WorldWideScience

Sample records for genomic interspecies microarray

  1. Analysis of the genome content of Lactococcus garvieae by genomic interspecies microarray hybridization

    Directory of Open Access Journals (Sweden)

    Gibello Alicia

    2010-03-01

    Full Text Available Abstract Background Lactococcus garvieae is a bacterial pathogen that affects different animal species in addition to humans. Despite the widespread distribution and emerging clinical significance of L. garvieae in both veterinary and human medicine, there is almost a complete lack of knowledge about the genetic content of this microorganism. In the present study, the genomic content of L. garvieae CECT 4531 was analysed using bioinformatics tools and microarray-based comparative genomic hybridization (CGH experiments. Lactococcus lactis subsp. lactis IL1403 and Streptococcus pneumoniae TIGR4 were used as reference microorganisms. Results The combination and integration of in silico analyses and in vitro CGH experiments, performed in comparison with the reference microorganisms, allowed establishment of an inter-species hybridization framework with a detection threshold based on a sequence similarity of ≥ 70%. With this threshold value, 267 genes were identified as having an analogue in L. garvieae, most of which (n = 258 have been documented for the first time in this pathogen. Most of the genes are related to ribosomal, sugar metabolism or energy conversion systems. Some of the identified genes, such as als and mycA, could be involved in the pathogenesis of L. garvieae infections. Conclusions In this study, we identified 267 genes that were potentially present in L. garvieae CECT 4531. Some of the identified genes could be involved in the pathogenesis of L. garvieae infections. These results provide the first insight into the genome content of L. garvieae.

  2. Interspecies hybridization on DNA resequencing microarrays: efficiency of sequence recovery and accuracy of SNP detection in human, ape, and codfish mitochondrial DNA genomes sequenced on a human-specific MitoChip

    Directory of Open Access Journals (Sweden)

    Carr Steven M

    2007-09-01

    Full Text Available Abstract Background Iterative DNA "resequencing" on oligonucleotide microarrays offers a high-throughput method to measure intraspecific biodiversity, one that is especially suited to SNP-dense gene regions such as vertebrate mitochondrial (mtDNA genomes. However, costs of single-species design and microarray fabrication are prohibitive. A cost-effective, multi-species strategy is to hybridize experimental DNAs from diverse species to a common microarray that is tiled with oligonucleotide sets from multiple, homologous reference genomes. Such a strategy requires that cross-hybridization between the experimental DNAs and reference oligos from the different species not interfere with the accurate recovery of species-specific data. To determine the pattern and limits of such interspecific hybridization, we compared the efficiency of sequence recovery and accuracy of SNP identification by a 15,452-base human-specific microarray challenged with human, chimpanzee, gorilla, and codfish mtDNA genomes. Results In the human genome, 99.67% of the sequence was recovered with 100.0% accuracy. Accuracy of SNP identification declines log-linearly with sequence divergence from the reference, from 0.067 to 0.247 errors per SNP in the chimpanzee and gorilla genomes, respectively. Efficiency of sequence recovery declines with the increase of the number of interspecific SNPs in the 25b interval tiled by the reference oligonucleotides. In the gorilla genome, which differs from the human reference by 10%, and in which 46% of these 25b regions contain 3 or more SNP differences from the reference, only 88% of the sequence is recoverable. In the codfish genome, which differs from the reference by > 30%, less than 4% of the sequence is recoverable, in short islands ≥ 12b that are conserved between primates and fish. Conclusion Experimental DNAs bind inefficiently to homologous reference oligonucleotide sets on a re-sequencing microarray when their sequences differ by

  3. Picky: oligo microarray design for large genomes

    National Research Council Canada - National Science Library

    Chou, Hui-Hsien; Hsia, An-Ping; Mooney, Denise L; Schnable, Patrick S

    2004-01-01

    Many large genomes are getting sequenced nowadays. Biologists are eager to start microarray analysis taking advantage of all known genes of a species, but existing microarray design tools were very inefficient for large genomes...

  4. Microarray Genomic Systems Development

    Science.gov (United States)

    2008-06-01

    D Canada Contract Report DRDC Suffield CR 2009-145 June 2008 V. Lam, M. Crichton , T. Dickinson Laing, and D.C. Mah Canada West Biosciences Inc...Genomic Systems Development V. Lam, M. Crichton , T. Dickinson Laing, and D.C. Mah Canada West Biosciences Inc. Canada West Biosciences Inc. 5429... Crichton , M.; Dickinson Laing, T.; Mah, D.C.; DRDC Suffield CR 2009- 145; Defence R&D Canada – Suffield; June 2008. Introduction: Conventional

  5. Genome sequence of the lager brewing yeast, an interspecies hybrid.

    Science.gov (United States)

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-04-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.

  6. Interspecies comparative genome hybridization and interspecies representational difference analysis reveal gross DNA differences between humans and great apes.

    Science.gov (United States)

    Toder, R; Xia, Y; Bausch, E

    1998-09-01

    Comparative chromosome G-/R-banding, comparative gene mapping and chromosome painting techniques have demonstrated that only few chromosomal rearrangements occurred during great ape and human evolution. Interspecies comparative genome hybridization (CGH), used here in this study, between human, gorilla and pygmy chimpanzee revealed species-specific regions in all three species. In contrast to the human, a far more complex distribution of species-specific blocks was detected with CGH in gorilla and pygmy chimpanzee. Most of these blocks coincide with already described heterochromatic regions on gorilla and chimpanzee chromosomes. Representational difference analysis (RDA) was used to subtract the complex genome of gorilla against human in order to enrich gorilla-specific DNA sequences. Gorilla-specific clones isolated with this technique revealed a 32-bp repeat unit. These clones were mapped by fluorescence in situ hybridization (FISH) to the telomeric regions of gorilla chromosomes that had been shown by interspecies CGH to contain species-specific sequences.

  7. Design of an Enterobacteriaceae Pan-genome Microarray Chip

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2010-01-01

    -density microarray chip has been designed, using 116 Enterobacteriaceae genome sequences, taking into account the enteric pan-genome. Probes for the microarray were checked in silico and performance of the chip, based on experimental strains from four different genera, demonstrate a relatively high ability...... to distinguish those strains on genus, species, and pathotype/serovar levels. Additionally, the microarray performed well when investigating which genes were found in a given strain of interest. The Enterobacteriaceae pan-genome microarray, based on 116 genomes, provides a valuable tool for determination...

  8. Incompatibility between Nuclear and Mitochondrial Genomes Contributes to an Interspecies Reproductive Barrier.

    Science.gov (United States)

    Ma, Hong; Marti Gutierrez, Nuria; Morey, Robert; Van Dyken, Crystal; Kang, Eunju; Hayama, Tomonari; Lee, Yeonmi; Li, Ying; Tippner-Hedges, Rebecca; Wolf, Don P; Laurent, Louise C; Mitalipov, Shoukhrat

    2016-08-09

    Vertebrate cells carry two different genomes, nuclear (nDNA) and mitochondrial (mtDNA), both encoding proteins involved in oxidative phosphorylation. Because of the extensive interactions, adaptive coevolution of the two genomes must occur to ensure normal mitochondrial function. To investigate whether incompatibilities between these two genomes could contribute to interspecies reproductive barriers, we performed reciprocal mtDNA replacement (MR) in zygotes between widely divergent Mus m. domesticus (B6) and conplastic Mus m. musculus (PWD) mice. Transfer of MR1 cybrid embryos (B6nDNA-PWDmtDNA) supported normal development of F1 offspring with reduced male fertility but unaffected reproductive fitness in females. Furthermore, donor PWD mtDNA was faithfully transmitted through the germline into F2 and F3 generations. In contrast, reciprocal MR2 (PWDnDNA-B6mtDNA) produced high embryonic loss and stillborn rates, suggesting an association between mitochondrial function and infertility. These results strongly suggest that functional incompatibility between nuclear and mitochondrial genomes contributes to interspecies reproductive isolation in mammals.

  9. Genomic Regions Associated With Interspecies Communication in Dogs Contain Genes Related to Human Social Disorders

    Science.gov (United States)

    Persson, Mia E.; Wright, Dominic; Roth, Lina S. V.; Batakis, Petros; Jensen, Per

    2016-01-01

    Unlike their wolf ancestors, dogs have unique social skills for communicating and cooperating with humans. Previously, significant heritabilities for human-directed social behaviors have been found in laboratory beagles. Here, a Genome-Wide Association Study identified two genomic regions associated with dog’s human-directed social behaviors. We recorded the propensity of laboratory beagles, bred, kept and handled under standardized conditions, to initiate physical interactions with a human during an unsolvable problem-task, and 190 individuals were genotyped with an HD Canine SNP-chip. One genetic marker on chromosome 26 within the SEZ6L gene was significantly associated with time spent close to, and in physical contact with, the human. Two suggestive markers on chromosome 26, located within the ARVCF gene, were also associated with human contact seeking. Strikingly, four additional genes present in the same linkage blocks affect social abilities in humans, e.g., SEZ6L has been associated with autism and COMT affects aggression in adolescents with ADHD. This is, to our knowledge, the first genome-wide study presenting candidate genomic regions for dog sociability and inter-species communication. These results advance our understanding of dog domestication and raise the use of the dog as a novel model system for human social disorders. PMID:27685260

  10. Genomic Regions Associated With Interspecies Communication in Dogs Contain Genes Related to Human Social Disorders.

    Science.gov (United States)

    Persson, Mia E; Wright, Dominic; Roth, Lina S V; Batakis, Petros; Jensen, Per

    2016-09-29

    Unlike their wolf ancestors, dogs have unique social skills for communicating and cooperating with humans. Previously, significant heritabilities for human-directed social behaviors have been found in laboratory beagles. Here, a Genome-Wide Association Study identified two genomic regions associated with dog's human-directed social behaviors. We recorded the propensity of laboratory beagles, bred, kept and handled under standardized conditions, to initiate physical interactions with a human during an unsolvable problem-task, and 190 individuals were genotyped with an HD Canine SNP-chip. One genetic marker on chromosome 26 within the SEZ6L gene was significantly associated with time spent close to, and in physical contact with, the human. Two suggestive markers on chromosome 26, located within the ARVCF gene, were also associated with human contact seeking. Strikingly, four additional genes present in the same linkage blocks affect social abilities in humans, e.g., SEZ6L has been associated with autism and COMT affects aggression in adolescents with ADHD. This is, to our knowledge, the first genome-wide study presenting candidate genomic regions for dog sociability and inter-species communication. These results advance our understanding of dog domestication and raise the use of the dog as a novel model system for human social disorders.

  11. DNA Microarrays in Comparative Genomics and Transcriptomics

    DEFF Research Database (Denmark)

    Willenbrock, Hanni

    2007-01-01

    of each method’s ability to analyze DNA copy number data. Moreover, our study shows that analysis methods developed for cancer research may also successfully be applied to DNA copy number profiles from bacterial genomes. However, here the purpose is to characterize variations in the gene content...... to verify predictions of highly expressed genes. Moreover, the codon bias of microbial genomes was found to constitute an environmental signature. For example, soil bacteria have very similar codon bias....

  12. Digital microarray analysis for digital artifact genomics

    Science.gov (United States)

    Jaenisch, Holger; Handley, James; Williams, Deborah

    2013-06-01

    We implement a Spatial Voting (SV) based analogy of microarray analysis for digital gene marker identification in malware code sections. We examine a famous set of malware formally analyzed by Mandiant and code named Advanced Persistent Threat (APT1). APT1 is a Chinese organization formed with specific intent to infiltrate and exploit US resources. Manidant provided a detailed behavior and sting analysis report for the 288 malware samples available. We performed an independent analysis using a new alternative to the traditional dynamic analysis and static analysis we call Spatial Analysis (SA). We perform unsupervised SA on the APT1 originating malware code sections and report our findings. We also show the results of SA performed on some members of the families associated by Manidant. We conclude that SV based SA is a practical fast alternative to dynamics analysis and static analysis.

  13. Use of comparative genomics approaches to characterize interspecies differences in response to environmental chemicals: Challenges, opportunities, and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Burgess-Herbert, Sarah L., E-mail: sarah.burgess@alum.mit.edu [American Association for the Advancement of Science (AAAS) Science and Technology Policy Fellow at the US Environmental Protection Agency (EPA), 2009–10 (United States); Euling, Susan Y. [National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Washington, DC 20460 (United States)

    2013-09-15

    A critical challenge for environmental chemical risk assessment is the characterization and reduction of uncertainties introduced when extrapolating inferences from one species to another. The purpose of this article is to explore the challenges, opportunities, and research needs surrounding the issue of how genomics data and computational and systems level approaches can be applied to inform differences in response to environmental chemical exposure across species. We propose that the data, tools, and evolutionary framework of comparative genomics be adapted to inform interspecies differences in chemical mechanisms of action. We compare and contrast existing approaches, from disciplines as varied as evolutionary biology, systems biology, mathematics, and computer science, that can be used, modified, and combined in new ways to discover and characterize interspecies differences in chemical mechanism of action which, in turn, can be explored for application to risk assessment. We consider how genetic, protein, pathway, and network information can be interrogated from an evolutionary biology perspective to effectively characterize variations in biological processes of toxicological relevance among organisms. We conclude that comparative genomics approaches show promise for characterizing interspecies differences in mechanisms of action, and further, for improving our understanding of the uncertainties inherent in extrapolating inferences across species in both ecological and human health risk assessment. To achieve long-term relevance and consistent use in environmental chemical risk assessment, improved bioinformatics tools, computational methods robust to data gaps, and quantitative approaches for conducting extrapolations across species are critically needed. Specific areas ripe for research to address these needs are recommended.

  14. Comparative analysis of genomic signal processing for microarray data clustering.

    Science.gov (United States)

    Istepanian, Robert S H; Sungoor, Ala; Nebel, Jean-Christophe

    2011-12-01

    Genomic signal processing is a new area of research that combines advanced digital signal processing methodologies for enhanced genetic data analysis. It has many promising applications in bioinformatics and next generation of healthcare systems, in particular, in the field of microarray data clustering. In this paper we present a comparative performance analysis of enhanced digital spectral analysis methods for robust clustering of gene expression across multiple microarray data samples. Three digital signal processing methods: linear predictive coding, wavelet decomposition, and fractal dimension are studied to provide a comparative evaluation of the clustering performance of these methods on several microarray datasets. The results of this study show that the fractal approach provides the best clustering accuracy compared to other digital signal processing and well known statistical methods.

  15. Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker's Yeast Lineage.

    Directory of Open Access Journals (Sweden)

    Marina Marcet-Houben

    2015-08-01

    Full Text Available Whole-genome duplications have shaped the genomes of several vertebrate, plant, and fungal lineages. Earlier studies have focused on establishing when these events occurred and on elucidating their functional and evolutionary consequences, but we still lack sufficient understanding of how genome duplications first originated. We used phylogenomics to study the ancient genome duplication occurred in the yeast Saccharomyces cerevisiae lineage and found compelling evidence for the existence of a contemporaneous interspecies hybridization. We propose that the genome doubling was a direct consequence of this hybridization and that it served to provide stability to the recently formed allopolyploid. This scenario provides a mechanism for the origin of this ancient duplication and the lineage that originated from it and brings a new perspective to the interpretation of the origin and consequences of whole-genome duplications.

  16. Genome-wide transcription analyses in rice using tiling microarrays

    DEFF Research Database (Denmark)

    Li, Lei; Wang, Xiangfeng; Stolc, Viktor;

    2006-01-01

    Sequencing and computational annotation revealed several features, including high gene numbers, unusual composition of the predicted genes and a large number of genes lacking homology to known genes, that distinguish the rice (Oryza sativa) genome from that of other fully sequenced model species....... We report here a full-genome transcription analysis of the indica rice subspecies using high-density oligonucleotide tiling microarrays. Our results provided expression data support for the existence of 35,970 (81.9%) annotated gene models and identified 5,464 unique transcribed intergenic regions...... activity between duplicated segments of the genome. Collectively, our results provide the first whole-genome transcription map useful for further understanding the rice genome. Udgivelsesdato: 2006-Jan...

  17. Kernel Based Nonlinear Dimensionality Reduction and Classification for Genomic Microarray

    Directory of Open Access Journals (Sweden)

    Lan Shu

    2008-07-01

    Full Text Available Genomic microarrays are powerful research tools in bioinformatics and modern medicinal research because they enable massively-parallel assays and simultaneous monitoring of thousands of gene expression of biological samples. However, a simple microarray experiment often leads to very high-dimensional data and a huge amount of information, the vast amount of data challenges researchers into extracting the important features and reducing the high dimensionality. In this paper, a nonlinear dimensionality reduction kernel method based locally linear embedding(LLE is proposed, and fuzzy K-nearest neighbors algorithm which denoises datasets will be introduced as a replacement to the classical LLE’s KNN algorithm. In addition, kernel method based support vector machine (SVM will be used to classify genomic microarray data sets in this paper. We demonstrate the application of the techniques to two published DNA microarray data sets. The experimental results confirm the superiority and high success rates of the presented method.

  18. Human genomics and microarrays: implications for the plastic surgeon.

    Science.gov (United States)

    Cole, Jana; Isik, Frank

    2002-09-01

    The Human Genome Project was launched in 1989 in an effort to sequence the entire span of human DNA. Although coding sequences are important in identifying mutations, the static order of DNA does not explain how a cell or organism may respond to normal and abnormal biological processes. By examining the mRNA content of a cell, researchers can determine which genes are being activated in response to a stimulus. Traditional methods in molecular biology generally work on a "one gene: one experiment" basis, which means that the throughput is very limited and the "whole picture" of gene function is hard to obtain. To study each of the 60,000 to 80,000 genes in the human genome under each biological circumstance is not practical. Recently, microarrays (also known as gene or DNA chips) have emerged; these allow for the simultaneous determination of expression for thousands of genes and analysis of genome-wide mRNA expression. The purpose of this article is twofold: first, to provide the clinical plastic surgeon with a working knowledge and understanding of the fields of genomics, microarrays, and bioinformatics and second, to present a case to illustrate how these technologies can be applied in the study of wound healing.

  19. Sequencing ebola and marburg viruses genomes using microarrays.

    Science.gov (United States)

    Hardick, Justin; Woelfel, Roman; Gardner, Warren; Ibrahim, Sofi

    2016-08-01

    Periodic outbreaks of Ebola and Marburg hemorrhagic fevers have occurred in Africa over the past four decades with case fatality rates reaching as high as 90%. The latest Ebola outbreak in West Africa in 2014 raised concerns that these infections can spread across continents and pose serious health risks. Early and accurate identification of the causative agents is necessary to contain outbreaks. In this report, we describe sequencing-by-hybridization (SBH) technique using high density microarrays to identify Ebola and Marburg viruses. The microarrays were designed to interrogate the sequences of entire viral genomes, and were evaluated with three species of Ebolavirus (Reston, Sudan, and Zaire), and three strains of Marburgvirus (Angola, Musoke, and Ravn). The results showed that the consensus sequences generated with four or more hybridizations had 92.1-98.9% accuracy over 95-99% of the genomes. Additionally, with SBH microarrays it was possible to distinguish between different strains of the Lake Victoria Marburgvirus. J. Med. Virol. 88:1303-1308, 2016. © 2016 Wiley Periodicals, Inc.

  20. A process for analysis of microarray comparative genomics hybridisation studies for bacterial genomes

    Directory of Open Access Journals (Sweden)

    Woodward Martin J

    2008-01-01

    Full Text Available Abstract Background Microarray based comparative genomic hybridisation (CGH experiments have been used to study numerous biological problems including understanding genome plasticity in pathogenic bacteria. Typically such experiments produce large data sets that are difficult for biologists to handle. Although there are some programmes available for interpretation of bacterial transcriptomics data and CGH microarray data for looking at genetic stability in oncogenes, there are none specifically to understand the mosaic nature of bacterial genomes. Consequently a bottle neck still persists in accurate processing and mathematical analysis of these data. To address this shortfall we have produced a simple and robust CGH microarray data analysis process that may be automated in the future to understand bacterial genomic diversity. Results The process involves five steps: cleaning, normalisation, estimating gene presence and absence or divergence, validation, and analysis of data from test against three reference strains simultaneously. Each stage of the process is described and we have compared a number of methods available for characterising bacterial genomic diversity, for calculating the cut-off between gene presence and absence or divergence, and shown that a simple dynamic approach using a kernel density estimator performed better than both established, as well as a more sophisticated mixture modelling technique. We have also shown that current methods commonly used for CGH microarray analysis in tumour and cancer cell lines are not appropriate for analysing our data. Conclusion After carrying out the analysis and validation for three sequenced Escherichia coli strains, CGH microarray data from 19 E. coli O157 pathogenic test strains were used to demonstrate the benefits of applying this simple and robust process to CGH microarray studies using bacterial genomes.

  1. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays

    Directory of Open Access Journals (Sweden)

    Brahmbhatt Sonal

    2008-11-01

    Full Text Available Abstract Background Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most widely studied groups of fish. Results 298,304 expressed sequence tags (ESTs from Atlantic salmon (69% of the total, 11,664 chinook, 10,813 sockeye, 10,051 brook trout, 10,975 grayling, 8,630 lake whitefish, and 3,624 northern pike ESTs were obtained in this study and have been deposited into the public databases. Contigs were built and putative full-length Atlantic salmon clones have been identified. A database containing ESTs, assemblies, consensus sequences, open reading frames, gene predictions and putative annotation is available. The overall similarity between Atlantic salmon ESTs and those of rainbow trout, chinook, sockeye, brook trout, grayling, lake whitefish, northern pike and rainbow smelt is 93.4, 94.2, 94.6, 94.4, 92.5, 91.7, 89.6, and 86.2% respectively. An analysis of 78 transcript sets show Salmo as a sister group to Oncorhynchus and Salvelinus within Salmoninae, and Thymallinae as a sister group to Salmoninae and Coregoninae within Salmonidae. Extensive gene duplication is consistent with a genome duplication in the common ancestor of salmonids. Using all of the available EST data, a new expanded salmonid cDNA microarray of 32,000 features was created. Cross-species hybridizations to this cDNA microarray indicate that this resource will be useful for studies of all 68 salmonid species. Conclusion An extensive collection and analysis of salmonid RNA putative transcripts indicate that Pacific salmon, Atlantic salmon and charr are 94–96% similar while the more distant whitefish, grayling, pike and smelt are 93, 92, 89 and 86% similar to salmon. The salmonid transcriptome reveals a complex history of gene duplication that is

  2. Caryoscope: An Open Source Java application for viewing microarray data in a genomic context

    Directory of Open Access Journals (Sweden)

    Ball Catherine A

    2004-10-01

    Full Text Available Abstract Background Microarray-based comparative genome hybridization experiments generate data that can be mapped onto the genome. These data are interpreted more easily when represented graphically in a genomic context. Results We have developed Caryoscope, which is an open source Java application for visualizing microarray data from array comparative genome hybridization experiments in a genomic context. Caryoscope can read General Feature Format files (GFF files, as well as comma- and tab-delimited files, that define the genomic positions of the microarray reporters for which data are obtained. The microarray data can be browsed using an interactive, zoomable interface, which helps users identify regions of chromosomal deletion or amplification. The graphical representation of the data can be exported in a number of graphic formats, including publication-quality formats such as PostScript. Conclusion Caryoscope is a useful tool that can aid in the visualization, exploration and interpretation of microarray data in a genomic context.

  3. Whole genome microarray analysis, from neonatal blood cards

    Directory of Open Access Journals (Sweden)

    Hogan Michael E

    2009-07-01

    Full Text Available Abstract Background Neonatal blood, obtained from a heel stick and stored dry on paper cards, has been the standard for birth defects screening for 50 years. Such dried blood samples are used, primarily, for analysis of small-molecule analytes. More recently, the DNA complement of such dried blood cards has been used for targeted genetic testing, such as for single nucleotide polymorphism in cystic fibrosis. Expansion of such testing to include polygenic traits, and perhaps whole genome scanning, has been discussed as a formal possibility. However, until now the amount of DNA that might be obtained from such dried blood cards has been limiting, due to inefficient DNA recovery technology. Results A new technology is employed for efficient DNA release from a standard neonatal blood card. Using standard Guthrie cards, stored an average of ten years post-collection, about 1/40th of the air-dried neonatal blood specimen (two 3 mm punches was processed to obtain DNA that was sufficient in mass and quality for direct use in microarray-based whole genome scanning. Using that same DNA release technology, it is also shown that approximately 1/250th of the original purified DNA (about 1 ng could be subjected to whole genome amplification, thus yielding an additional microgram of amplified DNA product. That amplified DNA product was then used in microarray analysis and yielded statistical concordance of 99% or greater to the primary, unamplified DNA sample. Conclusion Together, these data suggest that DNA obtained from less than 10% of a standard neonatal blood specimen, stored dry for several years on a Guthrie card, can support a program of genome-wide neonatal genetic testing.

  4. Computational biology of genome expression and regulation--a review of microarray bioinformatics.

    Science.gov (United States)

    Wang, Junbai

    2008-01-01

    Microarray technology is being used widely in various biomedical research areas; the corresponding microarray data analysis is an essential step toward the best utilizing of array technologies. Here we review two components of the microarray data analysis: a low level of microarray data analysis that emphasizes the designing, the quality control, and the preprocessing of microarray experiments, then a high level of microarray data analysis that focuses on the domain-specific microarray applications such as tumor classification, biomarker prediction, analyzing array CGH experiments, and reverse engineering of gene expression networks. Additionally, we will review the recent development of building a predictive model in genome expression and regulation studies. This review may help biologists grasp a basic knowledge of microarray bioinformatics as well as its potential impact on the future evolvement of biomedical research fields.

  5. Streptococcus pneumoniae R6 interspecies transformation: genetic analysis of penicillin resistance determinants and genome-wide recombination events.

    Science.gov (United States)

    Sauerbier, Julia; Maurer, Patrick; Rieger, Martin; Hakenbeck, Regine

    2012-11-01

    Interspecies gene transfer has been implicated as the major driving force for the evolution of penicillin resistance in Streptococcus pneumoniae. Genomic alterations of S. pneumoniae R6 introduced during four successive transformations with DNA of the high-level penicillin-resistant Streptococcus mitis B6 with beta-lactam selection have now been determined and the contribution of genes to high resistance levels was analysed genetically. Essential for high level resistance to penicillins of the transformant CCCB was the combination of murM(B) (6) and the 3' region of pbp2b(B) (6) . Sequences of both genes were detected in clinical isolates of S. pneumoniae, confirming the participation of S. mitis in the global gene pool of beta-lactam resistance determinants. The S. mitis PBP1b gene which contains an authentic stop codon within the transpeptidase domain is now shown to contribute only marginal to resistance, but it is possible that the presence of its transglycosylase domain is important in the context of cognate PBPs. The genome sequence of CCCB revealed 36 recombination events, including deletion and acquisition of genes and repeat elements. A total of 78 genes were affected representing 67 kb or 3.3% of the genome, documenting extensive alterations scattered throughout the genome.

  6. Comparative BAC-based mapping in the white-throated sparrow, a novel behavioral genomics model, using interspecies overgo hybridization

    Directory of Open Access Journals (Sweden)

    Gonser Rusty A

    2011-06-01

    Full Text Available Abstract Background The genomics era has produced an arsenal of resources from sequenced organisms allowing researchers to target species that do not have comparable mapping and sequence information. These new "non-model" organisms offer unique opportunities to examine environmental effects on genomic patterns and processes. Here we use comparative mapping as a first step in characterizing the genome organization of a novel animal model, the white-throated sparrow (Zonotrichia albicollis, which occurs as white or tan morphs that exhibit alternative behaviors and physiology. Morph is determined by the presence or absence of a complex chromosomal rearrangement. This species is an ideal model for behavioral genomics because the association between genotype and phenotype is absolute, making it possible to identify the genomic bases of phenotypic variation. Findings We initiated a genomic study in this species by characterizing the white-throated sparrow BAC library via filter hybridization with overgo probes designed for the chicken, turkey, and zebra finch. Cross-species hybridization resulted in 640 positive sparrow BACs assigned to 77 chicken loci across almost all macro-and microchromosomes, with a focus on the chromosomes associated with morph. Out of 216 overgos, 36% of the probes hybridized successfully, with an average number of 3.0 positive sparrow BACs per overgo. Conclusions These data will be utilized for determining chromosomal architecture and for fine-scale mapping of candidate genes associated with phenotypic differences. Our research confirms the utility of interspecies hybridization for developing comparative maps in other non-model organisms.

  7. A genome-wide 20 K citrus microarray for gene expression analysis.

    Science.gov (United States)

    Martinez-Godoy, M Angeles; Mauri, Nuria; Juarez, Jose; Marques, M Carmen; Santiago, Julia; Forment, Javier; Gadea, Jose

    2008-07-03

    Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database 1 was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to catalogue genes expressed in

  8. A genome-wide 20 K citrus microarray for gene expression analysis

    Directory of Open Access Journals (Sweden)

    Gadea Jose

    2008-07-01

    Full Text Available Abstract Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database 1 was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. Conclusion This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global

  9. Microarray comparative genomic hybridisation analysis incorporating genomic organisation, and application to enterobacterial plant pathogens.

    Directory of Open Access Journals (Sweden)

    Leighton Pritchard

    2009-08-01

    Full Text Available Microarray comparative genomic hybridisation (aCGH provides an estimate of the relative abundance of genomic DNA (gDNA taken from comparator and reference organisms by hybridisation to a microarray containing probes that represent sequences from the reference organism. The experimental method is used in a number of biological applications, including the detection of human chromosomal aberrations, and in comparative genomic analysis of bacterial strains, but optimisation of the analysis is desirable in each problem domain.We present a method for analysis of bacterial aCGH data that encodes spatial information from the reference genome in a hidden Markov model. This technique is the first such method to be validated in comparisons of sequenced bacteria that diverge at the strain and at the genus level: Pectobacterium atrosepticum SCRI1043 (Pba1043 and Dickeya dadantii 3937 (Dda3937; and Lactococcus lactis subsp. lactis IL1403 and L. lactis subsp. cremoris MG1363. In all cases our method is found to outperform common and widely used aCGH analysis methods that do not incorporate spatial information. This analysis is applied to comparisons between commercially important plant pathogenic soft-rotting enterobacteria (SRE Pba1043, P. atrosepticum SCRI1039, P. carotovorum 193, and Dda3937.Our analysis indicates that it should not be assumed that hybridisation strength is a reliable proxy for sequence identity in aCGH experiments, and robustly extends the applicability of aCGH to bacterial comparisons at the genus level. Our results in the SRE further provide evidence for a dynamic, plastic 'accessory' genome, revealing major genomic islands encoding gene products that provide insight into, and may play a direct role in determining, variation amongst the SRE in terms of their environmental survival, host range and aetiology, such as phytotoxin synthesis, multidrug resistance, and nitrogen fixation.

  10. Intra- and interspecies genomic transfer of the Enterococcus faecalis pathogenicity island.

    Directory of Open Access Journals (Sweden)

    Jenny A Laverde Gomez

    Full Text Available Enterococci are the third leading cause of hospital associated infections and have gained increased importance due to their fast adaptation to the clinical environment by acquisition of antibiotic resistance and pathogenicity traits. Enterococcus faecalis harbours a pathogenicity island (PAI of 153 kb containing several virulence factors including the enterococcal surface protein (esp. Until now only internal fragments of the PAI or larger chromosomal regions containing it have been transferred. Here we demonstrate precise excision, circularization and horizontal transfer of the entire PAI element from the chromosome of E. faecalis strain UW3114. This PAI (ca. 200 kb contained some deletions and insertions as compared to the PAI of the reference strain MMH594, transferred precisely and integrated site-specifically into the chromosome of E. faecalis (intergenic region and Enterococcus faecium (tRNAlys. The internal PAI structure was maintained after transfer. We assessed phenotypic changes accompanying acquisition of the PAI and expression of some of its determinants. The esp gene is expressed on the surface of donor and both transconjugants. Biofilm formation and cytolytic activity were enhanced in E. faecalis transconjugants after acquisition of the PAI. No differences in pathogenicity of E. faecalis were detected using a mouse bacteraemia and a mouse peritonitis models (tail vein and intraperitoneal injection. A 66 kb conjugative pheromone-responsive plasmid encoding erm(B (pLG2 that was transferred in parallel with the PAI was sequenced. pLG2 is a pheromone responsive plasmid that probably promotes the PAI horizontal transfer, encodes antibiotic resistance features and contains complete replication and conjugation modules of enterococcal origin in a mosaic-like composition. The E. faecalis PAI can undergo precise intra- and interspecies transfer probably with the help of conjugative elements like conjugative resistance plasmids, supporting

  11. SIGMA: A System for Integrative Genomic Microarray Analysis of Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Davies Jonathan J

    2006-12-01

    Full Text Available Abstract Background The prevalence of high resolution profiling of genomes has created a need for the integrative analysis of information generated from multiple methodologies and platforms. Although the majority of data in the public domain are gene expression profiles, and expression analysis software are available, the increase of array CGH studies has enabled integration of high throughput genomic and gene expression datasets. However, tools for direct mining and analysis of array CGH data are limited. Hence, there is a great need for analytical and display software tailored to cross platform integrative analysis of cancer genomes. Results We have created a user-friendly java application to facilitate sophisticated visualization and analysis such as cross-tumor and cross-platform comparisons. To demonstrate the utility of this software, we assembled array CGH data representing Affymetrix SNP chip, Stanford cDNA arrays and whole genome tiling path array platforms for cross comparison. This cancer genome database contains 267 profiles from commonly used cancer cell lines representing 14 different tissue types. Conclusion In this study we have developed an application for the visualization and analysis of data from high resolution array CGH platforms that can be adapted for analysis of multiple types of high throughput genomic datasets. Furthermore, we invite researchers using array CGH technology to deposit both their raw and processed data, as this will be a continually expanding database of cancer genomes. This publicly available resource, the System for Integrative Genomic Microarray Analysis (SIGMA of cancer genomes, can be accessed at http://sigma.bccrc.ca.

  12. Experimental genomics: The application of DNA microarrays in cellular and molecular biology studies

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The genome sequence information in combination with DNA microarrays promises to revolutionize the way of cellular and molecular biological research by allowing complex mixtures of RNA and DNA to interrogated in a parallel and quant itative fashion. DNA microarrays can be used to measure levels of gene expressio n for tens of thousands of gene simultaneously and take advantage of all availab le sequence information for experimental design and data interpretation in pursu it of biological understanding. Recent progress in experimental genomics allows DNA microarrays not simply to provide a catalogue of all the genes and informati on about their function, but to understand how the components work together to comprise functioning cells and organisms. This brief review gives a survey of DNA microarrays technology and its applications in genome and gene function analysis, gene expression studies, biological signal and defense system, cell cyclereg ulation, mechanism of transcriptional regulation, proteomics, and the functional ity of food component.

  13. A genome-wide 20 K citrus microarray for gene expression analysis

    OpenAIRE

    Gadea Jose; Forment Javier; Santiago Julia; Marques M Carmen; Juarez Jose; Mauri Nuria; Martinez-Godoy M Angeles

    2008-01-01

    Abstract Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-...

  14. A genome-wide 20 K citrus microarray for gene expression analysis

    OpenAIRE

    Martinez-Godoy, M Angeles; Mauri, Nuria; Juarez, Jose; Marques, M Carmen; Santiago, Julia; Forment, Javier; Gadea, Jose

    2008-01-01

    Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA...

  15. Interspecies transmission and limited persistence of low pathogenic avian influenza genomes among Alaska dabbling ducks

    Science.gov (United States)

    Reeves, Andrew B.; Pearce, John M.; Ramey, Andy M.; Meixell, Brandt; Runstadler, Jonathan A.

    2011-01-01

    The reassortment and geographic distribution of low pathogenic avian influenza (LPAI) virus genes are well documented, but little is known about the persistence of intact LPAI genomes among species and locations. To examine persistence of entire LPAI genome constellations in Alaska, we calculated the genetic identities among 161 full-genome LPAI viruses isolated across 4 years from five species of duck: northern pintail (Anas acuta), mallard (Anas platyrhynchos), American green-winged teal (Anas crecca), northern shoveler (Anas clypeata) and American wigeon (Anas Americana). Based on pairwise genetic distance, highly similar LPAI genomes (>99 percent identity) were observed within and between species and across a range of geographic distances (up to and >1000 km), but most often between isolates collected 0-10 km apart. Highly similar viruses were detected between years, suggesting inter-annual persistence, but these were rare in our data set with the majority occurring within 0-9 days of sampling. These results identify LPAI transmission pathways in the context of species, space and time, an initial perspective into the extent of regional virus distribution and persistence, and insight into why no completely Eurasian genomes have ever been detected in Alaska. Such information will be useful in forecasting the movement of foreign-origin avian influenza strains should they be introduced to North America.

  16. Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis

    NARCIS (Netherlands)

    Skinner, M.; Robertson, L.B.; Tempest, H.G.; Langley, E.J.; Ioannou, D.; Fowler, K.E.; Crooijmans, R.P.M.A.

    2009-01-01

    Background: The availability of the complete chicken (Gallus gallus) genome sequence as well as a large number of chicken probes for fluorescent in-situ hybridization (FISH) and microarray resources facilitate comparative genomic studies between chicken and other bird species. In a previous study, w

  17. High-resolution genomic microarrays for X-linked mental retardation.

    NARCIS (Netherlands)

    Lugtenberg, D.; Veltman, J.A.; Bokhoven, J.H.L.M. van

    2007-01-01

    Developments in genomic microarray technology have revolutionized the study of human genomic copy number variation. This has significantly affected many areas in human genetics, including the field of X-linked mental retardation (XLMR). Chromosome X-specific bacterial artificial chromosomes

  18. High-resolution genomic microarrays for X-linked mental retardation.

    NARCIS (Netherlands)

    Lugtenberg, D.; Veltman, J.A.; Bokhoven, J.H.L.M. van

    2007-01-01

    Developments in genomic microarray technology have revolutionized the study of human genomic copy number variation. This has significantly affected many areas in human genetics, including the field of X-linked mental retardation (XLMR). Chromosome X-specific bacterial artificial chromosomes microarr

  19. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing.

    Science.gov (United States)

    Ai, Huashui; Fang, Xiaodong; Yang, Bin; Huang, Zhiyong; Chen, Hao; Mao, Likai; Zhang, Feng; Zhang, Lu; Cui, Leilei; He, Weiming; Yang, Jie; Yao, Xiaoming; Zhou, Lisheng; Han, Lijuan; Li, Jing; Sun, Silong; Xie, Xianhua; Lai, Boxian; Su, Ying; Lu, Yao; Yang, Hui; Huang, Tao; Deng, Wenjiang; Nielsen, Rasmus; Ren, Jun; Huang, Lusheng

    2015-03-01

    Domestic pigs have evolved genetic adaptations to their local environmental conditions, such as cold and hot climates. We sequenced the genomes of 69 pigs from 15 geographically divergent locations in China and detected 41 million variants, of which 21 million were absent from the dbSNP database. In a genome-wide scan, we identified a set of loci that likely have a role in regional adaptations to high- and low-latitude environments within China. Intriguingly, we found an exceptionally large (14-Mb) region with a low recombination rate on the X chromosome that appears to have two distinct haplotypes in the high- and low-latitude populations, possibly underlying their adaptation to cold and hot environments, respectively. Surprisingly, the adaptive sweep in the high-latitude regions has acted on DNA that might have been introgressed from an extinct Sus species. Our findings provide new insights into the evolutionary history of pigs and the role of introgression in adaptation.

  20. Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia.

    Science.gov (United States)

    Simons, Annet; Stevens-Kroef, Marian; El Idrissi-Zaynoun, Najat; van Gessel, Sabine; Weghuis, Daniel Olde; van den Berg, Eva; Waanders, Esmé; Hoogerbrugge, Peter; Kuiper, Roland; van Kessel, Ad Geurts

    2011-12-01

    In acute lymphoblastic leukemia (ALL) specific genomic abnormalities provide important clinical information. In most routine clinical diagnostic laboratories conventional karyotyping, in conjunction with targeted screens using e.g., fluorescence in situ hybridization (FISH), is currently considered as the gold standard to detect such aberrations. Conventional karyotyping, however, is limited in its resolution and yield, thus hampering the genetic diagnosis of ALL. We explored whether microarray-based genomic profiling would be feasible as an alternative strategy in a routine clinical diagnostic setting. To this end, we compared conventional karyotypes with microarray-deduced copy number aberration (CNA) karyotypes in 60 ALL cases. Microarray-based genomic profiling resulted in a CNA detection rate of 90%, whereas for conventional karyotyping this was 61%. In addition, many small (< 5 Mb) genetic lesions were encountered, frequently harboring clinically relevant ALL-related genes such as CDKN2A/B, ETV6, PAX5, and IKZF1. From our data we conclude that microarray-based genomic profiling serves as a robust tool in the genetic diagnosis of ALL, outreaching conventional karyotyping in CNA detection both in terms of sensitivity and specificity. We also propose a practical workflow for a comprehensive and objective interpretation of CNAs obtained through microarray-based genomic profiling, thereby facilitating its application in a routine clinical diagnostic setting.

  1. Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells

    Directory of Open Access Journals (Sweden)

    Han Yong-Mahn

    2009-07-01

    Full Text Available Abstract Background Interspecies somatic cell nuclear transfer (iSCNT has been proposed as a tool to address basic developmental questions and to improve the feasibility of cell therapy. However, the low efficiency of iSCNT embryonic development is a crucial problem when compared to in vitro fertilization (IVF and intraspecies SCNT. Thus, we examined the effect of donor cell species on the early development of SCNT embryos after reconstruction with bovine ooplasm. Results No apparent difference in cleavage rate was found among IVF, monkey-bovine (MB-iSCNT, and bovine-bovine (BB-SCNT embryos. However, MB-iSCNT embryos failed to develop beyond the 8- or 16-cell stages and lacked expression of the genes involved in embryonic genome activation (EGA at the 8-cell stage. From ultrastructural observations made during the peri-EGA period using transmission electron microscopy (TEM, we found that the nucleoli of MB-iSCNT embryos were morphologically abnormal or arrested at the primary stage of nucleologenesis. Consistent with the TEM analysis, nucleolar component proteins, such as upstream binding transcription factor, fibrillarin, nucleolin, and nucleophosmin, showed decreased expression and were structurally disorganized in MB-iSCNT embryos compared to IVF and BB-SCNT embryos, as revealed by real-time PCR and immunofluorescence confocal laser scanning microscopy, respectively. Conclusion The down-regulation of housekeeping and imprinting genes, abnormal nucleolar morphology, and aberrant patterns of nucleolar proteins during EGA resulted in developmental failure in MB-iSCNT embryos. These results provide insight into the unresolved problems of early embryonic development in iSCNT embryos.

  2. High resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides.

    NARCIS (Netherlands)

    Carvalho, B; Ouwerkerk, E; Meijer, G.A.; Ylstra, B.

    2004-01-01

    BACKGROUND: Currently, comparative genomic hybridisation array (array CGH) is the method of choice for studying genome wide DNA copy number changes. To date, either amplified representations of bacterial artificial chromosomes (BACs)/phage artificial chromosomes (PACs) or cDNAs have been spotted as

  3. Two heuristic approaches to describe periodicities in genomic microarrays

    Directory of Open Access Journals (Sweden)

    Jörg Aßmus

    2009-09-01

    Full Text Available In the first part we discuss the filtering of panels of time series based on singular value decomposition. The discussion is based on an approach where this filtering is used to normalize microarray data. We point out effects on the periodicity and phases for time series panels. In the second part we investigate time dependent periodic panels with different phases. We align the time series in the panel and discuss the periodogram of the aligned time series with the purpose of describing the periodic structure of the panel. The method is quite powerful assuming known phases in the model, but it deteriorates rapidly for noisy data.  

  4. A 7872 cDNA microarray and its use in bovine functional genomics.

    Science.gov (United States)

    Everts, Robin E; Band, Mark R; Liu, Z Lewis; Kumar, Charu G; Liu, Lei; Loor, Juan J; Oliveira, Rosane; Lewin, Harris A

    2005-05-15

    The strategy used to create and annotate a 7872 cDNA microarray from cattle placenta and spleen cDNA sequences is described. This microarray contains approximately 6300 unique genes, as determined by BLASTN and TBLASTX similarity search against the human and mouse UniGene and draft human genome sequence databases (build 34). Sequences on the array were annotated with gene ontology (GO) terms, thereby facilitating data analysis and interpretation. A total of 3244 genes were annotated with GO terms. The array is rich in sequences encoding transcription factors, signal transducers and cell cycle regulators. Current research being conducted with this array is described, and an overview of planned improvements in our microarray platform for cattle functional genomics is presented.

  5. A genome-wide 20 K citrus microarray for gene expression analysis

    OpenAIRE

    Martínez-Godoy, M. Ángeles; Mauri, Nuria; Juárez, José; Marqués, M. Carmen; Santiago, Julia; Forment, Javier; Gadea Vacas, José

    2008-01-01

    Background: Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genomewide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results: We have designed and constructed a publicly available ...

  6. CGHScan: finding variable regions using high-density microarray comparative genomic hybridization data

    Directory of Open Access Journals (Sweden)

    Rajashekara Gireesh

    2006-04-01

    Full Text Available Abstract Background Comparative genomic hybridization can rapidly identify chromosomal regions that vary between organisms and tissues. This technique has been applied to detecting differences between normal and cancerous tissues in eukaryotes as well as genomic variability in microbial strains and species. The density of oligonucleotide probes available on current microarray platforms is particularly well-suited for comparisons of organisms with smaller genomes like bacteria and yeast where an entire genome can be assayed on a single microarray with high resolution. Available methods for analyzing these experiments typically confine analyses to data from pre-defined annotated genome features, such as entire genes. Many of these methods are ill suited for datasets with the number of measurements typical of high-density microarrays. Results We present an algorithm for analyzing microarray hybridization data to aid identification of regions that vary between an unsequenced genome and a sequenced reference genome. The program, CGHScan, uses an iterative random walk approach integrating multi-layered significance testing to detect these regions from comparative genomic hybridization data. The algorithm tolerates a high level of noise in measurements of individual probe intensities and is relatively insensitive to the choice of method for normalizing probe intensity values and identifying probes that differ between samples. When applied to comparative genomic hybridization data from a published experiment, CGHScan identified eight of nine known deletions in a Brucella ovis strain as compared to Brucella melitensis. The same result was obtained using two different normalization methods and two different scores to classify data for individual probes as representing conserved or variable genomic regions. The undetected region is a small (58 base pair deletion that is below the resolution of CGHScan given the array design employed in the study

  7. Chromosomal Localization of DNA Amplifications in Neuroblastoma Tumors Using cDNA Microarray Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Ben Beheshti

    2003-01-01

    Full Text Available Conventional comparative genomic hybridization (CGH profiling of neuroblastomas has identified many genomic aberrations, although the limited resolution has precluded a precise localization of sequences of interest within amplicons. To map high copy number genomic gains in clinically matched stage IV neuroblastomas, CGH analysis using a 19,200-feature cDNA microarray was used. A dedicated (freely available algorithm was developed for rapid in silico determination of chromosomal localizations of microarray cDNA targets, and for generation of an ideogram-type profile of copy number changes. Using these methodologies, novel gene amplifications undetectable by chromosome CGH were identified, and larger MYCN amplicon sizes (in one tumor up to 6 Mb than those previously reported in neuroblastoma were identified. The genes HPCAL1, LPIN1/KIAA0188, NAG, and NSE1/LOC151354 were found to be coamplified with MYCN. To determine whether stage IV primary tumors could be further subclassified based on their genomic copy number profiles, hierarchical clustering was performed. Cluster analysis of microarray CGH data identified three groups: 1 no amplifications evident, 2 a small MYCN amplicon as the only detectable imbalance, and 3 a large MYCN amplicon with additional gene amplifications. Application of CGH to cDNA microarray targets will help to determine both the variation of amplicon size and help better define amplification-dependent and independent pathways of progression in neuroblastoma.

  8. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  9. Assessing the significance of conserved genomic aberrations using high resolution genomic microarrays.

    Directory of Open Access Journals (Sweden)

    Mitchell Guttman

    2007-08-01

    Full Text Available Genomic aberrations recurrent in a particular cancer type can be important prognostic markers for tumor progression. Typically in early tumorigenesis, cells incur a breakdown of the DNA replication machinery that results in an accumulation of genomic aberrations in the form of duplications, deletions, translocations, and other genomic alterations. Microarray methods allow for finer mapping of these aberrations than has previously been possible; however, data processing and analysis methods have not taken full advantage of this higher resolution. Attention has primarily been given to analysis on the single sample level, where multiple adjacent probes are necessarily used as replicates for the local region containing their target sequences. However, regions of concordant aberration can be short enough to be detected by only one, or very few, array elements. We describe a method called Multiple Sample Analysis for assessing the significance of concordant genomic aberrations across multiple experiments that does not require a-priori definition of aberration calls for each sample. If there are multiple samples, representing a class, then by exploiting the replication across samples our method can detect concordant aberrations at much higher resolution than can be derived from current single sample approaches. Additionally, this method provides a meaningful approach to addressing population-based questions such as determining important regions for a cancer subtype of interest or determining regions of copy number variation in a population. Multiple Sample Analysis also provides single sample aberration calls in the locations of significant concordance, producing high resolution calls per sample, in concordant regions. The approach is demonstrated on a dataset representing a challenging but important resource: breast tumors that have been formalin-fixed, paraffin-embedded, archived, and subsequently UV-laser capture microdissected and hybridized to two

  10. Experimental annotation of the human genome using microarray technology.

    Science.gov (United States)

    Shoemaker, D D; Schadt, E E; Armour, C D; He, Y D; Garrett-Engele, P; McDonagh, P D; Loerch, P M; Leonardson, A; Lum, P Y; Cavet, G; Wu, L F; Altschuler, S J; Edwards, S; King, J; Tsang, J S; Schimmack, G; Schelter, J M; Koch, J; Ziman, M; Marton, M J; Li, B; Cundiff, P; Ward, T; Castle, J; Krolewski, M; Meyer, M R; Mao, M; Burchard, J; Kidd, M J; Dai, H; Phillips, J W; Linsley, P S; Stoughton, R; Scherer, S; Boguski, M S

    2001-02-15

    The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.

  11. Genomic Imbalances in Neonates With Birth Defects: High Detection Rates by Using Chromosomal Microarray Analysis

    Science.gov (United States)

    Lu, Xin-Yan; Phung, Mai T.; Shaw, Chad A.; Pham, Kim; Neil, Sarah E.; Patel, Ankita; Sahoo, Trilochan; Bacino, Carlos A.; Stankiewicz, Pawel; Lee Kang, Sung-Hae; Lalani, Seema; Chinault, A. Craig; Lupski, James R.; Cheung, Sau W.; Beaudet, Arthur L.

    2009-01-01

    OBJECTIVES Our aim was to determine the frequency of genomic imbalances in neonates with birth defects by using targeted array-based comparative genomic hybridization, also known as chromosomal microarray analysis. METHODS Between March 2006 and September 2007, 638 neonates with various birth defects were referred for chromosomal microarray analysis. Three consecutive chromosomal microarray analysis versions were used: bacterial artificial chromosome-based versions V5 and V6 and bacterial artificial chromosome emulated oligonucleotide-based version V6 Oligo. Each version had targeted but increasingly extensive genomic coverage and interrogated >150 disease loci with enhanced coverage in genomic rearrangement-prone pericentromeric and subtelomeric regions. RESULTS Overall, 109 (17.1%) patients were identified with clinically significant abnormalities with detection rates of 13.7%, 16.6%, and 19.9% on V5, V6, and V6 Oligo, respectively. The majority of these abnormalities would not be defined by using karyotype analysis. The clinically significant detection rates by use of chromosomal microarray analysis for various clinical indications were 66.7% for “possible chromosomal abnormality” ± “others” (other clinical indications), 33.3% for ambiguous genitalia ± others, 27.1% for dysmorphic features + multiple congenital anomalies ± others, 24.6% for dysmorphic features ± others, 21.8% for congenital heart disease ± others, 17.9% for multiple congenital anomalies ± others, and 9.5% for the patients referred for others that were different from the groups defined. In all, 16 (2.5%) patients had chromosomal aneuploidies, and 81 (12.7%) patients had segmental aneusomies including common microdeletion or microduplication syndromes and other genomic disorders. Chromosomal mosaicism was found in 12 (1.9%) neonates. CONCLUSIONS Chromosomal microarray analysis is a valuable clinical diagnostic tool that allows precise and rapid identification of genomic imbalances

  12. Integrating multiple genome annotation databases improves the interpretation of microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Kennedy Breandan

    2010-01-01

    Full Text Available Abstract Background The Affymetrix GeneChip is a widely used gene expression profiling platform. Since the chips were originally designed, the genome databases and gene definitions have been considerably updated. Thus, more accurate interpretation of microarray data requires parallel updating of the specificity of GeneChip probes. We propose a new probe remapping protocol, using the zebrafish GeneChips as an example, by removing nonspecific probes, and grouping the probes into transcript level probe sets using an integrated zebrafish genome annotation. This genome annotation is based on combining transcript information from multiple databases. This new remapping protocol, especially the new genome annotation, is shown here to be an important factor in improving the interpretation of gene expression microarray data. Results Transcript data from the RefSeq, GenBank and Ensembl databases were downloaded from the UCSC genome browser, and integrated to generate a combined zebrafish genome annotation. Affymetrix probes were filtered and remapped according to the new annotation. The influence of transcript collection and gene definition methods was tested using two microarray data sets. Compared to remapping using a single database, this new remapping protocol results in up to 20% more probes being retained in the remapping, leading to approximately 1,000 more genes being detected. The differentially expressed gene lists are consequently increased by up to 30%. We are also able to detect up to three times more alternative splicing events. A small number of the bioinformatics predictions were confirmed using real-time PCR validation. Conclusions By combining gene definitions from multiple databases, it is possible to greatly increase the numbers of genes and splice variants that can be detected in microarray gene expression experiments.

  13. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.

    Science.gov (United States)

    Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J

    2008-06-18

    Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. This study shows that SCC is an alternative to the Pearson

  14. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient

    Directory of Open Access Journals (Sweden)

    Loraine Ann

    2008-06-01

    Full Text Available Abstract Background Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. Results In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC, that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. Conclusion

  15. Comprehensive Analysis of Prokaryotes in Environmental Water Using DNA Microarray Analysis and Whole Genome Amplification

    Directory of Open Access Journals (Sweden)

    Norihisa Ishii

    2013-10-01

    Full Text Available The microflora in environmental water consists of a high density and diversity of bacterial species that form the foundation of the water ecosystem. Because the majority of these species cannot be cultured in vitro, a different approach is needed to identify prokaryotes in environmental water. A novel DNA microarray was developed as a simplified detection protocol. Multiple DNA probes were designed against each of the 97,927 sequences in the DNA Data Bank of Japan and mounted on a glass chip in duplicate. Evaluation of the microarray was performed using the DNA extracted from one liter of environmental water samples collected from seven sites in Japan. The extracted DNA was uniformly amplified using whole genome amplification (WGA, labeled with Cy3-conjugated 16S rRNA specific primers and hybridized to the microarray. The microarray successfully identified soil bacteria and environment-specific bacteria clusters. The DNA microarray described herein can be a useful tool in evaluating the diversity of prokaryotes and assessing environmental changes such as global warming.

  16. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  17. Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis

    Directory of Open Access Journals (Sweden)

    Fowler Katie E

    2009-08-01

    Full Text Available Abstract Background The availability of the complete chicken (Gallus gallus genome sequence as well as a large number of chicken probes for fluorescent in-situ hybridization (FISH and microarray resources facilitate comparative genomic studies between chicken and other bird species. In a previous study, we provided a comprehensive cytogenetic map for the turkey (Meleagris gallopavo and the first analysis of copy number variants (CNVs in birds. Here, we extend this approach to the Pekin duck (Anas platyrhynchos, an obvious target for comparative genomic studies due to its agricultural importance and resistance to avian flu. Results We provide a detailed molecular cytogenetic map of the duck genome through FISH assignment of 155 chicken clones. We identified one inter- and six intrachromosomal rearrangements between chicken and duck macrochromosomes and demonstrated conserved synteny among all microchromosomes analysed. Array comparative genomic hybridisation revealed 32 CNVs, of which 5 overlap previously designated "hotspot" regions between chicken and turkey. Conclusion Our results suggest extensive conservation of avian genomes across 90 million years of evolution in both macro- and microchromosomes. The data on CNVs between chicken and duck extends previous analyses in chicken and turkey and supports the hypotheses that avian genomes contain fewer CNVs than mammalian genomes and that genomes of evolutionarily distant species share regions of copy number variation ("CNV hotspots". Our results will expedite duck genomics, assist marker development and highlight areas of interest for future evolutionary and functional studies.

  18. Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray

    OpenAIRE

    Carter, Mark G.; Sharov, Alexei A; VanBuren, Vincent; Dudekula, Dawood B.; Carmack, Condie E; Nelson, Charlie; Ko, Minoru SH

    2005-01-01

    The ability to quantitatively measure the expression of all genes in a given tissue or cell with a single assay is an exciting promise of gene-expression profiling technology. An in situ-synthesized 60-mer oligonucleotide microarray designed to detect transcripts from all mouse genes was validated, as well as a set of exogenous RNA controls derived from the yeast genome (made freely available without restriction), which allow quantitative estimation of absolute endogenous transcript abundance.

  19. Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray

    Science.gov (United States)

    Carter, Mark G; Sharov, Alexei A; VanBuren, Vincent; Dudekula, Dawood B; Carmack, Condie E; Nelson, Charlie; Ko, Minoru SH

    2005-01-01

    The ability to quantitatively measure the expression of all genes in a given tissue or cell with a single assay is an exciting promise of gene-expression profiling technology. An in situ-synthesized 60-mer oligonucleotide microarray designed to detect transcripts from all mouse genes was validated, as well as a set of exogenous RNA controls derived from the yeast genome (made freely available without restriction), which allow quantitative estimation of absolute endogenous transcript abundance. PMID:15998450

  20. Detection of genome-wide polymorphisms in the AT-rich Plasmodium falciparum genome using a high-density microarray

    Directory of Open Access Journals (Sweden)

    Huyen Yentram

    2008-08-01

    Full Text Available Abstract Background Genetic mapping is a powerful method to identify mutations that cause drug resistance and other phenotypic changes in the human malaria parasite Plasmodium falciparum. For efficient mapping of a target gene, it is often necessary to genotype a large number of polymorphic markers. Currently, a community effort is underway to collect single nucleotide polymorphisms (SNP from the parasite genome. Here we evaluate polymorphism detection accuracy of a high-density 'tiling' microarray with 2.56 million probes by comparing single feature polymorphisms (SFP calls from the microarray with known SNP among parasite isolates. Results We found that probe GC content, SNP position in a probe, probe coverage, and signal ratio cutoff values were important factors for accurate detection of SFP in the parasite genome. We established a set of SFP calling parameters that could predict mSFP (SFP called by multiple overlapping probes with high accuracy (≥ 94% and identified 121,087 mSFP genome-wide from five parasite isolates including 40,354 unique mSFP (excluding those from multi-gene families and ~18,000 new mSFP, producing a genetic map with an average of one unique mSFP per 570 bp. Genomic copy number variation (CNV among the parasites was also cataloged and compared. Conclusion A large number of mSFP were discovered from the P. falciparum genome using a high-density microarray, most of which were in clusters of highly polymorphic genes at chromosome ends. Our method for accurate mSFP detection and the mSFP identified will greatly facilitate large-scale studies of genome variation in the P. falciparum parasite and provide useful resources for mapping important parasite traits.

  1. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    Directory of Open Access Journals (Sweden)

    Moreau Yves

    2005-05-01

    Full Text Available Abstract Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH. One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at http://medgen.ugent.be/arrayCGHbase/.

  2. Whole-genome microarrays of fission yeast: characteristics, accuracy, reproducibility, and processing of array data

    Directory of Open Access Journals (Sweden)

    Chen Dongrong

    2003-07-01

    Full Text Available Abstract Background The genome of the fission yeast Schizosaccharomyces pombe has recently been sequenced, setting the stage for the post-genomic era of this increasingly popular model organism. We have built fission yeast microarrays, optimised protocols to improve array performance, and carried out experiments to assess various characteristics of microarrays. Results We designed PCR primers to amplify specific probes (180–500 bp for all known and predicted fission yeast genes, which are printed in duplicate onto separate regions of glass slides together with control elements (~13,000 spots/slide. Fluorescence signal intensities depended on the size and intragenic position of the array elements, whereas the signal ratios were largely independent of element properties. Only the coding strand is covalently linked to the slides, and our array elements can discriminate transcriptional direction. The microarrays can distinguish sequences with up to 70% identity, above which cross-hybridisation contributes to the signal intensity. We tested the accuracy of signal ratios and measured the reproducibility of array data caused by biological and technical factors. Because the technical variability is lower, it is best to use samples prepared from independent biological experiments to obtain repeated measurements with swapping of fluorochromes to prevent dye bias. We also developed a script that discards unreliable data and performs a normalization to correct spatial artefacts. Conclusions This paper provides data for several microarray properties that are rarely measured. The results define critical parameters for microarray design and experiments and provide a framework to optimise and interpret array data. Our arrays give reproducible and accurate expression ratios with high sensitivity. The scripts for primer design and initial data processing as well as primer sequences and detailed protocols are available from our website.

  3. Application of Microarray-Based Comparative Genomic Hybridization in Prenatal and Postnatal Settings: Three Case Reports

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2011-01-01

    Full Text Available Microarray-based comparative genomic hybridization (array CGH is a newly emerged molecular cytogenetic technique for rapid evaluation of the entire genome with sub-megabase resolution. It allows for the comprehensive investigation of thousands and millions of genomic loci at once and therefore enables the efficient detection of DNA copy number variations (a.k.a, cryptic genomic imbalances. The development and the clinical application of array CGH have revolutionized the diagnostic process in patients and has provided a clue to many unidentified or unexplained diseases which are suspected to have a genetic cause. In this paper, we present three clinical cases in both prenatal and postnatal settings. Among all, array CGH played a major discovery role to reveal the cryptic and/or complex nature of chromosome arrangements. By identifying the genetic causes responsible for the clinical observation in patients, array CGH has provided accurate diagnosis and appropriate clinical management in a timely and efficient manner.

  4. Parents' Experience with Pediatric Microarray: Transferrable Lessons in the Era of Genomic Counseling.

    Science.gov (United States)

    Hayeems, R Z; Babul-Hirji, R; Hoang, N; Weksberg, R; Shuman, C

    2016-04-01

    Advances in genome-based microarray and sequencing technologies hold tremendous promise for understanding, better-managing and/or preventing disease and disease-related risk. Chromosome microarray technology (array based comparative genomic hybridization [aCGH]) is widely utilized in pediatric care to inform diagnostic etiology and medical management. Less clear is how parents experience and perceive the value of this technology. This study explored parents' experiences with aCGH in the pediatric setting, focusing on how they make meaning of various types of test results. We conducted in-person or telephone-based semi-structured interviews with parents of 21 children who underwent aCGH testing in 2010. Transcripts were coded and analyzed thematically according to the principles of interpretive description. We learned that parents expect genomic tests to be of personal use; their experiences with aCGH results characterize this use as intrinsic in the test's ability to provide a much sought-after answer for their child's condition, and instrumental in its ability to guide care, access to services, and family planning. In addition, parents experience uncertainty regardless of whether aCGH results are of pathogenic, uncertain, or benign significance; this triggers frustration, fear, and hope. Findings reported herein better characterize the notion of personal utility and highlight the pervasive nature of uncertainty in the context of genomic testing. Empiric research that links pre-test counseling content and psychosocial outcomes is warranted to optimize patient care.

  5. Application of functional genomics to the chimeric mouse model of HCV infection: optimization of microarray protocols and genomics analysis

    Directory of Open Access Journals (Sweden)

    Smith Maria W

    2006-05-01

    Full Text Available Abstract Background Many model systems of human viral disease involve human-mouse chimeric tissue. One such system is the recently developed SCID-beige/Alb-uPA mouse model of hepatitis C virus (HCV infection which involves a human-mouse chimeric liver. The use of functional genomics to study HCV infection in these chimeric tissues is complicated by the potential cross-hybridization of mouse mRNA on human oligonucleotide microarrays. To identify genes affected by mouse liver mRNA hybridization, mRNA from identical human liver samples labeled with either Cy3 or Cy5 was compared in the presence and absence of known amounts of mouse liver mRNA labeled in only one dye. Results The results indicate that hybridization of mouse mRNA to the corresponding human gene probe on Agilent Human 22 K oligonucleotide microarray does occur. The number of genes affected by such cross-hybridization was subsequently reduced to approximately 300 genes both by increasing the hybridization temperature and using liver samples which contain at least 80% human tissue. In addition, Real Time quantitative RT-PCR using human specific probes was shown to be a valid method to verify the expression level in human cells of known cross-hybridizing genes. Conclusion The identification of genes affected by cross-hybridization of mouse liver RNA on human oligonucleotide microarrays makes it feasible to use functional genomics approaches to study the chimeric SCID-beige/Alb-uPA mouse model of HCV infection. This approach used to study cross-species hybridization on oligonucleotide microarrays can be adapted to other chimeric systems of viral disease to facilitate selective analysis of human gene expression.

  6. Experimental analysis of oligonucleotide microarray design criteria to detect deletions by comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Moerman Donald G

    2008-10-01

    Full Text Available Abstract Background Microarray comparative genomic hybridization (CGH is currently one of the most powerful techniques to measure DNA copy number in large genomes. In humans, microarray CGH is widely used to assess copy number variants in healthy individuals and copy number aberrations associated with various diseases, syndromes and disease susceptibility. In model organisms such as Caenorhabditis elegans (C. elegans the technique has been applied to detect mutations, primarily deletions, in strains of interest. Although various constraints on oligonucleotide properties have been suggested to minimize non-specific hybridization and improve the data quality, there have been few experimental validations for CGH experiments. For genomic regions where strict design filters would limit the coverage it would also be useful to quantify the expected loss in data quality associated with relaxed design criteria. Results We have quantified the effects of filtering various oligonucleotide properties by measuring the resolving power for detecting deletions in the human and C. elegans genomes using NimbleGen microarrays. Approximately twice as many oligonucleotides are typically required to be affected by a deletion in human DNA samples in order to achieve the same statistical confidence as one would observe for a deletion in C. elegans. Surprisingly, the ability to detect deletions strongly depends on the oligonucleotide 15-mer count, which is defined as the sum of the genomic frequency of all the constituent 15-mers within the oligonucleotide. A similarity level above 80% to non-target sequences over the length of the probe produces significant cross-hybridization. We recommend the use of a fairly large melting temperature window of up to 10°C, the elimination of repeat sequences, the elimination of homopolymers longer than 5 nucleotides, and a threshold of -1 kcal/mol on the oligonucleotide self-folding energy. We observed very little difference in data

  7. Dynamic probe selection for studying microbial transcriptome with high-density genomic tiling microarrays

    Directory of Open Access Journals (Sweden)

    Chen Tsute

    2010-02-01

    Full Text Available Abstract Background Current commercial high-density oligonucleotide microarrays can hold millions of probe spots on a single microscopic glass slide and are ideal for studying the transcriptome of microbial genomes using a tiling probe design. This paper describes a comprehensive computational pipeline implemented specifically for designing tiling probe sets to study microbial transcriptome profiles. Results The pipeline identifies every possible probe sequence from both forward and reverse-complement strands of all DNA sequences in the target genome including circular or linear chromosomes and plasmids. Final probe sequence lengths are adjusted based on the maximal oligonucleotide synthesis cycles and best isothermality allowed. Optimal probes are then selected in two stages - sequential and gap-filling. In the sequential stage, probes are selected from sequence windows tiled alongside the genome. In the gap-filling stage, additional probes are selected from the largest gaps between adjacent probes that have already been selected, until a predefined number of probes is reached. Selection of the highest quality probe within each window and gap is based on five criteria: sequence uniqueness, probe self-annealing, melting temperature, oligonucleotide length, and probe position. Conclusions The probe selection pipeline evaluates global and local probe sequence properties and selects a set of probes dynamically and evenly distributed along the target genome. Unique to other similar methods, an exact number of non-redundant probes can be designed to utilize all the available probe spots on any chosen microarray platform. The pipeline can be applied to microbial genomes when designing high-density tiling arrays for comparative genomics, ChIP chip, gene expression and comprehensive transcriptome studies.

  8. Construction of Whole Genome Microarrays, and Expression Analysis of Desulfovibrio vulgaris cells in Metal-Reducing Conditions (Uranium and Chromium)

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Matthew W.

    2005-06-01

    One of the major goals of the project is to construct whole-genome microarrays for Desulfovibrio vulgaris. Previous whole-genome microarrays constructed at ORNL have been PCR-amplimer based, and we wanted to re-evaluate the type of microarrays being built because oligonucleotide probes have several advantages. Microarrays have been generally constructed with two types of probes, PCR-generated probes that typically range in size between 200 and 2000 bp, and oligonucleotide probes with typical size of 20-70 nt. Producing PCR product-based DNA arrays can be a time-consuming procedure that includes PCR primer design, amplification, size verification, product purification, and product quantification. Also, some ORFs are difficult to amplify and thus the construction of comprehensive arrays can be a challenge. Recently, to alleviate some of the problems associated with PCR product-based microarrays, oligonucleotide microarrays that contain probes longer than 40 nt have been evaluated and used for whole genome expression studies. These microarrays should have higher specificity and are easy to construct, and can thus provide an important alternative approach to monitor gene expression. However, due to the smaller probe size, it is expected that the detection sensitivity of oligonucleotide arrays will be lower than PCR product-based probes.

  9. Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system

    NARCIS (Netherlands)

    Hsiao, Nai-hua; Kirby, Ralph

    2008-01-01

    DNA/DNA microarray hybridization was used to compare the genome content of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens with that of Streptomyces coelicolor A3(2). The array data showed an about 93% agreement with the genome sequence data ava

  10. Construction and Evaluation of Desulfovibrio vulgaris Whole-Genome Oligonucleotide Microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Z. He; Q. He; L. Wu; M.E. Clark; J.D. Wall; Jizhong Zhou; Matthew W. Fields

    2004-03-17

    Desulfovibrio vulgaris Hildenborough has been the focus of biochemical and physiological studies in the laboratory, and the metabolic versatility of this organism has been largely recognized, particularly the reduction of sulfate, fumarate, iron, uranium and chromium. In addition, a Desulfovibrio sp. has been shown to utilize uranium as the sole electron acceptor. D. vulgaris is a d-Proteobacterium with a genome size of 3.6 Mb and 3584 ORFs. The whole-genome microarrays of D. vulgaris have been constructed using 70mer oligonucleotides. All ORFs in the genome were represented with 3471 (97.1%) unique probes and 103 (2.9%) non-specific probes that may have cross-hybridization with other ORFs. In preparation for use of the experimental microarrays, artificial probes and targets were designed to assess specificity and sensitivity and identify optimal hybridization conditions for oligonucleotide microarrays. The results indicated that for 50mer and 70mer oligonucleotide arrays, hybridization at 45 C to 50 C, washing at 37 C and a wash time of 2.5 to 5 minutes obtained specific and strong hybridization signals. In order to evaluate the performance of the experimental microarrays, growth conditions were selected that were expected to give significant hybridization differences for different sets of genes. The initial evaluations were performed using D. vulgaris cells grown at logarithmic and stationary phases. Transcriptional analysis of D. vulgaris cells sampled during logarithmic phase growth indicated that 25% of annotated ORFs were up-regulated and 3% of annotated ORFs were downregulated compared to stationary phase cells. The up-regulated genes included ORFs predicted to be involved with acyl chain biosynthesis, amino acid ABC transporter, translational initiation factors, and ribosomal proteins. In the stationary phase growth cells, the two most up-regulated ORFs (70-fold) were annotated as a carboxynorspermidine decarboxylase and a 2C-methyl-D-erythritol-2

  11. Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system

    OpenAIRE

    2007-01-01

    DNA/DNA microarray hybridization was used to compare the genome content of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens with that of Streptomyces coelicolor A3(2). The array data showed an about 93% agreement with the genome sequence data available for S. avermitilis and also showed a number of trends in the genome structure for Streptomyces and closely related Kitasatospora. A core central region was well conserved, which might be pre...

  12. Genetic evidence of interspecies introgression of mitochondrial genomes between Trichinella spiralis and Trichinella britovi under natural conditions.

    Science.gov (United States)

    Franssen, Frits; Bilska-Zając, Ewa; Deksne, Gunita; Sprong, Hein; Pozio, Edoardo; Rosenthal, Benjamin; Rozycki, Mirek; van der Giessen, Joke

    2015-12-01

    Trichinellosis is a zoonotic disease caused by Trichinella muscle larvae (ML) through ingestion of raw or undercooked meat. To date, 12 taxa are recognized in this genus, of which four are circulating in Europe (Trichinella spiralis, Trichinella nativa, Trichinella britovi and Trichinella pseudospiralis). T. spiralis and T. britovi circulate in European wildlife and occur simultaneously in the same host species. The possibility of hybrid formation between T. britovi and T. spiralis has hardly been addressed and so far, results of experimental hybridisation attempts between T. britovi and T. spiralis are inconclusive. The aim of the present study was to analyse molecular polymorphisms of single T. spiralis and T. britovi ML from natural infections based on nuclear 5S rDNA intergenic spacer region (5S rDNA-ISR) and mitochondrial cytochrome c oxidase 1 (CO1) gene sequences. Six haplotypes of the 5S rDNA intergenic spacer region (5S rDNA-ISR) and 14 of the cytochrome c oxidase 1 (CO1) gene were demonstrated in 89 individual T. britovi ML from Latvia and Poland. In contrast, only two haplotypes were observed at both 5S rDNA-ISR and CO1 of 57 individual T. spiralis ML from Polish wild boar and red foxes. Moreover, this study demonstrates hybridisation in eight individual ML between T. britovi and T. spiralis under natural conditions in four Polish wild boar and two red foxes, revealed by combining 5S rDNA-ISR and CO1 sequence information of individual Trichinella ML. To our knowledge, this is the first report of interspecies hybridisation between T. spiralis and T. britovi under field conditions.

  13. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures

    Directory of Open Access Journals (Sweden)

    Levine R Paul

    2005-04-01

    Full Text Available Abstract Background Genetic differences between yeast strains used in wine-making may account for some of the variation seen in their fermentation properties and may also produce differing sensory characteristics in the final wine product itself. To investigate this, we have determined genomic differences among several Saccharomyces cerevisiae wine strains by using a "microarray karyotyping" (also known as "array-CGH" or "aCGH" technique. Results We have studied four commonly used commercial wine yeast strains, assaying three independent isolates from each strain. All four wine strains showed common differences with respect to the laboratory S. cerevisiae strain S288C, some of which may be specific to commercial wine yeasts. We observed very little intra-strain variation; i.e., the genomic karyotypes of different commercial isolates of the same strain looked very similar, although an exception to this was seen among the Montrachet isolates. A moderate amount of inter-strain genomic variation between the four wine strains was observed, mostly in the form of depletions or amplifications of single genes; these differences allowed unique identification of each strain. Many of the inter-strain differences appear to be in transporter genes, especially hexose transporters (HXT genes, metal ion sensors/transporters (CUP1, ZRT1, ENA genes, members of the major facilitator superfamily, and in genes involved in drug response (PDR3, SNQ1, QDR1, RDS1, AYT1, YAR068W. We therefore used halo assays to investigate the response of these strains to three different fungicidal drugs (cycloheximide, clotrimazole, sulfomethuron methyl. Strains with fewer copies of the CUP1 loci showed hypersensitivity to sulfomethuron methyl. Conclusion Microarray karyotyping is a useful tool for analyzing the genome structures of wine yeasts. Despite only small to moderate variations in gene copy numbers between different wine yeast strains and within different isolates of a given

  14. Microarray-based whole-genome hybridization as a tool for determining procaryotic species relatedness

    Energy Technology Data Exchange (ETDEWEB)

    Wu, L.; Liu, X.; Fields, M.W.; Thompson, D.K.; Bagwell, C.E.; Tiedje, J. M.; Hazen, T.C.; Zhou, J.

    2008-01-15

    The definition and delineation of microbial species are of great importance and challenge due to the extent of evolution and diversity. Whole-genome DNA-DNA hybridization is the cornerstone for defining procaryotic species relatedness, but obtaining pairwise DNA-DNA reassociation values for a comprehensive phylogenetic analysis of procaryotes is tedious and time consuming. A previously described microarray format containing whole-genomic DNA (the community genome array or CGA) was rigorously evaluated as a high-throughput alternative to the traditional DNA-DNA reassociation approach for delineating procaryotic species relationships. DNA similarities for multiple bacterial strains obtained with the CGA-based hybridization were comparable to those obtained with various traditional whole-genome hybridization methods (r=0.87, P<0.01). Significant linear relationships were also observed between the CGA-based genome similarities and those derived from small subunit (SSU) rRNA gene sequences (r=0.79, P<0.0001), gyrB sequences (r=0.95, P<0.0001) or REP- and BOX-PCR fingerprinting profiles (r=0.82, P<0.0001). The CGA hybridization-revealed species relationships in several representative genera, including Pseudomonas, Azoarcus and Shewanella, were largely congruent with previous classifications based on various conventional whole-genome DNA-DNA reassociation, SSU rRNA and/or gyrB analyses. These results suggest that CGA-based DNA-DNA hybridization could serve as a powerful, high-throughput format for determining species relatedness among microorganisms.

  15. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA

    Directory of Open Access Journals (Sweden)

    Chan Alan

    2006-06-01

    Full Text Available Abstract Background Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. Results In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A. Conclusion Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

  16. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Wagner-Döbler Irene

    2004-09-01

    Full Text Available Abstract Background Quorum sensing is a process of bacterial cell-to-cell communication involving the production and detection of extracellular signaling molecules called autoinducers. Recently, it has been proposed that autoinducer-2 (AI-2, a furanosyl borate diester derived from the recycling of S-adenosyl-homocysteine (SAH to homocysteine, serves as a universal signal for interspecies communication. Results In this study, 138 completed genomes were examined for the genes involved in the synthesis and detection of AI-2. Except for some symbionts and parasites, all organisms have a pathway to recycle SAH, either using a two-step enzymatic conversion by the Pfs and LuxS enzymes or a one-step conversion using SAH-hydrolase (SahH. 51 organisms including most Gamma-, Beta-, and Epsilonproteobacteria, and Firmicutes possess the Pfs-LuxS pathway, while Archaea, Eukarya, Alphaproteobacteria, Actinobacteria and Cyanobacteria prefer the SahH pathway. In all 138 organisms, only the three Vibrio strains had strong, bidirectional matches to the periplasmic AI-2 binding protein LuxP and the central signal relay protein LuxU. The initial two-component sensor kinase protein LuxQ, and the terminal response regulator luxO are found in most Proteobacteria, as well as in some Firmicutes, often in several copies. Conclusions The genomic analysis indicates that the LuxS enzyme required for AI-2 synthesis is widespread in bacteria, while the periplasmic binding protein LuxP is only present in Vibrio strains. Thus, other organisms may either use components different from the AI-2 signal transduction system of Vibrio strains to sense the signal of AI-2, or they do not have such a quorum sensing system at all.

  17. Development of a custom-designed, pan genomic DNA microarray to characterize strain-level diversity among Cronobacter spp.

    Directory of Open Access Journals (Sweden)

    Ben Davies Tall

    2015-04-01

    Full Text Available Cronobacter species cause infections in all age groups; however neonates are at highest risk and remain the most susceptible age group for life-threatening invasive disease. The genus contains seven species: C. sakazakii, C. malonaticus, C. turicensis C. muytjensii, C. dublinensis, C. universalis, and C. condimenti. Despite an abundance of published genomes of these species, genomics-based epidemiology of the genus is not well established. The gene content of a diverse group of 126 unique Cronobacter and taxonomically-related isolates was determined using a pan genomic-based DNA microarray as a genotyping tool and as a means to identify outbreak isolates for food safety, environmental, and clinical surveillance purposes. The microarray constitutes 19,287 independent genes representing 15 Cronobacter genomes and 18 plasmids and 2,371 virulence factor genes of phylogenetically-related Gram-negative bacteria. The Cronobacter microarray was able to distinguish the seven Cronobacter species from one another and from non-Cronobacter species; and within each species, strains grouped into distinct clusters based on their genomic diversity. These results also support the phylogenic divergence of the genus and clearly highlight the genomic diversity among each member of the genus. The current study establishes a powerful platform for further genomics research of this diverse genus, an important prerequisite towards the development of future countermeasures against this foodborne pathogen in the food safety and clinical arenas.

  18. POLAR MODELLING AND SEGMENTATION OF GENOMIC MICROARRAY SPOTS USING MATHEMATICAL MORPHOLOGY

    Directory of Open Access Journals (Sweden)

    Jesús Angulo

    2011-05-01

    Full Text Available Robust image analysis of spots in microarrays (quality control + spot segmentation + quantification is a requirement for automated software which is of fundamental importance for a high-throughput analysis of genomics microarray-based data. This paper deals with the development of model-based image processing algorithms for qualifying/segmenting/quantifying adaptively each spot according to its morphology. A series of morphologicalmodels for spot intensities are introduced. The spot typologies representmost of the possible qualitative cases identified from a large database (different routines, techniques, etc.. Then, based on these spot models, a classification framework has been developed. The spot feature extraction and classification (without segmenting is based on converting the spot image to polar coordinates and, after computing the radial/angular projections, the calculation of granulometric curves and derived parameters from these projections. Spot contour segmentation can also be solved by working in polar coordinates, calculating the up/downminimal path, which is easily obtained with the generalized distance function. With this model-based technique, the segmentation can be regularised by controlling different elements of the algorithm. According to the spot typology (e.g., doughnut-like or egg-like spots, several minimal paths can be computed to obtain a multi-region segmentation. Moreover, this segmentation is more robust and sensible to weak spots, improving the previous approaches.

  19. An analysis of the use of genomic DNA as a universal reference in two channel DNA microarrays

    Directory of Open Access Journals (Sweden)

    Kapur Vivek

    2005-05-01

    Full Text Available Abstract Background DNA microarray is an invaluable tool for gene expression explorations. In the two-dye microarray, fluorescence intensities of two samples, each labeled with a different dye, are compared after hybridization. To compare a large number of samples, the 'reference design' is widely used, in which all RNA samples are hybridized to a common reference. Genomic DNA is an attractive candidate for use as a universal reference, especially for bacterial systems with a low percentage of non-coding sequences. However, genomic DNA, comprising of both the sense and anti-sense strands, is unlike the single stranded cDNA usually used in microarray hybridizations. The presence of the antisense strand in the 'reference' leads to reactions between complementary labeled strands in solution and may cause the assay result to deviate from true values. Results We have developed a mathematical model to predict the validity of using genomic DNA as a reference in the microarray assay. The model predicts that the assay can accurately estimate relative concentrations for a wide range of initial cDNA concentrations. Experimental results of DNA microarray assay using genomic DNA as a reference correlated well to those obtained by a direct hybridization between two cDNA samples. The model predicts that the initial concentrations of labeled genomic DNA strands and immobilized strands, and the hybridization time do not significantly affect the assay performance. At low values of the rate constant for hybridization between immobilized and mobile strands, the assay performance varies with the hybridization time and initial cDNA concentrations. For the case where a microarray with immobilized single strands is used, results from hybridizations using genomic DNA as a reference will correspond to true ratios under all conditions. Conclusion Simulation using the mathematical model, and the experimental study presented here show the potential utility of microarray

  20. Genome-wide microarray expression and genomic alterations by array-CGH analysis in neuroblastoma stem-like cells.

    Directory of Open Access Journals (Sweden)

    Raquel Ordóñez

    Full Text Available Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC, a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture. Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-β and contribute to CSC phenotype. We focused on the aberrant activation of TGF-β and Hh signalling pathways, confirming the inhibition of repressors of TGF-β pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells.

  1. Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design

    Directory of Open Access Journals (Sweden)

    Malloch Gaynor

    2007-11-01

    Full Text Available Abstract Background The green peach aphid, Myzus persicae (Sulzer, is a world-wide insect pest capable of infesting more than 40 plant families, including many crop species. However, despite the significant damage inflicted by M. persicae in agricultural systems through direct feeding damage and by its ability to transmit plant viruses, limited genomic information is available for this species. Results Sequencing of 16 M. persicae cDNA libraries generated 26,669 expressed sequence tags (ESTs. Aphids for library construction were raised on Arabidopsis thaliana, Nicotiana benthamiana, Brassica oleracea, B. napus, and Physalis floridana (with and without Potato leafroll virus infection. The M. persicae cDNA libraries include ones made from sexual and asexual whole aphids, guts, heads, and salivary glands. In silico comparison of cDNA libraries identified aphid genes with tissue-specific expression patterns, and gene expression that is induced by feeding on Nicotiana benthamiana. Furthermore, 2423 genes that are novel to science and potentially aphid-specific were identified. Comparison of cDNA data from three aphid lineages identified single nucleotide polymorphisms that can be used as genetic markers and, in some cases, may represent functional differences in the protein products. In particular, non-conservative amino acid substitutions in a highly expressed gut protease may be of adaptive significance for M. persicae feeding on different host plants. The Agilent eArray platform was used to design an M. persicae oligonucleotide microarray representing over 10,000 unique genes. Conclusion New genomic resources have been developed for M. persicae, an agriculturally important insect pest. These include previously unknown sequence data, a collection of expressed genes, molecular markers, and a DNA microarray that can be used to study aphid gene expression. These resources will help elucidate the adaptations that allow M. persicae to develop compatible

  2. Distinguishing bacterial pathogens of potato using a genome-wide microarray approach.

    Science.gov (United States)

    Aittamaa, M; Somervuo, P; Pirhonen, M; Mattinen, L; Nissinen, R; Auvinen, P; Valkonen, J P T

    2008-09-01

    A set of 9676 probes was designed for the most harmful bacterial pathogens of potato and tested in a microarray format. Gene-specific probes could be designed for all genes of Pectobacterium atrosepticum, c. 50% of the genes of Streptomyces scabies and c. 30% of the genes of Clavibacter michiganensis ssp. sepedonicus utilizing the whole-genome sequence information available. For Streptomyces turgidiscabies, 226 probes were designed according to the sequences of a pathogenicity island containing important virulence genes. In addition, probes were designed for the virulence-associated nip (necrosis-inducing protein) genes of P. atrosepticum, P. carotovorum and Dickeya dadantii and for the intergenic spacer (IGS) sequences of the 16S-23S rRNA gene region. Ralstonia solanacearum was not included in the study, because it is a quarantine organism and is not presently found in Finland, but a few probes were also designed for this species. The probes contained on average 40 target-specific nucleotides and were synthesized on the array in situ, organized as eight sub-arrays with an identical set of probes which could be used for hybridization with different samples. All bacteria were readily distinguished using a single channel system for signal detection. Nearly all of the c. 1000 probes designed for C. michiganensis ssp. sepedonicus, c. 50% and 40% of the c. 4000 probes designed for the genes of S. scabies and P. atrosepticum, respectively, and over 100 probes for S. turgidiscabies showed significant signals only with the respective species. P. atrosepticum, P. carotovorum and Dickeya strains were all detected with 110 common probes. By contrast, the strains of these species were found to differ in their signal profiles. Probes targeting the IGS region and nip genes could be used to place strains of Dickeya to two groups, which correlated with differences in virulence. Taken together, the approach of using a custom-designed, genome-wide microarray provided a robust means

  3. Identification of genes and genomic islands correlated with high pathogenicity in Streptococcus suis using whole genome tiling microarrays.

    Directory of Open Access Journals (Sweden)

    Xiao Zheng

    Full Text Available Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. Infections in humans have been sporadic worldwide but two severe outbreaks occurred in China in recent years, while infections in pigs are a major problem in the swine industry. Some S. suis strains are more pathogenic than others with 2 sequence types (ST, ST1 and ST7, being well recognized as highly pathogenic. We analyzed 31 isolates from 23 serotypes and 25 STs by NimbleGen tiling microarray using the genome of a high pathogenicity (HP ST1 strain, GZ1, as reference and a new algorithm to detect gene content difference. The number of genes absent in a strain ranged from 49 to 225 with a total of 632 genes absent in at least one strain, while 1346 genes were found to be invariably present in all strains as the core genome of S. suis, accounting for 68% of the GZ1 genome. The majority of genes are located in chromosomal blocks with two or more contiguous genes. Sixty two blocks are absent in two or more strains and defined as regions of difference (RDs, among which 26 are putative genomic islands (GIs. Clustering and statistical analyses revealed that 8 RDs including 6 putative GIs and 21 genes within these RDs are significantly associated with HP. Three RDs encode known virulence related factors including the extracellular factor, the capsular polysaccharide and a SrtF pilus. The strains were divided into 5 groups based on population genetic analysis of multilocus sequence typing data and the distribution of the RDs among the groups revealed gain and loss of RDs in different groups. Our study elucidated the gene content diversity of S. suis and identified genes that potentially promote HP.

  4. Comparative genomic analysis of Acidithiobacillus ferrooxidans strains using the A. ferrooxidans ATCC 23270 whole-genome oligonucleotide microarray.

    Science.gov (United States)

    Luo, Hailang; Shen, Li; Yin, Huaqun; Li, Qian; Chen, Qijiong; Luo, Yanjie; Liao, Liqin; Qiu, Guanzhou; Liu, Xueduan

    2009-05-01

    Acidithiobacillus ferrooxidans is an important microorganism used in biomining operations for metal recovery. Whole-genomic diversity analysis based on the oligonucleotide microarray was used to analyze the gene content of 12 strains of A. ferrooxidans purified from various mining areas in China. Among the 3100 open reading frames (ORFs) on the slides, 1235 ORFs were absent in at least 1 strain of bacteria and 1385 ORFs were conserved in all strains. The hybridization results showed that these strains were highly diverse from a genomic perspective. The hybridization results of 4 major functional gene categories, namely electron transport, carbon metabolism, extracellular polysaccharides, and detoxification, were analyzed. Based on the hybridization signals obtained, a phylogenetic tree was built to analyze the evolution of the 12 tested strains, which indicated that the geographic distribution was the main factor influencing the strain diversity of these strains. Based on the hybridization signals of genes associated with bioleaching, another phylogenetic tree showed an evolutionary relationship from which the co-relation between the clustering of specific genes and geochemistry could be observed. The results revealed that the main factor was geochemistry, among which the following 6 factors were the most important: pH, Mg, Cu, S, Fe, and Al.

  5. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization.

    Science.gov (United States)

    Oikawa, Masahiro; Yoshiura, Koh-ichiro; Kondo, Hisayoshi; Miura, Shiro; Nagayasu, Takeshi; Nakashima, Masahiro

    2011-12-07

    It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A

  6. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Oikawa Masahiro

    2011-12-01

    Full Text Available Abstract Background It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN, which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH. Methods Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. Results The mean of the derivative log ratio spread (DLRSpread, which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05. The concordance of results between aCGH and fluorescence in situ hybridization (FISH for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively. The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15. Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40. Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005 independent factor which was associated with larger total length of CNA of breast cancers. Conclusions Thus, archival FFPE tissues from A-bomb survivors are useful for

  7. Surface ligation-based resonance light scattering analysis of methylated genomic DNA on a microarray platform.

    Science.gov (United States)

    Ma, Lan; Lei, Zhen; Liu, Xia; Liu, Dianjun; Wang, Zhenxin

    2016-05-10

    DNA methylation is a crucial epigenetic modification and is closely related to tumorigenesis. Herein, a surface ligation-based high throughput method combined with bisulfite treatment is developed for analysis of methylated genomic DNA. In this method, a DNA microarray is employed as a reaction platform, and resonance light scattering (RLS) of nanoparticles is used as the detection principle. The specificity stems from allele-specific ligation of Taq DNA ligase, which is further enhanced by improving the fidelity of Taq DNA ligase in a heterogeneous reaction. Two amplification techniques, rolling circle amplification (RCA) and silver enhancement, are employed after the ligation reaction and a gold nanoparticle (GNP) labeling procedure is used to amplify the signal. As little as 0.01% methylated DNA (i.e. 2 pmol L(-1)) can be distinguished from the cocktail of methylated and unmethylated DNA by the proposed method. More importantly, this method shows good accuracy and sensitivity in profiling the methylation level of genomic DNA of three selected colonic cancer cell lines. This strategy provides a high throughput alternative with reasonable sensitivity and resolution for cancer study and diagnosis.

  8. American College of Medical Genetics and Genomics technical standards and guidelines: microarray analysis for chromosome abnormalities in neoplastic disorders.

    Science.gov (United States)

    Cooley, Linda D; Lebo, Matthew; Li, Marilyn M; Slovak, Marilyn L; Wolff, Daynna J

    2013-06-01

    Microarray methodologies, to include array comparative genomic hybridization and single-nucleotide polymorphism-based arrays, are innovative methods that provide genomic data. These data should be correlated with the results from the standard methods, chromosome and/or fluorescence in situ hybridization, to ascertain and characterize the genomic aberrations of neoplastic disorders, both liquid and solid tumors. Over the past several decades, standard methods have led to an accumulation of genetic information specific to many neoplasms. This specificity is now used for the diagnosis and classification of neoplasms. Cooperative studies have revealed numerous correlations between particular genetic aberrations and therapeutic outcomes. Molecular investigation of chromosomal abnormalities identified by standard methods has led to discovery of genes, and gene function and dysfunction. This knowledge has led to improved therapeutics and, in some disorders, targeted therapies. Data gained from the higher-resolution microarray methodologies will enhance our knowledge of the genomics of specific disorders, leading to more effective therapeutic strategies. To assist clinical laboratories in validation of the methods, their consistent use, and interpretation and reporting of results from these microarray methodologies, the American College of Medical Genetics and Genomics has developed the following professional standard and guidelines.

  9. Microarray data integration for genome-wide analysis of human tissue-selective gene expression

    OpenAIRE

    Wang, Liangjiang; Srivastava, Anand K; Schwartz, Charles E

    2010-01-01

    Background Microarray gene expression data are accumulating in public databases. The expression profiles contain valuable information for understanding human gene expression patterns. However, the effective use of public microarray data requires integrating the expression profiles from heterogeneous sources. Results In this study, we have compiled a compendium of microarray expression profiles of various human tissue samples. The microarray raw data generated in different research laboratorie...

  10. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans.

    Science.gov (United States)

    Joseph, Sandeep J; Marti, Hanna; Didelot, Xavier; Castillo-Ramirez, Santiago; Read, Timothy D; Dean, Deborah

    2015-10-27

    Chlamydiaceae are obligate intracellular bacteria that cause a diversity of severe infections among humans and livestock on a global scale. Identification of new species since 1989 and emergence of zoonotic infections, including abortion in women, underscore the need for genome sequencing of multiple strains of each species to advance our knowledge of evolutionary dynamics across Chlamydiaceae. Here, we genome sequenced isolates from avian, lower mammalian and human hosts. Based on core gene phylogeny, five isolates previously classified as Chlamydia abortus were identified as members of Chlamydia psittaci and Chlamydia pecorum. Chlamydia abortus is the most recently emerged species and is a highly monomorphic group that lacks the conserved virulence-associated plasmid. Low-level recombination and evidence for adaptation to the placenta echo evolutionary processes seen in recently emerged, highly virulent niche-restricted pathogens, such as Bacillus anthracis. In contrast, gene flow occurred within C. psittaci and other Chlamydiaceae species. The C. psittaci strain RTH, isolated from a red-tailed hawk (Buteo jamaicensis), is an outlying strain with admixture of C. abortus, C. psittaci, and its own population markers. An average nucleotide identity of less than 94% compared with other Chlamydiaceae species suggests that RTH belongs to a new species intermediary between C. psittaci and C. abortus. Hawks, as scavengers and predators, have extensive opportunities to acquire multiple species in their intestinal tract. This could facilitate transformation and homologous recombination with the potential for new species emergence. Our findings indicate that incubator hosts such as birds-of-prey likely promote Chlamydiaceae evolution resulting in novel pathogenic lineages.

  11. Inter-species horizontal transfer resulting in core-genome and niche-adaptive variation within Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Peden John F

    2005-01-01

    Full Text Available Abstract Background Horizontal gene transfer is central to evolution in most bacterial species. The detection of exchanged regions is often based upon analysis of compositional characteristics and their comparison to the organism as a whole. In this study we describe a new methodology combining aspects of established signature analysis with textual analysis approaches. This approach has been used to analyze the two available genome sequences of H. pylori. Results This gene-by-gene analysis reveals a wide range of genes related to both virulence behaviour and the strain differences that have been relatively recently acquired from other sequence backgrounds. These frequently involve single genes or small numbers of genes that are not associated with transposases or bacteriophage genes, nor with inverted repeats typically used as markers for horizontal transfer. In addition, clear examples of horizontal exchange in genes associated with 'core' metabolic functions were identified, supported by differences between the sequenced strains, including: ftsK, xerD and polA. In some cases it was possible to determine which strain represented the 'parent' and 'altered' states for insertion-deletion events. Different signature component lengths showed different sensitivities for the detection of some horizontally transferred genes, which may reflect different amelioration rates of sequence components. Conclusion New implementations of signature analysis that can be applied on a gene-by-gene basis for the identification of horizontally acquired sequences are described. These findings highlight the central role of the availability of homologous substrates in evolution mediated by horizontal exchange, and suggest that some components of the supposedly stable 'core genome' may actually be favoured targets for integration of foreign sequences because of their degree of conservation.

  12. Dissection of the inflammatory bowel disease transcriptome using genome-wide cDNA microarrays.

    Directory of Open Access Journals (Sweden)

    Christine M Costello

    2005-08-01

    Full Text Available BACKGROUND: The differential pathophysiologic mechanisms that trigger and maintain the two forms of inflammatory bowel disease (IBD, Crohn disease (CD, and ulcerative colitis (UC are only partially understood. cDNA microarrays can be used to decipher gene regulation events at a genome-wide level and to identify novel unknown genes that might be involved in perpetuating inflammatory disease progression. METHODS AND FINDINGS: High-density cDNA microarrays representing 33,792 UniGene clusters were prepared. Biopsies were taken from the sigmoid colon of normal controls (n = 11, CD patients (n = 10 and UC patients (n = 10. 33P-radiolabeled cDNA from purified poly(A+ RNA extracted from biopsies (unpooled was hybridized to the arrays. We identified 500 and 272 transcripts differentially regulated in CD and UC, respectively. Interesting hits were independently verified by real-time PCR in a second sample of 100 individuals, and immunohistochemistry was used for exemplary localization. The main findings point to novel molecules important in abnormal immune regulation and the highly disturbed cell biology of colonic epithelial cells in IBD pathogenesis, e.g., CYLD (cylindromatosis, turban tumor syndrome and CDH11 (cadherin 11, type 2. By the nature of the array setup, many of the genes identified were to our knowledge previously uncharacterized, and prediction of the putative function of a subsection of these genes indicate that some could be involved in early events in disease pathophysiology. CONCLUSION: A comprehensive set of candidate genes not previously associated with IBD was revealed, which underlines the polygenic and complex nature of the disease. It points out substantial differences in pathophysiology between CD and UC. The multiple unknown genes identified may stimulate new research in the fields of barrier mechanisms and cell signalling in the context of IBD, and ultimately new therapeutic approaches.

  13. In silico and microarray-based genomic approaches to identifying potential vaccine candidates against Leptospira interrogans

    Directory of Open Access Journals (Sweden)

    Jiang Xu-Cheng

    2006-11-01

    Full Text Available Abstract Background Currently available vaccines against leptospirosis are of low efficacy, have an unacceptable side-effect profile, do not induce long-term protection, and provide no cross-protection against the different serovars of pathogenic leptospira. The current major focus in leptospirosis research is to discover conserved protective antigens that may elicit longer-term protection against a broad range of Leptospira. There is a need to screen vaccine candidate genes in the genome of Leptospira interrogans. Results Bioinformatics, comparative genomic hybridization (CGH analysis and transcriptional analysis were used to identify vaccine candidates in the genome of L. interrogans serovar Lai strain #56601. Of a total of 4727 open reading frames (ORFs, 616 genes were predicted to encode surface-exposed proteins by P-CLASSIFIER combined with signal peptide prediction, α-helix transmembrane topology prediction, integral β-barrel outer membrane protein and lipoprotein prediction, as well as by retaining the genes shared by the two sequenced L. interrogans genomes and by subtracting genes with human homologues. A DNA microarray of L. interrogans strain #56601 was constructed for CGH analysis and transcriptome analysis in vitro. Three hundred and seven differential genes were identified in ten pathogenic serovars by CGH; 1427 genes had high transcriptional levels (Cy3 signal ≥ 342 and Cy5 signal ≥ 363.5, respectively. There were 565 genes in the intersection between the set encoding surface-exposed proteins and the set of 307 differential genes. The number of genes in the intersection between this set of 565 and the set of 1427 highly transcriptionally active genes was 226. These 226 genes were thus identified as putative vaccine candidates. The proteins encoded by these genes are not only potentially surface-exposed in the bacterium, but also conserved in two sequenced L. interrogans. Moreover, these genes are conserved among ten epidemic

  14. Analysis Method of Citrus Genome Microarray%浅谈柑橘基因组芯片分析方法

    Institute of Scientific and Technical Information of China (English)

    杨雪莲; 贝学军; 朱友娟

    2012-01-01

    cDNA microarray and oligonucleotide microarray are currently used for analysing citrus gene expression profile.The data analysis of genome microarray include data preprocessing,screening differential expression genes,and further analysing the differential expression genes.Through data analysis and integration of biological information,this paper studies the plant physiological changes.%指出了cDNA芯片和寡核苷酸芯片是目前用于柑橘基因表达谱分析的方法,基因组芯片数据分析主要包括数据预处理,筛选差异基因,差异基因再进一步分析。通过数据分析及整合样点的生物学信息,研究了植物生理变化。

  15. Cross-species hybridisation of human and bovine orthologous genes on high density cDNA microarrays

    OpenAIRE

    2004-01-01

    Abstract Background Cross-species gene-expression comparison is a powerful tool for the discovery of evolutionarily conserved mechanisms and pathways of expression control. The usefulness of cDNA microarrays in this context is that broad areas of homology are compared and hybridization probes are sufficiently large that small inter-species differences in nucleotide sequence would not affect the analytical results. This comparative genomics approach would allow a common set of genes within a s...

  16. Utility of the pooling approach as applied to whole genome association scans with high-density Affymetrix microarrays

    Directory of Open Access Journals (Sweden)

    Gray Joanna

    2010-11-01

    Full Text Available Abstract Background We report an attempt to extend the previously successful approach of combining SNP (single nucleotide polymorphism microarrays and DNA pooling (SNP-MaP employing high-density microarrays. Whereas earlier studies employed a range of Affymetrix SNP microarrays comprising from 10 K to 500 K SNPs, this most recent investigation used the 6.0 chip which displays 906,600 SNP probes and 946,000 probes for the interrogation of CNVs (copy number variations. The genotyping assay using the Affymetrix SNP 6.0 array is highly demanding on sample quality due to the small feature size, low redundancy, and lack of mismatch probes. Findings In the first study published so far using this microarray on pooled DNA, we found that pooled cheek swab DNA could not accurately predict real allele frequencies of the samples that comprised the pools. In contrast, the allele frequency estimates using blood DNA pools were reasonable, although inferior compared to those obtained with previously employed Affymetrix microarrays. However, it might be possible to improve performance by developing improved analysis methods. Conclusions Despite the decreasing costs of genome-wide individual genotyping, the pooling approach may have applications in very large-scale case-control association studies. In such cases, our study suggests that high-quality DNA preparations and lower density platforms should be preferred.

  17. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones.

    Science.gov (United States)

    Fiegler, Heike; Carr, Philippa; Douglas, Eleanor J; Burford, Deborah C; Hunt, Sarah; Scott, Carol E; Smith, James; Vetrie, David; Gorman, Patricia; Tomlinson, Ian P M; Carter, Nigel P

    2003-04-01

    We have designed DOP-PCR primers specifically for the amplification of large insert clones for use in the construction of DNA microarrays. A bioinformatic approach was used to construct primers that were efficient in the general amplification of human DNA but were poor at amplifying E. coli DNA, a common contaminant of DNA preparations from large insert clones. We chose the three most selective primers for use in printing DNA microarrays. DNA combined from the amplification of large insert clones by use of these three primers and spotted onto glass slides showed more than a sixfold increase in the human to E. coli hybridization ratio when compared to the standard DOP-PCR primer, 6MW. The microarrays reproducibly delineated previously characterized gains and deletions in a cancer cell line and identified a small gain not detected by use of conventional CGH. We also describe a method for the bulk testing of the hybridization characteristics of chromosome-specific clones spotted on microarrays by use of DNA amplified from flow-sorted chromosomes. Finally, we describe a set of clones selected from the publicly available Golden Path of the human genome at 1-Mb intervals and a view in the Ensembl genome browser from which data required for the use of these clones in array CGH and other experiments can be downloaded across the Internet.

  18. Analysis of complete genome sequences of G9P[19] rotavirus strains from human and piglet with diarrhea provides evidence for whole-genome interspecies transmission of nonreassorted porcine rotavirus.

    Science.gov (United States)

    Yodmeeklin, Arpaporn; Khamrin, Pattara; Chuchaona, Watchaporn; Kumthip, Kattareeya; Kongkaew, Aphisek; Vachirachewin, Ratchaya; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2017-01-01

    Whole genomes of G9P[19] human (RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19]) and porcine (RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19]) rotaviruses concurrently detected in the same geographical area in northern Thailand were sequenced and analyzed for their genetic relationships using bioinformatic tools. The complete genome sequence of human rotavirus RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] was most closely related to those of porcine rotavirus RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19] and to those of porcine-like human and porcine rotaviruses reference strains than to those of human rotavirus reference strains. The genotype constellation of G9P[19] detected in human and piglet were identical and displayed as the G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotypes with the nucleotide sequence identities of VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4, and NSP5 at 99.0%, 99.5%, 93.2%, 97.7%, 97.7%, 85.6%, 89.5%, 93.2%, 92.9%, 94.0%, and 98.1%, respectively. The findings indicate that human rotavirus strain RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] containing the genome segments of porcine genetic backbone is most likely a human rotavirus of porcine origin. Our data provide an evidence of interspecies transmission and whole-genome transmission of nonreassorted G9P[19] porcine RVA to human occurring in nature in northern Thailand. Copyright © 2016. Published by Elsevier B.V.

  19. Preferences for results from genomic microarrays: comparing parents and health care providers.

    Science.gov (United States)

    Turbitt, E; Halliday, J L; Amor, D J; Metcalfe, S A

    2015-01-01

    Chromosomal microarray (CMA) testing is now performed frequently in paediatric care. Although CMAs improve diagnostic yields, they increase detection of variants of unknown and uncertain clinical significance (VUS). Understanding parents', paediatricians' and genetic health professionals' (GHPs) views regarding variant disclosure may reduce the potential for communication of unwanted information. A questionnaire was designed to compare disclosure preferences of these three groups in Australia. One hundred and forty-seven parents, 159 paediatricians and 69 GHPs hold similar views with at least 89% of respondents certainly or probably favouring disclosure of all categories of variants. However, some differences were observed between health care providers (HCPs: paediatricians and GHPs) and parents, who were less sure of their disclosure preferences. There was consensus among respondent groups that knowledge of a variant of certain clinical significance would provide more practical and emotional utility compared to VUS. Compared to HCPs, parents placed more emphasis on using knowledge of a VUS when considering future pregnancies (p exome/genome sequencing is integrated into clinical practice, the potential for differing views of parents and HCPs should be considered when developing guidelines for result disclosure.

  20. Unexpected structural complexity of supernumerary marker chromosomes characterized by microarray comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Hing Anne V

    2008-04-01

    Full Text Available Abstract Background Supernumerary marker chromosomes (SMCs are structurally abnormal extra chromosomes that cannot be unambiguously identified by conventional banding techniques. In the past, SMCs have been characterized using a variety of different molecular cytogenetic techniques. Although these techniques can sometimes identify the chromosome of origin of SMCs, they are cumbersome to perform and are not available in many clinical cytogenetic laboratories. Furthermore, they cannot precisely determine the region or breakpoints of the chromosome(s involved. In this study, we describe four patients who possess one or more SMCs (a total of eight SMCs in all four patients that were characterized by microarray comparative genomic hybridization (array CGH. Results In at least one SMC from all four patients, array CGH uncovered unexpected complexity, in the form of complex rearrangements, that could have gone undetected using other molecular cytogenetic techniques. Although array CGH accurately defined the chromosome content of all but two minute SMCs, fluorescence in situ hybridization was necessary to determine the structure of the markers. Conclusion The increasing use of array CGH in clinical cytogenetic laboratories will provide an efficient method for more comprehensive characterization of SMCs. Improved SMC characterization, facilitated by array CGH, will allow for more accurate SMC/phenotype correlation.

  1. Genome-wide peripheral blood leukocyte DNA methylation microarrays identified a single association with inflammatory bowel diseases

    DEFF Research Database (Denmark)

    Harris, R Alan; Nagy-Szakal, Dorottya; Pedersen, Natalia

    2012-01-01

    Crohn's disease (CD) and ulcerative colitis (UC) are common forms of inflammatory bowel disease (IBD). Monozygotic (MZ) twin discordance rates and epidemiologic data implicate that environmental changes and epigenetic factors may play a pathogenic role in IBD. DNA methylation (the methylation...... of cytosines within CpG dinucleotides) is an epigenetic modification, which can respond to environmental influences. We investigated whether DNA methylation might be connected with IBD in peripheral blood leukocyte (PBL) DNA by utilizing genome-wide microarrays....

  2. Functional genomics in chickens: development of integrated-systems microarrays for transcriptional profiling and discovery of regulatory pathways.

    Science.gov (United States)

    Cogburn, L A; Wang, X; Carre, W; Rejto, L; Aggrey, S E; Duclos, M J; Simon, J; Porter, T E

    2004-01-01

    The genetic networks that govern the differentiation and growth of major tissues of economic importance in the chicken are largely unknown. Under a functional genomics project, our consortium has generated 30 609 expressed sequence tags (ESTs) and developed several chicken DNA microarrays, which represent the Chicken Metabolic/Somatic (10 K) and Neuroendocrine/Reproductive (8 K) Systems (http://udgenome.ags.udel.edu/cogburn/). One of the major challenges facing functional genomics is the development of mathematical models to reconstruct functional gene networks and regulatory pathways from vast volumes of microarray data. In initial studies with liver-specific microarrays (3.1 K), we have examined gene expression profiles in liver during the peri-hatch transition and during a strong metabolic perturbation-fasting and re-feeding-in divergently selected broiler chickens (fast vs. slow-growth lines). The expression of many genes controlling metabolic pathways is dramatically altered by these perturbations. Our analysis has revealed a large number of clusters of functionally related genes (mainly metabolic enzymes and transcription factors) that control major metabolic pathways. Currently, we are conducting transcriptional profiling studies of multiple tissues during development of two sets of divergently selected broiler chickens (fast vs. slow growing and fat vs. lean lines). Transcriptional profiling across multiple tissues should permit construction of a detailed genetic blueprint that illustrates the developmental events and hierarchy of genes that govern growth and development of chickens. This review will briefly describe the recent acquisition of chicken genomic resources (ESTs and microarrays) and our consortium's efforts to help launch the new era of functional genomics in the chicken.

  3. Interspecies transmission of prions.

    Science.gov (United States)

    Afanasieva, E G; Kushnirov, V V; Ter-Avanesyan, M D

    2011-12-01

    Mammalian prions are infectious agents of proteinaceous nature that cause several incurable neurodegenerative diseases. Interspecies transmission of prions is usually impeded or impossible. Barriers in prion transmission are caused by small interspecies differences in the primary structure of prion proteins. The barriers can also depend on the strain (variant) of a transmitted prion. Interspecies barriers were also shown for yeast prions, which define some heritable phenotypes. Yeast prions reproduce all the main traits of prion transmission barriers observed for mammals. This allowed to show that the barrier in prion transmission can be observed even upon copolymerization of two prionogenic proteins. Available data allow elucidation of the mechanisms that impede prion transmission or make it impossible.

  4. Integrating microarray analysis and the soybean genome to understand the soybeans iron deficiency response

    Directory of Open Access Journals (Sweden)

    Cannon Steven

    2009-08-01

    Full Text Available Abstract Background Soybeans grown in the upper Midwestern United States often suffer from iron deficiency chlorosis, which results in yield loss at the end of the season. To better understand the effect of iron availability on soybean yield, we identified genes in two near isogenic lines with changes in expression patterns when plants were grown in iron sufficient and iron deficient conditions. Results Transcriptional profiles of soybean (Glycine max, L. Merr near isogenic lines Clark (PI548553, iron efficient and IsoClark (PI547430, iron inefficient grown under Fe-sufficient and Fe-limited conditions were analyzed and compared using the Affymetrix® GeneChip® Soybean Genome Array. There were 835 candidate genes in the Clark (PI548553 genotype and 200 candidate genes in the IsoClark (PI547430 genotype putatively involved in soybean's iron stress response. Of these candidate genes, fifty-eight genes in the Clark genotype were identified with a genetic location within known iron efficiency QTL and 21 in the IsoClark genotype. The arrays also identified 170 single feature polymorphisms (SFPs specific to either Clark or IsoClark. A sliding window analysis of the microarray data and the 7X genome assembly coupled with an iterative model of the data showed the candidate genes are clustered in the genome. An analysis of 5' untranslated regions in the promoter of candidate genes identified 11 conserved motifs in 248 differentially expressed genes, all from the Clark genotype, representing 129 clusters identified earlier, confirming the cluster analysis results. Conclusion These analyses have identified the first genes with expression patterns that are affected by iron stress and are located within QTL specific to iron deficiency stress. The genetic location and promoter motif analysis results support the hypothesis that the differentially expressed genes are co-regulated. The combined results of all analyses lead us to postulate iron inefficiency in

  5. Characterization of probiotic Escherichia coli isolates with a novel pan-genome microarray

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Hallin, Peter Fischer; Wassenaar, Trudy

    2007-01-01

    Background: Microarrays have recently emerged as a novel procedure to evaluate the genetic content of bacterial species. So far, microarrays have mostly covered single or few strains from the same species. However, with cheaper high-throughput sequencing techniques emerging, multiple strains of t...

  6. Microarray comparative genomic hybridization detection of chromosomal imbalances in uterine cervix carcinoma

    Directory of Open Access Journals (Sweden)

    García José

    2005-07-01

    Full Text Available Abstract Background Chromosomal Comparative Genomic Hybridization (CGH has been applied to all stages of cervical carcinoma progression, defining a specific pattern of chromosomal imbalances in this tumor. However, given its limited spatial resolution, chromosomal CGH has offered only general information regarding the possible genetic targets of DNA copy number changes. Methods In order to further define specific DNA copy number changes in cervical cancer, we analyzed 20 cervical samples (3 pre-malignant lesions, 10 invasive tumors, and 7 cell lines, using the GenoSensor microarray CGH system to define particular genetic targets that suffer copy number changes. Results The most common DNA gains detected by array CGH in the invasive samples were located at the RBP1-RBP2 (3q21-q22 genes, the sub-telomeric clone C84C11/T3 (5ptel, D5S23 (5p15.2 and the DAB2 gene (5p13 in 58.8% of the samples. The most common losses were found at the FHIT gene (3p14.2 in 47% of the samples, followed by deletions at D8S504 (8p23.3, CTDP1-SHGC- 145820 (18qtel, KIT (4q11-q12, D1S427-FAF1 (1p32.3, D9S325 (9qtel, EIF4E (eukaryotic translation initiation factor 4E, 4q24, RB1 (13q14, and DXS7132 (Xq12 present in 5/17 (29.4% of the samples. Conclusion Our results confirm the presence of a specific pattern of chromosomal imbalances in cervical carcinoma and define specific targets that are suffering DNA copy number changes in this neoplasm.

  7. Microarray comparative genomic hybridization detection of chromosomal imbalances in uterine cervix carcinoma

    Science.gov (United States)

    Hidalgo, Alfredo; Baudis, Michael; Petersen, Iver; Arreola, Hugo; Piña, Patricia; Vázquez-Ortiz, Guelaguetza; Hernández, Dulce; González, José; Lazos, Minerva; López, Ricardo; Pérez, Carlos; García, José; Vázquez, Karla; Alatorre, Brenda; Salcedo, Mauricio

    2005-01-01

    Background Chromosomal Comparative Genomic Hybridization (CGH) has been applied to all stages of cervical carcinoma progression, defining a specific pattern of chromosomal imbalances in this tumor. However, given its limited spatial resolution, chromosomal CGH has offered only general information regarding the possible genetic targets of DNA copy number changes. Methods In order to further define specific DNA copy number changes in cervical cancer, we analyzed 20 cervical samples (3 pre-malignant lesions, 10 invasive tumors, and 7 cell lines), using the GenoSensor microarray CGH system to define particular genetic targets that suffer copy number changes. Results The most common DNA gains detected by array CGH in the invasive samples were located at the RBP1-RBP2 (3q21-q22) genes, the sub-telomeric clone C84C11/T3 (5ptel), D5S23 (5p15.2) and the DAB2 gene (5p13) in 58.8% of the samples. The most common losses were found at the FHIT gene (3p14.2) in 47% of the samples, followed by deletions at D8S504 (8p23.3), CTDP1-SHGC- 145820 (18qtel), KIT (4q11-q12), D1S427-FAF1 (1p32.3), D9S325 (9qtel), EIF4E (eukaryotic translation initiation factor 4E, 4q24), RB1 (13q14), and DXS7132 (Xq12) present in 5/17 (29.4%) of the samples. Conclusion Our results confirm the presence of a specific pattern of chromosomal imbalances in cervical carcinoma and define specific targets that are suffering DNA copy number changes in this neoplasm. PMID:16004614

  8. Genomic resources for the brown planthopper, Nilaparvata lugens: Transcriptome pyrosequencing and microarray design

    Institute of Scientific and Technical Information of China (English)

    Chris Bass; Martin Bay Hebsgaard; Joseph Hughes

    2012-01-01

    The brown planthopper,Nilaparvata lugens is a pest of cultivated rice throughout Asia and is controlled using insecticides and/or resistant rice varieties.This species has developed resistance to many classes of insecticide and biotypes have developed that are virulent against formerly resistant rice cultivars.Insects use a suite of detoxification enzymes,including cytochrome P450s,glutathione S-transferases and carboxyl/cholinesterases to defend themselves against plant secondary metabolites and pesticides.Pyrosequencing on the Roche 454-FLX platform was used to produce a substantial expressed sequence tag (EST) dataset to complement the existing Sanger sequenced ESTs in GenBank.A total of 78 959 reads were combined with the 37 392 publically available Sanger ESTs; these assembled into 8 911 contigs and 10 620 singletons.Analysis of the distribution of tentative unique genes (TUGs) with the gene ontology for biological processes and molecular functions suggests that the 454 and Sanger EST assembly is broadly representative of the N.lugens transcriptome.The brown planthopper transcriptome was found to contain 31 TUGs encoding P450s,nine encoding glutathione S-transferases and 26 encoding carboxyl/cholinesterases and many of these are putatively involved in the detoxification of xenobiotics.The Agilent eArray platform was used to construct an oligonucleotide microarray populated with probes for ~ 19 000 unigene sequences,including all those known to encode detoxification enzymes.The genomic resources developed in this study will be useful to the community studying this crop pest and will help elucidate the molecular mechanism underlying insecticide resistance and planthopper adaptation to resistant rice cultivars.

  9. A 3800 gene microarray for cattle functional genomics: comparison of gene expression in spleen, placenta, and brain.

    Science.gov (United States)

    Band, Mark R; Olmstead, Colleen; Everts, Robin E; Liu, Zonglin L; Lewin, Harris A

    2002-05-01

    A cDNA microarray representing approximately 3800 cattle genes was created for functional genomic studies. The array elements were selected from > 7000 cDNA clones identified in a large-scale expressed sequence tag (EST) project that utilized spleen and normalized and subtracted placenta cDNA libraries. Sequence similarity searches of the 3820 ESTs represented on the array using BLASTN identified 3290 (86.1%) as putative human orthologs, with the remainder consisting of "novel" genes or highly divergent orthologs. Experiments were conducted with a prototype 768 gene microarray created from spleen cDNAs and with the 3800 gene array that included genes from spleen and placenta. The 768 gene array was used to profile RNA transcripts expressed by adult and fetal spleen. The 3800 gene array was used to profile transcripts expressed by adult brain and placenta. Microarray analysis of RNA extracted from fetal and adult spleen identified 29 genes that were differentially expressed two-fold or more. Transcriptional differences of two of these genes, IGJ and CTSS, were confirmed using TaqMan technology. The comparison of brain and placenta revealed 400 genes expressed at higher levels in brain and 72 genes expressed at higher levels in placenta. These results demonstrate the potential power of microarrays for understanding the molecular mechanisms of cattle development, disease resistance, nutrition, fertility and production traits.

  10. Comparative genomics of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens using a Streptomyces coelicolor microarray system.

    Science.gov (United States)

    Hsiao, Nai-Hua; Kirby, Ralph

    2008-01-01

    DNA/DNA microarray hybridization was used to compare the genome content of Streptomyces avermitilis, Streptomyces cattleya, Streptomyces maritimus and Kitasatospora aureofaciens with that of Streptomyces coelicolor A3(2). The array data showed an about 93% agreement with the genome sequence data available for S. avermitilis and also showed a number of trends in the genome structure for Streptomyces and closely related Kitasatospora. A core central region was well conserved, which might be predicted from previous research and this was linked to a low degree of gene conservation in the terminal regions of the linear chromosome across all four species. Between these regions there are two areas of intermediate gene conservation by microarray analysis where gene synteny is still detectable in S. avermitilis. Nonetheless, a range of conserved genes could be identified within the terminal regions. Variation in the genes involved in differentiation, transcription, DNA replication, etc. provides interesting insights into which genes in these categories are generally conserved and which are not. The results also provide target priorities for possible gene knockouts in a group of bacteria with a very large numbers of genes with unknown functions compared to most bacterial species.

  11. Prosecutor : parameter-free inference of gene function for prokaryotes using DNA microarray data, genomic context and multiple gene annotation sources

    NARCIS (Netherlands)

    Blom, E.J.; Breitling, R.; Hofstede, K.J.; Roerdink, J.B.T.M.; van Hijum, S.A F T; Kuipers, O.P.

    2008-01-01

    Background: Despite a plethora of functional genomic efforts, the function of many genes in sequenced genomes remains unknown. The increasing amount of microarray data for many species allows employing the guilt-by-association principle to predict function on a large scale: genes exhibiting similar

  12. Whole Genome Comparison of Campylobacter jejuni Human Isolates Using a Low-Cost Microarray Reveals Extensive Genetic Diversity

    OpenAIRE

    2001-01-01

    Campylobacter jejuni is the leading cause of bacterial food-borne diarrhoeal disease throughout the world, and yet is still a poorly understood pathogen. Whole genome microarray comparisons of 11 C. jejuni strains of diverse origin identified genes in up to 30 NCTC 11168 loci ranging from 0.7 to 18.7 kb that are either absent or highly divergent in these isolates. Many of these regions are associated with the biosynthesis of surface structures including flagella, lipo-oligosaccharide, and the...

  13. Differential Gene Expression Analysis of Placentas with Increased Vascular Resistance and Pre-Eclampsia Using Whole-Genome Microarrays

    Directory of Open Access Journals (Sweden)

    M. Centlow

    2011-01-01

    Full Text Available Pre-eclampsia is a pregnancy complication characterized by hypertension and proteinuria. There are several factors associated with an increased risk of developing pre-eclampsia, one of which is increased uterine artery resistance, referred to as “notching”. However, some women do not progress into pre-eclampsia whereas others may have a higher risk of doing so. The placenta, central in pre-eclampsia pathology, may express genes associated with either protection or progression into pre-eclampsia. In order to search for genes associated with protection or progression, whole-genome profiling was performed. Placental tissue from 15 controls, 10 pre-eclamptic, 5 pre-eclampsia with notching, and 5 with notching only were analyzed using microarray and antibody microarrays to study some of the same gene product and functionally related ones. The microarray showed 148 genes to be significantly altered between the four groups. In the preeclamptic group compared to notch only, there was increased expression of genes related to chemotaxis and the NF-kappa B pathway and decreased expression of genes related to antigen processing and presentation, such as human leukocyte antigen B. Our results indicate that progression of pre-eclampsia from notching may involve the development of inflammation. Increased expression of antigen-presenting genes, as seen in the notch-only placenta, may prevent this inflammatory response and, thereby, protect the patient from developing pre-eclampsia.

  14. Multiplexed, rapid detection of H5N1 using a PCR-free nanoparticle-based genomic microarray assay

    Directory of Open Access Journals (Sweden)

    Ragupathy Viswanath

    2010-10-01

    Full Text Available Abstract Background For more than a decade there has been increasing interest in the use of nanotechnology and microarray platforms for diagnostic applications. In this report, we describe a rapid and simple gold nanoparticle (NP-based genomic microarray assay for specific identification of avian influenza virus H5N1 and its discrimination from other major influenza A virus strains (H1N1, H3N2. Results Capture and intermediate oligonucleotides were designed based on the consensus sequences of the matrix (M gene of H1N1, H3N2 and H5N1 viruses, and sequences specific for the hemaglutinin (HA and neuraminidase (NA genes of the H5N1 virus. Viral RNA was detected within 2.5 hours using capture-target-intermediate oligonucleotide hybridization and gold NP-mediated silver staining in the absence of RNA fragmentation, target amplification, and enzymatic reactions. The lower limit of detection (LOD of the assay was less than 100 fM for purified PCR fragments and 103 TCID50 units for H5N1 viral RNA. Conclusions The NP-based microarray assay was able to detect and distinguish H5N1 sequences from those of major influenza A viruses (H1N1, H3N2. The new method described here may be useful for simultaneous detection and subtyping of major influenza A viruses.

  15. Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids.

    Science.gov (United States)

    Sundararajan, Vignesh; Civetta, Alberto

    2011-01-01

    Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.

  16. Direct Mutagenesis of Thousands of Genomic Targets using Microarray-derived Oligonucleotides

    DEFF Research Database (Denmark)

    Bonde, Mads; Kosuri, Sriram; Genee, Hans Jasper

    2015-01-01

    operons in E. coli using this method, which we call Microarray-Oligonucleotide (MO)-MAGE. The resulting mutant library was characterized by high-throughput sequencing to show that all attempted insertions were estimated to have occurred at an average frequency of 0.02 % per loci with 0.4 average...

  17. Microarray-based Comparative Genomic Indexing of the Cronobacter genus (Enterobacter sakazakii)

    Science.gov (United States)

    Cronobacter is a recently defined genus synonymous with Enterobacter sakazakii. This new genus currently comprises 6 genomospecies. To extend our understanding of the genetic relationship between Cronobacter sakazakii BAA-894 and the other species of this genus, microarray-based comparative genomi...

  18. Comparative genomic profiling of Dutch clinical Bordetella pertussis isolates using DNA microarrays: Identification of genes absent from epidemic strains

    Directory of Open Access Journals (Sweden)

    van Gent Marjolein

    2008-06-01

    Full Text Available Abstract Background Whooping cough caused by Bordetella pertussis in humans, is re-emerging in many countries despite vaccination. Several studies have shown that significant shifts have occurred in the B. pertussis population resulting in antigenic divergence between vaccine strains and circulating strains and suggesting pathogen adaptation. In the Netherlands, the resurgence of pertussis is associated with the rise of B. pertussis strains with an altered promoter region for pertussis toxin (ptxP3. Results We used Multi-Locus Sequence Typing (MLST, Multiple-Locus Variable Number of Tandem Repeat Analysis (MLVA and microarray-based comparative genomic hybridization (CGH to characterize the ptxP3 strains associated with the Dutch epidemic. For CGH analysis, we developed an oligonucleotide (70-mers microarray consisting of 3,581 oligonucleotides representing 94% of the gene repertoire of the B. pertussis strain Tohama I. Nine different MLST profiles and 38 different MLVA types were found in the period 1993 to 2004. Forty-three Dutch clinical isolates were analyzed with CGH, 98 genes were found to be absent in at least one of the B. pertussis strains tested, these genes were clustered in 8 distinct regions of difference. Conclusion The presented MLST, MLVA and CGH-analysis identified distinctive characteristics of ptxP3 B. pertussis strains -the most prominent of which was a genomic deletion removing about 23,000 bp. We propose a model for the emergence of ptxP3 strains.

  19. Development and Use of Integrated Microarray-Based Genomic Technologies for Assessing Microbial Community Composition and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Wu, L.; Gentry, T.; Schadt, C.; He, Z.; Li, X.

    2006-04-05

    To effectively monitor microbial populations involved in various important processes, a 50-mer-based oligonucleotide microarray was developed based on known genes and pathways involved in: biodegradation, metal resistance and reduction, denitrification, nitrification, nitrogen fixation, methane oxidation, methanogenesis, carbon polymer decomposition, and sulfate reduction. This array contains approximately 2000 unique and group-specific probes with <85% similarity to their non-target sequences. Based on artificial probes, our results showed that at hybridization conditions of 50 C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. Detection limits were about 5-10ng genomic DNA in the absence of background DNA, and 50-100ng ({approx}1.3{sup o} 10{sup 7} cells) in the presence background DNA. Strong linear relationships between signal intensity and target DNA and RNA concentration were observed (r{sup 2} = 0.95-0.99). Application of this microarray to naphthalene-amended enrichments and soil microcosms demonstrated that composition of the microflora varied depending on incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in enrichments, the genes involved in naphthalene degradation from Gram-negative microorganisms such as Ralstonia, Comamonas, and Burkholderia were most abundant in the soil microcosms (as well as those for polyaromatic hydrocarbon and nitrotoluene degradation). Although naphthalene degradation is widely known and studied in Pseudomonas, Pseudomonas genes were not detected in either system. Real-time PCR analysis of 4 representative genes was consistent with microarray-based quantification (r{sup 2} = 0.95). Currently, we are also applying this microarray to the study of several

  20. DNA Microarray as Part of a Genomic-Assisted Breeding Approach

    DEFF Research Database (Denmark)

    Vincze, Éva; Bowra, Steve

    2010-01-01

    . tissue/pathway specific approaches using an example of focused microarray and how it follows predicted changes during grain development. We describe of an extension of the study to field grown material and conclude that such an approach is able to interpret differences in the gene expression profiles......In the struggle to achieve global food security, crop breeding retains an important role in crop production. A current trend is the diversification of the aims of crop production, to include an increased awareness of aspects and consequences of food quality. The added emphasis on food and feed...... and practical significances, fold changes, validation and possible additional regulatory mechanisms in gene expression. The subject of the fourth section is the applications of DNA microarrays to study of global gene expression during grain filling in monocot crops, especially barley. We compare large arrays vs...

  1. A genome assembly-integrated dog 1 Mb BAC microarray: a cytogenetic resource for canine cancer studies and comparative genomic analysis.

    Science.gov (United States)

    Thomas, R; Duke, S E; Karlsson, E K; Evans, A; Ellis, P; Lindblad-Toh, K; Langford, C F; Breen, M

    2008-01-01

    Molecular cytogenetic studies have been instrumental in defining the nature of numerical and structural chromosome changes in human cancers, but their significance remains to be fully understood. The emergence of high quality genome assemblies for several model organisms provides exciting opportunities to develop novel genome-integrated molecular cytogenetic resources that now permit a comparative approach to evaluating the relevance of tumor-associated chromosome aberrations, both within and between species. We have used the dog genome sequence assembly to identify a framework panel of 2,097 bacterial artificial chromosome (BAC) clones, selected at intervals of approximately one megabase. Each clone has been evaluated by multicolor fluorescence in situ hybridization (FISH) to confirm its unique cytogenetic location in concordance with its reported position in the genome assembly, providing new information on the organization of the dog genome. This panel of BAC clones also represents a powerful cytogenetic resource with numerous potential applications. We have used the clone set to develop a genome-wide microarray for comparative genomic hybridization (aCGH) analysis, and demonstrate its application in detection of tumor-associated DNA copy number aberrations (CNAs) including single copy deletions and amplifications, regional aneuploidy and whole chromosome aneuploidy. We also show how individual clones selected from the BAC panel can be used as FISH probes in direct evaluation of tumor karyotypes, to verify and explore CNAs detected using aCGH analysis. This cytogenetically validated, genome integrated BAC clone panel has enormous potential for aiding gene discovery through a comparative approach to molecular oncology.

  2. Science Letters: A robust statistical procedure to discover expression biomarkers using microarray genomic expression data

    Institute of Scientific and Technical Information of China (English)

    ZOU Yang-yun; YANG Jian; ZHU Jun

    2006-01-01

    Microarray has become increasingly popular biotechnology in biological and medical researches, and has been widely applied in classification of treatment subtypes using expression patterns of biomarkers. We developed a statistical procedure to identify expression biomarkers for treatment subtype classification by constructing an F-statistic based on Henderson method Ⅲ.Monte Carlo simulations were conducted to examine the robustness and efficiency of the proposed method. Simulation results showed that our method could provide satisfying power of identifying differentially expressed genes (DEGs) with false discovery rate (FDR) lower than the given type Ⅰ error rate. In addition, we analyzed a leukemia dataset collected from 38 leukemia patients with 27 samples diagnosed as acute lymphoblastic leukemia (ALL) and 11 samples as acute myeloid leukemia (AML). We compared our results with those from the methods of significance analysis of microarray (SAM) and microarray analysis of variance (MAANOVA). Among these three methods, only expression biomarkers identified by our method can precisely identify the three human acute leukemia subtypes.

  3. Determination of the relationship between group A streptococcal genome content, M type, and toxic shock syndrome by a mixed genome microarray.

    Science.gov (United States)

    Vlaminckx, Bart J M; Schuren, Frank H J; Montijn, Roy C; Caspers, Martien P M; Fluit, Ad C; Wannet, Wim J B; Schouls, Leo M; Verhoef, Jan; Jansen, Wouter T M

    2007-05-01

    Group A streptococci (GAS), or Streptococcus pyogenes, are associated with a remarkable variety of diseases, ranging from superficial infections to life-threatening diseases such as toxic-shock-like syndrome (TSS). GAS strains belonging to M types M1 and M3 are associated with TSS. This study aims to obtain insight into the gene profiles underlying different M types and disease manifestations. Genomic differences between 76 clinically well characterized GAS strains collected in The Netherlands were examined using a mixed-genome microarray. Inter-M-type genomic differences clearly outweighed intra-M-type genome variation. Phages were major contributors to observed genome diversification. We identified four novel genes, including two genes encoding fibronectin-binding-like proteins, which are highly specific to a subset of M types and thus may contribute to M-type-associated disease manifestations. All M12 strains were characterized by the unique absence of the citrate lyase complex and reduced growth under hypoxic, nutrient-deprived conditions. Furthermore, six virulence factors, including genes encoding a complement-inhibiting protein (sic), an exotoxin (speA), iron(III) binding factor, collagen binding factor (cpa), and fibrinogen binding factor (prt2-like), were unique to M1 and/or M3 strains. These virulence factors may contribute to the potential of these strains to cause TSS. Finally, in contrast to M-type-specific virulence profiles, we did not identify a common virulence profile among strains associated with TSS irrespective of their M type.

  4. Whole Genomic Analysis of an Unusual Human G6P[14] Rotavirus Strain Isolated from a Child with Diarrhea in Thailand: Evidence for Bovine-To-Human Interspecies Transmission and Reassortment Events.

    Directory of Open Access Journals (Sweden)

    Ratana Tacharoenmuang

    Full Text Available An unusual rotavirus strain, SKT-27, with the G6P[14] genotypes (RVA/Human-wt/THA/SKT-27/2012/G6P[14], was identified in a stool specimen from a hospitalized child aged eight months with severe diarrhea. In this study, we sequenced and characterized the complete genome of strain SKT-27. On whole genomic analysis, strain SKT-27 was found to have a unique genotype constellation: G6-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The non-G/P genotype constellation of this strain (I2-R2-C2-M2-A3-N2-T6-E2-H3 is commonly shared with rotavirus strains from artiodactyls such as cattle. Phylogenetic analysis indicated that nine of the 11 genes of strain SKT-27 (VP7, VP4, VP6, VP2-3, NSP1, NSP3-5 appeared to be of artiodactyl (likely bovine origin, while the remaining VP1 and NSP2 genes were assumed to be of human origin. Thus, strain SKT-27 was found to have a bovine rotavirus genetic backbone, and thus is likely to be of bovine origin. Furthermore, strain SKT-27 appeared to be derived through interspecies transmission and reassortment events involving bovine and human rotavirus strains. Of note is that the VP7 gene of strain SKT-27 was located in G6 lineage-5 together with those of bovine rotavirus strains, away from the clusters comprising other G6P[14] strains in G6 lineages-2/6, suggesting the occurrence of independent bovine-to-human interspecies transmission events. To our knowledge, this is the first report on full genome-based characterization of human G6P[14] strains that have emerged in Southeast Asia. Our observations will provide important insights into the origin of G6P[14] strains, and into dynamic interactions between human and bovine rotavirus strains.

  5. Whole Genomic Analysis of an Unusual Human G6P[14] Rotavirus Strain Isolated from a Child with Diarrhea in Thailand: Evidence for Bovine-To-Human Interspecies Transmission and Reassortment Events.

    Science.gov (United States)

    Tacharoenmuang, Ratana; Komoto, Satoshi; Guntapong, Ratigorn; Ide, Tomihiko; Haga, Kei; Katayama, Kazuhiko; Kato, Takema; Ouchi, Yuya; Kurahashi, Hiroki; Tsuji, Takao; Sangkitporn, Somchai; Taniguchi, Koki

    2015-01-01

    An unusual rotavirus strain, SKT-27, with the G6P[14] genotypes (RVA/Human-wt/THA/SKT-27/2012/G6P[14]), was identified in a stool specimen from a hospitalized child aged eight months with severe diarrhea. In this study, we sequenced and characterized the complete genome of strain SKT-27. On whole genomic analysis, strain SKT-27 was found to have a unique genotype constellation: G6-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The non-G/P genotype constellation of this strain (I2-R2-C2-M2-A3-N2-T6-E2-H3) is commonly shared with rotavirus strains from artiodactyls such as cattle. Phylogenetic analysis indicated that nine of the 11 genes of strain SKT-27 (VP7, VP4, VP6, VP2-3, NSP1, NSP3-5) appeared to be of artiodactyl (likely bovine) origin, while the remaining VP1 and NSP2 genes were assumed to be of human origin. Thus, strain SKT-27 was found to have a bovine rotavirus genetic backbone, and thus is likely to be of bovine origin. Furthermore, strain SKT-27 appeared to be derived through interspecies transmission and reassortment events involving bovine and human rotavirus strains. Of note is that the VP7 gene of strain SKT-27 was located in G6 lineage-5 together with those of bovine rotavirus strains, away from the clusters comprising other G6P[14] strains in G6 lineages-2/6, suggesting the occurrence of independent bovine-to-human interspecies transmission events. To our knowledge, this is the first report on full genome-based characterization of human G6P[14] strains that have emerged in Southeast Asia. Our observations will provide important insights into the origin of G6P[14] strains, and into dynamic interactions between human and bovine rotavirus strains.

  6. FDA Bioinformatics Tool for Microbial Genomics Research on Molecular Characterization of Bacterial Foodborne Pathogens Using Microarrays

    Science.gov (United States)

    Background: Advances in microbial genomics and bioinformatics are offering greater insights into the emergence and spread of foodborne pathogens in outbreak scenarios. The Food and Drug Administration (FDA) has developed the genomics tool ArrayTrackTM, which provides extensive functionalities to man...

  7. Genome-wide microarray analysis of human fibroblasts in response to γ radiation and the radiation-induced bystander effect.

    Science.gov (United States)

    Kalanxhi, Erta; Dahle, Jostein

    2012-01-01

    Radiation-induced bystander effects have been studied extensively due to their potential implications for cancer therapy and radiation protection; however, a complete understanding of the molecular mechanisms remains to be elucidated. In this study, we monitored transcriptional responses to γ radiation in irradiated and bystander fibroblasts simultaneously employing a genome-wide microarray approach to determine factors that may be modulated in the generation or propagation of the bystander effect. For the microarray data we employed analysis at both the single-gene and gene-set level to place the findings in a biological context. Unirradiated bystander fibroblasts that were recipients of growth medium harvested from irradiated cultures 2 h after exposure to 2 Gy displayed transient enrichment in gene sets belonging to ribosome, oxidative phosphorylation and neurodegenerative disease pathways associated with mitochondrial dysfunctions. The response to direct irradiation was characterized by induction of signaling and apoptosis genes and the gradual formation of a cellular immune response. A set of 14 genes, many of which were regulated by p53, were found to be induced early after irradiation (prior to medium transfer) and may be important in the generation or propagation of the bystander effect.

  8. A flexible whole-genome microarray for transcriptomics in three-spine stickleback (Gasterosteus aculeatus

    Directory of Open Access Journals (Sweden)

    Primmer Craig R

    2009-09-01

    Full Text Available Abstract Background The use of microarray technology for describing changes in mRNA expression to address ecological and evolutionary questions is becoming increasingly popular. Since three-spine stickleback are an important ecological and evolutionary model-species as well as an emerging model for eco-toxicology, the ability to have a functional and flexible microarray platform for transcriptome studies will greatly enhance the research potential in these areas. Results We designed 43,392 unique oligonucleotide probes representing 19,274 genes (93% of the estimated total gene number, and tested the hybridization performance of both DNA and RNA from different populations to determine the efficacy of probe design for transcriptome analysis using the Agilent array platform. The majority of probes were functional as evidenced by the DNA hybridization success, and 30,946 probes (14,615 genes had a signal that was significantly above background for RNA isolated from liver tissue. Genes identified as being expressed in liver tissue were grouped into functional categories for each of the three Gene Ontology groups: biological process, molecular function, and cellular component. As expected, the highest proportions of functional categories belonged to those associated with metabolic functions: metabolic process, binding, catabolism, and organelles. Conclusion The probe and microarray design presented here provides an important step facilitating transcriptomics research for this important research organism by providing a set of over 43,000 probes whose hybridization success and specificity to liver expression has been demonstrated. Probes can easily be added or removed from the current design to tailor the array to specific experiments and additional flexibility lies in the ability to perform either one-color or two-color hybridizations.

  9. Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi*

    Science.gov (United States)

    Atanasova, Lea; Druzhinina, Irina S.

    2010-01-01

    Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites, industrially important enzymes, chemicals and food. They are also important pathogens of animals including humans and agricultural crops. These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available. Functional genomics and proteomics widely exploit the genomic information to study the cell-wide impact of altered genes on the phenotype of an organism and its function. This allows for global analysis of the information flow from DNA to RNA to protein, but it is usually not sufficient for the description of the global phenotype of an organism. More recently, Phenotype MicroArray (PM) technology has been introduced as a tool to characterize the metabolism of a (wild) fungal strain or a mutant. In this article, we review the background of PM applications for fungi and the methodic requirements to obtain reliable results. We also report examples of the versatility of this tool. PMID:20205302

  10. Xenogenomics: Genomic Bioprospecting in Indigenous and Exotic Plants Through EST Discovery, cDNA Microarray-Based Expression Profiling and Functional Genomics

    Directory of Open Access Journals (Sweden)

    German C. Spangenberg

    2006-04-01

    Full Text Available To date, the overwhelming majority of genomics programs in plants have been directed at model or crop plant species, meaning that very little of the naturally occurring sequence diversity found in plants is available for characterization and exploitation. In contrast, ‘xenogenomics’ refers to the discovery and functional analysis of novel genes and alleles from indigenous and exotic species, permitting bioprospecting of biodiversity using high-throughput genomics experimental approaches. Such a program has been initiated to bioprospect for genetic determinants of abiotic stress tolerance in indigenous Australian flora and native Antarctic plants. Uniquely adapted Poaceae and Fabaceae species with enhanced tolerance to salt, drought, elevated soil aluminium concentration, and freezing stress have been identified, based primarily on their eco-physiology, and have been subjected to structural and functional genomics analyses. For each species, EST collections have been derived from plants subjected to appropriate abiotic stresses. Transcript profiling with spotted unigene cDNA micro-arrays has been used to identify genes that are transcriptionally modulated in response to abiotic stress. Candidate genes identified on the basis of sequence annotation or transcript profiling have been assayed in planta and other in vivo systems for their capacity to confer novel phenotypes. Comparative genomics analysis of novel genes and alleles identified in the xenogenomics target plant species has subsequently been undertaken with reference to key model and crop plants.

  11. Progress in interspecies cloning of mammals

    Institute of Scientific and Technical Information of China (English)

    WEN Duancheng; BI Chunming; CHEN Dayuan

    2004-01-01

    Interspecies mammalian cloning can be achieved by application of two key techniques, i.e.the technique of interspecies nuclear transfer and the technique of interspecies pregnancy.The general principles, problems and possible solutions, as well as the recent advances of interspecies mammalian cloning have been summarized in this review.

  12. Microarray-bioinformatics analysis of altered genomic expression profiles between human fetal and infant myocardium

    Institute of Scientific and Technical Information of China (English)

    KONG Bo; LIU Ying-long; L(U) Xiao-dong

    2008-01-01

    Background The physiological differences between fetal and postnatal heart have been well characterized at the cellular level. However, the genetic mechanisms governing and regulating these differences have only been partially elucidated. Elucidation of the differentially expressed genes profile before and after birth has never been systematically proposed and analyzed.Methods The human oligonuclectide microarray and bioinformatics analysis approaches were applied to isolate and classify the differentially expressed genes between fetal and infant cardiac tissue samples. Quantitative real-time PCR was used to confirm the results from the microarray.Results Two hundred and forty-two differentially expressed genes were discovered and classified into 13 categories, including genes related to energy metabolism, myocyte hyperplasia, development, muscle contraction, protein synthesis and degradation, extraceUular matrix components, transcription factors, apoptosis, signal pathway molecules, organelle organization and several other biological processes. Moreover, 95 genes were identified which had not previously been reported to be expressed in the heart.Conclusions The study systematically analyzed the alteration of the gene expression profile between the human fetal and infant myocardium. A number of genes were discovered which had not been reported to be expressed in the heart. The data provided insight into the physical development mechanisms of the heart before and after birth.KONG Bo and LU Xiao-dong contributed equally to this study.

  13. Self-Directed Student Research through Analysis of Microarray Datasets: A Computer-Based Functional Genomics Practical Class for Masters-Level Students

    Science.gov (United States)

    Grenville-Briggs, Laura J.; Stansfield, Ian

    2011-01-01

    This report describes a linked series of Masters-level computer practical workshops. They comprise an advanced functional genomics investigation, based upon analysis of a microarray dataset probing yeast DNA damage responses. The workshops require the students to analyse highly complex transcriptomics datasets, and were designed to stimulate…

  14. Full genome analysis of bovine astrovirus from fecal samples of cattle in Japan: identification of possible interspecies transmission of bovine astrovirus.

    Science.gov (United States)

    Nagai, Makoto; Omatsu, Tsutomu; Aoki, Hiroshi; Otomaru, Konosuke; Uto, Takehiko; Koizumi, Motoya; Minami-Fukuda, Fujiko; Takai, Hikaru; Murakami, Toshiaki; Masuda, Tsuneyuki; Yamasato, Hiroshi; Shiokawa, Mai; Tsuchiaka, Shinobu; Naoi, Yuki; Sano, Kaori; Okazaki, Sachiko; Katayama, Yukie; Oba, Mami; Furuya, Tetsuya; Shirai, Junsuke; Mizutani, Tetsuya

    2015-10-01

    A viral metagenomics approach was used to investigate fecal samples of Japanese calves with and without diarrhea. Of the different viral pathogens detected, read counts gave nearly complete astrovirus-related RNA sequences in 15 of the 146 fecal samples collected in three distinct areas (Hokkaido, Ishikawa, and Kagoshima Prefectures) between 2009 and 2015. Due to the lack of genetic information about bovine astroviruses (BoAstVs) in Japan, these sequences were analyzed in this study. Nine of the 15 Japanese BoAstVs were closely related to Chinese BoAstVs and clustered into a lineage (tentatively named lineage 1) in all phylogenetic trees. Three of 15 strains were phylogenetically separate from lineage 1, showing low sequence identities, and clustered instead with an American strain isolated from cattle with respiratory disease (tentatively named lineage 2). Interestingly, two of 15 strains clustered with lineage 1 in the open reading frame (ORF)1a and ORF1b regions, while they clustered with lineage 2 in the ORF2 region. Remarkably, one of 15 strains exhibited low amino acid sequence similarity to other BoAstVs and was clustered separately with porcine astrovirus type 5 in all trees, and ovine astrovirus in the ORF2 region, suggesting past interspecies transmission.

  15. Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part B: ChIP-chip data analysis.

    Science.gov (United States)

    Göbel, Ulrike; Reimer, Julia; Turck, Franziska

    2010-01-01

    Genome-wide targets of chromatin-associated factors can be identified by a combination of chromatin-immunoprecipitation and oligonucleotide microarray hybridization. Genome-wide mircoarray data analysis represents a major challenge for the experimental biologist. This chapter introduces ChIPR, a package written in the R statistical programming language that facilitates the analysis of two-color microarrays from Roche-Nimblegen. The workflow of ChIPR is illustrated with sample data from Arabidopsis thaliana. However, ChIPR supports ChIP-chip data preprocessing, target identification, and cross-annotation of any species for which genome annotation data is available in GFF format. This chapter describes how to use ChIPR as a software tool without the requirement for programming skills in the R language.

  16. Microarray-based comparative genomic profiling of reference strains and selected Canadian field isolates of Actinobacillus pleuropneumoniae

    Directory of Open Access Journals (Sweden)

    MacInnes Janet I

    2009-02-01

    Full Text Available Abstract Background Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is a highly contagious respiratory pathogen that causes severe losses to the swine industry worldwide. Current commercially-available vaccines are of limited value because they do not induce cross-serovar immunity and do not prevent development of the carrier state. Microarray-based comparative genomic hybridizations (M-CGH were used to estimate whole genomic diversity of representative Actinobacillus pleuropneumoniae strains. Our goal was to identify conserved genes, especially those predicted to encode outer membrane proteins and lipoproteins because of their potential for the development of more effective vaccines. Results Using hierarchical clustering, our M-CGH results showed that the majority of the genes in the genome of the serovar 5 A. pleuropneumoniae L20 strain were conserved in the reference strains of all 15 serovars and in representative field isolates. Fifty-eight conserved genes predicted to encode for outer membrane proteins or lipoproteins were identified. As well, there were several clusters of diverged or absent genes including those associated with capsule biosynthesis, toxin production as well as genes typically associated with mobile elements. Conclusion Although A. pleuropneumoniae strains are essentially clonal, M-CGH analysis of the reference strains of the fifteen serovars and representative field isolates revealed several classes of genes that were divergent or absent. Not surprisingly, these included genes associated with capsule biosynthesis as the capsule is associated with sero-specificity. Several of the conserved genes were identified as candidates for vaccine development, and we conclude that M-CGH is a valuable tool for reverse vaccinology.

  17. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data.

    Science.gov (United States)

    Teng, Shaolei; Yang, Jack Y; Wang, Liangjiang

    2013-01-01

    Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. In this study, we have developed a machine learning approach for predicting the human tissue-specific genes using microarray expression data. The lists of known tissue-specific genes for different tissues were collected from UniProt database, and the expression data retrieved from the previously compiled dataset according to the lists were used for input vector encoding. Random Forests (RFs) and Support Vector Machines (SVMs) were used to construct accurate classifiers. The RF classifiers were found to outperform SVM models for tissue-specific gene prediction. The results suggest that the candidate genes for brain or liver specific expression can provide valuable information for further experimental studies. Our approach was also applied for identifying tissue-selective gene targets for different types of tissues. A machine learning approach has been developed for accurately identifying the candidate genes for tissue specific/selective expression. The approach provides an efficient way to select some interesting genes for developing new biomedical markers and improve our knowledge of tissue-specific expression.

  18. Exploring host-pathogen interactions through genome wide protein microarray analysis.

    Science.gov (United States)

    Scietti, Luigi; Sampieri, Katia; Pinzuti, Irene; Bartolini, Erika; Benucci, Barbara; Liguori, Alessia; Haag, Andreas F; Lo Surdo, Paola; Pansegrau, Werner; Nardi-Dei, Vincenzo; Santini, Laura; Arora, Seguinde; Leber, Xavier; Rindi, Simonetta; Savino, Silvana; Costantino, Paolo; Maione, Domenico; Merola, Marcello; Speziale, Pietro; Bottomley, Matthew J; Bagnoli, Fabio; Masignani, Vega; Pizza, Mariagrazia; Scharenberg, Meike; Schlaeppi, Jean-Marc; Nissum, Mikkel; Liberatori, Sabrina

    2016-06-15

    During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis.

  19. Microarray studies of genomic oxidative stress and cell cycle responses in obstructive sleep apnea.

    Science.gov (United States)

    Hoffmann, Michal S; Singh, Prachi; Wolk, Robert; Romero-Corral, Abel; Raghavakaimal, Sreekumar; Somers, Virend K

    2007-06-01

    Obstructive sleep apnea (OSA), the commonest form of sleep-disordered breathing, is characterized by recurrent episodes of intermittent hypoxia and sleep fragmentation. This study evaluated microarray measures of gene transcript levels in OSA subjects compared to age and BMI matched healthy controls. Measurements were obtained before and after: (a) a night of normal sleep in controls; and (b) a night of untreated apnea in OSA patients. All subjects underwent full polysomnography. mRNA from the whole blood samples was analyzed by HG-U133A and B Affymetrix GeneChip arrays using Spotfire 7.2 data analysis platform. After sleep in OSA patients, changes were noted in several genes involved in modulation of reactive oxygen species (ROS), including heme oxygenase 1, superoxide dismutase 1 and 2, and catalase. Changes were also observed in genes involved in cell growth, proliferation, and the cell cycle such as cell division cycle 25B, signaling lymphocyte activating molecule (SLAM), calgizzarin S100A11, B-cell translocation gene, Src-like adapter protein (SLAP), and eukaryotic translation initiation factor 4E binding protein 2. These overnight changes in OSA patients are suggestive of activation of several mechanisms to modulate, and adapt to, increased ROS developing in response to the frequent episodes of intermittent hypoxia.

  20. A three-dimensional waveguide structure as a support for genomic and proteomic microarrays

    Science.gov (United States)

    Dertinger, Stephan K.; Kluehr, Marco; Elsner, Christian A.; Sauermann, Alexander; Rueffer, Kristin; Nicklaus, Petra M.; Thein, Kerstin

    2004-12-01

    In this paper we present a three-dimensional waveguide structure with unique optical and fluidic properties and demonstrate its application as a substrate for DNA microarrays. The structure is fabricated by thermal oxidation of a macroporous silicon membrane with a periodic pattern of discrete pores running perpendicular through the substrate. Partial oxidation generates a SiO2 membrane, but leaves a rectangular grid of silicon walls dividing the membrane into compartments. We show that the SiO2 walls act as optical waveguides and characterize their optical properties; modes can be launched using Koehler illumination. The silicon walls optically isolate adjacent compartments and prevent light from spreading laterally in the membrane. In a DNA hybridization experiment, the detection of 100 attomol of a Cy-3 labeled DNA fragment (17 oligonucleotides) has been achieved with a signal to noise ratio of > 3:1. We believe that even lower detection limits can be achieved by further tuning the optical parameters of the three-dimensional waveguide structure.

  1. Exploring host-pathogen interactions through genome wide protein microarray analysis

    Science.gov (United States)

    Scietti, Luigi; Sampieri, Katia; Pinzuti, Irene; Bartolini, Erika; Benucci, Barbara; Liguori, Alessia; Haag, Andreas F.; Lo Surdo, Paola; Pansegrau, Werner; Nardi-Dei, Vincenzo; Santini, Laura; Arora, Seguinde; Leber, Xavier; Rindi, Simonetta; Savino, Silvana; Costantino, Paolo; Maione, Domenico; Merola, Marcello; Speziale, Pietro; Bottomley, Matthew J.; Bagnoli, Fabio; Masignani, Vega; Pizza, Mariagrazia; Scharenberg, Meike; Schlaeppi, Jean-Marc; Nissum, Mikkel; Liberatori, Sabrina

    2016-01-01

    During bacterial pathogenesis extensive contacts between the human and the bacterial extracellular proteomes take place. The identification of novel host-pathogen interactions by standard methods using a case-by-case approach is laborious and time consuming. To overcome this limitation, we took advantage of large libraries of human and bacterial recombinant proteins. We applied a large-scale protein microarray-based screening on two important human pathogens using two different approaches: (I) 75 human extracellular proteins were tested on 159 spotted Staphylococcus aureus recombinant proteins and (II) Neisseria meningitidis adhesin (NadA), an important vaccine component against serogroup B meningococcus, was screened against ≈2300 spotted human recombinant proteins. The approach presented here allowed the identification of the interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting; and of the interaction between meningococcal NadA and human LOX-1 (low-density oxidized lipoprotein receptor), an endothelial receptor. The novel interactions between bacterial and human extracellular proteins here presented might provide a better understanding of the molecular events underlying S. aureus and N. meningitidis pathogenesis. PMID:27302108

  2. DNA Microarray Technique

    Directory of Open Access Journals (Sweden)

    Thakare SP

    2012-11-01

    Full Text Available DNA Microarray is the emerging technique in Biotechnology. The many varieties of DNA microarray or DNA chip devices and systems are described along with their methods for fabrication and their use. It also includes screening and diagnostic applications. The DNA microarray hybridization applications include the important areas of gene expression analysis and genotyping for point mutations, single nucleotide polymorphisms (SNPs, and short tandem repeats (STRs. In addition to the many molecular biological and genomic research uses, this review covers applications of microarray devices and systems for pharmacogenomic research and drug discovery, infectious and genetic disease and cancer diagnostics, and forensic and genetic identification purposes.

  3. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains

    OpenAIRE

    Salama, Nina; Guillemin, Karen; McDaniel, Timothy K.; Sherlock, Gavin; Tompkins, Lucy; Falkow, Stanley

    2000-01-01

    Helicobacter pylori colonizes the stomach of half of the world's population, causing a wide spectrum of disease ranging from asymptomatic gastritis to ulcers to gastric cancer. Although the basis for these diverse clinical outcomes is not understood, more severe disease is associated with strains harboring a pathogenicity island. To characterize the genetic diversity of more and less virulent strains, we examined the genomic content of 15 H. pylori clinical isolate...

  4. Matching of array CGH and gene expression microarray features for the purpose of integrative genomic analyses

    Directory of Open Access Journals (Sweden)

    van Wieringen Wessel N

    2012-05-01

    Full Text Available Abstract Background An increasing number of genomic studies interrogating more than one molecular level is published. Bioinformatics follows biological practice, and recent years have seen a surge in methodology for the integrative analysis of genomic data. Often such analyses require knowledge of which elements of one platform link to those of another. Although important, many integrative analyses do not or insufficiently detail the matching of the platforms. Results We describe, illustrate and discuss six matching procedures. They are implemented in the R-package sigaR (available from Bioconductor. The principles underlying the presented matching procedures are generic, and can be combined to form new matching approaches or be applied to the matching of other platforms. Illustration of the matching procedures on a variety of data sets reveals how the procedures differ in the use of the available data, and may even lead to different results for individual genes. Conclusions Matching of data from multiple genomics platforms is an important preprocessing step for many integrative bioinformatic analysis, for which we present six generic procedures, both old and new. They have been implemented in the R-package sigaR, available from Bioconductor.

  5. Genome Analysis of Clostridium difficile PCR Ribotype 014 Lineage in Australian Pigs and Humans Reveals a Diverse Genetic Repertoire and Signatures of Long-Range Interspecies Transmission

    Science.gov (United States)

    Knight, Daniel R.; Squire, Michele M.; Collins, Deirdre A.; Riley, Thomas V.

    2017-01-01

    Clostridium difficile PCR ribotype (RT) 014 is well-established in both human and porcine populations in Australia, raising the possibility that C. difficile infection (CDI) may have a zoonotic or foodborne etiology. Here, whole genome sequencing and high-resolution core genome phylogenetics were performed on a contemporaneous collection of 40 Australian RT014 isolates of human and porcine origin. Phylogenies based on MLST (7 loci, STs 2, 13, and 49) and core orthologous genes (1260 loci) showed clustering of human and porcine strains indicative of very recent shared ancestry. Core genome single nucleotide variant (SNV) analysis found 42% of human strains showed a clonal relationship (separated by ≤2 SNVs in their core genome) with one or more porcine strains, consistent with recent inter-host transmission. Clones were spread over a vast geographic area with 50% of the human cases occurring without recent healthcare exposure. These findings suggest a persistent community reservoir with long-range dissemination, potentially due to agricultural recycling of piggery effluent. We also provide the first pan-genome analysis for this lineage, characterizing its resistome, prophage content, and in silico virulence potential. The RT014 is defined by a large “open” pan-genome (7587 genes) comprising a core genome of 2296 genes (30.3% of the total gene repertoire) and an accessory genome of 5291 genes. Antimicrobial resistance genotypes and phenotypes varied across host populations and ST lineages and were characterized by resistance to tetracycline [tetM, tetA(P), tetB(P) and tetW], clindamycin/erythromycin (ermB), and aminoglycosides (aph3-III-Sat4A-ant6-Ia). Resistance was mediated by clinically important mobile genetic elements, most notably Tn6194 (harboring ermB) and a novel variant of Tn5397 (harboring tetM). Numerous clinically important prophages (Siphoviridae and Myoviridae) were identified as well as an uncommon accessory gene regulator locus (agr3

  6. Rapid extraction of genomic DNA from saliva for HLA typing on microarray based on magnetic nanobeads

    Science.gov (United States)

    Xie, Xin; Zhang, Xu; Yu, Bingbin; Gao, Huafang; Zhang, Huan; Fei, Weiyang

    2004-09-01

    A series of simplified protocols are developed for extracting genomic DNA from saliva by using the magnetic nanobeads as absorbents. In these protocols, both the enrichment of the target cells and the adsorption of DNA can be achieved simultaneously by our functionally modified magnetic beads in one step, and the DNA-nanobeads complex can be used as PCR templates. HLA typing based on an oligonucleotide array was conducted by hybridization with the PCR products. The result shows that the protocols are robust and sensitive.

  7. Introduction to microarray technology.

    Science.gov (United States)

    Dufva, Martin

    2009-01-01

    DNA microarrays can be used for large number of application where high-throughput is needed. The ability to probe a sample for hundred to million different molecules at once has made DNA microarray one of the fastest growing techniques since its introduction about 15 years ago. Microarray technology can be used for large scale genotyping, gene expression profiling, comparative genomic hybridization and resequencing among other applications. Microarray technology is a complex mixture of numerous technology and research fields such as mechanics, microfabrication, chemistry, DNA behaviour, microfluidics, enzymology, optics and bioinformatics. This chapter will give an introduction to each five basic steps in microarray technology that includes fabrication, target preparation, hybridization, detection and data analysis. Basic concepts and nomenclature used in the field of microarray technology and their relationships will also be explained.

  8. In silico enhanced restriction enzyme based methylation analysis of the human glioblastoma genome using Agilent 244K CpG Island microarrays

    Directory of Open Access Journals (Sweden)

    Anh Tran

    2010-01-01

    Full Text Available Genome wide methylation profiling of gliomas is likely to provide important clues to improving treatment outcomes. Restriction enzyme based approaches have been widely utilized for methylation profiling of cancer genomes and will continue to have importance in combination with higher density microarrays. With the availability of the human genome sequence and microarray probe sequences, these approaches can be readily characterized and optimized via in silico modeling. We adapted the previously described HpaII/MspI based Methylation Sensitive Restriction Enzyme (MSRE assay for use with two-color Agilent 244K CpG island microarrays. In this assay, fragmented genomic DNA is digested in separate reactions with isoschizomeric HpaII (methylation-sensitive and MspI (methylation-insensitive restriction enzymes. Using in silico hybridization, we found that genomic fragmentation with BfaI was superior to MseI, providing a maximum effective coverage of 22,362 CpG islands in the human genome. In addition, we confirmed the presence of an internal control group of fragments lacking HpaII/MspI sites which enable separation of methylated and unmethylated fragments. We used this method on genomic DNA isolated from normal brain, U87MG cells, and a glioblastoma patient tumor sample and confirmed selected differentially methylated CpG islands using bisulfite sequencing. Along with additional validation points, we performed a receiver operating characteristics (ROC analysis to determine the optimal threshold (p ≤ 0.001. Based on this threshold, we identified ~2400 CpG islands common to all three samples and 145 CpG islands unique to glioblastoma. These data provide more general guidance to individuals seeking to maximize effective coverage using restriction enzyme based methylation profiling approaches.

  9. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance

    Science.gov (United States)

    D’Ursi, Pasqualina; Milanesi, Luciano; Di Canito, Alessandra; Zampolli, Jessica; Collina, Elena; Decorosi, Francesca; Viti, Carlo; Fedi, Stefano; Presentato, Alessandro; Zannoni, Davide; Di Gennaro, Patrizia

    2015-01-01

    In this paper comparative genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7 were performed. Rhodococcus sp. BCP1 was selected for its ability to grow on short-chain n-alkanes and R. opacus R7 was isolated for its ability to grow on naphthalene and on o-xylene. Results of genome comparison, including BCP1, R7, along with other Rhodococcus reference strains, showed that at least 30% of the genome of each strain presented unique sequences and only 50% of the predicted proteome was shared. To associate genomic features with metabolic capabilities of BCP1 and R7 strains, hundreds of different growth conditions were tested through Phenotype Microarray, by using Biolog plates and plates manually prepared with additional xenobiotic compounds. Around one-third of the surveyed carbon sources was utilized by both strains although R7 generally showed higher metabolic activity values compared to BCP1. Moreover, R7 showed broader range of nitrogen and sulphur sources. Phenotype Microarray data were combined with genomic analysis to genetically support the metabolic features of the two strains. The genome analysis allowed to identify some gene clusters involved in the metabolism of the main tested xenobiotic compounds. Results show that R7 contains multiple genes for the degradation of a large set of aromatic and PAHs compounds, while a lower variability in terms of genes predicted to be involved in aromatic degradation was found in BCP1. This genetic feature can be related to the strong genetic pressure exerted by the two different environment from which the two strains were isolated. According to this, in the BCP1 genome the smo gene cluster involved in the short-chain n-alkanes degradation, is included in one of the unique regions and it is not conserved in the Rhodococcus strains compared in this work. Data obtained underline the great potential of these two Rhodococcus spp. strains for biodegradation and environmental decontamination

  10. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance.

    Science.gov (United States)

    Orro, Alessandro; Cappelletti, Martina; D'Ursi, Pasqualina; Milanesi, Luciano; Di Canito, Alessandra; Zampolli, Jessica; Collina, Elena; Decorosi, Francesca; Viti, Carlo; Fedi, Stefano; Presentato, Alessandro; Zannoni, Davide; Di Gennaro, Patrizia

    2015-01-01

    In this paper comparative genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7 were performed. Rhodococcus sp. BCP1 was selected for its ability to grow on short-chain n-alkanes and R. opacus R7 was isolated for its ability to grow on naphthalene and on o-xylene. Results of genome comparison, including BCP1, R7, along with other Rhodococcus reference strains, showed that at least 30% of the genome of each strain presented unique sequences and only 50% of the predicted proteome was shared. To associate genomic features with metabolic capabilities of BCP1 and R7 strains, hundreds of different growth conditions were tested through Phenotype Microarray, by using Biolog plates and plates manually prepared with additional xenobiotic compounds. Around one-third of the surveyed carbon sources was utilized by both strains although R7 generally showed higher metabolic activity values compared to BCP1. Moreover, R7 showed broader range of nitrogen and sulphur sources. Phenotype Microarray data were combined with genomic analysis to genetically support the metabolic features of the two strains. The genome analysis allowed to identify some gene clusters involved in the metabolism of the main tested xenobiotic compounds. Results show that R7 contains multiple genes for the degradation of a large set of aromatic and PAHs compounds, while a lower variability in terms of genes predicted to be involved in aromatic degradation was found in BCP1. This genetic feature can be related to the strong genetic pressure exerted by the two different environment from which the two strains were isolated. According to this, in the BCP1 genome the smo gene cluster involved in the short-chain n-alkanes degradation, is included in one of the unique regions and it is not conserved in the Rhodococcus strains compared in this work. Data obtained underline the great potential of these two Rhodococcus spp. strains for biodegradation and environmental decontamination

  11. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity.

    Science.gov (United States)

    Dorrell, N; Mangan, J A; Laing, K G; Hinds, J; Linton, D; Al-Ghusein, H; Barrell, B G; Parkhill, J; Stoker, N G; Karlyshev, A V; Butcher, P D; Wren, B W

    2001-10-01

    Campylobacter jejuni is the leading cause of bacterial food-borne diarrhoeal disease throughout the world, and yet is still a poorly understood pathogen. Whole genome microarray comparisons of 11 C. jejuni strains of diverse origin identified genes in up to 30 NCTC 11168 loci ranging from 0.7 to 18.7 kb that are either absent or highly divergent in these isolates. Many of these regions are associated with the biosynthesis of surface structures including flagella, lipo-oligosaccharide, and the newly identified capsule. Other strain-variable genes of known function include those responsible for iron acquisition, DNA restriction/modification, and sialylation. In fact, at least 21% of genes in the sequenced strain appear dispensable as they are absent or highly divergent in one or more of the isolates tested, thus defining 1300 C. jejuni core genes. Such core genes contribute mainly to metabolic, biosynthetic, cellular, and regulatory processes, but many virulence determinants are also conserved. Comparison of the capsule biosynthesis locus revealed conservation of all the genes in this region in strains with the same Penner serotype as strain NCTC 11168. By contrast, between 5 and 17 NCTC 11168 genes in this region are either absent or highly divergent in strains of a different serotype from the sequenced strain, providing further evidence that the capsule accounts for Penner serotype specificity. These studies reveal extensive genetic diversity among C. jejuni strains and pave the way toward identifying correlates of pathogenicity and developing improved epidemiological tools for this problematic pathogen.

  12. Differential gene expression from genome-wide microarray analyses distinguishes Lohmann Selected Leghorn and Lohmann Brown layers.

    Directory of Open Access Journals (Sweden)

    Christin Habig

    Full Text Available The Lohmann Selected Leghorn (LSL and Lohmann Brown (LB layer lines have been selected for high egg production since more than 50 years and belong to the worldwide leading commercial layer lines. The objectives of the present study were to characterize the molecular processes that are different among these two layer lines using whole genome RNA expression profiles. The hens were kept in the newly developed small group housing system Eurovent German with two different group sizes. Differential expression was observed for 6,276 microarray probes (FDR adjusted P-value <0.05 among the two layer lines LSL and LB. A 2-fold or greater change in gene expression was identified on 151 probe sets. In LSL, 72 of the 151 probe sets were up- and 79 of them were down-regulated. Gene ontology (GO enrichment analysis accounting for biological processes evinced 18 GO-terms for the 72 probe sets with higher expression in LSL, especially those taking part in immune system processes and membrane organization. A total of 32 enriched GO-terms were determined among the 79 down-regulated probe sets of LSL. Particularly, these terms included phosphorus metabolic processes and signaling pathways. In conclusion, the phenotypic differences among the two layer lines LSL and LB are clearly reflected in their gene expression profiles of the cerebrum. These novel findings provide clues for genes involved in economically important line characteristics of commercial laying hens.

  13. Final Report Construction of Whole Genome Microarrays, and Expression Analysis of Desulfovibrio vulgaris cells in Metal-Reducing Conditions

    Energy Technology Data Exchange (ETDEWEB)

    M.W. Fields; J.D. Wall; J. Keasling; J. Zhou

    2008-05-15

    We continue to utilize the oligonucleotide microarrays that were constructed through funding with this project to characterize growth responses of Desulfovibrio vulgaris relevant to metal-reducing conditions. To effectively immobilize heavy metals and radionuclides via sulfate-reduction, it is important to understand the cellular responses to adverse factors observed at contaminated subsurface environments (e.g., nutrients, pH, contaminants, growth requirements and products). One of the major goals of the project is to construct whole-genome microarrays for Desulfovibrio vulgaris. First, in order to experimentally establish the criteria for designing gene-specific oligonucleotide probes, an oligonucleotide array was constructed that contained perfect match (PM) and mismatch (MM) probes (50mers and 70mers) based upon 4 genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were examined. Little hybridization was observed at a probe-target identity of <85% for both 50mer and 70mer probes. 33 to 48% of the PM signal intensities were detected at a probe-target identity of 94% for 50mer oligonucleotides, and 43 to 55% for 70mer probes at a probe-target identity of 96%. When the effects of sequence identity and continuous stretch were considered independently, a stretch probe (>15 bases) contributed an additional 9% of the PM signal intensity compared to a non-stretch probe (< 15 bases) at the same identity level. Cross-hybridization increased as the length of continuous stretch increased. A 35-base stretch for 50mer probes or a 50-base stretch for 70mer probes had approximately 55% of the PM signal. Mismatches should be as close to the middle position of an oligonucleotide probe as possible to minimize cross-hybridization. Little cross-hybridization was observed for probes with a minimal binding free energy greater than -30 kcal/mol for 50mer probes or -40 kcal/mol for 70mer probes. Based on the

  14. Preliminary report for analysis of genome wide mutations from four ciprofloxacin resistant B. anthracis Sterne isolates generated by Illumina, 454 sequencing and microarrays for DHS

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, Crystal [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vergez, Lisa [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinckley, Aubree [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thissen, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gardner, Shea [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McLoughlin, Kevin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jackson, Paul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ellingson, Sally [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hauser, Loren [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brettin, Tom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fofanov, Viacheslav [Eureka Genomics, Hercules, CA (United States); Koshinsky, Heather [Eureka Genomics, Hercules, CA (United States); Fofanov, Yuriy [Univ. of Houston, TX (United States)

    2011-06-21

    The objective of this project is to provide DHS a comprehensive evaluation of the current genomic technologies including genotyping, Taqman PCR, multiple locus variable tandem repeat analysis (MLVA), microarray and high-throughput DNA sequencing in the analysis of biothreat agents from complex environmental samples. As the result of a different DHS project, we have selected for and isolated a large number of ciprofloxacin resistant B. anthracis Sterne isolates. These isolates vary in the concentrations of ciprofloxacin that they can tolerate, suggesting multiple mutations in the samples. In collaboration with University of Houston, Eureka Genomics and Oak Ridge National Laboratory, we analyzed the ciprofloxacin resistant B. anthracis Sterne isolates by microarray hybridization, Illumina and Roche 454 sequencing to understand the error rates and sensitivity of the different methods. The report provides an assessment of the results and a complete set of all protocols used and all data generated along with information to interpret the protocols and data sets.

  15. A predictive factor of the quality of microarray comparative genomic hybridization analysis for formalin-fixed paraffin-embedded archival tissue.

    Science.gov (United States)

    Nakao, Kenjiro; Oikawa, Masahiro; Arai, Junichi; Mussazhanova, Zhanna; Kondo, Hisayoshi; Shichijo, Kazuko; Nakashima, Masahiro; Hayashi, Tomayoshi; Yoshiura, Koh-Ichiro; Hatachi, Toshiko; Nagayasu, Takeshi

    2013-09-01

    Utilizing formalin-fixed paraffin-embedded (FFPE) archival tissue, the most common form of tissue preservation in routine practice, for cytogenetic analysis using microarray comparative genomic hybridization (aCGH) remains challenging. We searched for a predictive factor of the performance of FFPE DNA in aCGH analysis. DNA was extracted from 63 FFPE archival tissue samples of various tissue types (31 breast cancers, 24 lung cancers, and 8 thyroid tumors), followed by aCGH analysis using high-density oligonucleotide microarrays. Tumor DNA from matched frozen samples and from FFPE samples after whole-genome amplification were also analyzed in 2 and 4 case, respectively. The derivative log ratio spread (DLRSpread) was used to assess the overall quality of each aCGH result. The DLRSpread correlated significantly with the double-stranded DNA ratio of tumor DNA, storage time, and the degree of labeling with Cy5 (Parchival tissue samples can be utilized for aCGH analysis.

  16. Two families of rep-like genes that probably originated by interspecies recombination are represented in viral, plasmid, bacterial, and parasitic protozoan genomes.

    Science.gov (United States)

    Gibbs, Mark J; Smeianov, Vladimir V; Steele, James L; Upcroft, Peter; Efimov, Boris A

    2006-06-01

    Two families of genes related to, and including, rolling circle replication initiator protein (Rep) genes were defined by sequence similarity and by evidence of intergene family recombination. The Rep genes of circoviruses were the best characterized members of the "RecRep1 family." Other members of the RecRep1 family were Rep-like genes found in the genomes of the Canarypox virus, Entamoeba histolytica, and Giardia duodenalis and in a plasmid, p4M, from the Gram-positive bacterium, Bifidobacterium pseudocatenulatum. The "RecRep2 family" comprised some previously identified Rep-like genes from plasmids of phytoplasmas and similar Rep-like genes from the genomes of Lactobacillus acidophilus, Lactococcus lactis, and Phytoplasma asteris. Both RecRep1 and RecRep2 proteins have a nucleotide-binding domain significantly similar to the helicases (2C proteins) of picorna-like viruses. On the N-terminal side of the nucleotide binding domain, RecRep1 proteins have a domain significantly similar to one found in nanovirus Reps, whereas RecRep2 proteins have a domain significantly similar to one in the Reps of pLS1 plasmids. We speculate that RecRep genes have been transferred from viruses or plasmids to parasitic protozoan and bacterial genomes and that Rep proteins were themselves involved in the original recombination events that generated the ancestral RecRep genes.

  17. Interspecies Chimerism with Mammalian Pluripotent Stem Cells.

    Science.gov (United States)

    Wu, Jun; Platero-Luengo, Aida; Sakurai, Masahiro; Sugawara, Atsushi; Gil, Maria Antonia; Yamauchi, Takayoshi; Suzuki, Keiichiro; Bogliotti, Yanina Soledad; Cuello, Cristina; Morales Valencia, Mariana; Okumura, Daiji; Luo, Jingping; Vilariño, Marcela; Parrilla, Inmaculada; Soto, Delia Alba; Martinez, Cristina A; Hishida, Tomoaki; Sánchez-Bautista, Sonia; Martinez-Martinez, M Llanos; Wang, Huili; Nohalez, Alicia; Aizawa, Emi; Martinez-Redondo, Paloma; Ocampo, Alejandro; Reddy, Pradeep; Roca, Jordi; Maga, Elizabeth A; Esteban, Concepcion Rodriguez; Berggren, W Travis; Nuñez Delicado, Estrella; Lajara, Jeronimo; Guillen, Isabel; Guillen, Pedro; Campistol, Josep M; Martinez, Emilio A; Ross, Pablo Juan; Izpisua Belmonte, Juan Carlos

    2017-01-26

    Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.

  18. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray.

    Directory of Open Access Journals (Sweden)

    Noam Leviatan

    Full Text Available Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression.

  19. Genome-wide survey of cold stress regulated alternative splicing in Arabidopsis thaliana with tiling microarray.

    Science.gov (United States)

    Leviatan, Noam; Alkan, Noam; Leshkowitz, Dena; Fluhr, Robert

    2013-01-01

    Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression.

  20. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency

    Directory of Open Access Journals (Sweden)

    Zamboni Anita

    2012-03-01

    Full Text Available Abstract Background Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far. Results A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism. Conclusions The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency.

  1. Microarray based comparative genomic hybridization testing in deletion bearing patients with Angelman syndrome: genotype-phenotype correlations.

    Science.gov (United States)

    Sahoo, T; Peters, S U; Madduri, N S; Glaze, D G; German, J R; Bird, L M; Barbieri-Welge, R; Bichell, T J; Beaudet, A L; Bacino, C A

    2006-06-01

    Angelman syndrome (AS) is a neurodevelopmental disorder characterised by severe mental retardation, dysmorphic features, ataxia, seizures, and typical behavioural characteristics, including a happy sociable disposition. AS is caused by maternal deficiency of UBE3A (E6 associated protein ubiquitin protein ligase 3A gene), located in an imprinted region on chromosome 15q11-q13. Although there are four different molecular types of AS, deletions of the 15q11-q13 region account for approximately 70% of the AS patients. These deletions are usually detected by fluorescence in situ hybridisation studies. The deletions can also be subclassified based on their size into class I and class II, with the former being larger and encompassing the latter. We studied 22 patients with AS due to microdeletions using a microarray based comparative genomic hybridisation (array CGH) assay to define the deletions and analysed their phenotypic severity, especially expression of the autism phenotype, in order to establish clinical correlations. Overall, children with larger, class I deletions were significantly more likely to meet criteria for autism, had lower cognitive scores, and lower expressive language scores compared with children with smaller, class II deletions. Children with class I deletions also required more medications to control their seizures than did those in the class II group. There are four known genes (NIPA1, NIPA2, CYFIP1, & GCP5) that are affected by class I but not class II deletions, thus raising the possibility of a role for these genes in autism as well as the development of expressive language skills.

  2. Cancer immunotherapy using novel tumor-associated antigenic peptides identified by genome-wide cDNA microarray analyses.

    Science.gov (United States)

    Nishimura, Yasuharu; Tomita, Yusuke; Yuno, Akira; Yoshitake, Yoshihiro; Shinohara, Masanori

    2015-05-01

    Recent genome-wide cDNA microarray analysis of gene expression profiles in comprehensive tumor types coupled with isolation of cancer tissues by laser-microbeam microdissection have revealed ideal tumor-associated antigens (TAAs) that are frequently overexpressed in various cancers including head and neck squamous cell cancer (HNSCC) and lung cancer, but not in most normal tissues except for testis, placenta, and fetal organs. Preclinical studies using HLA-transgenic mice and human T cells in vitro showed that TAA-derived CTL-epitope short peptides (SPs) are highly immunogenic and induce HLA-A2 or -A24-restricted CTLs. Based on the accumulated evidence, we carried out a phase II clinical trial of the TAA-SP vaccine in advanced 37 HNSCC patients. This study showed a significant induction of TAA-specific CTLs in the majority of patients without serious adverse effects. Importantly, clinical responses including a complete response were observed in this study. Another phase II clinical trial of therapeutic TAA-SP vaccine, designed to evaluate the ability of prevention of recurrence, is ongoing in HNSCC patients who have received curative operations. Further studies in human preclinical studies and in vivo studies using HLA class I transgenic mice showed TAA-derived long peptides (TAA-LPs) have the capacity to induce not only promiscuous HLA class II-restricted CD4(+) T helper type 1 cells but also tumor-specific CTLs through a cross-presentation mechanism. Moreover, we observed an augmentation of TAA-LP-specific T helper type 1 cell responses and tumor antigen-spreading in HNSCC patients vaccinated with TAA-SPs. This accumulated evidence suggests that therapeutic TAA-SPs and LPs vaccines may provide a promising cancer immunotherapy.

  3. Carbon ion irradiation of the human prostate cancer cell line PC3: a whole genome microarray study.

    Science.gov (United States)

    Suetens, Annelies; Moreels, Marjan; Quintens, Roel; Chiriotti, Sabina; Tabury, Kevin; Michaux, Arlette; Grégoire, Vincent; Baatout, Sarah

    2014-04-01

    Hadrontherapy is a form of external radiation therapy, which uses beams of charged particles such as carbon ions. Compared to conventional radiotherapy with photons, the main advantage of carbon ion therapy is the precise dose localization along with an increased biological effectiveness. The first results obtained from prostate cancer patients treated with carbon ion therapy showed good local tumor control and survival rates. In view of this advanced treatment modality we investigated the effects of irradiation with different beam qualities on gene expression changes in the PC3 prostate adenocarcinoma cell line. For this purpose, PC3 cells were irradiated with various doses (0.0, 0.5 and 2.0 Gy) of carbon ions (LET=33.7 keV/µm) at the beam of the Grand Accélérateur National d'Ions Lourds (Caen, France). Comparative experiments with X-rays were performed at the Belgian Nuclear Research Centre. Genome-wide gene expression was analyzed using microarrays. Our results show a downregulation in many genes involved in cell cycle and cell organization processes after 2.0 Gy irradiation. This effect was more pronounced after carbon ion irradiation compared with X-rays. Furthermore, we found a significant downregulation of many genes related to cell motility. Several of these changes were confirmed using qPCR. In addition, recurrence-free survival analysis of prostate cancer patients based on one of these motility genes (FN1) revealed that patients with low expression levels had a prolonged recurrence-free survival time, indicating that this gene may be a potential prognostic biomarker for prostate cancer. Understanding how different radiation qualities affect the cellular behavior of prostate cancer cells is important to improve the clinical outcome of cancer radiation therapy.

  4. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients

    DEFF Research Database (Denmark)

    Győrffy, Balázs; Lánczky, András; Szállási, Zoltán

    2012-01-01

    The validation of prognostic biomarkers in large independent patient cohorts is a major bottleneck in ovarian cancer research. We implemented an online tool to assess the prognostic value of the expression levels of all microarray-quantified genes in ovarian cancer patients. First, a database was...... biomarker validation platform that mines all available microarray data to assess the prognostic power of 22 277 genes in 1287 ovarian cancer patients. We specifically used this tool to evaluate the effect of 37 previously published biomarkers on ovarian cancer prognosis.......The validation of prognostic biomarkers in large independent patient cohorts is a major bottleneck in ovarian cancer research. We implemented an online tool to assess the prognostic value of the expression levels of all microarray-quantified genes in ovarian cancer patients. First, a database...... was set up using gene expression data and survival information of 1287 ovarian cancer patients downloaded from Gene Expression Omnibus and The Cancer Genome Atlas (Affymetrix HG-U133A, HG-U133A 2.0, and HG-U133 Plus 2.0 microarrays). After quality control and normalization, only probes present on all...

  5. Two recombinant human interferon-beta 1a pharmaceutical preparations produce a similar transcriptional response determined using whole genome microarray analysis.

    Science.gov (United States)

    Prync, A E Sterin; Yankilevich, P; Barrero, P R; Bello, R; Marangunich, L; Vidal, A; Criscuolo, M; Benasayag, L; Famulari, A L; Domínguez, R O; Kauffman, M A; Diez, R A

    2008-02-01

    Recombinant human interferon-beta (IFN-b) is a well-established treatment for multiple sclerosis (MS). The regulatory process for marketing authorization of biosimilars is currently under debate in certain countries. In the EU, EMEA has clearly defined the process including overarching and product-specific guidelines, which includes clinical testing. Biosimilarity needs to be based on comparability criteria, including at least molecular characterization, biological activity relevant for the therapeutic effect and relative bioavailability ("bioequivalence"). In the case of such complex diseases as MS, where the effect of treatment is not so directly measurable, in vitro tools can provide additional data to support comparability. Genomic microarrays assays might be useful to compare multisource biopharmaceuticals. The aim of the present study was to compare the pharmacodynamic genomic effects (in terms of transcriptional regulation) of two recombinant human IFN-I(2)1a preparations on lymphocytes of multiple sclerosis patients using a whole genome microarray assay. We performed an ex vivo whole genome expression profiling of the effect of two preparations of IFN-I(2)1a on non-adherent mononuclears from five relapsing-remitting MS patients analyzing microarrays (CodeLink Human Whole Genome). Patients blood was drawn, PBMCs isolated and cultured in three different conditions: culture medium (control), 1,000 U/ml of IFN-I(2)1a (BLA- (STOFERON, Bio Sidus) and 1,000 U/ml of IFN-I(2)1a (REBIF, Serono) RNA was purified from non-adherent cells (mostly lymphocytes), amplified and hybridized. Raw data were generated by CodeLink proprietary software. Data normalization, quality control and analysis of differential gene expression between treatments were done using linear model for microarray data. Functional annotation analysis of IFN-I(2)1a MS treatment transcription was done using DAVID. Out of the approximately 45,000 human sequences examined, no evidence of differential

  6. Protein microarrays for systems biology

    Institute of Scientific and Technical Information of China (English)

    Lina Yang; Shujuan Guo; Yang Li; Shumin Zhou; Shengce Tao

    2011-01-01

    Systems biology holds the key for understanding biological systems on a system level. It eventually holds the key for the treatment and cure of complex diseases such as cancer,diabetes, obesity, mental disorders, and many others. The '-omics' technologies, such as genomics, transcriptomics,proteomics, and metabonomics, are among the major driving forces of systems biology. Featured as highthroughput, miniaturized, and capable of parallel analysis,protein microarrays have already become an important technology platform for systems biology, In this review, we will focus on the system level or global analysis of biological systems using protein microarrays. Four major types of protein microarrays will be discussed: proteome microarrays, antibody microarrays, reverse-phase protein arrays,and lectin microarrays. We will also discuss the challenges and future directions of protein microarray technologies and their applications for systems biology. We strongly believe that protein microarrays will soon become an indispensable and invaluable tool for systems biology.

  7. Microarray Applications in Cancer Research

    Science.gov (United States)

    Kim, Il-Jin; Kang, Hio Chung

    2004-01-01

    DNA microarray technology permits simultaneous analysis of thousands of DNA sequences for genomic research and diagnostics applications. Microarray technology represents the most recent and exciting advance in the application of hybridization-based technology for biological sciences analysis. This review focuses on the classification (oligonucleotide vs. cDNA) and application (mutation-genotyping vs. gene expression) of microarrays. Oligonucleotide microarrays can be used both in mutation-genotyping and gene expression analysis, while cDNA microarrays can only be used in gene expression analysis. We review microarray mutation analysis, including examining the use of three oligonucleotide microarrays developed in our laboratory to determine mutations in RET, β-catenin and K-ras genes. We also discuss the use of the Affymetrix GeneChip in mutation analysis. We review microarray gene expression analysis, including the classifying of such studies into four categories: class comparison, class prediction, class discovery and identification of biomarkers. PMID:20368836

  8. Development and validation of a Xanthomonas axonopodis pv. citri DNA microarray platform (XACarray generated from the shotgun libraries previously used in the sequencing of this bacterial genome

    Directory of Open Access Journals (Sweden)

    Zaini Paulo A

    2010-05-01

    Full Text Available Abstract Background From shotgun libraries used for the genomic sequencing of the phytopathogenic bacterium Xanthomonas axonopodis pv. citri (XAC, clones that were representative of the largest possible number of coding sequences (CDSs were selected to create a DNA microarray platform on glass slides (XACarray. The creation of the XACarray allowed for the establishment of a tool that is capable of providing data for the analysis of global genome expression in this organism. Findings The inserts from the selected clones were amplified by PCR with the universal oligonucleotide primers M13R and M13F. The obtained products were purified and fixed in duplicate on glass slides specific for use in DNA microarrays. The number of spots on the microarray totaled 6,144 and included 768 positive controls and 624 negative controls per slide. Validation of the platform was performed through hybridization of total DNA probes from XAC labeled with different fluorophores, Cy3 and Cy5. In this validation assay, 86% of all PCR products fixed on the glass slides were confirmed to present a hybridization signal greater than twice the standard deviation of the deviation of the global median signal-to-noise ration. Conclusions Our validation of the XACArray platform using DNA-DNA hybridization revealed that it can be used to evaluate the expression of 2,365 individual CDSs from all major functional categories, which corresponds to 52.7% of the annotated CDSs of the XAC genome. As a proof of concept, we used this platform in a previously work to verify the absence of genomic regions that could not be detected by sequencing in related strains of Xanthomonas.

  9. Self-assembled random arrays: high-performance imaging and genomics applications on a high-density microarray platform

    Science.gov (United States)

    Barker, David L.; Theriault, Greg; Che, Diping; Dickinson, Todd; Shen, Richard; Kain, Robert C.

    2003-07-01

    Illumina is developing a BeadArrayTM technology that supports SNP genotyping, mRNA expression analysis and protein expression analysis on the same platform. We use fiber-optic bundles with a density of approximately 40,000 fibers/mm2. At hte end of each fiber, a derivatized silica bead forms an array element for reading out a genotyping or expression assay data point. Each bead contains oligonucleotide probes that hybridize with high specificity to complementary sequences in a complex nucleic acid mixture. We derivatize the beads in bulk, pool them to form a quality-controlled source of microarray elements, and allow them to assemble spontaneously into pits etched into the end of each optical fiber bundle. We load our fiber bundles, containing 49,777 fibers, with up to 1520 different bead types. The presence of many beads of each type greatly improves the accuracy of each assay. As the final step in our manufacturing process, we decode the identity of each bead by a series of rapid hybridizations with fluroescent oligos. Decoding accuracy and the number of beads of each type is recorded for each array. Decoding also serves as a quality control procedure for the performance of each element in the array. To facilitate high-throughput analysis of many samples, the fiber bundles are arranged in an array matrix (SentrixTM arrays). Using a 96-bundle array matrix, up to 1520 assays can be performed on each of 96 samples simultaneously for a total of 145,920 assays. Using a 384-bundle array matrix, up to 583,680 assays can be performed simultaneously. The BeadArray platform is the highest density microarray in commercial use, requiring development of a high-performance array scanner. To meet this need, we developed the SherlockTM system, a laser-scanning confocal imaging system that automatically scans all 96 bundles of an array matrix at variable resolution down to 0.8 micron. The system scans with both 532 and 635 nm lasers simultaneously, collecting two fluorescence

  10. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance.

    Directory of Open Access Journals (Sweden)

    Alessandro Orro

    Full Text Available In this paper comparative genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7 were performed. Rhodococcus sp. BCP1 was selected for its ability to grow on short-chain n-alkanes and R. opacus R7 was isolated for its ability to grow on naphthalene and on o-xylene. Results of genome comparison, including BCP1, R7, along with other Rhodococcus reference strains, showed that at least 30% of the genome of each strain presented unique sequences and only 50% of the predicted proteome was shared. To associate genomic features with metabolic capabilities of BCP1 and R7 strains, hundreds of different growth conditions were tested through Phenotype Microarray, by using Biolog plates and plates manually prepared with additional xenobiotic compounds. Around one-third of the surveyed carbon sources was utilized by both strains although R7 generally showed higher metabolic activity values compared to BCP1. Moreover, R7 showed broader range of nitrogen and sulphur sources. Phenotype Microarray data were combined with genomic analysis to genetically support the metabolic features of the two strains. The genome analysis allowed to identify some gene clusters involved in the metabolism of the main tested xenobiotic compounds. Results show that R7 contains multiple genes for the degradation of a large set of aromatic and PAHs compounds, while a lower variability in terms of genes predicted to be involved in aromatic degradation was found in BCP1. This genetic feature can be related to the strong genetic pressure exerted by the two different environment from which the two strains were isolated. According to this, in the BCP1 genome the smo gene cluster involved in the short-chain n-alkanes degradation, is included in one of the unique regions and it is not conserved in the Rhodococcus strains compared in this work. Data obtained underline the great potential of these two Rhodococcus spp. strains for biodegradation and

  11. Carbohydrate microarrays

    DEFF Research Database (Denmark)

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola;

    2012-01-01

    In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray-based technol...

  12. Different responsiveness to a high-fat/cholesterol diet in two inbred mice and underlying genetic factors: a whole genome microarray analysis

    Directory of Open Access Journals (Sweden)

    Jin Gang

    2009-10-01

    Full Text Available Abstract Background To investigate different responses to a high-fat/cholesterol diet and uncover their underlying genetic factors between C57BL/6J (B6 and DBA/2J (D2 inbred mice. Methods B6 and D2 mice were fed a high-fat/cholesterol diet for a series of time-points. Serum and bile lipid profiles, bile acid yields, hepatic apoptosis, gallstones and atherosclerosis formation were measured. Furthermore, a whole genome microarray was performed to screen hepatic genes expression profile. Quantitative real-time PCR, western blot and TUNEL assay were conducted to validate microarray data. Results After fed the high-fat/cholesterol diet, serum and bile total cholesterol, serum cholesterol esters, HDL cholesterol and Non-HDL cholesterol levels were altered in B6 but not significantly changed in D2; meanwhile, biliary bile acid was decreased in B6 but increased in D2. At the same time, hepatic apoptosis, gallstones and atherosclerotic lesions occurred in B6 but not in D2. The hepatic microarray analysis revealed distinctly different genes expression patterns between B6 and D2 mice. Their functional pathway groups included lipid metabolism, oxidative stress, immune/inflammation response and apoptosis. Quantitative real time PCR, TUNEL assay and western-blot results were consistent with microarray analysis. Conclusion Different genes expression patterns between B6 and D2 mice might provide a genetic basis for their distinctive responses to a high-fat/cholesterol diet, and give us an opportunity to identify novel pharmaceutical targets in related diseases in the future.

  13. Genomic resources for a commercial flatfish, the Senegalese sole (Solea senegalensis: EST sequencing, oligo microarray design, and development of the Soleamold bioinformatic platform

    Directory of Open Access Journals (Sweden)

    Planas Josep V

    2008-10-01

    Full Text Available Abstract Background The Senegalese sole, Solea senegalensis, is a highly prized flatfish of growing commercial interest for aquaculture in Southern Europe. However, despite the industrial production of Senegalese sole being hampered primarily by lack of information on the physiological mechanisms involved in reproduction, growth and immunity, very limited genomic information is available on this species. Results Sequencing of a S. senegalensis multi-tissue normalized cDNA library, from adult tissues (brain, stomach, intestine, liver, ovary, and testis, larval stages (pre-metamorphosis, metamorphosis, juvenile stages (post-metamorphosis, abnormal fish, and undifferentiated gonads, generated 10,185 expressed sequence tags (ESTs. Clones were sequenced from the 3'-end to identify isoform specific sequences. Assembly of the entire EST collection into contigs gave 5,208 unique sequences of which 1,769 (34% had matches in GenBank, thus showing a low level of redundancy. The sequence of the 5,208 unigenes was used to design and validate an oligonucleotide microarray representing 5,087 unique Senegalese sole transcripts. Finally, a novel interactive bioinformatic platform, Soleamold, was developed for the Senegalese sole EST collection as well as microarray and ISH data. Conclusion New genomic resources have been developed for S. senegalensis, an economically important fish in aquaculture, which include a collection of expressed genes, an oligonucleotide microarray, and a publicly available bioinformatic platform that can be used to study gene expression in this species. These resources will help elucidate transcriptional regulation in wild and captive Senegalese sole for optimization of its production under intensive culture conditions.

  14. Genomic resources for a commercial flatfish, the Senegalese sole (Solea senegalensis): EST sequencing, oligo microarray design, and development of the Soleamold bioinformatic platform

    Science.gov (United States)

    Cerdà, Joan; Mercadé, Jaume; Lozano, Juan José; Manchado, Manuel; Tingaud-Sequeira, Angèle; Astola, Antonio; Infante, Carlos; Halm, Silke; Viñas, Jordi; Castellana, Barbara; Asensio, Esther; Cañavate, Pedro; Martínez-Rodríguez, Gonzalo; Piferrer, Francesc; Planas, Josep V; Prat, Francesc; Yúfera, Manuel; Durany, Olga; Subirada, Francesc; Rosell, Elisabet; Maes, Tamara

    2008-01-01

    Background The Senegalese sole, Solea senegalensis, is a highly prized flatfish of growing commercial interest for aquaculture in Southern Europe. However, despite the industrial production of Senegalese sole being hampered primarily by lack of information on the physiological mechanisms involved in reproduction, growth and immunity, very limited genomic information is available on this species. Results Sequencing of a S. senegalensis multi-tissue normalized cDNA library, from adult tissues (brain, stomach, intestine, liver, ovary, and testis), larval stages (pre-metamorphosis, metamorphosis), juvenile stages (post-metamorphosis, abnormal fish), and undifferentiated gonads, generated 10,185 expressed sequence tags (ESTs). Clones were sequenced from the 3'-end to identify isoform specific sequences. Assembly of the entire EST collection into contigs gave 5,208 unique sequences of which 1,769 (34%) had matches in GenBank, thus showing a low level of redundancy. The sequence of the 5,208 unigenes was used to design and validate an oligonucleotide microarray representing 5,087 unique Senegalese sole transcripts. Finally, a novel interactive bioinformatic platform, Soleamold, was developed for the Senegalese sole EST collection as well as microarray and ISH data. Conclusion New genomic resources have been developed for S. senegalensis, an economically important fish in aquaculture, which include a collection of expressed genes, an oligonucleotide microarray, and a publicly available bioinformatic platform that can be used to study gene expression in this species. These resources will help elucidate transcriptional regulation in wild and captive Senegalese sole for optimization of its production under intensive culture conditions. PMID:18973667

  15. Maize microarray annotation database

    Directory of Open Access Journals (Sweden)

    Berger Dave K

    2011-10-01

    Full Text Available Abstract Background Microarray technology has matured over the past fifteen years into a cost-effective solution with established data analysis protocols for global gene expression profiling. The Agilent-016047 maize 44 K microarray was custom-designed from EST sequences, but only reporter sequences with EST accession numbers are publicly available. The following information is lacking: (a reporter - gene model match, (b number of reporters per gene model, (c potential for cross hybridization, (d sense/antisense orientation of reporters, (e position of reporter on B73 genome sequence (for eQTL studies, and (f functional annotations of genes represented by reporters. To address this, we developed a strategy to annotate the Agilent-016047 maize microarray, and built a publicly accessible annotation database. Description Genomic annotation of the 42,034 reporters on the Agilent-016047 maize microarray was based on BLASTN results of the 60-mer reporter sequences and their corresponding ESTs against the maize B73 RefGen v2 "Working Gene Set" (WGS predicted transcripts and the genome sequence. The agreement between the EST, WGS transcript and gDNA BLASTN results were used to assign the reporters into six genomic annotation groups. These annotation groups were: (i "annotation by sense gene model" (23,668 reporters, (ii "annotation by antisense gene model" (4,330; (iii "annotation by gDNA" without a WGS transcript hit (1,549; (iv "annotation by EST", in which case the EST from which the reporter was designed, but not the reporter itself, has a WGS transcript hit (3,390; (v "ambiguous annotation" (2,608; and (vi "inconclusive annotation" (6,489. Functional annotations of reporters were obtained by BLASTX and Blast2GO analysis of corresponding WGS transcripts against GenBank. The annotations are available in the Maize Microarray Annotation Database http://MaizeArrayAnnot.bi.up.ac.za/, as well as through a GBrowse annotation file that can be uploaded to

  16. Use of genomic DNA control features and predicted operon structure in microarray data analysis: ArrayLeaRNA – a Bayesian approach

    Directory of Open Access Journals (Sweden)

    Pin Carmen

    2007-11-01

    Full Text Available Abstract Background Microarrays are widely used for the study of gene expression; however deciding on whether observed differences in expression are significant remains a challenge. Results A computing tool (ArrayLeaRNA has been developed for gene expression analysis. It implements a Bayesian approach which is based on the Gumbel distribution and uses printed genomic DNA control features for normalization and for estimation of the parameters of the Bayesian model and prior knowledge from predicted operon structure. The method is compared with two other approaches: the classical LOWESS normalization followed by a two fold cut-off criterion and the OpWise method (Price, et al. 2006. BMC Bioinformatics. 7, 19, a published Bayesian approach also using predicted operon structure. The three methods were compared on experimental datasets with prior knowledge of gene expression. With ArrayLeaRNA, data normalization is carried out according to the genomic features which reflect the results of equally transcribed genes; also the statistical significance of the difference in expression is based on the variability of the equally transcribed genes. The operon information helps the classification of genes with low confidence measurements. ArrayLeaRNA is implemented in Visual Basic and freely available as an Excel add-in at http://www.ifr.ac.uk/safety/ArrayLeaRNA/ Conclusion We have introduced a novel Bayesian model and demonstrated that it is a robust method for analysing microarray expression profiles. ArrayLeaRNA showed a considerable improvement in data normalization, in the estimation of the experimental variability intrinsic to each hybridization and in the establishment of a clear boundary between non-changing and differentially expressed genes. The method is applicable to data derived from hybridizations of labelled cDNA samples as well as from hybridizations of labelled cDNA with genomic DNA and can be used for the analysis of datasets where

  17. Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number.

    Directory of Open Access Journals (Sweden)

    Joseph Andrews

    Full Text Available BACKGROUND: We have previously identified genome-wide DNA methylation changes in a cell line model of breast cancer metastasis. These complex epigenetic changes that we observed, along with concurrent karyotype analyses, have led us to hypothesize that complex genomic alterations in cancer cells (deletions, translocations and ploidy are superimposed over promoter-specific methylation events that are responsible for gene-specific expression changes observed in breast cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: We undertook simultaneous high-resolution, whole-genome analyses of MDA-MB-468GFP and MDA-MB-468GFP-LN human breast cancer cell lines (an isogenic, paired lymphatic metastasis cell line model using Affymetrix gene expression (U133, promoter (1.0R, and SNP/CNV (SNP 6.0 microarray platforms to correlate data from gene expression, epigenetic (DNA methylation, and combination copy number variant/single nucleotide polymorphism microarrays. Using Partek Software and Ingenuity Pathway Analysis we integrated datasets from these three platforms and detected multiple hypomethylation and hypermethylation events. Many of these epigenetic alterations correlated with gene expression changes. In addition, gene dosage events correlated with the karyotypic differences observed between the cell lines and were reflected in specific promoter methylation patterns. Gene subsets were identified that correlated hyper (and hypo methylation with the loss (or gain of gene expression and in parallel, with gene dosage losses and gains, respectively. Individual gene targets from these subsets were also validated for their methylation, expression and copy number status, and susceptible gene pathways were identified that may indicate how selective advantage drives the processes of tumourigenesis and metastasis. CONCLUSIONS/SIGNIFICANCE: Our approach allows more precisely profiling of functionally relevant epigenetic signatures that are associated with cancer

  18. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.

    Science.gov (United States)

    Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J

    2015-10-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation.

  19. Carbohydrate microarrays

    DEFF Research Database (Denmark)

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola

    2012-01-01

    -based technology has been widely employed for rapid analysis of the glycan binding properties of lectins and antibodies, the quantitative measurements of glycan-protein interactions, detection of cells and pathogens, identification of disease-related anti-glycan antibodies for diagnosis, and fast assessment...... of substrate specificities of glycosyltransferases. This review covers the construction of carbohydrate microarrays, detection methods of carbohydrate microarrays and their applications in biological and biomedical research.......In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray...

  20. Genome Array on Differentially Expressed Genes of Skin Tissue in Cashmere Goat at Early Anagen of Cashmere Growth Cycle Using DNA Microarray

    Institute of Scientific and Technical Information of China (English)

    DI Jiang; Marzeya Yasen; XU Xin-ming; Lazate Ainiwaer; ZHANG Yan-hua; TIAN Ke-chuan; YU Li-juan; WU Wei-wei; Hanikezi Tulafu; FU Xue-feng

    2014-01-01

    In order to study the molecular mechanism involved in cashmere regeneration, this study investigated the gene expression proifle of skin tissue at various stages of the cashmere growth cycle and screen differentially expressed genes at proangen in 10 cashmere goats at 2 years of age using agilent sheep oligo microarray. Signiifcance analysis of microarray (SAM) methods was used to identify the differentially expressed genes, Hierarchical clustering was performed to clarify these genes in association with different cashmere growth stages, and GO (Gene ontology) and the pathway analyses were con-ducted by a free web-based Molecular Annotation System3.0 (MAS 3.0). Approximately 10 200 probe sets were detected in skin tissue of 2-yr-old cashmere goat. After SAM analysis of the microarray data, totally 417 genes were shown to be differentially expressed at different cashmere growth stages, and 24 genes are signiifcantly up-regulated (21) or down-regulated (3) at proangen concurrently compared to angen and telogen. Hierarchical clustering analysis clearly distinguished the differentially expressed genes of each stage. GO analysis indicated that these altered genes at proangen were predominantly involved in collagen ifbril organization, integrin-mediated signaling pathway, cell-matrix adhesion, cell adhesion, transforming growth factor-β (TGF-β) receptor signaling pathway, regulation of cell growth. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that the signiifcant pathways involved mainly included focal adhesion and extracellular matrixc (ECM)-receptor interaction. Some important genes involved in these biological processes, such as COL1A1, COL1A2, COL3A1, SPARC, CYR61 and CTGF, were related to tissue remolding and repairing and detected by more than one probe with similar expression trends at different stages of cashmere growth cycle. The different expression of these genes may contribute to understanding the molecular mechanism of cashmere

  1. Construction of an Ostrea edulis database from genomic and expressed sequence tags (ESTs) obtained from Bonamia ostreae infected haemocytes: Development of an immune-enriched oligo-microarray.

    Science.gov (United States)

    Pardo, Belén G; Álvarez-Dios, José Antonio; Cao, Asunción; Ramilo, Andrea; Gómez-Tato, Antonio; Planas, Josep V; Villalba, Antonio; Martínez, Paulino

    2016-12-01

    The flat oyster, Ostrea edulis, is one of the main farmed oysters, not only in Europe but also in the United States and Canada. Bonamiosis due to the parasite Bonamia ostreae has been associated with high mortality episodes in this species. This parasite is an intracellular protozoan that infects haemocytes, the main cells involved in oyster defence. Due to the economical and ecological importance of flat oyster, genomic data are badly needed for genetic improvement of the species, but they are still very scarce. The objective of this study is to develop a sequence database, OedulisDB, with new genomic and transcriptomic resources, providing new data and convenient tools to improve our knowledge of the oyster's immune mechanisms. Transcriptomic and genomic sequences were obtained using 454 pyrosequencing and compiled into an O. edulis database, OedulisDB, consisting of two sets of 10,318 and 7159 unique sequences that represent the oyster's genome (WG) and de novo haemocyte transcriptome (HT), respectively. The flat oyster transcriptome was obtained from two strains (naïve and tolerant) challenged with B. ostreae, and from their corresponding non-challenged controls. Approximately 78.5% of 5619 HT unique sequences were successfully annotated by Blast search using public databases. A total of 984 sequences were identified as being related to immune response and several key immune genes were identified for the first time in flat oyster. Additionally, transcriptome information was used to design and validate the first oligo-microarray in flat oyster enriched with immune sequences from haemocytes. Our transcriptomic and genomic sequencing and subsequent annotation have largely increased the scarce resources available for this economically important species and have enabled us to develop an OedulisDB database and accompanying tools for gene expression analysis. This study represents the first attempt to characterize in depth the O. edulis haemocyte transcriptome in

  2. Genomic comparison of Yersinia pestis and Yersinia pseudotuberculosis by combination of suppression subtractive hybridization and DNA microarray

    DEFF Research Database (Denmark)

    Wang, Xiaoyi; Zhou, Dongsheng; Qin, Long

    2006-01-01

    a combination of suppression subtractive hybridization (SSH) and comparative genomic hybridization with DNAs from a diverse panel of Y. pestis and Y. pseudotuberculosis strains. SSH followed by BLAST analysis revealed 112 SSH fragments specific to strain ATCC29833, compared to the genomic sequence data of Y...

  3. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis

    Institute of Scientific and Technical Information of China (English)

    ZENG Yue-bin; QIAN Yuan-shu; MA Lian; GU Hong-ni

    2007-01-01

    Background Candida albicans is the most frequently seen opportunistic human fungal pathogen. Terbinafine is an allylamine antifungal agent that has been proven to have high clinical efficacy in the therapy of fungal infections, the mechanism of action of terbinafine involves the specific inhibition of fungal squalene epoxidase, resulting in ergosterol deficiency and accumulation of intracellular squalene. We used cDNA microarray analysis technology to monitor global expression profile changes of Candida albicans genes in response to terbinafine treatment, and we anticipated a panoramic view of the responses of Candida albicans cells to the representatives of allylamine antifungal agents at the molecular level in an effort to identify drug class-specific and mechanism-independent changes in gene expression.Methods Candida albicans strain ATCC 90028 was exposed to either medium alone or terbinafine at a concentration equivalent to the 1/2 minimal inhibitory concentrations (MICs, 4 mg/L) for 90 minutes. RNA was isolated and gene expression profiles were compared to identify the changes in the gene expression profile using a cDNA microarray analysis. Differential expression of 10 select genes detected by cDNA microarray analysis was confirmed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR).Results A total of 222 genes were found to be responsive to terbinafine, including 121 up-regulated genes and 101 down-regulated genes. These included genes encoding membrane transport proteins belonging to the members of the ATP-binding cassette (ABC) or major facilitator superfamily (MFS; CDR1, AGP2, GAP6, PHO84, HOL3, FCY23, VCX1),genes involved in stress response and detoxification (CDR1, AGP2, HOL3), and gene involved in the ergosterol biosynthesis pathway (ERG12). The results of semi-quantitative RT-PCR were consistent with that of the cDNA microarray analysis.Conclusions The up-regulation of the gene encoding the multidrug resistance efflux pump

  4. Prosecutor: parameter-free inference of gene function for prokaryotes using DNA microarray data, genomic context and multiple gene annotation sources

    Directory of Open Access Journals (Sweden)

    van Hijum Sacha AFT

    2008-10-01

    Full Text Available Abstract Background Despite a plethora of functional genomic efforts, the function of many genes in sequenced genomes remains unknown. The increasing amount of microarray data for many species allows employing the guilt-by-association principle to predict function on a large scale: genes exhibiting similar expression patterns are more likely to participate in shared biological processes. Results We developed Prosecutor, an application that enables researchers to rapidly infer gene function based on available gene expression data and functional annotations. Our parameter-free functional prediction method uses a sensitive algorithm to achieve a high association rate of linking genes with unknown function to annotated genes. Furthermore, Prosecutor utilizes additional biological information such as genomic context and known regulatory mechanisms that are specific for prokaryotes. We analyzed publicly available transcriptome data sets and used literature sources to validate putative functions suggested by Prosecutor. We supply the complete results of our analysis for 11 prokaryotic organisms on a dedicated website. Conclusion The Prosecutor software and supplementary datasets available at http://www.prosecutor.nl allow researchers working on any of the analyzed organisms to quickly identify the putative functions of their genes of interest. A de novo analysis allows new organisms to be studied.

  5. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility

    Directory of Open Access Journals (Sweden)

    Qiongqiong eYan

    2013-09-01

    Full Text Available Outbreaks of human infection linked to the powdered infant formula (PIF food chain and associated with the bacterium Cronobacter, are of concern to public health. These bacteria are regarded as opportunistic pathogens linked to life-threatening infections predominantly in neonates, with an under developed immune system. Monitoring the microbiological ecology of PIF production sites is an important step in attempting to limit the risk of contamination in the finished food product. Cronobacter species, like other microorganisms can adapt to the production environment. These organisms are known for their desiccation tolerance, a phenotype that can aid their survival in the production site and PIF itself. In evaluating the genome data currently available for Cronobacter species, no sequence information has been published describing a Cronobacter sakazakii isolate found to persist in a PIF production facility. Here we report on the complete genome sequence of one such isolate, Cronobacter sakazakii SP291 along with its phenotypic characteristics. The genome of C. sakazakii SP291 consists of a 4.3-Mb chromosome (56.9% GC and three plasmids, denoted as pSP291-1, [118.1-kb (57.2% GC], pSP291-2, [52.1-kb (49.2% GC] and pSP291-3, [4.4 -kb (54.0% GC]. When C. sakazakii SP291 was compared to the reference C. sakazakii ATCC BAA-894, which is also of PIF origin, the annotated genome data identified two interesting functional categories, comprising of genes related to the bacterial stress response and resistance to antimicrobial and toxic compounds. Using a phenotypic microarray (PM, we provided a full metabolic profile comparing C. sakazakii SP291 and the previously sequenced C. sakazakii ATCC BAA-894. These data extend our understanding of the genome of this important neonatal pathogen and provides further insights into the genotypes associated with features that can contribute to its persistence in the PIF environment.

  6. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility.

    Science.gov (United States)

    Yan, Qiongqiong; Power, Karen A; Cooney, Shane; Fox, Edward; Gopinath, Gopal R; Grim, Christopher J; Tall, Ben D; McCusker, Matthew P; Fanning, Séamus

    2013-01-01

    Outbreaks of human infection linked to the powdered infant formula (PIF) food chain and associated with the bacterium Cronobacter, are of concern to public health. These bacteria are regarded as opportunistic pathogens linked to life-threatening infections predominantly in neonates, with an under developed immune system. Monitoring the microbiological ecology of PIF production sites is an important step in attempting to limit the risk of contamination in the finished food product. Cronobacter species, like other microorganisms can adapt to the production environment. These organisms are known for their desiccation tolerance, a phenotype that can aid their survival in the production site and PIF itself. In evaluating the genome data currently available for Cronobacter species, no sequence information has been published describing a Cronobacter sakazakii isolate found to persist in a PIF production facility. Here we report on the complete genome sequence of one such isolate, Cronobacter sakazakii SP291 along with its phenotypic characteristics. The genome of C. sakazakii SP291 consists of a 4.3-Mb chromosome (56.9% GC) and three plasmids, denoted as pSP291-1, [118.1-kb (57.2% GC)], pSP291-2, [52.1-kb (49.2% GC)], and pSP291-3, [4.4-kb (54.0% GC)]. When C. sakazakii SP291 was compared to the reference C. sakazakii ATCC BAA-894, which is also of PIF origin, the annotated genome data identified two interesting functional categories, comprising of genes related to the bacterial stress response and resistance to antimicrobial and toxic compounds. Using a phenotypic microarray (PM), we provided a full metabolic profile comparing C. sakazakii SP291 and the previously sequenced C. sakazakii ATCC BAA-894. These data extend our understanding of the genome of this important neonatal pathogen and provides further insights into the genotypes associated with features that can contribute to its persistence in the PIF environment.

  7. Genome-Wide Screening of Genes Showing Altered Expression in Liver Metastases of Human Colorectal Cancers by cDNA Microarray

    Directory of Open Access Journals (Sweden)

    Rempei Yanagawa

    2001-01-01

    Full Text Available In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions.

  8. Rapid Diagnosis of Imprinting Disorders Involving Copy Number Variation and Uniparental Disomy Using Genome-Wide SNP Microarrays.

    Science.gov (United States)

    Liu, Weiqiang; Zhang, Rui; Wei, Jun; Zhang, Huimin; Yu, Guojiu; Li, Zhihua; Chen, Min; Sun, Xiaofang

    2015-01-01

    Imprinting disorders, such as Beckwith-Wiedemann syndrome (BWS), Prader-Willi syndrome (PWS) and Angelman syndrome (AS), can be detected via methylation analysis, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), or other methods. In this study, we applied single nucleotide polymorphism (SNP)-based chromosomal microarray analysis to detect copy number variations (CNVs) and uniparental disomy (UPD) events in patients with suspected imprinting disorders. Of 4 patients, 2 had a 5.25-Mb microdeletion in the 15q11.2q13.2 region, 1 had a 38.4-Mb mosaic UPD in the 11p15.4 region, and 1 had a 60-Mb detectable UPD between regions 14q13.2 and 14q32.13. Although the 14q32.2 region was classified as normal by SNP array for the 14q13 UPD patient, it turned out to be a heterodisomic UPD by short tandem repeat marker analysis. MS-MLPA analysis was performed to validate the variations. In conclusion, SNP-based microarray is an efficient alternative method for quickly and precisely diagnosing PWS, AS, BWS, and other imprinted gene-associated disorders when considering aberrations due to CNVs and most types of UPD.

  9. Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi

    National Research Council Canada - National Science Library

    Atanasova, Lea; Druzhinina, Irina S

    2010-01-01

    .... They are also important pathogens of animals including humans and agricultural crops. These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available...

  10. Whole genome sequence typing and microarray profiling of nasal and blood stream methicillin-resistant Staphylococcus aureus isolates: Clues to phylogeny and invasiveness.

    Science.gov (United States)

    Hamed, Mohamed; Nitsche-Schmitz, Daniel Patric; Ruffing, Ulla; Steglich, Matthias; Dordel, Janina; Nguyen, Duy; Brink, Jan-Hendrik; Chhatwal, Gursharan Singh; Herrmann, Mathias; Nübel, Ulrich; Helms, Volkhard; von Müller, Lutz

    2015-12-01

    Hospital-associated methicillin-resistant Staphylococcus aureus (MRSA) infections are frequently caused by predominant clusters of closely related isolates that cannot be discriminated by conventional diagnostic typing methods. Whole genome sequencing (WGS) and DNA microarray (MA) now allow for better discrimination within a prevalent clonal complex (CC). This single center exploratory study aims to distinguish invasive (blood stream infection) and non-invasive (nasal colonization) MRSA isolates of the same CC5 into phylogenetic- and virulence-associated genotypic subgroups by WGS and MA. A cohort of twelve blood stream and fifteen nasal MRSA isolates of CC5 (spa-types t003 and t504) was selected. Isolates were propagated at the same period of time from unrelated patients treated at the University of Saarland Medical Center, Germany. Rooted phylotyping based on WGS with core-genome single nucleotide polymorphism (SNP) analysis revealed two local clusters of closely related CC5 subgroups (t504 and Clade1 t003) which were separated from other local t003 isolates and from unrelated CC5 MRSA reference isolates of German origin. Phylogenetic subtyping was not associated with invasiveness when comparing blood stream and nasal isolates. Clustering based on MA profiles was not concordant with WGS phylotyping, but MA profiles may identify subgroups of isolates with nasal and blood stream origin. Among the new putative virulence associated genes identified by WGS, the strongest association with blood stream infections was shown for ebhB mutants. Analysis of the core-genome together with the accessory genome enables subtyping of closely related MRSA isolates according to phylogeny and presumably also to the potential virulence capacity of isolates.

  11. Genomic DNA enrichment using sequence capture microarrays: a novel approach to discover sequence nucleotide polymorphisms (SNP in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Wayne E Clarke

    Full Text Available Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38. The main goal of this project was to combine sequence capture with next generation sequencing (NGS to discover single nucleotide polymorphisms (SNPs in specific areas of the B. napus genome historically associated (via quantitative trait loci -QTL- analysis to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively. Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species.

  12. Investigation of archived formalin-fixed paraffin-embedded pancreatic tissue with whole-genome gene expression microarray

    DEFF Research Database (Denmark)

    Michelsen, Nete Vinstrup; Brusgaard, Klaus; Tan, Qihua

    2011-01-01

    high amounts of ribonucleases compared to other tissues/organs. In choosing pancreatic tissue, we therefore indirectly address the applicability of other FFPE tissues to gene expression microarray (GEM). GEM was performed on archived, routinely fixed, FFPE pancreatic tissue from patients......The use of formalin-fixed, paraffin-embedded (FFPE) tissue overcomes the most prominent issues related to research on relatively rare diseases: limited sample size, availability of control tissue, and time frame. The use of FFPE pancreatic tissue in GEM may be especially challenging due to its very......, (b) amino acid metabolism, and (c) calcium ion homeostasis. These results should encourage future research and GEM studies on FFPE tissue from the invaluable biobanks available at the departments of pathology worldwide....

  13. Genomics of hepatitis B virus-related hepatocellular carcinoma and adjacent noncancerous tissues with cDNA microarray.

    Science.gov (United States)

    Huang, Yu-kun; Fan, Xue-gong; Qiu, Fu; Wang, Zhi-ming

    2011-07-05

    Hepatocellular carcinoma (HCC) is a common primary cancer frequently associated with hepatitis B virus (HBV) infection. However, whether these identified genes are particularly associated with HBV-related HCC remains unknown. The aim of this study was to investigate the differential gene expression between HBV-related HCC tissues and adjacent noncancerous tissues. cDNA microarray was used to detect the differential gene expression profile in the HBV-related HCC tissues and adjacent noncancerous tissues, and reverse transcription-polymerase chain reaction (RT-PCR) was performed to verify the differential expression of candidate genes obtained from cDNA microarray experiment. In this study, 1369 genes or expressed sequence tags (ESTs) including 121 genes or ESTs with at least two-fold expression alterations between cancerous and noncancerous tissues were identified. Special AT-rich sequence binding protein 1 (SATB-1) expression was positive in 73% (16/22) of cancerous tissues and negative (0/22) in all noncancerous tissues of HBV-related HCC patients. Transmembrane 4 superfamily member 1 (TM4SF-1) expression was positive in 86% (19/22) of cancerous tissues and negative (0/22) in all noncancerous tissues. Suppression of tumorigenicity 14 (ST-14) expression was positive in 73% (16/22) of noncancerous tissues in patients with HBV-related HCC and negative in all HCC tissues (0/22). This study provided the gene expression profile of HBV-related HCC and presented differential expression patterns of SATB-1, TM4SF-1 and ST-14 between cancerous and noncancerous tissues in patients with HBV-related HCC.

  14. Genomics of hepatitis B virus-related hepatocellular carcinoma and adjacent noncancerous tissues with cDNA microarray

    Institute of Scientific and Technical Information of China (English)

    HUANG Yu-kun; FAN Xue-gong; QIU Fu; WANG Zhi-ming

    2011-01-01

    Background Hepatocellular carcinoma (HCC) is a common primary cancer frequently associated with hepatitis B virus (HBV) infection. However, whether these identified genes are particularly associated with HBV-related HCC remains unknown. The aim of this study was to investigate the differential gene expression between HBV-related HCC tissues and adjacent noncancerous tissues.Methods cDNA microarray was used to detect the differential gene expression profile in the HBV-related HCC tissues and adjacent noncancerous tissues, and reverse transcription-polymerase chain reaction (RT-PCR) was performed to verify the differential expression of candidate genes obtained from cDNA microarray experiment.Results In this study, 1369 genes or expressed sequence tags (ESTs) including 121 genes or ESTs with at least two-fold expression alterations between cancerous and noncancerous tissues were identified. Special AT-rich sequence binding protein 1 (SATB-1) expression was positive in 73% (16/22) of cancerous tissues and negative (0/22) in all noncancerous tissues of HBV-related HCC patients. Transmembrane 4 superfamily member 1 (TM4SF-1) expression was positive in 86% (19/22) of cancerous tissues and negative (0/22) in all noncancerous tissues. Suppression of tumorigenicity 14 (ST-14) expression was positive in 73% (16/22) of noncancerous tissues in patients with HBV-related HCC and negative in all HCC tissues (0/22).Conclusion This study provided the gene expression profile of HBV-related HCC and presented differential expression patterns of SATB-1, TM4SF-1 and ST-14 between cancerous and noncancerous tissues in patients with HBV-related HCC.

  15. De novo monosomy 9p24.3-pter and trisomy 17q24.3-qter characterised by microarray comparative genomic hybridisation in a fetus with an increased nuchal translucency.

    Science.gov (United States)

    Brisset, Sophie; Kasakyan, Serdar; L'Herminé, Aurore Coulomb; Mairovitz, Valérie; Gautier, Evelyne; Aubry, Marie-Cécile; Benkhalifa, Moncef; Tachdjian, Gérard

    2006-03-01

    Increased nuchal translucency (NT) during the first trimester of pregnancy is a useful marker to detect chromosomal abnormalities. Here, we report a prenatal case with molecular cytogenetic characterisation of an abnormal derivative chromosome 9 identified through NT. Amniocentesis was performed because of an increased NT (4.4 mm) and showed an abnormal de novo 46,XX,add(9)(p24.3) karyotype. To characterise the origin of the small additional material on 9p, we performed a microarray comparative genomic hybridisation (microarray CGH) using a genomic DNA array providing an average of 1 Mb resolution. Microarray CGH showed a deletion of distal 9p and a trisomy of distal 17q. These results were confirmed by FISH analyses. Microarray CGH provided accurate information on the breakpoint regions and the size of both distal 9p deletion and distal 17q trisomy. The fetus was therefore a carrier of a de novo derivative chromosome 9 arising from a t(9;17)(p24.3;q24.3) translocation and generating a monosomy 9p24.3-pter and a trisomy 17q24.3-qter. This case illustrates that microarray CGH is a rapid, powerful and sensitive technology to identify small de novo unbalanced chromosomal abnormalities and can be applied in prenatal diagnosis. 2006 John Wiley & Sons, Ltd.

  16. Comparative genomics of Helicobacter pylori

    Institute of Scientific and Technical Information of China (English)

    Quan-Jiang Dong; Qing Wang; Ying-Nin Xin; Ni Li; Shi-Ying Xuan

    2009-01-01

    Genomic sequences have been determined for a number of strains of Helicobacter pylori (H pylori) and related bacteria.With the development of microarray analysis and the wide use of subtractive hybridization techniques,comparative studies have been carried out with respect to the interstrain differences between H pylori and inter-species differences in the genome of related bacteria.It was found that the core genome of H pylori constitutes 1111 genes that are determinants of the species properties.A great pool of auxillary genes are mainly from the categories of cag pathogenicity islands,outer membrane proteins,restriction-modification system and hypothetical proteins of unknown function.Persistence of H pylori in the human stomach leads to the diversification of the genome.Comparative genomics suggest that a host jump has occurs from humans to felines.Candidate genes specific for the development of the gastric diseases were identified.With the aid of proteomics,population genetics and other molecular methods,future comparative genomic studies would dramatically promote our understanding of the evolution,pathogenesis and microbiology of H pylori.

  17. A high-density Diversity Arrays Technology (DArT microarray for genome-wide genotyping in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Myburg Alexander A

    2010-06-01

    Full Text Available Abstract Background A number of molecular marker technologies have allowed important advances in the understanding of the genetics and evolution of Eucalyptus, a genus that includes over 700 species, some of which are used worldwide in plantation forestry. Nevertheless, the average marker density achieved with current technologies remains at the level of a few hundred markers per population. Furthermore, the transferability of markers produced with most existing technology across species and pedigrees is usually very limited. High throughput, combined with wide genome coverage and high transferability are necessary to increase the resolution, speed and utility of molecular marker technology in eucalypts. We report the development of a high-density DArT genome profiling resource and demonstrate its potential for genome-wide diversity analysis and linkage mapping in several species of Eucalyptus. Findings After testing several genome complexity reduction methods we identified the PstI/TaqI method as the most effective for Eucalyptus and developed 18 genomic libraries from PstI/TaqI representations of 64 different Eucalyptus species. A total of 23,808 cloned DNA fragments were screened and 13,300 (56% were found to be polymorphic among 284 individuals. After a redundancy analysis, 6,528 markers were selected for the operational array and these were supplemented with 1,152 additional clones taken from a library made from the E. grandis tree whose genome has been sequenced. Performance validation for diversity studies revealed 4,752 polymorphic markers among 174 individuals. Additionally, 5,013 markers showed segregation when screened using six inter-specific mapping pedigrees, with an average of 2,211 polymorphic markers per pedigree and a minimum of 859 polymorphic markers that were shared between any two pedigrees. Conclusions This operational DArT array will deliver 1,000-2,000 polymorphic markers for linkage mapping in most eucalypt pedigrees

  18. Unraveling the rat blood genome-wide transcriptome after oral administration of lavender oil by a two-color dye-swap DNA microarray approach

    Directory of Open Access Journals (Sweden)

    Motohide Hori

    2016-06-01

    Full Text Available Lavender oil (LO is a commonly used essential oil in aromatherapy as non-traditional medicine. With an aim to demonstrate LO effects on the body, we have recently established an animal model investigating the influence of orally administered LO in rat tissues, genome-wide. In this brief, we investigate the effect of LO ingestion in the blood of rat. Rats were administered LO at usual therapeutic dose (5 mg/kg in humans, and following collection of the venous blood from the heart and extraction of total RNA, the differentially expressed genes were screened using a 4 × 44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA in conjunction with a two-color dye-swap approach. A total of 834 differentially expressed genes in the blood were identified: 362 up-regulated and 472 down-regulated. These genes were functionally categorized using bioinformatics tools. The gene expression inventory of rat blood transcriptome under LO, a first report, has been deposited into the Gene Expression Omnibus (GEO: GSE67499. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation.

  19. American College of Medical Genetics recommendations for the design and performance expectations for clinical genomic copy number microarrays intended for use in the postnatal setting for detection of constitutional abnormalities.

    Science.gov (United States)

    Kearney, Hutton M; South, Sarah T; Wolff, Daynna J; Lamb, Allen; Hamosh, Ada; Rao, Kathleen W

    2011-07-01

    Genomic copy number microarrays have significantly increased the diagnostic yield over a karyotype for clinically significant imbalances in individuals with developmental delay, intellectual disability, multiple congenital anomalies, and autism, and they are now accepted as a first tier diagnostic test for these indications. As it is not feasible to validate microarray technology that targets the entire genome in the same manner as an assay that targets a specific gene or syndromic region, a new paradigm of validation and regulation is needed to regulate this important diagnostic technology. We suggest that these microarray platforms be evaluated and manufacturers regulated for the ability to accurately measure copy number gains or losses in DNA (analytical validation) and that the subsequent interpretation of the findings and assignment of clinical significance be determined by medical professionals with appropriate training and certification. To this end, the American College of Medical Genetics, as the professional organization of board-certified clinical laboratory geneticists, herein outlines recommendations for the design and performance expectations for clinical genomic copy number microarrays and associated software intended for use in the postnatal setting for detection of constitutional abnormalities.

  20. Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association

    DEFF Research Database (Denmark)

    Nagarajan, Harish; Embree, Mallory; Rotaru, Amelia-Elena

    2013-01-01

    Syntrophic associations are central to microbial communities and thus have a fundamental role in the global carbon cycle. Despite biochemical approaches describing the physiological activity of these communities, there has been a lack of a mechanistic understanding of the relationship between...... metallireducens and Geobacter sulfurreducens. Genome-scale modelling of direct interspecies electron transfer reveals insights into the energetics of electron transfer mechanisms. While G. sulfurreducens adapts to rapid syntrophic growth by changes at the genomic and transcriptomic level, G. metallireducens...

  1. Identification of gene clusters associated with host adaptation and antibiotic resistance in Chinese Staphylococcus aureus isolates by microarray-based comparative genomics.

    Directory of Open Access Journals (Sweden)

    Henan Li

    Full Text Available A comparative genomic microarray comprising 2,457 genes from two whole genomes of S. aureus was employed for the comparative genome hybridization analysis of 50 strains of divergent clonal lineages, including methicillin-resistant S. aureus (MRSA, methicillin-susceptible S. aureus (MSSA, and swine strains in China. Large-scale validation was confirmed via polymerase chain reaction in 160 representative clinical strains. All of the 50 strains were clustered into seven different complexes by phylogenetic tree analysis. Thirteen gene clusters were specific to different S. aureus clones. Ten gene clusters, including seven known (vSa3, vSa4, vSaα, vSaβ, Tn5801, and phage ϕSa3 and three novel (C8, C9, and C10 gene clusters, were specific to human MRSA. Notably, two global regulators, sarH2 and sarH3, at cluster C9 were specific to human MRSA, and plasmid pUB110 at cluster C10 was specific to swine MRSA. Three clusters known to be part of SCCmec, vSa4 or Tn5801, and vSaα as well as one novel gene cluster C12 with homology with Tn554 of S. epidermidis were identified as MRSA-specific gene clusters. The replacement of ST239-spa t037 with ST239-spa t030 in Beijing may be a result of its acquisition of vSa4, phage ϕSa1, and ϕSa3. In summary, thirteen critical gene clusters were identified to be contributors to the evolution of host specificity and antibiotic resistance in Chinese S. aureus.

  2. Generation of human organs in pigs via interspecies blastocyst complementation.

    Science.gov (United States)

    Wu, J; Platero Luengo, A; Gil, M A; Suzuki, K; Cuello, C; Morales Valencia, M; Parrilla, I; Martinez, C A; Nohalez, A; Roca, J; Martinez, E A; Izpisua Belmonte, J C

    2016-10-01

    More than eighteen years have passed since the first derivation of human embryonic stem cells (ESCs), but their clinical use is still met with several challenges, such as ethical concerns regarding the need of human embryos, tissue rejection after transplantation and tumour formation. The generation of human induced pluripotent stem cells (iPSCs) enables the access to patient-derived pluripotent stem cells (PSCs) and opens the door for personalized medicine as tissues/organs can potentially be generated from the same genetic background as the patient recipients, thus avoiding immune rejections or complication of immunosuppression strategies. In this regard, successful replacement, or augmentation, of the function of damaged tissue by patient-derived differentiated stem cells provides a promising cell replacement therapy for many devastating human diseases. Although human iPSCs can proliferate unlimitedly in culture and harbour the potential to generate all cell types in the adult body, currently, the functionality of differentiated cells is limited. An alternative strategy to realize the full potential of human iPSC for regenerative medicine is the in vivo tissue generation in large animal species via interspecies blastocyst complementation. As this technology is still in its infancy and there remains more questions than answers, thus in this review, we mainly focus the discussion on the conceptual framework, the emerging technologies and recent advances involved with interspecies blastocyst complementation, and will refer the readers to other more in-depth reviews on dynamic pluripotent stem cell states, genome editing and interspecies chimeras. Likewise, other emerging alternatives to combat the growing shortage of human organs, such as xenotransplantation or tissue engineering, topics that has been extensively reviewed, will not be covered here.

  3. A comparative genomic study in schizophrenic and in bipolar disorder patients, based on microarray expression profiling meta-analysis.

    Science.gov (United States)

    Logotheti, Marianthi; Papadodima, Olga; Venizelos, Nikolaos; Chatziioannou, Aristotelis; Kolisis, Fragiskos

    2013-01-01

    Schizophrenia affecting almost 1% and bipolar disorder affecting almost 3%-5% of the global population constitute two severe mental disorders. The catecholaminergic and the serotonergic pathways have been proved to play an important role in the development of schizophrenia, bipolar disorder, and other related psychiatric disorders. The aim of the study was to perform and interpret the results of a comparative genomic profiling study in schizophrenic patients as well as in healthy controls and in patients with bipolar disorder and try to relate and integrate our results with an aberrant amino acid transport through cell membranes. In particular we have focused on genes and mechanisms involved in amino acid transport through cell membranes from whole genome expression profiling data. We performed bioinformatic analysis on raw data derived from four different published studies. In two studies postmortem samples from prefrontal cortices, derived from patients with bipolar disorder, schizophrenia, and control subjects, have been used. In another study we used samples from postmortem orbitofrontal cortex of bipolar subjects while the final study was performed based on raw data from a gene expression profiling dataset in the postmortem superior temporal cortex of schizophrenics. The data were downloaded from NCBI's GEO datasets.

  4. A Comparative Genomic Study in Schizophrenic and in Bipolar Disorder Patients, Based on Microarray Expression Profiling Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Marianthi Logotheti

    2013-01-01

    Full Text Available Schizophrenia affecting almost 1% and bipolar disorder affecting almost 3%–5% of the global population constitute two severe mental disorders. The catecholaminergic and the serotonergic pathways have been proved to play an important role in the development of schizophrenia, bipolar disorder, and other related psychiatric disorders. The aim of the study was to perform and interpret the results of a comparative genomic profiling study in schizophrenic patients as well as in healthy controls and in patients with bipolar disorder and try to relate and integrate our results with an aberrant amino acid transport through cell membranes. In particular we have focused on genes and mechanisms involved in amino acid transport through cell membranes from whole genome expression profiling data. We performed bioinformatic analysis on raw data derived from four different published studies. In two studies postmortem samples from prefrontal cortices, derived from patients with bipolar disorder, schizophrenia, and control subjects, have been used. In another study we used samples from postmortem orbitofrontal cortex of bipolar subjects while the final study was performed based on raw data from a gene expression profiling dataset in the postmortem superior temporal cortex of schizophrenics. The data were downloaded from NCBI's GEO datasets.

  5. Rapid detection of genomic imbalances using micro-arrays consisting of pooled BACs covering all human chromosome arms.

    Science.gov (United States)

    Knijnenburg, Jeroen; van der Burg, Marja; Nilsson, Philomeen; Ploos van Amstel, Hans Kristian; Tanke, Hans; Szuhai, Károly

    2005-10-12

    A strategy is presented to select, pool and spot human BAC clones on an array in such a way that each spot contains five well performing BAC clones, covering one chromosome arm. A mini-array of 240 spots was prepared representing all human chromosome arms in a 5-fold as well as some controls, and used for comparative genomic hybridization (CGH) of 10 cell lines with aneusomies frequently found in clinical cytogenetics and oncology. Spot-to-spot variation within five replicates was below 6% and all expected abnormalities were detected 100% correctly. Sensitivity was such that replacing one BAC clone in a given spot of five by a BAC clone from another chromosome, thus resulting in a change in ratio of 20%, was reproducibly detected. Incubation time of the mini-array was varied and the fluorescently labelled target DNA was diluted. Typically, aneusomies could be detected using 30 ng of non-amplified random primed labelled DNA amounts in a 4 h hybridization reaction. Potential application of these mini-arrays for genomic profiling of disseminated tumour cells or of blastomeres for preimplantation genetic diagnosis, using specially designed DNA amplification methods, are discussed.

  6. Microarray and synchronization of neuronal differentiation with pathway changes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databank in nerve growth factor-treated PC12 cells.

    Science.gov (United States)

    Lin, Chih-Ming; Feng, Wayne

    2012-08-01

    The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database creates networks from interrelations between molecular biology and underlying chemical elements. This allows for analysis of biologic networks, genomic information, and higher-order functional information at a systems level. We performed microarray experiments and used the KEGG database, systems biology analysis, and annotation of pathway function to study nerve growth factor (NGF)-induced differentiation of PC12 cells. Cells were cultured to 70%-80% confluence, treated with NGF for 1 or 3 hours (h), and RNA was extracted. Stage 1 data analysis involved analysis of variance (ANOVA), and stage 2 involved cluster analysis and heat map generation. We identified 2020 NGF-induced PC12 genes (1038 at 1 h and 1554 at 3 h). Results showed changes in gene expression over time. We compared these genes with 6035 genes from the KEGG database. Cross-matching resulted in 830 genes. Among these, we identified 395 altered genes (155 at 1 h and 301 at 3 h; 2-fold increase from 1 h to 3 h). We identified 191 biologic pathways in the KEGG database; the top 15 showed correlations with neuronal differentiation (mitogen-activated protein kinase [MAPK] pathway: 35 genes at 1 h, 54 genes at 3 h; genes associated with axonal guidance: 12 at 1 h, 26 at 3 h; Wnt pathway: 16 at 1 h, 25 at 3 h; neurotrophin pathway: 4 at 1 h, 14 at 3 h). Thus, we identified changes in neuronal differentiation pathways with the KEGG database, which were synchronized with NGF-induced differentiation.

  7. Analysis of pigmented villonodular synovitis with genome-wide complementary DNA microarray and tissue array technology reveals insight into potential novel therapeutic approaches.

    Science.gov (United States)

    Finis, Katharina; Sültmann, Holger; Ruschhaupt, Markus; Buness, Andreas; Helmchen, Birgit; Kuner, Ruprecht; Gross, Marie-Luise; Fink, Bernd; Schirmacher, Peter; Poustka, Annemarie; Berger, Irina

    2006-03-01

    To characterize the gene expression profile and determine potential diagnostic markers and therapeutic targets in pigmented villonodular synovitis (PVNS). Gene expression patterns in 11 patients with PVNS, 18 patients with rheumatoid arthritis (RA), and 19 patients with osteoarthritis (OA) were investigated using genome-wide complementary DNA microarrays. Validation of differentially expressed genes was performed by real-time quantitative polymerase chain reaction and immunohistochemical analysis on tissue arrays (80 patients with PVNS, 51 patients with RA, and 20 patients with OA). The gene expression profile in PVNS was clearly distinct from those in RA and OA. One hundred forty-one up-regulated genes and 47 down-regulated genes were found in PVNS compared with RA, and 153 up-regulated genes and 89 down-regulated genes were found in PVNS compared with OA (fold change > or = 1.5; Q PVNS were involved in apoptosis regulation, matrix degradation, and inflammation (ALOX5AP, ATP6V1B2, CD53, CHI3L1, CTSL, CXCR4, HSPA8, HSPCA, LAPTM5, MMP9, MOAP1, and SPP1). The gene expression signature in PVNS is similar to that of activated macrophages and is consistent with the local destructive course of the disease. The gene and protein expression patterns suggest that the ongoing proliferation in PVNS is sustained by apoptosis resistance. This result suggests the possibility of a potential novel therapeutic intervention against PVNS.

  8. Case of 7p22.1 Microduplication Detected by Whole Genome Microarray (REVEAL in Workup of Child Diagnosed with Autism

    Directory of Open Access Journals (Sweden)

    Veronica Goitia

    2015-01-01

    Full Text Available Introduction. More than 60 cases of 7p22 duplications and deletions have been reported with over 16 of them occurring without concomitant chromosomal abnormalities. Patient and Methods. We report a 29-month-old male diagnosed with autism. Whole genome chromosome SNP microarray (REVEAL demonstrated a 1.3 Mb interstitial duplication of 7p22.1 ->p22.1 arr 7p22.1 (5,436,367–6,762,394, the second smallest interstitial 7p duplication reported to date. This interval included 14 OMIM annotated genes (FBXL18, ACTB, FSCN1, RNF216, OCM, EIF2AK1, AIMP2, PMS2, CYTH3, RAC1, DAGLB, KDELR2, GRID2IP, and ZNF12. Results. Our patient presented features similar to previously reported cases with 7p22 duplication, including brachycephaly, prominent ears, cryptorchidism, speech delay, poor eye contact, and outburst of aggressive behavior with autism-like features. Among the genes located in the duplicated segment, ACTB gene has been proposed as a candidate gene for the alteration of craniofacial development. Overexpression of RNF216L has been linked to autism. FSCN1 may play a role in neurodevelopmental disease. Conclusion. Characterization of a possible 7p22.1 Duplication Syndrome has yet to be made. Recognition of the clinical spectrum in patients with a smaller duplication of 7p should prove valuable for determining the minimal critical region, helping delineate a better prediction of outcome and genetic counseling

  9. An Xq22.3 duplication detected by comparative genomic hybridization microarray (Array-CGH) defines a new locus (FGS5) for FG syndrome.

    Science.gov (United States)

    Jehee, Fernanda Sarquis; Rosenberg, Carla; Krepischi-Santos, Ana Cristina; Kok, Fernando; Knijnenburg, Jeroen; Froyen, Guy; Vianna-Morgante, Angela M; Opitz, John M; Passos-Bueno, Maria Rita

    2005-12-15

    FG syndrome is an X-linked multiple congenital anomalies (MCA) syndrome. It has been mapped to four distinct loci FGS1-4, through linkage analysis (Xq13, Xp22.3, and Xp11.4-p11.3) and based on the breakpoints of an X chromosome inversion (Xq11:Xq28), but so far no gene has been identified. We describe a boy with FG syndrome who has an inherited duplication at band Xq22.3 detected by comparative genomic hybridization microarray (Array-CGH). These duplication maps outside all four loci described so far for FG syndrome, representing therefore a new locus, which we propose to be called FGS5. MID2, a gene closely related to MID1, which is known to be mutated in Opitz G/BBB syndrome, maps within the duplicated segment of our patient. Since FG and Opitz G/BBB syndromes share many manifestations we considered MID2 a candidate gene for FG syndrome. We also discuss the involvement of other potential genes within the duplicated segment and its relationship with clinical symptoms of our patient, as well as the laboratory abnormalities found in his mother, a carrier of the duplication.

  10. Genetic-and-epigenetic Interspecies Networks for Cross-talk Mechanisms in Human Macrophages and Dendritic Cells During MTB Infection

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Li

    2016-10-01

    Full Text Available Tuberculosis is caused by Mycobacterium tuberculosis (Mtb infection. Mtb is one of the oldest human pathogens, and evolves mechanisms implied in human evolution. The lungs are the first organ exposed to aerosol-transmitted Mtb during gaseous exchange. Therefore, the guards of the immune system in the lungs, such as macrophages (Mϕs and dendritic cells (DCs, are the most important defense against Mtb infection. There have been several studies discussing the functions of Mϕs and DCs during Mtb infection, but the genome-wide pathways and networks are still incomplete. Furthermore, the immune response induced by Mϕs and DCs varies. Therefore, we analyzed the cross-talk genome-wide genetic-and-epigenetic interspecies networks (GWGEINs between Mϕs vs. Mtb and DCs vs. Mtb to determine the varying mechanisms of both the host and pathogen as it relates to Mϕs and DCs during early Mtb infection.First, we performed database mining to construct candidate cross-talk GWGEIN between human cells and Mtb. Then we constructed dynamic models to characterize the molecular mechanisms, including intraspecies gene/microRNA (miRNA regulation networks (GRNs, intraspecies protein-protein interaction networks (PPINs, and the interspecies PPIN of the cross-talk GWGEIN. We applied a system identification method and a system order detection scheme to dynamic models to identify the real cross-talk GWGEINs using the microarray data of Mϕs, DCs and Mtb.After identifying the real cross-talk GWGEINs, the principal network projection (PNP method was employed to construct host-pathogen core networks (HPCNs between Mϕs vs. Mtb and DCs vs. Mtb during infection process. Thus, we investigated the underlying cross-talk mechanisms between the host and the pathogen to determine how the pathogen counteracts host defense mechanisms in Mϕs and DCs during Mtb H37Rv early infection. Based on our findings, we propose Rv1675c as a potential drug target because of its important defensive

  11. Biolog phenotype microarrays.

    Science.gov (United States)

    Shea, April; Wolcott, Mark; Daefler, Simon; Rozak, David A

    2012-01-01

    Phenotype microarrays nicely complement traditional genomic, transcriptomic, and proteomic analysis by offering opportunities for researchers to ground microbial systems analysis and modeling in a broad yet quantitative assessment of the organism's physiological response to different metabolites and environments. Biolog phenotype assays achieve this by coupling tetrazolium dyes with minimally defined nutrients to measure the impact of hundreds of carbon, nitrogen, phosphorous, and sulfur sources on redox reactions that result from compound-induced effects on the electron transport chain. Over the years, we have used Biolog's reproducible and highly sensitive assays to distinguish closely related bacterial isolates, to understand their metabolic differences, and to model their metabolic behavior using flux balance analysis. This chapter describes Biolog phenotype microarray system components, reagents, and methods, particularly as they apply to bacterial identification, characterization, and metabolic analysis.

  12. Use of a Pan–Genomic DNA Microarray in Determination of the Phylogenetic Relatedness among Cronobacter spp. and Its Use as a Data Mining Tool to Understand Cronobacter Biology

    Directory of Open Access Journals (Sweden)

    Ben D. Tall

    2017-03-01

    Full Text Available Cronobacter (previously known as Enterobacter sakazakii is a genus of Gram-negative, facultatively anaerobic, oxidase-negative, catalase-positive, rod-shaped bacteria of the family Enterobacteriaceae. These organisms cause a variety of illnesses such as meningitis, necrotizing enterocolitis, and septicemia in neonates and infants, and urinary tract, wound, abscesses or surgical site infections, septicemia, and pneumonia in adults. The total gene content of 379 strains of Cronobacter spp. and taxonomically-related isolates was determined using a recently reported DNA microarray. The Cronobacter microarray as a genotyping tool gives the global food safety community a rapid method to identify and capture the total genomic content of outbreak isolates for food safety, environmental, and clinical surveillance purposes. It was able to differentiate the seven Cronobacter species from one another and from non-Cronobacter species. The microarray was also able to cluster strains within each species into well-defined subgroups. These results also support previous studies on the phylogenic separation of species members of the genus and clearly highlight the evolutionary sequence divergence among each species of the genus compared to phylogenetically-related species. This review extends these studies and illustrates how the microarray can also be used as an investigational tool to mine genomic data sets from strains. Three case studies describing the use of the microarray are shown and include: (1 the determination of allelic differences among Cronobacter sakazakii strains possessing the virulence plasmid pESA3; (2 mining of malonate and myo-inositol alleles among subspecies of Cronobacter dublinensis strains to determine subspecies identity; and (3 lastly using the microarray to demonstrate sequence divergence and phylogenetic relatedness trends for 13 outer-membrane protein alleles among 240 Cronobacter and phylogenetically-related strains. The goal of

  13. An ANOCEF Genomic and Transcriptomic Microarray Study of the Response to Irinotecan and Bevacizumab in Recurrent Glioblastomas

    Directory of Open Access Journals (Sweden)

    Julien Laffaire

    2014-01-01

    Full Text Available Background. We performed a retrospective study to assess whether the initial molecular characteristics of glioblastomas (GBMs were associated with the response to the bevacizumab/irinotecan chemotherapy regimen given at recurrence. Results. Comparison of the genomic and gene expression profiles of the responders (n=12 and nonresponders (n=13 demonstrated only slight differences and could not identify any robust biomarkers associated with the response. In contrast, a significant association was observed between GBMs molecular subtypes and response rates. GBMs assigned to molecular subtype IGS-18 and to classical subtype had a lower response rate than those assigned to other subtypes. In an independent series of 33 patients, neither EGFR amplification nor CDKN2A deletion (which are frequent in IGS-18 and classical GBMs was significantly associated with the response rate, suggesting that these two alterations are unlikely to explain the lower response rate of these GBMs molecular subtypes. Conclusion. Despite its limited sample size, the present study suggests that comparing the initial molecular profiles of responders and nonresponders might not be an effective strategy to identify biomarkers of the response to bevacizumab given at recurrence. Yet it suggests that the response rate might differ among GBMs molecular subtypes.

  14. Microarray and comparative genomics-based identification of genes and gene regulatory regions of the mouse immune system

    Directory of Open Access Journals (Sweden)

    Katz Jonathan D

    2004-10-01

    Full Text Available Abstract Background In this study we have built and mined a gene expression database composed of 65 diverse mouse tissues for genes preferentially expressed in immune tissues and cell types. Using expression pattern criteria, we identified 360 genes with preferential expression in thymus, spleen, peripheral blood mononuclear cells, lymph nodes (unstimulated or stimulated, or in vitro activated T-cells. Results Gene clusters, formed based on similarity of expression-pattern across either all tissues or the immune tissues only, had highly significant associations both with immunological processes such as chemokine-mediated response, antigen processing, receptor-related signal transduction, and transcriptional regulation, and also with more general processes such as replication and cell cycle control. Within-cluster gene correlations implicated known associations of known genes, as well as immune process-related roles for poorly described genes. To characterize regulatory mechanisms and cis-elements of genes with similar patterns of expression, we used a new version of a comparative genomics-based cis-element analysis tool to identify clusters of cis-elements with compositional similarity among multiple genes. Several clusters contained genes that shared 5–6 cis-elements that included ETS and zinc-finger binding sites. cis-Elements AP2 EGRF ETSF MAZF SP1F ZF5F and AREB ETSF MZF1 PAX5 STAT were shared in a thymus-expressed set; AP4R E2FF EBOX ETSF MAZF SP1F ZF5F and CREB E2FF MAZF PCAT SP1F STAT cis-clusters occurred in activated T-cells; CEBP CREB NFKB SORY and GATA NKXH OCT1 RBIT occurred in stimulated lymph nodes. Conclusion This study demonstrates a series of analytic approaches that have allowed the implication of genes and regulatory elements that participate in the differentiation, maintenance, and function of the immune system. Polymorphism or mutation of these could adversely impact immune system functions.

  15. Cytotoxicity and genome-wide microarray analysis of intestinal smooth muscle cells in response to hexavalent chromium induction

    Institute of Scientific and Technical Information of China (English)

    Li-Fang JIN; Yuan-Yuan WANG; Zi-Dong ZHANG; Yi-Meng YUAN; Yi-Rui HU; Yang-Feng WEI; Jian NI

    2013-01-01

    Chronic ingestion of high concentrations of hexavalent chromium [Cr(Ⅵ)] in drinking water induces intestinal tumors in mice; however,information on its toxicity on intestinal smooth muscle cells is limited.The present study aimed to assess the in vitro and in vivo toxicological effects of Cr(Ⅵ) on intestinal smooth muscle cells.Human intestinal smooth muscle cells (HISM cells) were cultured with different concentrations of Cr(Ⅵ) to evaluate effects on cell proliferation ability,oxidative stress levels,and antioxidant system.Furthermore,tissue sections in Cr(Ⅵ) exposed rabbits were analyzed to evaluate toxicity on intestinal muscle cells in vivo.Gene chips were utilized to assess differential gene expression profiles at the genome-wide level in 1 μmol/L Cr(Ⅵ) treated cells.Intestinal tissue biopsy results showed that Cr(Ⅵ) increased the incidences of diffuse epithelial hyperplasia in intestinal jejunum but caused no obvious damage to the structure of the muscularis.Cell proliferation analysis revealed that high concentrations (≥64 μmol/L) but not low concentrations of Cr(Ⅵ) (≤16 μmol/L) significantly inhibited the growth of HISM cells.For oxidative stress levels,the expression of reactive oxygen species (ROS) and nitric oxide (NO) was elevated at high concentrations (≥64 μmol/L) but not at low concentrations of Cr(Ⅵ) (≤ 16 μmol/L).In addition,dose-dependent increases in the activity of oxidized glutathione (GSSH)/total-glutathione (T-GSH) were also observed.Gene chip screened 491 differentially expressed genes including genes associated with cell apoptosis,oxidations,and cytoskeletons.Some of these differentially expressed genes may be unique to smooth muscle cells in response to Cr(Ⅵ) induction.

  16. A genome-wide study of cytogenetic changes in colorectal cancer using SNP microarrays: opportunities for future personalized treatment.

    Directory of Open Access Journals (Sweden)

    Farzana Jasmine

    Full Text Available In colorectal cancer (CRC, chromosomal instability (CIN is typically studied using comparative-genomic hybridization (CGH arrays. We studied paired (tumor and surrounding healthy fresh frozen tissue from 86 CRC patients using Illumina's Infinium-based SNP array. This method allowed us to study CIN in CRC, with simultaneous analysis of copy number (CN and B-allele frequency (BAF--a representation of allelic composition. These data helped us to detect mono-allelic and bi-allelic amplifications/deletion, copy neutral loss of heterozygosity, and levels of mosaicism for mixed cell populations, some of which can not be assessed with other methods that do not measure BAF. We identified associations between CN abnormalities and different CRC phenotypes (histological diagnosis, location, tumor grade, stage, MSI and presence of lymph node metastasis. We showed commonalities between regions of CN change observed in CRC and the regions reported in previous studies of other solid cancers (e.g. amplifications of 20q, 13q, 8q, 5p and deletions of 18q, 17p and 8p. From Therapeutic Target Database, we identified relevant drugs, targeted to the genes located in these regions with CN changes, approved or in trials for other cancers and common diseases. These drugs may be considered for future therapeutic trials in CRC, based on personalized cytogenetic diagnosis. We also found many regions, harboring genes, which are not currently targeted by any relevant drugs that may be considered for future drug discovery studies. Our study shows the application of high density SNP arrays for cytogenetic study in CRC and its potential utility for personalized treatment.

  17. Mathematical design of prokaryotic clone-based microarrays

    NARCIS (Netherlands)

    Pieterse, B.; Quirijns, E.J.; Schuren, F.H.J.; Werf, van der M.J.

    2005-01-01

    Background - Clone-based microarrays, on which each spot represents a random genomic fragment, are a good alternative to open reading frame-based microarrays, especially for microorganisms for which the complete genome sequence is not available. Since the generation of a genomic DNA library is a ran

  18. Mathematical design of prokaryotic clone-based microarrays

    NARCIS (Netherlands)

    Pieterse, B.; Quirijns, E.J.; Schuren, F.H.J.; Werf, M.J. van der

    2005-01-01

    Background: Clone-based microarrays, on which each spot represents a random genomic fragment, are a good alternative to open reading frame-based microarrays, especially for microorganisms for which the complete genome sequence is not available. Since the generation of a genomic DNA library is a rand

  19. Medicina genómica: Aplicaciones del polimorfismo de un nucleótido y micromatrices de ADN Genomic Medicine: Polymorphisms and microarray applications

    Directory of Open Access Journals (Sweden)

    Monica P. Spalvieri

    2004-12-01

    Full Text Available Esta actualización tiene por objeto difundir un nuevo enfoque de las variaciones del ADN entre individuos y comentar las nuevas tecnologías para su detección. La secuenciación total del genoma humano es el comienzo para conocer la diversidad genética. La unidad de medida reconocida de esta variabilidad es el polimorfismo de un solo nucleótido (single nucleotide polymorphism o SNP. El estudio de los SNPs está restringido a la investigación pero las numerosas publicaciones sobre el tema hacen vislumbrar su entrada en la práctica clínica. Se presentan ejemplos del uso de SNPs como marcadores moleculares en la genotipificación étnica, la expresión génica de enfermedades y como potenciales blancos farmacológicos. Se comenta la técnica de las matrices (arrays que facilita el estudio de múltiples secuencias de genes mediante chips de diseño específico. Los métodos convencionales analizan hasta un máximo de 20 genes, mientras que una sola micromatriz provee información sobre decenas de miles de genes simultáneamente con una genotipificación rápida y exacta. Los avances de la biotecnología permitirán conocer, además de la secuencia de cada gen, la frecuencia y ubicación exacta de los SNPs y su influencia en los comportamientos celulares. Si bien la validez de los resultados y la eficiencia de las micromatrices son aún controvertidos, el conocimiento y caracterización del perfil genético de un paciente impulsará seguramente un cambio radical en la prevención, diagnóstico, pronóstico y tratamiento de las enfermedades humanas.This update shows new concepts related to the significance of DNA variations among individuals, as well as to their detection by using a new technology. The sequencing of the human genome is only the beginning of what will enable us to understand genetic diversity. The unit of DNA variability is the polymorphism of a single nucleotide (SNP. At present, studies on SNPs are restricted to basic research

  20. The EADGENE Microarray Data Analysis Workshop

    NARCIS (Netherlands)

    Koning, de D.J.; Jaffrezic, F.; Lund, M.S.; Watson, M.; Channing, C.; Hulsegge, B.; Pool, M.H.; Buitenhuis, B.; Hedegaard, J.; Hornshoj, H.; Sorensen, P.; Marot, G.; Delmas, C.; Lê Cao, K.A.; San Cristobal, M.; Baron, M.D.; Malinverni, R.; Stella, A.; Brunner, R.M.; Seyfert, H.M.; Jensen, K.; Mouzaki, D.; Waddington, D.; Jiménez-Marín, A.; Perez-Alegre, M.; Perez-Reinado, E.; Closset, R.; Detilleux, J.C.; Dovc, P.; Lavric, M.; Nie, H.; Janss, L.

    2007-01-01

    Microarray analyses have become an important tool in animal genomics. While their use is becoming widespread, there is still a lot of ongoing research regarding the analysis of microarray data. In the context of a European Network of Excellence, 31 researchers representing 14 research groups from 10

  1. Transcriptomic and genetic analysis of direct interspecies electron transfer

    DEFF Research Database (Denmark)

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Summers, Zarath M

    2013-01-01

    The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens was the elect......The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens....... These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments....

  2. Glass slides to DNA microarrays

    Directory of Open Access Journals (Sweden)

    Samuel D Conzone

    2004-03-01

    Full Text Available A tremendous interest in deoxyribonucleic acid (DNA characterization tools was spurred by the mapping and sequencing of the human genome. New tools were needed, beginning in the early 1990s, to cope with the unprecedented amount of genomic information that was being discovered. Such needs led to the development of DNA microarrays; tiny gene-based sensors traditionally prepared on coated glass microscope slides. The following review is intended to provide historical insight into the advent of the DNA microarray, followed by a description of the technology from both the application and fabrication points of view. Finally, the unmet challenges and needs associated with DNA microarrays will be described to define areas of potential future developments for the materials researcher.

  3. Genome-Wide lncRNA Microarray Profiling Identifies Novel Circulating lncRNAs for Detection of Gastric Cancer

    Science.gov (United States)

    Zhang, Kecheng; Shi, Hongzhi; Xi, Hongqing; Wu, Xiaosong; Cui, Jianxin; Gao, Yunhe; Liang, Wenquan; Hu, Chong; Liu, Yi; Li, Jiyang; Wang, Ning; Wei, Bo; Chen, Lin

    2017-01-01

    Long non-coding RNAs (lncRNAs) can serve as blood-based biomarkers for cancer detection. To identify novel lncRNA biomarkers for gastric cancer (GC), we conducted, for the first time, genome-wide lncRNA screening analysis in two sets of samples: five paired preoperative and postoperative day 14 plasma samples from GC patients, and tissue samples from tumor and adjacent normal tissues. Candidate tumor-related lncRNAs were then quantitated and evaluated in three independent phases comprising 321 participants. The expression levels of lncRNAs were also measured in GC cell lines and the corresponding culture medium. Biomarker panels, lncRNA-based Index I and carcinoembryonic antigen (CEA)-based Index II, were constructed using logistic regression, and their diagnostic performance compared. Fagan's nomogram was plotted to facilitate clinical application. As a result, we identified five novel plasma lncRNAs (TINCR, CCAT2, AOC4P, BANCR and LINC00857), which, when combined in the lncRNA-based Index I, outperformed the CEA-based Index II (P < 0.001) and could distinguish GC patients from healthy controls with an area under the receiver-operating curve (AUC) of 0.91 (95% confidence interval (CI): 0.88-0.95). The lncRNA-based index decreased significantly by postoperative day 14 (P = 0.016), indicating its ability to monitor tumor dynamics. High values of the lncRNA-based index were correlated with tumor size (P = 0.036), depth of invasion (P = 0.025), lymphatic metastasis (P = 0.012) and more advanced tumor stages (P = 0.003). The lncRNA-based index was also able to discriminate GC patients from precancerous individuals and patients with gastrointestinal stromal tumor with AUC values of 0.82 (95% CI: 0.71-0.92) and 0.80 (95% CI: 0.68-0.91), respectively. Taken together, our findings demonstrate that this panel of five plasma lncRNAs could serve as a set of novel diagnostic biomarkers for GC detection. PMID:28042329

  4. An alternative pluripotent state confers interspecies chimaeric competency

    Science.gov (United States)

    Wu, Jun; Okamura, Daiji; Li, Mo; Suzuki, Keiichiro; Luo, Chongyuan; Ma, Li; He, Yupeng; Li, Zhongwei; Benner, Chris; Tamura, Isao; Krause, Marie N.; Nery, Joseph R.; Du, Tingting; Zhang, Zhuzhu; Hishida, Tomoaki; Takahashi, Yuta; Aizawa, Emi; Kim, Na Young; Lajara, Jeronimo; Guillen, Pedro; Campistol, Josep M.; Esteban, Concepcion Rodriguez; Ross, Pablo J.; Saghatelian, Alan; Ren, Bing; Ecker, Joseph R.; Belmonte, Juan Carlos Izpisua

    2017-01-01

    Pluripotency, the ability to generate any cell type of the body, is an evanescent attribute of embryonic cells. Transitory pluripotent cells can be captured at different time points during embryogenesis and maintained as embryonic stem cells or epiblast stem cells in culture. Since ontogenesis is a dynamic process in both space and time, it seems counterintuitive that these two temporal states represent the full spectrum of organismal pluripotency. Here we show that by modulating culture parameters, a stem-cell type with unique spatial characteristics and distinct molecular and functional features, designated as region-selective pluripotent stem cells (rsPSCs), can be efficiently obtained from mouse embryos and primate pluripotent stem cells, including humans. The ease of culturing and editing the genome of human rsPSCs offers advantages for regenerative medicine applications. The unique ability of human rsPSCs to generate post-implantation interspecies chimaeric embryos may facilitate our understanding of early human development and evolution. PMID:25945737

  5. Combining microarrays and genetic analysis

    NARCIS (Netherlands)

    Alberts, Rudi; Fu, Jingyuan; Swertz, Morris A.; Lubbers, L. Alrik; Albers, Casper J.; Jansen, Ritsert C.

    2005-01-01

    Gene expression can be studied at a genome-wide scale with the aid of modern microarray technologies. Expression profiling of tens to hundreds of individuals in a genetic population can reveal the consequences of genetic variation. In this paper it is argued that the design and analysis of such a

  6. Combining microarrays and genetic analysis

    NARCIS (Netherlands)

    Alberts, Rudi; Fu, Jingyuan; Swertz, Morris A.; Lubbers, L. Alrik; Albers, Casper J.; Jansen, Ritsert C.

    2005-01-01

    Gene expression can be studied at a genome-wide scale with the aid of modern microarray technologies. Expression profiling of tens to hundreds of individuals in a genetic population can reveal the consequences of genetic variation. In this paper it is argued that the design and analysis of such a st

  7. The Current Status of DNA Microarrays

    Science.gov (United States)

    Shi, Leming; Perkins, Roger G.; Tong, Weida

    DNA microarray technology that allows simultaneous assay of thousands of genes in a single experiment has steadily advanced to become a mainstream method used in research, and has reached a stage that envisions its use in medical applications and personalized medicine. Many different strategies have been developed for manufacturing DNA microarrays. In this chapter, we discuss the manufacturing characteristics of seven microarray platforms that were used in a recently completed large study by the MicroArray Quality Control (MAQC) consortium, which evaluated the concordance of results across these platforms. The platforms can be grouped into three categories: (1) in situ synthesis of oligonucleotide probes on microarrays (Affymetrix GeneChip® arrays based on photolithography synthesis and Agilent's arrays based on inkjet synthesis); (2) spotting of presynthesized oligonucleotide probes on microarrays (GE Healthcare's CodeLink system, Applied Biosystems' Genome Survey Microarrays, and the custom microarrays printed with Operon's oligonucleotide set); and (3) deposition of presynthesized oligonucleotide probes on bead-based microarrays (Illumina's BeadChip microarrays). We conclude this chapter with our views on the challenges and opportunities toward acceptance of DNA microarray data in clinical and regulatory settings.

  8. Investigation of Interspecies Interactions within Marine Micromonosporaceae Using an Improved Co-Culture Approach

    Directory of Open Access Journals (Sweden)

    Navid Adnani

    2015-09-01

    Full Text Available With respect to bacterial natural products, a significant outcome of the genomic era was that the biosynthetic potential in many microorganisms surpassed the number of compounds isolated under standard laboratory growth conditions, particularly among certain members in the phylum Actinobacteria. Our group, as well as others, investigated interspecies interactions, via co-culture, as a technique to coax bacteria to produce novel natural products. While co-culture provides new opportunities, challenges exist and questions surrounding these methods remain unanswered. In marine bacteria, for example, how prevalent are interspecies interactions and how commonly do interactions result in novel natural products? In an attempt to begin to answer basic questions surrounding co-culture of marine microorganisms, we have tested both antibiotic activity-based and LC/MS-based methods to evaluate Micromonosporaceae secondary metabolite production in co-culture. Overall, our investigation of 65 Micromonosporaceae led to the identification of 12 Micromonosporaceae across three genera that produced unique metabolites in co-culture. Our results suggest that interspecies interactions were prevalent between marine Micromonosporaceae and marine mycolic acid-containing bacteria. Furthermore, our approach highlights a sensitive and rapid method for investigating interspecies interactions in search of novel antibiotics, secondary metabolites, and genes.

  9. Genes of both parental origins are differentially involved in early embryogenesis of a tobacco interspecies hybrid.

    Directory of Open Access Journals (Sweden)

    Jun-E Zhang

    Full Text Available BACKGROUND: In animals, early embryonic development is largely dependent on maternal transcripts synthesized during gametogenesis. However, in higher plants, the extent of maternal control over zygote development and early embryogenesis is not fully understood yet. Nothing is known about the activity of the parental genomes during seed formation of interspecies hybrids. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that an interspecies hybridization system between SR1 (Nicotiana tabacum and Hamayan (N. rustica has been successfully established. Based on the system we selected 58 genes that have polymorphic sites between SR1 and Hamayan, and analyzed the allele-specific expression of 28 genes in their hybrid zygotes (Hamayan x SR1. Finally the allele-specific expressions of 8 genes in hybrid zygotes were repeatedly confirmed. Among them, 4 genes were of paternal origin, 1 gene was of maternal origin and 3 genes were of biparental origin. These results revealed obvious biparental involvement and differentially contribution of parental-origin genes to zygote development in the interspecies hybrid. We further detected the expression pattern of the genes at 8-celled embryo stage found that the involvement of the parental-origin genes may change at different stages of embryogenesis. CONCLUSIONS/SIGNIFICANCE: We reveal that genes of both parental origins are differentially involved in early embryogenesis of a tobacco interspecies hybrid and functions in a developmental stage-dependent manner. This finding may open a window to seek for the possible molecular mechanism of hybrid vigor.

  10. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features

    National Research Council Canada - National Science Library

    Shaw-Smith, C; Redon, R; Rickman, L; Rio, M; Willatt, L; Fiegler, H; Firth, H; Sanlaville, D; Winter, R; Colleaux, L; Bobrow, M; Carter, N P

    2004-01-01

    ...). The presence of subtle DNA copy number changes was investigated by array-CGH in 50 patients with learning disability and dysmorphism, employing a DNA microarray constructed from large insert clones...

  11. Numerical and Structural Genomic Aberrations Are Reliably Detectable in Tissue Microarrays of Formalin-Fixed Paraffin-Embedded Tumor Samples by Fluorescence In-Situ Hybridization: e95047

    National Research Council Canada - National Science Library

    Heike Horn; Julia Bausinger; Annette M Staiger; Maximilian Sohn; Christopher Schmelter; Kim Gruber; Claudia Kalla; M Michaela Ott; Andreas Rosenwald; German Ott

    2014-01-01

    ...), especially for chromosomal deletions, in high-throughput settings using tissue microarrays (TMAs). We performed a comprehensive FISH study for the detection of chromosomal translocations and deletions in formalin-fixed and paraffin-embedded...

  12. Numerical and structural genomic aberrations are reliably detectable in tissue microarrays of formalin-fixed paraffin-embedded tumor samples by fluorescence in-situ hybridization

    National Research Council Canada - National Science Library

    Horn, Heike; Bausinger, Julia; Staiger, Annette M; Sohn, Maximilian; Schmelter, Christopher; Gruber, Kim; Kalla, Claudia; Ott, M Michaela; Rosenwald, Andreas; Ott, German

    2014-01-01

    ...), especially for chromosomal deletions, in high-throughput settings using tissue microarrays (TMAs). We performed a comprehensive FISH study for the detection of chromosomal translocations and deletions in formalin-fixed and paraffin-embedded...

  13. Integrated Amplification Microarrays for Infectious Disease Diagnostics

    Directory of Open Access Journals (Sweden)

    Darrell P. Chandler

    2012-11-01

    Full Text Available This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.

  14. A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes

    Directory of Open Access Journals (Sweden)

    Lin Ye

    2008-06-01

    Full Text Available Abstract Background Xanthomonas oryzae pv. oryzae (Xoo and X. oryzae pv. oryzicola (Xoc are bacterial pathogens of the worldwide staple and grass model, rice. Xoo and Xoc are closely related but Xoo invades rice vascular tissue to cause bacterial leaf blight, a serious disease of rice in many parts of the world, and Xoc colonizes the mesophyll parenchyma to cause bacterial leaf streak, a disease of emerging importance. Both pathogens depend on hrp genes for type III secretion to infect their host. We constructed a 50–70 mer oligonucleotide microarray based on available genome data for Xoo and Xoc and compared gene expression in Xoo strains PXO99A and Xoc strain BLS256 grown in the rich medium PSB vs. XOM2, a minimal medium previously reported to induce hrp genes in Xoo strain T7174. Results Three biological replicates of the microarray experiment to compare global gene expression in representative strains of Xoo and Xoc grown in PSB vs. XOM2 were carried out. The non-specific error rate and the correlation coefficients across biological replicates and among duplicate spots revealed that the microarray data were robust. 247 genes of Xoo and 39 genes of Xoc were differentially expressed in the two media with a false discovery rate of 5% and with a minimum fold-change of 1.75. Semi-quantitative-RT-PCR assays confirmed differential expression of each of 16 genes each for Xoo and Xoc selected for validation. The differentially expressed genes represent 17 functional categories. Conclusion We describe here the construction and validation of a two-genome microarray for the two pathovars of X. oryzae. Microarray analysis revealed that using representative strains, a greater number of Xoo genes than Xoc genes are differentially expressed in XOM2 relative to PSB, and that these include hrp genes and other genes important in interactions with rice. An exception was the rax genes, which are required for production of the host resistance elicitor AvrXa21

  15. Protein Microarrays Technology and Its Application in Genome-Wide Posttranslational Modification%蛋白质芯片技术及其在全基因组翻译后修饰分析中的应用

    Institute of Scientific and Technical Information of China (English)

    眭维国; 王惠; 曹翠辉; 薛雯; 陈洁晶

    2013-01-01

    Protein microarrays technology is an important part in the current biological research. It can be used to study the interactions of protein-DNA,protein-ligand,protein-protein. In recent years,its application in the biochemical analysis of genome-wide has obtained remarkable achievement. Here is to make a review focusing on protein microarrays technology and its application in the analysis of genome-wide post-translational modification.%蛋白质芯片技术可用于研究蛋白质-DNA、蛋白质-配基和蛋白质与蛋白质之间的相互作用,是当前生物科学研究中的重要内容.近年来,运用蛋白质芯片技术对全基因组进行生物化学分析的应用取得令人瞩目的 成就.现着重总结蛋白质芯片技术及其在全基因组翻译后修饰分析中的应用.

  16. The EADGENE Microarray Data Analysis Workshop

    DEFF Research Database (Denmark)

    de Koning, Dirk-Jan; Jaffrézic, Florence; Lund, Mogens Sandø

    2007-01-01

    Microarray analyses have become an important tool in animal genomics. While their use is becoming widespread, there is still a lot of ongoing research regarding the analysis of microarray data. In the context of a European Network of Excellence, 31 researchers representing 14 research groups from...... 10 countries performed and discussed the statistical analyses of real and simulated 2-colour microarray data that were distributed among participants. The real data consisted of 48 microarrays from a disease challenge experiment in dairy cattle, while the simulated data consisted of 10 microarrays...... statistical weights, to omitting a large number of spots or omitting entire slides. Surprisingly, these very different approaches gave quite similar results when applied to the simulated data, although not all participating groups analysed both real and simulated data. The workshop was very successful...

  17. Plugging in or Going Wireless: Strategies for Interspecies Electron Transfer

    Directory of Open Access Journals (Sweden)

    Pravin Malla Shrestha

    2014-05-01

    Full Text Available Interspecies exchange of electrons enables a diversity of microbial communities to gain energy from reactions that no one microbe can catalyze. The first recognized strategies for interspecies electron transfer were those that relied on chemical intermediates that are recycled through oxidized and reduced forms. Well-studied examples are interspecies H2 transfer and the cycling of sulfur intermediates in anaerobic photosynthetic communities. Direct interspecies electron transfer (DIET in which two species establish electrical contacts is an alternative. Electrical contacts documented to date include electrically conductive pili, as well as conductive iron minerals and conductive carbon moieties such as activated carbon and biochar. It seems likely that there are additional alternative strategies for interspecies electrical connections that have yet to be discovered. Interspecies electron transfer is central to the functioning of methane-producing microbial communities. The importance of interspecies H2 transfer in many methanogenic communities is clear, but under some circumstances DIET predominates. It is expected that further mechanistic studies and broadening investigations to a wider range of environments will help elucidate the factors that favor specific forms of interspecies electron exchange under different environmental conditions.

  18. Genome-wide copy number profiling on high-density bacterial artificial chromosomes, single-nucleotide polymorphisms, and oligonucleotide microarrays: a platform comparison based on statistical power analysis.

    NARCIS (Netherlands)

    Hehir-Kwa, J.Y.; Egmont-Peterson, M.; Janssen, I.M.; Smeets, D.F.C.M.; Geurts van Kessel, A.H.M.; Veltman, J.A.

    2007-01-01

    Recently, comparative genomic hybridization onto bacterial artificial chromosome (BAC) arrays (array-based comparative genomic hybridization) has proved to be successful for the detection of submicroscopic DNA copy-number variations in health and disease. Technological improvements to achieve a

  19. [Interspecies allometric scaling in pharmacokinetics of drugs].

    Science.gov (United States)

    Sylvia, M

    1998-11-01

    Allometric scaling is an empirical examination of the relationships between the pharmacokinetic parameters and size (usually body weight, ratio of organ- and body weight, breathing number, etc.). Interspecies pharmacokinetics tend to approximate, the organism, as the sum of organs and tissues according to material balance. The allometric equations for the pharmacokinetic parameters were applied to scale the data with respect to pharmacokinetic time and remove the chronological time dependency. When the data of at least three species are available, the pharmacokinetic parameters can be fit according to body weight in log-log regression. Allometric scaling is not applicable in all cases, only when the selected species has similar physiological behaviour, such as protein-binding, metabolism, etc. Valuable information for the evaluation of the effect and the biopharmaceutical characteristics may emerge from more creative data analysis based on all result collected during the preclinical evaluation of a new drug. Author examined the applicability of the interspecies scaling method in the case of a new drug depogen, using drotaverin as reference. The pharmacokinetic data were collected from mouse, rat and dog and during the evaluation human data were applied too. The usual pharmacokinetic parameters were determined (MRT, MAT, beta, etc.), the results of allometric analysis were collected and the standard deviation of measured and calculated values were given.

  20. MARS: Microarray analysis, retrieval, and storage system

    Directory of Open Access Journals (Sweden)

    Scheideler Marcel

    2005-04-01

    Full Text Available Abstract Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS, a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at http://genome.tugraz.at.

  1. Diagnostic and analytical applications of protein microarrays

    DEFF Research Database (Denmark)

    Dufva, Hans Martin; Christensen, C.B.V.

    2005-01-01

    years. A genome-scale protein microarray has been demonstrated for identifying protein-protein interactions as well as for rapid identification of protein binding to a particular drug. Furthermore, protein microarrays have been shown as an efficient tool in cancer profiling, detection of bacteria...... and toxins, identification of allergen reactivity and autoantibodies. They have also demonstrated the ability to measure the absolute concentration of small molecules. Besides their capacity for parallel diagnostics, microarrays can be more sensitive than traditional methods such as enzyme...... and be amenable to automation or integrated into easy-to-use systems, such as micrototal analysis systems or point-of-care devices....

  2. Plugging in or going wireless: strategies for interspecies electron transfer

    Science.gov (United States)

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena

    2014-01-01

    Interspecies exchange of electrons enables a diversity of microbial communities to gain energy from reactions that no one microbe can catalyze. The first recognized strategies for interspecies electron transfer were those that relied on chemical intermediates that are recycled through oxidized and reduced forms. Well-studied examples are interspecies H2 transfer and the cycling of sulfur intermediates in anaerobic photosynthetic communities. Direct interspecies electron transfer (DIET) in which two species establish electrical contact is an alternative. Electrical contacts documented to date include electrically conductive pili, as well as conductive iron minerals and conductive carbon moieties such as activated carbon and biochar. Interspecies electron transfer is central to the functioning of methane-producing microbial communities. The importance of interspecies H2 transfer in many methanogenic communities is clear, but under some circumstances DIET predominates. It is expected that further mechanistic studies and broadening investigations to a wider range of environments will help elucidate the factors that favor specific forms of interspecies electron exchange under different environmental conditions. PMID:24904551

  3. Microarrays, Integrated Analytical Systems

    Science.gov (United States)

    Combinatorial chemistry is used to find materials that form sensor microarrays. This book discusses the fundamentals, and then proceeds to the many applications of microarrays, from measuring gene expression (DNA microarrays) to protein-protein interactions, peptide chemistry, carbodhydrate chemistry, electrochemical detection, and microfluidics.

  4. Promoting Interspecies Electron Transfer with Biochar

    Science.gov (United States)

    Chen, Shanshan; Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Malvankar, Nikhil S.; Liu, Fanghua; Fan, Wei; Nevin, Kelly P.; Lovley, Derek R.

    2014-01-01

    Biochar, a charcoal-like product of the incomplete combustion of organic materials, is an increasingly popular soil amendment designed to improve soil fertility. We investigated the possibility that biochar could promote direct interspecies electron transfer (DIET) in a manner similar to that previously reported for granular activated carbon (GAC). Although the biochars investigated were 1000 times less conductive than GAC, they stimulated DIET in co-cultures of Geobacter metallireducens with Geobacter sulfurreducens or Methanosarcina barkeri in which ethanol was the electron donor. Cells were attached to the biochar, yet not in close contact, suggesting that electrons were likely conducted through the biochar, rather than biological electrical connections. The finding that biochar can stimulate DIET may be an important consideration when amending soils with biochar and can help explain why biochar may enhance methane production from organic wastes under anaerobic conditions. PMID:24846283

  5. Promoting interspecies electron transfer with biochar

    DEFF Research Database (Denmark)

    Chen, Shanshan; Rotaru, Amelia-Elena; Shrestha, Pravin Malla

    2014-01-01

    Biochar, a charcoal-like product of the incomplete combustion of organic materials, is an increasingly popular soil amendment designed to improve soil fertility. We investigated the possibility that biochar could promote direct interspecies electron transfer (DIET) in a manner similar...... to that previously reported for granular activated carbon (GAC). Although the biochars investigated were 1000 times less conductive than GAC, they stimulated DIET in co-cultures of Geobacter metallireducens with Geobacter sulfurreducens or Methanosarcina barkeri in which ethanol was the electron donor. Cells were...... attached to the biochar, yet not in close contact, suggesting that electrons were likely conducted through the biochar, rather than biological electrical connections. The finding that biochar can stimulate DIET may be an important consideration when amending soils with biochar and can help explain why...

  6. Interspecies modeling of inhaled particle deposition patterns

    Energy Technology Data Exchange (ETDEWEB)

    Martonen, T.B.; Zhang, Z.; Yang, Y.

    1992-01-01

    To evaluate the potential toxic effects of ambient contaminants or therapeutic effects of airborne drugs, inhalation exposure experiments can be performed with surrogate laboratory animals. Herein, an interspecies particle deposition theory is presented for physiologically based pharmacokinetic modeling. It is derived to improve animal testing protocols. The computer code describes the behavior and fate of particles in the lungs of human subjects and a selected surrogate, the laboratory rat. In the simulations CO2 is integrated with exposure chamber atmospheres, and its concentrations regulated to produce rat breathing profiles corresponding to selected levels of human physical activity. The dosimetric model is used to calculate total, compartmental (i.e., tracheobronchial and pulmonary), and localized distribution patterns of inhaled particles in rats and humans for comparable ventilatory conditions. It is demonstrated that the model can be used to predetermine the exposure conditions necessary to produce deposition patterns in rats that are equivalent to those in humans at prescribed physical activities.

  7. Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts.

    Science.gov (United States)

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-01

    The past decade's rapid progress in human pluripotent stem cell (hPSC) research has generated hope for meeting the rising demand of organ donation, which remains the only effective cure for end-stage organ failure, a major cause of death worldwide. Despite the potential, generation of transplantable organs from hPSCs using in vitro differentiation is far-fetched. An in vivo interspecies chimeric complementation strategy relying on chimeric-competent hPSCs and zygote genome editing provides an auspicious alternative for providing unlimited organ source for transplantation.

  8. Genome-wide copy number profiling on high-density bacterial artificial chromosomes, single-nucleotide polymorphisms, and oligonucleotide microarrays: a platform comparison based on statistical power analysis.

    NARCIS (Netherlands)

    Hehir-Kwa, J.Y.; Egmont-Peterson, M.; Janssen, I.M.; Smeets, D.F.C.M.; Geurts van Kessel, A.H.M.; Veltman, J.A.

    2007-01-01

    Recently, comparative genomic hybridization onto bacterial artificial chromosome (BAC) arrays (array-based comparative genomic hybridization) has proved to be successful for the detection of submicroscopic DNA copy-number variations in health and disease. Technological improvements to achieve a high

  9. Development of interspecies cloned embryos in yak and dog.

    Science.gov (United States)

    Murakami, Masao; Otoi, Takeshige; Wongsrikeao, Pimprapar; Agung, Budiyanto; Sambuu, Rentsenkhand; Suzuki, Tatsuyuki

    2005-01-01

    Interspecies nuclear transfer (NT) could be an alternative to replicate animals when supply of recipient oocytes is limited or in vitro embryo production systems are incomplete. In the present study, embryonic development was assessed following interspecies NT of donor cumulus cells derived from yak and dog into the recipient ooplasm of domestic cow. The percentages of fusion and subsequent embryo development to the eight-cell stage of interspecies NT embryos were comparable to those of intraspecies NT embryos (cow-cow NT embryos). The percentage of development to blastocysts was significantly lower (p dog-cow NT embryos, only one embryo (0.4%) developed to the blastocyst stage. These results indicate that interspecies NT embryos possess equally developmental competence to the eight-cell stage as intraspecies NT embryos, but the development to blastocysts is very low when dog somatic cells are used as the donor nuclei.

  10. Assessing Uncertainty of Interspecies Correlation Estimation Models for Aromatic Compounds

    Science.gov (United States)

    We developed Interspecies Correlation Estimation (ICE) models for aromatic compounds containing 1 to 4 benzene rings to assess uncertainty in toxicity extrapolation in two data compilation approaches. ICE models are mathematical relationships between surrogate and predicted test ...

  11. Quality Visualization of Microarray Datasets Using Circos

    Directory of Open Access Journals (Sweden)

    Martin Koch

    2012-08-01

    Full Text Available Quality control and normalization is considered the most important step in the analysis of microarray data. At present there are various methods available for quality assessments of microarray datasets. However there seems to be no standard visualization routine, which also depicts individual microarray quality. Here we present a convenient method for visualizing the results of standard quality control tests using Circos plots. In these plots various quality measurements are drawn in a circular fashion, thus allowing for visualization of the quality and all outliers of each distinct array within a microarray dataset. The proposed method is intended for use with the Affymetrix Human Genome platform (i.e., GPL 96, GPL570 and GPL571. Circos quality measurement plots are a convenient way for the initial quality estimate of Affymetrix datasets that are stored in publicly available databases.

  12. Genomic analysis of a sexually-selected character: EST sequencing and microarray analysis of eye-antennal imaginal discs in the stalk-eyed fly Teleopsis dalmanni (Diopsidae

    Directory of Open Access Journals (Sweden)

    Wang Xianhui

    2009-08-01

    Full Text Available Abstract Background Many species of stalk-eyed flies (Diopsidae possess highly-exaggerated, sexually dimorphic eye-stalks that play an important role in the mating system of these flies. Eye-stalks are increasingly being used as a model system for studying sexual selection, but little is known about the genetic mechanisms producing variation in these ornamental traits. Therefore, we constructed an EST database of genes expressed in the developing eye-antennal imaginal disc of the highly dimorphic species Teleopsis dalmanni. We used this set of genes to construct microarray slides and compare patterns of gene expression between lines of flies with divergent eyespan. Results We generated 33,229 high-quality ESTs from three non-normalized libraries made from the developing eye-stalk tissue at different developmental stages. EST assembly and annotation produced a total of 7,066 clusters comprising 3,424 unique genes with significant sequence similarity to a protein in either Drosophila melanogaster or Anopheles gambiae. Comparisons of the transcript profiles at different stages reveal a developmental shift in relative expression from genes involved in anatomical structure formation, transcription, and cell proliferation at the larval stage to genes involved in neurological processes and cuticle production during the pupal stages. Based on alignments of the EST fragments to homologous sequences in Drosophila and Anopheles, we identified 20 putative gene duplication events in T. dalmanni and numerous genes undergoing significantly faster rates of evolution in T. dalmanni relative to the other Dipteran species. Microarray experiments identified over 350 genes with significant differential expression between flies from lines selected for high and low relative eyespan but did not reveal any primary biological process or pathway that is driving the expression differences. Conclusion The catalogue of genes identified in the EST database provides a valuable

  13. The Importance of Normalization on Large and Heterogeneous Microarray Datasets

    Science.gov (United States)

    DNA microarray technology is a powerful functional genomics tool increasingly used for investigating global gene expression in environmental studies. Microarrays can also be used in identifying biological networks, as they give insight on the complex gene-to-gene interactions, ne...

  14. Review: DNA microarray technology and drug development

    Directory of Open Access Journals (Sweden)

    Sana Khan

    2010-01-01

    Full Text Available On the contrary to slow and non specific traditional drug discovery methods, DNA microarray technology could accelerate the identification of potential drugs for treating diseases like cancer, AIDS and provide fruitful results in the drug discovery. The technique provides efficient automation and maximum flexibility to the researchers and can test thousand compounds at a time. Scientists find DNA microarray useful in disease diagnosis, monitoring desired and adverse outcomes of therapeutic interventions, as well as, in the selection, assessment and quality con-trol of the potential drugs. In the current scenario, where new pathogens are expected every year, DNA microarray promises as an efficient technology to detect new organisms in a short time. Classification of carcinomas at the molecular level and prediction of how various types of tumor respond to different therapeutic agents can be made possible with the use of microarray analysis. Also, microarray technique can prove instrumental in personalized medicines development by providing microarray data of a patient which could be used for identifying diseases, treatment specific to individual and trailing disease prognosis. Microarray analysis could be beneficial in the area of molecular medicines for analysis of genetic variations and functions of genes in normal individuals and diseased conditions. The technique can give satisfactory results in single nucleotide polymorphism (SNP analysis and pharmacogenomics studies. The challenges that arise with the technology are high degree of variability with data obtained, frequent up gradation of methods and machines and lack of trained manpower. Despite this, DNA micro-array promises to be the next generation sequencer which could explain how organisms evolve and adapt looking at the whole genome. In a nutshell, Microarray technology makes it possible for molecular biologists to analyze simultaneously thousands of DNA samples and monitor their

  15. Identification of mycotoxigenic fungi using an oligonucleotide microarray

    CSIR Research Space (South Africa)

    Barros, E

    2013-01-01

    Full Text Available , numerous detection tools have been developed for the detection and analysis of various mycotoxigenic fungi. These include PCR-based assays and microarrays targeting different areas of the fungal genome depending on its application. This chapter describes...

  16. Microarray Analysis of Serum mRNA in Patients with Head and Neck Squamous Cell Carcinoma at Whole-Genome Scale

    Directory of Open Access Journals (Sweden)

    Markéta Čapková

    2014-01-01

    Full Text Available With the increasing demand for noninvasive approaches in monitoring head and neck cancer, circulating nucleic acids have been shown to be a promising tool. We focused on the global transcriptome of serum samples of head and neck squamous cell carcinoma (HNSCC patients in comparison with healthy individuals. We compared gene expression patterns of 36 samples. Twenty-four participants including 16 HNSCC patients (from 12 patients we obtained blood samples 1 year posttreatment and 8 control subjects were recruited. The Illumina HumanWG-6 v3 Expression BeadChip was used to profile and identify the differences in serum mRNA transcriptomes. We found 159 genes to be significantly changed (Storey’s P value <0.05 between normal and cancer serum specimens regardless of factors including p53 and B-cell lymphoma family members (Bcl-2, Bcl-XL. In contrast, there was no difference in gene expression between samples obtained before and after surgery in cancer patients. We suggest that microarray analysis of serum cRNA in patients with HNSCC should be suitable for refinement of early stage diagnosis of disease that can be important for development of new personalized strategies in diagnosis and treatment of tumours but is not suitable for monitoring further development of disease.

  17. A Whole-Genome Microarray Study of Arabidopis Thaliana Cell Cultures Exposed to Real and Simulated Partial-G Forces: A Comparison of Parabolic Flight and Clinostat Data

    Science.gov (United States)

    Fengler, S.; Spirer, I.; Neef, M.; Ecke, M.; Hauslage, J.; Hampp, R.

    2015-09-01

    Cell cultures of the plant model organism Arabidopsis thaliana were exposed to partial-g forces during parabolic flight and clinostat experiments (0.38 g, 0. 16 g and 0.5 g). To investigate gravity-dependent alterations in gene expression, samples were metabolically quenched and used for microarray analysis. An attempt to identify the potential threshold acceleration showed that the smaller the experienced g-force, the greater was the susceptibility of the cell cultures. Compared to short-term ~sg during a regular parabolic flight, the number of differentially expressed genes under partial-g was lower. In addition, the effect on the alteration of amounts of transcripts decreased during partial-g parabolic flight due to the sequence of the different parabolas (0.38 g, 0.16 g and ~sg). A time-dependent analysis under simulated 0.5 g indicates that adaptation occurs within minutes. Differentially expressed genes (at least 2-fold altered in expression) under real flight conditions were to some extent identical with those affected by clinorotation. The highest number of identical genes was detected within seconds of exposure to 0.38 g.

  18. Genome-wide profiling of long non-coding RNA expression patterns in the EGFR-TKI resistance of lung adenocarcinoma by microarray.

    Science.gov (United States)

    Wu, Ying; Yu, Dan-Dan; Hu, Yong; Yan, Dali; Chen, Xiu; Cao, Hai-Xia; Yu, Shao-Rong; Wang, Zhuo; Feng, Ji-Feng

    2016-06-01

    Mutations in the epidermal growth factor receptor (EGFR) make lung adenocarcinoma cells sensitive to EGFR tyrosine kinase inhibitors (TKIs). Long-term cancer therapy may cause the occurrence of acquired resistance to EGFR TKIs. Long non-coding RNAs (lncRNAs) play important roles in tumor formation, tumor metastasis and the development of EGFR-TKI resistance in lung cancer. To gain insight into the molecular mechanisms of EGFR-TKI resistance, we generated an EGFR-TKI-resistant HCC827-8-1 cell line and analyzed expression patterns by lncRNA microarray and compared it with its parental HCC827 cell line. A total of 1,476 lncRNA transcripts and 1,026 mRNA transcripts were dysregulated in the HCC827‑8-1 cells. The expression levels of 7 chosen lncRNAs were validated by real-time quantitative PCR. As indicated by functional analysis, several groups of lncRNAs may be involved in the bio-pathways associated with EGFR-TKI resistance through their cis- and/or trans‑regulation of protein-coding genes. Thus, lncRNAs may be used as novel candidate biomarkers and potential targets in EGFR-TKI therapy in the future.

  19. Numerical and structural genomic aberrations are reliably detectable in tissue microarrays of formalin-fixed paraffin-embedded tumor samples by fluorescence in-situ hybridization.

    Directory of Open Access Journals (Sweden)

    Heike Horn

    Full Text Available Few data are available regarding the reliability of fluorescence in-situ hybridization (FISH, especially for chromosomal deletions, in high-throughput settings using tissue microarrays (TMAs. We performed a comprehensive FISH study for the detection of chromosomal translocations and deletions in formalin-fixed and paraffin-embedded (FFPE tumor specimens arranged in TMA format. We analyzed 46 B-cell lymphoma (B-NHL specimens with known karyotypes for translocations of IGH-, BCL2-, BCL6- and MYC-genes. Locus-specific DNA probes were used for the detection of deletions in chromosome bands 6q21 and 9p21 in 62 follicular lymphomas (FL and six malignant mesothelioma (MM samples, respectively. To test for aberrant signals generated by truncation of nuclei following sectioning of FFPE tissue samples, cell line dilutions with 9p21-deletions were embedded into paraffin blocks. The overall TMA hybridization efficiency was 94%. FISH results regarding translocations matched karyotyping data in 93%. As for chromosomal deletions, sectioning artefacts occurred in 17% to 25% of cells, suggesting that the proportion of cells showing deletions should exceed 25% to be reliably detectable. In conclusion, FISH represents a robust tool for the detection of structural as well as numerical aberrations in FFPE tissue samples in a TMA-based high-throughput setting, when rigorous cut-off values and appropriate controls are maintained, and, of note, was superior to quantitative PCR approaches.

  20. Numerical and structural genomic aberrations are reliably detectable in tissue microarrays of formalin-fixed paraffin-embedded tumor samples by fluorescence in-situ hybridization.

    Science.gov (United States)

    Horn, Heike; Bausinger, Julia; Staiger, Annette M; Sohn, Maximilian; Schmelter, Christopher; Gruber, Kim; Kalla, Claudia; Ott, M Michaela; Rosenwald, Andreas; Ott, German

    2014-01-01

    Few data are available regarding the reliability of fluorescence in-situ hybridization (FISH), especially for chromosomal deletions, in high-throughput settings using tissue microarrays (TMAs). We performed a comprehensive FISH study for the detection of chromosomal translocations and deletions in formalin-fixed and paraffin-embedded (FFPE) tumor specimens arranged in TMA format. We analyzed 46 B-cell lymphoma (B-NHL) specimens with known karyotypes for translocations of IGH-, BCL2-, BCL6- and MYC-genes. Locus-specific DNA probes were used for the detection of deletions in chromosome bands 6q21 and 9p21 in 62 follicular lymphomas (FL) and six malignant mesothelioma (MM) samples, respectively. To test for aberrant signals generated by truncation of nuclei following sectioning of FFPE tissue samples, cell line dilutions with 9p21-deletions were embedded into paraffin blocks. The overall TMA hybridization efficiency was 94%. FISH results regarding translocations matched karyotyping data in 93%. As for chromosomal deletions, sectioning artefacts occurred in 17% to 25% of cells, suggesting that the proportion of cells showing deletions should exceed 25% to be reliably detectable. In conclusion, FISH represents a robust tool for the detection of structural as well as numerical aberrations in FFPE tissue samples in a TMA-based high-throughput setting, when rigorous cut-off values and appropriate controls are maintained, and, of note, was superior to quantitative PCR approaches.

  1. Expression profile analysis of the oxygen response in the nitrogen-fixing Pseudomonas stutzeri A1501 by genome-wide DNA microarray

    Institute of Scientific and Technical Information of China (English)

    DOU YueTan; YAN YongLiang; PING ShuZhen; LU Wei; CHEN Ming; ZHANG Wei; WANG YiPing; JIN Qi; LIN Min

    2008-01-01

    Pseudomonas stutzeri A1501, an associative nitrogen-fixing bacterium, was isolated from the rice paddy rhizosphere. This bacterium fixes nitrogen under microaerobic conditions. In this study, ge-nome-wide DNA microarrays were used to analyze the global transcription profile of A1501 under aerobic and microaerobic conditions. The expression of 135 genes was significantly altered by more than 2-fold in response to oxygen stress. Among these genes, 68 were down-regulated under aerobic conditions; these genes included those responsible for nitrogen fixation and denitrification. Sixty-seven genes were up-regulated under aerobic conditions; these genes included sodC, encoding a copper-zinc superoxide dismutase, PST2179, encoding an NAD(P)-dependent oxidoreductase, PST3584, encoding a 2OG-Fe(Ⅱ) oxygenase, and PST3602, encoding an NAD(P)H-flavin oxidoreductase. Addi-tionally, seven genes involved in capsular polysaccharide and antigen oligosaccharide biosynthesis together with 17 genes encoding proteins of unknown function were up-regulated under aerobic con-ditions. The overall analysis suggests that the genes we identified are involved in the protection of the bacterium from oxygen, but the mechanisms of their action remain to be elucidated.

  2. Genomic response to Wnt signalling is highly context-dependent - Evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets

    Energy Technology Data Exchange (ETDEWEB)

    Railo, Antti [Oulu Centre for Cell Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology and Department of Medical Biochemistry and Molecular Biology, FIN-90014, University of Oulu, P. O. Box 5000 (Finland); Pajunen, Antti [Department of Biochemistry, University of Oulu (Finland); Itaeranta, Petri; Naillat, Florence; Vuoristo, Jussi; Kilpelaeinen, Pekka [Oulu Centre for Cell Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology and Department of Medical Biochemistry and Molecular Biology, FIN-90014, University of Oulu, P. O. Box 5000 (Finland); Vainio, Seppo, E-mail: Seppo.Vainio@oulu.fi [Oulu Centre for Cell Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology and Department of Medical Biochemistry and Molecular Biology, FIN-90014, University of Oulu, P. O. Box 5000 (Finland)

    2009-10-01

    Wnt proteins are important regulators of embryonic development, and dysregulated Wnt signalling is involved in the oncogenesis of several human cancers. Our knowledge of the downstream target genes is limited, however. We used a chromatin immunoprecipitation-based assay to isolate and characterize the actual gene segments through which Wnt-activatable transcription factors, TCFs, regulate transcription and an Affymetrix microarray analysis to study the global transcriptional response to the Wnt3a ligand. The anti-{beta}-catenin immunoprecipitation of DNA-protein complexes from mouse NIH3T3 fibroblasts expressing a fusion protein of {beta}-catenin and TCF7 resulted in the identification of 92 genes as putative TCF targets. GeneChip assays of gene expression performed on NIH3T3 cells and the rat pheochromocytoma cell line PC12 revealed 355 genes in NIH3T3 and 129 genes in the PC12 cells with marked changes in expression after Wnt3a stimulus. Only 2 Wnt-regulated genes were shared by both cell lines. Surprisingly, Disabled-2 was the only gene identified by the chromatin immunoprecipitation approach that displayed a marked change in expression in the GeneChip assay. Taken together, our approaches give an insight into the complex context-dependent nature of Wnt pathway transcriptional responses and identify Disabled-2 as a potential new direct target for Wnt signalling.

  3. Towards standardization of microarray-based genotyping of Salmonella

    DEFF Research Database (Denmark)

    Löfström, Charlotta; Grønlund, Hugo Ahlm; Riber, Leise

    2010-01-01

    Genotyping is becoming an increasingly important tool to improve risk assessments of Salmonella. DNA microarray technology is a promising diagnostic tool that can provide high resolution genomic profile of many genes simultaneously. However, standardization of DNA microarray analysis is needed...... of Salmonella at two different laboratories. The low-density array contained 281 of 57-60-mer oligonucleotide probes for detecting a wide range of specific genomic markers associated with antibiotic resistance, cell envelope structures, mobile genetic elements and pathogenicity. Several test parameters...... for a decentralized and simple-to-implement DNA microarray as part of a pan-European source-attribution model for risk assessment of Salmonella....

  4. Interspecies variation in axon-myelin relationships.

    Science.gov (United States)

    Fraher, J P; O'Sullivan, A W

    2000-01-01

    The primary objective of this paper was to determine the extent and nature of interspecies differences in axon calibre and myelin sheath thickness and in the various relationships between these. Morphometric analysis of the axon perimeter-myelin sheath thickness relationship was performed on an equivalent nerve fibre population in a mammal, the rat, a bird, the chicken, an amphibian, the frog, a bony fish, the trout, and a cartilaginous fish, the dogfish. The abducent nerve was studied. It is especially suitable for this purpose because its fibres are closely similar in type and in peripheral distribution across the species studied. The relationship differed substantially between species. Differences were present in its setting, as described by the positions of the scatterplots, in the g ratio and in the regression and correlation data relating the parameters. Both parameters were markedly larger in the fish species than in all of the others. In addition, in rat, chicken, frog and trout, where large and small fibre classes could be differentiated clearly, the setting of the relationship between the two parameters was different for the two classes. In the main, variation in each of the parameters was greater between than within species. The larger fibres in the fish species were closely similar in axon perimeter and sheath thickness despite their long evolutionary separation. From this study and from others in the series, it may be concluded that there is no fixed or constant relationship between axon calibre and the thickness of the surrounding myelin sheath. Each nerve tends to have its own particular relationship and this differs between species.

  5. Extended -Regular Sequence for Automated Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jin Hee-Jeong

    2006-01-01

    Full Text Available Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indispensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome manual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First, we propose the extended -regular sequence to index blocks and spots, which enables a novel automatic gridding procedure. Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial tools.

  6. Single-species microarrays and comparative transcriptomics.

    Directory of Open Access Journals (Sweden)

    Frédéric J J Chain

    Full Text Available BACKGROUND: Prefabricated expression microarrays are currently available for only a few species but methods have been proposed to extend their application to comparisons between divergent genomes. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that the hybridization intensity of genomic DNA is a poor basis on which to select unbiased probes on Affymetrix expression arrays for studies of comparative transcriptomics, and that doing so produces spurious results. We used the Affymetrix Xenopus laevis microarray to evaluate expression divergence between X. laevis, X. borealis, and their F1 hybrids. When data are analyzed with probes that interrogate only sequences with confirmed identity in both species, we recover results that differ substantially analyses that use genomic DNA hybridizations to select probes. CONCLUSIONS/SIGNIFICANCE: Our findings have implications for the experimental design of comparative expression studies that use single-species microarrays, and for our understanding of divergent expression in hybrid clawed frogs. These findings also highlight important limitations of single-species microarrays for studies of comparative transcriptomics of polyploid species.

  7. Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant.

    Science.gov (United States)

    Kim, Byoung-Chan; Postier, Bradley L; Didonato, Raymond J; Chaudhuri, Swades K; Nevin, Kelly P; Lovley, Derek R

    2008-06-01

    Geobacter sulfurreducens effectively produces electricity in microbial fuel cells by oxidizing acetate with an electrode serving as the sole electron acceptor. Deletion of the gene encoding OmcF, a monoheme outer membrane c-type cytochrome, substantially decreased current production. Previous studies demonstrated that inhibition of Fe(III) reduction in the OmcF-deficient mutant could be attributed to poor transcription of the gene for OmcB, an outer membrane c-type cytochrome that is required for Fe(III) reduction. However, a mutant in which omcB was deleted produced electricity as well as wild type. Microarray analysis of the OmcF-deficient mutant versus the wild type revealed that many of the genes with the greatest decreases in transcript levels were genes whose expression was previously reported to be upregulated in cells grown with an electrode as the sole electron acceptor. These included genes with putative functions related to metal efflux and/or type I secretion and two hypothetical proteins. The outer membrane cytochromes, OmcS and OmcE, which previous studies have demonstrated are required for optimal current generation, were not detected on the outer surface of the OmcF-deficient mutant even though the omcS and omcE genes were still transcribed, suggesting that the putative secretion system could be involved in the export of outer membrane proteins necessary for electron transfer to the fuel cell anode. These results suggest that the requirement for OmcF for optimal current production is not because OmcF is directly involved in extracellular electron transfer but because OmcF is required for the appropriate transcription of other genes either directly or indirectly involved in electricity production.

  8. Diagnostic and analytical applications of protein microarrays

    DEFF Research Database (Denmark)

    Dufva, Hans Martin; Christensen, C.B.V.

    2005-01-01

    -linked immunosorbent assay, mass spectrometry or high-performance liquid chromatography-based assays. However, for protein and antibody arrays to be successfully introduced into diagnostics, the biochemistry of immunomicroarrays must be better characterized and simplified, they must be validated in a clinical setting...... years. A genome-scale protein microarray has been demonstrated for identifying protein-protein interactions as well as for rapid identification of protein binding to a particular drug. Furthermore, protein microarrays have been shown as an efficient tool in cancer profiling, detection of bacteria...

  9. Facilitating functional annotation of chicken microarray data

    Directory of Open Access Journals (Sweden)

    Gresham Cathy R

    2009-10-01

    Full Text Available Abstract Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO. However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and

  10. Rare copy number alterations and copy-neutral loss of heterozygosity revealed in ameloblastomas by high-density whole-genome microarray analysis

    DEFF Research Database (Denmark)

    Diniz, Marina Gonçalves; Duarte, Alessandra Pires; Villacis, Rolando A

    2017-01-01

    BACKGROUND: Ameloblastoma (unicystic, UA, or multicystic, MA) is a rare tumor associated with bone destruction and facial deformity. Its malignant counterpart is the ameloblastic carcinoma (AC). The BRAFV600E mutation is highly prevalent in all these tumors subtypes and cannot account for their d......BACKGROUND: Ameloblastoma (unicystic, UA, or multicystic, MA) is a rare tumor associated with bone destruction and facial deformity. Its malignant counterpart is the ameloblastic carcinoma (AC). The BRAFV600E mutation is highly prevalent in all these tumors subtypes and cannot account......, and PPP2R5A) covered by rare alterations, also including three MA and four normal oral tissues. RESULTS: Fifty-seven CNAs and cnLOH were observed in the ameloblastomas and six CNAs in the AC. Seven of the CNAs were rare (six in UA and one in MA), four of them encompassing genes (gains of 7q11.21, 1q32......: Ameloblastomas show rare CNAs and cnLOH, presenting a specific genomic profile with no overlapping of the rare alterations among UA, MA, and AC. These genomic changes might play a role in tumor evolution and in BRAFV600E-negative tumors....

  11. Microarray Analysis in Glioblastomas

    Science.gov (United States)

    Bhawe, Kaumudi M.; Aghi, Manish K.

    2016-01-01

    Microarray analysis in glioblastomas is done using either cell lines or patient samples as starting material. A survey of the current literature points to transcript-based microarrays and immunohistochemistry (IHC)-based tissue microarrays as being the preferred methods of choice in cancers of neurological origin. Microarray analysis may be carried out for various purposes including the following: To correlate gene expression signatures of glioblastoma cell lines or tumors with response to chemotherapy (DeLay et al., Clin Cancer Res 18(10):2930–2942, 2012)To correlate gene expression patterns with biological features like proliferation or invasiveness of the glioblastoma cells (Jiang et al., PLoS One 8(6):e66008, 2013)To discover new tumor classificatory systems based on gene expression signature, and to correlate therapeutic response and prognosis with these signatures (Huse et al., Annu Rev Med 64(1):59–70, 2013; Verhaak et al., Cancer Cell 17(1):98–110, 2010) While investigators can sometimes use archived tumor gene expression data available from repositories such as the NCBI Gene Expression Omnibus to answer their questions, new arrays must often be run to adequately answer specific questions. Here, we provide a detailed description of microarray methodologies, how to select the appropriate methodology for a given question, and analytical strategies that can be used. Experimental methodology for protein microarrays is outside the scope of this chapter, but basic sample preparation techniques for transcript-based microarrays are included here. PMID:26113463

  12. Interspecies stress in momentum equations for dense binary particulate systems.

    Science.gov (United States)

    Zhang, D Z; Ma, X; Rauenzahn, R M

    2006-07-28

    For two-species particulate systems, ensemble averaged continuity and momentum equations for each species are derived based on the Liouville equation of the system. The ensemble average used is species specific. It is found that the interaction between species results in not only the interspecies force but also a stress in the momentum equations. In the limit that particles of one of the species can be considered as a continuum, the existence of the interspecies stress enables us to reduce the derived equations to the familiar form for dispersed two-phase flows.

  13. Promoting direct interspecies electron transfer with activated carbon

    DEFF Research Database (Denmark)

    Liu, Fanghua; Rotaru, Amelia-Elena; Shrestha, Pravin M.

    2012-01-01

    of methanogenesis might be to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens. Metabolism was substantially accelerated when GAC was added to co-cultures of Geobacter metallireducens and Geobacter sulfurreducens grown under conditions previously shown to require DIET. Cells...... were attached to GAC, but did not aggregate as they do when making biological electrical connections between cells. Studies with a series of gene deletion mutants eliminated the possibility that GAC promoted electron exchange via interspecies hydrogen or formate transfer and demonstrated that DIET...

  14. Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site

    Directory of Open Access Journals (Sweden)

    Zhou Jizhong

    2007-06-01

    Full Text Available Abstract Background Groundwater and subsurface environments contaminated with aromatic compounds can be remediated in situ by Geobacter species that couple oxidation of these compounds to reduction of Fe(III-oxides. Geobacter metallireducens metabolizes many aromatic compounds, but the enzymes involved are not well known. Results The complete G. metallireducens genome contained a 300 kb island predicted to encode enzymes for the degradation of phenol, p-cresol, 4-hydroxybenzaldehyde, 4-hydroxybenzoate, benzyl alcohol, benzaldehyde, and benzoate. Toluene degradation genes were encoded in a separate region. None of these genes was found in closely related species that cannot degrade aromatic compounds. Abundant transposons and phage-like genes in the island suggest mobility, but nucleotide composition and lack of synteny with other species do not suggest a recent transfer. The inferred degradation pathways are similar to those in species that anaerobically oxidize aromatic compounds with nitrate as an electron acceptor. In these pathways the aromatic compounds are converted to benzoyl-CoA and then to 3-hydroxypimelyl-CoA. However, in G. metallireducens there were no genes for the energetically-expensive dearomatizing enzyme. Whole-genome changes in transcript levels were identified in cells oxidizing benzoate. These supported the predicted pathway, identified induced fatty-acid oxidation genes, and identified an apparent shift in the TCA cycle to a putative ATP-yielding succinyl-CoA synthase. Paralogs to several genes in the pathway were also induced, as were several putative molybdo-proteins. Comparison of the aromatics degradation pathway genes to the genome of an isolate from a contaminated field site showed very similar content, and suggested this strain degrades many of the same compounds. This strain also lacked a classical dearomatizing enzyme, but contained two copies of an eight-gene cluster encoding redox proteins that was 30-fold

  15. A genome-wide association study of social and non-social autistic-like traits in the general population using pooled DNA, 500 K SNP microarrays and both community and diagnosed autism replication samples.

    Science.gov (United States)

    Ronald, Angelica; Butcher, Lee M; Docherty, Sophia; Davis, Oliver S P; Schalkwyk, Leonard C; Craig, Ian W; Plomin, Robert

    2010-01-01

    Two separate genome-wide association studies were conducted to identify single nucleotide polymorphisms (SNPs) associated with social and nonsocial autistic-like traits. We predicted that we would find SNPs associated with social and non-social autistic-like traits and that different SNPs would be associated with social and nonsocial. In Stage 1, each study screened for allele frequency differences in approximately 430,000 autosomal SNPs using pooled DNA on microarrays in high-scoring versus low-scoring boys from a general population sample (N = approximately 400/group). In Stage 2, 22 and 20 SNPs in the social and non-social studies, respectively, were tested for QTL association by individually genotyping an independent community sample of 1,400 boys. One SNP (rs11894053) was nominally associated (P < .05, uncorrected for multiple testing) with social autistic-like traits. When the sample was increased by adding females, 2 additional SNPs were nominally significant (P < .05). These 3 SNPs, however, showed no significant association in transmission disequilibrium analyses of diagnosed ASD families.

  16. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-05-17

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  17. An ANOCEF genomic and transcriptomic microarray study of the response to radiotherapy or to alkylating first-line chemotherapy in glioblastoma patients

    Directory of Open Access Journals (Sweden)

    Ducray François

    2010-09-01

    Full Text Available Abstract Background The molecular characteristics associated with the response to treatment in glioblastomas (GBMs remain largely unknown. We performed a retrospective study to assess the genomic characteristics associated with the response of GBMs to either first-line chemotherapy or radiation therapy. The gene expression (n = 56 and genomic profiles (n = 67 of responders and non-responders to first-line chemotherapy or radiation therapy alone were compared on Affymetrix Plus 2 gene expression arrays and BAC CGH arrays. Results According to Verhaak et al.'s classification system, mesenchymal GBMs were more likely to respond to radiotherapy than to first-line chemotherapy, whereas classical GBMs were more likely to respond to first-line chemotherapy than to radiotherapy. In patients treated with radiation therapy alone, the response was associated with differential expression of microenvironment-associated genes; the expression of hypoxia-related genes was associated with short-term progression-free survival ( 10 months. Consistently, infiltration of the tumor by both CD3 and CD68 cells was significantly more frequent in responders to radiotherapy than in non-responders. In patients treated with first-line chemotherapy, the expression of stem-cell genes was associated with resistance to chemotherapy, and there was a significant association between response to treatment and p16 locus deletions. Consistently, in an independent data set of patients treated with either radiotherapy alone or with both radiotherapy and adjuvant chemotherapy, we found that patients with the p16 deletion benefited from adjuvant chemotherapy regardless of their MGMT promoter methylation status, whereas in patients without the p16 deletion, this benefit was only observed in patients with a methylated MGMT promoter. Conclusion Differential expression of microenvironment genes and p16 locus deletion are associated with responses to radiation therapy and to first

  18. Genome-wide identification of gene expression in the epididymis of infertile rat induced by alpha-chlorohydrin using oligonucleotide microarray

    Institute of Scientific and Technical Information of China (English)

    XIE Shu-wu; ZHU Yan; MA Li; LI Zhi-ling; GUI You-lun; LU Ying-ying; ZHAO Zhi-fang; CAO Lin

    2008-01-01

    Objective To establish a rat model of sterility associated with epididymis and epididymal gene expression profiles relation to fertility by alpha-chlorohydrin. Methods Rats were treated with 10 mg·kg-1. d-1. alpha-chlorohydrin for 10 consecutive days. Sperm maturation and other fertility parameters were analyzed. The sperm motility and morphology were evaluated by computer-assisted sperm analysis (CASA);sperm survival rate was assessed by SYBR-14 and propidium iodide (PI) fluorescent staining; the weights of testes, epididymides, prostates and seminal vesicles were determined by electronic balance; histological examination of above tissues were evaluated by HE staining;and serumal dihydrotestosterone (DHT) and testosterone (T) of rats were detected by enzyme-labeled immunoassay. Each male rat was paired with 2 female rats in proestrus. Female rats were examined the next morning for the presence of sperm in vaginal smears and underwent a cesarean section on day 12 of gestation. Finally the reproductive indices were calculated as follows: copulation index (number of sperm positive females / number of pairings), pregnancy index (number of pregnancies / number of sperm positive females), and fertility index (number of pregnancies / number of pairings). After that we used Affymetrix Rat 230 2.0 oligo-microarray to identify epididymal special genes associated with fertility. Finally, we validated some of these genes by Real-Time quantitative polymerase chain reaction. Results The motility of spermatozoa from the cauda epididymidis of treated rats showed a significant decrease in percentage of motile, progressively motile sperm, and sperm survival rate. At the same time, the morphology of cauda epididymal spermatozoa was also adversely affected by the treatment. In addition, the serumal androgen levels of treated animals weren' t changed compared with the control group. Accordingly, matings with treated males resulted in no successful pregnancy. Then, we classified

  19. A whole-genome microarray study of Arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on board of Shenzhou 8.

    Science.gov (United States)

    Fengler, Svenja; Spirer, Ina; Neef, Maren; Ecke, Margret; Nieselt, Kay; Hampp, Rüdiger

    2015-01-01

    The Simbox mission was the first joint space project between Germany and China in November 2011. Eleven-day-old Arabidopsis thaliana wild type semisolid callus cultures were integrated into fully automated plant cultivation containers and exposed to spaceflight conditions within the Simbox hardware on board of the spacecraft Shenzhou 8. The related ground experiment was conducted under similar conditions. The use of an in-flight centrifuge provided a 1 g gravitational field in space. The cells were metabolically quenched after 5 days via RNAlater injection. The impact on the Arabidopsis transcriptome was investigated by means of whole-genome gene expression analysis. The results show a major impact of nonmicrogravity related spaceflight conditions. Genes that were significantly altered in transcript abundance are mainly involved in protein phosphorylation and MAPK cascade-related signaling processes, as well as in the cellular defense and stress responses. In contrast to short-term effects of microgravity (seconds, minutes), this mission identified only minor changes after 5 days of microgravity. These concerned genes coding for proteins involved in the plastid-associated translation machinery, mitochondrial electron transport, and energy production.

  20. A Whole-Genome Microarray Study of Arabidopsis thaliana Semisolid Callus Cultures Exposed to Microgravity and Nonmicrogravity Related Spaceflight Conditions for 5 Days on Board of Shenzhou 8

    Directory of Open Access Journals (Sweden)

    Svenja Fengler

    2015-01-01

    Full Text Available The Simbox mission was the first joint space project between Germany and China in November 2011. Eleven-day-old Arabidopsis thaliana wild type semisolid callus cultures were integrated into fully automated plant cultivation containers and exposed to spaceflight conditions within the Simbox hardware on board of the spacecraft Shenzhou 8. The related ground experiment was conducted under similar conditions. The use of an in-flight centrifuge provided a 1 g gravitational field in space. The cells were metabolically quenched after 5 days via RNAlater injection. The impact on the Arabidopsis transcriptome was investigated by means of whole-genome gene expression analysis. The results show a major impact of nonmicrogravity related spaceflight conditions. Genes that were significantly altered in transcript abundance are mainly involved in protein phosphorylation and MAPK cascade-related signaling processes, as well as in the cellular defense and stress responses. In contrast to short-term effects of microgravity (seconds, minutes, this mission identified only minor changes after 5 days of microgravity. These concerned genes coding for proteins involved in the plastid-associated translation machinery, mitochondrial electron transport, and energy production.

  1. Genome-wide microarray-based analysis of miRNAs expression in patients with acute-on-chronic liver failure

    Institute of Scientific and Technical Information of China (English)

    Wen Chen; Ze-Hui Yan; Yu-Ming Wang; Bao-Yan Xu; Guo-Hong Deng

    2014-01-01

    BACKGROUND: Acute-on-chronic liver failure (ACLF) is a severe clinical syndrome that may cause a high mortality. However, the mechanism is still not clear. Characterization of the microRNA (miRNA) proifles in ACLF patients may provide new clues to the pathogenesis and management of this syndrome. METHODS: Genome-wide  microarray  was  performed  to compare the different miRNA expression proifles in peripheral blood mononuclear cells of a pair of monozygotic twins, an ACLF patient and an HBV asymptomatic carrier (AsC). The case-control miRNA proifles were compared and conifrmed by quantitative reverse transcription-polymerase chain reaction in 104 ACLF patients and 96 AsCs. A combined computational prediction algorithm was used to predict the potential target genes. RESULTS: Forty-ifve miRNAs were increased and eight miRNAs were decreased in the ACLF group. The expressions of hsa-let-7a and hsa-miR-16 were increased by 8.58- and 8.63-fold in ACLF patients compared with that in AsCs, respectively (P CONCLUSIONS: Our  results  showed  that  there  is  a  close relationship  between  speciifc  miRNAs  of  peripheral  blood mononuclear cells and ACLF. hsa-miR-16 and hsa-let-7a may contribute to the development of ACLF.

  2. Ultrastructural changes in goat interspecies and intraspecies reconstructed early embryos

    DEFF Research Database (Denmark)

    Tao, Yong; Gheng, Lizi; Zhang, Meiling

    2008-01-01

    The low efficiency of somatic cell nuclear transfer may be related to the ultrastructural deviations of reconstructed embryos. The present study investigated ultrastructural differences between in vivo-produced and cloned goat embryos, including intra- and interspecies embryos. Goat ear fibroblast...

  3. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Liu, Fanghua;

    2014-01-01

    Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri, to participate in DIET was evaluated in co-culture with Geobacter...

  4. Analysis of antisense expression by whole genome tiling microarrays and siRNAs suggests mis-annotation of Arabidopsis orphan protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Casey R Richardson

    Full Text Available BACKGROUND: MicroRNAs (miRNAs and trans-acting small-interfering RNAs (tasi-RNAs are small (20-22 nt long RNAs (smRNAs generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery. PRINCIPAL FINDINGS: We explored rice (Oryza sativa sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis 'orphan' hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the "ancient" (deeply conserved class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for "new" rapidly-evolving MIRNA genes. CONCLUSIONS: Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non

  5. Protein microarray applications: Autoantibody detection and posttranslational modification.

    Science.gov (United States)

    Atak, Apurva; Mukherjee, Shuvolina; Jain, Rekha; Gupta, Shabarni; Singh, Vedita Anand; Gahoi, Nikita; K P, Manubhai; Srivastava, Sanjeeva

    2016-10-01

    The discovery of DNA microarrays was a major milestone in genomics; however, it could not adequately predict the structure or dynamics of underlying protein entities, which are the ultimate effector molecules in a cell. Protein microarrays allow simultaneous study of thousands of proteins/peptides, and various advancements in array technologies have made this platform suitable for several diagnostic and functional studies. Antibody arrays enable researchers to quantify the abundance of target proteins in biological fluids and assess PTMs by using the antibodies. Protein microarrays have been used to assess protein-protein interactions, protein-ligand interactions, and autoantibody profiling in various disease conditions. Here, we summarize different microarray platforms with focus on its biological and clinical applications in autoantibody profiling and PTM studies. We also enumerate the potential of tissue microarrays to validate findings from protein arrays as well as other approaches, highlighting their significance in proteomics.

  6. Dynamic evolution of Rht-1 homologous regions in grass genomes

    Science.gov (United States)

    Bread wheat contains A, B, and D subgenomes with its well characterized ancestral genomes that exist at the diploid and tetraploid levels. Therefore, the wheat genome system acts as a model specie for studying genome evolutionary dynamics. Here, we performed intra- and inter-species comparative ana...

  7. Preimplantation genetic screening for all 24 chromosomes by microarray comparative genomic hybridization significantly increases implantation rates and clinical pregnancy rates in patients undergoing in vitro fertilization with poor prognosis

    Directory of Open Access Journals (Sweden)

    Gaurav Majumdar

    2016-01-01

    Full Text Available CONTEXT: A majority of human embryos produced in vitro are aneuploid, especially in couples undergoing in vitro fertilization (IVF with poor prognosis. Preimplantation genetic screening (PGS for all 24 chromosomes has the potential to select the most euploid embryos for transfer in such cases. AIM: To study the efficacy of PGS for all 24 chromosomes by microarray comparative genomic hybridization (array CGH in Indian couples undergoing IVF cycles with poor prognosis. SETTINGS AND DESIGN: A retrospective, case–control study was undertaken in an institution-based tertiary care IVF center to compare the clinical outcomes of twenty patients, who underwent 21 PGS cycles with poor prognosis, with 128 non-PGS patients in the control group, with the same inclusion criterion as for the PGS group. MATERIALS AND METHODS: Single cells were obtained by laser-assisted embryo biopsy from day 3 embryos and subsequently analyzed by array CGH for all 24 chromosomes. Once the array CGH results were available on the morning of day 5, only chromosomally normal embryos that had progressed to blastocyst stage were transferred. RESULTS: The implantation rate and clinical pregnancy rate (PR per transfer were found to be significantly higher in the PGS group than in the control group (63.2% vs. 26.2%, P = 0.001 and 73.3% vs. 36.7%, P = 0.006, respectively, while the multiple PRs sharply declined from 31.9% to 9.1% in the PGS group. CONCLUSIONS: In this pilot study, we have shown that PGS by array CGH can improve the clinical outcome in patients undergoing IVF with poor prognosis.

  8. Review: DNA Microarray Technology and Drug Development

    Directory of Open Access Journals (Sweden)

    Sushma Drabu

    2010-01-01

    genome. In a nutshell, Microarray technology makes it possible for molecular biologists to analyze

simultaneously thousands of DNA samples and monitor their behavior patterns, which brings about a tremendous
improvement over the tedious "one gene per experiment” technology that prevailed previously.

  • Unraveling the Rat Intestine, Spleen and Liver Genome-Wide Transcriptome after the Oral Administration of Lavender Oil by a Two-Color Dye-Swap DNA Microarray Approach.

    Directory of Open Access Journals (Sweden)

    Hiroko Kubo

    Full Text Available The use of lavender oil (LO--a commonly, used oil in aromatherapy, with well-defined volatile components linalool and linalyl acetate--in non-traditional medicine is increasing globally. To understand and demonstrate the potential positive effects of LO on the body, we have established an animal model in this current study, investigating the orally administered LO effects genome wide in the rat small intestine, spleen, and liver. The rats were administered LO at 5 mg/kg (usual therapeutic dose in humans followed by the screening of differentially expressed genes in the tissues, using a 4×44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA in conjunction with a dye-swap approach, a novelty of this study. Fourteen days after LO treatment and compared with a control group (sham, a total of 156 and 154 up (≧ 1.5-fold- and down (≦ 0.75-fold-regulated genes, 174 and 66 up- (≧ 1.5-fold- and down (≦ 0.75-fold-regulated genes, and 222 and 322 up- (≧ 1.5-fold- and down (≦ 0.75-fold-regulated genes showed differential expression at the mRNA level in the small intestine, spleen and liver, respectively. The reverse transcription-polymerase chain reaction (RT-PCR validation of highly up- and down-regulated genes confirmed the regulation of the Papd4, Lrp1b, Alb, Cyr61, Cyp2c, and Cxcl1 genes by LO as examples in these tissues. Using bioinformatics, including Ingenuity Pathway Analysis (IPA, differentially expressed genes were functionally categorized by their Gene Ontology (GO and biological function and network analysis, revealing their diverse functions and potential roles in LO-mediated effects in rat. Further IPA analysis in particular unraveled the presence of novel genes, such as Papd4, Or8k5, Gprc5b, Taar5, Trpc6, Pld2 and Onecut3 (up-regulated top molecules and Tnf, Slc45a4, Slc25a23 and Samt4 (down-regulated top molecules, to be influenced by LO treatment in the small intestine, spleen and

  • Unraveling the Rat Intestine, Spleen and Liver Genome-Wide Transcriptome after the Oral Administration of Lavender Oil by a Two-Color Dye-Swap DNA Microarray Approach.

    Science.gov (United States)

    Kubo, Hiroko; Shibato, Junko; Saito, Tomomi; Ogawa, Tetsuo; Rakwal, Randeep; Shioda, Seiji

    2015-01-01

    The use of lavender oil (LO)--a commonly, used oil in aromatherapy, with well-defined volatile components linalool and linalyl acetate--in non-traditional medicine is increasing globally. To understand and demonstrate the potential positive effects of LO on the body, we have established an animal model in this current study, investigating the orally administered LO effects genome wide in the rat small intestine, spleen, and liver. The rats were administered LO at 5 mg/kg (usual therapeutic dose in humans) followed by the screening of differentially expressed genes in the tissues, using a 4×44-K whole-genome rat chip (Agilent microarray platform; Agilent Technologies, Palo Alto, CA, USA) in conjunction with a dye-swap approach, a novelty of this study. Fourteen days after LO treatment and compared with a control group (sham), a total of 156 and 154 up (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, 174 and 66 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes, and 222 and 322 up- (≧ 1.5-fold)- and down (≦ 0.75-fold)-regulated genes showed differential expression at the mRNA level in the small intestine, spleen and liver, respectively. The reverse transcription-polymerase chain reaction (RT-PCR) validation of highly up- and down-regulated genes confirmed the regulation of the Papd4, Lrp1b, Alb, Cyr61, Cyp2c, and Cxcl1 genes by LO as examples in these tissues. Using bioinformatics, including Ingenuity Pathway Analysis (IPA), differentially expressed genes were functionally categorized by their Gene Ontology (GO) and biological function and network analysis, revealing their diverse functions and potential roles in LO-mediated effects in rat. Further IPA analysis in particular unraveled the presence of novel genes, such as Papd4, Or8k5, Gprc5b, Taar5, Trpc6, Pld2 and Onecut3 (up-regulated top molecules) and Tnf, Slc45a4, Slc25a23 and Samt4 (down-regulated top molecules), to be influenced by LO treatment in the small intestine, spleen and liver

  • Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Liu, Fanghua

    2014-01-01

    Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri, to participate in DIET was evaluated in co-culture with Geobacter...... metallireducens. Co-cultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Co-cultures could not be initiated with a pilin-deficient G. metallireducens, suggesting that long-range electron transfer along pili was important for DIET. Amendments...... physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable, making...

  • Explaining dehumanization among children: the interspecies model of prejudice.

    Science.gov (United States)

    Costello, Kimberly; Hodson, Gordon

    2014-03-01

    Although many theoretical approaches have emerged to explain prejudices expressed by children, none incorporate outgroup dehumanization, a key predictor of prejudice among adults. According to the Interspecies Model of Prejudice, beliefs in the human-animal divide facilitate outgroup prejudice through fostering animalistic dehumanization (Costello & Hodson, 2010). In the present investigation, White children attributed Black children fewer 'uniquely human' characteristics, representing the first systematic evidence of racial dehumanization among children (Studies 1 and 2). In Study 2, path analyses supported the Interspecies Model of Prejudice: children's human-animal divide beliefs predicted greater racial prejudice, an effect explained by heightened racial dehumanization. Similar patterns emerged among parents. Furthermore, parent Social Dominance Orientation predicted child prejudice indirectly through children's endorsement of a hierarchical human-animal divide and subsequent dehumanizing tendencies. Encouragingly, children's human-animal divide perceptions were malleable to an experimental prime highlighting animal-human similarity. Implications for prejudice interventions are considered.

  • Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications.

    Science.gov (United States)

    Cheng, Qiwen; Call, Douglas F

    2016-08-10

    Multicellular microbial communities are important catalysts in engineered systems designed to treat wastewater, remediate contaminated sediments, and produce energy from biomass. Understanding the interspecies interactions within them is therefore essential to design effective processes. The flow of electrons within these communities is especially important in the determination of reaction possibilities (thermodynamics) and rates (kinetics). Conventional models of electron transfer incorporate the diffusion of metabolites generated by one organism and consumed by a second, frequently referred to as mediated interspecies electron transfer (MIET). Evidence has emerged in the last decade that another method, called direct interspecies electron transfer (DIET), may occur between organisms or in conjunction with electrically conductive materials. Recent research has suggested that DIET can be stimulated in engineered systems to improve desired treatment goals and energy recovery in systems such as anaerobic digesters and microbial electrochemical technologies. In this review, we summarize the latest understanding of DIET mechanisms, the associated microorganisms, and the underlying thermodynamics. We also critically examine approaches to stimulate DIET in engineered systems and assess their effectiveness. We find that in most cases attempts to promote DIET in mixed culture systems do not yield the improvements expected based on defined culture studies. Uncertainties of other processes that may be co-occurring in real systems, such as contaminant sorption and biofilm promotion, need to be further investigated. We conclude by identifying areas of future research related to DIET and its application in biological treatment processes.

  • Investigating amoebic pathogenesis using Entamoeba histolytica DNA microarrays

    Indian Academy of Sciences (India)

    Upinder Singh; Preetam Shah

    2002-11-01

    Entamoeba histolytica, a protozoan parasite, causes diarrhea and liver abscesses resulting in 50 million cases of infection worldwide annually. Elucidation of parasite virulence determinants has recently been investigated using genetic approaches. We have undertaken a genomics approach to identify novel virulence determinants in the parasite. A DNA microarray of E. histolytica is being developed based on sequenced genomic clones from the genome sequencing efforts of The Institute of Genomic Research (TIGR) and the Sanger Center. Hybridization of the slides with samples labelled differentially using fluorescent dyes allows the characterization of transcriptional profiles of genes under the biological conditions tested. Additionally, a genome-wide comparison of E. histolytica and E. dispar can be undertaken. The development of an E. histolytica microarray will be outlined and its uses in identifying novel virulence determinants and characterizing amoebic biology will be discussed.

  • A brief introduction to tiling microarrays: principles, concepts, and applications.

    Science.gov (United States)

    Lemetre, Christophe; Zhang, Zhengdong D

    2013-01-01

    Technological achievements have always contributed to the advancement of biomedical research. It has never been more so than in recent times, when the development and application of innovative cutting-edge technologies have transformed biology into a data-rich quantitative science. This stunning revolution in biology primarily ensued from the emergence of microarrays over two decades ago. The completion of whole-genome sequencing projects and the advance in microarray manufacturing technologies enabled the development of tiling microarrays, which gave unprecedented genomic coverage. Since their first description, several types of application of tiling arrays have emerged, each aiming to tackle a different biological problem. Although numerous algorithms have already been developed to analyze microarray data, new method development is still needed not only for better performance but also for integration of available microarray data sets, which without doubt constitute one of the largest collections of biological data ever generated. In this chapter we first introduce the principles behind the emergence and the development of tiling microarrays, and then discuss with some examples how they are used to investigate different biological problems.

  • Analyzing Microarray Data.

    Science.gov (United States)

    Hung, Jui-Hung; Weng, Zhiping

    2017-03-01

    Because there is no widely used software for analyzing RNA-seq data that has a graphical user interface, this protocol provides an example of analyzing microarray data using Babelomics. This analysis entails performing quantile normalization and then detecting differentially expressed genes associated with the transgenesis of a human oncogene c-Myc in mice. Finally, hierarchical clustering is performed on the differentially expressed genes using the Cluster program, and the results are visualized using TreeView.

  • Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S; Jaing, C

    2012-03-27

    The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

  • The EADGENE Microarray Data Analysis Workshop (Open Access publication

    Directory of Open Access Journals (Sweden)

    Jiménez-Marín Ángeles

    2007-11-01

    Full Text Available Abstract Microarray analyses have become an important tool in animal genomics. While their use is becoming widespread, there is still a lot of ongoing research regarding the analysis of microarray data. In the context of a European Network of Excellence, 31 researchers representing 14 research groups from 10 countries performed and discussed the statistical analyses of real and simulated 2-colour microarray data that were distributed among participants. The real data consisted of 48 microarrays from a disease challenge experiment in dairy cattle, while the simulated data consisted of 10 microarrays from a direct comparison of two treatments (dye-balanced. While there was broader agreement with regards to methods of microarray normalisation and significance testing, there were major differences with regards to quality control. The quality control approaches varied from none, through using statistical weights, to omitting a large number of spots or omitting entire slides. Surprisingly, these very different approaches gave quite similar results when applied to the simulated data, although not all participating groups analysed both real and simulated data. The workshop was very successful in facilitating interaction between scientists with a diverse background but a common interest in microarray analyses.

  • Design, construction, characterization, and application of a hyperspectral microarray scanner.

    Science.gov (United States)

    Sinclair, Michael B; Timlin, Jerilyn A; Haaland, David M; Werner-Washburne, Margaret

    2004-04-01

    We describe the design, construction, and operation of a hyperspectral microarray scanner for functional genomic research. The hyperspectral instrument operates with spatial resolutions ranging from 3 to 30 microm and records the emission spectrum between 490 and 900 nm with a spectral resolution of 3 nm for each pixel of the microarray. This spectral information, when coupled with multivariate data analysis techniques, allows for identification and elimination of unwanted artifacts and greatly improves the accuracy of microarray experiments. Microarray results presented in this study clearly demonstrate the separation of fluorescent label emission from the spectrally overlapping emission due to the underlying glass substrate. We also demonstrate separation of the emission due to green fluorescent protein expressed by yeast cells from the spectrally overlapping autofluorescence of the yeast cells and the growth media.

  • A novel computational method identifies intra- and inter-species recombination events in Staphylococcus aureus and Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Lisa Sanguinetti

    Full Text Available Advances in high-throughput DNA sequencing technologies have determined an explosion in the number of sequenced bacterial genomes. Comparative sequence analysis frequently reveals evidences of homologous recombination occurring with different mechanisms and rates in different species, but the large-scale use of computational methods to identify recombination events is hampered by their high computational costs. Here, we propose a new method to identify recombination events in large datasets of whole genome sequences. Using a filtering procedure of the gene conservation profiles of a test genome against a panel of strains, this algorithm identifies sets of contiguous genes acquired by homologous recombination. The locations of the recombination breakpoints are determined using a statistical test that is able to account for the differences in the natural rate of evolution between different genes. The algorithm was tested on a dataset of 75 genomes of Staphylococcus aureus and 50 genomes comprising different streptococcal species, and was able to detect intra-species recombination events in S. aureus and in Streptococcus pneumoniae. Furthermore, we found evidences of an inter-species exchange of genetic material between S. pneumoniae and Streptococcus mitis, a closely related commensal species that colonizes the same ecological niche. The method has been implemented in an R package, Reco, which is freely available from supplementary material, and provides a rapid screening tool to investigate recombination on a genome-wide scale from sequence data.

    1. Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray

      Directory of Open Access Journals (Sweden)

      Nobumasa Hitoshi

      2007-04-01

      Full Text Available Abstract Background Mycotoxins are fungal secondary metabolites commonly present in feed and food, and are widely regarded as hazardous contaminants. Citrinin, one of the very well known mycotoxins that was first isolated from Penicillium citrinum, is produced by more than 10 kinds of fungi, and is possibly spread all over the world. However, the information on the action mechanism of the toxin is limited. Thus, we investigated the citrinin-induced genomic response for evaluating its toxicity. Results Citrinin inhibited growth of yeast cells at a concentration higher than 100 ppm. We monitored the citrinin-induced mRNA expression profiles in yeast using the ORF DNA microarray and Oligo DNA microarray, and the expression profiles were compared with those of the other stress-inducing agents. Results obtained from both microarray experiments clustered together, but were different from those of the mycotoxin patulin. The oxidative stress response genes – AADs, FLR1, OYE3, GRE2, and MET17 – were significantly induced. In the functional category, expression of genes involved in "metabolism", "cell rescue, defense and virulence", and "energy" were significantly activated. In the category of "metabolism", genes involved in the glutathione synthesis pathway were activated, and in the category of "cell rescue, defense and virulence", the ABC transporter genes were induced. To alleviate the induced stress, these cells might pump out the citrinin after modification with glutathione. While, the citrinin treatment did not induce the genes involved in the DNA repair. Conclusion Results from both microarray studies suggest that citrinin treatment induced oxidative stress in yeast cells. The genotoxicity was less severe than the patulin, suggesting that citrinin is less toxic than patulin. The reproducibility of the expression profiles was much better with the Oligo DNA microarray. However, the Oligo DNA microarray did not completely overcome cross

    2. Microarray-based Identification of Novel Biomarkers in Asthma

      Directory of Open Access Journals (Sweden)

      Kenji Izuhara

      2006-01-01

      Full Text Available Bronchial asthma is a complicated and diverse disorder affected by genetic and environmental factors. It is widely accepted that it is a Th2-type inflammation originating in lung and caused by inhalation of ubiquitous allergens. The complicated and diverse pathogenesis of this disease yet to be clarified. Functional genomics is the analysis of whole gene expression profiling under given condition, and microarray technology is now the most powerful tool for functional genomics. Several attempts to clarify the pathogenesis of bronchial asthma have been carried out using microarray technology, providing us some novel biomarkers for diagnosis, therapeutic targets or understanding pathogenic mechanisms of bronchial asthma. In this article, we review the outcomes of these analyses by the microarray approach as applied to this disease by focusing on the identification of novel biomarkers.

    3. The ecology and adaptive evolution of influenza A interspecies transmission

      OpenAIRE

      Joseph, Udayan; Su, Yvonne C. F.; Vijaykrishna, Dhanasekaran; Gavin J. D. Smith

      2016-01-01

      Since 2013, there have been several alarming influenza‐related events; the spread of highly pathogenic avian influenza H5 viruses into North America, the detection of H10N8 and H5N6 zoonotic infections, the ongoing H7N9 infections in China and the continued zoonosis of H5N1 viruses in parts of Asia and the Middle East. The risk of a new influenza pandemic increases with the repeated interspecies transmission events that facilitate reassortment between animal influenza strains; thus, it is of ...

    4. Ultrastructural changes in goat interspecies and intraspecies reconstructed early embryos

      DEFF Research Database (Denmark)

      Tao, Yong; Gheng, Lizi; Zhang, Meiling;

      2008-01-01

      and dispered gradually from the 4-cell period. The nucleolus of GC and GG embryos changed from electron dense to a fibrillo-granular meshwork at the 16-cell stage, showing that nucleus function in the reconstructed embryos was activated. The broken nuclear envelope and multiple nucleoli in one blastomere......- and intraspecies reconstructed embryos have a similar pattern of developmental change to that of in vivo-produced embryos for ZP, rough ER, Gi and nucleolus, but differ for mitochondria, LD, vesicles, nucleus and gap junction development. In particular, the interspecies cloned embryos showed more severe...

    5. Cloning Endangered Felids by Interspecies Somatic Cell Nuclear Transfer.

      Science.gov (United States)

      Gómez, Martha C; Pope, C Earle

      2015-01-01

      In 2003, the first wild felid was produced by interspecies somatic cell nuclear transfer. Since then other wild felid clone offspring have been produced by using the same technique with minor modifications. This chapter describes detailed protocols used in our laboratory for (1) the isolation, culture, and preparation of fibroblast cells as donor nucleus, and (2) embryo reconstruction with domestic cat enucleated oocytes to produce cloned embryos that develop to the blastocyst stage in vitro and, after transfer into synchronized recipients, establish successful pregnancies.

    6. Quantification of global transcription patterns in prokaryotes using spotted microarrays

      OpenAIRE

      Sidders, B.; Withers, M; Kendall, SL; J. Bacon; Waddell, SJ; Hinds, J; Golby, P.; Movahedzadeh, F; Cox, RA; Frita, R.; Ten Bokum, AM; Wernisch, L; Stoker, NG

      2007-01-01

      \\ud \\ud We describe an analysis, applicable to any spotted microarray dataset produced using genomic DNA as a reference, that quantifies prokaryotic levels of mRNA on a genome-wide scale. Applying this to Mycobacterium tuberculosis, we validate the technique, show a correlation between level of expression and biological importance, define the complement of invariant genes and analyze absolute levels of expression by functional class to develop ways of understanding an organism's biology witho...

    7. Human brain evolution: insights from microarrays.

      Science.gov (United States)

      Preuss, Todd M; Cáceres, Mario; Oldham, Michael C; Geschwind, Daniel H

      2004-11-01

      Several recent microarray studies have compared gene-expression patterns n humans, chimpanzees and other non-human primates to identify evolutionary changes that contribute to the distinctive cognitive and behavioural characteristics of humans. These studies support the surprising conclusion that the evolution of the human brain involved an upregulation of gene expression relative to non-human primates, a finding that could be relevant to understanding human cerebral physiology and function. These results show how genetic and genomic methods can shed light on the basis of human neural and cognitive specializations, and have important implications for neuroscience, anthropology and medicine.

    8. Identification and utilization of inter-species conserved (ISC probesets on Affymetrix human GeneChip® platforms for the optimization of the assessment of expression patterns in non human primate (NHP samples

      Directory of Open Access Journals (Sweden)

      Arnold Alma

      2004-10-01

      Full Text Available Abstract Background While researchers have utilized versions of the Affymetrix human GeneChip® for the assessment of expression patterns in non human primate (NHP samples, there has been no comprehensive sequence analysis study undertaken to demonstrate that the probe sequences designed to detect human transcripts are reliably hybridizing with their orthologs in NHP. By aligning probe sequences with expressed sequence tags (ESTs in NHP, inter-species conserved (ISC probesets, which have two or more probes complementary to ESTs in NHP, were identified on human GeneChip® platforms. The utility of human GeneChips® for the assessment of NHP expression patterns can be effectively evaluated by analyzing the hybridization behaviour of ISC probesets. Appropriate normalization methods were identified that further improve the reliability of human GeneChips® for interspecies (human vs NHP comparisons. Results ISC probesets in each of the seven Affymetrix GeneChip® platforms (U133Plus2.0, U133A, U133B, U95Av2, U95B, Focus and HuGeneFL were identified for both monkey and chimpanzee. Expression data was generated from peripheral blood mononuclear cells (PBMCs of 12 human and 8 monkey (Indian origin Rhesus macaque samples using the Focus GeneChip®. Analysis of both qualitative detection calls and quantitative signal intensities showed that intra-species reproducibility (human vs. human or monkey vs. monkey was much higher than interspecies reproducibility (human vs. monkey. ISC probesets exhibited higher interspecies reproducibility than the overall expressed probesets. Importantly, appropriate normalization methods could be leveraged to greatly improve interspecies correlations. The correlation coefficients between human (average of 12 samples and monkey (average of 8 Rhesus macaque samples are 0.725, 0.821 and 0.893 for MAS5.0 (Microarray Suite version 5.0, dChip and RMA (Robust Multi-chip Average normalization method, respectively. Conclusion It is

    9. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods

      Directory of Open Access Journals (Sweden)

      Pérez-Martínez Gaspar

      2010-09-01

      Full Text Available Abstract Background Comparative genomic hybridization (CGH constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Results Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conclusion Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche.

    10. Genetic tuning of the novel avian influenza A(H7N9) virus during interspecies transmission, China, 2013.

      Science.gov (United States)

      Wang, D; Yang, L; Gao, R; Zhang, X; Tan, Y; Wu, A; Zhu, W; Zhou, J; Zou, S; Li, Xiyan; Sun, Y; Zhang, Y; Liu, Y; Liu, T; Xiong, Y; Xu, J; Chen, L; Weng, Y; Qi, X; Guo, J; Li, Xiaodan; Dong, J; Huang, W; Zhang, Y; Dong, L; Zhao, X; Liu, L; Lu, J; Lan, Y; Wei, H; Xin, L; Chen, Y; Xu, C; Chen, T; Zhu, Y; Jiang, T; Feng, Z; Yang, W; Wang, Y; Zhu, H; Guan, Y; Gao, G F; Li, D; Han, J; Wang, S; Wu, G; Shu, Y

      2014-06-26

      A novel avian influenza A(H7N9) virus causing human infection emerged in February 2013 in China. To elucidate the mechanism of interspecies transmission, we compared the signature amino acids of avian influenza A(H7N9) viruses from human and non-human hosts and analysed the reassortants of 146 influenza A(H7N9) viruses with full genome sequences. We propose a genetic tuning procedure with continuous amino acid substitutions and reassorting that mediates host adaptation and interspecies transmission. When the early influenza A(H7N9) virus, containing ancestor haemagglutinin (HA) and neuraminidase (NA) genes similar to A/Shanghai/05 virus, circulated in waterfowl and transmitted to terrestrial poultry, it acquired an NA stalk deletion at amino acid positions 69 to 73. Then, receptor binding preference was tuned to increase the affinity to human-like receptors through HA G186V and Q226L mutations in terrestrial poultry. Additional mammalian adaptations such as PB2 E627K were selected in humans. The continual reassortation between H7N9 and H9N2 viruses resulted in multiple genotypes for further host adaptation. When we analysed a potential association of mutations and reassortants with clinical outcome, only the PB2 E627K mutation slightly increased the case fatality rate. Genetic tuning may create opportunities for further adaptation of influenza A(H7N9) and its potential to cause a pandemic.

    11. A yeast pheromone-based inter-species communication system.

      Science.gov (United States)

      Hennig, Stefan; Clemens, André; Rödel, Gerhard; Ostermann, Kai

      2015-02-01

      We report on a pheromone-based inter-species communication system, allowing for a controlled cell-cell communication between the two species Saccharomyces cerevisiae and Schizosaccharomyces pombe as a proof of principle. It exploits the mating response pathways of the two yeast species employing the pheromones, α- or P-factor, as signaling molecules. The authentic and chimeric pheromone-encoding genes were engineered to code for the P-factor in S. cerevisiae and the α-factor in S. pombe. Upon transformation of the respective constructs, cells were enabled to express the mating pheromone of the opposite species. The supernatant of cultures of S. pombe cells expressing α-factor were able to induce a G1 arrest in the cell cycle, a change in morphology to the typical shmoo effect and expression driven by the pheromone-responsive FIG1 promoter in S. cerevisiae. The supernatant of cultures of S. cerevisiae cells expressing P-factor similarly induced cell cycle arrest in G1, an alteration in morphology typical for mating as well as the activation of the pheromone-responsive promoters of the rep1 and sxa2 genes in a pheromone-hypersensitive reporter strain of S. pombe. Apparently, both heterologous pheromones were correctly processed and secreted in an active form by the cells of the other species. Our data clearly show that the species-specific pheromone systems of yeast species can be exploited for a controlled inter-species communication.

    12. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.

      Science.gov (United States)

      Rotaru, Amelia-Elena; Shrestha, Pravin Malla; Liu, Fanghua; Markovaite, Beatrice; Chen, Shanshan; Nevin, Kelly P; Lovley, Derek R

      2014-08-01

      Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P.carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable,making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.

    13. Microbial interspecies interactions: recent findings in syntrophic consortia

      Directory of Open Access Journals (Sweden)

      Atsushi eKouzuma

      2015-05-01

      Full Text Available Microbes are ubiquitous in our biosphere, and inevitably live in communities. They excrete a variety of metabolites and support the growth of other microbes in a community. According to the law of chemical equilibrium, the consumption of excreted metabolites by recipient microbes can accelerate the metabolism of donor microbes. This is the concept of syntrophy, which is a type of mutualism and governs the metabolism and growth of diverse microbes in natural and engineered ecosystems. A representative example of syntrophy is found in methanogenic communities, where reducing equivalents, e.g., hydrogen and formate, transfer between syntrophic partners. Studies have revealed that microbes involved in syntrophy have evolved molecular mechanisms to establish specific partnerships and interspecies communication, resulting in efficient metabolic cooperation. In addition, recent studies have provided evidence suggesting that microbial interspecies transfer of reducing equivalents also occurs as electric current via biotic (e.g., pili and abiotic (e.g., conductive mineral and carbon particles electric conduits. In this review, we describe these findings as examples of sophisticated cooperative behavior between different microbial species. We suggest that these interactions have fundamental roles in shaping the structure and activity of microbial communities.

    14. Promoting direct interspecies electron transfer with activated carbon

      DEFF Research Database (Denmark)

      Liu, Fanghua; Rotaru, Amelia-Elena; Shrestha, Pravin M.

      2012-01-01

      Granular activated carbon (GAC) is added to methanogenic digesters to enhance conversion of wastes to methane, but the mechanism(s) for GAC’s stimulatory effect are poorly understood. GAC has high electrical conductivity and thus it was hypothesized that one mechanism for GAC stimulation of metha......Granular activated carbon (GAC) is added to methanogenic digesters to enhance conversion of wastes to methane, but the mechanism(s) for GAC’s stimulatory effect are poorly understood. GAC has high electrical conductivity and thus it was hypothesized that one mechanism for GAC stimulation...... of methanogenesis might be to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens. Metabolism was substantially accelerated when GAC was added to co-cultures of Geobacter metallireducens and Geobacter sulfurreducens grown under conditions previously shown to require DIET. Cells...... were attached to GAC, but did not aggregate as they do when making biological electrical connections between cells. Studies with a series of gene deletion mutants eliminated the possibility that GAC promoted electron exchange via interspecies hydrogen or formate transfer and demonstrated that DIET...

    15. Compressive Sensing DNA Microarrays

      Directory of Open Access Journals (Sweden)

      Richard G. Baraniuk

      2009-01-01

      Full Text Available Compressive sensing microarrays (CSMs are DNA-based sensors that operate using group testing and compressive sensing (CS principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints from CS theory and the biochemistry of probe-target DNA hybridization. An appropriate cross-hybridization model is proposed for CSMs, and several methods are developed for probe design and CS signal recovery based on the new model. Lab experiments suggest that in order to achieve accurate hybridization profiling, consensus probe sequences are required to have sequence homology of at least 80% with all targets to be detected. Furthermore, out-of-equilibrium datasets are usually as accurate as those obtained from equilibrium conditions. Consequently, one can use CSMs in applications in which only short hybridization times are allowed.

    16. A comparative analysis of DNA barcode microarray feature size

      Directory of Open Access Journals (Sweden)

      Smith Andrew M

      2009-10-01

      Full Text Available Abstract Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density, but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platform. The barcodes used in this study are the well-characterized set derived from the Yeast KnockOut (YKO collection used for screens of pooled yeast (Saccharomyces cerevisiae deletion mutants. We treated these pools with the glycosylation inhibitor tunicamycin as a test compound. Three generations of barcode microarrays at 30, 8 and 5 μm features sizes independently identified the primary target of tunicamycin to be ALG7. Conclusion We show that the data obtained with 5 μm feature size is of comparable quality to the 30 μm size and propose that further shrinking of features could yield barcode microarrays with equal or greater resolving power and, more importantly, higher density.

    17. Challenges for MicroRNA Microarray Data Analysisf

      Directory of Open Access Journals (Sweden)

      Bin Wang

      2013-03-01

      Full Text Available Microarray is a high throughput discovery tool that has been broadly used for genomic research. Probe-target hybridization is the central concept of this technology to determine the relative abundance of nucleic acid sequences through fluorescence-based detection. In microarray experiments, variations of expression measurements can be attributed to many different sources that influence the stability and reproducibility of microarray platforms. Normalization is an essential step to reduce non-biological errors and to convert raw image data from multiple arrays (channels to quality data for further analysis. In general, for the traditional microarray analysis, most established normalization methods are based on two assumptions: (1 the total number of target genes is large enough (>10,000; and (2 the expression level of the majority of genes is kept constant. However, microRNA (miRNA arrays are usually spotted in low density, due to the fact that the total number of miRNAs is less than 2,000 and the majority of miRNAs are weakly or not expressed. As a result, normalization methods based on the above two assumptions are not applicable to miRNA profiling studies. In this review, we discuss a few representative microarray platforms on the market for miRNA profiling and compare the traditional methods with a few novel strategies specific for miRNA microarrays.

    18. Optimized light-directed synthesis of aptamer microarrays.

      Science.gov (United States)

      Franssen-van Hal, Nicole L W; van der Putte, Pepijn; Hellmuth, Klaus; Matysiak, Stefan; Kretschy, Nicole; Somoza, Mark M

      2013-06-18

      Aptamer microarrays are a promising high-throughput method for ultrasensitive detection of multiple analytes, but although much is known about the optimal synthesis of oligonucleotide microarrays used in hybridization-based genomics applications, the bioaffinity interactions between aptamers and their targets is qualitatively different and requires significant changes to synthesis parameters. Focusing on streptavidin-binding DNA aptamers, we employed light-directed in situ synthesis of microarrays to analyze the effects of sequence fidelity, linker length, surface probe density, and substrate functionalization on detection sensitivity. Direct comparison with oligonucleotide hybridization experiments indicates that aptamer microarrays are significantly more sensitive to sequence fidelity and substrate functionalization and have different optimal linker length and surface probe density requirements. Whereas microarray hybridization probes generate maximum signal with multiple deletions, aptamer sequences with the same deletion rate result in a 3-fold binding signal reduction compared with the same sequences synthesized for maximized sequence fidelity. The highest hybridization signal was obtained with dT 5mer linkers, and the highest aptamer signal was obtained with dT 11mers, with shorter aptamer linkers significantly reducing the binding signal. The probe hybridization signal was found to be more sensitive to molecular crowding, whereas the aptamer probe signal does not appear to be constrained within the density of functional surface groups commonly used to synthesize microarrays.

    19. Development and validation of a bovine macrophage specific cDNA microarray

      Directory of Open Access Journals (Sweden)

      Waddington David

      2006-09-01

      Full Text Available Abstract Background The response of macrophages to danger signals is an important early stage in the immune response. Our understanding of this complex event has been furthered by microarray analysis, which allows the simultaneous investigation of the expression of large numbers of genes. However, the microarray resources available to study these events in livestock animals are limited. Results Here we report the development of a bovine macrophage specific (BoMP cDNA microarray. The BoMP microarray contains 5026 sequence elements (printed in duplicate and numerous controls. The majority of the clones incorporated on the microarray were derived from the BoMP cDNA library generated from bovine myeloid cells subjected to various stimuli, including over 900 sequences unique to the library. Additional clones representing immunologically important genes have been included on the BoMP microarray. The microarray was validated by investigating the response of bovine monocytes to stimulation with interferon-γ and lipopolysaccharide using amplified RNA. At 2 and 16 hours post stimulation 695 genes exhibited statistically significant differential expression, including; 26 sequences unique to the BoMP library, interleukin 6, prion protein and toll-like receptor 4. Conclusion A 5 K cDNA microarray has been successfully developed to investigate gene expression in bovine myeloid cells. The BoMP microarray is available from the ARK-Genomics Centre for Functional Genomics in Farm Animals, UK.

    20. Microarray Technology for the Diagnosis of Fetal Chromosomal Aberrations: Which Platform Should We Use?

      Directory of Open Access Journals (Sweden)

      Evangelia Karampetsou

      2014-06-01

      Full Text Available The advantage of microarray (array over conventional karyotype for the diagnosis of fetal pathogenic chromosomal anomalies has prompted the use of microarrays in prenatal diagnostics. In this review we compare the performance of different array platforms (BAC, oligonucleotide CGH, SNP and designs (targeted, whole genome, whole genome, and targeted, custom and discuss their advantages and disadvantages in relation to prenatal testing. We also discuss the factors to consider when implementing a microarray testing service for the diagnosis of fetal chromosomal aberrations.

    1. DNA Microarray-Based Diagnostics.

      Science.gov (United States)

      Marzancola, Mahsa Gharibi; Sedighi, Abootaleb; Li, Paul C H

      2016-01-01

      The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications.

    2. The influence of interspecies somatic cell nuclear transfer on epigenetic enzymes transcription in early embryos

      Directory of Open Access Journals (Sweden)

      Martin Morovic

      2016-10-01

      Full Text Available One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a genes in early embryonic stages of interspecies (bovine, porcine nuclear transfer embryos (iSCNT by RT-PCR were analyzed. Coming out from the diverse timing of embryonic genome activation (EGA in porcine and bovine preimplantation embryos, the intense effect of ooplasm on transferred somatic cell nucleus was expected. In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly infl uenced by the ooplasmic environment.

    3. A fisheye viewer for microarray-based gene expression data

      OpenAIRE

      2006-01-01

      Abstract Background Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of ra...

    4. High throughput genetic analysis of congenital myasthenic syndromes using resequencing microarrays.

      Directory of Open Access Journals (Sweden)

      Lisa Denning

      Full Text Available BACKGROUND: The use of resequencing microarrays for screening multiple, candidate disease loci is a promising alternative to conventional capillary sequencing. We describe the performance of a custom resequencing microarray for mutational analysis of Congenital Myasthenic Syndromes (CMSs, a group of disorders in which the normal process of neuromuscular transmission is impaired. METHODOLOGY/PRINCIPAL FINDINGS: Our microarray was designed to assay the exons and flanking intronic regions of 8 genes linked to CMSs. A total of 31 microarrays were hybridized with genomic DNA from either individuals with known CMS mutations or from healthy controls. We estimated an overall microarray call rate of 93.61%, and we found the percentage agreement between the microarray and capillary sequencing techniques to be 99.95%. In addition, our microarray exhibited 100% specificity and 99.99% reproducibility. Finally, the microarray detected 22 out of the 23 known missense mutations, but it failed to detect all 7 known insertion and deletion (indels mutations, indicating an overall sensitivity of 73.33% and a sensitivity with respect to missense mutations of 95.65%. CONCLUSIONS/SIGNIFICANCE: Overall, our microarray prototype exhibited strong performance and proved highly efficient for screening genes associated with CMSs. Until indels can be efficiently assayed with this technology, however, we recommend using resequencing microarrays for screening CMS mutations after common indels have been first assayed by capillary sequencing.

    5. Genetic relationship of interspecies for eight birch species

      Institute of Scientific and Technical Information of China (English)

      2002-01-01

      Genetic relationships of eight species of genus Betula were evaluatedusing ISSR marks. A total of 236 loci were generated from 17 ISSR primers. Perce ntage of polymorphic bands (PPB) varied from 5.93 to 19.92. The highest and the lowest level of genetic differentiation were detected in B. Ovalifolia and B. Ma ximowicziana Regel respectively. In these eight species, genetic diversity of bi rch (HT) was 24.38 %, and the genetic variation (GST ) interspecies was accounti ng for 79.36% of total genetic variation. According to the cluster results of ge netic distance, the eight species were classified into three groups as B. Davur ica, B. Ovalifolia, B. Platyphylla and B. Pendula for one group;B. Schmidtii, B . Costata and B. Ermanii Cham. Var. Communis for one group, and B. Maximowiczian a Regel for another group. The result of cluster is consistent with traditional morphological classification.

    6. Perspectives of DNA microarray and next-generation DNA sequencing technologies

      Institute of Scientific and Technical Information of China (English)

      2009-01-01

      DNA microarray and next-generation DNA sequencing technologies are important tools for high-throughput genome research,in revealing both the structural and functional characteristics of genomes.In the past decade the DNA microarray technologies have been widely applied in the studies of functional genomics,systems biology and pharmacogenomics.The next-generation DNA sequencing method was first introduced by the 454 Company in 2003,immediately followed by the establishment of the Solexa and Solid techniques by other biotech companies.Though it has not been long since the first emergence of this technology,with the fast and impressive improvement,the application of this technology has extended to almost all fields of genomics research,as a rival challenging the existing DNA microarray technology.This paper briefly reviews the working principles of these two technologies as well as their application and perspectives in genome research.

    7. Perspectives of DNA microarray and next-generation DNA sequencing technologies

      Institute of Scientific and Technical Information of China (English)

      TENG XiaoKun; XIAO HuaSheng

      2009-01-01

      DNA microarray and next-generation DNA sequencing technologies are important tools for high-throughput genome research, in revealing both the structural and functional characteristics of genomes. In the past decade the DNA microarray technologies have been widely applied in the studies of functional genomics, systems biology and pharmacogenomics. The next-generation DNA sequenc-ing method was first introduced by the 454 Company in 2003, immediately followed by the establish-ment of the Solexa and Solid techniques by other biotech companies. Though it has not been long since the first emergence of this technology, with the fast and impressive improvement, the application of this technology has extended to almost all fields of genomics research, as a rival challenging the existing DNA microarray technology. This paper briefly reviews the working principles of these two technologies as well as their application and perspectives in genome research.

    8. Syntrophic Growth via Quinone-Mediated Interspecies Electron Transfer

      Directory of Open Access Journals (Sweden)

      Jessica A Smith

      2015-02-01

      Full Text Available The mechanisms by which microbial species exchange electrons are of interest because interspecies electron transfer can expand the metabolic capabilities of microbial communities. Previous studies with the humic substance analog anthraquinone-2,6-disulfonate (AQDS suggested that quinone-mediated interspecies electron transfer (QUIET is feasible, but it was not determined if sufficient energy is available from QUIET to support the growth of both species. Furthermore, there have been no previous studies on the mechanisms for the oxidation of anthrahydroquinone-2,6-disulfonate (AHQDS. A co-culture of Geobacter metallireducens and Geobacter sulfurreducens metabolized ethanol with the reduction of fumarate much faster in the presence of AQDS, and there was an increase in cell protein. G. sulfurreducens was more abundant, consistent with G. sulfurreducens obtaining electrons from acetate that G. metallireducens produced from ethanol, as well as from AHQDS. Cocultures initiated with a citrate synthase-deficient strain of G. sulfurreducens that was unable to use acetate as an electron donor also metabolized ethanol with the reduction of fumarate and cell growth, but acetate accumulated over time. G. sulfurreducens and G. metallireducens were equally abundant in these co-cultures reflecting the inability of the citrate synthase-deficient strain of G. sulfurreducens to metabolize acetate. Evaluation of the mechanisms by which G. sulfurreducens accepts electrons from AHQDS demonstrated that a strain deficient in outer-surface c-type cytochromes that are required for AQDS reduction was as effective at QUIET as the wild-type strain. Deletion of additional genes previously implicated in extracellular electron transfer also had no impact on QUIET. These results demonstrate that QUIET can yield sufficient energy to support the growth of both syntrophic partners, but that the mechanisms by which electrons are derived from extracellular hydroquinones require

    9. Genomic and Transcriptomic Analyses of Foodborne Bacterial Pathogens

      Science.gov (United States)

      Zhang, Wei; Dudley, Edward G.; Wade, Joseph T.

      DNA microarrays (often interchangeably called DNA chips or DNA arrays) are among the most popular analytical tools for high-throughput comparative genomic and transcriptomic analyses of foodborne bacterial pathogens. A typical DNA microarray contains hundreds to millions of small DNA probes that are chemically attached (or "printed") onto the surface of a microscopic glass slide. Depending on the specific "printing" and probe synthesis technologies for different microarray platforms, such DNA probes can be PCR amplicons or in situ synthesized short oligonucleotides. DNA microarray technologies have revolutionized the way that we investigate the biology of foodborne bacterial pathogens. The major advantage of these technologies is that DNA microarrays allow comparison of subtle genomic or transcriptomic variations between two bacterial samples, such as genomic variations between two different bacterial strains or transcriptomic alterations of same bacterial strain under two different treatments. Some applications of comparative genomic hybridization microarrays and global gene expression microarrays have been covered in previous chapters of this book.

    10. Carbohydrate Microarrays in Plant Science

      DEFF Research Database (Denmark)

      Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.

      2012-01-01

      industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high......-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools...... for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities....

    11. Transfection microarray and the applications.

      Science.gov (United States)

      Miyake, Masato; Yoshikawa, Tomohiro; Fujita, Satoshi; Miyake, Jun

      2009-05-01

      Microarray transfection has been extensively studied for high-throughput functional analysis of mammalian cells. However, control of efficiency and reproducibility are the critical issues for practical use. By using solid-phase transfection accelerators and nano-scaffold, we provide a highly efficient and reproducible microarray-transfection device, "transfection microarray". The device would be applied to the limited number of available primary cells and stem cells not only for large-scale functional analysis but also reporter-based time-lapse cellular event analysis.

    12. Surface manipulation of biomolecules for cell microarray applications.

      Science.gov (United States)

      Hook, Andrew L; Thissen, Helmut; Voelcker, Nicolas H

      2006-10-01

      Many biological events, such as cellular communication, antigen recognition, tissue repair and DNA linear transfer, are intimately associated with biomolecule interactions at the solid-liquid interface. To facilitate the study and use of these biological events for biodevice and biomaterial applications, a sound understanding of how biomolecules behave at interfaces and a concomitant ability to manipulate biomolecules spatially and temporally at surfaces is required. This is particularly true for cell microarray applications, where a range of biological processes must be duly controlled to maximize the efficiency and throughput of these devices. Of particular interest are transfected-cell microarrays (TCMs), which significantly widen the scope of microarray genomic analysis by enabling the high-throughput analysis of gene function within living cells. This article reviews this current research focus, discussing fundamental and applied research into the spatial and temporal surface manipulation of DNA, proteins and other biomolecules and the implications of this work for TCMs.

    13. Microarray Scanner for Fluorescence Detection

      Institute of Scientific and Technical Information of China (English)

      Wang Liqiang; Lu zukang; Li Yingsheng; Zheng Xufeng

      2003-01-01

      A novel pseudo confocal microarray scanner is introduced, in which one dimension scanning is performed by a galvanometer optical scanner and a telecentric objective, another dimension scanning is performed by a stepping motor.

    14. Advanced spot quality analysis in two-colour microarray experiments

      Directory of Open Access Journals (Sweden)

      Vetter Guillaume

      2008-09-01

      Full Text Available Abstract Background Image analysis of microarrays and, in particular, spot quantification and spot quality control, is one of the most important steps in statistical analysis of microarray data. Recent methods of spot quality control are still in early age of development, often leading to underestimation of true positive microarray features and, consequently, to loss of important biological information. Therefore, improving and standardizing the statistical approaches of spot quality control are essential to facilitate the overall analysis of microarray data and subsequent extraction of biological information. Findings We evaluated the performance of two image analysis packages MAIA and GenePix (GP using two complementary experimental approaches with a focus on the statistical analysis of spot quality factors. First, we developed control microarrays with a priori known fluorescence ratios to verify the accuracy and precision of the ratio estimation of signal intensities. Next, we developed advanced semi-automatic protocols of spot quality evaluation in MAIA and GP and compared their performance with available facilities of spot quantitative filtering in GP. We evaluated these algorithms for standardised spot quality analysis in a whole-genome microarray experiment assessing well-characterised transcriptional modifications induced by the transcription regulator SNAI1. Using a set of RT-PCR or qRT-PCR validated microarray data, we found that the semi-automatic protocol of spot quality control we developed with MAIA allowed recovering approximately 13% more spots and 38% more differentially expressed genes (at FDR = 5% than GP with default spot filtering conditions. Conclusion Careful control of spot quality characteristics with advanced spot quality evaluation can significantly increase the amount of confident and accurate data resulting in more meaningful biological conclusions.

    15. Microarray analysis in the archaeon Halobacterium salinarum strain R1.

      Directory of Open Access Journals (Sweden)

      Jens Twellmeyer

      Full Text Available BACKGROUND: Phototrophy of the extremely halophilic archaeon Halobacterium salinarum was explored for decades. The research was mainly focused on the expression of bacteriorhodopsin and its functional properties. In contrast, less is known about genome wide transcriptional changes and their impact on the physiological adaptation to phototrophy. The tool of choice to record transcriptional profiles is the DNA microarray technique. However, the technique is still rarely used for transcriptome analysis in archaea. METHODOLOGY/PRINCIPAL FINDINGS: We developed a whole-genome DNA microarray based on our sequence data of the Hbt. salinarum strain R1 genome. The potential of our tool is exemplified by the comparison of cells growing under aerobic and phototrophic conditions, respectively. We processed the raw fluorescence data by several stringent filtering steps and a subsequent MAANOVA analysis. The study revealed a lot of transcriptional differences between the two cell states. We found that the transcriptional changes were relatively weak, though significant. Finally, the DNA microarray data were independently verified by a real-time PCR analysis. CONCLUSION/SIGNIFICANCE: This is the first DNA microarray analysis of Hbt. salinarum cells that were actually grown under phototrophic conditions. By comparing the transcriptomics data with current knowledge we could show that our DNA microarray tool is well applicable for transcriptome analysis in the extremely halophilic archaeon Hbt. salinarum. The reliability of our tool is based on both the high-quality array of DNA probes and the stringent data handling including MAANOVA analysis. Among the regulated genes more than 50% had unknown functions. This underlines the fact that haloarchaeal phototrophy is still far away from being completely understood. Hence, the data recorded in this study will be subject to future systems biology analysis.

    16. A fisheye viewer for microarray-based gene expression data

      Directory of Open Access Journals (Sweden)

      Munson Ethan V

      2006-10-01

      Full Text Available Abstract Background Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of raw microarray-based gene expression data. This paper presents one such interface – an electronic table (E-table that uses fisheye distortion technology. Results The Fisheye Viewer for microarray-based gene expression data has been successfully developed to view MIAME data stored in the MAGE-ML format. The viewer can be downloaded from the project web site http://polaris.imt.uwm.edu:7777/fisheye/. The fisheye viewer was implemented in Java so that it could run on multiple platforms. We implemented the E-table by adapting JTable, a default table implementation in the Java Swing user interface library. Fisheye views use variable magnification to balance magnification for easy viewing and compression for maximizing the amount of data on the screen. Conclusion This Fisheye Viewer is a lightweight but useful tool for biologists to quickly overview the raw microarray-based gene expression data in an E-table.

    17. Mathematical design of prokaryotic clone-based microarrays

      Directory of Open Access Journals (Sweden)

      Quirijns Elisabeth J

      2005-09-01

      Full Text Available Abstract Background Clone-based microarrays, on which each spot represents a random genomic fragment, are a good alternative to open reading frame-based microarrays, especially for microorganisms for which the complete genome sequence is not available. Since the generation of a genomic DNA library is a random process, it is beforehand uncertain which genes are represented. Nevertheless, the genome coverage of such an array, which depends on different variables like the insert size and the number of clones in the library, can be predicted by mathematical approaches. When applying the classical formulas that determine the probability that a certain sequence is represented in a DNA library at the nucleotide level, massive amounts of clones would be necessary to obtain a proper coverage of the genome. Results This paper describes the development of two complementary equations for determining the genome coverage at the gene level. The first equation predicts the fraction of genes that is represented on the array in a detectable way and cover at least a set part (the minimal insert coverage of the genomic fragment by which these genes are represented. The higher this minimal insert coverage, the larger the chance that changes in expression of a specific gene can be detected and attributed to that gene. The second equation predicts the fraction of genes that is represented in spots on the array that only represent genes from a single transcription unit, which information can be interpreted in a quantitative way. Conclusion Validation of these equations shows that they form reliable tools supporting optimal design of prokaryotic clone-based microarrays.

    18. Viral discovery and sequence recovery using DNA microarrays.

      Directory of Open Access Journals (Sweden)

      David Wang

      2003-11-01

      Full Text Available Because of the constant threat posed by emerging infectious diseases and the limitations of existing approaches used to identify new pathogens, there is a great demand for new technological methods for viral discovery. We describe herein a DNA microarray-based platform for novel virus identification and characterization. Central to this approach was a DNA microarray designed to detect a wide range of known viruses as well as novel members of existing viral families; this microarray contained the most highly conserved 70mer sequences from every fully sequenced reference viral genome in GenBank. During an outbreak of severe acute respiratory syndrome (SARS in March 2003, hybridization to this microarray revealed the presence of a previously uncharacterized coronavirus in a viral isolate cultivated from a SARS patient. To further characterize this new virus, approximately 1 kb of the unknown virus genome was cloned by physically recovering viral sequences hybridized to individual array elements. Sequencing of these fragments confirmed that the virus was indeed a new member of the coronavirus family. This combination of array hybridization followed by direct viral sequence recovery should prove to be a general strategy for the rapid identification and characterization of novel viruses and emerging infectious disease.

    19. Broad spectrum microarray for fingerprint-based bacterial species identification

      Directory of Open Access Journals (Sweden)

      Frey Jürg E

      2010-02-01

      Full Text Available Abstract Background Microarrays are powerful tools for DNA-based molecular diagnostics and identification of pathogens. Most target a limited range of organisms and are based on only one or a very few genes for specific identification. Such microarrays are limited to organisms for which specific probes are available, and often have difficulty discriminating closely related taxa. We have developed an alternative broad-spectrum microarray that employs hybridisation fingerprints generated by high-density anonymous markers distributed over the entire genome for identification based on comparison to a reference database. Results A high-density microarray carrying 95,000 unique 13-mer probes was designed. Optimized methods were developed to deliver reproducible hybridisation patterns that enabled confident discrimination of bacteria at the species, subspecies, and strain levels. High correlation coefficients were achieved between replicates. A sub-selection of 12,071 probes, determined by ANOVA and class prediction analysis, enabled the discrimination of all samples in our panel. Mismatch probe hybridisation was observed but was found to have no effect on the discriminatory capacity of our system. Conclusions These results indicate the potential of our genome chip for reliable identification of a wide range of bacterial taxa at the subspecies level without laborious prior sequencing and probe design. With its high resolution capacity, our proof-of-principle chip demonstrates great potential as a tool for molecular diagnostics of broad taxonomic groups.

    20. The Utility of Chromosomal Microarray Analysis in Developmental and Behavioral Pediatrics

      Science.gov (United States)

      Beaudet, Arthur L.

      2013-01-01

      Chromosomal microarray analysis (CMA) has emerged as a powerful new tool to identify genomic abnormalities associated with a wide range of developmental disabilities including congenital malformations, cognitive impairment, and behavioral abnormalities. CMA includes array comparative genomic hybridization (CGH) and single nucleotide polymorphism…

    1. Analysis of tiling microarray data by learning vector quantization and relevance learning

      NARCIS (Netherlands)

      Biehl, Michael; Breitling, Rainer; Li, Yang; Yin, H; Tino, P; Corchado, E; Byrne, W; Yao,

      2007-01-01

      We apply learning vector quantization to the analysis of tiling microarray data. As an example we consider the classification of C. elegans genomic probes as intronic or exonic. Training is based on the current annotation of the genome. Relevance learning techniques are used to weight and select fea

    2. A Bifidobacterium mixed-species microarray for high resolution discrimination between intestinal bifidobacteria

      NARCIS (Netherlands)

      Boesten, R.J.; Schuren, F.H.; Vos, de W.M.

      2009-01-01

      A genomic DNA-based microarray was constructed containing over 6000 randomly cloned genomic fragments of approximately 1-2 kb from six mammalian intestinal Bifidobacterium spp. including B. adolescentis, B. animalis, B. bifidum, B. catenulatum, B. longum and B. pseudolongum. This Bifidobacterium Mix

    3. Optimization of RNA Isolation from the Archaebacterium Methanosarcina Barkeri and Validation for Oligonucleotide Microarray Analysis

      Energy Technology Data Exchange (ETDEWEB)

      Culley, David E.; Kovacik, William P.; Brockman, Fred J.; Zhang, Weiwen

      2006-10-01

      ABSTRACT-The recent completion of a draft genome sequence for Methanosarcina barkeri has allowed the application of various high throughput post-genomics technologies, such as nucleic acid microarrays and mass spectrometry of proteins to detect global changes in transcription and translation that occur in response to experimental treatments...

    4. Task 1.5 Genomic Shift and Drift Trends of Emerging Pathogens

      Energy Technology Data Exchange (ETDEWEB)

      Borucki, M

      2010-01-05

      The Lawrence Livermore National Laboratory (LLNL) Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to conduct analyses of genomic shift and drift trends of emerging pathogens, with a focused eye on select agent pathogens, as well as antibiotic and virulence markers. Most emerging human pathogens are zoonotic viruses with a genome composed of RNA. The high mutation rate of the replication enzymes of RNA viruses contributes to sequence drift and provides one mechanism for these viruses to adapt to diverse hosts (interspecies transmission events) and cause new human and zoonotic diseases. Additionally, new viral pathogens frequently emerge due to genetic shift (recombination and segment reassortment) which allows for dramatic genotypic and phenotypic changes to occur rapidly. Bacterial pathogens also evolve via genetic drift and shift, although sequence drift generally occurs at a much slower rate for bacteria as compared to RNA viruses. However, genetic shift such as lateral gene transfer and inter- and intragenomic recombination enables bacteria to rapidly acquire new mechanisms of survival and antibiotic resistance. New technologies such as rapid whole genome sequencing of bacterial genomes, ultra-deep sequencing of RNA virus populations, metagenomic studies of environments rich in antibiotic resistance genes, and the use of microarrays for the detection and characterization of emerging pathogens provide mechanisms to address the challenges posed by the rapid emergence of pathogens. Bioinformatic algorithms that enable efficient analysis of the massive amounts of data generated by these technologies as well computational modeling of protein structures and evolutionary processes need to be developed to allow the technology to fulfill its potential.

    5. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer

      Energy Technology Data Exchange (ETDEWEB)

      Ha, Phuc T.; Lindemann, Stephen R.; Shi, Liang; Dohnalkova, Alice C.; Fredrickson, James K.; Madigan, Michael T.; Beyenal, Haluk

      2017-01-09

      Microbial phototrophs are key primary producers on Earth. Currently known electron donors for microbial photosynthesis include H2O, H2, H2S and other reduced inorganic compounds. We describe a new form of metabolism linking anoxygenic photosynthesis to anaerobic respiration, or “syntrophic anoxygenic photosynthesis.” We show that photoautotrophy in green sulfur bacterium Prosthecochloris aestaurii can be driven not only by electrons from a graphite electrode, but also by acetate oxidation via interspecies electron transfer from heterotrophic partner bacterium Geobacter sulfurreducens. P. aestuarii photosynthetic growth using reductant provided by either an electrode or syntrophy was robust and light-dependent. By contrast, P. aestuarii did not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer,. This syntrophic interaction suggests revisitation of global carbon cycling in anoxic environments and lays a foundation for further engineering of phototrophic microbial communities for biotechnological applications, such as waste treatment and bioenergy production.

    6. Development in vitro and mitochondrial fate of interspecies cloned embryos.

      Science.gov (United States)

      Ma, L-B; Yang, L; Hua, S; Cao, J-W; Li, J-X; Zhang, Y

      2008-06-01

      Although the technique of interspecies somatic cell nuclear transfer can be used to increase the population size of endangered mammals, the mitochondrial heteroplasmy in cloned embryos and animals makes this idea doubtful. In present study, goat-sheep cloned embryos were constructed by fusing goat foetal fibroblasts (GFFs) into sheep oocytes and then cultured in vitro to investigate the capability of sheep oocyte dedifferentiating GFF nucleus. Moreover, at each stage of 1- (immediately after fused), 2-, 4-, 8-, 16-cell, morula and blastocyst, the copy number of mtDNA from GFF and sheep oocyte was examined using real-time PCR. The results showed that: 7.4% of the fused cloned embryos can develop to the blastocyst stage; in the process of one cell to the morula stage, the copy number of two kinds of mtDNA was stable relatively; however, in the process of morula to the blastocyst stage, the decreasing in the copy number of GFF-derived mtDNA, while the increasing in sheep oocyte-derived, resulted in their ratio of decreasing sharply from 2.0 +/- 1.0% to 0.012 +/- 0.004%. This study demonstrates that: (i) the goat-sheep cloned embryos have the ability to develop to blastocyst in vitro; (ii) from the morula stage to the blastocyst stage of goat-sheep cloned embryos, goat derived mitochondria can be gradually replaced with those from sheep oocyte.

    7. Nicotine Enhances Interspecies Relationship between Streptococcus mutans and Candida albicans

      Science.gov (United States)

      Qiu, Wei; Zhang, Keke; Zhou, Xuedong; Ren, Biao; He, Jinzhi; Xu, Xin

      2017-01-01

      Streptococcus mutans and Candida albicans are common microorganisms in the human oral cavity. The synergistic relationship between these two species has been deeply explored in many studies. In the present study, the effect of alkaloid nicotine on the interspecies between S. mutans and C. albicans is explored. We developed a dual-species biofilm model and studied biofilm biomass, biofilm structure, synthesis of extracellular polysaccharides (EPS), and expression of glucosyltransferases (Gtfs). Biofilm formation and bacterial and fungal cell numbers in dual-species biofilms increased in the presence of nicotine. More C. albicans cells were present in the dual-species biofilms in the nicotine-treated groups as determined by scanning electron microscopy. The synthesis of EPS was increased by 1 mg/ml of nicotine as detected by confocal laser scanning microscopy. The result of qRT-PCR showed gtfs expression was upregulated when 1 mg/ml of nicotine was used. We speculate that nicotine promoted the growth of S. mutans, and more S. mutans cells attracted more C. albicans cells due to the interaction between two species. Since S. mutans and C. albicans are putative pathogens for dental caries, the enhancement of the synergistic relationship by nicotine may contribute to caries development in smokers. PMID:28280743

    8. Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms.

      Science.gov (United States)

      Batstone, D J; Picioreanu, C; van Loosdrecht, M C M

      2006-09-01

      Anaerobic digestion is a multistep process, mediated by a functionally and phylogenetically diverse microbial population. One of the crucial steps is oxidation of organic acids, with electron transfer via hydrogen or formate from acetogenic bacteria to methanogens. This syntrophic microbiological process is strongly restricted by a thermodynamic limitation on the allowable hydrogen or formate concentration. In order to study this process in more detail, we developed an individual-based biofilm model which enables to describe the processes at a microbial resolution. The biochemical model is the ADM1, implemented in a multidimensional domain. With this model, we evaluated three important issues for the syntrophic relationship: (i) Is there a fundamental difference in using hydrogen or formate as electron carrier? (ii) Does a thermodynamic-based inhibition function produced substantially different results from an empirical function? and; (iii) Does the physical co-location of acetogens and methanogens follow directly from a general model. Hydrogen or formate as electron carrier had no substantial impact on model results. Standard inhibition functions or thermodynamic inhibition function gave similar results at larger substrate field grid sizes (> 10 microm), but at smaller grid sizes, the thermodynamic-based function reduced the number of cells with long interspecies distances (> 2.5 microm). Therefore, a very fine grid resolution is needed to reflect differences between the thermodynamic function, and a more generic inhibition form. The co-location of syntrophic bacteria was well predicted without a need to assume a microbiological based mechanism (e.g., through chemotaxis) of biofilm formation.

    9. A portable interferometric micro-array reader on image sensor

      OpenAIRE

      Villar Zafra, Aitor

      2014-01-01

      [ANGLÈS] Microarrays constitute a valuable analytical tool for multiplex and high-throughput analysis and are widely used in genomics and proteomics with many potential applications. During the last decades, protein chips have found increasing acceptance for diagnostic applications due to several advantages over conventional bioanalysis such as miniaturization, parallelization, real-time and sensitivity. Even though the majority of DNA-sensor systems relies on labeling of DNA, the recent prog...

    10. Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies

      National Research Council Canada - National Science Library

      Miller, David T; Adam, Margaret P; Aradhya, Swaroop; Biesecker, Leslie G; Brothman, Arthur R; Carter, Nigel P; Church, Deanna M; Crolla, John A; Eichler, Evan E; Epstein, Charles J; Faucett, W. Andrew; Feuk, Lars; Friedman, Jan M; Hamosh, Ada; Jackson, Laird; Kaminsky, Erin B; Kok, Klaas; Krantz, Ian D; Kuhn, Robert M; Lee, Charles; Ostell, James M; Rosenberg, Carla; Scherer, Stephen W; Spinner, Nancy B; Stavropoulos, Dimitri J; Tepperberg, James H; Thorland, Erik C; Vermeesch, Joris R; Waggoner, Darrel J; Watson, Michael S; Martin, Christa Lese; Ledbetter, David H

      2010-01-01

      ... and (2) testing for common single-gene disorders, such as fragile X syndrome. 4 Microarray-based genomic copy-number analysis is now a commonly ordered clinical genetic test for this patient populat...

    11. Microarray analysis of p-anisaldehyde-induced transcriptome of Saccharomyces cerevisiae.

      Science.gov (United States)

      Yu, Lu; Guo, Na; Yang, Yi; Wu, Xiuping; Meng, Rizeng; Fan, Junwen; Ge, Fa; Wang, Xuelin; Liu, Jingbo; Deng, Xuming

      2010-03-01

      p-Anisaldehyde (4-methoxybenzaldehyde), an extract from Pimpinella anisum L. seeds, is a potential novel preservative. To reveal the possible action mechanism of p-anisaldehyde against microorganisms, yeast-based commercial oligonucleotide microarrays were used to analyze the genome-wide transcriptional changes in response to p-anisaldehyde. Quantitative real-time RT-PCR was performed for selected genes to verify the microarray results. We interpreted our microarray data with the clustering tool, T-profiler. Analysis of microarray data revealed that p-anisaldehyde induced the expression of genes related to sulphur assimilation, aromatic aldehydes metabolism, and secondary metabolism, which demonstrated that the addition of p-anisaldehyde may influence the normal metabolism of aromatic aldehydes. This genome-wide transcriptomics approach revealed first insights into the response of Saccharomyces cerevisiae (S. cerevisiae) to p-anisaldehyde challenge.

    12. Microarray Technologies in Fungal Diagnostics.

      Science.gov (United States)

      Rupp, Steffen

      2017-01-01

      Microarray technologies have been a major research tool in the last decades. In addition they have been introduced into several fields of diagnostics including diagnostics of infectious diseases. Microarrays are highly parallelized assay systems that initially were developed for multiparametric nucleic acid detection. From there on they rapidly developed towards a tool for the detection of all kind of biological compounds (DNA, RNA, proteins, cells, nucleic acids, carbohydrates, etc.) or their modifications (methylation, phosphorylation, etc.). The combination of closed-tube systems and lab on chip devices with microarrays further enabled a higher automation degree with a reduced contamination risk. Microarray-based diagnostic applications currently complement and may in the future replace classical methods in clinical microbiology like blood cultures, resistance determination, microscopic and metabolic analyses as well as biochemical or immunohistochemical assays. In addition, novel diagnostic markers appear, like noncoding RNAs and miRNAs providing additional room for novel nucleic acid based biomarkers. Here I focus an microarray technologies in diagnostics and as research tools, based on nucleic acid-based arrays.

    13. Experimental infection of mice with hamster parvovirus: evidence for interspecies transmission of mouse parvovirus 3.

      Science.gov (United States)

      Christie, Rachel D; Marcus, Emily C; Wagner, April M; Besselsen, David G

      2010-04-01

      Hamster parvovirus (HaPV) was isolated 2 decades ago from hamsters with clinical signs similar to those induced in hamsters experimentally infected with other rodent parvoviruses. Genetically, HaPV is most closely related to mouse parvovirus (MPV), which induces subclinical infection in mice. A novel MPV strain, MPV3, was detected recently in naturally infected mice, and genomic sequence analysis indicates that MPV3 is almost identical to HaPV. The goal of the present studies was to examine the infectivity of HaPV in mice. Neonatal and weanling mice of several mouse strains were inoculated with HaPV. Tissues, excretions, and sera were harvested at 1, 2, 4, and 8 wk after inoculation and evaluated by quantitative PCR and serologic assays specific for HaPV. Quantitative PCR detected viral DNA quantities that greatly exceeded the quantity of virus in inocula in multiple tissues of infected mice. Seroconversion to both nonstructural and structural viral proteins was detected in most immunocompetent mice 2 or more weeks after inoculation with HaPV. In neonatal SCID mice, viral transcripts were detected in lymphoid tissues by RT-PCR and viral DNA was detected in feces by quantitative PCR at 8 wk after inoculation. No clinical signs, gross, or histologic lesions were observed. These findings are similar to those observed in mice infected with MPV. These data support the hypothesis that HaPV and MPV3 are likely variants of the same viral species, for which the mouse is the natural rodent host with rare interspecies transmission to the hamster.

    14. Carbohydrate microarrays in plant science.

      Science.gov (United States)

      Fangel, Jonatan U; Pedersen, Henriette L; Vidal-Melgosa, Silvia; Ahl, Louise I; Salmean, Armando Asuncion; Egelund, Jack; Rydahl, Maja Gro; Clausen, Mads H; Willats, William G T

      2012-01-01

      Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.

    15. Design and application of 60mer oligonucleotide microarray in SARS coronavirus detection

      Institute of Scientific and Technical Information of China (English)

      2003-01-01

      The 60mer oligonucleotide microarray was designed and applied to detecting of SARS (severe acute respiratory syndrome) coronavirus. Thirty 60mer specific oligos were designed to cover the whole genome of the first submitted coronavirus strain, according to the sequence of TOR2 (GENEBANK Accession: AY274119). These primers were synthesized and printed into a microarray with 12×12 spots. RNAs were extracted from the throat swab and gargling fluid of SARS patients and reverse-transcripted into the double strand cDNAs. The cDNAs were prepared as restricted cDNA fragments by the restriction display (RD) technique and labeled by PCR with the Cy5-universal primer. The labeled samples were then applied to the oligo microarray for hybridization. The diagnostic capability of the microarray was evaluated after the washing and scanning steps. The scanning result showed that samples of SARS patients were hybridized with multiple SARS probes on the microarray, and there is no signal on the negative and blank controls. These results indicate that the genome of SARS coronavirus can be detected in parallel by the 60mer oligonucleotide microarray, which can improve the positive ratio of the diagnosis. The oligo microarray can also be used for monitoring the behavior of the virus genes in different stages of the disease status.

    16. From single gene to integrative molecular concept MAPS: pitfalls and potentials of microarray technology.

      Science.gov (United States)

      Chiorino, G; Mello Grand, M; Scatolini, M; Ostano, P

      2008-01-01

      Microarray experiments have a large variety of applications and several important achievements have been obtained by means of this technology, especially within the field of whole genome expression profiling, which undoubtedly is the most diffused world-wide. Nevertheless, care must be taken in unconditionally applying such high-throughput techniques and in extracting/interpreting their results. Both the validity and the reproducibility of microarray-based clinical research have recently been challenged. Pitfalls and potentials of the microarray technology for gene expression profiling are critically reviewed in this paper.

    17. Increasing the specificity and function of DNA microarrays by processing arrays at different stringencies

      DEFF Research Database (Denmark)

      Dufva, Martin; Petersen, Jesper; Poulsen, Lena

      2009-01-01

      DNA microarrays have for a decade been the only platform for genome-wide analysis and have provided a wealth of information about living organisms. DNA microarrays are processed today under one condition only, which puts large demands on assay development because all probes on the array need...... to function optimally under one condition only. Microarrays are often burdened with a significant degree of cross-hybridization, because of a poor combination of assay conditions and probe choice. As reviewed here, a number of promising microfluidics-based technologies can provide automatic processing...

    18. Transcription network construction for large-scale microarray datasets using a high-performance computing approach

      OpenAIRE

      Wu Qishi; Zhu Mengxia

      2008-01-01

      Abstract Background The advance in high-throughput genomic technologies including microarrays has demonstrated the potential of generating a tremendous amount of gene expression data for the entire genome. Deciphering transcriptional networks that convey information on intracluster correlations and intercluster connections of genes is a crucial analysis task in the post-sequence era. Most of the existing analysis methods for genome-wide gene expression profiles consist of several steps that o...

    19. Phenotypic MicroRNA Microarrays

      OpenAIRE

      2013-01-01

      Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the bio...

    20. Evaluation of a gene information summarization system by users during the analysis process of microarray datasets.

      Science.gov (United States)

      Yang, Jianji; Cohen, Aaron; Hersh, William

      2009-02-05

      Summarization of gene information in the literature has the potential to help genomics researchers translate basic research into clinical benefits. Gene expression microarrays have been used to study biomarkers for disease and discover novel types of therapeutics and the task of finding information in journal articles on sets of genes is common for translational researchers working with microarray data. However, manually searching and scanning the literature references returned from PubMed is a time-consuming task for scientists. We built and evaluated an automatic summarizer of information on genes studied in microarray experiments. The Gene Information Clustering and Summarization System (GICSS) is a system that integrates two related steps of the microarray data analysis process: functional gene clustering and gene information gathering. The system evaluation was conducted during the process of genomic researchers analyzing their own experimental microarray datasets. The clusters generated by GICSS were validated by scientists during their microarray analysis process. In addition, presenting sentences in the abstract provided significantly more important information to the users than just showing the title in the default PubMed format. The evaluation results suggest that GICSS can be useful for researchers in genomic area. In addition, the hybrid evaluation method, partway between intrinsic and extrinsic system evaluation, may enable researchers to gauge the true usefulness of the tool for the scientists in their natural analysis workflow and also elicit suggestions for future enhancements. GICSS can be accessed online at: http://ir.ohsu.edu/jianji/index.html.

    1. Radioimmunoassay of Mammalian Type-C Viral Proteins: Interspecies Antigenic Reactivities of the Major Internal Polypeptide*

      Science.gov (United States)

      Parks, Wade P.; Scolnick, Edward M.

      1972-01-01

      Mammalian type-C viruses contain a major internal polypeptide of about 30,000 daltons that is characterized by both intraspecies and interspecies antigenic reactivities. Radioimmunoprecipitation assays were used for measurement of this protein; the assay was based upon interspecies reactivities of the protein. As little as 5 ng of the group-specific antigen of murine leukemia virus can be measured by radioimmunoprecipitation assays, thus providing an approximate 10,000-fold increase in sensitivity over the standard immunodiffusion procedure. The type-C viruses that were recently isolated from a woolly monkey and gibbon ape each have an interspecies type-C antigenic reactivity. The primate viruses, however, could be distinguished from the type-C viruses of murine, rat, hamster, and feline origin that were more highly related to each other. The interspecies reactivity of the 30,000-dalton polypeptide is an immunological marker of the mammalian type-C viruses, since even with this sensitive assay other mammalian viruses with RNA-dependent DNA polymerase activity did not contain the type-C interspecies antigen. Images PMID:4505653

    2. Interspecies radioimmunoassay for the major internal protein of mammary tumor viruses

      Energy Technology Data Exchange (ETDEWEB)

      Hand, P.H.; Teramoto, Y.A.; Callahan, R.; Schlom, J.

      1980-02-01

      An interspecies radioimmunoassay was developed which detects antigenic determinants shared by type-B mammary tumor viruses (MTVs). This interspecies assay is specific for antigenic sites which the 28,000-dalton major internal protein of MMTVs of laboratory mice (Mus musculus) has in common with polypeptides of MC-MTV. MC-MTV is a new type-B retrovirus isolated from the Asian rodent. Mus cervicolor. Other retrovirus isolates of Mus cervicolor, i.e., M432, CERV-CI, and CERV-CII, as well as other type-C and type-D retroviruses, do not compete in the interspecies assay. The interspecies assay detected MTV cross-reactive antigenic determinants with equal efficiency in milks, lactating mammary glands, and in spontaneous mammary tumors of three distinct species. Particles morphologically indistinguishable from MMTV and MC-MTV have also been detected in Mus cookii mammary tumor cells. The interspecies MTV p28 radioimmunoassay thus provides a potentially useful tool for the detection of etiologically related viruses or viral translational products in species other than the laboratory mouse.

    3. Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410--another successful pandemic clone?

      Science.gov (United States)

      Schaufler, Katharina; Semmler, Torsten; Wieler, Lothar H; Wöhrmann, Michael; Baddam, Ramani; Ahmed, Niyaz; Müller, Kerstin; Kola, Axel; Fruth, Angelika; Ewers, Christa; Guenther, Sebastian

      2016-01-01

      Clinically relevant extended-spectrum beta-lactamase (ESBL)-producing multi-resistant Escherichia coli have been on the rise for years. Initially restricted to mostly a clinical context, recent findings prove their prevalence in extraclinical settings independent of the original occurrence of antimicrobial resistance in the environment. To get further insights into the complex ecology of potentially clinically relevant ESBL-producing E. coli, 24 isolates from wild birds in Berlin, Germany, and 40 ESBL-producing human clinical E. coli isolates were comparatively analyzed. Isolates of ST410 occurred in both sample groups (six). In addition, three ESBL-producing E. coli isolates of ST410 from environmental dog feces and one clinical dog isolate were included. All 10 isolates were clonally analyzed showing almost identical macrorestriction patterns. They were chosen for whole-genome sequencing revealing that the whole-genome content of these 10 E. coli isolates showed a very high genetic similarity, differing by low numbers of single nucleotide polymorphisms only. This study gives initial evidence for a recent interspecies transmission of a new successful clone of ST410 E. coli between wildlife, humans, companion animals and the environment. The results underline the zoonotic potential of clinically relevant multi-resistant bacteria found in the environment as well as the mandatory nature of the 'One Health' approach.

    4. Interspecies gene transfer as a method for understanding the genetic basis for evolutionary change: Progress, Pitfalls and Prospects

      Directory of Open Access Journals (Sweden)

      Lachezar A. Nikolov

      2015-12-01

      Full Text Available The recent revolution in high throughput sequencing and associated applications provides excellent opportunities to catalogue variation in DNA sequences and gene expression between species. However, understanding the astonishing diversity of the Tree of Life requires understanding the phenotypic consequences of such variation and identification of those rare genetic changes that are causal to diversity. One way to study the genetic basis for trait diversity is to apply a transgenic approach and introduce genes of interest from a donor into a recipient species. Such interspecies gene transfer (IGT is based on the premise that if a gene is causal to the morphological divergence of the two species, the transfer will endow the recipient with properties of the donor. Extensions of this approach further allow identifying novel loci for the diversification of form and investigating cis- and trans-contributions to morphological evolution. Here we review recent examples from both plant and animal systems that have employed IGT to provide insight into the genetic basis of evolutionary change. We outline the practice of IGT, its methodological strengths and weaknesses, and consider guidelines for its application, emphasizing the importance of phylogenetic distance, character polarity, and life history. We also discuss future perspectives for exploiting IGT in the context of expanding genomic resources in emerging experimental systems and advances in genome editing.

    5. Phospholipidosis in rats treated with amiodarone: serum biochemistry and whole genome micro-array analysis supporting the lipid traffic jam hypothesis and the subsequent rise of the biomarker BMP.

      Science.gov (United States)

      Mesens, Natalie; Desmidt, Miek; Verheyen, Geert R; Starckx, Sofie; Damsch, Siegrid; De Vries, Ronald; Verhemeldonck, Marc; Van Gompel, Jacky; Lampo, Ann; Lammens, Lieve

      2012-04-01

      To provide mechanistic insight in the induction of phospholipidosis and the appearance of the proposed biomarker di-docosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate (BMP), rats were treated with 150 mg/kg amiodarone for 12 consecutive days and analyzed at three different time points (day 4, 9, and 12). Biochemical analysis of the serum revealed a significant increase in cholesterol and phospholipids at the three time points. Bio-analysis on the serum and urine detected a time-dependent increase in BMP, as high as 10-fold compared to vehicle-treated animals on day 12. Paralleling these increases, micro-array analysis on the liver of treated rats identified cholesterol biosynthesis and glycerophospholipid metabolism as highly modulated pathways. This modulation indicates that during phospholipidosis-induction interactions take place between the cationic amphiphilic drug and phospholipids at the level of BMP-rich internal membranes of endosomes, impeding cholesterol sorting and leading to an accumulation of internal membranes, converting into multilamellar bodies. This process shows analogy to Niemann-Pick disease type C (NPC). Whereas the NPC-induced lipid traffic jam is situated at the cholesterol sorting proteins NPC1 and NPC2, the amiodarone-induced traffic jam is thought to be located at the BMP level, demonstrating its role in the mechanism of phospholipidosis-induction and its significance for use as a biomarker.

    6. Employing image processing techniques for cancer detection using microarray images.

      Science.gov (United States)

      Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

      2017-02-01

      Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively.

    7. Genome-wide profiling of micro-RNA expression in gefitinib-resistant human lung adenocarcinoma using microarray for the identification of miR-149-5p modulation.

      Science.gov (United States)

      Hu, Yong; Qin, Xiaobing; Yan, Dali; Cao, Haixia; Zhou, Leilei; Fan, Fan; Zang, Jialan; Ni, Jie; Xu, Xiaoyue; Sha, Huanhuan; Liu, Siwen; Yu, Shaorong; Wu, Jianzhong; Ma, Rong; Feng, Jifeng

      2017-03-01

      To understand the mechanism involved in gefitinib resistance, we established gefitinib-resistant human HCC827/GR-8-1 cell line from the parental HCC827 cell line. We compared the micro-RNA expression profiles of the HCC827 cells HCC827/GR-8-1 using Agilent micro-RNA microarrays. The micro-RNAs, such as the miR-149-5p, were up- or downregulated and associated with acquired gefitinib resistance. Quantitative real-time polymerase chain reaction was then performed to verify the expression patterns of different micro-RNAs. The result showed that miR-149-5p was upregulated in the HCC827/GR-8-1 cell line. To investigate the biological function of miR-149-5p in non-small cell lung cancer cells acquired gefitinib resistance, we examined cell proliferation using a cell counting kit-8 assay. Cell viability was evaluated after the miR-149-5p mimics, inhibitors, and negative control were separately transfected into the non-small cell lung cancer cells. The results showed that the non-small cell lung cancer cells transfected with miR-149-5p mimics exhibited reduced cell motility. The drug-sensitivity assay results revealed that the overexpression of miR-149-5p effectively evaluates the half maximal inhibitory concentration values of the cell in response to gefitinib, and the downregulation of miR-149-5p can attenuate the half maximal inhibitory concentration values of the cell lines in response to gefitinib. Furthermore, the levels of miR-149-5p in the HCC827 and HCC827/GR-8-1 cells were inversely correlated with caspase-3 expression. In conclusion, this study revealed that miR-149-5p is upregulated in the HCC827/GR-8-1 cells and involved in the acquired gefitinib resistance.

    8. Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data

      Science.gov (United States)

      Sharov, Alexei A; Masui, Shinji; Sharova, Lioudmila V; Piao, Yulan; Aiba, Kazuhiro; Matoba, Ryo; Xin, Li; Niwa, Hitoshi; Ko, Minoru SH

      2008-01-01

      Background Target genes of a transcription factor (TF) Pou5f1 (Oct3/4 or Oct4), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation. Results To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR < 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after Pou5f1 suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for Pou5f1. The majority of TTGs (372) were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1. Conclusion We have identified the most reliable sets of direct target genes for key pluripotency genes – Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly. PMID:18522731

    9. Direct calibration of PICKY-designed microarrays

      Directory of Open Access Journals (Sweden)

      Ronald Pamela C

      2009-10-01

      Full Text Available Abstract Background Few microarrays have been quantitatively calibrated to identify optimal hybridization conditions because it is difficult to precisely determine the hybridization characteristics of a microarray using biologically variable cDNA samples. Results Using synthesized samples with known concentrations of specific oligonucleotides, a series of microarray experiments was conducted to evaluate microarrays designed by PICKY, an oligo microarray design software tool, and to test a direct microarray calibration method based on the PICKY-predicted, thermodynamically closest nontarget information. The complete set of microarray experiment results is archived in the GEO database with series accession number GSE14717. Additional data files and Perl programs described in this paper can be obtained from the website http://www.complex.iastate.edu under the PICKY Download area. Conclusion PICKY-designed microarray probes are highly reliable over a wide range of hybridization temperatures and sample concentrations. The microarray calibration method reported here allows researchers to experimentally optimize their hybridization conditions. Because this method is straightforward, uses existing microarrays and relatively inexpensive synthesized samples, it can be used by any lab that uses microarrays designed by PICKY. In addition, other microarrays can be reanalyzed by PICKY to obtain the thermodynamically closest nontarget information for calibration.

    10. Impact of genomics on microbial food safety

      NARCIS (Netherlands)

      Abee, T.; Schaik, van W.; Siezen, R.J.

      2004-01-01

      Genome sequences are now available for many of the microbes that cause food-borne diseases. The information contained in pathogen genome sequences, together with the development of themed and whole-genome DNA microarrays and improved proteomics techniques, might provide tools for the rapid detection

    11. Microsatellite DNA analysis proves nucleus of interspecies reconstructed blastocyst coming from that of donor giant panda

      Institute of Scientific and Technical Information of China (English)

      2000-01-01

      A method for DNA isolation from early development of blastocyst and further analysis of nuclear and mitochondrial DNA was developed in present study. Total DNA was prepared from interspecies reconstructed blastocyst and a giant panda specific microsatellite locus g010 was successfully amplified. DNA sequencing of the PCR product showed that two sequences of reconstructed blastocysts are the same as that of positive control giant panda. Our results prove that the nucleus of interspecies reconstructed blastocyst comes from somatic nucleus of donor giant panda.

    12. A Tool for Sheep Product Quality: Custom Microarrays from Public Databases

      Directory of Open Access Journals (Sweden)

      Lorraine Pariset

      2009-12-01

      Full Text Available Milk and dairy products are an essential food and an economic resource in many countries. Milk component synthesis and secretion by the mammary gland involve expression of a large number of genes whose nutritional regulation remains poorly defined. The purpose of this study was to gain an understanding of the genomic influence on milk quality and synthesis by comparing two sheep breeds with different milking attitude (Sarda and Gentile di Puglia using sheep-specific microarray technology. From sheep ESTs deposited at NCBI, we have generated the first annotated microarray developed for sheep with a coverage of most of the genome.

    13. A tool for sheep product quality: custom microarrays from public databases.

      Science.gov (United States)

      Bongiorni, Silvia; Chillemi, Giovanni; Prosperini, Gianluca; Bueno, Susana; Valentini, Alessio; Pariset, Lorraine

      2009-02-01

      Milk and dairy products are an essential food and an economic resource in many countries. Milk component synthesis and secretion by the mammary gland involve expression of a large number of genes whose nutritional regulation remains poorly defined. The purpose of this study was to gain an understanding of the genomic influence on milk quality and synthesis by comparing two sheep breeds with different milking attitude (Sarda and Gentile di Puglia) using sheep-specific microarray technology. From sheep ESTs deposited at NCBI, we have generated the first annotated microarray developed for sheep with a coverage of most of the genome.

    14. Differential splicing using whole-transcript microarrays

      Directory of Open Access Journals (Sweden)

      Robinson Mark D

      2009-05-01

      Full Text Available Abstract Background The latest generation of Affymetrix microarrays are designed to interrogate expression over the entire length of every locus, thus giving the opportunity to study alternative splicing genome-wide. The Exon 1.0 ST (sense target platform, with versions for Human, Mouse and Rat, is designed primarily to probe every known or predicted exon. The smaller Gene 1.0 ST array is designed as an expression microarray but still interrogates expression with probes along the full length of each well-characterized transcript. We explore the possibility of using the Gene 1.0 ST platform to identify differential splicing events. Results We propose a strategy to score differential splicing by using the auxiliary information from fitting the statistical model, RMA (robust multichip analysis. RMA partitions the probe-level data into probe effects and expression levels, operating robustly so that if a small number of probes behave differently than the rest, they are downweighted in the fitting step. We argue that adjacent poorly fitting probes for a given sample can be evidence of differential splicing and have designed a statistic to search for this behaviour. Using a public tissue panel dataset, we show many examples of tissue-specific alternative splicing. Furthermore, we show that evidence for putative alternative splicing has a strong correspondence between the Gene 1.0 ST and Exon 1.0 ST platforms. Conclusion We propose a new approach, FIRMAGene, to search for differentially spliced genes using the Gene 1.0 ST platform. Such an analysis complements the search for differential expression. We validate the method by illustrating several known examples and we note some of the challenges in interpreting the probe-level data. Software implementing our methods is freely available as an R package.

    15. Misregulation of Gene Expression and Sterility in Interspecies Hybrids: Causal Links and Alternative Hypotheses.

      Science.gov (United States)

      Civetta, Alberto

      2016-05-01

      Understanding the origin of species is of interest to biologist in general and evolutionary biologist in particular. Hybrid male sterility (HMS) has been a focus in studies of speciation because sterility imposes a barrier to free gene flow between organisms, thus effectively isolating them as distinct species. In this review, I focus on the role of differential gene expression in HMS and speciation. Microarray and qPCR assays have established associations between misregulation of gene expression and sterility in hybrids between closely related species. These studies originally proposed disrupted expression of spermatogenesis genes as a causative of sterility. Alternatively, rapid genetic divergence of regulatory elements, particularly as they relate to the male sex (fast-male evolution), can drive the misregulation of sperm developmental genes in the absence of sterility. The use of fertile hybrids (both backcross and F1 progeny) as controls has lent support to this alternative explanation. Differences in gene expression between fertile and sterile hybrids can also be influenced by a pattern of faster evolution of the sex chromosome (fast-X evolution) than autosomes. In particular, it would be desirable to establish whether known X-chromosome sterility factors can act as trans-regulatory drivers of genome-wide patterns of misregulation. Genome-wide expression studies coupled with assays of proxies of sterility in F1 and BC progeny have identified candidate HMS genes but functional assays, and a better phenotypic characterization of sterility phenotypes, are needed to rigorously test how these genes might contribute to HMS.

    16. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

      Directory of Open Access Journals (Sweden)

      Beaudoing Emmanuel

      2006-09-01

      Full Text Available Abstract Background High throughput gene expression profiling (GEP is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking, data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for

    17. Biclustering of time series microarray data.

      Science.gov (United States)

      Meng, Jia; Huang, Yufei

      2012-01-01

      Clustering is a popular data exploration technique widely used in microarray data analysis. In this chapter, we review ideas and algorithms of bicluster and its applications in time series microarray analysis. We introduce first the concept and importance of biclustering and its different variations. We then focus our discussion on the popular iterative signature algorithm (ISA) for searching biclusters in microarray dataset. Next, we discuss in detail the enrichment constraint time-dependent ISA (ECTDISA) for identifying biologically meaningful temporal transcription modules from time series microarray dataset. In the end, we provide an example of ECTDISA application to time series microarray data of Kaposi's Sarcoma-associated Herpesvirus (KSHV) infection.

    18. Seeded Bayesian Networks: Constructing genetic networks from microarray data

      Directory of Open Access Journals (Sweden)

      Quackenbush John

      2008-07-01

      Full Text Available Abstract Background DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes – often represented as networks – in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results. Results Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data. Conclusion The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.

    19. Sex determination of bovine preimplantation embryos by oligonucleotide microarray.

      Science.gov (United States)

      Yang, Hua; Zhong, Fagang; Yang, Yonglin; Wang, Xinhua; Liu, Shouren; Zhu, Bin

      2013-06-01

      The aim has been to set up a rapid and accurate microarray assay using sandwich mode for sex determination of bovine preimplantation embryos. Twelve sequence-specific oligonucleotide capture probes used to discriminate 12 samples were spotted onto the aldehyde-modified glass slides by Arrayer. The 2 recognition probes used to identify coding regions of the sex-determining region of the Y chromosome gene (SRY) and β-casein (CSN2) reference gene were coupled with biotin. The assay was optimized by using genomic DNA extracted from blood samples of known sex individuals. Polymerase chain reaction (PCR) was used to amplify the fragments in the HMG box region of SRY gene and CSN2 gene with sequence-specific primers. The sex of samples was identified by detecting both the SRY and CSN2 genes simultaneously in 2 reaction cells of microarrays, with the male having SRY and CSN2 signals and the female only CSN2. The sex of 20 bovine preimplantation embryos was determined by oligonucleotide microarray. The protocol was run with a blind test that showed a 100% (82/82) specificity and accuracy in sexing of leukocytes. The bovine embryos were transferred into 20 bovine recipients, with a pregnant rate of 40% (8/20). Three calves were born at term, and 5 fetuses were miscarried. Their sexes were fully in accordance with the embryonic sex predetermination predicted by oligonucleotide microarray. This suggests that the oligonucleotide microarray method of SRY gene analysis can be used in early sex prediction of bovine embryos in breeding programs.

    20. ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation

      OpenAIRE

      Porter Christopher J; Palidwor Gareth; Palmer Claire; Muro Enrique M; McCann Jennifer A; Andrade-Navarro Miguel A; Rudnicki Michael A

      2007-01-01

      Abstract Background SNP microarrays are designed to genotype Single Nucleotide Polymorphisms (SNPs). These microarrays report hybridization of DNA fragments and therefore can be used for the purpose of detecting genomic fragments. Results Here, we demonstrate that a SNP microarray can be effectively used in this way to perform chromatin immunoprecipitation (ChIP) on chip as an alternative to tiling microarrays. We illustrate this novel application by mapping whole genome histone H4 hyperacety...

    1. Interpreting microarray data to build models of microbial genetic regulation networks

      Science.gov (United States)

      Sokhansanj, Bahrad A.; Garnham, Janine B.; Fitch, J. Patrick

      2002-06-01

      Microarrays and DNA chips are an efficient, high-throughput technology for measuring temporal changes in the expression of message RNA (mRNA) from thousands of genes (often the entire genome of an organism) in a single experiment. A crucial drawback of microarray experiments is that results are inherently qualitative: data are generally neither quantitatively repeatable, nor may microarray spot intensities be calibrated to in vivo mRNA concentrations. Nevertheless, microarrays represent by the far the cheapest and fastest way to obtain information about a cell's global genetic regulatory networks. Besides poor signal characteristics, the massive number of data produced by microarray experiments pose challenges for visualization, interpretation and model building. Towards initial model development, we have developed a Java tool for visualizing the spatial organization of gene expression in bacteria. We are also developing an approach to inferring and testing qualitative fuzzy logic models of gene regulation using microarray data. Because we are developing and testing qualitative hypotheses that do not require quantitative precision, our statistical evaluation of experimental data is limited to checking for validity and consistency. Our goals are to maximize the impact of inexpensive microarray technology, bearing in mind that biological models and hypotheses are typically qualitative.

    2. Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data.

      Science.gov (United States)

      Guo, Yan; Sheng, Quanhu; Li, Jiang; Ye, Fei; Samuels, David C; Shyr, Yu

      2013-01-01

      RNAseq and microarray methods are frequently used to measure gene expression level. While similar in purpose, there are fundamental differences between the two technologies. Here, we present the largest comparative study between microarray and RNAseq methods to date using The Cancer Genome Atlas (TCGA) data. We found high correlations between expression data obtained from the Affymetrix one-channel microarray and RNAseq (Spearman correlations coefficients of ∼0.8). We also observed that the low abundance genes had poorer correlations between microarray and RNAseq data than high abundance genes. As expected, due to measurement and normalization differences, Agilent two-channel microarray and RNAseq data were poorly correlated (Spearman correlations coefficients of only ∼0.2). By examining the differentially expressed genes between tumor and normal samples we observed reasonable concordance in directionality between Agilent two-channel microarray and RNAseq data, although a small group of genes were found to have expression changes reported in opposite directions using these two technologies. Overall, RNAseq produces comparable results to microarray technologies in term of expression profiling. The RNAseq normalization methods RPKM and RSEM produce similar results on the gene level and reasonably concordant results on the exon level. Longer exons tended to have better concordance between the two normalization methods than shorter exons.

    3. Interpreting Microarray Data to Build Models of Microbial Genetic Regulation Networks

      Energy Technology Data Exchange (ETDEWEB)

      Sokhansanj, B; Garnham, J B; Fitch, J P

      2002-01-23

      Microarrays and DNA chips are an efficient, high-throughput technology for measuring temporal changes in the expression of message RNA (mRNA) from thousands of genes (often the entire genome of an organism) in a single experiment. A crucial drawback of microarray experiments is that results are inherently qualitative: data are generally neither quantitatively repeatable, nor may microarray spot intensities be calibrated to in vivo mRNA concentrations. Nevertheless, microarrays represent by the far the cheapest and fastest way to obtain information about a cells global genetic regulatory networks. Besides poor signal characteristics, the massive number of data produced by microarray experiments poses challenges for visualization, interpretation and model building. Towards initial model development, we have developed a Java tool for visualizing the spatial organization of gene expression in bacteria. We are also developing an approach to inferring and testing qualitative fuzzy logic models of gene regulation using microarray data. Because we are developing and testing qualitative hypotheses that do not require quantitative precision, our statistical evaluation of experimental data is limited to checking for validity and consistency. Our goals are to maximize the impact of inexpensive microarray technology, bearing in mind that biological models and hypotheses are typically qualitative.

    4. Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.

      Science.gov (United States)

      Polen, Tino; Wendisch, Volker F

      2004-01-01

      DNA microarray technology has become an important research tool for biotechnology and microbiology. It is now possible to characterize genetic diversity and gene expression in a genomewide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Escherichia coli, but only recently have they been developed for the Gram-positive Corynebacterium glutamicum. Both bacteria are widely used for biotechnological amino acid production. In this article, in addition to the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, we describe recent applications of DNA microarray technology regarding amino acid production in C. glutamicum and E. coli. We also discuss the impact of functional genomics studies on fundamental as well as applied aspects of amino acid production with C. glutamicum and E. coli.

    5. Simulating the Contribution of Coaggregation to Interspecies Hydrogen Fluxes in Syntrophic Methanogenic Consortia†

      OpenAIRE

      2006-01-01

      A simple model (termed the syntrophy model) for simulating the contribution of coaggregation to interspecies hydrogen fluxes between syntrophic bacteria and methanogenic archaea is described. We applied it to analyzing partially aggregated syntrophic cocultures with various substrates, revealing that large fractions of hydrogen molecules were fluxed in aggregates.

    6. Interspecies extrapolation based on the RepDose database--a probabilistic approach.

      Science.gov (United States)

      Escher, Sylvia E; Batke, Monika; Hoffmann-Doerr, Simone; Messinger, Horst; Mangelsdorf, Inge

      2013-04-12

      Repeated dose toxicity studies from the RepDose database (DB) were used to determine interspecies differences for rats and mice. NOEL (no observed effect level) ratios based on systemic effects were investigated for three different types of exposure: inhalation, oral food/drinking water and oral gavage. Furthermore, NOEL ratios for local effects in inhalation studies were evaluated. On the basis of the NOEL ratio distributions, interspecies assessment factors (AF) are evaluated. All data sets were best described by a lognormal distribution. No difference was seen between inhalation and oral exposure for systemic effects. Rats and mice were on average equally sensitive at equipotent doses with geometric mean (GM) values of 1 and geometric standard deviation (GSD) values ranging from 2.30 to 3.08. The local AF based on inhalation exposure resulted in a similar distribution with GM values of 1 and GSD values between 2.53 and 2.70. Our analysis confirms former analyses on interspecies differences, including also dog and human data. Furthermore it supports the principle of allometric scaling according to caloric demand in the case that body doses are applied. In conclusion, an interspecies distribution animal/human with a GM equal to allometric scaling and a GSD of 2.5 was derived.

    7. Augmenting Species Diversity in Water Quality Criteria Derivation using Interspecies Correlation Models

      Science.gov (United States)

      The specific requirements for taxa diversity of the 1985 guidelines have limited the number of ambient water quality criteria (AWQC) developed for aquatic life protection. The EPA developed the Web-based Interspecies Correlation Estimation (Web-ICE) tool to allow extrapolation of...

    8. Diversity of Integrative and Conjugative Elements of Streptococcus salivarius and Their Intra- and Interspecies Transfer.

      Science.gov (United States)

      Dahmane, Narimane; Libante, Virginie; Charron-Bourgoin, Florence; Guédon, Eric; Guédon, Gérard; Leblond-Bourget, Nathalie; Payot, Sophie

      2017-07-01

      Integrative and conjugative elements (ICEs) are widespread chromosomal mobile genetic elements which can transfer autonomously by conjugation in bacteria. Thirteen ICEs with a conjugation module closely related to that of ICESt3 of Streptococcus thermophilus were characterized in Streptococcus salivarius by whole-genome sequencing. Sequence comparison highlighted ICE evolution by shuffling of 3 different integration/excision modules (for integration in the 3' end of the fda, rpsI, or rpmG gene) with the conjugation module of the ICESt3 subfamily. Sequence analyses also pointed out a recombination occurring at oriT (likely mediated by the relaxase) as a mechanism of ICE evolution. Despite a similar organization in two operons including three conserved genes, the regulation modules show a high diversity (about 50% amino acid sequence divergence for the encoded regulators and presence of unrelated additional genes) with a probable impact on the regulation of ICE activity. Concerning the accessory genes, ICEs of the ICESt3 subfamily appear particularly rich in restriction-modification systems and orphan methyltransferase genes. Other cargo genes that could confer a selective advantage to the cell hosting the ICE were identified, in particular, genes for bacteriocin synthesis and cadmium resistance. The functionality of 2 ICEs of S. salivarius was investigated. Autonomous conjugative transfer to other S. salivarius strains, to S. thermophilus, and to Enterococcus faecalis was observed. The analysis of the ICE-fda border sequence in these transconjugants allowed the localization of the DNA cutting site of the ICE integrase.IMPORTANCE The ICESt3 subfamily of ICEs appears to be widespread in streptococci and targets diverse chromosomal integration sites. These ICEs carry diverse cargo genes that can confer a selective advantage to the host strain. The maintenance of these mobile genetic elements likely relies in part on self-encoded restriction-modification systems. In

    9. Genomotyping of Pseudomonas putida strains using P. putida KT2440-based high-density DNA microarrays: Implications for transcriptomics studies

      NARCIS (Netherlands)

      Ballerstedt, H.; Volkers, R.J.M.; Mars, A.E.; Hallsworth, J.E.; Santos, V.A.M.D.; Puchalka, J.; Duuren, J. van; Eggink, G.; Timmis, K.N.; Bont, J.A.M. de; Wery, J.

      2007-01-01

      Pseudomonas putida KT2440 is the only fully sequenced P. putida strain. Thus, for transcriptomics and proteomics studies with other P. putida strains, the P. putida KT2440 genomic database serves as standard reference. The utility of KT2440 whole-genome, high-density oligonucleotide microarrays for

    10. Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L. gene expression oligonucleotide microarray.

      Directory of Open Access Journals (Sweden)

      Paula Fernandez

      Full Text Available Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de. The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons. The resulting Sunflower Unigen Resource (SUR version 1.0 was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01 allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement.

    11. Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray.

      Science.gov (United States)

      Fernandez, Paula; Soria, Marcelo; Blesa, David; DiRienzo, Julio; Moschen, Sebastian; Rivarola, Maximo; Clavijo, Bernardo Jose; Gonzalez, Sergio; Peluffo, Lucila; Príncipi, Dario; Dosio, Guillermo; Aguirrezabal, Luis; García-García, Francisco; Conesa, Ana; Hopp, Esteban; Dopazo, Joaquín; Heinz, Ruth Amelia; Paniego, Norma

      2012-01-01

      Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01) allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement.

    12. Microarray Inspector: tissue cross contamination detection tool for microarray data.

      Science.gov (United States)

      Stępniak, Piotr; Maycock, Matthew; Wojdan, Konrad; Markowska, Monika; Perun, Serhiy; Srivastava, Aashish; Wyrwicz, Lucjan S; Świrski, Konrad

      2013-01-01

      Microarray technology changed the landscape of contemporary life sciences by providing vast amounts of expression data. Researchers are building up repositories of experiment results with various conditions and samples which serve the scientific community as a precious resource. Ensuring that the sample is of high quality is of utmost importance to this effort. The task is complicated by the fact that in many cases datasets lack information concerning pre-experimental quality assessment. Transcription profiling of tissue samples may be invalidated by an error caused by heterogeneity of the material. The risk of tissue cross contamination is especially high in oncological studies, where it is often difficult to extract the sample. Therefore, there is a need of developing a method detecting tissue contamination in a post-experimental phase. We propose Microarray Inspector: customizable, user-friendly software that enables easy detection of samples containing mixed tissue types. The advantage of the tool is that it uses raw expression data files and analyses each array independently. In addition, the system allows the user to adjust the criteria of the analysis to conform to individual needs and research requirements. The final output of the program contains comfortable to read reports about tissue contamination assessment with detailed information about the test parameters and results. Microarray Inspector provides a list of contaminant biomarkers needed in the analysis of adipose tissue contamination. Using real data (datasets from public repositories) and our tool, we confirmed high specificity of the software in detecting contamination. The results indicated the presence of adipose tissue admixture in a range from approximately 4% to 13% in several tested surgical samples.

    13. Moving Toward Integrating Gene Expression Profiling into High-throughput Testing:A Gene Expression Biomarker Accurately Predicts Estrogen Receptor α Modulation in a Microarray Compendium

      Science.gov (United States)

      Microarray profiling of chemical-induced effects is being increasingly used in medium and high-throughput formats. In this study, we describe computational methods to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (...

    14. Evolutionary analysis of heterochromatin protein compatibility by interspecies complementation in Saccharomyces.

      Science.gov (United States)

      Zill, Oliver A; Scannell, Devin R; Kuei, Jeffrey; Sadhu, Meru; Rine, Jasper

      2012-11-01

      The genetic bases for species-specific traits are widely sought, but reliable experimental methods with which to identify functionally divergent genes are lacking. In the Saccharomyces genus, interspecies complementation tests can be used to evaluate functional conservation and divergence of biological pathways or networks. Silent information regulator (SIR) proteins in S. bayanus provide an ideal test case for this approach because they show remarkable divergence in sequence and paralog number from those found in the closely related S. cerevisiae. We identified genes required for silencing in S. bayanus using a genetic screen for silencing-defective mutants. Complementation tests in interspecies hybrids identified an evolutionarily conserved Sir-protein-based silencing machinery, as defined by two interspecies complementation groups (SIR2 and SIR3). However, recessive mutations in S. bayanus SIR4 isolated from this screen could not be complemented by S. cerevisiae SIR4, revealing species-specific functional divergence in the Sir4 protein despite conservation of the overall function of the Sir2/3/4 complex. A cladistic complementation series localized the occurrence of functional changes in SIR4 to the S. cerevisiae and S. paradoxus branches of the Saccharomyces phylogeny. Most of this functional divergence mapped to sequence changes in the Sir4 PAD. Finally, a hemizygosity modifier screen in the interspecies hybrids identified additional genes involved in S. bayanus silencing. Thus, interspecies complementation tests can be used to identify (1) mutations in genetically underexplored organisms, (2) loci that have functionally diverged between species, and (3) evolutionary events of functional consequence within a genus.

    15. Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays

      Directory of Open Access Journals (Sweden)

      Chan Frances

      2006-03-01

      Full Text Available Abstract Background DNA microarrays are rapidly becoming a fundamental tool in discovery-based genomic and biomedical research. However, the reliability of the microarray results is being challenged due to the existence of different technologies and non-standard methods of data analysis and interpretation. In the absence of a "gold standard"/"reference method" for the gene expression measurements, studies evaluating and comparing the performance of various microarray platforms have often yielded subjective and conflicting conclusions. To address this issue we have conducted a large scale TaqMan® Gene Expression Assay based real-time PCR experiment and used this data set as the reference to evaluate the performance of two representative commercial microarray platforms. Results In this study, we analyzed the gene expression profiles of three human tissues: brain, lung, liver and one universal human reference sample (UHR using two representative commercial long-oligonucleotide microarray platforms: (1 Applied Biosystems Human Genome Survey Microarrays (based on single-color detection; (2 Agilent Whole Human Genome Oligo Microarrays (based on two-color detection. 1,375 genes represented by both microarray platforms and spanning a wide dynamic range in gene expression levels, were selected for TaqMan® Gene Expression Assay based real-time PCR validation. For each platform, four technical replicates were performed on the same total RNA samples according to each manufacturer's standard protocols. For Agilent arrays, comparative hybridization was performed using incorporation of Cy5 for brain/lung/liver RNA and Cy3 for UHR RNA (common reference. Using the TaqMan® Gene Expression Assay based real-time PCR data set as the reference set, the performance of the two microarray platforms was evaluated focusing on the following criteria: (1 Sensitivity and accuracy in detection of expression; (2 Fold change correlation with real-time PCR data in pair

    16. Improved statistical analysis of budding yeast TAG microarrays revealed by defined spike-in pools.

      Science.gov (United States)

      Peyser, Brian D; Irizarry, Rafael A; Tiffany, Carol W; Chen, Ou; Yuan, Daniel S; Boeke, Jef D; Spencer, Forrest A

      2005-09-15

      Saccharomyces cerevisiae knockout collection TAG microarrays are an emergent platform for rapid, genome-wide functional characterization of yeast genes. TAG arrays report abundance of unique oligonucleotide 'TAG' sequences incorporated into each deletion mutation of the yeast knockout collection, allowing measurement of relative strain representation across experimental conditions for all knockout mutants simultaneously. One application of TAG arrays is to perform genome-wide synthetic lethality screens, known as synthetic lethality analyzed by microarray (SLAM). We designed a fully defined spike-in pool to resemble typical SLAM experiments and performed TAG microarray hybridizations. We describe a method for analyzing two-color array data to efficiently measure the differential knockout strain representation across two experimental conditions, and use the spike-in pool to show that the sensitivity and specificity of this method exceed typical current approaches.

    17. Development of a suspension microarray for the genotyping of African swine fever virus targeting the SNPs in the C-terminal end of the p72 gene region of the genome.

      Science.gov (United States)

      Leblanc, N; Cortey, M; Fernandez Pinero, J; Gallardo, C; Masembe, C; Okurut, A R; Heath, L; van Heerden, J; Sánchez-Vizcaino, J M; Ståhl, K; Belák, S

      2013-08-01

      African swine fever virus (ASFV) causes one of the most dreaded transboundary animal diseases (TADs) in Suidae. African swine fever (ASF) often causes high rates of morbidity and mortality, which can reach 100% in domestic swine. To date, serological diagnosis has the drawback of not being able to differentiate variants of this virus. Previous studies have identified the 22 genotypes based on sequence variation in the C-terminal region of the p72 gene, which has become the standard for categorizing ASFVs. This article describes a genotyping assay developed using a segment of PCR-amplified genomic DNA of approximately 450 bp, which encompasses the C-terminal end of the p72 gene. Complementary paired DNA probes of 15 or 17 bp in length, which are identical except for a single nucleotide polymorphism (SNP) in the central position, were designed to either individually or in combination differentiate between the 22 genotypes. The assay was developed using xMAP technology; probes were covalently linked to microspheres, hybridized to PCR product, labelled with a reporter and read in the Luminex 200 analyzer. Characterization of the sample was performed by comparing fluorescence of the paired SNP probes, that is, the probe with higher fluorescence in a complementary pair identified the SNP that a particular sample possessed. In the final assay, a total of 52 probes were employed, 24 SNP pairs and 4 for general detection. One or more samples from each of the 22 genotypes were tested. The assay was able to detect and distinguish all 22 genotypes. This novel assay provides a powerful novel tool for the simultaneous rapid diagnosis and genotypic differentiation of ASF.

    18. Transcriptome analysis of zebrafish embryogenesis using microarrays.

      Directory of Open Access Journals (Sweden)

      2005-08-01

      Full Text Available Zebrafish (Danio rerio is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html.

    19. Ontology-Based Analysis of Microarray Data.

      Science.gov (United States)

      Giuseppe, Agapito; Milano, Marianna

      2016-01-01

      The importance of semantic-based methods and algorithms for the analysis and management of biological data is growing for two main reasons. From a biological side, knowledge contained in ontologies is more and more accurate and complete, from a computational side, recent algorithms are using in a valuable way such knowledge. Here we focus on semantic-based management and analysis of protein interaction networks referring to all the approaches of analysis of protein-protein interaction data that uses knowledge encoded into biological ontologies. Semantic approaches for studying high-throughput data have been largely used in the past to mine genomic and expression data. Recently, the emergence of network approaches for investigating molecular machineries has stimulated in a parallel way the introduction of semantic-based techniques for analysis and management of network data. The application of these computational approaches to the study of microarray data can broad the application scenario of them and simultaneously can help the understanding of disease development and progress.

    20. The use of microarray technology for cytogenetics.

      Science.gov (United States)

      Bejjani, Bassem A; Shaffer, Lisa G; Ballif, Blake C

      2010-01-01

      The use of microarray technology is revolutionizing the field of clinical cytogenetics. This new technology has transformed the cytogenetics laboratory by adapting techniques that have heretofore been the province of molecular geneticists. Intimate knowledge and comfortable familiarity with these techniques are now a must for the modern cytogeneticist, rather than a stimulating but discretionary intellectual exercise or an elective luxury. The cytogenetic laboratory of the future will likely have more scanners than microscopes, more software packages than darkrooms, and more technologists, supervisors, and directors with molecular training than ever before. This technical convergence between molecular diagnostics and clinical cytogenetics is exciting and has already resulted in many stimulating discoveries. However, the traditional skills of the cytogeneticist are needed now more than ever before. As our ability to inspect the genome increases, so does the variety of abnormalities that we uncover. Understanding the mechanisms of these aberrations to guide additional testing of the parents and genetic counseling of the patients and their families requires the expertise of individuals who are well-versed in meiotic mechanisms and chromosomal structures that may lead to these abnormalities. Cytogeneticists are uniquely positioned to understand these mechanisms and assist genetic counselors and clinicians in their daily interactions with patients and families.

    1. Transcriptome analysis of zebrafish embryogenesis using microarrays.

      Directory of Open Access Journals (Sweden)

      Sinnakaruppan Mathavan

      2005-08-01

      Full Text Available Zebrafish (Danio rerio is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html.

    2. Genomics of Escherichia and Shigella

      Science.gov (United States)

      Perna, Nicole T.

      The laboratory workhorse Escherichia coli K-12 is among the most intensively studied living organisms on earth, and this single strain serves as the model system behind much of our understanding of prokaryotic molecular biology. Dense genome sequencing and recent insightful comparative analyses are making the species E. coli, as a whole, an emerging system for studying prokaryotic population genetics and the relationship between system-scale, or genome-scale, molecular evolution and complex traits like host range and pathogenic potential. Genomic perspective has revealed a coherent but dynamic species united by intraspecific gene flow via homologous lateral or horizontal transfer and differentiated by content flux mediated by acquisition of DNA segments from interspecies transfers.

    3. Surface characterization of carbohydrate microarrays.

      Science.gov (United States)

      Scurr, David J; Horlacher, Tim; Oberli, Matthias A; Werz, Daniel B; Kroeck, Lenz; Bufali, Simone; Seeberger, Peter H; Shard, Alexander G; Alexander, Morgan R

      2010-11-16

      Carbohydrate microarrays are essential tools to determine the biological function of glycans. Here, we analyze a glycan array by time-of-flight secondary ion mass spectrometry (ToF-SIMS) to gain a better understanding of the physicochemical properties of the individual spots and to improve carbohydrate microarray quality. The carbohydrate microarray is prepared by piezo printing of thiol-terminated sugars onto a maleimide functionalized glass slide. The hyperspectral ToF-SIMS imaging data are analyzed by multivariate curve resolution (MCR) to discern secondary ions from regions of the array containing saccharide, linker, salts from the printing buffer, and the background linker chemistry. Analysis of secondary ions from the linker common to all of the sugar molecules employed reveals a relatively uniform distribution of the sugars within the spots formed from solutions with saccharide concentration of 0.4 mM and less, whereas a doughnut shape is often formed at higher-concentration solutions. A detailed analysis of individual spots reveals that in the larger spots the phosphate buffered saline (PBS) salts are heterogeneously distributed, apparently resulting in saccharide concentrated at the rim of the spots. A model of spot formation from the evaporating sessile drop is proposed to explain these observations. Saccharide spot diameters increase with saccharide concentration due to a reduction in surface tension of the saccharide solution compared to PBS. The multivariate analytical partial least squares (PLS) technique identifies ions from the sugars that in the complex ToF-SIMS spectra correlate with the binding of galectin proteins.

    4. Comparison of three microarray probe annotation pipelines: differences in strategies and their effect on downstream analysis

      NARCIS (Netherlands)

      Neerincx, P.B.T.; Casel, P.; Prickett, D.; Nie, H.; Watson, M.; Leunissen, J.A.M.; Groenen, M.A.M.; Klopp, C.

      2009-01-01

      Background - Reliable annotation linking oligonucleotide probes to target genes is essential for functional biological analysis of microarray experiments. We used the IMAD, OligoRAP and sigReannot pipelines to update the annotation for the ARK-Genomics Chicken 20 K array as part of a joined EADGENE/

    5. Microarray-based genotyping of Salmonella: Inter-laboratory evaluation of reproducibility and standardization potential

      DEFF Research Database (Denmark)

      Grønlund, Hugo Ahlm; Riber, Leise; Vigre, Håkan

      2011-01-01

      Bacterial food-borne infections in humans caused by Salmonella spp. are considered a crucial food safety issue. Therefore, it is important for the risk assessments of Salmonella to consider the genomic variationamong different isolates in order to control pathogen-induced infections. Microarray t...

    6. Comparison of three microarray probe annotation pipelines: differences in strategies and their effect on downstream analysis

      NARCIS (Netherlands)

      Neerincx, P.B.T.; Casel, P.; Prickett, D.; Nie, H.; Watson, M.; Leunissen, J.A.M.; Groenen, M.A.M.; Klopp, C.

      2009-01-01

      Background - Reliable annotation linking oligonucleotide probes to target genes is essential for functional biological analysis of microarray experiments. We used the IMAD, OligoRAP and sigReannot pipelines to update the annotation for the ARK-Genomics Chicken 20 K array as part of a joined EADGENE/

    7. Spotting effect in microarray experiments

      Directory of Open Access Journals (Sweden)

      Mary-Huard Tristan

      2004-05-01

      Full Text Available Abstract Background Microarray data must be normalized because they suffer from multiple biases. We have identified a source of spatial experimental variability that significantly affects data obtained with Cy3/Cy5 spotted glass arrays. It yields a periodic pattern altering both signal (Cy3/Cy5 ratio and intensity across the array. Results Using the variogram, a geostatistical tool, we characterized the observed variability, called here the spotting effect because it most probably arises during steps in the array printing procedure. Conclusions The spotting effect is not appropriately corrected by current normalization methods, even by those addressing spatial variability. Importantly, the spotting effect may alter differential and clustering analysis.

    8. Development of a Feature and Template-Assisted Assembler and Application to the Analysis of a Foot-and-Mouth Disease Virus Genotyping Microarray

      Science.gov (United States)

      Rowland, Jessica M.; Grau, Frederic R.; McIntosh, Michael T.

      2017-01-01

      Several RT-PCR and genome sequencing strategies exist for the resolution of Foot-and-Mouth Disease virus (FMDV). While these approaches are relatively straightforward, they can be vulnerable to failure due to the unpredictable nature of FMDV genome sequence variations. Sequence independent single primer amplification (SISPA) followed by genotyping microarray offers an attractive unbiased approach to FMDV characterization. Here we describe a custom FMDV microarray and a companion feature and template-assisted assembler software (FAT-assembler) capable of resolving virus genome sequence using a moderate number of conserved microarray features. The results demonstrate that this approach may be used to rapidly characterize naturally occurring FMDV as well as an engineered chimeric strain of FMDV. The FAT-assembler, while applied to resolving FMDV genomes, represents a new bioinformatics approach that should be broadly applicable to interpreting microarray genotyping data for other viruses or target organisms. PMID:28045937

    9. Using microarrays to identify positional candidate genes for QTL: the case study of ACTH response in pigs

      DEFF Research Database (Denmark)

      Jouffe, Vincent; Rowe, Suzanne; Liaubet, Laurence

      2009-01-01

      of 237 differentially expressed cDNA clones in adrenal tissue from two pig breeds, before and after treatment with adrenocorticotropic hormone (ACTH) Microarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide......Background: Microarray studies can supplement QTL studies by suggesting potential candidate. Microarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide a limited selection of candidate genes. Here we provide...... a case study where we explore ways to integrate QTL data and microarray data for the pig, which has only a partial genome sequence. We outline various procedures to localize differentially expressed genes on the pig genome and link this with information on published QTL. The starting point is a set...

    10. Living Cell Microarrays: An Overview of Concepts

      Directory of Open Access Journals (Sweden)

      Rebecca Jonczyk

      2016-05-01

      Full Text Available Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays.

    11. Microarray, SAGE and their applications to cardiovascular diseases

      Institute of Scientific and Technical Information of China (English)

      2002-01-01

      The wealth of DNA data generated by the human genome project coupling with recently invented high-throughput gene expression profiling techniques has dramatically sped up the process for biomedical researchers on elucidating the role of genes in human diseases. One powerful method to reveal insight into gene functions is the systematic analysis of gene expression. Two popular high-throughput gene expression technologies, microarray and Serial Analysis of Gene Expression (SAGE) are capable of producing large amounts of gene expression data with the potential of providing novel insights into fundamental disease processes, especially complex syndromes such as cardiovascular disease, whose etiologies are due to multiple genetic factors and their interplay with the environment. Microarray and SAGE have already been used to examine gene expression patterns of cell-culture, animal and human tissues models of cardiovascular diseases. In this review, we will first give a brief introduction of microarray and SAGE technologies and point out their limitations. We will then discuss the major discoveries and the new biological insightsthat have emerged from their applications to cardiovascular diseases. Finally we will touch upon potential challenges and future developments in this area.

    12. A Glance at DNA Microarray Technology and Applications

      Directory of Open Access Journals (Sweden)

      Amir-Ata Saei

      2011-08-01

      Full Text Available Introduction: Because of huge impacts of “OMICS” technologies in life sciences, many researchers aim to implement such high throughput approach to address cellular and/or molecular functions in response to any influential intervention in genomics, proteomics, or metabolomics levels. However, in many cases, use of such technologies often encounters some cybernetic difficulties in terms of knowledge extraction from a bunch of data using related softwares. In fact, there is little guidance upon data mining for novices. The main goal of this article is to provide a brief review on different steps of microarray data handling and mining for novices and at last to introduce different PC and/or web-based softwares that can be used in preprocessing and/or data mining of microarray data. Methods: To pursue such aim, recently published papers and microarray softwares were reviewed. Results: It was found that defining the true place of the genes in cell networks is the main phase in our understanding of programming and functioning of living cells. This can be obtained with global/selected gene expression profiling. Conclusion: Studying the regulation patterns of genes in groups, using clustering and classification methods helps us understand different pathways in the cell, their functions, regulations and the way one component in the system affects the other one. These networks can act as starting points for data mining and hypothesis generation, helping us reverse engineer.

    13. Fecal source tracking in water using a mitochondrial DNA microarray.

      Science.gov (United States)

      Vuong, Nguyet-Minh; Villemur, Richard; Payment, Pierre; Brousseau, Roland; Topp, Edward; Masson, Luke

      2013-01-01

      A mitochondrial-based microarray (mitoArray) was developed for rapid identification of the presence of 28 animals and one family (cervidae) potentially implicated in fecal pollution in mixed activity watersheds. Oligonucleotide probes for genus or subfamily-level identification were targeted within the 12S rRNA - Val tRNA - 16S rRNA region in the mitochondrial genome. This region, called MI-50, was selected based on three criteria: 1) the ability to be amplified by universal primers 2) these universal primer sequences are present in most commercial and domestic animals of interest in source tracking, and 3) that sufficient sequence variation exists within this region to meet the minimal requirements for microarray probe discrimination. To quantify the overall level of mitochondrial DNA (mtDNA) in samples, a quantitative-PCR (Q-PCR) universal primer pair was also developed. Probe validation was performed using DNA extracted from animal tissues and, for many cases, animal-specific fecal samples. To reduce the amplification of potentially interfering fish mtDNA sequences during the MI-50 enrichment step, a clamping PCR method was designed using a fish-specific peptide nucleic acid. DNA extracted from 19 water samples were subjected to both array and independent PCR analyses. Our results confirm that the mitochondrial microarray approach method could accurately detect the dominant animals present in water samples emphasizing the potential for this methodology in the parallel scanning of a large variety of animals normally monitored in fecal source tracking.

    14. Chemical microarray: a new tool for drug screening and discovery.

      Science.gov (United States)

      Ma, Haiching; Horiuchi, Kurumi Y

      2006-07-01

      HTS with microtiter plates has been the major tool used in the pharmaceutical industry to explore chemical diversity space and to identify active compounds and pharmacophores for specific biological targets. However, HTS faces a daunting challenge regarding the fast-growing numbers of drug targets arising from genomic and proteomic research, and large chemical libraries generated from high-throughput synthesis. There is an urgent need to find new ways to profile the activity of large numbers of chemicals against hundreds of biological targets in a fast, low-cost fashion. Chemical microarray can rise to this challenge because it has the capability of identifying and evaluating small molecules as potential therapeutic reagents. During the past few years, chemical microarray technology, with different surface chemistries and activation strategies, has generated many successes in the evaluation of chemical-protein interactions, enzyme activity inhibition, target identification, signal pathway elucidation and cell-based functional analysis. The success of chemical microarray technology will provide unprecedented possibilities and capabilities for parallel functional analysis of tremendous amounts of chemical compounds.

    15. Laser-based patterning for transfected cell microarrays

      Energy Technology Data Exchange (ETDEWEB)

      Hook, Andrew L; Creasey, Rhiannon; Voelcker, Nicolas H [Flinders University, GPO Box 2100, Bedford Park, SA 5042 (Australia); Hayes, Jason P [MiniFAB, 1 Dalmore Drive, Caribbean Park, Scoresby VIC 3179 (Australia); Thissen, Helmut, E-mail: Nico.Voelcker@flinders.edu.a [CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton VIC 3168 (Australia)

      2009-12-15

      The spatial control over biomolecule- and cell-surface interactions is of great interest to a broad range of biomedical applications, including sensors, implantable devices and cell microarrays. Microarrays in particular require precise spatial control and the formation of patterns with microscale features. Here, we have developed an approach specifically designed for transfected cell microarray (TCM) applications that allows microscale spatial control over the location of both DNA and cells on highly doped p-type silicon substrates. This was achieved by surface modification, involving plasma polymerization of allylamine, grafting of poly(ethylene glycol) and subsequent excimer laser ablation. DNA could be delivered in a spatially defined manner using ink-jet printing. In addition, electroporation was investigated as an approach to transfect attached cells with adsorbed DNA and good transfection efficiencies of approximately 20% were observed. The ability of the microstructured surfaces to spatially direct both DNA adsorption and cell attachment was demonstrated in a functional TCM, making this system an exciting platform for chip-based functional genomics.

    16. "Harshlighting" small blemishes on microarrays

      Directory of Open Access Journals (Sweden)

      Wittkowski Knut M

      2005-03-01

      Full Text Available Abstract Background Microscopists are familiar with many blemishes that fluorescence images can have due to dust and debris, glass flaws, uneven distribution of fluids or surface coatings, etc. Microarray scans show similar artefacts, which affect the analysis, particularly when one tries to detect subtle changes. However, most blemishes are hard to find by the unaided eye, particularly in high-density oligonucleotide arrays (HDONAs. Results We present a method that harnesses the statistical power provided by having several HDONAs available, which are obtained under similar conditions except for the experimental factor. This method "harshlights" blemishes and renders them evident. We find empirically that about 25% of our chips are blemished, and we analyze the impact of masking them on screening for differentially expressed genes. Conclusion Experiments attempting to assess subtle expression changes should be carefully screened for blemishes on the chips. The proposed method provides investigators with a novel robust approach to improve the sensitivity of microarray analyses. By utilizing topological information to identify and mask blemishes prior to model based analyses, the method prevents artefacts from confounding the process of background correction, normalization, and summarization.

    17. Interspecies interactions and potential Influenza A virus risk in small swine farms in Peru

      Directory of Open Access Journals (Sweden)

      McCune Sarah

      2012-03-01

      Full Text Available Abstract Background The recent avian influenza epidemic in Asia and the H1N1 pandemic demonstrated that influenza A viruses pose a threat to global public health. The animal origins of the viruses confirmed the potential for interspecies transmission. Swine are hypothesized to be prime "mixing vessels" due to the dual receptivity of their trachea to human and avian strains. Additionally, avian and human influenza viruses have previously been isolated in swine. Therefore, understanding interspecies contact on smallholder swine farms and its potential role in the transmission of pathogens such as influenza virus is very important. Methods This qualitative study aimed to determine swine-associated interspecies contacts in two coastal areas of Peru. Direct observations were conducted at both small-scale confined and low-investment swine farms (n = 36 and in open areas where swine freely range during the day (n = 4. Interviews were also conducted with key stakeholders in swine farming. Results In both locations, the intermingling of swine and domestic birds was common. An unexpected contact with avian species was that swine were fed poultry mortality in 6/20 of the farms in Chancay. Human-swine contacts were common, with a higher frequency on the confined farms. Mixed farming of swine with chickens or ducks was observed in 36% of all farms. Human-avian interactions were less frequent overall. Use of adequate biosecurity and hygiene practices by farmers was suboptimal at both locations. Conclusions Close human-animal interaction, frequent interspecies contacts and suboptimal biosecurity and hygiene practices pose significant risks of interspecies influenza virus transmission. Farmers in small-scale swine production systems constitute a high-risk population and need to be recognized as key in preventing interspecies pathogen transfer. A two-pronged prevention approach, which offers educational activities for swine farmers about sound hygiene and

    18. Enhancing interdisciplinary mathematics and biology education: a microarray data analysis course bridging these disciplines.

      Science.gov (United States)

      Tra, Yolande V; Evans, Irene M

      2010-01-01

      BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course.

    19. Enhancing Interdisciplinary Mathematics and Biology Education: A Microarray Data Analysis Course Bridging These Disciplines

      Science.gov (United States)

      Evans, Irene M.

      2010-01-01

      BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course. PMID:20810954

    20. DNA microarray technique for detecting food-borne pathogens

      Directory of Open Access Journals (Sweden)

      Xing GAO

      2012-08-01

      Full Text Available Objective To study the application of DNA microarray technique for screening and identifying multiple food-borne pathogens. Methods The oligonucleotide probes were designed by Clustal X and Oligo 6.0 at the conserved regions of specific genes of multiple food-borne pathogens, and then were validated by bioinformatic analyses. The 5' end of each probe was modified by amino-group and 10 Poly-T, and the optimized probes were synthesized and spotted on aldehyde-coated slides. The bacteria DNA template incubated with Klenow enzyme was amplified by arbitrarily primed PCR, and PCR products incorporated into Aminoallyl-dUTP were coupled with fluorescent dye. After hybridization of the purified PCR products with DNA microarray, the hybridization image and fluorescence intensity analysis was acquired by ScanArray and GenePix Pro 5.1 software. A series of detection conditions such as arbitrarily primed PCR and microarray hybridization were optimized. The specificity of this approach was evaluated by 16 different bacteria DNA, and the sensitivity and reproducibility were verified by 4 food-borne pathogens DNA. The samples of multiple bacteria DNA and simulated water samples of Shigella dysenteriae were detected. Results Nine different food-borne bacteria were successfully discriminated under the same condition. The sensitivity of genomic DNA was 102 -103pg/ μl, and the coefficient of variation (CV of the reproducibility of assay was less than 15%. The corresponding specific hybridization maps of the multiple bacteria DNA samples were obtained, and the detection limit of simulated water sample of Shigella dysenteriae was 3.54×105cfu/ml. Conclusions The DNA microarray detection system based on arbitrarily primed PCR can be employed for effective detection of multiple food-borne pathogens, and this assay may offer a new method for high-throughput platform for detecting bacteria.

    1. Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization

      Directory of Open Access Journals (Sweden)

      Harrison Marcus

      2010-12-01

      Full Text Available Abstract Background Whilst being closely related to the model actinomycete Streptomyces coelicolor A3(2, S. lividans 66 differs from it in several significant and phenotypically observable ways, including antibiotic production. Previous comparative gene hybridization studies investigating such differences have used low-density (one probe per gene PCR-based spotted arrays. Here we use new experimentally optimised 104,000 × 60-mer probe arrays to characterize in detail the genomic differences between wild-type S. lividans 66, a derivative industrial strain, TK24, and S. coelicolor M145. Results The high coverage and specificity (detection of three nucleotide differences of the new microarrays used has highlighted the macroscopic genomic differences between two S. lividans strains and S. coelicolor. In a series of case studies we have validated the microarray and have identified subtle changes in genomic structure which occur in the Asp-activating adenylation domains of CDA non-ribosomal peptide synthetase genes which provides evidence of gene shuffling between these domains. We also identify single nucleotide sequence inter-species differences which exist in the actinorhodin biosynthetic gene cluster. As the glyoxylate bypass is non-functional in both S. lividans strains due to the absence of the gene encoding isocitrate lyase it is likely that the ethylmalonyl-CoA pathway functions as the alternative mechanism for the assimilation of C2 compounds. Conclusions This study provides evidence for widespread genetic recombination, rather than it being focussed at 'hotspots', suggesting that the previously proposed 'archipelago model' of genomic differences between S. coelicolor and S. lividans is unduly simplistic. The two S. lividans strains investigated differ considerably in genetic complement, with TK24 lacking 175 more genes than its wild-type parent when compared to S. coelicolor. Additionally, we confirm the presence of bldB in S. lividans and

    2. Interspecies transmission and host restriction of avian H5N1 influenza virus

      Institute of Scientific and Technical Information of China (English)

      LIU Di; LIU XiaoLing; YAN JingHua; LIU Wen-Jun; GAO George Fu

      2009-01-01

      Long-term endemicity of avian H5N1 influenza virus in poultry and continuous sporadic human infec-tions in several countries has raised the concern of another potential pandemic influenza. Suspicion of the avian origin of the previous pandemics results in the close investigation of the mechanism of in-terspecies transmission. Entry and fusion is the first step for the H5N1 influenza virus to get into the host cells affecting the host ranges. Therefore receptor usage study has been a major focus for the last few years. We now know the difference of the sialic acid structures and distributions in different spe-cies, even in the different parts of the same host. Many host factors interacting with the influenza virus component proteins have been identified and their role in the host range expansion and interspecies transmission is under detailed scrutiny. Here we review current progress in the receptor usage and host factors.

    3. Interspecies transmission and host restriction of avian H5N1 influenza virus

      Institute of Scientific and Technical Information of China (English)

      GAO; George; Fu

      2009-01-01

      Long-term endemicity of avian H5N1 influenza virus in poultry and continuous sporadic human infections in several countries has raised the concern of another potential pandemic influenza. Suspicion of the avian origin of the previous pandemics results in the close investigation of the mechanism of interspecies transmission. Entry and fusion is the first step for the H5N1 influenza virus to get into the host cells affecting the host ranges. Therefore receptor usage study has been a major focus for the last few years. We now know the difference of the sialic acid structures and distributions in different species, even in the different parts of the same host. Many host factors interacting with the influenza virus component proteins have been identified and their role in the host range expansion and interspecies transmission is under detailed scrutiny. Here we review current progress in the receptor usage and host factors.

    4. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange

      DEFF Research Database (Denmark)

      Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Aklujkar, Muktak

      2013-01-01

      Direct interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy...... dehydrogenase, the pilus-associated c-type cytochrome OmcS and pili consistent with electron transfer via DIET. These results suggest that electrons transferred via DIET can serve as the sole energy source to support anaerobic respiration....... to support cell growth. In order to investigate this, co-cultures of Geobacter metallireducens, which can transfer electrons to wild-type G. sulfurreducens via DIET, were established with a citrate synthase-deficient G. sulfurreducens strain that can receive electrons for respiration through DIET only...

    5. Pineal function: impact of microarray analysis

      DEFF Research Database (Denmark)

      Klein, David C; Bailey, Michael J; Carter, David A

      2009-01-01

      Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity...... foundation that microarray analysis has provided will broadly support future research on pineal function....

    6. Evaluation of a gene information summarization system by users during the analysis process of microarray datasets

      Directory of Open Access Journals (Sweden)

      Cohen Aaron

      2009-02-01

      Full Text Available Abstract Background Summarization of gene information in the literature has the potential to help genomics researchers translate basic research into clinical benefits. Gene expression microarrays have been used to study biomarkers for disease and discover novel types of therapeutics and the task of finding information in journal articles on sets of genes is common for translational researchers working with microarray data. However, manually searching and scanning the literature references returned from PubMed is a time-consuming task for scientists. We built and evaluated an automatic summarizer of information on genes studied in microarray experiments. The Gene Information Clustering and Summarization System (GICSS is a system that integrates two related steps of the microarray data analysis process: functional gene clustering and gene information gathering. The system evaluation was conducted during the process of genomic researchers analyzing their own experimental microarray datasets. Results The clusters generated by GICSS were validated by scientists during their microarray analysis process. In addition, presenting sentences in the abstract provided significantly more important information to the users than just showing the title in the default PubMed format. Conclusion The evaluation results suggest that GICSS can be useful for researchers in genomic area. In addition, the hybrid evaluation method, partway between intrinsic and extrinsic system evaluation, may enable researchers to gauge the true usefulness of the tool for the scientists in their natural analysis workflow and also elicit suggestions for future enhancements. Availability GICSS can be accessed online at: http://ir.ohsu.edu/jianji/index.html

    7. Is there a niche for DNA microarrays in molecular diagnostics?

      Science.gov (United States)

      Jordan, Bertrand R

      2010-10-01

      DNA microarrays, 15 years after their appearance, have achieved presence in a number of medical settings. Several tests have been introduced and have obtained regulatory approval, mostly in the fields of bacterial identification, mutation detection and the global assessment of genome alterations, a particularly successful case being the whole-genome assay of copy-number variations. Gene-expression applications have been less successful because of technical issues (e.g., reproducibility, platform-to-platform consistency and statistical issues in data analysis) and difficulties in demonstrating the clinical utility of expression signatures. In their different applications, DNA arrays have faced competition from PCR-based assays for low and intermediate multiplicity. Now they have a new competitor, new-generation sequencing, that can provide a wealth of direct sequence information, or digital gene-expression data, at a constantly decreasing cost. In this article we evaluate the strengths and weaknesses of the DNA microarray approach to diagnostics, and highlight the fields in which it is most likely to achieve a durable presence.

    8. In control: systematic assessment of microarray performance.

      Science.gov (United States)

      van Bakel, Harm; Holstege, Frank C P

      2004-10-01

      Expression profiling using DNA microarrays is a powerful technique that is widely used in the life sciences. How reliable are microarray-derived measurements? The assessment of performance is challenging because of the complicated nature of microarray experiments and the many different technology platforms. There is a mounting call for standards to be introduced, and this review addresses some of the issues that are involved. Two important characteristics of performance are accuracy and precision. The assessment of these factors can be either for the purpose of technology optimization or for the evaluation of individual microarray hybridizations. Microarray performance has been evaluated by at least four approaches in the past. Here, we argue that external RNA controls offer the most versatile system for determining performance and describe how such standards could be implemented. Other uses of external controls are discussed, along with the importance of probe sequence availability and the quantification of labelled material.

    9. Chaotic mixer improves microarray hybridization.

      Science.gov (United States)

      McQuain, Mark K; Seale, Kevin; Peek, Joel; Fisher, Timothy S; Levy, Shawn; Stremler, Mark A; Haselton, Frederick R

      2004-02-15

      Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.

    10. The use of chromosomal microarray for prenatal diagnosis.

      Science.gov (United States)

      Dugoff, Lorraine; Norton, Mary E; Kuller, Jeffrey A

      2016-10-01

      Chromosomal microarray analysis is a high-resolution, whole-genome technique used to identify chromosomal abnormalities, including those detected by conventional cytogenetic techniques, as well as small submicroscopic deletions and duplications referred to as copy number variants. Because chromosomal microarray analysis has a greater resolution than conventional karyotyping, it can detect deletions and duplications down to a 50- to 100-kb level. The purpose of this document is to discuss the technique, advantages, and disadvantages of chromosomal microarray analysis and its indications and limitations. We recommend the following: (1) that chromosomal microarray analysis be offered when genetic analysis is performed in cases with fetal structural anomalies and/or stillbirth and replaces the need for fetal karyotype in these cases (GRADE 1A); (2) that providers discuss the benefits and limitations of chromosomal microarray analysis and conventional karyotype with patients who are considering amniocentesis and chorionic villus sampling (CVS), and that both options should be available to women who choose to undergo diagnostic testing (GRADE 1B); (3) that pre- and posttest counseling should be performed by trained genetic counselors, geneticists, or other providers with expertise in the complexities of interpreting chromosomal microarray analysis results (Best Practice); (4) that patients be informed that chromosomal microarray analysis does not detect every genetic disease or syndrome and specifically does not detect autosomal-recessive disorders associated with single gene point mutations, as well as that chromosomal microarray analysis can detect consanguinity and nonpaternity in some cases (Best Practice); (5) that patients in whom a fetal variant of uncertain significance is detected by prenatal diagnosis receive counseling from experts who have access to databases that provide updated information concerning genotype-phenotype correlations (Best Practice

    11. DNA nanostructure-based universal microarray platform for high-efficiency multiplex bioanalysis in biofluids.

      Science.gov (United States)

      Li, Zhenhua; Zhao, Bin; Wang, Dongfang; Wen, Yanli; Liu, Gang; Dong, Haoqing; Song, Shiping; Fan, Chunhai

      2014-10-22

      Microarrays of biomolecules have greatly promoted the development of the fields of genomics, proteomics, and clinical assays because of their remarkably parallel and high-throughput assay capability. Immobilization strategies for biomolecules on a solid support surface play a crucial role in the fabrication of high-performance biological microarrays. In this study, rationally designed DNA tetrahedra carrying three amino groups and one single-stranded DNA extension were synthesized by the self-assembly of four oligonucleotides, followed by high-performance liquid chromatography purification. We fabricated DNA tetrahedron-based microarrays by covalently coupling the DNA tetrahedron onto glass substrates. After their biorecognition capability was evaluated, DNA tetrahedron microarrays were utilized for the analysis of different types of bioactive molecules. The gap hybridization strategy, the sandwich configuration, and the engineering aptamer strategy were employed for the assay of miRNA biomarkers, protein cancer biomarkers, and small molecules, respectively. The arrays showed good capability to anchor capture biomolecules for improving biorecognition. Addressable and high-throughput analysis with improved sensitivity and specificity had been achieved. The limit of detection for let-7a miRNA, prostate specific antigen, and cocaine were 10 fM, 40 pg/mL, and 100 nM, respectively. More importantly, we demonstrated that the microarray platform worked well with clinical serum samples and showed good relativity with conventional chemical luminescent immunoassay. We have developed a novel approach for the fabrication of DNA tetrahedron-based microarrays and a universal DNA tetrahedron-based microarray platform for the detection of different types of bioactive molecules. The microarray platform shows great potential for clinical diagnosis.

    12. Serial nuclear transfer improves the development of interspecies reconstructed giant panda (Aluropoda melanoleuca) embryos

      Institute of Scientific and Technical Information of China (English)

      2002-01-01

      Interspecies somatic nuclear transfer (NT) may provide a new approach for preservation of the endangered rare species. Previous interspecies cloning studies have shown that a nucleus from a quiescent somatic cell supports early development of reconstructed embryos in the ooplasm from another species. In this study, we transferred nonquiescent somatic cells from a giant panda into the perivitelline space of the enucleated rabbit oocytes. After electrofusion (at the rate of 71.6%) and electrical activation, 4.2% of the panda-rabbit reconstructed embryos developed to blastocyst in vitro. For improving the development rate of reconstructed embryos, we used serial NT in this study, I.e. Blastomeres from reconstructed morulae were transferred into the perivitelline space of the enucleated rabbit oocytes. The fusion rates in the groups of serial Ⅰ, serial Ⅱ and serial Ⅲ were 79.5%, 84.1% and 78.0%, respectively, having no difference with that of somatic group. And the blastocyst rates in serial NT groups were 19.4%, 13.5% and 10.3%, respectively, which are significantly higher than that in somatic NT group. These results indicate that the nuclei from nonquiescent somatic cells can support early development of reconstructed embryos and serial NT can improve the development rate of interspecies reconstructed embryos.

    13. Experimental cloning of embryos through human-rabbit inter-species nuclear transfer

      Institute of Scientific and Technical Information of China (English)

      JI Jingjuan; GUO Tonghang; TONG Xianhong; LUO Lihua; ZHOU Guixiang; FU Yingyun; LIU Yusheng

      2007-01-01

      Therapeutic cloning,which is based on human somatic cell nuclear transfer,is one of our major research objectives.Though inter-species nuclear transfer has been introduced to construct human somatic cell cloned embryos,the effects of type,passage,and preparation method of donor cells on embryo development remain unclear.In our experiment,cloned embryos were reconstructed with different passage and preparation methods of ossocartilaginous cell,skin fibroblast,and cumulus cells.The cumulus cell embryos showed significantly higher development rates than the other two (P<0.05).The development rate of embryos reconstructed with skin fibroblasts of different passage number and somatic cells of different chilling durations showed no significant difference.Also,fluorescence in situ hybridization (FISH)was conducted to detect nuclear derivation of the embryos.The result showed that the nuclei of the inter-species cloned embryo cells came from human.We conclude that (1)cloned embryos can be constructed through human-rabbit interspecies nuclear transfer;(2)different kinds of somatic cells result in different efficiency of nuclear transfer,while in vitro passage of the donor does not influence embryo development;(3)refrigeration is a convenient and efficient donor cell preparation method.Finally,it is feasible to detect DNA gcnotype through FISH.

    14. Identification of novel endogenous antisense transcripts by DNA microarray analysis targeting complementary strand of annotated genes

      Directory of Open Access Journals (Sweden)

      Kohama Chihiro

      2009-08-01

      Full Text Available Abstract Background Recent transcriptomic analyses in mammals have uncovered the widespread occurrence of endogenous antisense transcripts, termed natural antisense transcripts (NATs. NATs are transcribed from the opposite strand of the gene locus and are thought to control sense gene expression, but the mechanism of such regulation is as yet unknown. Although several thousand potential sense-antisense pairs have been identified in mammals, examples of functionally characterized NATs remain limited. To identify NAT candidates suitable for further functional analyses, we performed DNA microarray-based NAT screening using mouse adult normal tissues and mammary tumors to target not only the sense orientation but also the complementary strand of the annotated genes. Results First, we designed microarray probes to target the complementary strand of genes for which an antisense counterpart had been identified only in human public cDNA sources, but not in the mouse. We observed a prominent expression signal from 66.1% of 635 target genes, and 58 genes of these showed tissue-specific expression. Expression analyses of selected examples (Acaa1b and Aard confirmed their dynamic transcription in vivo. Although interspecies conservation of NAT expression was previously investigated by the presence of cDNA sources in both species, our results suggest that there are more examples of human-mouse conserved NATs that could not be identified by cDNA sources. We also designed probes to target the complementary strand of well-characterized genes, including oncogenes, and compared the expression of these genes between mammary cancerous tissues and non-pathological tissues. We found that antisense expression of 95 genes of 404 well-annotated genes was markedly altered in tumor tissue compared with that in normal tissue and that 19 of these genes also exhibited changes in sense gene expression. These results highlight the importance of NAT expression in the regulation

    15. Application of whole-genome and high-resolution chromosome microarray analysis for the investigation of fetuses with ultrasound abnormalities%全基因组高分辨率染色体微阵列分析在超声结构异常胎儿中的应用

      Institute of Scientific and Technical Information of China (English)

      张燕; 符芳; 李茹; 谢闺娥; 韩瑾; 潘敏; 甄理; 杨昕; 李东至

      2015-01-01

      Objective To assess the value of whole-genome high-resolution chromosome microarray analysis (CMA) for the investigation of fetuses with ultrasound abnormalities.Methods Whole genome high-resolution CytoScanHD array from Affymetrix was employed to investigate 651 fetuses with structural abnormalities detected by ultrasound,for whom standard G-banded chromosome analysis has revealed a normal karyotype.The fetuses were divided into a single malformation group (n=264) and a multiple malformations group (n=387).In total there were 130 chorionic villus samples,192 amniotic fluid samples and 329 cord blood samples.Extraction of fetal DNA and CMA experiment have followed the standard guidelines from the manufacturers.All copy number variations (CNVs) detected by CMA were confirmed by fluorescence in situ hybridization (FISH) or real-time polymerase chain reaction (RT-PCR).Results CMA analysis has detected genomic CNVs in 475 (73%) cases.Clinically significant CNVs were found in 11.5% (75/651) of fetuses,including two uniparental disomies (UPD) and two cryptic mosaicisms.Variations of unknown significance (VOUS) was found in 2.0% (13/651) of tested fetuses.Conclusion Above results have suggested that whole-genome and high-resolution CMA is valuable for the analysis of fetuses with structural abnormalities detected by ultrasound,which can increase the detection rate by approximately 11 %.CMA using single nucleotide polymorphism (SNP) array has the ability to detect UPD and low-level mosaicisms.Sufficient communication between technicians and genetic counselors,parental testing and comparison the results with in-house and relevant online databases can significantly reduce the rate of VOUS.%目的 探讨全基因组高分辨率染色体微阵列分析(chromosome microarray analysis,CMA)技术在先天性结构异常胎儿中的应用价值.方法 应用美国Affymetrix公司全基因组高分辨率CytoScanHD芯片对651例孕期超声检查提示先天性结构发育

    16. 哮喘患儿外周血单个核细胞全基因组表达谱的差异研究%Profiling of differential expression in asthma and healthy children' s peripheral blood mononuclear cells by whole-genome microarray

      Institute of Scientific and Technical Information of China (English)

      孔倩; 黄花荣; 吴葆菁; 李雯静; 陈纯

      2013-01-01

      目的:筛选哮喘患儿与对照组儿童外周血的基因表达谱差异,寻找与哮喘防治相关的靶基因.方法:从5名哮喘患儿和5名对照组儿童外周血单个核细胞中提取总RNA,利用全基因组表达谱芯片进行检测,选取经非配对t检验计算所得P≤0.05、同时基因表达变化≥2倍的差异表达基因,以荧光定量PCR(qRT-PCR)验证芯片结果.通过生物信息学软件对初步筛选的差异基因进行层次聚类分析和Gene Ontology (GO)功能分类分析.结果:从45 033条表达基因谱中筛选出哮喘患儿与对照组儿童差异表达2倍以上且P≤0.05的已命名基因758个(含上调基因345个,下调基因413个),其GO生物学过程功能分类主要涉及免疫反应、对外部刺激的反应、信号转导及分子功能的负性调节、细胞死亡、凋亡及其调节等.其中有29个基因与哮喘、气道炎症或气道重构有关,且变化趋势与文献报道一致(含上调基因14个,下调基因15个),并可被层次聚类分析划分为9类.qRT-PCR验证结果与芯片结果一致.结论:用全基因组表达谱芯片可以筛选出哮喘息儿与对照组儿童外周血单个核细胞中的差异表达基因,进一步的数据挖掘很可能寻找到与哮喘防治相关的靶基因或靶通路.%AIM:To compare the differences of whole-genome expression in peripheral blood mononuclear cells (PBMC) between asthma children and healthy controls.METHODS:The subjects were 5 cases of asthma children and 5 cases of healthy controls.Total RNA was extracted from PBMC and subjected to microarray analysis with NimbleG,en human gene expression array.Unpaired t-test algorithm was used to screen the differentially expressed genes when P≤0.05and fold change ≥ 2.Real-time quantitative PCR (qRT-PCR) was performed to verify the microarray results.Classification and function of the differential genes were illustrated by bioinformatic processing including hierarchical clustering and Gene

    17. A novel multifunctional oligonucleotide microarray for Toxoplasma gondii

      Directory of Open Access Journals (Sweden)

      Chen Feng

      2010-10-01

      Full Text Available Abstract Background Microarrays are invaluable tools for genome interrogation, SNP detection, and expression analysis, among other applications. Such broad capabilities would be of value to many pathogen research communities, although the development and use of genome-scale microarrays is often a costly undertaking. Therefore, effective methods for reducing unnecessary probes while maintaining or expanding functionality would be relevant to many investigators. Results Taking advantage of available genome sequences and annotation for Toxoplasma gondii (a pathogenic parasite responsible for illness in immunocompromised individuals and Plasmodium falciparum (a related parasite responsible for severe human malaria, we designed a single oligonucleotide microarray capable of supporting a wide range of applications at relatively low cost, including genome-wide expression profiling for Toxoplasma, and single-nucleotide polymorphism (SNP-based genotyping of both T. gondii and P. falciparum. Expression profiling of the three clonotypic lineages dominating T. gondii populations in North America and Europe provides a first comprehensive view of the parasite transcriptome, revealing that ~49% of all annotated genes are expressed in parasite tachyzoites (the acutely lytic stage responsible for pathogenesis and 26% of genes are differentially expressed among strains. A novel design utilizing few probes provided high confidence genotyping, used here to resolve recombination points in the clonal progeny of sexual crosses. Recent sequencing of additional T. gondii isolates identifies >620 K new SNPs, including ~11 K that intersect with expression profiling probes, yielding additional markers for genotyping studies, and further validating the utility of a combined expression profiling/genotyping array design. Additional applications facilitating SNP and transcript discovery, alternative statistical methods for quantifying gene expression, etc. are also pursued at

    18. Gene expression studies using microarrays

      NARCIS (Netherlands)

      Burgess, Janette

      2001-01-01

      1. The rapid progression of the collaborative sequencing programmes that are unravelling the complete genome sequences of many organisms are opening pathways for new approaches to gene analysis. As the sequence data become available, the bottleneck in biological research will shift to understanding

    19. Absence of nucleolus formation in raccoon dog-porcine interspecies somatic cell nuclear transfer embryos results in embryonic developmental failure

      Science.gov (United States)

      JEON, Yubyeol; NAM, Yeong-Hee; CHEONG, Seung-A; KWAK, Seong-Sung; LEE, Eunsong; HYUN, Sang-Hwan

      2016-01-01

      Interspecies somatic cell nuclear transfer (iSCNT) can be a solution for preservation of endangered species that have limited oocytes. It has been reported that blastocyst production by iSCNT is successful even if the genetic distances between donors and recipients are large. In particular, domestic pig oocytes can support the development of canine to porcine iSCNT embryos. Therefore, we examined whether porcine oocytes may be suitable recipient oocytes for Korean raccoon dog iSCNT. We investigated the effects of trichostatin A (TSA) treatment on iSCNT embryo developmental patterns and nucleolus formation. Enucleated porcine oocytes were fused with raccoon dog fibroblasts by electrofusion and cleavage, and blastocyst development and nucleolus formation were evaluated. To our knowledge, this study is the first in which raccoon dog iSCNT was performed using porcine oocytes; we found that 68.5% of 158 iSCNT embryos had the ability to cleave. However, these iSCNT embryos did not develop past the 4-cell stage. Treatment with TSA did not affect iSCNT embryonic development; moreover, the nuclei failed to form nucleoli at 48 and 72 h post-activation (hpa). In contrast, pig SCNT embryos of the control group showed 18.8% and 87.9% nucleolus formation at 48 and 72 hpa, respectively. Our results demonstrated that porcine cytoplasts efficiently supported the development of raccoon dog iSCNT embryos to the 4-cell stage, the stage of porcine embryonic genome activation (EGA); however, these embryos failed to reach the blastocyst stage and showed defects in nucleolus formation. PMID:27064112

    20. Absence of nucleolus formation in raccoon dog-porcine interspecies somatic cell nuclear transfer embryos results in embryonic developmental failure.

      Science.gov (United States)

      Jeon, Yubyeol; Nam, Yeong-Hee; Cheong, Seung-A; Kwak, Seong-Sung; Lee, Eunsong; Hyun, Sang-Hwan

      2016-08-25

      Interspecies somatic cell nuclear transfer (iSCNT) can be a solution for preservation of endangered species that have limited oocytes. It has been reported that blastocyst production by iSCNT is successful even if the genetic distances between donors and recipients are large. In particular, domestic pig oocytes can support the development of canine to porcine iSCNT embryos. Therefore, we examined whether porcine oocytes may be suitable recipient oocytes for Korean raccoon dog iSCNT. We investigated the effects of trichostatin A (TSA) treatment on iSCNT embryo developmental patterns and nucleolus formation. Enucleated porcine oocytes were fused with raccoon dog fibroblasts by electrofusion and cleavage, and blastocyst development and nucleolus formation were evaluated. To our knowledge, this study is the first in which raccoon dog iSCNT was performed using porcine oocytes; we found that 68.5% of 158 iSCNT embryos had the ability to cleave. However, these iSCNT embryos did not develop past the 4-cell stage. Treatment with TSA did not affect iSCNT embryonic development; moreover, the nuclei failed to form nucleoli at 48 and 72 h post-activation (hpa). In contrast, pig SCNT embryos of the control group showed 18.8% and 87.9% nucleolus formation at 48 and 72 hpa, respectively. Our results demonstrated that porcine cytoplasts efficiently supported the development of raccoon dog iSCNT embryos to the 4-cell stage, the stage of porcine embryonic genome activation (EGA); however, these embryos failed to reach the blastocyst stage and showed defects in nucleolus formation.

    1. Optimized design and assessment of whole genome tiling arrays.

      NARCIS (Netherlands)

      Graf, S.; Nielsen, F.G.G.; Kurtz, S.; Huynen, M.A.; Birney, E.; Stunnenberg, H.G.; Flicek, P.

      2007-01-01

      MOTIVATION: Recent advances in microarray technologies have made it feasible to interrogate whole genomes with tiling arrays and this technique is rapidly becoming one of the most important high-throughput functional genomics assays. For large mammalian genomes, analyzing oligonucleotide tiling arra

    2. GenoMap, a circular genome data viewer.

      Science.gov (United States)

      Sato, Naoki; Ehira, Shigeki

      2003-08-12

      A Tcl/Tk-based application called GenoMap is described, a viewer for genome-wide map of microarray expression data within a circular bacterial genome. An interactive interface facilitates easy identification of the expressed region. This software is also used for drawing genome-wide quantitative data.

    3. Microarrays--analysis of signaling pathways.

      Science.gov (United States)

      Ramachandran, Anassuya; Black, Michael A; Shelling, Andrew N; Love, Donald R

      2008-01-01

      Microarrays provide a powerful means of analyzing the expression level of multiple transcripts in two sample populations. In this study, we have used microarray technology to identify genes that are differentially regulated in response to activin-treated ovarian cancer cells. We find a number of biologically relevant genes that are involved in regulating activin signaling and genes potentially contributing to activin-mediated growth arrest appear to be differentially regulated. Thus, microarrays are an important tool for dissecting gene expression changes in normal physiological processes and disease.

    4. DNA Microarrays in Herbal Drug Research

      Directory of Open Access Journals (Sweden)

      Preeti Chavan

      2006-01-01

      Full Text Available Natural products are gaining increased applications in drug discovery and development. Being chemically diverse they are able to modulate several targets simultaneously in a complex system. Analysis of gene expression becomes necessary for better understanding of molecular mechanisms. Conventional strategies for expression profiling are optimized for single gene analysis. DNA microarrays serve as suitable high throughput tool for simultaneous analysis of multiple genes. Major practical applicability of DNA microarrays remains in DNA mutation and polymorphism analysis. This review highlights applications of DNA microarrays in pharmacodynamics, pharmacogenomics, toxicogenomics and quality control of herbal drugs and extracts.

    5. Construction of citrus gene coexpression networks from microarray data using random matrix theory.

      Science.gov (United States)

      Du, Dongliang; Rawat, Nidhi; Deng, Zhanao; Gmitter, Fred G

      2015-01-01

      After the sequencing of citrus genomes, gene function annotation is becoming a new challenge. Gene coexpression analysis can be employed for function annotation using publicly available microarray data sets. In this study, 230 sweet orange (Citrus sinensis) microarrays were used to construct seven coexpression networks, including one condition-independent and six condition-dependent (Citrus canker, Huanglongbing, leaves, flavedo, albedo, and flesh) networks. In total, these networks contain 37 633 edges among 6256 nodes (genes), which accounts for 52.11% measurable genes of the citrus microarray. Then, these networks were partitioned into functional modules using the Markov Cluster Algorithm. Significantly enriched Gene Ontology biological process terms and KEGG pathway terms were detected for 343 and 60 modules, respectively. Finally, independent verification of these networks was performed using another expression data of 371 genes. This study provides new targets for further functional analyses in citrus.

    6. The "Clickable" Method for Oligonucleotide Immobilization Onto Azide-Functionalized Microarrays.

      Science.gov (United States)

      Ratajczak, Tomasz; Uszczyńska, Barbara; Frydrych-Tomczak, Emilia; Chmielewski, Marcin K

      2016-01-01

      The DNA microarray technique was supposed to help identifying and analyzing the expression level of tens of thousands of genes in the whole genome. But there is a serious problem concerning fabrication of the microarrays by chemical synthesis, such as specific and efficient linking of probes to a solid support. Therefore, we reckon that applying "click" chemistry to covalently anchor oligonucleotides on chemically modified supports may help construct microarrays in applications such as gene identification. Silanization of the glass support with organofunctional silane makes it possible to link azide groups on glass surface and the nucleic acid probe that is equipped with a pentynyl group. This is followed by direct spotting of the nucleic acid on the azide-modified glass support in the presence of copper ions, and this is a frequently applied method of "click" chemistry.

    7. Novel and future applications of microarrays in toxicological research.

      Science.gov (United States)

      Gant, Timothy W

      2007-08-01

      Microarray technologies have both fascinated and frustrated the toxicological community since their introduction around a decade ago. Fascination arose from the possibility offered by the technology to gain a profound insight into the cellular response to chemically mediated stress, and the potential that this genomic signature would be indicative of the biological mechanism by which that stress was induced. Frustrations have arisen primarily from technical factors such as data variance, the requirement for the application of advanced statistical and mathematical analysis, and difficulties associated with actually recognising signature gene expression patterns, and discerning mechanisms. Toxicogenomics was predicted to make toxicological assessment and extrapolation easier, faster and cheaper. The reality has been somewhat different; toxicogenomics is difficult. However, its potential when properly applied has been indicated by some well designed toxicogenomics studies, particularly in the differentiation of genotoxins from non-genotoxins. Technology waits though for no man. While the toxicological community has been working to apply transcriptomics (mRNA levels) in toxicology, the technology has moved beyond this application into new arenas. Some have application to toxicology and are reviewed here, except transcriptomics which has been extensively written about before. This review discusses the application of microarray technologies applied to the genome per se (amplifications, deletions, epigenetic change), mRNA translation and its control mechanisms through miRNA. Which of the new genomics technoï¿(1/2)logies will find most application in toxicology? In the opinion of the author there are three potentially major applications: i) arrayCGH in assessment and recognition of genotoxicity; ii) epigenetic assessment in developmental and transgenerational toxicology; and iii) miRNA assessment in all toxicology types, but particularly developmental toxicology.

    8. Design, construction and validation of a Plasmodium vivax microarray for the transcriptome profiling of clinical isolates.

      Science.gov (United States)

      Boopathi, Pon Arunachalam; Subudhi, Amit Kumar; Middha, Sheetal; Acharya, Jyoti; Mugasimangalam, Raja Chinnadurai; Kochar, Sanjay Kumar; Kochar, Dhanpat Kumar; Das, Ashis

      2016-12-01

      High density oligonucleotide microarrays have been used on Plasmodium vivax field isolates to estimate whole genome expression. However, no microarray platform has been experimentally optimized for studying the transcriptome of field isolates. In the present study, we adopted both bioinformatics and experimental testing approaches to select best optimized probes suitable for detecting parasite transcripts from field samples and included them in designing a custom 15K P. vivax microarray. This microarray has long oligonucleotide probes (60mer) that were in-situ synthesized onto glass slides using Agilent SurePrint technology and has been developed into an 8X15K format (8 identical arrays on a single slide). Probes in this array were experimentally validated and represents 4180 P. vivax genes in sense orientation, of which 1219 genes have also probes in antisense orientation. Validation of the 15K array by using field samples (n=14) has shown 99% of parasite transcript detection from any of the samples. Correlation analysis between duplicate probes (n=85) present in the arrays showed perfect correlation (r(2)=0.98) indicating the reproducibility. Multiple probes representing the same gene exhibited similar kind of expression pattern across the samples (positive correlation, r≥0.6). Comparison of hybridization data with the previous studies and quantitative real-time PCR experiments were performed to highlight the microarray validation procedure. This array is unique in its design, and results indicate that the array is sensitive and reproducible. Hence, this microarray could be a valuable functional genomics tool to generate reliable expression data from P. vivax field isolates.

    9. Design, construction and validation of a Plasmodium vivax microarray for the transcriptome profiling of clinical isolates

      KAUST Repository

      Boopathi, Pon Arunachalam

      2016-10-09

      High density oligonucleotide microarrays have been used on Plasmodium vivax field isolates to estimate whole genome expression. However, no microarray platform has been experimentally optimized for studying the transcriptome of field isolates. In the present study, we adopted both bioinformatics and experimental testing approaches to select best optimized probes suitable for detecting parasite transcripts from field samples and included them in designing a custom 15K P. vivax microarray. This microarray has long oligonucleotide probes (60 mer) that were in-situ synthesized onto glass slides using Agilent SurePrint technology and has been developed into an 8X15K format (8 identical arrays on a single slide). Probes in this array were experimentally validated and represents 4180 P. vivax genes in sense orientation, of which 1219 genes have also probes in antisense orientation. Validation of the 15K array by using field samples (n =14) has shown 99% of parasite transcript detection from any of the samples. Correlation analysis between duplicate probes (n = 85) present in the arrays showed perfect correlation (r(2) = 0.98) indicating the reproducibility. Multiple probes representing the same gene exhibited similar kind of expression pattern across the samples (positive correlation, r >= 0.6). Comparison of hybridization data with the previous studies and quantitative real-time PCR experiments were performed to highlight the microarray validation procedure. This array is unique in its design, and results indicate that the array is sensitive and reproducible. Hence, this microarray could be a valuable functional genomics tool to generate reliable expression data from P. vivax field isolates. (C) 2016 Published by Elsevier B.V.

    10. A comparison of alternative 60-mer probe designs in an in-situ synthesized oligonucleotide microarray

      Directory of Open Access Journals (Sweden)

      Fairbanks Benjamin D

      2006-04-01

      Full Text Available Abstract Background DNA microarrays have proven powerful for functional genomics studies. Several technologies exist for the generation of whole-genome arrays. It is well documented that 25mer probes directed against different regions of the same gene produce variable signal intensity values. However, the extent to which this is true for probes of greater length (60mers is not well characterized. Moreover, this information has not previously been reported for whole-genome arrays designed against bacteria, whose genomes may differ substantially in characteristics directly affecting microarray performance. Results We report here an analysis of alternative 60mer probe designs for an in-situ synthesized oligonucleotide array for the GC rich, β-proteobacterium Burkholderia cenocepacia. Probes were designed using the ArrayOligoSel3.5 software package and whole-genome microarrays synthesized by Agilent, Inc. using their in-situ, ink-jet technology platform. We first validated the quality of the microarrays as demonstrated by an average signal to noise ratio of >1000. Next, we determined that the variance of replicate probes (1178 total probes examined of identical sequence was 3.8% whereas the variance of alternative probes (558 total alternative probes examined designs was 9.5%. We determined that depending upon the definition, about 2.4% of replicate and 7.8% of alternative probes produced outlier conclusions. Finally, we determined none of the probe design subscores (GC content, internal repeat, binding energy and self annealment produced by ArrayOligoSel3.5 were predictive or probes that produced outlier signals. Conclusion Our analysis demonstrated that the use of multiple probes per target sequence is not essential for in-situ synthesized 60mer oligonucleotide arrays designed against bacteria. Although probes producing outlier signals were identified, the use of ratios results in less than 10% of such outlier conclusions. We also determined that

    11. 3D Biomaterial Microarrays for Regenerative Medicine

      DEFF Research Database (Denmark)

      Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

      2015-01-01

      Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

    12. Mapping the affinity landscape of Thrombin-binding aptamers on 2'F-ANA/DNA chimeric G-Quadruplex microarrays.

      Science.gov (United States)

      Lietard, Jory; Abou Assi, Hala; Gómez-Pinto, Irene; González, Carlos; Somoza, Mark M; Damha, Masad J

      2017-01-18

      In situ fabricated nucleic acids microarrays are versatile and very high-throughput platforms for aptamer optimization and discovery, but the chemical space that can be probed against a given target has largely been confined to DNA, while RNA and non-natural nucleic acid microarrays are still an essentially uncharted territory. 2'-Fluoroarabinonucleic acid (2'F-ANA) is a prime candidate for such use in microarrays. Indeed, 2'F-ANA chemistry is readily amenable to photolithographic microarray synthesis and its potential in high affinity aptamers has been recently discovered. We thus synthesized the first microarrays containing 2'F-ANA and 2'F-ANA/DNA chimeric sequences to fully map the binding affinity landscape of the TBA1 thrombin-binding G-quadruplex aptamer containing all 32 768 possible DNA-to-2'F-ANA mutations. The resulting microarray was screened against thrombin to identify a series of promising 2'F-ANA-modified aptamer candidates with Kds significantly lower than that of the unmodified control and which were found to adopt highly stable, antiparallel-folded G-quadruplex structures. The solution structure of the TBA1 aptamer modified with 2'F-ANA at position T3 shows that fluorine substitution preorganizes the dinucleotide loop into the proper conformation for interaction with thrombin. Overall, our work strengthens the potential of 2'F-ANA in aptamer research and further expands non-genomic applications of nucleic acids microarrays.

    13. Extending the Interpretation of Gene Profiling Microarray Experiments to Pathway Analysis Through the Use of Gene Ontology Terms

      Science.gov (United States)

      Chatziioannou, Aristotelis; Moulos, Panagiotis

      Microarray technology allows the survey of gene expression at a global level by measuring mRNA abundance. However, the grand complexity characterizing a microarray experiment entails the development of computationally powerful tools apt for probing the biological problem studied. Here we propose a suite for flexible, adaptable to a wide range of possible needs of the biological end-user, data-driven interpretation of microarray experiments. The suite is implemented in MATLAB and is making use of two modules, able to perform all steps of typical microarray data analysis starting from data standardization and normalization up to statistical selection and pathway analysis utilizing Gene Ontology Term annotations for the species genomes interrogated, whereas due to its modular structure it is scalable thus enabling the incorporation or its seamless assembly with other existing tools.

    14. Microarray long oligo probe designing for Escherichia coli: an in-silico DNA marker extraction.

      Science.gov (United States)

      Behzadi, Payam; Najafi, Ali; Behzadi, Elham; Ranjbar, Reza

      2016-01-01

      Urinary tract infections are predominant diseases which may be caused by different pathogenic microorganisms, particularly Escherichia coli (E.coli). DNA microarray technology is an accurate, rapid, sensitive, and specific diagnostic tool which may lead to definite diagnosis and treatment of several infectious diseases. DNA microarray is a multi-process method in which probe designing plays an important. Therefore, the authors of the present study have tried to design a range of effective and proper long oligo microarray probes for detection and identification of different strains of pathogenic E.coli and in particular, uropathogenic E.coli (UPEC). E.coli O26 H11 11368 uid41021 was selected as the standard strain for probe designing. This strain encompasses the largest nucleotide sequence and the most number of genes among other pathogenic strains of E.coli. For performing this in silico survey, NCBI database, GReview Server, PanSeq Server, Oligoanalyzer tool, and AlleleID 7.7 were used to design accurate, appropriate, effective, and flexible long oligo microarray probes. Moreover, the genome of E.coli and its closely related microorganisms were compared. In this study, 15 long oligo microarray probes were designed for detecting and identifying different strains of E.coli such as UPEC. These probes possessed the best physico-chemical characteristics. The functional and structural properties of the designed probes were recognized by practical tools and softwares. The use of reliable advanced technologies and methodologies for probe designing guarentees the high quality of microarray probes and makes DNA microarray technology more flexible and an effective diagnostic technique.

    15. RNA-seq and microarray complement each other in transcriptome profiling

      Directory of Open Access Journals (Sweden)

      Kogenaru Sunitha

      2012-11-01

      Full Text Available Abstract Background RNA-seq and microarray are the two popular methods employed for genome-wide transcriptome profiling. Current comparison studies have shown that transcriptome quantified by these two methods correlated well. However, none of them have addressed if they complement each other, considering the strengths and the limitations inherent with them. The pivotal requirement to address this question is the knowledge of a well known data set. In this regard, HrpX regulome from pathogenic bacteria serves as an ideal choice as the target genes of HrpX transcription factor are well studied due to their central role in pathogenicity. Results We compared the performance of RNA-seq and microarray in their ability to detect known HrpX target genes by profiling the transcriptome from the wild-type and the hrpX mutant strains of γ-Proteobacterium Xanthomonas citri subsp. citri. Our comparative analysis indicated that gene expression levels quantified by RNA-seq and microarray well-correlated both at absolute as well as relative levels (Spearman correlation-coefficient, rs > 0.76. Further, the expression levels quantified by RNA-seq and microarray for the significantly differentially expressed genes (DEGs also well-correlated with qRT-PCR based quantification (rs = 0.58 to 0.94. Finally, in addition to the 55 newly identified DEGs, 72% of the already known HrpX target genes were detected by both RNA-seq and microarray, while, the remaining 28% could only be detected by either one of the methods. Conclusions This study has significantly advanced our understanding of the regulome of the critical transcriptional factor HrpX. RNA-seq and microarray together provide a more comprehensive picture of HrpX regulome by uniquely identifying new DEGs. Our study demonstrated that RNA-seq and microarray complement each other in transcriptome profiling.

    16. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

      Science.gov (United States)

      Guzzi, Pietro Hiram; Cannataro, Mario

      2013-08-01

      A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power

    17. Genome and exome sequencing in the clinic: unbiased genomic approaches with a high diagnostic yield

      NARCIS (Netherlands)

      Nelen, M.; Veltman, J.A.

      2012-01-01

      For the reasons discussed here, we think whole-genome- or exome-based approaches are currently most suited for diagnostic implementation in genetically heterogeneous diseases, initially to complement and later to replace Sanger sequencing, qPCR and genomic microarrays. Patients do need to be counsel

    18. PATMA: parser of archival tissue microarray

      Directory of Open Access Journals (Sweden)

      Lukasz Roszkowiak

      2016-12-01

      Full Text Available Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images.

    19. PATMA: parser of archival tissue microarray.

      Science.gov (United States)

      Roszkowiak, Lukasz; Lopez, Carlos

      2016-01-01

      Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images.

    20. The Impact of Photobleaching on Microarray Analysis

      Directory of Open Access Journals (Sweden)

      Marcel von der Haar

      2015-09-01

      Full Text Available DNA-Microarrays have become a potent technology for high-throughput analysis of genetic regulation. However, the wide dynamic range of signal intensities of fluorophore-based microarrays exceeds the dynamic range of a single array scan by far, thus limiting the key benefit of microarray technology: parallelization. The implementation of multi-scan techniques represents a promising approach to overcome these limitations. These techniques are, in turn, limited by the fluorophores’ susceptibility to photobleaching when exposed to the scanner’s laser light. In this paper the photobleaching characteristics of cyanine-3 and cyanine-5 as part of solid state DNA microarrays are studied. The effects of initial fluorophore intensity as well as laser scanner dependent variables such as the photomultiplier tube’s voltage on bleaching and imaging are investigated. The resulting data is used to develop a model capable of simulating the expected degree of signal intensity reduction caused by photobleaching for each fluorophore individually, allowing for the removal of photobleaching-induced, systematic bias in multi-scan procedures. Single-scan applications also benefit as they rely on pre-scans to determine the optimal scanner settings. These findings constitute a step towards standardization of microarray experiments and analysis and may help to increase the lab-to-lab comparability of microarray experiment results.

    1. Assessing the Detection Capacity of Microarrays as Bio/Nanosensing Platforms

      Directory of Open Access Journals (Sweden)

      Ju Seok Lee

      2013-01-01

      Full Text Available Microarray is one of the most powerful detection systems with multiplexing and high throughput capability. It has significant potential as a versatile biosensing platform for environmental monitoring, pathogen detection, medical therapeutics, and drug screening to name a few. To date, however, microarray applications are still limited to preliminary screening of genome-scale transcription profiling or gene ontology analysis. Expanding the utility of microarrays as a detection tool for various biological and biomedical applications requires information about performance such as the limits of detection and quantification, which are considered as an essential information to decide the detection sensitivity of sensing devices. Here we present a calibration design that integrates detection limit theory and linear dynamic range to obtain a performance index of microarray detection platform using oligonucleotide arrays as a model system. Two different types of limits of detection and quantification are proposed by the prediction or tolerance interval for two common cyanine fluorescence dyes, Cy3 and Cy5. Besides oligonucleotide, the proposed method can be generalized to other microarray formats with various biomolecules such as complementary DNA, protein, peptide, carbohydrate, tissue, or other small biomolecules. Also, it can be easily applied to other fluorescence dyes for further dye chemistry improvement.

    2. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE.

      Science.gov (United States)

      Rao, Archana N; Grainger, David W

      2014-04-01

      Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA's persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools.

    3. Development and application of the active surveillance of pathogens microarray to monitor bacterial gene flux

      Directory of Open Access Journals (Sweden)

      Hinds Jason

      2008-10-01

      Full Text Available Abstract Background Human and animal health is constantly under threat by emerging pathogens that have recently acquired genetic determinants that enhance their survival, transmissibility and virulence. We describe the construction and development of an Active Surveillance of Pathogens (ASP oligonucleotide microarray, designed to 'actively survey' the genome of a given bacterial pathogen for virulence-associated genes. Results The microarray consists of 4958 reporters from 151 bacterial species and include genes for the identification of individual bacterial species as well as mobile genetic elements (transposons, plasmid and phage, virulence genes and antibiotic resistance genes. The ASP microarray was validated with nineteen bacterial pathogens species, including Francisella tularensis, Clostridium difficile, Staphylococcus aureus, Enterococcus faecium and Stenotrophomonas maltophilia. The ASP microarray identified these bacteria, and provided information on potential antibiotic resistance (eg sufamethoxazole resistance and sulfonamide resistance and virulence determinants including genes likely to be acquired by horizontal gene transfer (e.g. an alpha-haemolysin. Conclusion The ASP microarray has potential in the clinic as a diagnostic tool, as a research tool for both known and emerging pathogens, and as an early warning system for pathogenic bacteria that have been recently modified either naturally or deliberately.

    4. Mayday SeaSight: combined analysis of deep sequencing and microarray data.

      Directory of Open Access Journals (Sweden)

      Florian Battke

      Full Text Available Recently emerged deep sequencing technologies offer new high-throughput methods to quantify gene expression, epigenetic modifications and DNA-protein binding. From a computational point of view, the data is very different from that produced by the already established microarray technology, providing a new perspective on the samples under study and complementing microarray gene expression data. Software offering the integrated analysis of data from different technologies is of growing importance as new data emerge in systems biology studies. Mayday is an extensible platform for visual data exploration and interactive analysis and provides many methods for dissecting complex transcriptome datasets. We present Mayday SeaSight, an extension that allows to integrate data from different platforms such as deep sequencing and microarrays. It offers methods for computing expression values from mapped reads and raw microarray data, background correction and normalization and linking microarray probes to genomic coordinates. It is now possible to use Mayday's wealth of methods to analyze sequencing data and to combine data from different technologies in one analysis.

    5. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

      Science.gov (United States)

      Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

      2016-07-15

      Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis.

    6. Microarray analysis of potential genes in the pathogenesis of recurrent oral ulcer.

      Science.gov (United States)

      Han, Jingying; He, Zhiwei; Li, Kun; Hou, Lu

      2015-01-01

      Recurrent oral ulcer seriously threatens patients' daily life and health. This study investigated potential genes and pathways that participate in the pathogenesis of recurrent oral ulcer by high throughput bioinformatic analysis. RT-PCR and Western blot were applied to further verify screened interleukins effect. Recurrent oral ulcer related genes were collected from websites and papers, and further found out from Human Genome 280 6.0 microarray data. Each pathway of recurrent oral ulcer related genes were got through chip hybridization. RT-PCR was applied to test four recurrent oral ulcer related genes to verify the microarray data. Data transformation, scatter plot, clustering analysis, and expression pattern analysis were used to analyze recurrent oral ulcer related gene expression changes. Recurrent oral ulcer gene microarray was successfully established. Microarray showed that 551 genes involved in recurrent oral ulcer activity and 196 genes were recurrent oral ulcer related genes. Of them, 76 genes up-regulated, 62 genes down-regulated, and 58 genes up-/down-regulated. Total expression level up-regulated 752 times (60%) and down-regulated 485 times (40%). IL-2 plays an important role in the occurrence, development and recurrence of recurrent oral ulcer on the mRNA and protein levels. Gene microarray can be used to analyze potential genes and pathways in recurrent oral ulcer. IL-2 may be involved in the pathogenesis of recurrent oral ulcer.

    7. In Situ-Synthesized Novel Microarray Optimized for Mouse Stem Cell and Early Developmental Expression Profiling

      Science.gov (United States)

      Carter, Mark G.; Hamatani, Toshio; Sharov, Alexei A.; Carmack, Condie E.; Qian, Yong; Aiba, Kazuhiro; Ko, Naomi T.; Dudekula, Dawood B.; Brzoska, Pius M.; Hwang, S. Stuart; Ko, Minoru S.H.

      2003-01-01

      Applications of microarray technologies to mouse embryology/genetics have been limited, due to the nonavailability of microarrays containing large numbers of embryonic genes and the gap between microgram quantities of RNA required by typical microarray methods and the miniscule amounts of tissue available to researchers. To overcome these problems, we have developed a microarray platform containing in situ-synthesized 60-mer oligonucleotide probes representing approximately 22,000 unique mouse transcripts, assembled primarily from sequences of stem cell and embryo cDNA libraries. We have optimized RNA labeling protocols and experimental designs to use as little as 2 ng total RNA reliably and reproducibly. At least 98% of the probes contained in the microarray correspond to clones in our publicly available collections, making cDNAs readily available for further experimentation on genes of interest. These characteristics, combined with the ability to profile very small samples, make this system a resource for stem cell and embryogenomics research. [Supplemental material is available online at www.genome.org and at the NIA Mouse cDNA Project Web site, http://lgsun.grc.nia.nih.gov/cDNA/cDNA.html.] PMID:12727912

    8. An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays

      Directory of Open Access Journals (Sweden)

      Laurenzi Ian J

      2009-12-01

      Full Text Available Abstract Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.

    9. Strong position-dependent effects of sequence mismatches on signal ratios measured using long oligonucleotide microarrays

      Directory of Open Access Journals (Sweden)

      Hulme Helen

      2008-07-01

      Full Text Available Abstract Background Microarrays are an important and widely used tool. Applications include capturing genomic DNA for high-throughput sequencing in addition to the traditional monitoring of gene expression and identifying DNA copy number variations. Sequence mismatches between probe and target strands are known to affect the stability of the probe-target duplex, and hence the strength of the observed signals from microarrays. Results We describe a large-scale investigation of microarray hybridisations to murine probes with known sequence mismatches, demonstrating that the effect of mismatches is strongly position-dependent and for small numbers of sequence mismatches is correlated with the maximum length of perfectly matched probe-target duplex. Length of perfect match explained 43% of the variance in log2 signal ratios between probes with one and two mismatches. The correlation with maximum length of perfect match does not conform to expectations based on considering the effect of mismatches purely in terms of reducing the binding energy. However, it can be explained qualitatively by considering the entropic contribution to duplex stability from configurations of differing perfect match length. Conclusion The results of this study have implic