epigenomic annotation-based interpretation of genomic data: from enrichment analysis to machine learning.

    Science.gov (United States)

    Dozmorov, Mikhail G

    2017-10-15

    One of the goals of functional genomics is to understand the regulatory implications of experimentally obtained genomic regions of interest (ROIs). Most sequencing technologies now generate ROIs distributed across the whole genome. The interpretation of these genome-wide ROIs represents a challenge as the majority of them lie outside of functionally well-defined protein coding regions. Recent efforts by the members of the International Human Epigenome Consortium have generated volumes of functional/regulatory data (reference epigenomic datasets), effectively annotating the genome with epigenomic properties. Consequently, a wide variety of computational tools has been developed utilizing these epigenomic datasets for the interpretation of genomic data. The purpose of this review is to provide a structured overview of practical solutions for the interpretation of ROIs with the help of epigenomic data. Starting with epigenomic enrichment analysis, we discuss leading tools and machine learning methods utilizing epigenomic and 3D genome structure data. The hierarchy of tools and methods reviewed here presents a practical guide for the interpretation of genome-wide ROIs within an epigenomic context. mikhail.dozmorov@vcuhealth.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  10. SIGMA: A System for Integrative Genomic Microarray Analysis of Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Davies Jonathan J

    2006-12-01

    Full Text Available Abstract Background The prevalence of high resolution profiling of genomes has created a need for the integrative analysis of information generated from multiple methodologies and platforms. Although the majority of data in the public domain are gene expression profiles, and expression analysis software are available, the increase of array CGH studies has enabled integration of high throughput genomic and gene expression datasets. However, tools for direct mining and analysis of array CGH data are limited. Hence, there is a great need for analytical and display software tailored to cross platform integrative analysis of cancer genomes. Results We have created a user-friendly java application to facilitate sophisticated visualization and analysis such as cross-tumor and cross-platform comparisons. To demonstrate the utility of this software, we assembled array CGH data representing Affymetrix SNP chip, Stanford cDNA arrays and whole genome tiling path array platforms for cross comparison. This cancer genome database contains 267 profiles from commonly used cancer cell lines representing 14 different tissue types. Conclusion In this study we have developed an application for the visualization and analysis of data from high resolution array CGH platforms that can be adapted for analysis of multiple types of high throughput genomic datasets. Furthermore, we invite researchers using array CGH technology to deposit both their raw and processed data, as this will be a continually expanding database of cancer genomes. This publicly available resource, the System for Integrative Genomic Microarray Analysis (SIGMA of cancer genomes, can be accessed at http://sigma.bccrc.ca.

  11. AGORA : Organellar genome annotation from the amino acid and nucleotide references.

    Science.gov (United States)

    Jung, Jaehee; Kim, Jong Im; Jeong, Young-Sik; Yi, Gangman

    2018-03-29

    Next-generation sequencing (NGS) technologies have led to the accumulation of highthroughput sequence data from various organisms in biology. To apply gene annotation of organellar genomes for various organisms, more optimized tools for functional gene annotation are required. Almost all gene annotation tools are mainly focused on the chloroplast genome of land plants or the mitochondrial genome of animals.We have developed a web application AGORA for the fast, user-friendly, and improved annotations of organellar genomes. AGORA annotates genes based on a BLAST-based homology search and clustering with selected reference sequences from the NCBI database or user-defined uploaded data. AGORA can annotate the functional genes in almost all mitochondrion and plastid genomes of eukaryotes. The gene annotation of a genome with an exon-intron structure within a gene or inverted repeat region is also available. It provides information of start and end positions of each gene, BLAST results compared with the reference sequence, and visualization of gene map by OGDRAW. Users can freely use the software, and the accessible URL is https://bigdata.dongguk.edu/gene_project/AGORA/.The main module of the tool is implemented by the python and php, and the web page is built by the HTML and CSS to support all browsers. gangman@dongguk.edu.

  12. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models

    Science.gov (United States)

    SHAO, Ming; XU, Tian-Rui; CHEN, Ce-Shi

    2016-01-01

    Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and biomedicine. PMID:27469250

  13. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models.

    Science.gov (United States)

    Shao, Ming; Xu, Tian-Rui; Chen, Ce-Shi

    2016-07-18

    Targeted genome editing technology has been widely used in biomedical studies. The CRISPR-associated RNA-guided endonuclease Cas9 has become a versatile genome editing tool. The CRISPR/Cas9 system is useful for studying gene function through efficient knock-out, knock-in or chromatin modification of the targeted gene loci in various cell types and organisms. It can be applied in a number of fields, such as genetic breeding, disease treatment and gene functional investigation. In this review, we introduce the most recent developments and applications, the challenges, and future directions of Cas9 in generating disease animal model. Derived from the CRISPR adaptive immune system of bacteria, the development trend of Cas9 will inevitably fuel the vital applications from basic research to biotechnology and bio-medicine.

  14. Safety, Security, and Policy Considerations for Plant Genome Editing.

    Science.gov (United States)

    Wolt, Jeffrey D

    2017-01-01

    Genome editing with engineered nucleases (GEEN) is increasingly used as a tool for gene discovery and trait development in crops through generation of targeted changes in endogenous genes. The development of the CRISPR-Cas9 system (clustered regularly interspaced short palindromic repeats with associated Cas9 protein), in particular, has enabled widespread use of genome editing. Research to date has not comprehensively addressed genome-editing specificity and off-target mismatches that may result in unintended changes within plant genomes or the potential for gene drive initiation. Governance and regulatory considerations for bioengineered crops derived from using GEEN will require greater clarity as to target specificity, the potential for mismatched edits, unanticipated downstream effects of off-target mutations, and assurance that genome reagents do not occur in finished products. Since governance and regulatory decision making involves robust standards of evidence extending from the laboratory to the postcommercial marketplace, developers of genome-edited crops must anticipate significant engagement and investment to address questions of regulators and civil society. © 2017 Elsevier Inc. All rights reserved.

  15. The OME Framework for genome-scale systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, Bernhard O. [Univ. of California, San Diego, CA (United States); Ebrahim, Ali [Univ. of California, San Diego, CA (United States); Federowicz, Steve [Univ. of California, San Diego, CA (United States)

    2014-12-19

    The life sciences are undergoing continuous and accelerating integration with computational and engineering sciences. The biology that many in the field have been trained on may be hardly recognizable in ten to twenty years. One of the major drivers for this transformation is the blistering pace of advancements in DNA sequencing and synthesis. These advances have resulted in unprecedented amounts of new data, information, and knowledge. Many software tools have been developed to deal with aspects of this transformation and each is sorely needed [1-3]. However, few of these tools have been forced to deal with the full complexity of genome-scale models along with high throughput genome- scale data. This particular situation represents a unique challenge, as it is simultaneously necessary to deal with the vast breadth of genome-scale models and the dizzying depth of high-throughput datasets. It has been observed time and again that as the pace of data generation continues to accelerate, the pace of analysis significantly lags behind [4]. It is also evident that, given the plethora of databases and software efforts [5-12], it is still a significant challenge to work with genome-scale metabolic models, let alone next-generation whole cell models [13-15]. We work at the forefront of model creation and systems scale data generation [16-18]. The OME Framework was borne out of a practical need to enable genome-scale modeling and data analysis under a unified framework to drive the next generation of genome-scale biological models. Here we present the OME Framework. It exists as a set of Python classes. However, we want to emphasize the importance of the underlying design as an addition to the discussions on specifications of a digital cell. A great deal of work and valuable progress has been made by a number of communities [13, 19-24] towards interchange formats and implementations designed to achieve similar goals. While many software tools exist for handling genome

  16. Evolution of genes and genomes on the Drosophila phylogeny

    DEFF Research Database (Denmark)

    Clark, Andrew G; Eisen, Michael B; Smith, Douglas R

    2007-01-01

    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the ......Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here...... tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila...

  17. Approaches for in silico finishing of microbial genome sequences

    Directory of Open Access Journals (Sweden)

    Frederico Schmitt Kremer

    Full Text Available Abstract The introduction of next-generation sequencing (NGS had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as “drafts”, incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases tools that are available to facilitate genome finishing.

  18. Approaches for in silico finishing of microbial genome sequences.

    Science.gov (United States)

    Kremer, Frederico Schmitt; McBride, Alan John Alexander; Pinto, Luciano da Silva

    The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as "drafts", incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases) tools that are available to facilitate genome finishing.

  19. Effects of sample treatments on genome recovery via single-cell genomics

    Energy Technology Data Exchange (ETDEWEB)

    Clingenpeel, Scott [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Schwientek, Patrick [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Hugenholtz, Philip [Univ. of Queensland, Brisbane (Australia); Woyke, Tanja [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2014-06-13

    It is known that single-cell genomics is a powerful tool for accessing genetic information from uncultivated microorganisms. Methods of handling samples before single-cell genomic amplification may affect the quality of the genomes obtained. Using three bacterial strains we demonstrate that, compared to cryopreservation, lower-quality single-cell genomes are recovered when the sample is preserved in ethanol or if the sample undergoes fluorescence in situ hybridization, while sample preservation in paraformaldehyde renders it completely unsuitable for sequencing.

  20. Game development tool essentials

    CERN Document Server

    Berinstein, Paula; Ardolino, Alessandro; Franco, Simon; Herubel, Adrien; McCutchan, John; Nedelcu, Nicusor; Nitschke, Benjamin; Olmstead, Don; Robinet, Fabrice; Ronchi, Christian; Turkowski, Rita; Walter, Robert; Samour, Gustavo

    2014-01-01

    Offers game developers new techniques for streamlining the critical game tools pipeline. Inspires game developers to share their secrets and improve the productivity of the entire industry. Helps game industry practitioners compete in a hyper-competitive environment.

  1. Developing a learning analytics tool

    DEFF Research Database (Denmark)

    Wahl, Christian; Belle, Gianna; Clemmensen, Anita Lykke

    This poster describes how learning analytics and collective intelligence can be combined in order to develop a tool for providing support and feedback to learners and teachers regarding students self-initiated learning activities.......This poster describes how learning analytics and collective intelligence can be combined in order to develop a tool for providing support and feedback to learners and teachers regarding students self-initiated learning activities....

  2. Novel Tools for Conservation Genomics: Comparing Two High-Throughput Approaches for SNP Discovery in the Transcriptome of the European Hake

    DEFF Research Database (Denmark)

    Milano, Ilaria; Babbucci, Massimiliano; Panitz, Frank

    2011-01-01

    The growing accessibility to genomic resources using next-generation sequencing (NGS) technologies has revolutionized the application of molecular genetic tools to ecology and evolutionary studies in non-model organisms. Here we present the case study of the European hake (Merluccius merluccius),...

  3. History of a secondary side inspection tooling development

    International Nuclear Information System (INIS)

    Harris, W.

    2012-01-01

    This presentation provides a brief history (1980 to present day) of steam generator secondary side tooling requirements, tooling development, tooling available today and how and where this tooling has been implemented for steam generator secondary side inspections. History of Tooling Development discussion covers the relatively short time period from when the SGSS tooling was required and why as well the associated challenges with development through present day; Available Tooling discussion covers the actual tooling available today, locations in the steam generator where the tooling is used and how the tooling works; Implementation discussion covers where in the world this tooling has been deployed as well the benefits the tooling has provided. (author)

  4. PLACNETw: a web-based tool for plasmid reconstruction from bacterial genomes.

    Science.gov (United States)

    Vielva, Luis; de Toro, María; Lanza, Val F; de la Cruz, Fernando

    2017-12-01

    PLACNET is a graph-based tool for reconstruction of plasmids from next generation sequence pair-end datasets. PLACNET graphs contain two types of nodes (assembled contigs and reference genomes) and two types of edges (scaffold links and homology to references). Manual pruning of the graphs is a necessary requirement in PLACNET, but this is difficult for users without solid bioinformatic background. PLACNETw, a webtool based on PLACNET, provides an interactive graphic interface, automates BLAST searches, and extracts the relevant information for decision making. It allows a user with domain expertise to visualize the scaffold graphs and related information of contigs as well as reference sequences, so that the pruning operations can be done interactively from a personal computer without the need for additional tools. After successful pruning, each plasmid becomes a separate connected component subgraph. The resulting data are automatically downloaded by the user. PLACNETw is freely available at https://castillo.dicom.unican.es/upload/. delacruz@unican.es. A tutorial video and several solved examples are available at https://castillo.dicom.unican.es/placnetw_video/ and https://castillo.dicom.unican.es/examples/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  5. Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences

    Directory of Open Access Journals (Sweden)

    Holland Barbara R

    2006-07-01

    judged by their δ values, distance methods are able to recover all major plant lineages, and are more in accordance with Apicomplexa organelles being derived from "green" plastids than from plastids of the "red" type. GBDP-like methods can be used to reliably infer phylogenies from different kinds of genomic data. A framework is established to further develop and improve such methods. δ values are a topology-independent tool of general use for the development and assessment of distance methods for phylogenetic inference.

  6. Developing a Parametric Urban Design Tool

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Obeling, Esben

    2014-01-01

    Parametric urban design is a potentially powerful tool for collaborative urban design processes. Rather than making one- off designs which need to be redesigned from the ground up in case of changes, parametric design tools make it possible keep the design open while at the same time allowing...... for a level of detailing which is high enough to facilitate an understan- ding of the generic qualities of proposed designs. Starting from a brief overview of parametric design, this paper presents initial findings from the development of a parametric urban design tool with regard to developing a structural...... logic which is flexible and expandable. It then moves on to outline and discuss further development work. Finally, it offers a brief reflection on the potentials and shortcomings of the software – CityEngine – which is used for developing the parametric urban design tool....

  7. Pipeline to upgrade the genome annotations

    Directory of Open Access Journals (Sweden)

    Lijin K. Gopi

    2017-12-01

    Full Text Available Current era of functional genomics is enriched with good quality draft genomes and annotations for many thousands of species and varieties with the support of the advancements in the next generation sequencing technologies (NGS. Around 25,250 genomes, of the organisms from various kingdoms, are submitted in the NCBI genome resource till date. Each of these genomes was annotated using various tools and knowledge-bases that were available during the period of the annotation. It is obvious that these annotations will be improved if the same genome is annotated using improved tools and knowledge-bases. Here we present a new genome annotation pipeline, strengthened with various tools and knowledge-bases that are capable of producing better quality annotations from the consensus of the predictions from different tools. This resource also perform various additional annotations, apart from the usual gene predictions and functional annotations, which involve SSRs, novel repeats, paralogs, proteins with transmembrane helices, signal peptides etc. This new annotation resource is trained to evaluate and integrate all the predictions together to resolve the overlaps and ambiguities of the boundaries. One of the important highlights of this resource is the capability of predicting the phylogenetic relations of the repeats using the evolutionary trace analysis and orthologous gene clusters. We also present a case study, of the pipeline, in which we upgrade the genome annotation of Nelumbo nucifera (sacred lotus. It is demonstrated that this resource is capable of producing an improved annotation for a better understanding of the biology of various organisms.

  8. Fungal genome resources at NCBI

    Science.gov (United States)

    Robbertse, B.; Tatusova, T.

    2011-01-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools. PMID:22737589

  9. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids.

    KAUST Repository

    Mithani, Aziz; Belfield, Eric J; Brown, Carly; Jiang, Caifu; Leach, Lindsey J; Harberd, Nicholas P

    2013-01-01

    The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies.We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): 'HSP base Assignment using NGS data through Diploid Similarity' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment.We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.

  10. HANDS: a tool for genome-wide discovery of subgenome-specific base-identity in polyploids.

    KAUST Repository

    Mithani, Aziz

    2013-09-24

    The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies.We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): \\'HSP base Assignment using NGS data through Diploid Similarity\\' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment.We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.

  11. A novel bioinformatics method for efficient knowledge discovery by BLSOM from big genomic sequence data.

    Science.gov (United States)

    Bai, Yu; Iwasaki, Yuki; Kanaya, Shigehiko; Zhao, Yue; Ikemura, Toshimichi

    2014-01-01

    With remarkable increase of genomic sequence data of a wide range of species, novel tools are needed for comprehensive analyses of the big sequence data. Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional data such as oligonucleotide composition on one map. By modifying the conventional SOM, we have previously developed Batch-Learning SOM (BLSOM), which allows classification of sequence fragments according to species, solely depending on the oligonucleotide composition. In the present study, we introduce the oligonucleotide BLSOM used for characterization of vertebrate genome sequences. We first analyzed pentanucleotide compositions in 100 kb sequences derived from a wide range of vertebrate genomes and then the compositions in the human and mouse genomes in order to investigate an efficient method for detecting differences between the closely related genomes. BLSOM can recognize the species-specific key combination of oligonucleotide frequencies in each genome, which is called a "genome signature," and the specific regions specifically enriched in transcription-factor-binding sequences. Because the classification and visualization power is very high, BLSOM is an efficient powerful tool for extracting a wide range of information from massive amounts of genomic sequences (i.e., big sequence data).

  12. Comparing Mycobacterium tuberculosis genomes using genome topology networks.

    Science.gov (United States)

    Jiang, Jianping; Gu, Jianlei; Zhang, Liang; Zhang, Chenyi; Deng, Xiao; Dou, Tonghai; Zhao, Guoping; Zhou, Yan

    2015-02-14

    Over the last decade, emerging research methods, such as comparative genomic analysis and phylogenetic study, have yielded new insights into genotypes and phenotypes of closely related bacterial strains. Several findings have revealed that genomic structural variations (SVs), including gene gain/loss, gene duplication and genome rearrangement, can lead to different phenotypes among strains, and an investigation of genes affected by SVs may extend our knowledge of the relationships between SVs and phenotypes in microbes, especially in pathogenic bacteria. In this work, we introduce a 'Genome Topology Network' (GTN) method based on gene homology and gene locations to analyze genomic SVs and perform phylogenetic analysis. Furthermore, the concept of 'unfixed ortholog' has been proposed, whose members are affected by SVs in genome topology among close species. To improve the precision of 'unfixed ortholog' recognition, a strategy to detect annotation differences and complete gene annotation was applied. To assess the GTN method, a set of thirteen complete M. tuberculosis genomes was analyzed as a case study. GTNs with two different gene homology-assigning methods were built, the Clusters of Orthologous Groups (COG) method and the orthoMCL clustering method, and two phylogenetic trees were constructed accordingly, which may provide additional insights into whole genome-based phylogenetic analysis. We obtained 24 unfixable COG groups, of which most members were related to immunogenicity and drug resistance, such as PPE-repeat proteins (COG5651) and transcriptional regulator TetR gene family members (COG1309). The GTN method has been implemented in PERL and released on our website. The tool can be downloaded from http://homepage.fudan.edu.cn/zhouyan/gtn/ , and allows re-annotating the 'lost' genes among closely related genomes, analyzing genes affected by SVs, and performing phylogenetic analysis. With this tool, many immunogenic-related and drug resistance-related genes

  13. Genome Engineering with TALE and CRISPR Systems in Neuroscience.

    Science.gov (United States)

    Lee, Han B; Sundberg, Brynn N; Sigafoos, Ashley N; Clark, Karl J

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience.

  14. A web server for mining Comparative Genomic Hybridization (CGH) data

    Science.gov (United States)

    Liu, Jun; Ranka, Sanjay; Kahveci, Tamer

    2007-11-01

    Advances in cytogenetics and molecular biology has established that chromosomal alterations are critical in the pathogenesis of human cancer. Recurrent chromosomal alterations provide cytological and molecular markers for the diagnosis and prognosis of disease. They also facilitate the identification of genes that are important in carcinogenesis, which in the future may help in the development of targeted therapy. A large amount of publicly available cancer genetic data is now available and it is growing. There is a need for public domain tools that allow users to analyze their data and visualize the results. This chapter describes a web based software tool that will allow researchers to analyze and visualize Comparative Genomic Hybridization (CGH) datasets. It employs novel data mining methodologies for clustering and classification of CGH datasets as well as algorithms for identifying important markers (small set of genomic intervals with aberrations) that are potentially cancer signatures. The developed software will help in understanding the relationships between genomic aberrations and cancer types.

  15. Harnessing CRISPR-Cas systems for bacterial genome editing.

    Science.gov (United States)

    Selle, Kurt; Barrangou, Rodolphe

    2015-04-01

    Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily reprogrammed to induce sequence-specific DNA breaks at target loci, resulting in fixed mutations via host-dependent DNA repair mechanisms. Although bacterial genome editing is a relatively unexplored and underrepresented application of CRISPR-Cas systems, recent studies provide valuable insights for the widespread future implementation of this technology. This review summarizes recent progress in bacterial genome editing and identifies fundamental genetic and phenotypic outcomes of CRISPR targeting in bacteria, in the context of tool development, genome homeostasis, and DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The Waddlia genome: a window into chlamydial biology.

    Directory of Open Access Journals (Sweden)

    Claire Bertelli

    Full Text Available Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2'116'312 bp chromosome and a 15'593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae.

  17. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

    Science.gov (United States)

    Oldfield, Lauren M; Grzesik, Peter; Voorhies, Alexander A; Alperovich, Nina; MacMath, Derek; Najera, Claudia D; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N; Montague, Michael G; Friedman, Robert M; Desai, Prashant J; Vashee, Sanjay

    2017-10-17

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS YA , replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.

  18. Genomic prediction using subsampling

    OpenAIRE

    Xavier, Alencar; Xu, Shizhong; Muir, William; Rainey, Katy Martin

    2017-01-01

    Background Genome-wide assisted selection is a critical tool for the?genetic improvement of plants and animals. Whole-genome regression models in Bayesian framework represent the main family of prediction methods. Fitting such models with a large number of observations involves a prohibitive computational burden. We propose the use of subsampling bootstrap Markov chain in genomic prediction. Such method consists of fitting whole-genome regression models by subsampling observations in each rou...

  19. Omni-PolyA: a method and tool for accurate recognition of Poly(A) signals in human genomic DNA

    KAUST Repository

    Magana-Mora, Arturo

    2017-08-15

    BackgroundPolyadenylation is a critical stage of RNA processing during the formation of mature mRNA, and is present in most of the known eukaryote protein-coding transcripts and many long non-coding RNAs. The correct identification of poly(A) signals (PAS) not only helps to elucidate the 3′-end genomic boundaries of a transcribed DNA region and gene regulatory mechanisms but also gives insight into the multiple transcript isoforms resulting from alternative PAS. Although progress has been made in the in-silico prediction of genomic signals, the recognition of PAS in DNA genomic sequences remains a challenge.ResultsIn this study, we analyzed human genomic DNA sequences for the 12 most common PAS variants. Our analysis has identified a set of features that helps in the recognition of true PAS, which may be involved in the regulation of the polyadenylation process. The proposed features, in combination with a recognition model, resulted in a novel method and tool, Omni-PolyA. Omni-PolyA combines several machine learning techniques such as different classifiers in a tree-like decision structure and genetic algorithms for deriving a robust classification model. We performed a comparison between results obtained by state-of-the-art methods, deep neural networks, and Omni-PolyA. Results show that Omni-PolyA significantly reduced the average classification error rate by 35.37% in the prediction of the 12 considered PAS variants relative to the state-of-the-art results.ConclusionsThe results of our study demonstrate that Omni-PolyA is currently the most accurate model for the prediction of PAS in human and can serve as a useful complement to other PAS recognition methods. Omni-PolyA is publicly available as an online tool accessible at www.cbrc.kaust.edu.sa/omnipolya/.

  20. DNA Data Bank of Japan at work on genome sequence data.

    Science.gov (United States)

    Tateno, Y; Fukami-Kobayashi, K; Miyazaki, S; Sugawara, H; Gojobori, T

    1998-01-01

    We at the DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) have recently begun receiving, processing and releasing EST and genome sequence data submitted by various Japanese genome projects. The data include those for human, Arabidopsis thaliana, rice, nematode, Synechocystis sp. and Escherichia coli. Since the quantity of data is very large, we organized teams to conduct preliminary discussions with project teams about data submission and handling for release to the public. We also developed a mass submission tool to cope with a large quantity of data. In addition, to provide genome data on WWW, we developed a genome information system using Java. This system (http://mol.genes.nig.ac.jp/ecoli/) can in theory be used for any genome sequence data. These activities will facilitate processing of large quantities of EST and genome data.

  1. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  2. Workshop on Software Development Tools for Petascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Jeffrey [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Georgia Inst. of Technology, Atlanta, GA (United States)

    2007-08-01

    Petascale computing systems will soon be available to the DOE science community. Recent studies in the productivity of HPC platforms point to better software environments as a key enabler to science on these systems. To prepare for the deployment and productive use of these petascale platforms, the DOE science and general HPC community must have the software development tools, such as performance analyzers and debuggers that meet application requirements for scalability, functionality, reliability, and ease of use. In this report, we identify and prioritize the research opportunities in the area of software development tools for high performance computing. To facilitate this effort, DOE hosted a group of 55 leading international experts in this area at the Software Development Tools for PetaScale Computing (SDTPC) Workshop, which was held in Washington, D.C. on August 1 and 2, 2007. Software development tools serve as an important interface between the application teams and the target HPC architectures. Broadly speaking, these roles can be decomposed into three categories: performance tools, correctness tools, and development environments. Accordingly, this SDTPC report has four technical thrusts: performance tools, correctness tools, development environment infrastructures, and scalable tool infrastructures. The last thrust primarily targets tool developers per se, rather than end users. Finally, this report identifies non-technical strategic challenges that impact most tool development. The organizing committee emphasizes that many critical areas are outside the scope of this charter; these important areas include system software, compilers, and I/O.

  3. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing.

    Directory of Open Access Journals (Sweden)

    Alexander William Eastman

    2015-01-01

    Full Text Available Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing

  4. BioMet Toolbox: genome-wide analysis of metabolism

    DEFF Research Database (Denmark)

    Cvijovic, M.; Olivares Hernandez, Roberto; Agren, R.

    2010-01-01

    The rapid progress of molecular biology tools for directed genetic modifications, accurate quantitative experimental approaches, high-throughput measurements, together with development of genome sequencing has made the foundation for a new area of metabolic engineering that is driven by metabolic...

  5. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  6. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication.

    Science.gov (United States)

    Tanizawa, Yasuhiro; Fujisawa, Takatomo; Nakamura, Yasukazu

    2018-03-15

    We developed a prokaryotic genome annotation pipeline, DFAST, that also supports genome submission to public sequence databases. DFAST was originally started as an on-line annotation server, and to date, over 7000 jobs have been processed since its first launch in 2016. Here, we present a newly implemented background annotation engine for DFAST, which is also available as a standalone command-line program. The new engine can annotate a typical-sized bacterial genome within 10 min, with rich information such as pseudogenes, translation exceptions and orthologous gene assignment between given reference genomes. In addition, the modular framework of DFAST allows users to customize the annotation workflow easily and will also facilitate extensions for new functions and incorporation of new tools in the future. The software is implemented in Python 3 and runs in both Python 2.7 and 3.4-on Macintosh and Linux systems. It is freely available at https://github.com/nigyta/dfast_core/under the GPLv3 license with external binaries bundled in the software distribution. An on-line version is also available at https://dfast.nig.ac.jp/. yn@nig.ac.jp. Supplementary data are available at Bioinformatics online.

  7. 78 FR 68459 - Medical Device Development Tools; Draft Guidance for Industry, Tool Developers, and Food and Drug...

    Science.gov (United States)

    2013-11-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-D-1279] Medical Device Development Tools; Draft Guidance for Industry, Tool Developers, and Food and Drug Administration Staff; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food...

  8. Visualizing conserved gene location across microbe genomes

    Science.gov (United States)

    Shaw, Chris D.

    2009-01-01

    This paper introduces an analysis-based zoomable visualization technique for displaying the location of genes across many related species of microbes. The purpose of this visualizatiuon is to enable a biologist to examine the layout of genes in the organism of interest with respect to the gene organization of related organisms. During the genomic annotation process, the ability to observe gene organization in common with previously annotated genomes can help a biologist better confirm the structure and function of newly analyzed microbe DNA sequences. We have developed a visualization and analysis tool that enables the biologist to observe and examine gene organization among genomes, in the context of the primary sequence of interest. This paper describes the visualization and analysis steps, and presents a case study using a number of Rickettsia genomes.

  9. WormBase 2016: expanding to enable helminth genomic research.

    Science.gov (United States)

    Howe, Kevin L; Bolt, Bruce J; Cain, Scott; Chan, Juancarlos; Chen, Wen J; Davis, Paul; Done, James; Down, Thomas; Gao, Sibyl; Grove, Christian; Harris, Todd W; Kishore, Ranjana; Lee, Raymond; Lomax, Jane; Li, Yuling; Muller, Hans-Michael; Nakamura, Cecilia; Nuin, Paulo; Paulini, Michael; Raciti, Daniela; Schindelman, Gary; Stanley, Eleanor; Tuli, Mary Ann; Van Auken, Kimberly; Wang, Daniel; Wang, Xiaodong; Williams, Gary; Wright, Adam; Yook, Karen; Berriman, Matthew; Kersey, Paul; Schedl, Tim; Stein, Lincoln; Sternberg, Paul W

    2016-01-04

    WormBase (www.wormbase.org) is a central repository for research data on the biology, genetics and genomics of Caenorhabditis elegans and other nematodes. The project has evolved from its original remit to collect and integrate all data for a single species, and now extends to numerous nematodes, ranging from evolutionary comparators of C. elegans to parasitic species that threaten plant, animal and human health. Research activity using C. elegans as a model system is as vibrant as ever, and we have created new tools for community curation in response to the ever-increasing volume and complexity of data. To better allow users to navigate their way through these data, we have made a number of improvements to our main website, including new tools for browsing genomic features and ontology annotations. Finally, we have developed a new portal for parasitic worm genomes. WormBase ParaSite (parasite.wormbase.org) contains all publicly available nematode and platyhelminth annotated genome sequences, and is designed specifically to support helminth genomic research. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Effective Normalization for Copy Number Variation Detection from Whole Genome Sequencing

    NARCIS (Netherlands)

    Janevski, A.; Varadan, V.; Kamalakaran, S.; Banerjee, N.; Dimitrova, D.

    2012-01-01

    Background Whole genome sequencing enables a high resolution view ofthe human genome and provides unique insights into genome structureat an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools while validatedalso include a number of

  11. Genomic Biomarkers for Personalized Medicine: Development and Validation in Clinical Studies

    Directory of Open Access Journals (Sweden)

    Shigeyuki Matsui

    2013-01-01

    Full Text Available The establishment of high-throughput technologies has brought substantial advances to our understanding of the biology of many diseases at the molecular level and increasing expectations on the development of innovative molecularly targeted treatments and molecular biomarkers or diagnostic tests in the context of clinical studies. In this review article, we position the two critical statistical analyses of high-dimensional genomic data, gene screening and prediction, in the framework of development and validation of genomic biomarkers or signatures, through taking into consideration the possible different strategies for developing genomic signatures. A wide variety of biomarker-based clinical trial designs to assess clinical utility of a biomarker or a new treatment with a companion biomarker are also discussed.

  12. Infinity: An In-Silico Tool for Genome-Wide Prediction of Specific DNA Matrices in miRNA Genomic Loci.

    Science.gov (United States)

    Falcone, Emmanuela; Grandoni, Luca; Garibaldi, Francesca; Manni, Isabella; Filligoi, Giancarlo; Piaggio, Giulia; Gurtner, Aymone

    2016-01-01

    miRNAs are potent regulators of gene expression and modulate multiple cellular processes in physiology and pathology. Deregulation of miRNAs expression has been found in various cancer types, thus, miRNAs may be potential targets for cancer therapy. However, the mechanisms through which miRNAs are regulated in cancer remain unclear. Therefore, the identification of transcriptional factor-miRNA crosstalk is one of the most update aspects of the study of miRNAs regulation. In the present study we describe the development of a fast and user-friendly software, named infinity, able to find the presence of DNA matrices, such as binding sequences for transcriptional factors, on ~65kb (kilobase) of 939 human miRNA genomic sequences, simultaneously. Of note, the power of this software has been validated in vivo by performing chromatin immunoprecipitation assays on a subset of new in silico identified target sequences (CCAAT) for the transcription factor NF-Y on colon cancer deregulated miRNA loci. Moreover, for the first time, we have demonstrated that NF-Y, through its CCAAT binding activity, regulates the expression of miRNA-181a, -181b, -21, -17, -130b, -301b in colon cancer cells. The infinity software that we have developed is a powerful tool to underscore new TF/miRNA regulatory networks. Infinity was implemented in pure Java using Eclipse framework, and runs on Linux and MS Windows machine, with MySQL database. The software is freely available on the web at https://github.com/bio-devel/infinity. The website is implemented in JavaScript, PHP and HTML with all major browsers supported.

  13. Infinity: An In-Silico Tool for Genome-Wide Prediction of Specific DNA Matrices in miRNA Genomic Loci.

    Directory of Open Access Journals (Sweden)

    Emmanuela Falcone

    Full Text Available miRNAs are potent regulators of gene expression and modulate multiple cellular processes in physiology and pathology. Deregulation of miRNAs expression has been found in various cancer types, thus, miRNAs may be potential targets for cancer therapy. However, the mechanisms through which miRNAs are regulated in cancer remain unclear. Therefore, the identification of transcriptional factor-miRNA crosstalk is one of the most update aspects of the study of miRNAs regulation.In the present study we describe the development of a fast and user-friendly software, named infinity, able to find the presence of DNA matrices, such as binding sequences for transcriptional factors, on ~65kb (kilobase of 939 human miRNA genomic sequences, simultaneously. Of note, the power of this software has been validated in vivo by performing chromatin immunoprecipitation assays on a subset of new in silico identified target sequences (CCAAT for the transcription factor NF-Y on colon cancer deregulated miRNA loci. Moreover, for the first time, we have demonstrated that NF-Y, through its CCAAT binding activity, regulates the expression of miRNA-181a, -181b, -21, -17, -130b, -301b in colon cancer cells.The infinity software that we have developed is a powerful tool to underscore new TF/miRNA regulatory networks.Infinity was implemented in pure Java using Eclipse framework, and runs on Linux and MS Windows machine, with MySQL database. The software is freely available on the web at https://github.com/bio-devel/infinity. The website is implemented in JavaScript, PHP and HTML with all major browsers supported.

  14. haploR: an R package for querying web-based annotation tools.

    Science.gov (United States)

    Zhbannikov, Ilya Y; Arbeev, Konstantin; Ukraintseva, Svetlana; Yashin, Anatoliy I

    2017-01-01

    We developed haploR , an R package for querying web based genome annotation tools HaploReg and RegulomeDB. haploR gathers information in a data frame which is suitable for downstream bioinformatic analyses. This will facilitate post-genome wide association studies streamline analysis for rapid discovery and interpretation of genetic associations.

  15. Development of a transportation planning tool

    International Nuclear Information System (INIS)

    Funkhouser, B.R.; Moyer, J.W.; Ballweg, E.L.

    1994-01-01

    This paper describes the application of simulation modeling and logistics techniques to the development of a planning tool for the Department of Energy (DOE). The focus of the Transportation Planning Model (TPM) tool is to aid DOE and Sandia analysts in the planning of future fleet sizes, driver and support personnel sizes, base site locations, and resource balancing among the base sites. The design approach is to develop a rapid modeling environment which will allow analysts to easily set up a shipment scenario and perform multiple ''what if'' evaluations. The TPM is being developed on personal computers using commercial off-the shelf (COTS) software tools under the WINDOWS reg-sign operating environment. Prototype development of the TPM has been completed

  16. The Sequenced Angiosperm Genomes and Genome Databases.

    Science.gov (United States)

    Chen, Fei; Dong, Wei; Zhang, Jiawei; Guo, Xinyue; Chen, Junhao; Wang, Zhengjia; Lin, Zhenguo; Tang, Haibao; Zhang, Liangsheng

    2018-01-01

    Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology.

  17. Resources for Functional Genomics Studies in Drosophila melanogaster

    Science.gov (United States)

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  18. Genome Engineering with TALE and CRISPR Systems in Neuroscience

    Science.gov (United States)

    Lee, Han B.; Sundberg, Brynn N.; Sigafoos, Ashley N.; Clark, Karl J.

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience. PMID:27092173

  19. Sequencing of Bacterial Genomes: Principles and Insights into Pathogenesis and Development of Antibiotics

    Directory of Open Access Journals (Sweden)

    Eric S. Donkor

    2013-10-01

    Full Text Available The impact of bacterial diseases on public health has become enormous, and is partly due to the increasing trend of antibiotic resistance displayed by bacterial pathogens. Sequencing of bacterial genomes has significantly improved our understanding about the biology of many bacterial pathogens as well as identification of novel antibiotic targets. Since the advent of genome sequencing two decades ago, about 1,800 bacterial genomes have been fully sequenced and these include important aetiological agents such as Streptococcus pneumoniae, Mycobacterium tuberculosis, Escherichia coli O157:H7, Vibrio cholerae, Clostridium difficile and Staphylococcus aureus. Very recently, there has been an explosion of bacterial genome data and is due to the development of next generation sequencing technologies, which are evolving so rapidly. Indeed, the field of microbial genomics is advancing at a very fast rate and it is difficult for researchers to be abreast with the new developments. This highlights the need for regular updates in microbial genomics through comprehensive reviews. This review paper seeks to provide an update on bacterial genome sequencing generally, and to analyze insights gained from sequencing in two areas, including bacterial pathogenesis and the development of antibiotics.

  20. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  1. Tools for Genetic Studies in Experimental Populations of Polyploids

    Directory of Open Access Journals (Sweden)

    Peter M. Bourke

    2018-04-01

    Full Text Available Polyploid organisms carry more than two copies of each chromosome, a condition rarely tolerated in animals but which occurs relatively frequently in the plant kingdom. One of the principal challenges faced by polyploid organisms is to evolve stable meiotic mechanisms to faithfully transmit genetic information to the next generation upon which the study of inheritance is based. In this review we look at the tools available to the research community to better understand polyploid inheritance, many of which have only recently been developed. Most of these tools are intended for experimental populations (rather than natural populations, facilitating genomics-assisted crop improvement and plant breeding. This is hardly surprising given that a large proportion of domesticated plant species are polyploid. We focus on three main areas: (1 polyploid genotyping; (2 genetic and physical mapping; and (3 quantitative trait analysis and genomic selection. We also briefly review some miscellaneous topics such as the mode of inheritance and the availability of polyploid simulation software. The current polyploid analytic toolbox includes software for assigning marker genotypes (and in particular, estimating the dosage of marker alleles in the heterozygous condition, establishing chromosome-scale linkage phase among marker alleles, constructing (short-range haplotypes, generating linkage maps, performing genome-wide association studies (GWAS and quantitative trait locus (QTL analyses, and simulating polyploid populations. These tools can also help elucidate the mode of inheritance (disomic, polysomic or a mixture of both as in segmental allopolyploids or reveal whether double reduction and multivalent chromosomal pairing occur. An increasing number of polyploids (or associated diploids are being sequenced, leading to publicly available reference genome assemblies. Much work remains in order to keep pace with developments in genomic technologies. However, such

  2. Tools for Genetic Studies in Experimental Populations of Polyploids.

    Science.gov (United States)

    Bourke, Peter M; Voorrips, Roeland E; Visser, Richard G F; Maliepaard, Chris

    2018-01-01

    Polyploid organisms carry more than two copies of each chromosome, a condition rarely tolerated in animals but which occurs relatively frequently in the plant kingdom. One of the principal challenges faced by polyploid organisms is to evolve stable meiotic mechanisms to faithfully transmit genetic information to the next generation upon which the study of inheritance is based. In this review we look at the tools available to the research community to better understand polyploid inheritance, many of which have only recently been developed. Most of these tools are intended for experimental populations (rather than natural populations), facilitating genomics-assisted crop improvement and plant breeding. This is hardly surprising given that a large proportion of domesticated plant species are polyploid. We focus on three main areas: (1) polyploid genotyping; (2) genetic and physical mapping; and (3) quantitative trait analysis and genomic selection. We also briefly review some miscellaneous topics such as the mode of inheritance and the availability of polyploid simulation software. The current polyploid analytic toolbox includes software for assigning marker genotypes (and in particular, estimating the dosage of marker alleles in the heterozygous condition), establishing chromosome-scale linkage phase among marker alleles, constructing (short-range) haplotypes, generating linkage maps, performing genome-wide association studies (GWAS) and quantitative trait locus (QTL) analyses, and simulating polyploid populations. These tools can also help elucidate the mode of inheritance (disomic, polysomic or a mixture of both as in segmental allopolyploids) or reveal whether double reduction and multivalent chromosomal pairing occur. An increasing number of polyploids (or associated diploids) are being sequenced, leading to publicly available reference genome assemblies. Much work remains in order to keep pace with developments in genomic technologies. However, such technologies

  3. Exploratory analysis of genomic segmentations with Segtools

    Directory of Open Access Journals (Sweden)

    Buske Orion J

    2011-10-01

    Full Text Available Abstract Background As genome-wide experiments and annotations become more prevalent, researchers increasingly require tools to help interpret data at this scale. Many functional genomics experiments involve partitioning the genome into labeled segments, such that segments sharing the same label exhibit one or more biochemical or functional traits. For example, a collection of ChlP-seq experiments yields a compendium of peaks, each labeled with one or more associated DNA-binding proteins. Similarly, manually or automatically generated annotations of functional genomic elements, including cis-regulatory modules and protein-coding or RNA genes, can also be summarized as genomic segmentations. Results We present a software toolkit called Segtools that simplifies and automates the exploration of genomic segmentations. The software operates as a series of interacting tools, each of which provides one mode of summarization. These various tools can be pipelined and summarized in a single HTML page. We describe the Segtools toolkit and demonstrate its use in interpreting a collection of human histone modification data sets and Plasmodium falciparum local chromatin structure data sets. Conclusions Segtools provides a convenient, powerful means of interpreting a genomic segmentation.

  4. Genomic tools for behavioural ecologists to understand repeatable individual differences in behaviour.

    Science.gov (United States)

    Bengston, Sarah E; Dahan, Romain A; Donaldson, Zoe; Phelps, Steven M; van Oers, Kees; Sih, Andrew; Bell, Alison M

    2018-06-01

    Behaviour is a key interface between an animal's genome and its environment. Repeatable individual differences in behaviour have been extensively documented in animals, but the molecular underpinnings of behavioural variation among individuals within natural populations remain largely unknown. Here, we offer a critical review of when molecular techniques may yield new insights, and we provide specific guidance on how and whether the latest tools available are appropriate given different resources, system and organismal constraints, and experimental designs. Integrating molecular genetic techniques with other strategies to study the proximal causes of behaviour provides opportunities to expand rapidly into new avenues of exploration. Such endeavours will enable us to better understand how repeatable individual differences in behaviour have evolved, how they are expressed and how they can be maintained within natural populations of animals.

  5. Computational genomics of hyperthermophiles

    NARCIS (Netherlands)

    Werken, van de H.J.G.

    2008-01-01

    With the ever increasing number of completely sequenced prokaryotic genomes and the subsequent use of functional genomics tools, e.g. DNA microarray and proteomics, computational data analysis and the integration of microbial and molecular data is inevitable. This thesis describes the computational

  6. Stakeholder engagement in policy development: challenges and opportunities for human genomics

    OpenAIRE

    Lemke, Amy A.; Harris-Wai, Julie N.

    2015-01-01

    Along with rapid advances in human genomics, policies governing genomic data and clinical technologies have proliferated. Stakeholder engagement is widely lauded as an important methodology for improving clinical, scientific, and public health policy decision making. The purpose of this paper is to examine how stakeholder engagement is used to develop policies in genomics research and public health areas, as well as to identify future priorities for conducting evidence-based stakeholder engag...

  7. Toward genome-enabled mycology.

    Science.gov (United States)

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.

  8. Development of electronic barcodes for use in plant pathology and functional genomics.

    Science.gov (United States)

    Kumagai, Monto H; Miller, Philip

    2006-06-01

    We have developed a novel 'electronic barcode' system that uses radio frequency identification (RFID) tags, cell phones, and portable computers to link phenotypic, environmental, and genomic data. We describe a secure, inexpensive system to record and retrieve data from plant samples. It utilizes RFID tags, computers, PDAs, and cell phones to link, record, and retrieve positional, and functional genomic data. Our results suggest that RFID tags can be used in functional genomic screens to record information that is involved in plant development or disease.

  9. MSeqDR mvTool: A mitochondrial DNA Web and API resource for comprehensive variant annotation, universal nomenclature collation, and reference genome conversion.

    Science.gov (United States)

    Shen, Lishuang; Attimonelli, Marcella; Bai, Renkui; Lott, Marie T; Wallace, Douglas C; Falk, Marni J; Gai, Xiaowu

    2018-06-01

    Accurate mitochondrial DNA (mtDNA) variant annotation is essential for the clinical diagnosis of diverse human diseases. Substantial challenges to this process include the inconsistency in mtDNA nomenclatures, the existence of multiple reference genomes, and a lack of reference population frequency data. Clinicians need a simple bioinformatics tool that is user-friendly, and bioinformaticians need a powerful informatics resource for programmatic usage. Here, we report the development and functionality of the MSeqDR mtDNA Variant Tool set (mvTool), a one-stop mtDNA variant annotation and analysis Web service. mvTool is built upon the MSeqDR infrastructure (https://mseqdr.org), with contributions of expert curated data from MITOMAP (https://www.mitomap.org) and HmtDB (https://www.hmtdb.uniba.it/hmdb). mvTool supports all mtDNA nomenclatures, converts variants to standard rCRS- and HGVS-based nomenclatures, and annotates novel mtDNA variants. Besides generic annotations from dbNSFP and Variant Effect Predictor (VEP), mvTool provides allele frequencies in more than 47,000 germline mitogenomes, and disease and pathogenicity classifications from MSeqDR, Mitomap, HmtDB and ClinVar (Landrum et al., 2013). mvTools also provides mtDNA somatic variants annotations. "mvTool API" is implemented for programmatic access using inputs in VCF, HGVS, or classical mtDNA variant nomenclatures. The results are reported as hyperlinked html tables, JSON, Excel, and VCF formats. MSeqDR mvTool is freely accessible at https://mseqdr.org/mvtool.php. © 2018 Wiley Periodicals, Inc.

  10. Use of the Operon Structure of the C. elegans Genome as a Tool to Identify Functionally Related Proteins

    Directory of Open Access Journals (Sweden)

    Silvia Dossena

    2013-12-01

    Full Text Available One of the most pressing challenges in the post genomic era is the identification and characterization of protein-protein interactions (PPIs, as these are essential in understanding the cellular physiology of health and disease. Experimental techniques suitable for characterizing PPIs (X-ray crystallography or nuclear magnetic resonance spectroscopy, among others are usually laborious, time-consuming and often difficult to apply to membrane proteins, and therefore require accurate prediction of the candidate interacting partners. High-throughput experimental methods (yeast two-hybrid and affinity purification succumb to the same shortcomings, and can also lead to high rates of false positive and negative results. Therefore, reliable tools for predicting PPIs are needed. The use of the operon structure in the eukaryote Caenorhabditis elegans genome is a valuable, though underserved, tool for identifying physically or functionally interacting proteins. Based on the concept that genes organized in the same operon may encode physically or functionally related proteins, this algorithm is easy to be applied and, importantly, gives a limited number of candidate partners of a given protein, allowing for focused experimental verification. Moreover, this approach can be successfully used to predict PPIs in the human system, including those of membrane proteins.

  11. Mining genome sequencing data to identify the genomic features linked to breast cancer histopathology

    Science.gov (United States)

    Ping, Zheng; Siegal, Gene P.; Almeida, Jonas S.; Schnitt, Stuart J.; Shen, Dejun

    2014-01-01

    Background: Genetics and genomics have radically altered our understanding of breast cancer progression. However, the genomic basis of various histopathologic features of breast cancer is not yet well-defined. Materials and Methods: The Cancer Genome Atlas (TCGA) is an international database containing a large collection of human cancer genome sequencing data. cBioPortal is a web tool developed for mining these sequencing data. We performed mining of TCGA sequencing data in an attempt to characterize the genomic features correlated with breast cancer histopathology. We first assessed the quality of the TCGA data using a group of genes with known alterations in various cancers. Both genome-wide gene mutation and copy number changes as well as a group of genes with a high frequency of genetic changes were then correlated with various histopathologic features of invasive breast cancer. Results: Validation of TCGA data using a group of genes with known alterations in breast cancer suggests that the TCGA has accurately documented the genomic abnormalities of multiple malignancies. Further analysis of TCGA breast cancer sequencing data shows that accumulation of specific genomic defects is associated with higher tumor grade, larger tumor size and receptor negativity. Distinct groups of genomic changes were found to be associated with the different grades of invasive ductal carcinoma. The mutator role of the TP53 gene was validated by genomic sequencing data of invasive breast cancer and TP53 mutation was found to play a critical role in defining high tumor grade. Conclusions: Data mining of the TCGA genome sequencing data is an innovative and reliable method to help characterize the genomic abnormalities associated with histopathologic features of invasive breast cancer. PMID:24672738

  12. Mining genome sequencing data to identify the genomic features linked to breast cancer histopathology

    Directory of Open Access Journals (Sweden)

    Zheng Ping

    2014-01-01

    Full Text Available Background: Genetics and genomics have radically altered our understanding of breast cancer progression. However, the genomic basis of various histopathologic features of breast cancer is not yet well-defined. Materials and Methods: The Cancer Genome Atlas (TCGA is an international database containing a large collection of human cancer genome sequencing data. cBioPortal is a web tool developed for mining these sequencing data. We performed mining of TCGA sequencing data in an attempt to characterize the genomic features correlated with breast cancer histopathology. We first assessed the quality of the TCGA data using a group of genes with known alterations in various cancers. Both genome-wide gene mutation and copy number changes as well as a group of genes with a high frequency of genetic changes were then correlated with various histopathologic features of invasive breast cancer. Results: Validation of TCGA data using a group of genes with known alterations in breast cancer suggests that the TCGA has accurately documented the genomic abnormalities of multiple malignancies. Further analysis of TCGA breast cancer sequencing data shows that accumulation of specific genomic defects is associated with higher tumor grade, larger tumor size and receptor negativity. Distinct groups of genomic changes were found to be associated with the different grades of invasive ductal carcinoma. The mutator role of the TP53 gene was validated by genomic sequencing data of invasive breast cancer and TP53 mutation was found to play a critical role in defining high tumor grade. Conclusions: Data mining of the TCGA genome sequencing data is an innovative and reliable method to help characterize the genomic abnormalities associated with histopathologic features of invasive breast cancer.

  13. Genomic sequence around butterfly wing development genes: annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Inês C Conceição

    Full Text Available BACKGROUND: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes. CONCLUSIONS: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1 the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2 the high

  14. Enhancing knowledge discovery from cancer genomics data with Galaxy.

    Science.gov (United States)

    Albuquerque, Marco A; Grande, Bruno M; Ritch, Elie J; Pararajalingam, Prasath; Jessa, Selin; Krzywinski, Martin; Grewal, Jasleen K; Shah, Sohrab P; Boutros, Paul C; Morin, Ryan D

    2017-05-01

    The field of cancer genomics has demonstrated the power of massively parallel sequencing techniques to inform on the genes and specific alterations that drive tumor onset and progression. Although large comprehensive sequence data sets continue to be made increasingly available, data analysis remains an ongoing challenge, particularly for laboratories lacking dedicated resources and bioinformatics expertise. To address this, we have produced a collection of Galaxy tools that represent many popular algorithms for detecting somatic genetic alterations from cancer genome and exome data. We developed new methods for parallelization of these tools within Galaxy to accelerate runtime and have demonstrated their usability and summarized their runtimes on multiple cloud service providers. Some tools represent extensions or refinement of existing toolkits to yield visualizations suited to cohort-wide cancer genomic analysis. For example, we present Oncocircos and Oncoprintplus, which generate data-rich summaries of exome-derived somatic mutation. Workflows that integrate these to achieve data integration and visualizations are demonstrated on a cohort of 96 diffuse large B-cell lymphomas and enabled the discovery of multiple candidate lymphoma-related genes. Our toolkit is available from our GitHub repository as Galaxy tool and dependency definitions and has been deployed using virtualization on multiple platforms including Docker. © The Author 2017. Published by Oxford University Press.

  15. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets.

    Science.gov (United States)

    Ajitha, M; Sundar, K; Arul Mugilan, S; Arumugam, S

    2018-03-01

    The advent of whole genome sequencing leads to increasing number of proteins with known amino acid sequences. Despite many efforts, the number of proteins with resolved three dimensional structures is still low. One of the challenging tasks the structural biologists face is the prediction of the interaction of metal ion with any protein for which the structure is unknown. Based on the information available in Protein Data Bank, a site (METALACTIVE INTERACTION) has been generated which displays information for significant high preferential and low-preferential combination of endogenous ligands for 49 metal ions. User can also gain information about the residues present in the first and second coordination sphere as it plays a major role in maintaining the structure and function of metalloproteins in biological system. In this paper, a novel computational tool (ZINCCLUSTER) is developed, which can predict the zinc metal binding sites of proteins even if only the primary sequence is known. The purpose of this tool is to predict the active site cluster of an uncharacterized protein based on its primary sequence or a 3D structure. The tool can predict amino acids interacting with a metal or vice versa. This tool is based on the occurrence of significant triplets and it is tested to have higher prediction accuracy when compared to that of other available techniques. © 2017 Wiley Periodicals, Inc.

  16. Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.

    Science.gov (United States)

    Dunn, Joshua G; Weissman, Jonathan S

    2016-11-22

    Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily

  17. Finding the needles in the meta-genome haystack

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Speksnijder, A.G.C.L.; Zhang, K.; Goodman, R.M.; Veen, van J.A.

    2007-01-01

    In the collective genomes (the metagenome) of the microorganisms inhabiting the Earth's diverse environments is written the history of life on this planet. New molecular tools developed and used for the past 15 years by microbial ecologists are facilitating the extraction, cloning, screening, and

  18. Android development tools for Eclipse

    CERN Document Server

    Shah, Sanjay

    2013-01-01

    A standard tutorial aimed at developing Android applications in a practical manner.Android Development Tools for Eclipse is aimed at beginners and existing developers who want to learn more about Android development. It is assumed that you have experience in Java programming and that you have used IDE for development.

  19. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.

    Science.gov (United States)

    Greub, Gilbert; Kebbi-Beghdadi, Carole; Bertelli, Claire; Collyn, François; Riederer, Beat M; Yersin, Camille; Croxatto, Antony; Raoult, Didier

    2009-12-23

    With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

  20. Pilot evaluation of a continuing professional development tool for developing leadership skills.

    Science.gov (United States)

    Patterson, Brandon J; Chang, Elizabeth H; Witry, Matthew J; Garza, Oscar W; Trewet, CoraLynn B

    2013-01-01

    Strategies are needed to assure essential nonclinical competencies, such as leadership, can be gained using a continuing professional development (CPD) framework. The objective of this study was to explore student pharmacists' utilization and perceived effectiveness of a CPD tool for leadership development in an elective course. Students completed 2 CPD cycles during a semester-long leadership elective using a CPD tool. A questionnaire was used to measure students' perceptions of utility, self-efficacy, and satisfaction in completing CPD cycles when using a tool to aid in this process. The CPD tool was completed twice by 7 students. On average, students spent nearly 5 hours per CPD cycle. More than half (57.1%) scored themselves as successful or very successful in achieving their learning plans, and most (71.4%) found the tool somewhat useful in developing their leadership skills. Some perceived that the tool provided a systematic way to engage in leadership development, whereas others found it difficult to use. In this pilot study, most student pharmacists successfully achieved a leadership development plan and found the CPD tool useful. Providing students with more guidance may help facilitate use and effectiveness of CPD tools. There is a need to continue to develop and refine tools that assist in the CPD of pharmacy practitioners at all levels. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Remote tool development for nuclear dismantling operations

    International Nuclear Information System (INIS)

    Craig, G.; Ferlay, J.C.; Ieracitano, F.

    2003-01-01

    Remote tool systems to undertake nuclear dismantling operations require careful design and development not only to perform their given duty but to perform it safely within the constraints imposed by harsh environmental conditions. Framatome ANP NUCLEAR SERVICES has for a long time developed and qualified equipment to undertake specific maintenance operations of nuclear reactors. The tool development methodology from this activity has since been adapted to resolve some very challenging reactor dismantling operations which are demonstrated in this paper. Each nuclear decommissioning project is a unique case, technical characterisation data is generally incomplete. The development of the dismantling methodology and associated equipment is by and large an iterative process combining design and simulation with feasibility and validation testing. The first stage of the development process involves feasibility testing of industrial tools and examining adaptations necessary to control and deploy the tool remotely with respect to the chosen methodology and environmental constraints. This results in a prototype tool and deployment system to validate the basic process. The second stage involves detailed design which integrates any remaining technical and environmental constraints. At the end of this stage, tools and deployment systems, operators and operating procedures are qualified on full scale mock ups. (authors)

  2. MycoCosm, an Integrated Fungal Genomics Resource

    Energy Technology Data Exchange (ETDEWEB)

    Shabalov, Igor; Grigoriev, Igor

    2012-03-16

    MycoCosm is a web-based interactive fungal genomics resource, which was first released in March 2010, in response to an urgent call from the fungal community for integration of all fungal genomes and analytical tools in one place (Pan-fungal data resources meeting, Feb 21-22, 2010, Alexandria, VA). MycoCosm integrates genomics data and analysis tools to navigate through over 100 fungal genomes sequenced at JGI and elsewhere. This resource allows users to explore fungal genomes in the context of both genome-centric analysis and comparative genomics, and promotes user community participation in data submission, annotation and analysis. MycoCosm has over 4500 unique visitors/month or 35000+ visitors/year as well as hundreds of registered users contributing their data and expertise to this resource. Its scalable architecture allows significant expansion of the data expected from JGI Fungal Genomics Program, its users, and integration with external resources used by fungal community.

  3. Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score.

    Science.gov (United States)

    Lee, Hayan; Schatz, Michael C

    2012-08-15

    Genome resequencing and short read mapping are two of the primary tools of genomics and are used for many important applications. The current state-of-the-art in mapping uses the quality values and mapping quality scores to evaluate the reliability of the mapping. These attributes, however, are assigned to individual reads and do not directly measure the problematic repeats across the genome. Here, we present the Genome Mappability Score (GMS) as a novel measure of the complexity of resequencing a genome. The GMS is a weighted probability that any read could be unambiguously mapped to a given position and thus measures the overall composition of the genome itself. We have developed the Genome Mappability Analyzer to compute the GMS of every position in a genome. It leverages the parallelism of cloud computing to analyze large genomes, and enabled us to identify the 5-14% of the human, mouse, fly and yeast genomes that are difficult to analyze with short reads. We examined the accuracy of the widely used BWA/SAMtools polymorphism discovery pipeline in the context of the GMS, and found discovery errors are dominated by false negatives, especially in regions with poor GMS. These errors are fundamental to the mapping process and cannot be overcome by increasing coverage. As such, the GMS should be considered in every resequencing project to pinpoint the 'dark matter' of the genome, including of known clinically relevant variations in these regions. The source code and profiles of several model organisms are available at http://gma-bio.sourceforge.net

  4. Framework for development of physician competencies in genomic medicine: report of the Competencies Working Group of the Inter-Society Coordinating Committee for Physician Education in Genomics.

    Science.gov (United States)

    Korf, Bruce R; Berry, Anna B; Limson, Melvin; Marian, Ali J; Murray, Michael F; O'Rourke, P Pearl; Passamani, Eugene R; Relling, Mary V; Tooker, John; Tsongalis, Gregory J; Rodriguez, Laura L

    2014-11-01

    Completion of the Human Genome Project, in conjunction with dramatic reductions in the cost of DNA sequencing and advances in translational research, is gradually ushering genomic discoveries and technologies into the practice of medicine. The rapid pace of these advances is opening up a gap between the knowledge available about the clinical relevance of genomic information and the ability of clinicians to include such information in their medical practices. This educational gap threatens to be rate limiting to the clinical adoption of genomics in medicine. Solutions will require not only a better understanding of the clinical implications of genetic discoveries but also training in genomics at all levels of professional development, including for individuals in formal training and others who long ago completed such training. The National Human Genome Research Institute has convened the Inter-Society Coordinating Committee for Physician Education in Genomics (ISCC) to develop and share best practices in the use of genomics in medicine. The ISCC has developed a framework for development of genomics practice competencies that may serve as a starting point for formulation of competencies for physicians in various medical disciplines.

  5. Genomics and metagenomics in medical microbiology.

    Science.gov (United States)

    Padmanabhan, Roshan; Mishra, Ajay Kumar; Raoult, Didier; Fournier, Pierre-Edouard

    2013-12-01

    Over the last two decades, sequencing tools have evolved from laborious time-consuming methodologies to real-time detection and deciphering of genomic DNA. Genome sequencing, especially using next generation sequencing (NGS) has revolutionized the landscape of microbiology and infectious disease. This deluge of sequencing data has not only enabled advances in fundamental biology but also helped improve diagnosis, typing of pathogen, virulence and antibiotic resistance detection, and development of new vaccines and culture media. In addition, NGS also enabled efficient analysis of complex human micro-floras, both commensal, and pathological, through metagenomic methods, thus helping the comprehension and management of human diseases such as obesity. This review summarizes technological advances in genomics and metagenomics relevant to the field of medical microbiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Coral Reef Genomics: Developing tools for functional genomics ofcoral symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Jodi; Brokstein, Peter; Manohar, Chitra; Coffroth, MaryAlice; Szmant, Alina; Medina, Monica

    2005-03-01

    Symbioses between cnidarians and dinoflagellates in the genus Symbiodinium are widespread in the marine environment. The importance of this symbiosis to reef-building corals and reef nutrient and carbon cycles is well documented, but little is known about the mechanisms by which the partners establish and regulate the symbiosis. Because the dinoflagellate symbionts live inside the cells of their host coral, the interactions between the partners occur on cellular and molecular levels, as each partner alters the expression of genes and proteins to facilitate the partnership. These interactions can examined using high-throughput techniques that allow thousands of genes to be examined simultaneously. We are developing the groundwork so that we can use DNA microarray profiling to identify genes involved in the Montastraea faveolata and Acropora palmata symbioses. Here we report results from the initial steps in this microarray initiative, that is, the construction of cDNA libraries from 4 of 16 target stages, sequencing of 3450 cDNA clones to generate Expressed Sequenced Tags (ESTs), and annotation of the ESTs to identify candidate genes to include in the microarrays. An understanding of how the coral-dinoflagellate symbiosis is regulated will have implications for atmospheric and ocean sciences, conservation biology, the study and diagnosis of coral bleaching and disease, and comparative studies of animal-protest interactions.

  7. Capitalizing on App Development Tools and Technologies

    Science.gov (United States)

    Luterbach, Kenneth J.; Hubbell, Kenneth R.

    2015-01-01

    Instructional developers and others creating apps must choose from a wide variety of app development tools and technologies. Some app development tools have incorporated visual programming features, which enable some drag and drop coding and contextual programming. While those features help novices begin programming with greater ease, questions…

  8. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    Science.gov (United States)

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  9. transPLANT Resources for Triticeae Genomic Data

    Directory of Open Access Journals (Sweden)

    Manuel Spannagl

    2016-03-01

    Full Text Available The genome sequences of many important Triticeae species, including bread wheat ( L. and barley ( L., remained uncharacterized for a long time because their high repeat content, large sizes, and polyploidy. As a result of improvements in sequencing technologies and novel analyses strategies, several of these have recently been deciphered. These efforts have generated new insights into Triticeae biology and genome organization and have important implications for downstream usage by breeders, experimental biologists, and comparative genomicists. transPLANT ( is an EU-funded project aimed at constructing hardware, software, and data infrastructure for genome-scale research in the life sciences. Since the Triticeae data are intrinsically complex, heterogenous, and distributed, the transPLANT consortium has undertaken efforts to develop common data formats and tools that enable the exchange and integration of data from distributed resources. Here we present an overview of the individual Triticeae genome resources hosted by transPLANT partners, introduce the objectives of transPLANT, and outline common developments and interfaces supporting integrated data access.

  10. CoGI: Towards Compressing Genomes as an Image.

    Science.gov (United States)

    Xie, Xiaojing; Zhou, Shuigeng; Guan, Jihong

    2015-01-01

    Genomic science is now facing an explosive increase of data thanks to the fast development of sequencing technology. This situation poses serious challenges to genomic data storage and transferring. It is desirable to compress data to reduce storage and transferring cost, and thus to boost data distribution and utilization efficiency. Up to now, a number of algorithms / tools have been developed for compressing genomic sequences. Unlike the existing algorithms, most of which treat genomes as one-dimensional text strings and compress them based on dictionaries or probability models, this paper proposes a novel approach called CoGI (the abbreviation of Compressing Genomes as an Image) for genome compression, which transforms the genomic sequences to a two-dimensional binary image (or bitmap), then applies a rectangular partition coding algorithm to compress the binary image. CoGI can be used as either a reference-based compressor or a reference-free compressor. For the former, we develop two entropy-based algorithms to select a proper reference genome. Performance evaluation is conducted on various genomes. Experimental results show that the reference-based CoGI significantly outperforms two state-of-the-art reference-based genome compressors GReEn and RLZ-opt in both compression ratio and compression efficiency. It also achieves comparable compression ratio but two orders of magnitude higher compression efficiency in comparison with XM--one state-of-the-art reference-free genome compressor. Furthermore, our approach performs much better than Gzip--a general-purpose and widely-used compressor, in both compression speed and compression ratio. So, CoGI can serve as an effective and practical genome compressor. The source code and other related documents of CoGI are available at: http://admis.fudan.edu.cn/projects/cogi.htm.

  11. MUTAGEN: Multi-user tool for annotating GENomes

    DEFF Research Database (Denmark)

    Brugger, K.; Redder, P.; Skovgaard, Marie

    2003-01-01

    MUTAGEN is a free prokaryotic annotation system. It offers the advantages of genome comparison, graphical sequence browsers, search facilities and open-source for user-specific adjustments. The web-interface allows several users to access the system from standard desktop computers. The Sulfolobus...

  12. Genomics, evolution and development of amphioxus and tunicates: The Goldilocks principle.

    Science.gov (United States)

    Holland, Linda Z

    2015-06-01

    Morphological comparisons among extant animals have long been used to infer their long-extinct ancestors for which the fossil record is poor or non-existent. For evolution of the vertebrates, the comparison has typically involved amphioxus and vertebrates. Both groups are evolving relatively slowly, and their genomes share a high level of synteny. Both vertebrates and amphioxus have regulative development in which cell fates become fixed only gradually during embryogenesis. Thus, their development fits a modified hourglass model in which constraints are greatest at the phylotypic stage (i.e., the late neurula/early larva), but are somewhat greater on earlier development than on later development. In contrast, the third group of chordates, the tunicates, which are sister group to vertebrates, are evolving rapidly. Constraints on evolution of tunicate genomes are relaxed, and they have discarded key developmental genes and organized much of their coding sequences into operons, which are transcribed as a single mRNA that undergoes trans-splicing. This contrasts with vertebrates and amphioxus, whose genomes are not organized into operons. Concomitantly, tunicates have switched to determinant development with very early fixation of cell fates. Thus, tunicate development more closely fits a progressive divergence model (shaped more like a wine glass than an hourglass) in which the constraints on the zygote and very early development are greatest. This model can help explain why tunicate body plans are so very diverse. The relaxed constraints on development after early cleavage stages are correlated with relaxed constraints on genome evolution. The question remains: which came first? © 2014 Wiley Periodicals, Inc.

  13. Use of genome editing tools in human stem cell-based disease modeling and precision medicine.

    Science.gov (United States)

    Wei, Yu-da; Li, Shuang; Liu, Gai-gai; Zhang, Yong-xian; Ding, Qiu-rong

    2015-10-01

    Precision medicine emerges as a new approach that takes into account individual variability. The successful conduct of precision medicine requires the use of precise disease models. Human pluripotent stem cells (hPSCs), as well as adult stem cells, can be differentiated into a variety of human somatic cell types that can be used for research and drug screening. The development of genome editing technology over the past few years, especially the CRISPR/Cas system, has made it feasible to precisely and efficiently edit the genetic background. Therefore, disease modeling by using a combination of human stem cells and genome editing technology has offered a new platform to generate " personalized " disease models, which allow the study of the contribution of individual genetic variabilities to disease progression and the development of precise treatments. In this review, recent advances in the use of genome editing in human stem cells and the generation of stem cell models for rare diseases and cancers are discussed.

  14. Development and characterization of genomic SSR markers for Anneslea fragrans (Pentaphylacaceae).

    Science.gov (United States)

    Sun, Lijing; Meng, Kaikai; Liao, Boyong; Li, Chunmei; Zhang, Yue; Liao, Wenbo; Chen, Sufang

    2017-10-01

    The genus Anneslea (Pentaphylacaceae) contains four species and six varieties, most of which are locally endemic. Here, simple sequence repeat (SSR) markers were developed for the conservation of these species. The genome of A. fragrans was sequenced and de novo assembled into 445,162 contigs, of which 30,409 SSR loci were detected. Primers for 100 SSR loci were validated with PCR amplification in three populations of A. fragrans . Seventy-nine loci successfully amplified, and 30 were polymorphic. The mean number of alleles, observed heterozygosity, and expected heterozygosity were 7.01 ± 1.60, 0.817 ± 0.241, and 0.796 ± 0.145, respectively. Most primers could be amplified in Ternstroemia gymnanthera , T. kwangtungensis , and Cleyera pachyphylla . Our study demonstrated that shotgun genome sequencing is an efficient way to develop genomic SSR markers for nonmodel species. These genomic SSR loci will be valuable in population genetic studies in Anneslea and its relatives.

  15. Ensembl Genomes 2016: more genomes, more complexity.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-04

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Tripolar mitosis and partitioning of the genome arrests human preimplantation development in vitro.

    Science.gov (United States)

    Ottolini, Christian S; Kitchen, John; Xanthopoulou, Leoni; Gordon, Tony; Summers, Michael C; Handyside, Alan H

    2017-08-29

    Following in vitro fertilisation (IVF), only about half of normally fertilised human embryos develop beyond cleavage and morula stages to form a blastocyst in vitro. Although many human embryos are aneuploid and genomically imbalanced, often as a result of meiotic errors inherited in the oocyte, these aneuploidies persist at the blastocyst stage and the reasons for the high incidence of developmental arrest remain unknown. Here we use genome-wide SNP genotyping and meiomapping of both polar bodies to identify maternal meiotic errors and karyomapping to fingerprint the parental chromosomes in single cells from disaggregated arrested embryos and excluded cells from blastocysts. Combined with time lapse imaging of development in culture, we demonstrate that tripolar mitoses in early cleavage cause chromosome dispersal to clones of cells with identical or closely related sub-diploid chromosome profiles resulting in intercellular partitioning of the genome. We hypothesise that following zygotic genome activation (ZGA), the combination of genomic imbalance and partial genome loss disrupts the normal pattern of embryonic gene expression blocking development at the morula-blastocyst transition. Failure to coordinate the cell cycle in early cleavage and regulate centrosome duplication is therefore a major cause of human preimplantation developmental arrest in vitro.

  17. Development of remote handling tools and equipment

    International Nuclear Information System (INIS)

    Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou; Ito, Akira; Fukatsu, Seiichi; Oda, Yasushi; Kajiura, Soji; Yamazaki, Seiichiro; Aoyama, Kazuo.

    1997-01-01

    The remote handling (RH) tools and equipment development in ITER focuses mainly on the welding and cutting technique, weld inspection and double-seal door which are essential factors in the replacement of in-vessel components such as divertor and blanket. The conceptual design of these RH tools and equipment has been defined through ITER engineering design activity (EDA). Similarly, elementary R and D of the RH tools and equipment have been extensively performed to accumulate a technological data base for process and performance qualification. Based on this data, fabrications of full-scale RH tools and equipment are under progress. A prototypical bore tool for pipe welding and cutting has already been fabricated and is currently undergoing integrated performance tests. This paper describes the design outline of the RH tools and equipment related to in-vessel components maintenance, and highlights the current status of RH tools and equipment development by the Japan Home Team as an ITER R and D program. This paper also includes an outline of insulation joint and quick-pipe connector development, which has also been conducted through the ITER R and D program in order to standardize RH operations and components. (author)

  18. Genomic-based tools for the risk assessment, management, and prevention of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Johansen Taber KA

    2015-01-01

    Full Text Available Katherine A Johansen Taber, Barry D DickinsonDepartment of Science and Biotechnology, American Medical Association, Chicago, IL, USAAbstract: Type 2 diabetes (T2D is a common and serious disorder and is a significant risk factor for the development of cardiovascular disease, neuropathy, nephropathy, retinopathy, periodontal disease, and foot ulcers and amputations. The burden of disease associated with T2D has led to an emphasis on early identification of the millions of individuals at high risk so that management and intervention strategies can be effectively implemented before disease progression begins. With increasing knowledge about the genetic basis of T2D, several genomic-based strategies have been tested for their ability to improve risk assessment, management and prevention. Genetic risk scores have been developed with the intent to more accurately identify those at risk for T2D and to potentially improve motivation and adherence to lifestyle modification programs. In addition, evidence is building that oral antihyperglycemic medications are subject to pharmacogenomic variation in a substantial number of patients, suggesting genomics may soon play a role in determining the most effective therapies. T2D is a complex disease that affects individuals differently, and risk prediction and treatment may be challenging for health care providers. Genomic approaches hold promise for their potential to improve risk prediction and tailor management for individual patients and to contribute to better health outcomes for those with T2D.Keywords: diabetes, genomic, risk prediction, management

  19. Genome U-Plot: a whole genome visualization.

    Science.gov (United States)

    Gaitatzes, Athanasios; Johnson, Sarah H; Smadbeck, James B; Vasmatzis, George

    2018-05-15

    The ability to produce and analyze whole genome sequencing (WGS) data from samples with structural variations (SV) generated the need to visualize such abnormalities in simplified plots. Conventional two-dimensional representations of WGS data frequently use either circular or linear layouts. There are several diverse advantages regarding both these representations, but their major disadvantage is that they do not use the two-dimensional space very efficiently. We propose a layout, termed the Genome U-Plot, which spreads the chromosomes on a two-dimensional surface and essentially quadruples the spatial resolution. We present the Genome U-Plot for producing clear and intuitive graphs that allows researchers to generate novel insights and hypotheses by visualizing SVs such as deletions, amplifications, and chromoanagenesis events. The main features of the Genome U-Plot are its layered layout, its high spatial resolution and its improved aesthetic qualities. We compare conventional visualization schemas with the Genome U-Plot using visualization metrics such as number of line crossings and crossing angle resolution measures. Based on our metrics, we improve the readability of the resulting graph by at least 2-fold, making apparent important features and making it easy to identify important genomic changes. A whole genome visualization tool with high spatial resolution and improved aesthetic qualities. An implementation and documentation of the Genome U-Plot is publicly available at https://github.com/gaitat/GenomeUPlot. vasmatzis.george@mayo.edu. Supplementary data are available at Bioinformatics online.

  20. Optical Whole-Genome Restriction Mapping as a Tool for Rapidly Distinguishing and Identifying Bacterial Contaminants in Clinical Samples

    Science.gov (United States)

    2015-08-01

    Article 3. DATES COVERED (From – To) Oct 2011 – Aug 2012 4. TITLE AND SUBTITLE Optical Whole-Genome Restriction Mapping as a Tool for Rapidly...multiple bacteria could be uniquely identified within mixtures. In the first set of experiments, three unique organisms ( Bacillus subtilis subsp. globigii...be useful in monitoring nosocomial outbreaks in neonatal and intensive care wards, or even as an initial screen for antibiotic resistant strains

  1. Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease.

    Science.gov (United States)

    Lau, Cia-Hin; Suh, Yousin

    2017-01-01

    The recent advent of genome and epigenome editing technologies has provided a new paradigm in which the landscape of the human genome and epigenome can be precisely manipulated in their native context. Genome and epigenome editing technologies can be applied to many aspects of aging research and offer the potential to develop novel therapeutics against age-related diseases. Here, we discuss the latest technological advances in the CRISPR-based genome and epigenome editing toolbox, and provide insight into how these synthetic biology tools could facilitate aging research by establishing in vitro cell and in vivo animal models to dissect genetic and epigenetic mechanisms underlying aging and age-related diseases. We discuss recent developments in the field with the aims to precisely modulate gene expression and dynamic epigenetic landscapes in a spatial and temporal manner in cellular and animal models, by complementing the CRISPR-based editing capability with conditional genetic manipulation tools including chemically inducible expression systems, optogenetics, logic gate genetic circuits, tissue-specific promoters, and the serotype-specific adeno-associated virus. We also discuss how the combined use of genome and epigenome editing tools permits investigators to uncover novel molecular pathways involved in the pathophysiology and etiology conferred by risk variants associated with aging and aging-related disease. A better understanding of the genetic and epigenetic regulatory mechanisms underlying human aging and age-related disease will significantly contribute to the developments of new therapeutic interventions for extending health span and life span, ultimately improving the quality of life in the elderly populations. © 2016 S. Karger AG, Basel.

  2. Applied Genomics of Foodborne Pathogens

    DEFF Research Database (Denmark)

    and customized source of information designed for and accessible to microbiologists interested in applying cutting-edge genomics in food safety and public health research. This book fills this void with a well-selected collection of topics, case studies, and bioinformatics tools contributed by experts......This book provides a timely and thorough snapshot into the emerging and fast evolving area of applied genomics of foodborne pathogens. Driven by the drastic advance of whole genome shot gun sequencing (WGS) technologies, genomics applications are becoming increasingly valuable and even essential...... at the forefront of foodborne pathogen genomics research....

  3. Enzymatic engineering of the porcine genome with transposons and recombinases

    Directory of Open Access Journals (Sweden)

    Carlson Daniel F

    2007-07-01

    Full Text Available Abstract Background Swine is an important agricultural commodity and biomedical model. Manipulation of the pig genome provides opportunity to improve production efficiency, enhance disease resistance, and add value to swine products. Genetic engineering can also expand the utility of pigs for modeling human disease, developing clinical treatment methodologies, or donating tissues for xenotransplantation. Realizing the full potential of pig genetic engineering requires translation of the complete repertoire of genetic tools currently employed in smaller model organisms to practical use in pigs. Results Application of transposon and recombinase technologies for manipulation of the swine genome requires characterization of their activity in pig cells. We tested four transposon systems- Sleeping Beauty, Tol2, piggyBac, and Passport in cultured porcine cells. Transposons increased the efficiency of DNA integration up to 28-fold above background and provided for precise delivery of 1 to 15 transgenes per cell. Both Cre and Flp recombinase were functional in pig cells as measured by their ability to remove a positive-negative selection cassette from 16 independent clones and over 20 independent genomic locations. We also demonstrated a Cre-dependent genetic switch capable of eliminating an intervening positive-negative selection cassette and activating GFP expression from episomal and genome-resident transposons. Conclusion We have demonstrated for the first time that transposons and recombinases are capable of mobilizing DNA into and out of the porcine genome in a precise and efficient manner. This study provides the basis for developing transposon and recombinase based tools for genetic engineering of the swine genome.

  4. Gene calling and bacterial genome annotation with BG7.

    Science.gov (United States)

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).

  5. Develop risk-based procurement management tools for SMEs

    NARCIS (Netherlands)

    Staal, Anne; Hagelaar, Geoffrey; Walhof, Gert; Holman, Richard

    2016-01-01

    This paper provides guidance for developing risk-based management tools to improve the procurement (purchasing) performance of SMEs. Extant academic literature only offers little support on developing such tools and does not consider the wide variety of SMEs. The paper defines a procurement tool for

  6. Signatures of selection in the Iberian honey bee: a genome wide approach using single nucleotide polymorphisms (SNPs)

    OpenAIRE

    Chavez-Galarza, Julio; Johnston, J. Spencer; Azevedo, João; Muñoz, Irene; De la Rúa, Pilar; Patton, John C.; Pinto, M. Alice

    2011-01-01

    Dissecting genome-wide (expansions, contractions, admixture) from genome-specific effects (selection) is a goal of central importance in evolutionary biology because it leads to more robust inferences of demographic history and to identification of adaptive divergence. The publication of the honey bee genome and the development of high-density SNPs genotyping, provide us with powerful tools, allowing us to identify signatures of selection in the honey bee genome. These signatur...

  7. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.

    Directory of Open Access Journals (Sweden)

    Gilbert Greub

    Full Text Available BACKGROUND: With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. METHODS/PRINCIPAL FINDINGS: We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. CONCLUSIONS/SIGNIFICANCE: This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

  8. Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context.

    Science.gov (United States)

    Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi

    2007-09-18

    Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired.

  9. Current Knowledge in lentil genomics and its application for crop improvement

    Directory of Open Access Journals (Sweden)

    Shiv eKumar

    2015-02-01

    Full Text Available Most of the lentil growing countries face a certain set of abiotic and biotic stresses causing substantial reduction in crop growth, yield, and production. Until-to date, lentil breeders have used conventional plant breeding techniques of selection-recombination-selection cycle to develop improved cultivars. These techniques have been successful in mainstreaming some of the easy-to-manage monogenic traits. However in case of complex quantitative traits, these conventional techniques are less precise. As most of the economic traits are complex, quantitative and often influenced by environments and genotype-environment (GE interaction, the genetic improvement of these traits becomes difficult. Genomics assisted breeding is relatively powerful and fast approach to develop high yielding varieties more suitable to adverse environmental conditions. New tools such as molecular markers and bioinformatics are expected to generate new knowledge and improve our understanding on the genetics of complex traits. In the past, the limited availability of genomic resources in lentil could not allow breeders to employ these tools in mainstream breeding program. The recent application of the Next Generation Sequencing (NGS and Genotyping by sequencing (GBS technologies has facilitated to speed up the lentil genome sequencing project and large discovery of genome-wide SNP markers. Recently, several linkage maps have been developed in lentil through the use of Expressed Sequenced Tag (EST-derived Simple Sequence Repeat (SSR and Single Nucleotide Polymorphism (SNP markers. These maps have emerged as useful genomic resources to identify QTL imparting tolerance to biotic and abiotic stresses in lentil. In this review, the current knowledge on available genomic resources and its application in lentil breeding program are discussed.

  10. Applying CASE Tools for On-Board Software Development

    Science.gov (United States)

    Brammer, U.; Hönle, A.

    For many space projects the software development is facing great pressure with respect to quality, costs and schedule. One way to cope with these challenges is the application of CASE tools for automatic generation of code and documentation. This paper describes two CASE tools: Rhapsody (I-Logix) featuring UML and ISG (BSSE) that provides modeling of finite state machines. Both tools have been used at Kayser-Threde in different space projects for the development of on-board software. The tools are discussed with regard to the full software development cycle.

  11. Forest and fibre genomics: biotechnology tools for applied tree ...

    African Journals Online (AJOL)

    A milestone for eucalypt research, the project will facilitate the development of new biotechnology tools that will accelerate the domestication, improvement and ... The application of DNA fingerprinting in eucalypt breeding programmes represented an early technology delivery to industry with practical, short-term benefi ts, ...

  12. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans

    OpenAIRE

    Jayapal, Karthik P; Lian, Wei; Glod, Frank; Sherman, David H; Hu, Wei-Shou

    2007-01-01

    Abstract Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Res...

  13. Developing new chemical tools for solvent extraction

    International Nuclear Information System (INIS)

    Moyer, B.A.; Baes, C.F.; Burns, J.H.; Case, G.N.; Sachleben, R.A.; Bryan, S.A.; Lumetta, G.J.; McDowell, W.J.; Sachleben, R.A.

    1993-01-01

    Prospects for innovation and for greater technological impact in the field of solvent extraction (SX) seem as bright as ever, despite the maturation of SX as an economically significant separation method and as an important technique in the laboratory. New industrial, environmental, and analytical problems provide compelling motivation for diversifying the application of SX, developing new solvent systems, and seeking improved properties. Toward this end, basic research must be dedicated to enhancing the tools of SX: physical tools for probing the basis of extraction and molecular tools for developing new SX chemistries. In this paper, the authors describe their progress in developing and applying the general tools of equilibrium analysis and of ion recognition in SX. Nearly half a century after the field of SX began in earnest, coordination chemistry continues to provide the impetus for important advancements in understanding SX systems and in controlling SX chemistry. In particular, the physical tools of equilibrium analysis, X-ray crystallography, and spectroscopy are elucidating the molecular basis of SX in unprecedented detail. Moreover, the principles of ion recognition are providing the molecular tools with which to achieve new selectivities and new applications

  14. BRAD, the genetics and genomics database for Brassica plants

    Directory of Open Access Journals (Sweden)

    Li Pingxia

    2011-10-01

    Full Text Available Abstract Background Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data. Description BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42. It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE, B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker. Conclusion BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.

  15. Development of FuGO: An Ontology for Functional Genomics Investigations

    Science.gov (United States)

    Whetzel, Patricia L.; Brinkman, Ryan R.; Causton, Helen C.; Fan, Liju; Field, Dawn; Fostel, Jennifer; Fragoso, Gilberto; Gray, Tanya; Heiskanen, Mervi; Hernandez-Boussard, Tina; Morrison, Norman; Parkinson, Helen; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Schober, Daniel; Smith, Barry; Stevens, Robert; Stoeckert, Christian J.; Taylor, Chris; White, Joe; Wood, Andrew

    2009-01-01

    The development of the Functional Genomics Investigation Ontology (FuGO) is a collaborative, international effort that will provide a resource for annotating functional genomics investigations, including the study design, protocols and instrumentation used, the data generated and the types of analysis performed on the data. FuGO will contain both terms that are universal to all functional genomics investigations and those that are domain specific. In this way, the ontology will serve as the “semantic glue” to provide a common understanding of data from across these disparate data sources. In addition, FuGO will reference out to existing mature ontologies to avoid the need to duplicate these resources, and will do so in such a way as to enable their ease of use in annotation. This project is in the early stages of development; the paper will describe efforts to initiate the project, the scope and organization of the project, the work accomplished to date, and the challenges encountered, as well as future plans. PMID:16901226

  16. The Functional Genomics Initiative at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dabney; Justice, Monica; Beattle, Ken; Buchanan, Michelle; Ramsey, Michael; Ramsey, Rose; Paulus, Michael; Ericson, Nance; Allison, David; Kress, Reid; Mural, Richard; Uberbacher, Ed; Mann, Reinhold

    1997-12-31

    The Functional Genomics Initiative at the Oak Ridge National Laboratory integrates outstanding capabilities in mouse genetics, bioinformatics, and instrumentation. The 50 year investment by the DOE in mouse genetics/mutagenesis has created a one-of-a-kind resource for generating mutations and understanding their biological consequences. It is generally accepted that, through the mouse as a surrogate for human biology, we will come to understand the function of human genes. In addition to this world class program in mammalian genetics, ORNL has also been a world leader in developing bioinformatics tools for the analysis, management and visualization of genomic data. Combining this expertise with new instrumentation technologies will provide a unique capability to understand the consequences of mutations in the mouse at both the organism and molecular levels. The goal of the Functional Genomics Initiative is to develop the technology and methodology necessary to understand gene function on a genomic scale and apply these technologies to megabase regions of the human genome. The effort is scoped so as to create an effective and powerful resource for functional genomics. ORNL is partnering with the Joint Genome Institute and other large scale sequencing centers to sequence several multimegabase regions of both human and mouse genomic DNA, to identify all the genes in these regions, and to conduct fundamental surveys to examine gene function at the molecular and organism level. The Initiative is designed to be a pilot for larger scale deployment in the post-genome era. Technologies will be applied to the examination of gene expression and regulation, metabolism, gene networks, physiology and development.

  17. Genome editing for crop improvement: Challenges and opportunities.

    Science.gov (United States)

    Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G

    2015-01-01

    Genome or gene editing includes several new techniques to help scientists precisely modify genome sequences. The techniques also enables us to alter the regulation of gene expression patterns in a pre-determined region and facilitates novel insights into the functional genomics of an organism. Emergence of genome editing has brought considerable excitement especially among agricultural scientists because of its simplicity, precision and power as it offers new opportunities to develop improved crop varieties with clear-cut addition of valuable traits or removal of undesirable traits. Research is underway to improve crop varieties with higher yields, strengthen stress tolerance, disease and pest resistance, decrease input costs, and increase nutritional value. Genome editing encompasses a wide variety of tools using either a site-specific recombinase (SSR) or a site-specific nuclease (SSN) system. Both systems require recognition of a known sequence. The SSN system generates single or double strand DNA breaks and activates endogenous DNA repair pathways. SSR technology, such as Cre/loxP and Flp/FRT mediated systems, are able to knockdown or knock-in genes in the genome of eukaryotes, depending on the orientation of the specific sites (loxP, FLP, etc.) flanking the target site. There are 4 main classes of SSN developed to cleave genomic sequences, mega-nucleases (homing endonuclease), zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the CRISPR/Cas nuclease system (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein). The recombinase mediated genome engineering depends on recombinase (sub-) family and target-site and induces high frequencies of homologous recombination. Improving crops with gene editing provides a range of options: by altering only a few nucleotides from billions found in the genomes of living cells, altering the full allele or by inserting a new gene in a targeted region of

  18. Separating metagenomic short reads into genomes via clustering

    Directory of Open Access Journals (Sweden)

    Tanaseichuk Olga

    2012-09-01

    Full Text Available Abstract Background The metagenomics approach allows the simultaneous sequencing of all genomes in an environmental sample. This results in high complexity datasets, where in addition to repeats and sequencing errors, the number of genomes and their abundance ratios are unknown. Recently developed next-generation sequencing (NGS technologies significantly improve the sequencing efficiency and cost. On the other hand, they result in shorter reads, which makes the separation of reads from different species harder. Among the existing computational tools for metagenomic analysis, there are similarity-based methods that use reference databases to align reads and composition-based methods that use composition patterns (i.e., frequencies of short words or l-mers to cluster reads. Similarity-based methods are unable to classify reads from unknown species without close references (which constitute the majority of reads. Since composition patterns are preserved only in significantly large fragments, composition-based tools cannot be used for very short reads, which becomes a significant limitation with the development of NGS. A recently proposed algorithm, AbundanceBin, introduced another method that bins reads based on predicted abundances of the genomes sequenced. However, it does not separate reads from genomes of similar abundance levels. Results In this work, we present a two-phase heuristic algorithm for separating short paired-end reads from different genomes in a metagenomic dataset. We use the observation that most of the l-mers belong to unique genomes when l is sufficiently large. The first phase of the algorithm results in clusters of l-mers each of which belongs to one genome. During the second phase, clusters are merged based on l-mer repeat information. These final clusters are used to assign reads. The algorithm could handle very short reads and sequencing errors. It is initially designed for genomes with similar abundance levels and then

  19. Tools and strategies for discovering novel enzymes and metabolic pathways

    Directory of Open Access Journals (Sweden)

    John A. Gerlt

    2016-12-01

    Full Text Available The number of entries in the sequence databases continues to increase exponentially – the UniProt database is increasing with a doubling time of ∼4 years (2% increase/month. Approximately 50% of the entries have uncertain, unknown, or incorrect function annotations because these are made by automated methods based on sequence homology. If the potential in complete genome sequences is to be realized, strategies and tools must be developed to facilitate experimental assignment of functions to uncharacterized proteins discovered in genome projects. The Enzyme Function Initiative (EFI; previously supported by U54GM093342 from the National Institutes of Health, now supported by P01GM118303 developed web tools for visualizing and analyzing (1 sequence and function space in protein families (EFI-EST and (2 genome neighbourhoods in microbial and fungal genomes (EFI-GNT to assist the design of experimental strategies for discovering the in vitro activities and in vivo metabolic functions of uncharacterized enzymes. The EFI developed an experimental platform for large-scale production of the solute binding proteins (SBPs for ABC, TRAP, and TCT transport systems and their screening with a physical ligand library to identify the identities of the ligands for these transport systems. Because the genes that encode transport systems are often co-located with the genes that encode the catabolic pathways for the transported solutes, the identity of the SBP ligand together with the EFI-EST and EFI-GNT web tools can be used to discover new enzyme functions and new metabolic pathways. This approach is demonstrated with the characterization of a novel pathway for ethanolamine catabolism.

  20. Microsatellite marker development by partial sequencing of the sour passion fruit genome (Passiflora edulis Sims).

    Science.gov (United States)

    Araya, Susan; Martins, Alexandre M; Junqueira, Nilton T V; Costa, Ana Maria; Faleiro, Fábio G; Ferreira, Márcio E

    2017-07-21

    The Passiflora genus comprises hundreds of wild and cultivated species of passion fruit used for food, industrial, ornamental and medicinal purposes. Efforts to develop genomic tools for genetic analysis of P. edulis, the most important commercial Passiflora species, are still incipient. In spite of many recognized applications of microsatellite markers in genetics and breeding, their availability for passion fruit research remains restricted. Microsatellite markers in P. edulis are usually limited in number, show reduced polymorphism, and are mostly based on compound or imperfect repeats. Furthermore, they are confined to only a few Passiflora species. We describe the use of NGS technology to partially assemble the P. edulis genome in order to develop hundreds of new microsatellite markers. A total of 14.11 Gbp of Illumina paired-end sequence reads were analyzed to detect simple sequence repeat sites in the sour passion fruit genome. A sample of 1300 contigs containing perfect repeat microsatellite sequences was selected for PCR primer development. Panels of di- and tri-nucleotide repeat markers were then tested in P. edulis germplasm accessions for validation. DNA polymorphism was detected in 74% of the markers (PIC = 0.16 to 0.77; number of alleles/locus = 2 to 7). A core panel of highly polymorphic markers (PIC = 0.46 to 0.77) was used to cross-amplify PCR products in 79 species of Passiflora (including P. edulis), belonging to four subgenera (Astrophea, Decaloba, Distephana and Passiflora). Approximately 71% of the marker/species combinations resulted in positive amplicons in all species tested. DNA polymorphism was detected in germplasm accessions of six closely related Passiflora species (P. edulis, P. alata, P. maliformis, P. nitida, P. quadrangularis and P. setacea) and the data used for accession discrimination and species assignment. A database of P. edulis DNA sequences obtained by NGS technology was examined to identify microsatellite repeats in

  1. Using web services for linking genomic data to medical information systems.

    Science.gov (United States)

    Maojo, V; Crespo, J; de la Calle, G; Barreiro, J; Garcia-Remesal, M

    2007-01-01

    To develop a new perspective for biomedical information systems, regarding the introduction of ideas, methods and tools related to the new scenario of genomic medicine. Technological aspects related to the analysis and integration of heterogeneous clinical and genomic data include mapping clinical and genetic concepts, potential future standards or the development of integrated biomedical ontologies. In this clinicomics scenario, we describe the use of Web services technologies to improve access to and integrate different information sources. We give a concrete example of the use of Web services technologies: the OntoFusion project. Web services provide new biomedical informatics (BMI) approaches related to genomic medicine. Customized workflows will aid research tasks by linking heterogeneous Web services. Two significant examples of these European Commission-funded efforts are the INFOBIOMED Network of Excellence and the Advancing Clinico-Genomic Trials on Cancer (ACGT) integrated project. Supplying medical researchers and practitioners with omics data and biologists with clinical datasets can help to develop genomic medicine. BMI is contributing by providing the informatics methods and technological infrastructure needed for these collaborative efforts.

  2. Implementation of a patient-facing genomic test report in the electronic health record using a web-application interface.

    Science.gov (United States)

    Williams, Marc S; Kern, Melissa S; Lerch, Virginia R; Billet, Jonathan; Williams, Janet L; Moore, Gregory J

    2018-05-30

    Genomic medicine is emerging into clinical care. Communication of genetic laboratory results to patients and providers is hampered by the complex technical nature of the laboratory reports. This can lead to confusion and misinterpretation of the results resulting in inappropriate care. Patients usually do not receive a copy of the report leading to further opportunities for miscommunication. To address these problems, interpretive reports were created using input from the intended end users, patients and providers. This paper describes the technical development and deployment of the first patient-facing genomic test report (PGR) within an electronic health record (EHR) ecosystem using a locally developed standards-based web-application interface. A patient-facing genomic test report with a companion provider report was configured for implementation within the EHR using a locally developed software platform, COMPASS™. COMPASS™ is designed to manage secure data exchange, as well as patient and provider access to patient reported data capture and clinical display tools. COMPASS™ is built using a Software as a Service (SaaS) approach which exposes an API that apps can interact with. An authoring tool was developed that allowed creation of patient-specific PGRs and the accompanying provider reports. These were converted to a format that allowed them to be presented in the patient portal and EHR respectively using the existing COMPASS™ interface thus allowing patients, caregivers and providers access to individual reports designed for the intended end user. The PGR as developed was shown to enhance patient and provider communication around genomic results. It is built on current standards but is designed to support integration with other tools and be compatible with emerging opportunities such as SMART on FHIR. This approach could be used to support genomic return of results as the tool is scalable and generalizable.

  3. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Henrik [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Cantor, Michael [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Dusheyko, Serge [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Hua, Susan [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Poliakov, Alexander [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Shabalov, Igor [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Smirnova, Tatyana [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Grigoriev, Igor V. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Dubchak, Inna [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2013-11-12

    The U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a national user facility, serves the diverse scientific community by providing integrated high-throughput sequencing and computational analysis to enable system-based scientific approaches in support of DOE missions related to clean energy generation and environmental characterization. The JGI Genome Portal (http://genome.jgi.doe.gov) provides unified access to all JGI genomic databases and analytical tools. The JGI maintains extensive data management systems and specialized analytical capabilities to manage and interpret complex genomic data. A user can search, download and explore multiple data sets available for all DOE JGI sequencing projects including their status, assemblies and annotations of sequenced genomes. In this paper, we describe major updates of the Genome Portal in the past 2 years with a specific emphasis on efficient handling of the rapidly growing amount of diverse genomic data accumulated in JGI.

  4. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome

    Science.gov (United States)

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle. PMID

  5. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    Science.gov (United States)

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.

    Science.gov (United States)

    Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis

    2017-01-01

    Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.

  7. Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: Development of novel SSR markers and genetic diversity in Pistacia species.

    Science.gov (United States)

    Ziya Motalebipour, Elmira; Kafkas, Salih; Khodaeiaminjan, Mortaza; Çoban, Nergiz; Gözel, Hatice

    2016-12-07

    Pistachio (Pistacia vera L.) is one of the most important nut crops in the world. There are about 11 wild species in the genus Pistacia, and they have importance as rootstock seed sources for cultivated P. vera and forest trees. Published information on the pistachio genome is limited. Therefore, a genome survey is necessary to obtain knowledge on the genome structure of pistachio by next generation sequencing. Simple sequence repeat (SSR) markers are useful tools for germplasm characterization, genetic diversity analysis, and genetic linkage mapping, and may help to elucidate genetic relationships among pistachio cultivars and species. To explore the genome structure of pistachio, a genome survey was performed using the Illumina platform at approximately 40× coverage depth in the P. vera cv. Siirt. The K-mer analysis indicated that pistachio has a genome that is about 600 Mb in size and is highly heterozygous. The assembly of 26.77 Gb Illumina data produced 27,069 scaffolds at N50 = 3.4 kb with a total of 513.5 Mb. A total of 59,280 SSR motifs were detected with a frequency of 8.67 kb. A total of 206 SSRs were used to characterize 24 P. vera cultivars and 20 wild Pistacia genotypes (four genotypes from each five wild Pistacia species) belonging to P. atlantica, P. integerrima, P. chinenesis, P. terebinthus, and P. lentiscus genotypes. Overall 135 SSR loci amplified in all 44 cultivars and genotypes, 41 were polymorphic in six Pistacia species. The novel SSR loci developed from cultivated pistachio were highly transferable to wild Pistacia species. The results from a genome survey of pistachio suggest that the genome size of pistachio is about 600 Mb with a high heterozygosity rate. This information will help to design whole genome sequencing strategies for pistachio. The newly developed novel polymorphic SSRs in this study may help germplasm characterization, genetic diversity, and genetic linkage mapping studies in the genus Pistacia.

  8. Toward the automated generation of genome-scale metabolic networks in the SEED.

    Science.gov (United States)

    DeJongh, Matthew; Formsma, Kevin; Boillot, Paul; Gould, John; Rycenga, Matthew; Best, Aaron

    2007-04-26

    Current methods for the automated generation of genome-scale metabolic networks focus on genome annotation and preliminary biochemical reaction network assembly, but do not adequately address the process of identifying and filling gaps in the reaction network, and verifying that the network is suitable for systems level analysis. Thus, current methods are only sufficient for generating draft-quality networks, and refinement of the reaction network is still largely a manual, labor-intensive process. We have developed a method for generating genome-scale metabolic networks that produces substantially complete reaction networks, suitable for systems level analysis. Our method partitions the reaction space of central and intermediary metabolism into discrete, interconnected components that can be assembled and verified in isolation from each other, and then integrated and verified at the level of their interconnectivity. We have developed a database of components that are common across organisms, and have created tools for automatically assembling appropriate components for a particular organism based on the metabolic pathways encoded in the organism's genome. This focuses manual efforts on that portion of an organism's metabolism that is not yet represented in the database. We have demonstrated the efficacy of our method by reverse-engineering and automatically regenerating the reaction network from a published genome-scale metabolic model for Staphylococcus aureus. Additionally, we have verified that our method capitalizes on the database of common reaction network components created for S. aureus, by using these components to generate substantially complete reconstructions of the reaction networks from three other published metabolic models (Escherichia coli, Helicobacter pylori, and Lactococcus lactis). We have implemented our tools and database within the SEED, an open-source software environment for comparative genome annotation and analysis. Our method sets the

  9. Toward the automated generation of genome-scale metabolic networks in the SEED

    Directory of Open Access Journals (Sweden)

    Gould John

    2007-04-01

    Full Text Available Abstract Background Current methods for the automated generation of genome-scale metabolic networks focus on genome annotation and preliminary biochemical reaction network assembly, but do not adequately address the process of identifying and filling gaps in the reaction network, and verifying that the network is suitable for systems level analysis. Thus, current methods are only sufficient for generating draft-quality networks, and refinement of the reaction network is still largely a manual, labor-intensive process. Results We have developed a method for generating genome-scale metabolic networks that produces substantially complete reaction networks, suitable for systems level analysis. Our method partitions the reaction space of central and intermediary metabolism into discrete, interconnected components that can be assembled and verified in isolation from each other, and then integrated and verified at the level of their interconnectivity. We have developed a database of components that are common across organisms, and have created tools for automatically assembling appropriate components for a particular organism based on the metabolic pathways encoded in the organism's genome. This focuses manual efforts on that portion of an organism's metabolism that is not yet represented in the database. We have demonstrated the efficacy of our method by reverse-engineering and automatically regenerating the reaction network from a published genome-scale metabolic model for Staphylococcus aureus. Additionally, we have verified that our method capitalizes on the database of common reaction network components created for S. aureus, by using these components to generate substantially complete reconstructions of the reaction networks from three other published metabolic models (Escherichia coli, Helicobacter pylori, and Lactococcus lactis. We have implemented our tools and database within the SEED, an open-source software environment for comparative

  10. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates.

    Science.gov (United States)

    Suarez-Ulloa, Victoria; Gonzalez-Romero, Rodrigo; Eirin-Lopez, Jose M

    2015-09-15

    Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, groundbreaking approach, improving the conservation and management of natural resources in the oceans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits

    Directory of Open Access Journals (Sweden)

    Feltus Frank A

    2011-07-01

    Full Text Available Abstract Background Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18 to duodecaploid (12X = 108. Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome. Results A switchgrass BAC library constructed by partial digestion of nuclear DNA with EcoRI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective. Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice OsBRI1 locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy. Conclusions The construction of the first switchgrass BAC library and comparative analysis of

  12. Improving Microbial Genome Annotations in an Integrated Database Context

    Science.gov (United States)

    Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Anderson, Iain; Mavromatis, Konstantinos; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2013-01-01

    Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG) family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/. PMID:23424620

  13. Improving microbial genome annotations in an integrated database context.

    Directory of Open Access Journals (Sweden)

    I-Min A Chen

    Full Text Available Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/.

  14. Confluence of genes, environment, development, and behavior in a post Genome-Wide Association Study world.

    Science.gov (United States)

    Vrieze, Scott I; Iacono, William G; McGue, Matt

    2012-11-01

    This article serves to outline a research paradigm to investigate main effects and interactions of genes, environment, and development on behavior and psychiatric illness. We provide a historical context for candidate gene studies and genome-wide association studies, including benefits, limitations, and expected payoffs. Using substance use and abuse as our driving example, we then turn to the importance of etiological psychological theory in guiding genetic, environmental, and developmental research, as well as the utility of refined phenotypic measures, such as endophenotypes, in the pursuit of etiological understanding and focused tests of genetic and environmental associations. Phenotypic measurement has received considerable attention in the history of psychology and is informed by psychometrics, whereas the environment remains relatively poorly measured and is often confounded with genetic effects (i.e., gene-environment correlation). Genetically informed designs, which are no longer limited to twin and adoption studies thanks to ever-cheaper genotyping, are required to understand environmental influences. Finally, we outline the vast amount of individual difference in structural genomic variation, most of which remains to be leveraged in genetic association tests. Although the genetic data can be massive and burdensome (tens of millions of variants per person), we argue that improved understanding of genomic structure and function will provide investigators with new tools to test specific a priori hypotheses derived from etiological psychological theory, much like current candidate gene research but with less confusion and more payoff than candidate gene research has to date.

  15. First insights in the variability of Borrelia recurrentis genomes.

    Directory of Open Access Journals (Sweden)

    Durdica Marosevic

    2017-09-01

    Full Text Available Borrelia recurrentis is the causative agent of louse-borne relapsing fever, endemic to the Horn of Africa. New attention was raised in Europe, with the highest number of cases (n = 45 reported among migrants in 2015 in Germany and sporadically from other European countries. So far only one genome was sequenced, hindering the development of specific molecular diagnostic and typing tools. Here we report on modified culture conditions for B. recurrentis and the intraspecies genome variability of six isolates isolated and cultured in different years in order to explore the possibility to identify new targets for typing and examine the molecular epidemiology of the pathogen.Two historical isolates from Ethiopia and four isolates from migrants from Somalia (n = 3 and Ethiopia (n = 1 obtained in 2015 were cultured in MPK-medium supplemented with 50% foetal calf serum. Whole DNA was sequenced using Illumina MiSeq technology and analysed using the CLC Genomics Workbench and SPAdes de novo assembler. Compared to the reference B. recurrentis A1 29-38 SNPs were identified in the genome distributed on the chromosome and plasmids. In addition to that, plasmids of differing length, compared to the available reference genome were identified.The observed low genetic variability of B. recurrentis isolates is possibly due to the adaptation to a very conserved vector-host (louse-human cycle, or influenced by the fastidious nature of the pathogen and their resistance to in vitro growth. Nevertheless, isolates obtained in 2015 were bearing the same chromosomal SNPs and could be distinguished from the historical isolates by means of whole genome sequencing, but not hitherto used typing methods. This is the first study examining the molecular epidemiology of B. recurrentis and provides the necessary background for the development of better diagnostic tools.

  16. ATLAS (Automatic Tool for Local Assembly Structures) - A Comprehensive Infrastructure for Assembly, Annotation, and Genomic Binning of Metagenomic and Metaranscripomic Data

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard A.; Brown, Joseph M.; Colby, Sean M.; Overall, Christopher C.; Lee, Joon-Yong; Zucker, Jeremy D.; Glaesemann, Kurt R.; Jansson, Georg C.; Jansson, Janet K.

    2017-03-02

    ATLAS (Automatic Tool for Local Assembly Structures) is a comprehensive multiomics data analysis pipeline that is massively parallel and scalable. ATLAS contains a modular analysis pipeline for assembly, annotation, quantification and genome binning of metagenomics and metatranscriptomics data and a framework for reference metaproteomic database construction. ATLAS transforms raw sequence data into functional and taxonomic data at the microbial population level and provides genome-centric resolution through genome binning. ATLAS provides robust taxonomy based on majority voting of protein coding open reading frames rolled-up at the contig level using modified lowest common ancestor (LCA) analysis. ATLAS provides robust taxonomy based on majority voting of protein coding open reading frames rolled-up at the contig level using modified lowest common ancestor (LCA) analysis. ATLAS is user-friendly, easy install through bioconda maintained as open-source on GitHub, and is implemented in Snakemake for modular customizable workflows.

  17. xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud.

    Science.gov (United States)

    Duvick, Jon; Standage, Daniel S; Merchant, Nirav; Brendel, Volker P

    2016-04-01

    Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today's pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant's Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. © 2016 American Society of Plant Biologists. All rights reserved.

  18. Development, characterization and use of genomic SSR markers for assessment of genetic diversity in some Saudi date palm (Phoenix dactylifera L. cultivars

    Directory of Open Access Journals (Sweden)

    Sulieman A. Al-Faifi

    2016-05-01

    Conclusions: The developed microsatellite markers are additional values to date palm characterization tools that can be used by researchers in population genetics, cultivar identification as well as genetic resource exploration and management. The tested cultivars exhibited a significant amount of genetic diversity and could be suitable for successful breeding program. Genomic sequences generated from this study are available at the National Center for Biotechnology Information (NCBI, Sequence Read Archive (Accession numbers. LIBGSS_039019.

  19. The GenABEL Project for statistical genomics.

    Science.gov (United States)

    Karssen, Lennart C; van Duijn, Cornelia M; Aulchenko, Yurii S

    2016-01-01

    Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination.

  20. Prospects and Challenges for the Conservation of Farm Animal Genomic Resources, 2015-2025

    Directory of Open Access Journals (Sweden)

    Michael William Bruford

    2015-10-01

    Full Text Available Livestock conservation practice is changing rapidly in light of policy, climate change and market demands. The last decade saw a step change in technological and analytical approaches to define, manage and conserve Farm Animal Genomic Resources (FAnGR. These changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and the methodologies needed to exploit new, multidimensional data. The ESF Genomic Resources program final conference addressed these problems attempting to contribute to the development of the research and policy agenda for the next decade. We broadly identified four areas related to methodological and analytical challenges, data management and conservation. The overall conclusion is that there is a need for the use of current state-of-the-art tools to characterise the state of genomic resources in non-commercial and local breeds. The livestock genomic sector, which has been relatively well-organised in applying such methodologies so far, needs to make a concerted effort in the coming decade to enable to the democratisation of the powerful tools that are now at its disposal, and to ensure that they are applied in the context of breed conservation as well as development.

  1. CRISPR Mediated Genome Engineering and its Application in Industry.

    Science.gov (United States)

    Kaboli, Saeed; Babazada, Hasan

    2018-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) method has been dramatically changing the field of genome engineering. It is a rapid, highly efficient and versatile tool for precise modification of genome that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This novel RNA-guided genome-editing technique has become a revolutionary tool in biomedical science and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing tool, summarize the recent advances in CRISPR/Cas9 technology to engineer the genomes of a wide variety of organisms, and discuss their applications to treatment of fungal and viral disease. We also discuss advantageous of CRISPR/Cas9 technology to drug design, creation of animal model, and to food, agricultural and energy sciences. Adoption of the CRISPR/Cas9 technology in biomedical and biotechnological researches would create innovative applications of it not only for breeding of strains exhibiting desired traits for specific industrial and medical applications, but also for investigation of genome function.

  2. Fish genomes : a powerful tool to uncover new functional elements in vertebrates

    NARCIS (Netherlands)

    Stupka, Elia

    2011-01-01

    This thesis spans several years of work dedicated to understanding fish genomes. In the first chapter it describes the genome of the first fish for which the entire genome was sequenced through a large-scale international project, Fugu rubripes. the pufferfish. In particular, it highlights how this

  3. Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context

    Directory of Open Access Journals (Sweden)

    Gardner Timothy S

    2007-09-01

    Full Text Available Abstract Background Lightweight genome viewer (lwgv is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. Results lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. Conclusion lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired.

  4. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology

    KAUST Repository

    Rashid, Mamoon; Stingl, Ulrich

    2015-01-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70–80% of microbial diversity – recently called the “microbial dark matter” – remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology.

  5. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology.

    Science.gov (United States)

    Rashid, Mamoon; Stingl, Ulrich

    2015-12-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70-80% of microbial diversity - recently called the "microbial dark matter" - remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology

    KAUST Repository

    Rashid, Mamoon

    2015-09-25

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70–80% of microbial diversity – recently called the “microbial dark matter” – remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology.

  7. PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data.

    Science.gov (United States)

    Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai; Gundlach, Heidrun; Mayer, Klaus F X

    2017-01-01

    Plant Genome and Systems Biology (PGSB), formerly Munich Institute for Protein Sequences (MIPS) PlantsDB, is a database framework for the integration and analysis of plant genome data, developed and maintained for more than a decade now. Major components of that framework are genome databases and analysis resources focusing on individual (reference) genomes providing flexible and intuitive access to data. Another main focus is the integration of genomes from both model and crop plants to form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny). Data exchange and integrated search functionality with/over many plant genome databases is provided within the transPLANT project.

  8. In silico tools for the analysis of antibiotic biosynthetic pathways

    DEFF Research Database (Denmark)

    Weber, Tilmann

    2014-01-01

    Natural products of bacteria and fungi are the most important source for antimicrobial drug leads. For decades, such compounds were exclusively found by chemical/bioactivity-guided screening approaches. The rapid progress in sequencing technologies only recently allowed the development of novel...... screening methods based on the genome sequences of potential producing organisms. The basic principle of such genome mining approaches is to identify genes, which are involved in the biosynthesis of such molecules, and to predict the products of the identified pathways. Thus, bioinformatics methods...... and tools are crucial for genome mining. In this review, a comprehensive overview is given on programs and databases for the identification and analysis of antibiotic biosynthesis gene clusters in genomic data....

  9. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity

    Science.gov (United States)

    Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Here we ...

  10. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh).

    Science.gov (United States)

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  11. Development and validation of a 20K single nucleotide polymorphism (SNP whole genome genotyping array for apple (Malus × domestica Borkh.

    Directory of Open Access Journals (Sweden)

    Luca Bianco

    Full Text Available High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus. A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs. Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  12. Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh)

    Science.gov (United States)

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088

  13. Developing a 300C Analog Tool for EGS

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy

    2015-03-23

    This paper covers the development of a 300°C geothermal well monitoring tool for supporting future EGS (enhanced geothermal systems) power production. This is the first of 3 tools planed. This is an analog tool designed for monitoring well pressure and temperature. There is discussion on 3 different circuit topologies and the development of the supporting surface electronics and software. There is information on testing electronic circuits and component. One of the major components is the cable used to connect the analog tool to the surface.

  14. Transposons As Tools for Functional Genomics in Vertebrate Models.

    Science.gov (United States)

    Kawakami, Koichi; Largaespada, David A; Ivics, Zoltán

    2017-11-01

    Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Development of Simulator Configuration Tool

    International Nuclear Information System (INIS)

    Nedrelid, Olav; Pettersen, Geir

    1996-01-01

    The main objective of the development of a Simulator Configuration Tool (SCT) is to achieve faster and more efficient production of dynamic simulators. Through application of versatile graphical interfaces, the simulator builder should be able to configure different types of simulators including full-scope process simulators. The SCT should be able to serve different simulator environments. The configuration tool communicates with simulator execution environments through a TCP/IP-based interface, Communication with a Model Server System developed at Institutt for energiteknikk has been established and used as test case. The system consists of OSF/Motif dialogues for operations requiring textual input, list selections etc., and uses the Picasso-3 User Interface Management System to handle presentation of static and dynamic graphical information. (author)

  16. Anticipation of Personal Genomics Data Enhances Interest and Learning Environment in Genomics and Molecular Biology Undergraduate Courses.

    Science.gov (United States)

    Weber, K Scott; Jensen, Jamie L; Johnson, Steven M

    2015-01-01

    An important discussion at colleges is centered on determining more effective models for teaching undergraduates. As personalized genomics has become more common, we hypothesized it could be a valuable tool to make science education more hands on, personal, and engaging for college undergraduates. We hypothesized that providing students with personal genome testing kits would enhance the learning experience of students in two undergraduate courses at Brigham Young University: Advanced Molecular Biology and Genomics. These courses have an emphasis on personal genomics the last two weeks of the semester. Students taking these courses were given the option to receive personal genomics kits in 2014, whereas in 2015 they were not. Students sent their personal genomics samples in on their own and received the data after the course ended. We surveyed students in these courses before and after the two-week emphasis on personal genomics to collect data on whether anticipation of obtaining their own personal genomic data impacted undergraduate student learning. We also tested to see if specific personal genomic assignments improved the learning experience by analyzing the data from the undergraduate students who completed both the pre- and post-course surveys. Anticipation of personal genomic data significantly enhanced student interest and the learning environment based on the time students spent researching personal genomic material and their self-reported attitudes compared to those who did not anticipate getting their own data. Personal genomics homework assignments significantly enhanced the undergraduate student interest and learning based on the same criteria and a personal genomics quiz. We found that for the undergraduate students in both molecular biology and genomics courses, incorporation of personal genomic testing can be an effective educational tool in undergraduate science education.

  17. Scribl: an HTML5 Canvas-based graphics library for visualizing genomic data over the web.

    Science.gov (United States)

    Miller, Chase A; Anthony, Jon; Meyer, Michelle M; Marth, Gabor

    2013-02-01

    High-throughput biological research requires simultaneous visualization as well as analysis of genomic data, e.g. read alignments, variant calls and genomic annotations. Traditionally, such integrative analysis required desktop applications operating on locally stored data. Many current terabyte-size datasets generated by large public consortia projects, however, are already only feasibly stored at specialist genome analysis centers. As even small laboratories can afford very large datasets, local storage and analysis are becoming increasingly limiting, and it is likely that most such datasets will soon be stored remotely, e.g. in the cloud. These developments will require web-based tools that enable users to access, analyze and view vast remotely stored data with a level of sophistication and interactivity that approximates desktop applications. As rapidly dropping cost enables researchers to collect data intended to answer questions in very specialized contexts, developers must also provide software libraries that empower users to implement customized data analyses and data views for their particular application. Such specialized, yet lightweight, applications would empower scientists to better answer specific biological questions than possible with general-purpose genome browsers currently available. Using recent advances in core web technologies (HTML5), we developed Scribl, a flexible genomic visualization library specifically targeting coordinate-based data such as genomic features, DNA sequence and genetic variants. Scribl simplifies the development of sophisticated web-based graphical tools that approach the dynamism and interactivity of desktop applications. Software is freely available online at http://chmille4.github.com/Scribl/ and is implemented in JavaScript with all modern browsers supported.

  18. SCCmecFinder, a Web-Based Tool for Typing of Staphylococcal Cassette Chromosome mec in Staphylococcus aureus Using Whole-Genome Sequence Data.

    Science.gov (United States)

    Kaya, Hülya; Hasman, Henrik; Larsen, Jesper; Stegger, Marc; Johannesen, Thor Bech; Allesøe, Rosa Lundbye; Lemvigh, Camilla Koldbæk; Aarestrup, Frank Møller; Lund, Ole; Larsen, Anders Rhod

    2018-01-01

    Typing of methicillin-resistant Staphylococcus aureus (MRSA) is important in infection control and surveillance. The current nomenclature of MRSA includes the genetic background of the S. aureus strain determined by multilocus sequence typing (MLST) or equivalent methods like spa typing and typing of the mobile genetic element staphylococcal cassette chromosome mec (SCC mec ), which carries the mecA or mecC gene. Whereas MLST and spa typing are relatively simple, typing of SCC mec is less trivial because of its heterogeneity. Whole-genome sequencing (WGS) provides the essential data for typing of the genetic background and SCC mec , but so far, no bioinformatic tools for SCC mec typing have been available. Here, we report the development and evaluation of SCC mec Finder for characterization of the SCC mec element from S. aureus WGS data. SCC mec Finder is able to identify all SCC mec element types, designated I to XIII, with subtyping of SCC mec types IV (2B) and V (5C2). SCC mec elements are characterized by two different gene prediction approaches to achieve correct annotation, a Basic Local Alignment Search Tool (BLAST)-based approach and a k -mer-based approach. Evaluation of SCC mec Finder by using a diverse collection of clinical isolates ( n = 93) showed a high typeability level of 96.7%, which increased to 98.9% upon modification of the default settings. In conclusion, SCC mec Finder can be an alternative to more laborious SCC mec typing methods and is freely available at https://cge.cbs.dtu.dk/services/SCCmecFinder. IMPORTANCE SCC mec in MRSA is acknowledged to be of importance not only because it contains the mecA or mecC gene but also for staphylococcal adaptation to different environments, e.g., in hospitals, the community, and livestock. Typing of SCC mec by PCR techniques has, because of its heterogeneity, been challenging, and whole-genome sequencing has only partially solved this since no good bioinformatic tools have been available. In this

  19. GEMMER: GEnome-wide tool for Multi-scale Modeling data Extraction and Representation for Saccharomyces cerevisiae.

    Science.gov (United States)

    Mondeel, Thierry D G A; Crémazy, Frédéric; Barberis, Matteo

    2018-02-01

    Multi-scale modeling of biological systems requires integration of various information about genes and proteins that are connected together in networks. Spatial, temporal and functional information is available; however, it is still a challenge to retrieve and explore this knowledge in an integrated, quick and user-friendly manner. We present GEMMER (GEnome-wide tool for Multi-scale Modelling data Extraction and Representation), a web-based data-integration tool that facilitates high quality visualization of physical, regulatory and genetic interactions between proteins/genes in Saccharomyces cerevisiae. GEMMER creates network visualizations that integrate information on function, temporal expression, localization and abundance from various existing databases. GEMMER supports modeling efforts by effortlessly gathering this information and providing convenient export options for images and their underlying data. GEMMER is freely available at http://gemmer.barberislab.com. Source code, written in Python, JavaScript library D3js, PHP and JSON, is freely available at https://github.com/barberislab/GEMMER. M.Barberis@uva.nl. Supplementary data are available at Bioinformatics online. © The Author(s) 2018. Published by Oxford University Press.

  20. CompaGB: An open framework for genome browsers comparison

    Directory of Open Access Journals (Sweden)

    Chiapello Hélène

    2011-05-01

    Full Text Available Abstract Background Tools to visualize and explore genomes hold a central place in genomics and the diversity of genome browsers has increased dramatically over the last few years. It often turns out to be a daunting task to compare and choose a well-adapted genome browser, as multidisciplinary knowledge is required to carry out this task and the number of tools, functionalities and features are overwhelming. Findings To assist in this task, we propose a community-based framework based on two cornerstones: (i the implementation of industry promoted software qualification method (QSOS adapted for genome browser evaluations, and (ii a web resource providing numerous facilities either for visualizing comparisons or performing new evaluations. We formulated 60 criteria specifically for genome browsers, and incorporated another 65 directly from QSOS's generic section. Those criteria aim to answer versatile needs, ranging from a biologist whose interest primarily lies into user-friendly and informative functionalities, a bioinformatician who wants to integrate the genome browser into a wider framework, or a computer scientist who might choose a software according to more technical features. We developed a dedicated web application to enrich the existing QSOS functionalities (weighting of criteria, user profile with features of interest to a community-based framework: easy management of evolving data, user comments... Conclusions The framework is available at http://genome.jouy.inra.fr/CompaGB. It is open to anyone who wishes to participate in the evaluations. It helps the scientific community to (1 choose a genome browser that would better fit their particular project, (2 visualize features comparatively with easily accessible formats, such as tables or radar plots and (3 perform their own evaluation against the defined criteria. To illustrate the CompaGB functionalities, we have evaluated seven genome browsers according to the implemented methodology

  1. Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

    Directory of Open Access Journals (Sweden)

    Chang-Gi Back

    2015-09-01

    Full Text Available In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP, X. hyacinthi (XH and X. campestris pv. zantedeschiae (XCZ, based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of 1 pg/μl per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

  2. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.

    Science.gov (United States)

    Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario

    2011-01-01

    Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.

  3. Artificial intelligence tool development and applications to nuclear power

    International Nuclear Information System (INIS)

    Naser, J.A.

    1987-01-01

    Two parallel efforts are being performed at the Electric Power Research Institute (EPRI) to help the electric utility industry take advantage of the expert system technology. The first effort is the development of expert system building tools, which are tailored to electric utility industry applications. The second effort is the development of expert system applications. These two efforts complement each other. The application development tests the tools and identifies additional tool capabilities that are required. The tool development helps define the applications that can be successfully developed. Artificial intelligence, as demonstrated by the developments described is being established as a credible technological tool for the electric utility industry. The challenge to transferring artificial intelligence technology and an understanding of its potential to the electric utility industry is to gain an understanding of the problems that reduce power plant performance and identify which can be successfully addressed using artificial intelligence

  4. The Genome and Development-Dependent Transcriptomes of Pyronema confluens: A Window into Fungal Evolution

    Science.gov (United States)

    Traeger, Stefanie; Altegoer, Florian; Freitag, Michael; Gabaldon, Toni; Kempken, Frank; Kumar, Abhishek; Marcet-Houben, Marina; Pöggeler, Stefanie; Stajich, Jason E.; Nowrousian, Minou

    2013-01-01

    Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ∼13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion

  5. The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution.

    Directory of Open Access Journals (Sweden)

    Stefanie Traeger

    Full Text Available Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ~13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721 was used to complement the S. macrospora

  6. Comparative Genomics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 8. Comparative Genomics - A Powerful New Tool in Biology. Anand K Bachhawat. General Article Volume 11 Issue 8 August 2006 pp 22-40. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Development of the major trauma case review tool.

    Science.gov (United States)

    Curtis, Kate; Mitchell, Rebecca; McCarthy, Amy; Wilson, Kellie; Van, Connie; Kennedy, Belinda; Tall, Gary; Holland, Andrew; Foster, Kim; Dickinson, Stuart; Stelfox, Henry T

    2017-02-28

    As many as half of all patients with major traumatic injuries do not receive the recommended care, with variance in preventable mortality reported across the globe. This variance highlights the need for a comprehensive process for monitoring and reviewing patient care, central to which is a consistent peer-review process that includes trauma system safety and human factors. There is no published, evidence-informed standardised tool that considers these factors for use in adult or paediatric trauma case peer-review. The aim of this research was to develop and validate a trauma case review tool to facilitate clinical review of paediatric trauma patient care in extracting information to facilitate monitoring, inform change and enable loop closure. Development of the trauma case review tool was multi-faceted, beginning with a review of the trauma audit tool literature. Data were extracted from the literature to inform iterative tool development using a consensus approach. Inter-rater agreement was assessed for both the pilot and finalised versions of the tool. The final trauma case review tool contained ten sections, including patient factors (such as pre-existing conditions), presenting problem, a timeline of events, factors contributing to the care delivery problem (including equipment, work environment, staff action, organizational factors), positive aspects of care and the outcome of panel discussion. After refinement, the inter-rater reliability of the human factors and outcome components of the tool improved with an average 86% agreement between raters. This research developed an evidence-informed tool for use in paediatric trauma case review that considers both system safety and human factors to facilitate clinical review of trauma patient care. This tool can be used to identify opportunities for improvement in trauma care and guide quality assurance activities. Validation is required in the adult population.

  8. Development of a core management tool for MYRRHA

    International Nuclear Information System (INIS)

    Jalůvka, David; Van den Eynde, Gert; Vandewalle, Stefan

    2013-01-01

    Highlights: • An in-core fuel management tool is being developed for the flexible irradiation machine MYRRHA. • Specific issues of the MYRRHA in-core fuel management are briefly discussed. • The tool addresses the loading pattern optimization problem. • Illustrative in-core fuel management optimization problems are solved using the tool. - Abstract: MYRRHA is an advanced multi-purpose irradiation facility under development at SCK• CEN in Mol, Belgium. In order to ensure an economical and safe operation of the reactor, an in-core fuel management tool is being developed within the project to address the loading pattern optimization problem. In the paper, the current version of the tool – its architecture and design, unique features, and the field of its application, are presented. In the second part of the paper, the tool’s capabilities are demonstrated on simple MYRRHA in-core fuel management optimization problems

  9. Evidence that personal genome testing enhances student learning in a course on genomics and personalized medicine.

    Directory of Open Access Journals (Sweden)

    Keyan Salari

    Full Text Available An emerging debate in academic medical centers is not about the need for providing trainees with fundamental education on genomics, but rather the most effective educational models that should be deployed. At Stanford School of Medicine, a novel hands-on genomics course was developed in 2010 that provided students the option to undergo personal genome testing as part of the course curriculum. We hypothesized that use of personal genome testing in the classroom would enhance the learning experience of students. No data currently exist on how such methods impact student learning; thus, we surveyed students before and after the course to determine its impact. We analyzed responses using paired statistics from the 31 medical and graduate students who completed both pre-course and post-course surveys. Participants were stratified by those who did (N = 23 or did not (N = 8 undergo personal genome testing. In reflecting on the experience, 83% of students who underwent testing stated that they were pleased with their decision compared to 12.5% of students who decided against testing (P = 0.00058. Seventy percent of those who underwent personal genome testing self-reported a better understanding of human genetics on the basis of having undergone testing. Further, students who underwent personal genome testing demonstrated an average 31% increase in pre- to post-course scores on knowledge questions (P = 3.5×10(-6; this was significantly higher (P = 0.003 than students who did not undergo testing, who showed a non-significant improvement. Undergoing personal genome testing and using personal genotype data in the classroom enhanced students' self-reported and assessed knowledge of genomics, and did not appear to cause significant anxiety. At least for self-selected students, the incorporation of personal genome testing can be an effective educational tool to teach important concepts of clinical genomic testing.

  10. Use of a wiki as an interactive teaching tool in pathology residency education: Experience with a genomics, research, and informatics in pathology course

    Directory of Open Access Journals (Sweden)

    Seung Park

    2012-01-01

    Full Text Available Background: The need for informatics and genomics training in pathology is critical, yet limited resources for such training are available. In this study we sought to critically test the hypothesis that the incorporation of a wiki (a collaborative writing and publication tool with roots in "Web 2.0" in a combined informatics and genomics course could both (1 serve as an interactive, collaborative educational resource and reference and (2 actively engage trainees by requiring the creation and sharing of educational materials. Materials and Methods: A 2-week full-time course at our institution covering genomics, research, and pathology informatics (GRIP was taught by 36 faculty to 18 second- and third-year pathology residents. The course content included didactic lectures and hands-on demonstrations of technology (e.g., whole-slide scanning, telepathology, and statistics software. Attendees were given pre- and posttests. Residents were trained to use wiki technology (MediaWiki and requested to construct a wiki about the GRIP course by writing comprehensive online review articles on assigned lectures. To gauge effectiveness, pretest and posttest scores for our course were compared with scores from the previous 7 years from the predecessor course (limited to informatics given at our institution that did not utilize wikis. Results: Residents constructed 59 peer-reviewed collaborative wiki articles. This group showed a 25% improvement (standard deviation 12% in test scores, which was greater than the 16% delta recorded in the prior 7 years of our predecessor course (P = 0.006. Conclusions: Our use of wiki technology provided a wiki containing high-quality content that will form the basis of future pathology informatics and genomics courses and proved to be an effective teaching tool, as evidenced by the significant rise in our resident posttest scores. Data from this project provide support for the notion that active participation in content creation

  11. xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud[OPEN

    Science.gov (United States)

    Merchant, Nirav

    2016-01-01

    Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today’s pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant’s Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. PMID:27020957

  12. CRISPR/Cas9 in Genome Editing and Beyond.

    Science.gov (United States)

    Wang, Haifeng; La Russa, Marie; Qi, Lei S

    2016-06-02

    The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.

  13. Development of computerized risk management tool

    International Nuclear Information System (INIS)

    Kil Yoo Kim; Mee Jung Hwang; Seung Cheol Jang; Sang Hoon Han; Tae Woon Kim

    1997-01-01

    The author describes the kinds of efforts for the development of computerized risk management tool; (1) development of a risk monitor, Risk Monster, (2) improvement of McFarm (Missing Cutsets Finding Algorithm for Risk Monitor) and finally (3) development of reliability database management system, KwDBMan. Risk Monster supports for plant operators and maintenance schedulers to monitor plant risk and to avoid high peak risk by rearranging maintenance work schedule. Improved McFarm significantly improved calculation speed of Risk Monster for the cases of supporting system OOS (Out Of Service). KwDBMan manages event data, generic data and CCF (Common Cause Failure) data to support Risk Monster as well as PSA tool, KIRAP (KAERI Integrated Reliability Analysis Package)

  14. Software development tools using GPGPU potentialities

    International Nuclear Information System (INIS)

    Dudnik, V.A.; Kudryavtsev, V.I.; Sereda, T.M.; Us, S.A.; Shestakov, M.V.

    2011-01-01

    The paper deals with potentialities of various up-to-date software development tools for making use of graphic processor (GPU) parallel computing resources. Examples are given to illustrate the use of present-day software tools for the development of applications and realization of algorithms for scientific-technical calculations performed by GPGPU. The paper presents some classes of hard mathematical problems of scientific-technical calculations, for which the GPGPU can be efficiently used. is possible. To reduce the time of calculation program development with the use of GPGPU capabilities, various dedicated programming systems and problem-oriented subroutine libraries are recommended. Performance parameters when solving the problems with and without the use of GPGPU potentialities are compared.

  15. Base-By-Base: single nucleotide-level analysis of whole viral genome alignments.

    Science.gov (United States)

    Brodie, Ryan; Smith, Alex J; Roper, Rachel L; Tcherepanov, Vasily; Upton, Chris

    2004-07-14

    With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes) is not feasible without new bioinformatics tools. A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1) rapidly identify and correct alignment errors in large, multiple genome alignments; and 2) generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs) to retrieve detailed annotation information about the aligned genomes or use information from text files. Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  16. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma.

    Science.gov (United States)

    Liu, Tang; Shen, Jacson K; Li, Zhihong; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-04-01

    Sarcomas include some of the most aggressive tumors and typically respond poorly to chemotherapy. In recent years, specific gene fusion/mutations and gene over-expression/activation have been shown to drive sarcoma pathogenesis and development. These emerging genomic alterations may provide targets for novel therapeutic strategies and have the potential to transform sarcoma patient care. The RNA-guided nuclease CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein-9 nuclease) is a convenient and versatile platform for site-specific genome editing and epigenome targeted modulation. Given that sarcoma is believed to develop as a result of genetic alterations in mesenchymal progenitor/stem cells, CRISPR-Cas9 genome editing technologies hold extensive application potentials in sarcoma models and therapies. We review the development and mechanisms of the CRISPR-Cas9 system in genome editing and introduce its application in sarcoma research and potential therapy in clinic. Additionally, we propose future directions and discuss the challenges faced with these applications, providing concise and enlightening information for readers interested in this area. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Development of genetic tools for in vivo virulence analysis of Streptococcus sanguinis.

    Science.gov (United States)

    Turner, Lauren Senty; Das, Sankar; Kanamoto, Taisei; Munro, Cindy L; Kitten, Todd

    2009-08-01

    Completion of the genome sequence of Streptococcus sanguinis SK36 necessitates tools for further characterization of this species. It is often desirable to insert antibiotic resistance markers and other exogenous genes into the chromosome; therefore, we sought to identify a chromosomal site for ectopic expression of foreign genes, and to verify that insertion into this site did not affect important cellular phenotypes. We designed three plasmid constructs for insertion of erm, aad9 or tetM resistance determinants into a genomic region encoding only a small (65 aa) hypothetical protein. To determine whether this insertion affected important cellular properties, SK36 and its erythromycin-resistant derivative, JFP36, were compared for: (i) growth in vitro, (ii) genetic competence, (iii) biofilm formation and (iv) virulence for endocarditis in the rabbit model of infective endocarditis (IE). The spectinomycin-resistant strain, JFP56, and tetracycline-resistant strain, JFP76, were also tested for virulence in vivo. Insertion of erm did not affect growth, competence or biofilm development of JFP36. Recovery of bacteria from heart valves of co-inoculated rabbits was similar to wild-type for JFP36, JFP56 and JFP76, indicating that IE virulence was not significantly affected. The capacity for mutant complementation in vivo was explored in an avirulent ssaB mutant background. Expression of ssaB from its predicted promoter in the target region restored IE virulence. Thus, the chromosomal site utilized is a good candidate for further manipulations of S. sanguinis. In addition, the resistant strains developed may be further applied as controls to facilitate screening for virulence factors in vivo.

  18. Genome editing: The efficient tool CRISPR–Cpf1

    KAUST Repository

    Mahfouz, Magdy M.

    2017-01-01

    The novel features of the CRISPR–Cpf1 RNA-guided endonuclease system facilitate precise and efficient genome engineering. Application of CRISPR–Cpf1 in plants shows promise for robust gene editing and regulation, opening exciting possibilities for targeted trait improvement in crops.

  19. Genome editing: The efficient tool CRISPR–Cpf1

    KAUST Repository

    Mahfouz, Magdy M.

    2017-03-01

    The novel features of the CRISPR–Cpf1 RNA-guided endonuclease system facilitate precise and efficient genome engineering. Application of CRISPR–Cpf1 in plants shows promise for robust gene editing and regulation, opening exciting possibilities for targeted trait improvement in crops.

  20. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse.

    Science.gov (United States)

    Eppig, Janan T

    2017-07-01

    The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.

  1. Combining genomic and proteomic approaches for epigenetics research

    Science.gov (United States)

    Han, Yumiao; Garcia, Benjamin A

    2014-01-01

    Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level. PMID:23895656

  2. Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: Development of novel SSR markers and genetic diversity in Pistacia species

    OpenAIRE

    Ziya Motalebipour, Elmira; Kafkas, Salih; Khodaeiaminjan, Mortaza; ?oban, Nergiz; G?zel, Hatice

    2016-01-01

    Background Pistachio (Pistacia vera L.) is one of the most important nut crops in the world. There are about 11 wild species in the genus Pistacia, and they have importance as rootstock seed sources for cultivated P. vera and forest trees. Published information on the pistachio genome is limited. Therefore, a genome survey is necessary to obtain knowledge on the genome structure of pistachio by next generation sequencing. Simple sequence repeat (SSR) markers are useful tools for germplasm cha...

  3. Genome-wide DNA polymorphism analyses using VariScan

    Directory of Open Access Journals (Sweden)

    Vilella Albert J

    2006-09-01

    Full Text Available Abstract Background DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. Results We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i exhaustive population-genetic analyses including those based on the coalescent theory; ii analysis adapted to the shallow data generated by the high-throughput genome projects; iii use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v visualization of the results integrated with current genome annotations in commonly available genome browsers. Conclusion VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.

  4. KGCAK: a K-mer based database for genome-wide phylogeny and complexity evaluation.

    Science.gov (United States)

    Wang, Dapeng; Xu, Jiayue; Yu, Jun

    2015-09-16

    The K-mer approach, treating genomic sequences as simple characters and counting the relative abundance of each string upon a fixed K, has been extensively applied to phylogeny inference for genome assembly, annotation, and comparison. To meet increasing demands for comparing large genome sequences and to promote the use of the K-mer approach, we develop a versatile database, KGCAK ( http://kgcak.big.ac.cn/KGCAK/ ), containing ~8,000 genomes that include genome sequences of diverse life forms (viruses, prokaryotes, protists, animals, and plants) and cellular organelles of eukaryotic lineages. It builds phylogeny based on genomic elements in an alignment-free fashion and provides in-depth data processing enabling users to compare the complexity of genome sequences based on K-mer distribution. We hope that KGCAK becomes a powerful tool for exploring relationship within and among groups of species in a tree of life based on genomic data.

  5. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    Directory of Open Access Journals (Sweden)

    Moreau Yves

    2005-05-01

    Full Text Available Abstract Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH. One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at http://medgen.ugent.be/arrayCGHbase/.

  6. Development and evaluation of a genomics training program for community health workers in Texas.

    Science.gov (United States)

    Chen, Lei-Shih; Zhao, Shixi; Stelzig, Donaji; Dhar, Shweta U; Eble, Tanya; Yeh, Yu-Chen; Kwok, Oi-Man

    2018-01-04

    PurposeGenomics services have the potential to reduce incidence and mortality of diseases by providing individualized, family health history (FHH)-based prevention strategies to clients. These services may benefit from the involvement of community health workers (CHWs) in the provision of FHH-based genomics education and services, as CHWs are frontline public health workers and lay health educators, who share similar ethnicities, languages, socioeconomic statuses, and life experiences with the communities they serve. We developed, implemented, and evaluated the FHH-based genomics training program for CHWs.MethodsThis theory- and evidence-based FHH-focused genomics curriculum was developed by an interdisciplinary team. Full-day workshops in English and Spanish were delivered to 145 Texas CHWs (91.6% were Hispanic/black). Preworkshop, postworkshop, and 3-month follow-up data were collected.ResultsCHWs significantly improved their attitudes, intention, self-efficacy, and knowledge regarding adopting FHH-based genomics into their practice after the workshops. At 3-month follow-up, these scores remained higher, and there was a significant increase in CHWs' genomics practices.ConclusionThis FHH-based genomics training successfully educated Texas CHWs, and the outcomes were promising. Dissemination of training to CHWs in and outside of Texas is needed to promote better access to and delivery of personalized genomics services for the lay and underserved communities.GENETICS in MEDICINE advance online publication, 4 January 2018; doi:10.1038/gim.2017.236.

  7. The Rise of CRISPR/Cas for Genome Editing in Stem Cells

    Directory of Open Access Journals (Sweden)

    Bing Shui

    2016-01-01

    Full Text Available Genetic manipulation is a powerful tool to establish the causal relationship between a genetic lesion and a particular pathological phenotype. The rise of CRISPR/Cas9 genome-engineering tools overcame the traditional technical bottleneck for routine site-specific genetic manipulation in cells. To create the perfect in vitro cell model, there is significant interest from the stem cell research community to adopt this fast evolving technology. This review addresses this need directly by providing both the up-to-date biochemical rationale of CRISPR-mediated genome engineering and detailed practical guidelines for the design and execution of CRISPR experiments in cell models. Ultimately, this review will serve as a timely and comprehensive guide for this fast developing technology.

  8. EVA: Exome Variation Analyzer, an efficient and versatile tool for filtering strategies in medical genomics

    Directory of Open Access Journals (Sweden)

    Coutant Sophie

    2012-09-01

    Full Text Available Abstract Background Whole exome sequencing (WES has become the strategy of choice to identify a coding allelic variant for a rare human monogenic disorder. This approach is a revolution in medical genetics history, impacting both fundamental research, and diagnostic methods leading to personalized medicine. A plethora of efficient algorithms has been developed to ensure the variant discovery. They generally lead to ~20,000 variations that have to be narrow down to find the potential pathogenic allelic variant(s and the affected gene(s. For this purpose, commonly adopted procedures which implicate various filtering strategies have emerged: exclusion of common variations, type of the allelics variants, pathogenicity effect prediction, modes of inheritance and multiple individuals for exome comparison. To deal with the expansion of WES in medical genomics individual laboratories, new convivial and versatile software tools have to implement these filtering steps. Non-programmer biologists have to be autonomous combining themselves different filtering criteria and conduct a personal strategy depending on their assumptions and study design. Results We describe EVA (Exome Variation Analyzer, a user-friendly web-interfaced software dedicated to the filtering strategies for medical WES. Thanks to different modules, EVA (i integrates and stores annotated exome variation data as strictly confidential to the project owner, (ii allows to combine the main filters dealing with common variations, molecular types, inheritance mode and multiple samples, (iii offers the browsing of annotated data and filtered results in various interactive tables, graphical visualizations and statistical charts, (iv and finally offers export files and cross-links to external useful databases and softwares for further prioritization of the small subset of sorted candidate variations and genes. We report a demonstrative case study that allowed to identify a new candidate gene

  9. Detection of genomic rearrangements in cucumber using genomecmp software

    Science.gov (United States)

    Kulawik, Maciej; Pawełkowicz, Magdalena Ewa; Wojcieszek, Michał; PlÄ der, Wojciech; Nowak, Robert M.

    2017-08-01

    Comparative genomic by increasing information about the genomes sequences available in the databases is a rapidly evolving science. A simple comparison of the general features of genomes such as genome size, number of genes, and chromosome number presents an entry point into comparative genomic analysis. Here we present the utility of the new tool genomecmp for finding rearrangements across the compared sequences and applications in plant comparative genomics.

  10. Assembling networks of microbial genomes using linear programming.

    Science.gov (United States)

    Holloway, Catherine; Beiko, Robert G

    2010-11-20

    Microbial genomes exhibit complex sets of genetic affinities due to lateral genetic transfer. Assessing the relative contributions of parent-to-offspring inheritance and gene sharing is a vital step in understanding the evolutionary origins and modern-day function of an organism, but recovering and showing these relationships is a challenging problem. We have developed a new approach that uses linear programming to find between-genome relationships, by treating tables of genetic affinities (here, represented by transformed BLAST e-values) as an optimization problem. Validation trials on simulated data demonstrate the effectiveness of the approach in recovering and representing vertical and lateral relationships among genomes. Application of the technique to a set comprising Aquifex aeolicus and 75 other thermophiles showed an important role for large genomes as 'hubs' in the gene sharing network, and suggested that genes are preferentially shared between organisms with similar optimal growth temperatures. We were also able to discover distinct and common genetic contributors to each sequenced representative of genus Pseudomonas. The linear programming approach we have developed can serve as an effective inference tool in its own right, and can be an efficient first step in a more-intensive phylogenomic analysis.

  11. Data Mining and Optimization Tools for Developing Engine Parameters Tools

    Science.gov (United States)

    Dhawan, Atam P.

    1998-01-01

    This project was awarded for understanding the problem and developing a plan for Data Mining tools for use in designing and implementing an Engine Condition Monitoring System. Tricia Erhardt and I studied the problem domain for developing an Engine Condition Monitoring system using the sparse and non-standardized datasets to be available through a consortium at NASA Lewis Research Center. We visited NASA three times to discuss additional issues related to dataset which was not made available to us. We discussed and developed a general framework of data mining and optimization tools to extract useful information from sparse and non-standard datasets. These discussions lead to the training of Tricia Erhardt to develop Genetic Algorithm based search programs which were written in C++ and used to demonstrate the capability of GA algorithm in searching an optimal solution in noisy, datasets. From the study and discussion with NASA LeRC personnel, we then prepared a proposal, which is being submitted to NASA for future work for the development of data mining algorithms for engine conditional monitoring. The proposed set of algorithm uses wavelet processing for creating multi-resolution pyramid of tile data for GA based multi-resolution optimal search.

  12. VisTool: A user interface and visualization development system

    DEFF Research Database (Denmark)

    Xu, Shangjin

    system – to simplify user interface development. VisTool allows user interface development without real programming. With VisTool a designer assembles visual objects (e.g. textboxes, ellipse, etc.) to visualize database contents. In VisTool, visual properties (e.g. color, position, etc.) can be formulas...... programming. However, in Software Engineering, software engineers who develop user interfaces do not follow it. In many cases, it is desirable to use graphical presentations, because a graphical presentation gives a better overview than text forms, and can improve task efficiency and user satisfaction....... However, it is more difficult to follow the classical usability approach for graphical presentation development. These difficulties result from the fact that designers cannot implement user interface with interactions and real data. We developed VisTool – a user interface and visualization development...

  13. MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data

    Science.gov (United States)

    Vallenet, David; Belda, Eugeni; Calteau, Alexandra; Cruveiller, Stéphane; Engelen, Stefan; Lajus, Aurélie; Le Fèvre, François; Longin, Cyrille; Mornico, Damien; Roche, David; Rouy, Zoé; Salvignol, Gregory; Scarpelli, Claude; Thil Smith, Adam Alexander; Weiman, Marion; Médigue, Claudine

    2013-01-01

    MicroScope is an integrated platform dedicated to both the methodical updating of microbial genome annotation and to comparative analysis. The resource provides data from completed and ongoing genome projects (automatic and expert annotations), together with data sources from post-genomic experiments (i.e. transcriptomics, mutant collections) allowing users to perfect and improve the understanding of gene functions. MicroScope (http://www.genoscope.cns.fr/agc/microscope) combines tools and graphical interfaces to analyse genomes and to perform the manual curation of gene annotations in a comparative context. Since its first publication in January 2006, the system (previously named MaGe for Magnifying Genomes) has been continuously extended both in terms of data content and analysis tools. The last update of MicroScope was published in 2009 in the Database journal. Today, the resource contains data for >1600 microbial genomes, of which ∼300 are manually curated and maintained by biologists (1200 personal accounts today). Expert annotations are continuously gathered in the MicroScope database (∼50 000 a year), contributing to the improvement of the quality of microbial genomes annotations. Improved data browsing and searching tools have been added, original tools useful in the context of expert annotation have been developed and integrated and the website has been significantly redesigned to be more user-friendly. Furthermore, in the context of the European project Microme (Framework Program 7 Collaborative Project), MicroScope is becoming a resource providing for the curation and analysis of both genomic and metabolic data. An increasing number of projects are related to the study of environmental bacterial (meta)genomes that are able to metabolize a large variety of chemical compounds that may be of high industrial interest. PMID:23193269

  14. Breeding in peach, cherry and plum: from a tissue culture, genetic, transcriptomic and genomic perspective

    Directory of Open Access Journals (Sweden)

    Basilio Carrasco

    2013-01-01

    Full Text Available This review is an overview of traditional and modern breeding methodologies being used to develop new Prunus cultivars (stone fruits with major emphasis on peach, sweet cherry and Japanese plum. To this end, common breeding tools used to produce seedlings, including in vitro culture tools, are discussed. Additionally, the mechanisms of inheritance of many important agronomical traits are described. Recent advances in stone fruit transcriptomics and genomic resources are providing an understanding of the molecular basis of phenotypic variability as well as the identification of allelic variants and molecular markers. These have potential applications for understanding the genetic diversity of the Prunus species, molecular marker-assisted selection and transgenesis. Simple Sequence Repeat (SSR and Single Nucleotide Polymorphism (SNPs molecular markers are described as useful tools to describe genetic diversity in peach, sweet cherry and Japanese plum. Additionally, the recently sequenced peach genome and the public release of the sweet cherry genome are discussed in terms of their applicability to breeding programs

  15. Software Development Methods and Tools: a New Zealand study

    Directory of Open Access Journals (Sweden)

    Chris Phillips

    2005-05-01

    Full Text Available This study is a more detailed follow-up to a preliminary investigation of the practices of software engineers in New Zealand. The focus of this study is on the methods and tools used by software developers in their current organisation. The project involved detailed questionnaires being piloted and sent out to several hundred software developers. A central part of the research involved the identification of factors affecting the use and take-up of existing software development tools in the workplace. The full spectrum of tools from fully integrated I-CASE tools to individual software applications, such as drawing tools was investigated. This paper describes the project and presents the findings.

  16. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.

    Directory of Open Access Journals (Sweden)

    Young Shin Ryu

    Full Text Available Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the λ Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.

  17. Unlimited Thirst for Genome Sequencing, Data Interpretation, and Database Usage in Genomic Era: The Road towards Fast-Track Crop Plant Improvement

    Directory of Open Access Journals (Sweden)

    Arun Prabhu Dhanapal

    2015-01-01

    Full Text Available The number of sequenced crop genomes and associated genomic resources is growing rapidly with the advent of inexpensive next generation sequencing methods. Databases have become an integral part of all aspects of science research, including basic and applied plant and animal sciences. The importance of databases keeps increasing as the volume of datasets from direct and indirect genomics, as well as other omics approaches, keeps expanding in recent years. The databases and associated web portals provide at a minimum a uniform set of tools and automated analysis across a wide range of crop plant genomes. This paper reviews some basic terms and considerations in dealing with crop plant databases utilization in advancing genomic era. The utilization of databases for variation analysis with other comparative genomics tools, and data interpretation platforms are well described. The major focus of this review is to provide knowledge on platforms and databases for genome-based investigations of agriculturally important crop plants. The utilization of these databases in applied crop improvement program is still being achieved widely; otherwise, the end for sequencing is not far away.

  18. Multiple models for Rosaceae genomics.

    Science.gov (United States)

    Shulaev, Vladimir; Korban, Schuyler S; Sosinski, Bryon; Abbott, Albert G; Aldwinckle, Herb S; Folta, Kevin M; Iezzoni, Amy; Main, Dorrie; Arús, Pere; Dandekar, Abhaya M; Lewers, Kim; Brown, Susan K; Davis, Thomas M; Gardiner, Susan E; Potter, Daniel; Veilleux, Richard E

    2008-07-01

    The plant family Rosaceae consists of over 100 genera and 3,000 species that include many important fruit, nut, ornamental, and wood crops. Members of this family provide high-value nutritional foods and contribute desirable aesthetic and industrial products. Most rosaceous crops have been enhanced by human intervention through sexual hybridization, asexual propagation, and genetic improvement since ancient times, 4,000 to 5,000 B.C. Modern breeding programs have contributed to the selection and release of numerous cultivars having significant economic impact on the U.S. and world markets. In recent years, the Rosaceae community, both in the United States and internationally, has benefited from newfound organization and collaboration that have hastened progress in developing genetic and genomic resources for representative crops such as apple (Malus spp.), peach (Prunus spp.), and strawberry (Fragaria spp.). These resources, including expressed sequence tags, bacterial artificial chromosome libraries, physical and genetic maps, and molecular markers, combined with genetic transformation protocols and bioinformatics tools, have rendered various rosaceous crops highly amenable to comparative and functional genomics studies. This report serves as a synopsis of the resources and initiatives of the Rosaceae community, recent developments in Rosaceae genomics, and plans to apply newly accumulated knowledge and resources toward breeding and crop improvement.

  19. Development of bore tools for pipe inspection

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Nakahira, Masataka; Taguchi, Kou; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    In the International Thermonuclear Reactor (ITER), replacement and maintenance on in-vessel components requires that all cooling pipes connected be cut and removed, that a new component be installed, and that all cooling pipes be rewelded. After welding is completed, welded area must be inspected for soundness. These tasks require a new work concept for securing shielded area and access from narrow ports. Tools had to be developed for nondestructive inspection and leak testing to evaluate pipe welding soundness by accessing areas from inside pipes using autonomous locomotion welding and cutting tools. A system was proposed for nondestructive inspection of branch pipes and the main pipe after passing through pipe curves, the same as for welding and cutting tool development. Nondestructive inspection and leak testing sensors were developed and the basic parameters were obtained. In addition, the inspection systems which can move inside pipes and conduct the nondestructive inspection and the leak testing were developed. In this paper, an introduction will be given to the current situation concerning the development of nondestructive inspection and leak testing machines for the branch pipes. (author)

  20. Academic Training - Bioinformatics: Decoding the Genome

    CERN Multimedia

    Chris Jones

    2006-01-01

    ACADEMIC TRAINING LECTURE SERIES 27, 28 February 1, 2, 3 March 2006 from 11:00 to 12:00 - Auditorium, bldg. 500 Decoding the Genome A special series of 5 lectures on: Recent extraordinary advances in the life sciences arising through new detection technologies and bioinformatics The past five years have seen an extraordinary change in the information and tools available in the life sciences. The sequencing of the human genome, the discovery that we possess far fewer genes than foreseen, the measurement of the tiny changes in the genomes that differentiate us, the sequencing of the genomes of many pathogens that lead to diseases such as malaria are all examples of completely new information that is now available in the quest for improved healthcare. New tools have allowed similar strides in the discovery of the associated protein structures, providing invaluable information for those searching for new drugs. New DNA microarray chips permit simultaneous measurement of the state of expression of tens...

  1. Specialized case tools for the development of the accounting ...

    African Journals Online (AJOL)

    The paper presents an approach to building specialized CASE tools for the development of accounting applications. These tools form an integrated development environment allowing the computer aided development of the different applications in this field. This development environment consists of a formula interpreter, ...

  2. NeSSie: a tool for the identification of approximate DNA sequence symmetries.

    Science.gov (United States)

    Berselli, Michele; Lavezzo, Enrico; Toppo, Stefano

    2018-03-07

    Non-B DNA conformations play an important role in genomic rearrangements, structural three-dimensional organization and gene regulation. Many non-B DNA structures show symmetrical properties as palindromes and mirrors that can form hairpins, cruciform structures or triplexes. A comprehensive tool, capable to perform a fast genome wide search for exact and degenerate symmetrical patterns, is needed for further investigating nucleotide tracts potentially forming non-B DNA structures. We developed NeSSie, an easily customizable C/C ++ 64-bit library and tool, based on dynamic programming, to quickly scan for perfect and degenerate DNA palindromes, mirrors, and potential triplex forming patterns. In addition, the tool computes linguistic complexity and Shannon entropy measures to verify the repetitive nature of the DNA regions enriched in these motifs. As a case study, the analysis of the Mycobacterium bovis genome is presented. http://www.medcomp.medicina.unipd.it/main_site/doku.php?id=nessie https://github.com/B3rse/nessie. stefano.toppo@unipd.it. Supplementary data are available at Bioinformatics online.

  3. Using biotechnology and genomics to improve biotic and abiotic stress in apple

    Science.gov (United States)

    Genomic sequencing, molecular biology, and transformation technologies are providing valuable tools to better understand the complexity of how plants develop, function, and respond to biotic and abiotic stress. These approaches should complement but not replace a solid understanding of whole plant ...

  4. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231.

    Science.gov (United States)

    Baptista, Rodrigo P; Reis-Cunha, Joao Luis; DeBarry, Jeremy D; Chiari, Egler; Kissinger, Jessica C; Bartholomeu, Daniella C; Macedo, Andrea M

    2018-02-14

    Next-generation sequencing (NGS) methods are low-cost high-throughput technologies that produce thousands to millions of sequence reads. Despite the high number of raw sequence reads, their short length, relative to Sanger, PacBio or Nanopore reads, complicates the assembly of genomic repeats. Many genome tools are available, but the assembly of highly repetitive genome sequences using only NGS short reads remains challenging. Genome assembly of organisms responsible for important neglected diseases such as Trypanosoma cruzi, the aetiological agent of Chagas disease, is known to be challenging because of their repetitive nature. Only three of six recognized discrete typing units (DTUs) of the parasite have their draft genomes published and therefore genome evolution analyses in the taxon are limited. In this study, we developed a computational workflow to assemble highly repetitive genomes via a combination of de novo and reference-based assembly strategies to better overcome the intrinsic limitations of each, based on Illumina reads. The highly repetitive genome of the human-infecting parasite T. cruzi 231 strain was used as a test subject. The combined-assembly approach shown in this study benefits from the reference-based assembly ability to resolve highly repetitive sequences and from the de novo capacity to assemble genome-specific regions, improving the quality of the assembly. The acceptable confidence obtained by analyzing our results showed that our combined approach is an attractive option to assemble highly repetitive genomes with NGS short reads. Phylogenomic analysis including the 231 strain, the first representative of DTU III whose genome was sequenced, was also performed and provides new insights into T. cruzi genome evolution.

  5. Mojo Hand, a TALEN design tool for genome editing applications.

    Science.gov (United States)

    Neff, Kevin L; Argue, David P; Ma, Alvin C; Lee, Han B; Clark, Karl J; Ekker, Stephen C

    2013-01-16

    Recent studies of transcription activator-like (TAL) effector domains fused to nucleases (TALENs) demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org). We describe the algorithm and its implementation. The features of Mojo Hand include (1) automatic download of genomic data from the National Center for Biotechnology Information, (2) analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3) selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4) output files designed for subsequent TALEN construction using the Golden Gate assembly method. Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.

  6. Mojo Hand, a TALEN design tool for genome editing applications

    Directory of Open Access Journals (Sweden)

    Neff Kevin L

    2013-01-01

    Full Text Available Abstract Background Recent studies of transcription activator-like (TAL effector domains fused to nucleases (TALENs demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. Results We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org. We describe the algorithm and its implementation. The features of Mojo Hand include (1 automatic download of genomic data from the National Center for Biotechnology Information, (2 analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3 selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4 output files designed for subsequent TALEN construction using the Golden Gate assembly method. Conclusions Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.

  7. Genomics Strategies for Germplasm Characterization and the Development of Climate Resilient Crops

    Directory of Open Access Journals (Sweden)

    Robert eHenry

    2014-02-01

    Full Text Available Food security requires the development and deployment of crop varieties resilient to climate variation and change. The study of variations in the genome of wild plant populations can be used to guide crop improvement. Genome variation found in wild crop relatives may be directly relevant to the breeding of environmentally adapted and climate resilient crops. Analysis of the genomes of populations growing in contrasting environments will reveal the genes subject to natural selection in adaptation to climate variations. Whole genome sequencing of these populations should define the numbers and types of genes associated with climate adaptation. This strategy is facilitated by recent advances in sequencing technologies. Wild relatives of rice and barley have been used to assess these approaches. This strategy is most easily applied to species for which a high quality reference genome sequence is available and where populations of wild relatives can be found growing in diverse environments or across environmental gradients.

  8. Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses.

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Prasad, Manoj

    2015-01-01

    Recent advances in Setaria genomics appear promising for genetic improvement of cereals and biofuel crops towards providing multiple securities to the steadily increasing global population. The prominent attributes of foxtail millet (Setaria italica, cultivated) and green foxtail (S. viridis, wild) including small genome size, short life-cycle, in-breeding nature, genetic close-relatedness to several cereals, millets and bioenergy grasses, and potential abiotic stress tolerance have accentuated these two Setaria species as novel model system for studying C4 photosynthesis, stress biology and biofuel traits. Considering this, studies have been performed on structural and functional genomics of these plants to develop genetic and genomic resources, and to delineate the physiology and molecular biology of stress tolerance, for the improvement of millets, cereals and bioenergy grasses. The release of foxtail millet genome sequence has provided a new dimension to Setaria genomics, resulting in large-scale development of genetic and genomic tools, construction of informative databases, and genome-wide association and functional genomic studies. In this context, this review discusses the advancements made in Setaria genomics, which have generated a considerable knowledge that could be used for the improvement of millets, cereals and biofuel crops. Further, this review also shows the nutritional potential of foxtail millet in providing health benefits to global population and provides a preliminary information on introgressing the nutritional properties in graminaceous species through molecular breeding and transgene-based approaches.

  9. SNP-associations and phenotype predictions from hundreds of microbial genomes without genome alignments.

    Science.gov (United States)

    Hall, Barry G

    2014-01-01

    SNP-association studies are a starting point for identifying genes that may be responsible for specific phenotypes, such as disease traits. The vast bulk of tools for SNP-association studies are directed toward SNPs in the human genome, and I am unaware of any tools designed specifically for such studies in bacterial or viral genomes. The PPFS (Predict Phenotypes From SNPs) package described here is an add-on to kSNP , a program that can identify SNPs in a data set of hundreds of microbial genomes. PPFS identifies those SNPs that are non-randomly associated with a phenotype based on the χ² probability, then uses those diagnostic SNPs for two distinct, but related, purposes: (1) to predict the phenotypes of strains whose phenotypes are unknown, and (2) to identify those diagnostic SNPs that are most likely to be causally related to the phenotype. In the example illustrated here, from a set of 68 E. coli genomes, for 67 of which the pathogenicity phenotype was known, there were 418,500 SNPs. Using the phenotypes of 36 of those strains, PPFS identified 207 diagnostic SNPs. The diagnostic SNPs predicted the phenotypes of all of the genomes with 97% accuracy. It then identified 97 SNPs whose probability of being causally related to the pathogenic phenotype was >0.999. In a second example, from a set of 116 E. coli genome sequences, using the phenotypes of 65 strains PPFS identified 101 SNPs that predicted the source host (human or non-human) with 90% accuracy.

  10. SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data.

    Science.gov (United States)

    Woodhouse, Steven; Piterman, Nir; Wintersteiger, Christoph M; Göttgens, Berthold; Fisher, Jasmin

    2018-05-25

    Reconstruction of executable mechanistic models from single-cell gene expression data represents a powerful approach to understanding developmental and disease processes. New ambitious efforts like the Human Cell Atlas will soon lead to an explosion of data with potential for uncovering and understanding the regulatory networks which underlie the behaviour of all human cells. In order to take advantage of this data, however, there is a need for general-purpose, user-friendly and efficient computational tools that can be readily used by biologists who do not have specialist computer science knowledge. The Single Cell Network Synthesis toolkit (SCNS) is a general-purpose computational tool for the reconstruction and analysis of executable models from single-cell gene expression data. Through a graphical user interface, SCNS takes single-cell qPCR or RNA-sequencing data taken across a time course, and searches for logical rules that drive transitions from early cell states towards late cell states. Because the resulting reconstructed models are executable, they can be used to make predictions about the effect of specific gene perturbations on the generation of specific lineages. SCNS should be of broad interest to the growing number of researchers working in single-cell genomics and will help further facilitate the generation of valuable mechanistic insights into developmental, homeostatic and disease processes.

  11. PolyTB: A genomic variation map for Mycobacterium tuberculosis

    KAUST Repository

    Coll, Francesc

    2014-02-15

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the second major cause of death from an infectious disease worldwide. Recent advances in DNA sequencing are leading to the ability to generate whole genome information in clinical isolates of M. tuberculosis complex (MTBC). The identification of informative genetic variants such as phylogenetic markers and those associated with drug resistance or virulence will help barcode Mtb in the context of epidemiological, diagnostic and clinical studies. Mtb genomic datasets are increasingly available as raw sequences, which are potentially difficult and computer intensive to process, and compare across studies. Here we have processed the raw sequence data (>1500 isolates, eight studies) to compile a catalogue of SNPs (n = 74,039, 63% non-synonymous, 51.1% in more than one isolate, i.e. non-private), small indels (n = 4810) and larger structural variants (n = 800). We have developed the PolyTB web-based tool (http://pathogenseq.lshtm.ac.uk/polytb) to visualise the resulting variation and important meta-data (e.g. in silico inferred strain-types, location) within geographical map and phylogenetic views. This resource will allow researchers to identify polymorphisms within candidate genes of interest, as well as examine the genomic diversity and distribution of strains. PolyTB source code is freely available to researchers wishing to develop similar tools for their pathogen of interest. 2014 Elsevier Ltd. All rights reserved.

  12. karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data.

    Science.gov (United States)

    Gel, Bernat; Serra, Eduard

    2017-10-01

    Data visualization is a crucial tool for data exploration, analysis and interpretation. For the visualization of genomic data there lacks a tool to create customizable non-circular plots of whole genomes from any species. We have developed karyoploteR, an R/Bioconductor package to create linear chromosomal representations of any genome with genomic annotations and experimental data plotted along them. Plot creation process is inspired in R base graphics, with a main function creating karyoplots with no data and multiple additional functions, including custom functions written by the end-user, adding data and other graphical elements. This approach allows the creation of highly customizable plots from arbitrary data with complete freedom on data positioning and representation. karyoploteR is released under Artistic-2.0 License. Source code and documentation are freely available through Bioconductor (http://www.bioconductor.org/packages/karyoploteR) and at the examples and tutorial page at https://bernatgel.github.io/karyoploter_tutorial. bgel@igtp.cat. © The Author(s) 2017. Published by Oxford University Press.

  13. The role of genomics in the identification, prediction, and prevention of biological threats.

    Directory of Open Access Journals (Sweden)

    W Florian Fricke

    2009-10-01

    Full Text Available In all likelihood, it is only a matter of time before our public health system will face a major biological threat, whether intentionally dispersed or originating from a known or newly emerging infectious disease. It is necessary not only to increase our reactive "biodefense," but also to be proactive and increase our preparedness. To achieve this goal, it is essential that the scientific and public health communities fully embrace the genomic revolution, and that novel bioinformatic and computing tools necessary to make great strides in our understanding of these novel and emerging threats be developed. Genomics has graduated from a specialized field of science to a research tool that soon will be routine in research laboratories and clinical settings. Because the technology is becoming more affordable, genomics can and should be used proactively to build our preparedness and responsiveness to biological threats. All pieces, including major continued funding, advances in next-generation sequencing technologies, bioinformatics infrastructures, and open access to data and metadata, are being set in place for genomics to play a central role in our public health system.

  14. Visualization of RNA structure models within the Integrative Genomics Viewer.

    Science.gov (United States)

    Busan, Steven; Weeks, Kevin M

    2017-07-01

    Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum.

    Science.gov (United States)

    Pohl, C; Kiel, J A K W; Driessen, A J M; Bovenberg, R A L; Nygård, Y

    2016-07-15

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. The developed CRISPR/Cas9 toolbox is highly flexible and allows editing of new targets with minimal cloning efforts. The Cas9 protein and the sgRNA can be either delivered during transformation, as preassembled CRISPR-Cas9 ribonucleoproteins (RNPs) or expressed from an AMA1 based plasmid within the cell. The direct delivery of the Cas9 protein with in vitro synthesized sgRNA to the cells allows for a transient method for genome engineering that may rapidly be applicable for other filamentous fungi. The expression of Cas9 from an AMA1 based vector was shown to be highly efficient for marker-free gene deletions.

  16. Genomics and the challenging translation into conservation practice

    Science.gov (United States)

    Aaron B. A. Shafer; Jochen B. W. Wolf; Paulo C. Alves; Linnea Bergstrom; Michael W. Bruford; Ioana Brannstrom; Guy Colling; Love Dalen; Luc De Meester; Robert Ekblom; Katie D. Fawcett; Simone Fior; Mehrdad Hajibabaei; Jason A. Hill; A. Rus Hoezel; Jacob Hoglund; Evelyn L. Jensen; Johannes Krause; Torsten N. Kristensen; Michael Krutzen; John K. McKay; Anita J. Norman; Rob Ogden; E. Martin Osterling; N. Joop Ouborg; John Piccolo; Danijela Popovic; Craig R. Primmer; Floyd A. Reed; Marie Roumet; Jordi Salmona; Tamara Schenekar; Michael K. Schwartz; Gernot Segelbacher; Helen Senn; Jens Thaulow; Mia Valtonen; Andrew Veale; Philippine Vergeer; Nagarjun Vijay; Carles Vila; Matthias Weissensteiner; Lovisa Wennerstrom; Christopher W. Wheat; Piotr Zielinski

    2015-01-01

    The global loss of biodiversity continues at an alarming rate. Genomic approaches have been suggested as a promising tool for conservation practice as scaling up to genome-wide data can improve traditional conservation genetic inferences and provide qualitatively novel insights. However, the generation of genomic data and subsequent analyses and interpretations remain...

  17. GI-POP: a combinational annotation and genomic island prediction pipeline for ongoing microbial genome projects.

    Science.gov (United States)

    Lee, Chi-Ching; Chen, Yi-Ping Phoebe; Yao, Tzu-Jung; Ma, Cheng-Yu; Lo, Wei-Cheng; Lyu, Ping-Chiang; Tang, Chuan Yi

    2013-04-10

    Sequencing of microbial genomes is important because of microbial-carrying antibiotic and pathogenetic activities. However, even with the help of new assembling software, finishing a whole genome is a time-consuming task. In most bacteria, pathogenetic or antibiotic genes are carried in genomic islands. Therefore, a quick genomic island (GI) prediction method is useful for ongoing sequencing genomes. In this work, we built a Web server called GI-POP (http://gipop.life.nthu.edu.tw) which integrates a sequence assembling tool, a functional annotation pipeline, and a high-performance GI predicting module, in a support vector machine (SVM)-based method called genomic island genomic profile scanning (GI-GPS). The draft genomes of the ongoing genome projects in contigs or scaffolds can be submitted to our Web server, and it provides the functional annotation and highly probable GI-predicting results. GI-POP is a comprehensive annotation Web server designed for ongoing genome project analysis. Researchers can perform annotation and obtain pre-analytic information include possible GIs, coding/non-coding sequences and functional analysis from their draft genomes. This pre-analytic system can provide useful information for finishing a genome sequencing project. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Design and development of progressive tool for manufacturing washer

    Science.gov (United States)

    Annigeri, Ulhas K.; Raghavendra Ravi Kiran, K.; Deepthi, Y. P.

    2017-07-01

    In a progressive tool the raw material is worked at different station to finally fabricate the component. A progressive tool is a lucrative tool for mass production of components. A lot of automobile and other transport industries develop progressive tool for the production of components. The design of tool involves lot of planning and the same amount of skill of process planning is required in the fabrication of the tool. The design also involves use of thumb rules and standard elements as per experience gained in practice. Manufacturing the press tool is a laborious task as special jigs and fixtures have to be designed for the purpose. Assembly of all the press tool elements is another task where use of accurate measuring instruments for alignment of various tool elements is important. In the present study, design and fabrication of progressive press tool for production of washer has been developed and the press tool has been tried out on a mechanical type of press. The components produced are to dimensions.

  19. Base-By-Base: Single nucleotide-level analysis of whole viral genome alignments

    Directory of Open Access Journals (Sweden)

    Tcherepanov Vasily

    2004-07-01

    Full Text Available Abstract Background With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes is not feasible without new bioinformatics tools. Results A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1 rapidly identify and correct alignment errors in large, multiple genome alignments; and 2 generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs to retrieve detailed annotation information about the aligned genomes or use information from text files. Conclusion Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  20. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome

    International Nuclear Information System (INIS)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-01-01

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the 'Hayflick limit'. However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to 'passage' a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the 'passage' of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels

  1. Somatic cell nuclear transfer: infinite reproduction of a unique diploid genome.

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-06-10

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the "Hayflick limit". However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to "passage" a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the "passage" of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels.

  2. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica.

    Science.gov (United States)

    Schwartz, Cory; Wheeldon, Ian

    2018-01-01

    The discovery and adaptation of RNA-guided nucleases has resulted in the rapid development of efficient, scalable, and easily accessible synthetic biology tools for targeted genome editing and transcriptional control. In these systems, for example CRISPR-Cas9 from Streptococcus pyogenes, a protein with nuclease activity is targeted to a specific nucleotide sequence by a short RNA molecule, whereupon binding it cleaves the targeted nucleotide strand. To extend this genome-editing ability to the industrially important oleaginous yeast Yarrowia lipolytica, we developed a set of easily usable and effective CRISPR-Cas9 episomal vectors. In this protocols chapter, we first present a method by which arbitrary protein-coding genes can be disrupted via indel formation after CRISPR-Cas9 targeting. A second method demonstrates how the same CRISPR-Cas9 system can be used to induce markerless gene cassette integration into the genome by inducing homologous recombination after DNA cleavage by Cas9. Finally, we describe how a catalytically inactive form of Cas9 fused to a transcriptional repressor can be used to control transcription of native genes in Y. lipolytica. The CRISPR-Cas9 tools and strategies described here greatly increase the types of genome editing and transcriptional control that can be achieved in Y. lipolytica, and promise to facilitate more advanced engineering of this important oleaginous host.

  3. A novel statistic for genome-wide interaction analysis.

    Directory of Open Access Journals (Sweden)

    Xuesen Wu

    2010-09-01

    Full Text Available Although great progress in genome-wide association studies (GWAS has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked. The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001genome-wide interaction analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  4. Incorporating Genomics and Bioinformatics across the Life Sciences Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Ditty, Jayna L.; Kvaal, Christopher A.; Goodner, Brad; Freyermuth, Sharyn K.; Bailey, Cheryl; Britton, Robert A.; Gordon, Stuart G.; Heinhorst, Sabine; Reed, Kelynne; Xu, Zhaohui; Sanders-Lorenz, Erin R.; Axen, Seth; Kim, Edwin; Johns, Mitrick; Scott, Kathleen; Kerfeld, Cheryl A.

    2011-08-01

    into courses or independent research projects requires infrastructure for organizing and assessing student work. Here, we present a new platform for faculty to keep current with the rapidly changing field of bioinformatics, the Integrated Microbial Genomes Annotation Collaboration Toolkit (IMG-ACT). It was developed by instructors from both research-intensive and predominately undergraduate institutions in collaboration with the Department of Energy-Joint Genome Institute (DOE-JGI) as a means to innovate and update undergraduate education and faculty development. The IMG-ACT program provides a cadre of tools, including access to a clearinghouse of genome sequences, bioinformatics databases, data storage, instructor course management, and student notebooks for organizing the results of their bioinformatic investigations. In the process, IMG-ACT makes it feasible to provide undergraduate research opportunities to a greater number and diversity of students, in contrast to the traditional mentor-to-student apprenticeship model for undergraduate research, which can be too expensive and time-consuming to provide for every undergraduate. The IMG-ACT serves as the hub for the network of faculty and students that use the system for microbial genome analysis. Open access of the IMG-ACT infrastructure to participating schools ensures that all types of higher education institutions can utilize it. With the infrastructure in place, faculty can focus their efforts on the pedagogy of bioinformatics, involvement of students in research, and use of this tool for their own research agenda. What the original faculty members of the IMG-ACT development team present here is an overview of how the IMG-ACT program has affected our development in terms of teaching and research with the hopes that it will inspire more faculty to get involved.

  5. Tools to kill: Genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina

    Directory of Open Access Journals (Sweden)

    Islam Md

    2012-09-01

    Full Text Available Abstract Background Macrophomina phaseolina is one of the most destructive necrotrophic fungal pathogens that infect more than 500 plant species throughout the world. It can grow rapidly in infected plants and subsequently produces a large amount of sclerotia that plugs the vessels, resulting in wilting of the plant. Results We sequenced and assembled ~49 Mb into 15 super-scaffolds covering 92.83% of the M. phaseolina genome. We predict 14,249 open reading frames (ORFs of which 9,934 are validated by the transcriptome. This phytopathogen has an abundance of secreted oxidases, peroxidases, and hydrolytic enzymes for degrading cell wall polysaccharides and lignocelluloses to penetrate into the host tissue. To overcome the host plant defense response, M. phaseolina encodes a significant number of P450s, MFS type membrane transporters, glycosidases, transposases, and secondary metabolites in comparison to all sequenced ascomycete species. A strikingly distinct set of carbohydrate esterases (CE are present in M. phaseolina, with the CE9 and CE10 families remarkably higher than any other fungi. The phenotypic microarray data indicates that M. phaseolina can adapt to a wide range of osmotic and pH environments. As a broad host range pathogen, M. phaseolina possesses a large number of pathogen-host interaction genes including those for adhesion, signal transduction, cell wall breakdown, purine biosynthesis, and potent mycotoxin patulin. Conclusions The M. phaseolina genome provides a framework of the infection process at the cytological and molecular level which uses a diverse arsenal of enzymatic and toxin tools to destroy the host plants. Further understanding of the M. phaseolina genome-based plant-pathogen interactions will be instrumental in designing rational strategies for disease control, essential to ensuring global agricultural crop production and security.

  6. Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina.

    Science.gov (United States)

    Islam, Md Shahidul; Haque, Md Samiul; Islam, Mohammad Moinul; Emdad, Emdadul Mannan; Halim, Abdul; Hossen, Quazi Md Mosaddeque; Hossain, Md Zakir; Ahmed, Borhan; Rahim, Sifatur; Rahman, Md Sharifur; Alam, Md Monjurul; Hou, Shaobin; Wan, Xuehua; Saito, Jennifer A; Alam, Maqsudul

    2012-09-19

    Macrophomina phaseolina is one of the most destructive necrotrophic fungal pathogens that infect more than 500 plant species throughout the world. It can grow rapidly in infected plants and subsequently produces a large amount of sclerotia that plugs the vessels, resulting in wilting of the plant. We sequenced and assembled ~49 Mb into 15 super-scaffolds covering 92.83% of the M. phaseolina genome. We predict 14,249 open reading frames (ORFs) of which 9,934 are validated by the transcriptome. This phytopathogen has an abundance of secreted oxidases, peroxidases, and hydrolytic enzymes for degrading cell wall polysaccharides and lignocelluloses to penetrate into the host tissue. To overcome the host plant defense response, M. phaseolina encodes a significant number of P450s, MFS type membrane transporters, glycosidases, transposases, and secondary metabolites in comparison to all sequenced ascomycete species. A strikingly distinct set of carbohydrate esterases (CE) are present in M. phaseolina, with the CE9 and CE10 families remarkably higher than any other fungi. The phenotypic microarray data indicates that M. phaseolina can adapt to a wide range of osmotic and pH environments. As a broad host range pathogen, M. phaseolina possesses a large number of pathogen-host interaction genes including those for adhesion, signal transduction, cell wall breakdown, purine biosynthesis, and potent mycotoxin patulin. The M. phaseolina genome provides a framework of the infection process at the cytological and molecular level which uses a diverse arsenal of enzymatic and toxin tools to destroy the host plants. Further understanding of the M. phaseolina genome-based plant-pathogen interactions will be instrumental in designing rational strategies for disease control, essential to ensuring global agricultural crop production and security.

  7. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.

    Science.gov (United States)

    Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2016-07-01

    The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Genomes to life project quarterly report June 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Heffelfinger, Grant S.

    2005-01-01

    This SAND report provides the technical progress through June 2004 of the Sandia-led project, ''Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling'', funded by the DOE Office of Science Genomes to Life Program. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO{sub 2} are important terms in the global environmental response to anthropogenic atmospheric inputs of CO{sub 2} and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. In this project, we will investigate the carbon sequestration behavior of Synechococcus Sp., an abundant marine cyanobacteria known to be important to environmental responses to carbon dioxide levels, through experimental and computational methods. This project is a combined experimental and computational effort with emphasis on developing and applying new computational tools and methods. Our experimental effort will provide the biology and data to drive the computational efforts and include significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Computational tools will be essential to our efforts to discover and characterize the function of the molecular machines of Synechococcus. To this end, molecular simulation methods will be coupled with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes

  9. Integrative Genomics Viewer (IGV) | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    The Integrative Genomics Viewer (IGV) is a high-performance visualization tool for interactive exploration of large, integrated genomic datasets. It supports a wide variety of data types, including array-based and next-generation sequence data, and genomic annotations.

  10. Bioinformatics for whole-genome shotgun sequencing of microbial communities.

    Directory of Open Access Journals (Sweden)

    Kevin Chen

    2005-07-01

    Full Text Available The application of whole-genome shotgun sequencing to microbial communities represents a major development in metagenomics, the study of uncultured microbes via the tools of modern genomic analysis. In the past year, whole-genome shotgun sequencing projects of prokaryotic communities from an acid mine biofilm, the Sargasso Sea, Minnesota farm soil, three deep-sea whale falls, and deep-sea sediments have been reported, adding to previously published work on viral communities from marine and fecal samples. The interpretation of this new kind of data poses a wide variety of exciting and difficult bioinformatics problems. The aim of this review is to introduce the bioinformatics community to this emerging field by surveying existing techniques and promising new approaches for several of the most interesting of these computational problems.

  11. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis.

    Science.gov (United States)

    Patil, Gunvant; Valliyodan, Babu; Deshmukh, Rupesh; Prince, Silvas; Nicander, Bjorn; Zhao, Mingzhe; Sonah, Humira; Song, Li; Lin, Li; Chaudhary, Juhi; Liu, Yang; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-07-11

    SWEET (MtN3_saliva) domain proteins, a recently identified group of efflux transporters, play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction and reproductive tissue development. The SWEET gene family is predominantly studied in Arabidopsis and members of the family are being investigated in rice. To date, no transcriptome or genomics analysis of soybean SWEET genes has been reported. In the present investigation, we explored the evolutionary aspect of the SWEET gene family in diverse plant species including primitive single cell algae to angiosperms with a major emphasis on Glycine max. Evolutionary features showed expansion and duplication of the SWEET gene family in land plants. Homology searches with BLAST tools and Hidden Markov Model-directed sequence alignments identified 52 SWEET genes that were mapped to 15 chromosomes in the soybean genome as tandem duplication events. Soybean SWEET (GmSWEET) genes showed a wide range of expression profiles in different tissues and developmental stages. Analysis of public transcriptome data and expression profiling using quantitative real time PCR (qRT-PCR) showed that a majority of the GmSWEET genes were confined to reproductive tissue development. Several natural genetic variants (non-synonymous SNPs, premature stop codons and haplotype) were identified in the GmSWEET genes using whole genome re-sequencing data analysis of 106 soybean genotypes. A significant association was observed between SNP-haplogroup and seed sucrose content in three gene clusters on chromosome 6. Present investigation utilized comparative genomics, transcriptome profiling and whole genome re-sequencing approaches and provided a systematic description of soybean SWEET genes and identified putative candidates with probable roles in the reproductive tissue development. Gene expression profiling at different developmental stages and genomic variation data will aid as an important resource for the soybean research

  12. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species

    DEFF Research Database (Denmark)

    Werren, John H; Richards, Stephen; Desjardins, Christopher A

    2010-01-01

    We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging...... of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility...

  13. Functional genomics of beer-related physiological processes in yeast

    NARCIS (Netherlands)

    Hazelwood, L.A.

    2009-01-01

    Since the release of the entire genome sequence of the S. cerevisiae laboratory strain S288C in 1996, many functional genomics tools have been introduced in fundamental and application-oriented yeast research. In this thesis, the applicability of functional genomics for the improvement of yeast in

  14. Information technology tools for curriculum development

    NARCIS (Netherlands)

    McKenney, Susan; Nieveen, N.M.; Strijker, A.; Voogt, Joke; Knezek, Gerald

    2008-01-01

    The widespread introduction and use of computers in the workplace began in the early 1990s. Since then, computer-based tools have been developed to support a myriad of task types, including the complex process of curriculum development. This chapter begins by briefly introducing two concepts that

  15. IMG 4 version of the integrated microbial genomes comparative analysis system

    Science.gov (United States)

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Pillay, Manoj; Ratner, Anna; Huang, Jinghua; Woyke, Tanja; Huntemann, Marcel; Anderson, Iain; Billis, Konstantinos; Varghese, Neha; Mavromatis, Konstantinos; Pati, Amrita; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2014-01-01

    The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Different IMG datamarts provide support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu). PMID:24165883

  16. IMG 4 version of the integrated microbial genomes comparative analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Chen, I-Min A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Palaniappan, Krishna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Chu, Ken [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Szeto, Ernest [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Pillay, Manoj [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Ratner, Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Huang, Jinghua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Data Management and Technology Center. Computational Research Division; Woyke, Tanja [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Huntemann, Marcel [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Anderson, Iain [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Billis, Konstantinos [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Varghese, Neha [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Mavromatis, Konstantinos [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Pati, Amrita [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Ivanova, Natalia N. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program; Kyrpides, Nikos C. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States). Microbial Genome and Metagenome Program

    2013-10-27

    The Integrated Microbial Genomes (IMG) data warehouse integrates genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG provides tools for analyzing and reviewing the structural and functional annotations of genomes in a comparative context. IMG’s data content and analytical capabilities have increased continuously since its first version released in 2005. Since the last report published in the 2012 NAR Database Issue, IMG’s annotation and data integration pipelines have evolved while new tools have been added for recording and analyzing single cell genomes, RNA Seq and biosynthetic cluster data. Finally, different IMG datamarts provide support for the analysis of publicly available genomes (IMG/W: http://img.jgi.doe.gov/w), expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er) and teaching and training in the area of microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu).

  17. The genome editing revolution

    DEFF Research Database (Denmark)

    Stella, Stefano; Montoya, Guillermo

    2016-01-01

    -Cas system has become the main tool for genome editing in many laboratories. Currently the targeted genome editing technology has been used in many fields and may be a possible approach for human gene therapy. Furthermore, it can also be used to modifying the genomes of model organisms for studying human......In the last 10 years, we have witnessed a blooming of targeted genome editing systems and applications. The area was revolutionized by the discovery and characterization of the transcription activator-like effector proteins, which are easier to engineer to target new DNA sequences than...... sequence). This ribonucleoprotein complex protects bacteria from invading DNAs, and it was adapted to be used in genome editing. The CRISPR ribonucleic acid (RNA) molecule guides to the specific DNA site the Cas9 nuclease to cleave the DNA target. Two years and more than 1000 publications later, the CRISPR...

  18. From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing.

    Science.gov (United States)

    Hotta, Akitsu; Yamanaka, Shinya

    2015-01-01

    The advent of induced pluripotent stem (iPS) cells has opened up numerous avenues of opportunity for cell therapy, including the initiation in September 2014 of the first human clinical trial to treat dry age-related macular degeneration. In parallel, advances in genome-editing technologies by site-specific nucleases have dramatically improved our ability to edit endogenous genomic sequences at targeted sites of interest. In fact, clinical trials have already begun to implement this technology to control HIV infection. Genome editing in iPS cells is a powerful tool and enables researchers to investigate the intricacies of the human genome in a dish. In the near future, the groundwork laid by such an approach may expand the possibilities of gene therapy for treating congenital disorders. In this review, we summarize the exciting progress being made in the utilization of genomic editing technologies in pluripotent stem cells and discuss remaining challenges toward gene therapy applications.

  19. Reconstruction of a Bacterial Genome from DNA Cassettes

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Dupont; John Glass; Laura Sheahan; Shibu Yooseph; Lisa Zeigler Allen; Mathangi Thiagarajan; Andrew Allen; Robert Friedman; J. Craig Venter

    2011-12-31

    This basic research program comprised two major areas: (1) acquisition and analysis of marine microbial metagenomic data and development of genomic analysis tools for broad, external community use; (2) development of a minimal bacterial genome. Our Marine Metagenomic Diversity effort generated and analyzed shotgun sequencing data from microbial communities sampled from over 250 sites around the world. About 40% of the 26 Gbp of sequence data has been made publicly available to date with a complete release anticipated in six months. Our results and those mining the deposited data have revealed a vast diversity of genes coding for critical metabolic processes whose phylogenetic and geographic distributions will enable a deeper understanding of carbon and nutrient cycling, microbial ecology, and rapid rate evolutionary processes such as horizontal gene transfer by viruses and plasmids. A global assembly of the generated dataset resulted in a massive set (5Gbp) of genome fragments that provide context to the majority of the generated data that originated from uncultivated organisms. Our Synthetic Biology team has made significant progress towards the goal of synthesizing a minimal mycoplasma genome that will have all of the machinery for independent life. This project, once completed, will provide fundamentally new knowledge about requirements for microbial life and help to lay a basic research foundation for developing microbiological approaches to bioenergy.

  20. Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing

    Directory of Open Access Journals (Sweden)

    M. Michelle Malmberg

    2018-04-01

    Full Text Available Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD. Complexity reduction genotyping-by-sequencing (GBS methods, including GBS-transcriptomics (GBS-t, enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs, and identify structural variants (SVs. Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.