WorldWideScience

Sample records for genomic assessment viral

  1. NCBI viral genomes resource.

    Science.gov (United States)

    Brister, J Rodney; Ako-Adjei, Danso; Bao, Yiming; Blinkova, Olga

    2015-01-01

    Recent technological innovations have ignited an explosion in virus genome sequencing that promises to fundamentally alter our understanding of viral biology and profoundly impact public health policy. Yet, any potential benefits from the billowing cloud of next generation sequence data hinge upon well implemented reference resources that facilitate the identification of sequences, aid in the assembly of sequence reads and provide reference annotation sources. The NCBI Viral Genomes Resource is a reference resource designed to bring order to this sequence shockwave and improve usability of viral sequence data. The resource can be accessed at http://www.ncbi.nlm.nih.gov/genome/viruses/ and catalogs all publicly available virus genome sequences and curates reference genome sequences. As the number of genome sequences has grown, so too have the difficulties in annotating and maintaining reference sequences. The rapid expansion of the viral sequence universe has forced a recalibration of the data model to better provide extant sequence representation and enhanced reference sequence products to serve the needs of the various viral communities. This, in turn, has placed increased emphasis on leveraging the knowledge of individual scientific communities to identify important viral sequences and develop well annotated reference virus genome sets.

  2. LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Task 1.4.2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Borucki, M; Lam, M; Lenhoff, R; Vitalis, E

    2010-01-26

    Good progress has been made on both bacterial and viral sequencing by the TMTI centers. While access to appropriate samples is a limiting factor to throughput, excellent progress has been made with respect to getting agreements in place with key sources of relevant materials. Sharing of sequenced genomes funded by TMTI has been extremely limited to date. The April 2010 exercise should force a resolution to this, but additional managerial pressures may be needed to ensure that rapid sharing of TMTI-funded sequencing occurs, regardless of collaborator constraints concerning ultimate publication(s). Policies to permit TMTI-internal rapid sharing of sequenced genomes should be written into all TMTI agreements with collaborators now being negotiated. TMTI needs to establish a Web-based system for tracking samples destined for sequencing. This includes metadata on sample origins and contributor, information on sample shipment/receipt, prioritization by TMTI, assignment to one or more sequencing centers (including possible TMTI-sponsored sequencing at a contributor site), and status history of the sample sequencing effort. While this system could be a component of the AFRL system, it is not part of any current development effort. Policy and standardized procedures are needed to ensure appropriate verification of all TMTI samples prior to the investment in sequencing. PCR, arrays, and classical biochemical tests are examples of potential verification methods. Verification is needed to detect miss-labeled, degraded, mixed or contaminated samples. Regular QC exercises are needed to ensure that the TMTI-funded centers are meeting all standards for producing quality genomic sequence data.

  3. LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Tier 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Borucki, M; Lenhoff, R; Vitalis, E

    2009-09-29

    The Lawrence Livermore National Lab Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to obtain more sequence information across a large range of pathogens, near neighbors, and across a broad geographical and host range. Our role in this project is to research available sequence data for the organisms of interest and identify critical microbial sequence and knowledge gaps that need to be filled to meet TMTI objectives. This effort includes: (1) assessing current genomic sequence for each agent including phylogenetic and geographical diversity, host range, date of isolation range, virulence, sequence availability of key near neighbors, and other characteristics; (2) identifying Subject Matter Experts (SME's) and potential holders of isolate collections, contacting appropriate SME's with known expertise and isolate collections to obtain information on isolate availability and specific recommendations; (3) identifying sequence as well as knowledge gaps (eg virulence, host range, and antibiotic resistance determinants); (4) providing specific recommendations as to the most valuable strains to be placed on the DTRA sequencing queue. We acknowledge that criteria for prioritization of isolates for sequencing falls into two categories aligning with priority queues 1 and 2 as described in the summary. (Priority queue 0 relates to DTRA operational isolates whose availability is not predictable in advance.) 1. Selection of isolates that appear to have likelihood to provide information on virulence and antibiotic resistance. This will include sequence of known virulent strains. Particularly valuable would be virulent strains that have genetically similar yet avirulent, or non human transmissible, counterparts that can be used for comparison to help

  4. LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Tier 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Borucki, M; Lenhoff, R; Vitalis, E

    2009-09-29

    The Lawrence Livermore National Lab Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to obtain more sequence information across a large range of pathogens, near neighbors, and across a broad geographical and host range. Our role in this project is to research available sequence data for the organisms of interest and identify critical microbial sequence and knowledge gaps that need to be filled to meet TMTI objectives. This effort includes: (1) assessing current genomic sequence for each agent including phylogenetic and geographical diversity, host range, date of isolation range, virulence, sequence availability of key near neighbors, and other characteristics; (2) identifying Subject Matter Experts (SME's) and potential holders of isolate collections, contacting appropriate SME's with known expertise and isolate collections to obtain information on isolate availability and specific recommendations; (3) identifying sequence as well as knowledge gaps (eg virulence, host range, and antibiotic resistance determinants); (4) providing specific recommendations as to the most valuable strains to be placed on the DTRA sequencing queue. We acknowledge that criteria for prioritization of isolates for sequencing falls into two categories aligning with priority queues 1 and 2 as described in the summary. (Priority queue 0 relates to DTRA operational isolates whose availability is not predictable in advance.) 1. Selection of isolates that appear to have likelihood to provide information on virulence and antibiotic resistance. This will include sequence of known virulent strains. Particularly valuable would be virulent strains that have genetically similar yet avirulent, or non human transmissible, counterparts that can be used for comparison to help

  5. Comparison of Next-Generation Sequencing Technologies for Comprehensive Assessment of Full-Length Hepatitis C Viral Genomes

    Science.gov (United States)

    Thomson, Emma; Ip, Camilla L. C.; Badhan, Anjna; Christiansen, Mette T.; Adamson, Walt; Ansari, M. Azim; Breuer, Judith; Brown, Anthony; Bowden, Rory; Bonsall, David; Da Silva Filipe, Ana; Hinds, Chris; Hudson, Emma; Klenerman, Paul; Lythgow, Kieren; Mbisa, Jean L.; McLauchlan, John; Myers, Richard; Piazza, Paolo; Roy, Sunando; Trebes, Amy; Sreenu, Vattipally B.; Witteveldt, Jeroen; Simmonds, Peter

    2016-01-01

    Affordable next-generation sequencing (NGS) technologies for hepatitis C virus (HCV) may potentially identify both viral genotype and resistance genetic motifs in the era of directly acting antiviral (DAA) therapies. This study compared the ability of high-throughput NGS methods to generate full-length, deep, HCV sequence data sets and evaluated their utility for diagnostics and clinical assessment. NGS methods using (i) unselected HCV RNA (metagenomics), (ii) preenrichment of HCV RNA by probe capture, and (iii) HCV preamplification by PCR implemented in four United Kingdom centers were compared. Metrics of sequence coverage and depth, quasispecies diversity, and detection of DAA resistance-associated variants (RAVs), mixed HCV genotypes, and other coinfections were compared using a panel of samples with different viral loads, genotypes, and mixed HCV genotypes/subtypes [geno(sub)types]. Each NGS method generated near-complete genome sequences from more than 90% of samples. Enrichment methods and PCR preamplification generated greater sequence depth and were more effective for samples with low viral loads. All NGS methodologies accurately identified mixed HCV genotype infections. Consensus sequences generated by different NGS methods were generally concordant, and majority RAVs were consistently detected. However, methods differed in their ability to detect minor populations of RAVs. Metagenomic methods identified human pegivirus coinfections. NGS provided a rapid, inexpensive method for generating whole HCV genomes to define infecting genotypes, RAVs, comprehensive viral strain analysis, and quasispecies diversity. Enrichment methods are particularly suited for high-throughput analysis while providing the genotype and information on potential DAA resistance. PMID:27385709

  6. Assembly of viral genomes from metagenomes

    NARCIS (Netherlands)

    S.L. Smits (Saskia); R. Bodewes (Rogier); A. Ruiz-Gonzalez (Aritz); V. Baumgärtner (Volkmar); M.P.G. Koopmans D.V.M. (Marion); A.D.M.E. Osterhaus (Albert); A. Schürch (Anita)

    2014-01-01

    textabstractViral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow r

  7. V-GAP: Viral genome assembly pipeline

    KAUST Repository

    Nakamura, Yoji

    2015-10-22

    Next-generation sequencing technologies have allowed the rapid determination of the complete genomes of many organisms. Although shotgun sequences from large genome organisms are still difficult to reconstruct perfect contigs each of which represents a full chromosome, those from small genomes have been assembled successfully into a very small number of contigs. In this study, we show that shotgun reads from phage genomes can be reconstructed into a single contig by controlling the number of read sequences used in de novo assembly. We have developed a pipeline to assemble small viral genomes with good reliability using a resampling method from shotgun data. This pipeline, named V-GAP (Viral Genome Assembly Pipeline), will contribute to the rapid genome typing of viruses, which are highly divergent, and thus will meet the increasing need for viral genome comparisons in metagenomic studies.

  8. Assembly of viral genomes from metagenomes

    Directory of Open Access Journals (Sweden)

    Saskia L Smits

    2014-12-01

    Full Text Available Viral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow rapid phylogenetic characterization of these new viruses. Often, however, complete viral genomes are not recovered, but rather several distinct contigs derived from a single entity, some of which have no sequence homology to any known proteins. De novo assembly of single viruses from a metagenome is challenging, not only because of the lack of a reference genome, but also because of intrapopulation variation and uneven or insufficient coverage. Here we explored different assembly algorithms, remote homology searches, genome-specific sequence motifs, k-mer frequency ranking, and coverage profile binning to detect and obtain viral target genomes from metagenomes. All methods were tested on 454-generated sequencing datasets containing three recently described RNA viruses with a relatively large genome which were divergent to previously known viruses from the viral families Rhabdoviridae and Coronaviridae. Depending on specific characteristics of the target virus and the metagenomic community, different assembly and in silico gap closure strategies were successful in obtaining near complete viral genomes.

  9. Bioinformatics tools for analysing viral genomic data.

    Science.gov (United States)

    Orton, R J; Gu, Q; Hughes, J; Maabar, M; Modha, S; Vattipally, S B; Wilkie, G S; Davison, A J

    2016-04-01

    The field of viral genomics and bioinformatics is experiencing a strong resurgence due to high-throughput sequencing (HTS) technology, which enables the rapid and cost-effective sequencing and subsequent assembly of large numbers of viral genomes. In addition, the unprecedented power of HTS technologies has enabled the analysis of intra-host viral diversity and quasispecies dynamics in relation to important biological questions on viral transmission, vaccine resistance and host jumping. HTS also enables the rapid identification of both known and potentially new viruses from field and clinical samples, thus adding new tools to the fields of viral discovery and metagenomics. Bioinformatics has been central to the rise of HTS applications because new algorithms and software tools are continually needed to process and analyse the large, complex datasets generated in this rapidly evolving area. In this paper, the authors give a brief overview of the main bioinformatics tools available for viral genomic research, with a particular emphasis on HTS technologies and their main applications. They summarise the major steps in various HTS analyses, starting with quality control of raw reads and encompassing activities ranging from consensus and de novo genome assembly to variant calling and metagenomics, as well as RNA sequencing.

  10. Viral genome sequencing by random priming methods

    Directory of Open Access Journals (Sweden)

    Zhang Xinsheng

    2008-01-01

    Full Text Available Abstract Background Most emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are RNA viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is a better understanding of global viral diversity to enable better surveillance and prediction of pandemic threats; this will require rapid and flexible methods for complete viral genome sequencing. Results We have adapted the SISPA methodology 123 to genome sequencing of RNA and DNA viruses. We have demonstrated the utility of the method on various types and sources of viruses, obtaining near complete genome sequence of viruses ranging in size from 3,000–15,000 kb with a median depth of coverage of 14.33. We used this technique to generate full viral genome sequence in the presence of host contaminants, using viral preparations from cell culture supernatant, allantoic fluid and fecal matter. Conclusion The method described is of great utility in generating whole genome assemblies for viruses with little or no available sequence information, viruses from greatly divergent families, previously uncharacterized viruses, or to more fully describe mixed viral infections.

  11. Endogenous viral elements in algal genomes

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; YU Jun; WU Shuangxiu; LIU Tao; SUN Jing; CHI Shan; LIU Cui; LI Xingang; YIN Jinlong; WANG Xumin

    2014-01-01

    Endogenous viral elements (EVEs) are host-genomic fragments originated from viral genomes. They have been found universally in animal and plant genomes. Here we carried out a systematic screening and analy-sis of EVEs in algal genomes and found that EVEs commonly exist in algal genomes. We classified the EVE fragments into three categories according to the length of EVE fragments. Due to the probability of sequence similarity by chance, we ignored the potential function of medium-length EVE fragments. However, long-length EVE fragments probably had capability to encode protein domains or even entire proteins, and some short-length EVE fragments had high similarity with host's siRNA sequences and possibly served functions of small RNAs. Therefore, short and long EVE fragments might provide regulomic and proteomic novelty to the host's metabolism and adaptation. We also found several EVE fragments shared by more than 3 algal genomes. By phylogenetic analysis of the shared EVEs and their corresponding species, we found that the integration of viral fragments into host genomes was an ancient event, possibly before the divergence of Chlorophytes and Ochrophytes. Our findings show that there is a frequent genetic flow from viruses to algal genomes. Moreover, study on algal EVEs shed light on the virus-host interaction in large timescale and could also help us understand the balance of marine ecosystems.

  12. Annotation of selection strengths in viral genomes

    DEFF Research Database (Denmark)

    McCauley, Stephen; de Groot, Saskia; Mailund, Thomas

    2007-01-01

    Motivation: Viral genomes tend to code in overlapping reading frames to maximize information content. This may result in atypical codon bias and particular evolutionary constraints. Due to the fast mutation rate of viruses, there is additional strong evidence for varying selection between intra......- and intergenomic regions. The presence of multiple coding regions complicates the concept of Ka/Ks ratio, and thus begs for an alternative approach when investigating selection strengths. Building on the paper by McCauley & Hein (2006), we develop a method for annotating a viral genome coding in overlapping...... may thus achieve an annotation both of coding regions as well as selection strengths, allowing us to investigate different selection patterns and hypotheses. Results: We illustrate our method by applying it to a multiple alignment of four HIV2 sequences, as well as four Hepatitis B sequences. We...

  13. APOBEC3 Interference during Replication of Viral Genomes

    Directory of Open Access Journals (Sweden)

    Luc Willems

    2015-06-01

    Full Text Available Co-evolution of viruses and their hosts has reached a fragile and dynamic equilibrium that allows viral persistence, replication and transmission. In response, infected hosts have developed strategies of defense that counteract the deleterious effects of viral infections. In particular, single-strand DNA editing by Apolipoprotein B Editing Catalytic subunits proteins 3 (APOBEC3s is a well-conserved mechanism of mammalian innate immunity that mutates and inactivates viral genomes. In this review, we describe the mechanisms of APOBEC3 editing during viral replication, the viral strategies that prevent APOBEC3 activity and the consequences of APOBEC3 modulation on viral fitness and host genome integrity. Understanding the mechanisms involved reveals new prospects for therapeutic intervention.

  14. viruSITE—integrated database for viral genomics

    Science.gov (United States)

    Stano, Matej; Beke, Gabor; Klucar, Lubos

    2016-01-01

    Viruses are the most abundant biological entities and the reservoir of most of the genetic diversity in the Earth's biosphere. Viral genomes are very diverse, generally short in length and compared to other organisms carry only few genes. viruSITE is a novel database which brings together high-value information compiled from various resources. viruSITE covers the whole universe of viruses and focuses on viral genomes, genes and proteins. The database contains information on virus taxonomy, host range, genome features, sequential relatedness as well as the properties and functions of viral genes and proteins. All entries in the database are linked to numerous information resources. The above-mentioned features make viruSITE a comprehensive knowledge hub in the field of viral genomics. The web interface of the database was designed so as to offer an easy-to-navigate, intuitive and user-friendly environment. It provides sophisticated text searching and a taxonomy-based browsing system. viruSITE also allows for an alternative approach based on sequence search. A proprietary genome browser generates a graphical representation of viral genomes. In addition to retrieving and visualising data, users can perform comparative genomics analyses using a variety of tools. Database URL: http://www.virusite.org/ PMID:28025349

  15. VIGOR, an annotation program for small viral genomes

    Directory of Open Access Journals (Sweden)

    Wang Shiliang

    2010-09-01

    Full Text Available Abstract Background The decrease in cost for sequencing and improvement in technologies has made it easier and more common for the re-sequencing of large genomes as well as parallel sequencing of small genomes. It is possible to completely sequence a small genome within days and this increases the number of publicly available genomes. Among the types of genomes being rapidly sequenced are those of microbial and viral genomes responsible for infectious diseases. However, accurate gene prediction is a challenge that persists for decoding a newly sequenced genome. Therefore, accurate and efficient gene prediction programs are highly desired for rapid and cost effective surveillance of RNA viruses through full genome sequencing. Results We have developed VIGOR (Viral Genome ORF Reader, a web application tool for gene prediction in influenza virus, rotavirus, rhinovirus and coronavirus subtypes. VIGOR detects protein coding regions based on sequence similarity searches and can accurately detect genome specific features such as frame shifts, overlapping genes, embedded genes, and can predict mature peptides within the context of a single polypeptide open reading frame. Genotyping capability for influenza and rotavirus is built into the program. We compared VIGOR to previously described gene prediction programs, ZCURVE_V, GeneMarkS and FLAN. The specificity and sensitivity of VIGOR are greater than 99% for the RNA viral genomes tested. Conclusions VIGOR is a user friendly web-based genome annotation program for five different viral agents, influenza, rotavirus, rhinovirus, coronavirus and SARS coronavirus. This is the first gene prediction program for rotavirus and rhinovirus for public access. VIGOR is able to accurately predict protein coding genes for the above five viral types and has the capability to assign function to the predicted open reading frames and genotype influenza virus. The prediction software was designed for performing high

  16. VirSorter: mining viral signal from microbial genomic data

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2015-05-01

    Full Text Available Viruses of microbes impact all ecosystems where microbes drive key energy and substrate transformations including the oceans, humans and industrial fermenters. However, despite this recognized importance, our understanding of viral diversity and impacts remains limited by too few model systems and reference genomes. One way to fill these gaps in our knowledge of viral diversity is through the detection of viral signal in microbial genomic data. While multiple approaches have been developed and applied for the detection of prophages (viral genomes integrated in a microbial genome, new types of microbial genomic data are emerging that are more fragmented and larger scale, such as Single-cell Amplified Genomes (SAGs of uncultivated organisms or genomic fragments assembled from metagenomic sequencing. Here, we present VirSorter, a tool designed to detect viral signal in these different types of microbial sequence data in both a reference-dependent and reference-independent manner, leveraging probabilistic models and extensive virome data to maximize detection of novel viruses. Performance testing shows that VirSorter’s prophage prediction capability compares to that of available prophage predictors for complete genomes, but is superior in predicting viral sequences outside of a host genome (i.e., from extrachromosomal prophages, lytic infections, or partially assembled prophages. Furthermore, VirSorter outperforms existing tools for fragmented genomic and metagenomic datasets, and can identify viral signal in assembled sequence (contigs as short as 3kb, while providing near-perfect identification (>95% Recall and 100% Precision on contigs of at least 10kb. Because VirSorter scales to large datasets, it can also be used in “reverse” to more confidently identify viral sequence in viral metagenomes by sorting away cellular DNA whether derived from gene transfer agents, generalized transduction or contamination. Finally, VirSorter is made

  17. Curation of viral genomes: challenges, applications and the way forward

    Directory of Open Access Journals (Sweden)

    Joshi Manali

    2006-12-01

    Full Text Available Abstract Background Whole genome sequence data is a step towards generating the 'parts list' of life to understand the underlying principles of Biocomplexity. Genome sequencing initiatives of human and model organisms are targeted efforts towards understanding principles of evolution with an application envisaged to improve human health. These efforts culminated in the development of dedicated resources. Whereas a large number of viral genomes have been sequenced by groups or individuals with an interest to study antigenic variation amongst strains and species. These independent efforts enabled viruses to attain the status of 'best-represented taxa' with the highest number of genomes. However, due to lack of concerted efforts, viral genomic sequences merely remained as entries in the public repositories until recently. Results VirGen is a curated resource of viral genomes and their analyses. Since its first release, it has grown both in terms of coverage of viral families and development of new modules for annotation and analysis. The current release (2.0 includes data for twenty-five families with broad host range as against eight in the first release. The taxonomic description of viruses in VirGen is in accordance with the ICTV nomenclature. A well-characterised strain is identified as a 'representative entry' for every viral species. This non-redundant dataset is used for subsequent annotation and analyses using sequenced-based Bioinformatics approaches. VirGen archives precomputed data on genome and proteome comparisons. A new data module that provides structures of viral proteins available in PDB has been incorporated recently. One of the unique features of VirGen is predicted conformational and sequential epitopes of known antigenic proteins using in-house developed algorithms, a step towards reverse vaccinology. Conclusion Structured organization of genomic data facilitates use of data mining tools, which provides opportunities for

  18. Genome Annotation Transfer Utility (GATU: rapid annotation of viral genomes using a closely related reference genome

    Directory of Open Access Journals (Sweden)

    Upton Chris

    2006-06-01

    Full Text Available Abstract Background Since DNA sequencing has become easier and cheaper, an increasing number of closely related viral genomes have been sequenced. However, many of these have been deposited in GenBank without annotations, severely limiting their value to researchers. While maintaining comprehensive genomic databases for a set of virus families at the Viral Bioinformatics Resource Center http://www.biovirus.org and Viral Bioinformatics – Canada http://www.virology.ca, we found that researchers were unnecessarily spending time annotating viral genomes that were close relatives of already annotated viruses. We have therefore designed and implemented a novel tool, Genome Annotation Transfer Utility (GATU, to transfer annotations from a previously annotated reference genome to a new target genome, thereby greatly reducing this laborious task. Results GATU transfers annotations from a reference genome to a closely related target genome, while still giving the user final control over which annotations should be included. GATU also detects open reading frames present in the target but not the reference genome and provides the user with a variety of bioinformatics tools to quickly determine if these ORFs should also be included in the annotation. After this process is complete, GATU saves the newly annotated genome as a GenBank, EMBL or XML-format file. The software is coded in Java and runs on a variety of computer platforms. Its user-friendly Graphical User Interface is specifically designed for users trained in the biological sciences. Conclusion GATU greatly simplifies the initial stages of genome annotation by using a closely related genome as a reference. It is not intended to be a gene prediction tool or a "complete" annotation system, but we have found that it significantly reduces the time required for annotation of genes and mature peptides as well as helping to standardize gene names between related organisms by transferring reference genome

  19. Genome Annotation Transfer Utility (GATU): rapid annotation of viral genomes using a closely related reference genome.

    Science.gov (United States)

    Tcherepanov, Vasily; Ehlers, Angelika; Upton, Chris

    2006-06-13

    Since DNA sequencing has become easier and cheaper, an increasing number of closely related viral genomes have been sequenced. However, many of these have been deposited in GenBank without annotations, severely limiting their value to researchers. While maintaining comprehensive genomic databases for a set of virus families at the Viral Bioinformatics Resource Center http://www.biovirus.org and Viral Bioinformatics - Canada http://www.virology.ca, we found that researchers were unnecessarily spending time annotating viral genomes that were close relatives of already annotated viruses. We have therefore designed and implemented a novel tool, Genome Annotation Transfer Utility (GATU), to transfer annotations from a previously annotated reference genome to a new target genome, thereby greatly reducing this laborious task. GATU transfers annotations from a reference genome to a closely related target genome, while still giving the user final control over which annotations should be included. GATU also detects open reading frames present in the target but not the reference genome and provides the user with a variety of bioinformatics tools to quickly determine if these ORFs should also be included in the annotation. After this process is complete, GATU saves the newly annotated genome as a GenBank, EMBL or XML-format file. The software is coded in Java and runs on a variety of computer platforms. Its user-friendly Graphical User Interface is specifically designed for users trained in the biological sciences. GATU greatly simplifies the initial stages of genome annotation by using a closely related genome as a reference. It is not intended to be a gene prediction tool or a "complete" annotation system, but we have found that it significantly reduces the time required for annotation of genes and mature peptides as well as helping to standardize gene names between related organisms by transferring reference genome annotations to the target genome. The program is freely

  20. Strongly correlated electrostatics of viral genome packaging.

    Science.gov (United States)

    Nguyen, Toan T

    2013-03-01

    The problem of viral packaging (condensation) and ejection from viral capsid in the presence of multivalent counterions is considered. Experiments show divalent counterions strongly influence the amount of DNA ejected from bacteriophage. In this paper, the strong electrostatic interactions between DNA molecules in the presence of multivalent counterions is investigated. It is shown that experiment results agree reasonably well with the phenomenon of DNA reentrant condensation. This phenomenon is known to cause DNA condensation in the presence of tri- or tetra-valent counterions. For divalent counterions, the viral capsid confinement strongly suppresses DNA configurational entropy, therefore the correlation between divalent counterions is strongly enhanced causing similar effect. Computational studies also agree well with theoretical calculations.

  1. Viral genome sequencing bt random priming methods

    Science.gov (United States)

    Most emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is an understanding of the viral diversity to enable b...

  2. Viral capsids: Mechanical characteristics, genome packaging and delivery mechanisms

    NARCIS (Netherlands)

    Roos, W.H.; Ivanovska, I.L.; Evilevitch, A.; Wuite, G.J.L.

    2007-01-01

    The main functions of viral capsids are to protect, transport and deliver their genome. The mechanical properties of capsids are supposed to be adapted to these tasks. Bacteriophage capsids also need to withstand the high pressures the DNA is exerting onto it as a result of the DNA packaging and its

  3. Mechanism of membranous tunnelling nanotube formation in viral genome delivery.

    Directory of Open Access Journals (Sweden)

    Bibiana Peralta

    2013-09-01

    Full Text Available In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems.

  4. Viral Genome Sequencing Proves Nosocomial Transmission of Fatal Varicella

    Science.gov (United States)

    Depledge, Daniel P.; Brown, Julianne; Macanovic, Jasna; Underhill, Gill; Breuer, Judith

    2016-01-01

    We report the first use of whole viral genome sequencing to identify nosocomial transmission of varicella-zoster virus with fatal outcome. The index case patient, nursed in source isolation, developed disseminated zoster with rash present for 1 day before being transferred to the intensive care unit (ICU). Two patients who had received renal transplants while inpatients in an adjacent ward developed chickenpox and 1 died; neither patient had direct contact with the index patient. PMID:27571904

  5. Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs.

    Science.gov (United States)

    Gudbergsdóttir, Sóley Ruth; Menzel, Peter; Krogh, Anders; Young, Mark; Peng, Xu

    2016-03-01

    Limited by culture-dependent methods the number of viruses identified from thermophilic Archaea and Bacteria is still very small. In this study we retrieved viral sequences from six hot spring metagenomes isolated worldwide, revealing a wide distribution of four archaeal viral families, Ampullaviridae, Bicaudaviridae, Lipothrixviridae and Rudiviridae. Importantly, we identified 10 complete or near complete viral genomes allowing, for the first time, an assessment of genome conservation and evolution of the Ampullaviridae family as well as Sulfolobus Monocaudavirus 1 (SMV1)-related viruses. Among the novel genomes, one belongs to a putative thermophilic virus infecting the bacterium Hydrogenobaculum, for which no virus has been reported in the literature. Moreover, a high viral diversity was observed in the metagenomes, especially among the Lipothrixviridae, as indicated by the large number of unique contigs and the lack of a completely assembled genome for this family. This is further supported by the large number of novel genes in the complete and partial genomes showing no sequence similarities to public databases. CRISPR analysis revealed hundreds of novel CRISPR loci and thousands of novel CRISPR spacers from each metagenome, reinforcing the notion of high viral diversity in the thermal environment.

  6. Experimental infection of Newcastle disease virus in pigeons (Columba livia): humoral antibody response, contact transmission and viral genome shedding.

    Science.gov (United States)

    de Oliveira Torres Carrasco, Adriano; Seki, Meire Christina; de Freitas Raso, Tânia; Paulillo, Antônio Carlos; Pinto, Aramis Augusto

    2008-05-25

    The aim of this study was to evaluate the humoral antibody response, the genome viral excretion and the contact transmission of pathogenic chicken origin Newcastle disease virus (NDV) from experimentally infected pigeons (Columba livia) to in-contact pigeon. The antibody response to infection was assessed by the hemagglutination inhibition (HI) test and the genome viral excretion was detected by RT-PCR. Viral strain induced high antibody levels, both in inoculated and in sentinel birds. The pathogenic viral strain for chickens was unable to produce clinical signs of the disease in experimentally infected pigeons, although it induced the humoral antibody response and produced NDV genome shedding. NDV genome was detected intermittently throughout the experimental period, from 5 days post-infection (dpi) to 24 dpi. Therefore, viral genome shedding occurred for 20 days. The viral genome was detected in all birds, between 11 and 13 dpi. Furthermore, the high infectivity of the virus was confirmed, as all non-inoculated sentinel pigeons showed antibody levels as high as those of inoculated birds.

  7. Towards Viral Genome Annotation Standards, Report from the 2010 NCBI Annotation Workshop.

    Science.gov (United States)

    Brister, James Rodney; Bao, Yiming; Kuiken, Carla; Lefkowitz, Elliot J; Le Mercier, Philippe; Leplae, Raphael; Madupu, Ramana; Scheuermann, Richard H; Schobel, Seth; Seto, Donald; Shrivastava, Susmita; Sterk, Peter; Zeng, Qiandong; Klimke, William; Tatusova, Tatiana

    2010-10-01

    Improvements in DNA sequencing technologies portend a new era in virology and could possibly lead to a giant leap in our understanding of viral evolution and ecology. Yet, as viral genome sequences begin to fill the world's biological databases, it is critically important to recognize that the scientific promise of this era is dependent on consistent and comprehensive genome annotation. With this in mind, the NCBI Genome Annotation Workshop recently hosted a study group tasked with developing sequence, function, and metadata annotation standards for viral genomes. This report describes the issues involved in viral genome annotation and reviews policy recommendations presented at the NCBI Annotation Workshop.

  8. Exploring Viral Genomics at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kilpatrick, K; Hiddessen, A

    2007-08-22

    This summer I had the privilege of working at Lawrence Livermore National Laboratory under the Nonproliferation, Homeland and International Security Directorate in the Chemical and Biological Countermeasures Division. I worked exclusively on the Viral Identification and Characterization Initiative (VICI) project focusing on the development of multiplexed polymerase chain reaction (PCR) assays. The goal of VICI is to combine several disciplines such as molecular biology, microfluidics, and bioinformatics in order to detect viruses and identify them in order to effectively and quickly counter infectious disease, natural or engineered. The difficulty in such a countermeasure is that little is known about viral diversity due to the ever changing nature of these organisms. In response, VICI is developing a new microfluidic bioanalytical platform to detect known and unknown viruses by analyzing every virus in a sample by isolating them into picoliter sized droplets on a microchip and individually analyzing them. The sample will be injected into a channel of oil to form droplets that will contain viral nucleic acids that will be amplified using PCR. The multiplexed PCR assay will produce a series of amplicons for a particular virus genome that provides an identifying signature. A device will then detect whether or not DNA is present in the droplet and will sort the empty droplets from the rest. From this point, the amplified DNA is released from the droplets and analyzed using capillary gel electrophoresis in order to read out the series of amplicons and thereby determine the identity of each virus. The following figure depicts the microfluidic process. For the abovementioned microfluidic process to work, a method for detecting amplification of target viral nucleic acids that does not interfere with the multiplexed biochemical reaction is required for downstream sorting and analysis. In this report, the successful development of a multiplexed PCR assay using SYBR Green I

  9. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life

    DEFF Research Database (Denmark)

    Prangishvili, D.; Garrett, R. A.; Koonin, E.

    2006-01-01

    . In accord with this distinction, the sequenced genomes of euryarchaeal viruses encode many proteins homologous to bacteriophage capsid proteins. In contrast, initial analysis of the crenarchaeal viral genomes revealed no relationships with bacteriophages and, generally, very few proteins with detectable...... the proteins of crenarchaeal viruses and between viral proteins and those from cellular life forms and allowed functional predictions for some of these conserved genes. A small pool of genes is shared by overlapping subsets of crenarchaeal viruses, in a general analogy with the metagenome structure...... of bacteriophages. The proteins encoded by the genes belonging to this pool include predicted transcription regulators, ATPases implicated in viral DNA replication and packaging, enzymes of DNA precursor metabolism, RNA modification enzymes, and glycosylases. In addition, each of the crenarchaeal viruses encodes...

  10. Engineering large viral DNA genomes using the CRISPR-Cas9 system.

    Science.gov (United States)

    Suenaga, Tadahiro; Kohyama, Masako; Hirayasu, Kouyuki; Arase, Hisashi

    2014-09-01

    Manipulation of viral genomes is essential for studying viral gene function and utilizing viruses for therapy. Several techniques for viral genome engineering have been developed. Homologous recombination in virus-infected cells has traditionally been used to edit viral genomes; however, the frequency of the expected recombination is quite low. Alternatively, large viral genomes have been edited using a bacterial artificial chromosome (BAC) plasmid system. However, cloning of large viral genomes into BAC plasmids is both laborious and time-consuming. In addition, because it is possible for insertion into the viral genome of drug selection markers or parts of BAC plasmids to affect viral function, artificial genes sometimes need to be removed from edited viruses. Herpes simplex virus (HSV), a common DNA virus with a genome length of 152 kbp, causes labialis, genital herpes and encephalitis. Mutant HSV is a candidate for oncotherapy, in which HSV is used to kill tumor cells. In this study, the clustered regularly interspaced short palindromic repeat-Cas9 system was used to very efficiently engineer HSV without inserting artificial genes into viral genomes. Not only gene-ablated HSV but also gene knock-in HSV were generated using this method. Furthermore, selection with phenotypes of edited genes promotes the isolation efficiencies of expectedly mutated viral clones. Because our method can be applied to other DNA viruses such as Epstein-Barr virus, cytomegaloviruses, vaccinia virus and baculovirus, our system will be useful for studying various types of viruses, including clinical isolates.

  11. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control.

    Science.gov (United States)

    Bartha, István; Carlson, Jonathan M; Brumme, Chanson J; McLaren, Paul J; Brumme, Zabrina L; John, Mina; Haas, David W; Martinez-Picado, Javier; Dalmau, Judith; López-Galíndez, Cecilio; Casado, Concepción; Rauch, Andri; Günthard, Huldrych F; Bernasconi, Enos; Vernazza, Pietro; Klimkait, Thomas; Yerly, Sabine; O'Brien, Stephen J; Listgarten, Jennifer; Pfeifer, Nico; Lippert, Christoph; Fusi, Nicolo; Kutalik, Zoltán; Allen, Todd M; Müller, Viktor; Harrigan, P Richard; Heckerman, David; Telenti, Amalio; Fellay, Jacques

    2013-10-29

    HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (pgenome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host-pathogen interaction. DOI:http://dx.doi.org/10.7554/eLife.01123.001.

  12. Liposomal nanocontainers as models for viral infection: monitoring viral genomic RNA transfer through lipid membranes.

    Science.gov (United States)

    Bilek, Gerhard; Matscheko, Nena M; Pickl-Herk, Angela; Weiss, Victor U; Subirats, Xavier; Kenndler, Ernst; Blaas, Dieter

    2011-08-01

    After uptake into target cells, many nonenveloped viruses undergo conformational changes in the low-pH environment of the endocytic compartment. This results in exposure of amphipathic viral peptides and/or hydrophobic protein domains that are inserted into and either disrupt or perforate the vesicular membranes. The viral nucleic acids thereby gain access to the cytosol and initiate replication. We here demonstrate the in vitro transfer of the single-stranded positive-sense RNA genome of human rhinovirus 2 into liposomes decorated with recombinant very-low-density lipoprotein receptor fragments. Membrane-attached virions were exposed to pH 5.4, mimicking the in vivo pH environment of late endosomes. This triggered the release of the RNA whose arrival in the liposomal lumen was detected via in situ cDNA synthesis by encapsulated reverse transcriptase. Subsequently, cDNA was PCR amplified. At a low ratio between virions and lipids, RNA transfer was positively correlated with virus concentration. However, membranes became leaky at higher virus concentrations, which resulted in decreased cDNA synthesis. In accordance with earlier in vivo data, the RNA passes through the lipid membrane without causing gross damage to vesicles at physiologically relevant virus concentrations.

  13. Structure, sequence and expression of the hepatitis delta (δ) viral genome

    Science.gov (United States)

    Wang, Kang-Sheng; Choo, Qui-Lim; Weiner, Amy J.; Ou, Jing-Hsiung; Najarian, Richard C.; Thayer, Richard M.; Mullenbach, Guy T.; Denniston, Katherine J.; Gerin, John L.; Houghton, Michael

    1986-10-01

    Biochemical and electron microscopic data indicate that the human hepatitis δ viral agent contains a covalently closed circular and single-stranded RNA genome that has certain similarities with viroid-like agents from plants. The sequence of the viral genome (1,678 nucleotides) has been determined and an open reading frame within the complementary strand has been shown to encode an antigen that binds specifically to antisera from patients with chronic hepatitis δ viral infections.

  14. Coordinated function of cellular DEAD-box helicases in suppression of viral RNA recombination and maintenance of viral genome integrity.

    Directory of Open Access Journals (Sweden)

    Chingkai Chuang

    2015-02-01

    Full Text Available The intricate interactions between viruses and hosts include an evolutionary arms race and adaptation that is facilitated by the ability of RNA viruses to evolve rapidly due to high frequency mutations and genetic RNA recombination. In this paper, we show evidence that the co-opted cellular DDX3-like Ded1 DEAD-box helicase suppresses tombusviral RNA recombination in yeast model host, and the orthologous RH20 helicase functions in a similar way in plants. In vitro replication and recombination assays confirm the direct role of the ATPase function of Ded1p in suppression of viral recombination. We also present data supporting a role for Ded1 in facilitating the switch from minus- to plus-strand synthesis. Interestingly, another co-opted cellular helicase, the eIF4AIII-like AtRH2, enhances TBSV recombination in the absence of Ded1/RH20, suggesting that the coordinated actions of these helicases control viral RNA recombination events. Altogether, these helicases are the first co-opted cellular factors in the viral replicase complex that directly affect viral RNA recombination. Ded1 helicase seems to be a key factor maintaining viral genome integrity by promoting the replication of viral RNAs with correct termini, but inhibiting the replication of defective RNAs lacking correct 5' end sequences. Altogether, a co-opted cellular DEAD-box helicase facilitates the maintenance of full-length viral genome and suppresses viral recombination, thus limiting the appearance of defective viral RNAs during replication.

  15. Exploration of sequence space as the basis of viral RNA genome segmentation.

    Science.gov (United States)

    Moreno, Elena; Ojosnegros, Samuel; García-Arriaza, Juan; Escarmís, Cristina; Domingo, Esteban; Perales, Celia

    2014-05-06

    The mechanisms of viral RNA genome segmentation are unknown. On extensive passage of foot-and-mouth disease virus in baby hamster kidney-21 cells, the virus accumulated multiple point mutations and underwent a transition akin to genome segmentation. The standard single RNA genome molecule was replaced by genomes harboring internal in-frame deletions affecting the L- or capsid-coding region. These genomes were infectious and killed cells by complementation. Here we show that the point mutations in the nonstructural protein-coding region (P2, P3) that accumulated in the standard genome before segmentation increased the relative fitness of the segmented version relative to the standard genome. Fitness increase was documented by intracellular expression of virus-coded proteins and infectious progeny production by RNAs with the internal deletions placed in the sequence context of the parental and evolved genome. The complementation activity involved several viral proteins, one of them being the leader proteinase L. Thus, a history of genetic drift with accumulation of point mutations was needed to allow a major variation in the structure of a viral genome. Thus, exploration of sequence space by a viral genome (in this case an unsegmented RNA) can reach a point of the space in which a totally different genome structure (in this case, a segmented RNA) is favored over the form that performed the exploration.

  16. Viral genome segmentation can result from a trade-off between genetic content and particle stability.

    Science.gov (United States)

    Ojosnegros, Samuel; García-Arriaza, Juan; Escarmís, Cristina; Manrubia, Susanna C; Perales, Celia; Arias, Armando; Mateu, Mauricio García; Domingo, Esteban

    2011-03-01

    The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length.

  17. Viral genome segmentation can result from a trade-off between genetic content and particle stability.

    Directory of Open Access Journals (Sweden)

    Samuel Ojosnegros

    2011-03-01

    Full Text Available The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length.

  18. Viral Genome Segmentation Can Result from a Trade-Off between Genetic Content and Particle Stability

    Science.gov (United States)

    Ojosnegros, Samuel; García-Arriaza, Juan; Escarmís, Cristina; Manrubia, Susanna C.; Perales, Celia; Arias, Armando; Mateu, Mauricio García; Domingo, Esteban

    2011-01-01

    The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length. PMID:21437265

  19. Generation of Recombinant Viral Hemorrhagic Septicemia Virus (rVHSV) Expressing Two Foreign Proteins and Effect of Lengthened Viral Genome on Viral Growth and In Vivo Virulence.

    Science.gov (United States)

    Kim, Min Sun; Lee, Su Jin; Kim, Dong Soo; Kim, Ki Hong

    2016-04-01

    In this study, a new recombinant VHSV (rVHSV-Arfp-Bgfp) was generated by insertion of a red fluorescent protein (RFP) gene between N and P genes, a green fluorescent protein (GFP) gene between P and M genes of VHSV genome, the expression of each heterologous gene in infected cells, and effects of the lengthened recombinant VHSV's genome on the replication ability and in vivo virulence to olive flounder (Paralichthys olivaceus) fingerlings were compared with previously generated rVHSVs (rVHSV-wild, rVHSV-Arfp, and rVHSV-Brfp). The expression of RFP and GFP in cells infected with rVHSV-Arfp-Bgfp was verified through fluorescent microscopy and FACS analysis. In the viral growth analysis, rVHSV-Arfp and rVHSV-Brfp showed significantly lower viral titers than rVHSV-wild, and the replication of rVHSV-Arfp-Bgfp was significantly decreased compared to that of even rVHSV-Arfp or rVHSV-Brfp. These results suggest that the genome length is a critical factor for the determination of rVHSVs replication efficiency. In the in vivo virulence experiment, the cumulative mortalities of olive flounder fingerlings infected with each rVHSV were inversely proportional to the length of the viral genome, suggesting that decreased viral growth rate due to the lengthened viral genome is accompanied with the decrease of in vivo virulence of rVHSVs. Recombinant viruses expressing multiple foreign antigens can be used for the development of combined vaccines. However, as the present rVHSV-Arfp-Bgfp still possesses an ability to kill hosts (although very weakened), researches on the producing more attenuated viruses or propagation-deficient replicon particles are needed to solve safety-related problems.

  20. Viral symbiosis and the holobiontic nature of the human genome.

    Science.gov (United States)

    Ryan, Francis Patrick

    2016-01-01

    The human genome is a holobiontic union of the mammalian nuclear genome, the mitochondrial genome and large numbers of endogenized retroviral genomes. This article defines and explores this symbiogenetic pattern of evolution, looking at the implications for human genetics, epigenetics, embryogenesis, physiology and the pathogenesis of inborn errors of metabolism and many other diseases.

  1. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions

    Directory of Open Access Journals (Sweden)

    Cheryl-Emiliane Tien Chow

    2015-04-01

    Full Text Available Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs, remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10m and oxygen-starved basin (200m waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs predicted across all 34 viral fosmids, 77.6% (n=5010 had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI’s non-redundant ‘nr’ database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems.

  2. Viral small RNAs reveal the genomic variations of three grapevine vein clearing virus quasispecies populations.

    Science.gov (United States)

    Howard, Susanne; Qiu, Wenping

    2017-02-02

    Viral small RNAs (vsRNAs) include viral small interfering RNAs (vsiRNAs) that are initiators and products of RNA silencing, and small RNAs that are derived from viral RNAs with function still unknown. Sequencing of vsRNAs allows assembling of viral genomes and revelation of viral population variations at genomic levels. Grapevine vein clearing virus (GVCV) is a new member of the family Caulimoviridae whose DNA genome is replicated by reverse transcription of pre-genomic RNA molecules. In this short report, three genomic sequences of GVCV were assembled from vsRNAs that were isolated and sequenced from three individual grapevines in commercial vineyards and compared to the GVCV-CHA reference genome. Profiles of single nucleotide polymorphism among three viral populations indicated a closer relatedness between two populations in different grape cultivars at the same location than those in the same grape cultivar at different locations, suggesting the spread of GVCV populations among vineyards of close proximity. Classic types of vsiRNAs (21-nt, 22-nt, and 24-nt) were found in the three GVCV vsiRNA populations, but these did not produce alignment hotspots on the GVCV-CHA reference genome. The number of 36-nt reads is the highest among vsRNAs, the role of these vsRNAs remains unclear. The analysis of vsRNAs provides a first holistic picture of genomic variations among GVCV viral quasispecies populations that help monitor epidemics and evolution of GVCV populations, an emerging virus that is becoming a threat to grape production in the Midwest region of the USA.

  3. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    Directory of Open Access Journals (Sweden)

    Shea N. Gardner

    2014-01-01

    Full Text Available Background. Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results. A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Each group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions. This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.

  4. Complete Genome Sequence of a Bovine Viral Diarrhea Virus Subgenotype 1h Strain Isolated in Italy

    Science.gov (United States)

    Bazzucchi, Moira; Bertolotti, Luigi; Casciari, Cristina; Rossi, Elisabetta; Rosati, Sergio; De Mia, Gian Mario

    2017-01-01

    ABSTRACT We sequenced the complete genome of bovine viral diarrhea virus (BVDV) strain UM/126/07. It belongs to subgenotype 1h. The complete genome is composed of 12,196 nucleotides organized as one open reading frame encoding 3,898 amino acids. This is the first report of a full-length sequence of BVDV-1h. PMID:28232427

  5. Complete Genome Sequence of a Bovine Viral Diarrhea Virus Subgenotype 1h Strain Isolated in Italy.

    Science.gov (United States)

    Bazzucchi, Moira; Bertolotti, Luigi; Giammarioli, Monica; Casciari, Cristina; Rossi, Elisabetta; Rosati, Sergio; De Mia, Gian Mario

    2017-02-23

    We sequenced the complete genome of bovine viral diarrhea virus (BVDV) strain UM/126/07. It belongs to subgenotype 1h. The complete genome is composed of 12,196 nucleotides organized as one open reading frame encoding 3,898 amino acids. This is the first report of a full-length sequence of BVDV-1h.

  6. Synonymous Virus Genome Recoding as a Tool to Impact Viral Fitness.

    Science.gov (United States)

    Martínez, Miguel Angel; Jordan-Paiz, Ana; Franco, Sandra; Nevot, Maria

    2016-02-01

    Synthetic genome recoding is a novel method of generating viruses with altered phenotypes, whereby many synonymous mutations are introduced into the protein coding region of the virus genome without altering the encoded proteins. Virus genome recoding with large numbers of slightly deleterious mutations has produced attenuated forms of several RNA viruses. Virus genome recoding can also aid in investigating virus interactions with innate immune responses, identifying functional virus genome structures, strategically ameliorating cis-inhibitory signaling sequences related to complex viral functions, to unravel the relevance of codon usage for the temporal regulation of viral gene expression and improving our knowledge of virus mutational robustness and adaptability. The present review discusses the impacts of synonymous genome recoding with regard to expanding our comprehension of virus biology, and the development of new and better therapeutic strategies.

  7. Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation.

    Science.gov (United States)

    Kaufer, Benedikt B; Jarosinski, Keith W; Osterrieder, Nikolaus

    2011-03-14

    Some herpesviruses, particularly lymphotropic viruses such as Marek's disease virus (MDV) and human herpesvirus 6 (HHV-6), integrate their DNA into host chromosomes. MDV and HHV-6, among other herpesviruses, harbor telomeric repeats (TMRs) identical to host telomeres at either end of their linear genomes. Using MDV as a natural virus-host model, we show that herpesvirus TMRs facilitate viral genome integration into host telomeres and that integration is important for establishment of latency and lymphoma formation. Integration into host telomeres also aids in reactivation from the quiescent state of infection. Our results and the presence of TMRs in many herpesviruses suggest that integration mediated by viral TMRs is a conserved mechanism, which ensures faithful virus genome maintenance in host cells during cell division and allows efficient mobilization of dormant viral genomes. This finding is of particular importance as reactivation is critical for virus spread between susceptible individuals and is necessary for continued herpesvirus evolution and survival.

  8. Complete Genome Sequencing of Bovine Viral Diarrhea Virus 1, Subgenotypes 1n and 1o.

    Science.gov (United States)

    Sato, Asuka; Tateishi, Kentaro; Shinohara, Minami; Naoi, Yuki; Shiokawa, Mai; Aoki, Hiroshi; Ohmori, Keitaro; Mizutani, Tetsuya; Shirai, Junsuke; Nagai, Makoto

    2016-02-18

    To gain further insight into the genomic features of bovine viral diarrhea virus 1 (BVDV-1) subgenotypes, we sequenced the complete genome of BVDV-1n Shitara/02/06 and BVDV-1o IS26NCP/01. The complete genome of Shitara/02/06 and IS26NCP/01 shared 77.7 to 79.3% and 78.0 to 85.7% sequence identities with other BVDV-1 subgenotype strains, respectively.

  9. CTCF interacts with the lytic HSV-1 genome to promote viral transcription

    Science.gov (United States)

    Lang, Fengchao; Li, Xin; Vladimirova, Olga; Hu, Benxia; Chen, Guijun; Xiao, Yu; Singh, Vikrant; Lu, Danfeng; Li, Lihong; Han, Hongbo; Wickramasinghe, J. M. A. S. P.; Smith, Sheryl T.; Zheng, Chunfu; Li, Qihan; Lieberman, Paul M.; Fraser, Nigel W.; Zhou, Jumin

    2017-01-01

    CTCF is an essential chromatin regulator implicated in important nuclear processes including in nuclear organization and transcription. Herpes Simplex Virus-1 (HSV-1) is a ubiquitous human pathogen, which enters productive infection in human epithelial and many other cell types. CTCF is known to bind several sites in the HSV-1 genome during latency and reactivation, but its function has not been defined. Here, we report that CTCF interacts extensively with the HSV-1 DNA during lytic infection by ChIP-seq, and its knockdown results in the reduction of viral transcription, viral genome copy number and virus yield. CTCF knockdown led to increased H3K9me3 and H3K27me3, and a reduction of RNA pol II occupancy on viral genes. Importantly, ChIP-seq analysis revealed that there is a higher level of CTD Ser2P modified RNA Pol II near CTCF peaks relative to the Ser5P form in the viral genome. Consistent with this, CTCF knockdown reduced the Ser2P but increased Ser5P modified forms of RNA Pol II on viral genes. These results suggest that CTCF promotes HSV-1 lytic transcription by facilitating the elongation of RNA Pol II and preventing silenced chromatin on the viral genome. PMID:28045091

  10. Targeted viral-mediated plant genome editing using crispr/cas9

    KAUST Repository

    Mahfouz, Magdy M.

    2015-12-17

    The present disclosure provides a viral-mediated genome-editing platform that facilitates multiplexing, obviates stable transformation, and is applicable across plant species. The RNA2 genome of the tobacco rattle virus (TRV) was engineered to carry and systemically deliver a guide RNA molecules into plants overexpressing Cas9 endonuclease. High genomic modification frequencies were observed in inoculated as well as systemic leaves including the plant growing points. This system facilitates multiplexing and can lead to germinal transmission of the genomic modifications in the progeny, thereby obviating the requirements of repeated transformations and tissue culture. The editing platform of the disclosure is useful in plant genome engineering and applicable across plant species amenable to viral infections for agricultural biotechnology applications.

  11. Recovering full-length viral genomes from metagenomes

    NARCIS (Netherlands)

    S.L. Smits (Saskia); R. Bodewes (Rogier); A. Ruiz-Gonzalez (Aritz); V. Baumgärtner (Volkmar); M.P.G. Koopmans D.V.M. (Marion); A.D.M.E. Osterhaus (Albert); A. Schürch (Anita)

    2015-01-01

    textabstractInfectious disease metagenomics is driven by the question: "what is causing the disease?" in contrast to classical metagenome studies which are guided by "what is out there?" In case of a novel virus, a first step to eventually establishing etiology can be to recover a full-length viral

  12. Non-viral delivery of genome-editing nucleases for gene therapy.

    Science.gov (United States)

    Wang, M; Glass, Z A; Xu, Q

    2016-12-01

    Manipulating the genetic makeup of mammalian cells using programmable nuclease-based genome-editing technology has recently evolved into a powerful avenue that holds great potential for treating genetic disorders. There are four types of genome-editing nucleases, including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and clustered, regularly interspaced, short palindromic repeat-associated nucleases such as Cas9. These nucleases have been harnessed to introduce precise and specific changes of the genome sequence at virtually any genome locus of interest. The therapeutic relevance of these genome-editing technologies, however, is challenged by the safe and efficient delivery of nuclease into targeted cells. Herein, we summarize recent advances that have been made on non-viral delivery of genome-editing nucleases. In particular, we focus on non-viral delivery of Cas9/sgRNA ribonucleoproteins for genome editing. In addition, the future direction for developing non-viral delivery of programmable nucleases for genome editing is discussed.Gene Therapy advance online publication, 1 December 2016; doi:10.1038/gt.2016.72.

  13. Atypical Epstein-Barr viral genomic structure in lymphoma tissue and lymphoid cell lines.

    Science.gov (United States)

    Tang, Weihua; Fan, Hongxin; Schroeder, Jane; Dunphy, Cherie H; Bryant, Ronald J; Fedoriw, Yuri; Gulley, Margaret L

    2013-06-01

    Epstein-Barr virus (EBV) DNA is found within the malignant cells of some subtypes of lymphoma, and viral presence is being exploited for improved diagnosis, monitoring, and management of affected patients. Recent work suggests that viral genomic polymorphism, such as partial deletion of the viral genome, could interfere with virus detection in tumor tissues. To test for atypical forms of the EBV genome, 98 lymphomas and 6 infected cell lines were studied using a battery of 6 quantitative polymerase chain reaction assays targeting disparate sections of EBV DNA. Fifty of the lymphomas (51%) had no amplifiable EBV DNA, and 38 lymphomas (39%) had low-level EBV infection that was deemed incidental based on EBV-encoded RNA (EBER) in situ hybridization results. The remaining 10 lymphomas (10%) had high EBV loads and EBER localization to malignant cells by EBER in situ hybridization. All 10 represented lymphoma subtypes were previously associated with EBV (Burkitt, diffuse large B-cell, or T-cell type), whereas no remnants of EBV were detected in other lymphoma subtypes (follicular, small lymphocytic, mantle cell, or marginal zone type). Interestingly, 4 of the 10 infected lymphomas had evidence of atypical viral genomes, including 3 of 4 infected T-cell lymphomas with aberrant loss of LMP2 amplicons, and a single diffuse large B-cell lymphoma lacking the central part of the viral genome spanning BamH1W, BZLF1, and EBNA1 gene segments. A reasonable screening strategy for infected malignancy involves applying EBER1 and LMP1 quantitative polymerase chain reaction assays and confirming that values exceeding 2000 copies of EBV per 100,000 cells have EBER localization to malignant cells.

  14. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.

    Science.gov (United States)

    Bibby, Kyle

    2014-02-01

    The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

  15. HIV-1 Vpr N-terminal tagging affects alternative splicing of the viral genome

    Science.gov (United States)

    Baeyens, Ann; Naessens, Evelien; Van Nuffel, Anouk; Weening, Karin E.; Reilly, Anne-Marie; Claeys, Eva; Trypsteen, Wim; Vandekerckhove, Linos; Eyckerman, Sven; Gevaert, Kris; Verhasselt, Bruno

    2016-01-01

    To facilitate studies on Vpr function in replicating HIV-1, we aimed to tag the protein in an infectious virus. First we showed that N-, but not C-terminal HA/FLAG tagging of Vpr protein preserves Vpr cytopathicity. Cloning the tags into proviral DNA however ablated viral production and replication. By construction of additional viral variants we could show this defect was not protein- but RNA-dependent and sequence specific, and characterized by oversplicing of the genomic RNA. Simulation of genomic RNA folding suggested that introduction of the tag sequence induced an alternative folding structure in a region enriched in splice sites and splicing regulatory sequences. In silico predictions identified the HA/His6-Vpr tagging in HIV-1 to affect mRNA folding less than HA/FLAG-Vpr tagging. In vitro infectivity and mRNA splice pattern improved but did not reach wild-type values. Thus, sequence-specific insertions may interfere with mRNA splicing, possibly due to altered RNA folding. Our results point to the complexity of viral RNA genome sequence interactions. This should be taken into consideration when designing viral manipulation strategies, for both research as for biological interventions. PMID:27721439

  16. Comprehensive analysis of LANA interacting proteins essential for viral genome tethering and persistence.

    Directory of Open Access Journals (Sweden)

    Subhash C Verma

    Full Text Available Kaposi's sarcoma associated herpesvirus is tightly linked to multiple human malignancies including Kaposi's sarcoma (KS, Primary Effusion Lymphoma (PEL and Multicentric Castleman's Disease (MCD. KSHV like other herpesviruses establishes life-long latency in the infected host by persisting as chromatin and tethering to host chromatin through the virally encoded protein Latency Associated Nuclear Antigen (LANA. LANA, a multifunctional protein, is capable of binding to a large number of cellular proteins responsible for transcriptional regulation of various cellular and viral pathways involved in blocking cell death and promoting cell proliferation. This leads to enhanced cell division and replication of the viral genome, which segregates faithfully in the dividing tumor cells. The mechanism of genome segregation is well known and the binding of LANA to nucleosomal proteins, throughout the cell cycle, suggests that these interactions play an important role in efficient segregation. Various biochemical methods have identified a large number of LANA binding proteins, including histone H2A/H2B, histone H1, MeCP2, DEK, CENP-F, NuMA, Bub1, HP-1, and Brd4. These nucleosomal proteins may have various functions in tethering of the viral genome during specific phases of the viral life cycle. Therefore, we performed a comprehensive analysis of their interaction with LANA using a number of different assays. We show that LANA binds to core nucleosomal histones and also associates with other host chromatin proteins including histone H1 and high mobility group proteins (HMGs. We used various biochemical assays including co-immunoprecipitation and in-vivo localization by split GFP and fluorescence resonance energy transfer (FRET to demonstrate their association.

  17. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    Motivation: Detecting genes in viral genomes is a complex task. Due to the biological necessity of them being constrained in length, RNA viruses in particular tend to code in overlapping reading frames. Since one amino acid is encoded by a triplet of nucleic acids, up to three genes may be coded...... allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  18. Parvovirus-derived endogenous viral elements in two South American rodent genomes.

    Science.gov (United States)

    Arriagada, Gloria; Gifford, Robert J

    2014-10-01

    We describe endogenous viral elements (EVEs) derived from parvoviruses (family Parvoviridae) in the genomes of the long-tailed chinchilla (Chinchilla lanigera) and the degu (Octodon degus). The novel EVEs include dependovirus-related elements and representatives of a clearly distinct parvovirus lineage that also has endogenous representatives in marsupial genomes. In the degu, one dependovirus-derived EVE was found to carry an intact reading frame and was differentially expressed in vivo, with increased expression in the liver. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Peptides derived from HIV-1 integrase that bind Rev stimulate viral genome integration.

    Directory of Open Access Journals (Sweden)

    Aviad Levin

    Full Text Available BACKGROUND: The human immunodeficiency virus type 1 (HIV-1 integrase protein (IN, catalyzes the integration of viral DNA into the host cell genome. IN catalyzes the first step of the integration process, namely the 3'-end processing in which IN removes a pGT dinucleotide from the 3' end of each viral long terminal repeat (LTR. Following nuclear import of the viral preintegration complex, the host chromosomal DNA becomes accessible to the viral cDNA and the second step of the integration process, namely the strand-transfer step takes place. This ordered sequence of events, centered on integration, is mandatory for HIV replication. METHODOLOGY/PRINCIPAL FINDINGS: Using an integrase peptide library, we selected two peptides, designated INr-1 and INr-2, which interact with the Rev protein and probably mediate the Rev-integrase interaction. Using an in-vitro assay system, we show that INr-1 and INr-2 are able to abrogate the inhibitory effects exerted by Rev and Rev-derived peptides on integrase activity. Both INr-1 and INr-2 were found to be cell-permeable and nontoxic, allowing a study of their effect in HIV-1-infected cultured cells. Interestingly, both INr peptides stimulated virus infectivity as estimated by production of the viral P24 protein, as well as by determination of the appearance of newly formed virus particles. Furthermore, kinetics studies revealed that the cell-permeable INr peptides enhance the integration process, as was indeed confirmed by direct determination of viral DNA integration by real-time PCR. CONCLUSIONS/SIGNIFICANCE: The results of the present study raise the possibility that in HIV-infected cells, the Rev protein may be involved in the integration of proviral DNA by controlling/regulating the activity of the integrase. Release from such inhibition leads to stimulation of IN activity and multiple viral DNA integration events.

  20. Thermodynamic Interrogation of the Assembly of a Viral Genome Packaging Motor Complex.

    Science.gov (United States)

    Yang, Teng-Chieh; Ortiz, David; Nosaka, Lyn'Al; Lander, Gabriel C; Catalano, Carlos Enrique

    2015-10-20

    Viral terminase enzymes serve as genome packaging motors in many complex double-stranded DNA viruses. The functional motors are multiprotein complexes that translocate viral DNA into a capsid shell, powered by a packaging ATPase, and are among the most powerful molecular motors in nature. Given their essential role in virus development, the structure and function of these biological motors is of considerable interest. Bacteriophage λ-terminase, which serves as a prototypical genome packaging motor, is composed of one large catalytic subunit tightly associated with two DNA recognition subunits. This protomer assembles into a functional higher-order complex that excises a unit length genome from a concatemeric DNA precursor (genome maturation) and concomitantly translocates the duplex into a preformed procapsid shell (genome packaging). While the enzymology of λ-terminase has been well described, the nature of the catalytically competent nucleoprotein intermediates, and the mechanism describing their assembly and activation, is less clear. Here we utilize analytical ultracentrifugation to determine the thermodynamic parameters describing motor assembly and define a minimal thermodynamic linkage model that describes the effects of salt on protomer assembly into a tetrameric complex. Negative stain electron microscopy images reveal a symmetric ring-like complex with a compact stem and four extended arms that exhibit a range of conformational states. Finally, kinetic studies demonstrate that assembly of the ring tetramer is directly linked to activation of the packaging ATPase activity of the motor, thus providing a direct link between structure and function. The implications of these results with respect to the assembly and activation of the functional packaging motor during a productive viral infection are discussed.

  1. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life

    DEFF Research Database (Denmark)

    Prangishvili, D.; Garrett, R. A.; Koonin, E.

    2006-01-01

    of bacteriophages. The proteins encoded by the genes belonging to this pool include predicted transcription regulators, ATPases implicated in viral DNA replication and packaging, enzymes of DNA precursor metabolism, RNA modification enzymes, and glycosylases. In addition, each of the crenarchaeal viruses encodes...... several proteins with prokaryotic but not viral homologs, some of which, predictably, seem to have been scavenged from the crenarchaeal hosts, but others might have been acquired from bacteria. We conclude that crenarchaeal viruses are, in general, evolutionarily unrelated to other known viruses and......, probably, evolved via independent accretion of genes derived from the hosts and, through more complex routes of horizontal gene transfer, from other prokaryotes....

  2. Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs

    DEFF Research Database (Denmark)

    Islin, Sóley Ruth; Menzel, Peter; Krogh, Anders

    2016-01-01

    number of unique contigs and the lack of a completely assembled genome for this family. This is further supported by the large number of novel genes in the complete and partial genomes showing no sequence similarities to public databases. CRISPR analysis revealed hundreds of novel CRISPR loci...... and thousands of novel CRISPR spacers from each metagenome, reinforcing the notion of high viral diversity in the thermal environment....

  3. Viral genome size distribution does not correlate with the antiquity of the host lineages

    Directory of Open Access Journals (Sweden)

    José Alberto Campillo-Balderas

    2015-12-01

    Full Text Available It has been suggested that RNA viruses and other subcellular entities endowed with RNA genomes are relicts from an ancient RNA/protein World which is believed to have preceded extant DNA/RNA/protein-based cells. According to their proponents, this possibility is supported by the small-genome sizes of RNA viruses and their manifold replication strategies, which have been interpreted as the result of an evolutionary exploration of different alternative genome organizations and replication strategies during early evolutionary stages. At the other extreme are the giant DNA viruses, whose genome sizes can be as large as those of some prokaryotes, and which have been grouped by some authors into a fourth domain of life. As argued here, the comparative analysis of the chemical nature and sizes of the viral genomes reported in GenBank does not reveal any obvious correlation with the phylogenetic history of their hosts. Accordingly, it is somewhat difficult to reconcile the proposal of the putative pre-DNA antiquity of RNA viruses, with their extraordinary diversity in plant hosts and their apparent absence among the Archaea. Other issues related to the genome size of all known viruses and subviral agents and the relationship with their hosts are discussed.

  4. A conserved influenza A virus nucleoprotein code controls specific viral genome packaging

    Science.gov (United States)

    Moreira, Étori Aguiar; Weber, Anna; Bolte, Hardin; Kolesnikova, Larissa; Giese, Sebastian; Lakdawala, Seema; Beer, Martin; Zimmer, Gert; García-Sastre, Adolfo; Schwemmle, Martin; Juozapaitis, Mindaugas

    2016-01-01

    Packaging of the eight genomic RNA segments of influenza A viruses (IAV) into viral particles is coordinated by segment-specific packaging sequences. How the packaging signals regulate the specific incorporation of each RNA segment into virions and whether other viral or host factors are involved in this process is unknown. Here, we show that distinct amino acids of the viral nucleoprotein (NP) are required for packaging of specific RNA segments. This was determined by studying the NP of a bat influenza A-like virus, HL17NL10, in the context of a conventional IAV (SC35M). Replacement of conserved SC35M NP residues by those of HL17NL10 NP resulted in RNA packaging defective IAV. Surprisingly, substitution of these conserved SC35M amino acids with HL17NL10 NP residues led to IAV with altered packaging efficiencies for specific subsets of RNA segments. This suggests that NP harbours an amino acid code that dictates genome packaging into infectious virions. PMID:27650413

  5. Intrinsic disorder in Viral Proteins Genome-Linked: experimental and predictive analyses

    Directory of Open Access Journals (Sweden)

    Van Dorsselaer Alain

    2009-02-01

    Full Text Available Abstract Background VPgs are viral proteins linked to the 5' end of some viral genomes. Interactions between several VPgs and eukaryotic translation initiation factors eIF4Es are critical for plant infection. However, VPgs are not restricted to phytoviruses, being also involved in genome replication and protein translation of several animal viruses. To date, structural data are still limited to small picornaviral VPgs. Recently three phytoviral VPgs were shown to be natively unfolded proteins. Results In this paper, we report the bacterial expression, purification and biochemical characterization of two phytoviral VPgs, namely the VPgs of Rice yellow mottle virus (RYMV, genus Sobemovirus and Lettuce mosaic virus (LMV, genus Potyvirus. Using far-UV circular dichroism and size exclusion chromatography, we show that RYMV and LMV VPgs are predominantly or partly unstructured in solution, respectively. Using several disorder predictors, we show that both proteins are predicted to possess disordered regions. We next extend theses results to 14 VPgs representative of the viral diversity. Disordered regions were predicted in all VPg sequences whatever the genus and the family. Conclusion Based on these results, we propose that intrinsic disorder is a common feature of VPgs. The functional role of intrinsic disorder is discussed in light of the biological roles of VPgs.

  6. Quality Assessment of Domesticated Animal Genome Assemblies.

    Science.gov (United States)

    Seemann, Stefan E; Anthon, Christian; Palasca, Oana; Gorodkin, Jan

    2015-01-01

    The era of high-throughput sequencing has made it relatively simple to sequence genomes and transcriptomes of individuals from many species. In order to analyze the resulting sequencing data, high-quality reference genome assemblies are required. However, this is still a major challenge, and many domesticated animal genomes still need to be sequenced deeper in order to produce high-quality assemblies. In the meanwhile, ironically, the extent to which RNAseq and other next-generation data is produced frequently far exceeds that of the genomic sequence. Furthermore, basic comparative analysis is often affected by the lack of genomic sequence. Herein, we quantify the quality of the genome assemblies of 20 domesticated animals and related species by assessing a range of measurable parameters, and we show that there is a positive correlation between the fraction of mappable reads from RNAseq data and genome assembly quality. We rank the genomes by their assembly quality and discuss the implications for genotype analyses.

  7. Small terminase couples viral DNA binding to genome-packaging ATPase activity.

    Science.gov (United States)

    Roy, Ankoor; Bhardwaj, Anshul; Datta, Pinaki; Lander, Gabriel C; Cingolani, Gino

    2012-08-08

    Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here we describe the 1.75 Å crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ∼23 Å in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essential for binding to DNA and assembly to L-terminase. Upon binding to its own DNA, S-terminase functions as a specific activator of L-terminase ATPase activity. The DNA-dependent stimulation of ATPase activity thus rationalizes the exclusive specificity of genome-packaging motors for viral DNA in the crowd of host DNA, ensuring fidelity of packaging and avoiding wasteful ATP hydrolysis. This posits a model for DNA-dependent activation of genome-packaging motors of general interest in virology.

  8. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    Directory of Open Access Journals (Sweden)

    Jessica eLabonté

    2015-04-01

    Full Text Available A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a three km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32 % of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment.

  9. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Directory of Open Access Journals (Sweden)

    Yanwei Bi

    2014-05-01

    Full Text Available A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR-associated (Cas RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ and homology-directed repair (HDR pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  10. Base-By-Base: Single nucleotide-level analysis of whole viral genome alignments

    Directory of Open Access Journals (Sweden)

    Tcherepanov Vasily

    2004-07-01

    Full Text Available Abstract Background With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes is not feasible without new bioinformatics tools. Results A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1 rapidly identify and correct alignment errors in large, multiple genome alignments; and 2 generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs to retrieve detailed annotation information about the aligned genomes or use information from text files. Conclusion Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  11. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome

    Science.gov (United States)

    Lu, Rui; Folimonov, Alexey; Shintaku, Michael; Li, Wan-Xiang; Falk, Bryce W.; Dawson, William O.; Ding, Shou-Wei

    2004-11-01

    Viral infection in both plant and invertebrate hosts requires a virus-encoded function to block the RNA silencing antiviral defense. Here, we report the identification and characterization of three distinct suppressors of RNA silencing encoded by the 20-kb plus-strand RNA genome of citrus tristeza virus (CTV). When introduced by genetic crosses into plants carrying a silencing transgene, both p20 and p23, but not coat protein (CP), restored expression of the transgene. Although none of the CTV proteins prevented DNA methylation of the transgene, export of the silencing signal (capable of mediating intercellular silencing spread) was detected only from the F1 plants expressing p23 and not from the CP- or p20-expressing F1 plants, demonstrating suppression of intercellular silencing by CP and p20 but not by p23. Thus, intracellular and intercellular silencing are each targeted by a CTV protein, whereas the third, p20, inhibits silencing at both levels. Notably, CP suppresses intercellular silencing without interfering with intracellular silencing. The novel property of CP suggests a mechanism distinct to p20 and all of the other viral suppressors known to interfere with intercellular silencing and that this class of viral suppressors may not be consistently identified by Agrobacterium coinfiltration because it also induces RNA silencing against the infiltrated suppressor transgene. Our analyses reveal a sophisticated viral counter-defense strategy that targets the silencing antiviral pathway at multiple steps and may be essential for protecting CTV with such a large RNA genome from antiviral silencing in the perennial tree host. RNA interference | citrus tristeza virus | virus synergy | antiviral immunity

  12. Genomic characterization of three bovine viral diarrhea virus isolates from cattle.

    Science.gov (United States)

    Cai, Dongjie; Song, Quanjiang; Wang, Jiufeng; Zhu, Yaohong

    2016-12-01

    Three strains of the bovine viral diarrhea virus (BVDV) were isolated from cattle in Beijing, China. To investigate their genomic features, we sequenced and characterized the complete genome of each of the isolates. Each of the three virus genomes is about 12,220 bp in length, containing a 5' untranslated region (UTR), one open reading frame (ORF) encoding a 3897-amino-acid polypeptide, and a 3' UTR. The nucleotide sequence of the three isolates were 99.0 % identical to each and other shared nucleotide sequence identities of 73.4 % to 98.3 % with other BVDV-1 strains, about 70.0 % with BVDV-2 strains, about 67.0 % with BVDV-3, and less than 67.0 % with other pestiviruses. Phylogenetic analysis of the full-length genome, 3' UTR, and the N(pro) gene demonstrated that the three viruses were BVDV-1 isolates. This is the first report of complete genome sequences of BVDV 1d isolates from China and might have implications for vaccine development.

  13. Small terminase couples viral DNA-binding to genome-packaging ATPase activity

    OpenAIRE

    Roy, Ankoor; Bhardwaj, Anshul; Datta, Pinaki; Lander, Gabriel C.; Cingolani, Gino

    2012-01-01

    Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here, we describe the 1.75 Å crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ~23 Å in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essen...

  14. Replication-Coupled Recruitment of Viral and Cellular Factors to Herpes Simplex Virus Type 1 Replication Forks for the Maintenance and Expression of Viral Genomes

    Science.gov (United States)

    Dembowski, Jill A.

    2017-01-01

    Herpes simplex virus type 1 (HSV-1) infects over half the human population. Much of the infectious cycle occurs in the nucleus of cells where the virus has evolved mechanisms to manipulate host processes for the production of virus. The genome of HSV-1 is coordinately expressed, maintained, and replicated such that progeny virions are produced within 4–6 hours post infection. In this study, we selectively purify HSV-1 replication forks and associated proteins from virus-infected cells and identify select viral and cellular replication, repair, and transcription factors that associate with viral replication forks. Pulse chase analyses and imaging studies reveal temporal and spatial dynamics between viral replication forks and associated proteins and demonstrate that several DNA repair complexes and key transcription factors are recruited to or near replication forks. Consistent with these observations we show that the initiation of viral DNA replication is sufficient to license late gene transcription. These data provide insight into mechanisms that couple HSV-1 DNA replication with transcription and repair for the coordinated expression and maintenance of the viral genome. PMID:28095497

  15. Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P2.

    Science.gov (United States)

    Kakisaka, Michinori; Yamada, Kazunori; Yamaji-Hasegawa, Akiko; Kobayashi, Toshihide; Aida, Yoko

    2016-09-01

    To be incorporated into progeny virions, the viral genome must be transported to the inner leaflet of the plasma membrane (PM) and accumulate there. Some viruses utilize lipid components to assemble at the PM. For example, simian virus 40 (SV40) targets the ganglioside GM1 and human immunodeficiency virus type 1 (HIV-1) utilizes phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2]. Recent studies clearly indicate that Rab11-mediated recycling endosomes are required for influenza A virus (IAV) trafficking of vRNPs to the PM but it remains unclear how IAV vRNP localized or accumulate underneath the PM for viral genome incorporation into progeny virions. In this study, we found that the second intrinsically disordered region (IDR2) of NP regulates two binding steps involved in viral genome packaging. First, IDR2 facilitates NP oligomer binding to viral RNA to form vRNP. Secondly, vRNP assemble by interacting with PI(4,5)P2 at the PM via IDR2. These findings suggest that PI(4,5)P2 functions as the determinant of vRNP accumulation at the PM.

  16. Genome variations associated with viral susceptibility and calcification in Emiliania huxleyi.

    Directory of Open Access Journals (Sweden)

    Jessica U Kegel

    Full Text Available Emiliania huxleyi, a key player in the global carbon cycle is one of the best studied coccolithophores with respect to biogeochemical cycles, climatology, and host-virus interactions. Strains of E. huxleyi show phenotypic plasticity regarding growth behaviour, light-response, calcification, acidification, and virus susceptibility. This phenomenon is likely a consequence of genomic differences, or transcriptomic responses, to environmental conditions or threats such as viral infections. We used an E. huxleyi genome microarray based on the sequenced strain CCMP1516 (reference strain to perform comparative genomic hybridizations (CGH of 16 E. huxleyi strains of different geographic origin. We investigated the genomic diversity and plasticity and focused on the identification of genes related to virus susceptibility and coccolith production (calcification. Among the tested 31940 gene models a core genome of 14628 genes was identified by hybridization among 16 E. huxleyi strains. 224 probes were characterized as specific for the reference strain CCMP1516. Compared to the sequenced E. huxleyi strain CCMP1516 variation in gene content of up to 30 percent among strains was observed. Comparison of core and non-core transcripts sets in terms of annotated functions reveals a broad, almost equal functional coverage over all KOG-categories of both transcript sets within the whole annotated genome. Within the variable (non-core genome we identified genes associated with virus susceptibility and calcification. Genes associated with virus susceptibility include a Bax inhibitor-1 protein, three LRR receptor-like protein kinases, and mitogen-activated protein kinase. Our list of transcripts associated with coccolith production will stimulate further research, e.g. by genetic manipulation. In particular, the V-type proton ATPase 16 kDa proteolipid subunit is proposed to be a plausible target gene for further calcification studies.

  17. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results......: We apply our method to 15 pairwise alignments of six different HIV2 genomes. Given sufficient evolutionary distance between the two sequences, we achieve sensitivity of about 84% and specificity of about 97%. We additionally annotate three pairwise alignments of the more distantly related HIV1...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  18. Preliminary Evaluation of the Effect of Investigational Ebola Virus Disease Treatments on Viral Genome Sequences.

    Science.gov (United States)

    Whitmer, Shannon L M; Albariño, César; Shepard, Samuel S; Dudas, Gytis; Sheth, Mili; Brown, Shelley C; Cannon, Deborah; Erickson, Bobbie R; Gibbons, Aridth; Schuh, Amy; Sealy, Tara; Ervin, Elizabeth; Frace, Mike; Uyeki, Timothy M; Nichol, Stuart T; Ströher, Ute

    2016-10-15

     Several patients with Ebola virus disease (EVD) managed in the United States have received ZMapp monoclonal antibodies, TKM-Ebola small interfering RNA, brincidofovir, and/or convalescent plasma as investigational therapeutics.  To investigate whether treatment selected for Ebola virus (EBOV) mutations conferring resistance, viral sequencing was performed on RNA extracted from clinical blood specimens from patients with EVD following treatment, and putative viral targets were analyzed.  We observed no major or minor EBOV mutations within regions targeted by therapeutics.  This small subset of patients and clinical specimens suggests that evolution of resistance is not a direct consequence of antiviral treatment. As EVD antiviral treatments are introduced into wider use, it is essential that continuous viral full-genome surveillance is performed, to monitor for the emergence of escape mutations. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Quality Assessment of Domesticated Animal Genome Assemblies

    DEFF Research Database (Denmark)

    Seemann, Stefan E; Anthon, Christian; Palasca, Oana

    2015-01-01

    domesticated animal genomes still need to be sequenced deeper in order to produce high-quality assemblies. In the meanwhile, ironically, the extent to which RNAseq and other next-generation data is produced frequently far exceeds that of the genomic sequence. Furthermore, basic comparative analysis is often...... affected by the lack of genomic sequence. Herein, we quantify the quality of the genome assemblies of 20 domesticated animals and related species by assessing a range of measurable parameters, and we show that there is a positive correlation between the fraction of mappable reads from RNAseq data...

  20. Endogenous avian leukosis viral loci in the Red Jungle Fowl genome assembly.

    Science.gov (United States)

    Benkel, Bernhard; Rutherford, Katherine

    2014-12-01

    The current build (galGal4) of the genome of the ancestor of the modern chicken, the Red Jungle Fowl, contains a single endogenous avian leukosis viral element (ALVE) on chromosome 1 (designated RSV-LTR; family ERVK). The assembly shows the ALVE provirus juxtaposed with a member of a second family of avian endogenous retroviruses (designated GGERV20; family ERVL); however, the status of the 3' end of the ALVE element as well as its flanking region remain unclear due to a gap in the reference genome sequence. In this study, we filled the gap in the assembly using a combination of long-range PCR (LR-PCR) and a short contig present in the unassembled portion of the reference genome database. Our results demonstrate that the ALVE element (ALVE-JFevB) is inserted into the putative envelope region of a GGERV20 element, roughly 1 kbp from its 3' end, and that ALVE-JFevB is complete, and depending on its expression status, potentially capable of directing the production of virus. Moreover, the unassembled portion of the genome database contains junction fragments for a second, previously characterized endogenous proviral element, ALVE-6.

  1. Recovery of known T-cell epitopes by computational scanning of a viral genome

    Science.gov (United States)

    Logean, Antoine; Rognan, Didier

    2002-04-01

    A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.

  2. Hepatitis A virus-encoded miRNAs attenuate the accumulation of viral genomic RNAs in infected cells.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wu, Meini; Hu, Ningzhu; Hu, Yunzhang

    2016-06-01

    The establishment of persistent infection with hepatitis A virus (HAV) is the common result of most HAV/cell culture systems. Previous observations show that the synthesis of viral RNAs is reduced during infection. However, the underlying mechanism is poorly understood. We characterized three HAV-encoded miRNAs in our previous study. In this study, we aim to investigate the impact of these miRNAs on the accumulation of viral RNAs. The results indicated that the synthesis of viral genomic RNAs was dramatically reduced (more than 75 % reduction, P viral miRNA mimics. Conversely, they were significantly increased (more than 3.3-fold addition, P viral miRNA inhibitors. The luciferase reporter assay of miRNA targets showed that viral miRNAs were fully complementary to specific sites of the viral plus or minus strand RNA and strongly inhibited their expressions. Further data showed that the relative abundance of viral genomic RNA fragments that contain miRNA targets was also dramatically reduced (more than 80 % reduction, P viral miRNAs were overexpressed with miRNA mimics. In contrast, they were significantly increased (approximately 2-fold addition, P viral miRNAs were inhibited with miRNA inhibitors. In conclusion, these data suggest a possible mechanism for the reduction of viral RNA synthesis during HAV infection. Thus, we propose that it is likely that RNA virus-derived miRNA could serve as a self-mediated feedback regulator during infection.

  3. SIRT1 inhibits EV71 genome replication and RNA translation by interfering with the viral polymerase and 5'UTR RNA.

    Science.gov (United States)

    Han, Yang; Wang, Lvyin; Cui, Jin; Song, Yu; Luo, Zhen; Chen, Junbo; Xiong, Ying; Zhang, Qi; Liu, Fang; Ho, Wenzhe; Liu, Yingle; Wu, Kailang; Wu, Jianguo

    2016-12-15

    Enterovirus 71 (EV71) possesses a single-stranded positive RNA genome that contains a single open reading frame (ORF) flanked by a 5' untranslated region (5'UTR) and a polyadenylated 3'UTR. Here, we demonstrated that EV71 activates the production of silent mating type information regulation 2 homolog 1 (SIRT1), a histone deacetylase (HDAC). EV71 further stimulates SIRT1 sumoylation and deacetylase activity, and enhances SIRT1 translocation from the nucleus to the cytoplasm. More interestingly, activated SIRT1 subsequently binds with the EV71 3D(pol) protein (a viral RNA-dependent RNA polymerase, RdRp) to repress the acetylation and RdRp activity of 3D(pol), resulting in the attenuation of viral genome replication. Moreover, SIRT1 interacts with the cloverleaf structure of the EV71 RNA 5'UTR to inhibit viral RNA transcription, and binds to the internal ribosome entry site (IRES) of the EV71 5'UTR to attenuate viral RNA translation. Thus, EV71 stimulates SIRT1 production and activity, which in turn represses EV71 genome replication by inhibiting viral polymerase, and attenuates EV71 RNA transcription and translation by interfering with viral RNA. These results uncover a new function of SIRT1 and reveal a new mechanism underlying the regulation of EV71 replication. © 2016. Published by The Company of Biologists Ltd.

  4. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data.

    Science.gov (United States)

    de Andrade, Roberto R S; Vaslin, Maite F S

    2014-03-07

    Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/.

  5. Human papillomavirus major capsid protein L1 remains associated with the incoming viral genome throughout the entry process.

    Science.gov (United States)

    DiGiuseppe, Stephen; Bienkowska-Haba, Malgorzata; Guion, Lucile G M; Keiffer, Timothy R; Sapp, Martin

    2017-05-31

    During infectious entry, acidification within the endosome triggers uncoating of the HPV capsid whereupon host cyclophilins facilitate the release of most of the major capsid protein, L1, from the minor capsid protein L2 and the viral genome. The L2/DNA complex traffics to the trans-Golgi network (TGN). Following the onset of mitosis, HPV-harboring transport vesicles bud from the TGN followed by association with mitotic chromosomes. During this time, the HPV genome remains in a vesicular compartment until the nucleus has completely reformed. Recent data suggests that while most of L1 protein dissociates and is degraded in the endosome, some L1 protein remains associated with the viral genome. The L1 protein has DNA binding activity and L2 protein has multiple domains capable of interacting with L1 capsomeres. In this study, we report that some L1 protein traffics with L2 and viral genome to the nucleus. The accompanying L1 protein is mostly full-length and retains conformation-dependent epitopes, which are recognized by neutralizing antibodies. Since more than one L1 molecule contributes to these epitopes and require assembly into capsomeres, we propose that L1 protein is present in form of pentamers. Furthermore, we provide evidence that L1 protein interacts directly with viral DNA within the capsid. Based on our findings, we propose that the L1 protein, likely arranged as capsomeres, stabilizes the viral genome within the subviral complex during intracellular trafficking.IMPORTANCE After internalization, the non-enveloped human papillomavirus virion uncoats in the endosome whereupon conformational changes result in a dissociation of a subset of the major capsid protein L1 from the minor capsid protein L2, which remains in complex with the viral DNA. Recent data suggests that some L1 protein may accompany the viral genome beyond the endosomal compartment. Herein, we demonstrate that conformationally intact L1 protein, likely still arranged as capsomeres, remains

  6. Acute hepatitis C in a chronically HIV-infected patient: Evolution of different viral genomic regions

    Institute of Scientific and Technical Information of China (English)

    Diego Flichman; Veronica Kott; Silvia Sookoian; Rodolfo Campos

    2003-01-01

    AIM: To analyze the molecular evolution of different viral genomic regions of HCV in an acute HCV infected patient chronically infected with HIV through a 42-month follow-up.METHODS: Serum samples of a chronically HIV infected patient that seroconverted to anti HCV antibodies were sequenced, from the event of superinfection through a period of 17 months and in a late sample (42nd month). Hypervariable genomic regions of HIV (V3 loop of the gp120) and HCV (HVR-1 on the E2 glycoprotein gene) were studied. In order to analyze genomic regions involved in different biological functions and with the cellular immune response, HCV core and NS5A were also chosen to be sequenced. Amplification of the different regions was done by RT-PCR and directly sequenced. Confirmation of sequences was done on reamplified material. Nucleotide sequences of the different time points were aligned with CLUSTAL W 1.5, and the corresponding amino acid ones were deduced.RESULTS: Hypervariable genomic regions of both viruses (HVR1 and gp120 V3 loop) presented several nonsynonymous changes but, while in the gp120 V3 loop mutations were detected in the sample obtained right after HCV superinfection and maintained throughout, they occurred following a sequential and cumulative pattern in the HVR1. In the NS5A region of HCV, two amino acid changes were detected during the follow-up period, whereas the core region presented several amino acid replacements, once the HCV chronic infection had been established.CONCLUSION: During the HIV-HCV superinfection, each genomic region analyzed shows a different evolutionary pattem.Most of the nucleotide substitutions observed are nonsynonymous and clustered in previously described epitopes,thus suggesting an immune-driven evolutionary process.

  7. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    Science.gov (United States)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  8. High definition viral vaccine strain identity and stability testing using full-genome population data--The next generation of vaccine quality control.

    Science.gov (United States)

    Höper, Dirk; Freuling, Conrad M; Müller, Thomas; Hanke, Dennis; von Messling, Veronika; Duchow, Karin; Beer, Martin; Mettenleiter, Thomas C

    2015-10-26

    Vaccines are the most effective prophylactic public health tools. With the help of vaccines, prevention of infectious disease spread and, in concert with other measures, even eradication has become possible. Until now, licensing and quality control require the determination of consensus genome sequences of replication competent infectious agents contained in vaccines. Recent improvements in sequencing technologies now enable the sequencing of complete genomes and the genetic analysis of populations with high reliability and resolution. The latter is particularly important for RNA viruses, which consist of fluctuating heterogeneous populations rather than genetically stable entities. This information now has to be integrated into the existing regulatory framework, challenging both licensing authorities and vaccine producers to develop new quality control criteria. Commercially available modified-live oral rabies vaccines and their precursor strains were deep-sequenced to assess strain identity and relations between strains based on population diversity. Strain relations were inferred based on the Manhattan distances calculated between the compositions of the viral populations of the strains. We provide a novel approach to assess viral strain relations with high resolution and reliability by deep sequencing with subsequent analysis of the overall genetic diversity within the viral populations. A comparison of our novel approach of inferring strain relations based on population data with consensus sequence analysis clearly shows that consensus sequence analysis of diverse viral populations can be misleading. Therefore, for quality control of viral vaccines deep sequencing analysis is to be preferred over consensus sequence analysis. The presented methodology allows for routine integration of deep sequencing data in vaccine quality control and licensing for highly reliable assessment of strain identity and stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes.

    Science.gov (United States)

    Angly, Florent E; Willner, Dana; Prieto-Davó, Alejandra; Edwards, Robert A; Schmieder, Robert; Vega-Thurber, Rebecca; Antonopoulos, Dionysios A; Barott, Katie; Cottrell, Matthew T; Desnues, Christelle; Dinsdale, Elizabeth A; Furlan, Mike; Haynes, Matthew; Henn, Matthew R; Hu, Yongfei; Kirchman, David L; McDole, Tracey; McPherson, John D; Meyer, Folker; Miller, R Michael; Mundt, Egbert; Naviaux, Robert K; Rodriguez-Mueller, Beltran; Stevens, Rick; Wegley, Linda; Zhang, Lixin; Zhu, Baoli; Rohwer, Forest

    2009-12-01

    Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.

  10. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes.

    Directory of Open Access Journals (Sweden)

    Florent E Angly

    2009-12-01

    Full Text Available Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS, a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and

  11. A viral genome landscape of RNA polyadenylation from KSHV latent to lytic infection.

    Directory of Open Access Journals (Sweden)

    Vladimir Majerciak

    Full Text Available RNA polyadenylation (pA is one of the major steps in regulation of gene expression at the posttranscriptional level. In this report, a genome landscape of pA sites of viral transcripts in B lymphocytes with Kaposi sarcoma-associated herpesvirus (KSHV infection was constructed using a modified PA-seq strategy. We identified 67 unique pA sites, of which 55 could be assigned for expression of annotated ~90 KSHV genes. Among the assigned pA sites, twenty are for expression of individual single genes and the rest for multiple genes (average 2.7 genes per pA site in cluster-gene loci of the genome. A few novel viral pA sites that could not be assigned to any known KSHV genes are often positioned in the antisense strand to ORF8, ORF21, ORF34, K8 and ORF50, and their associated antisense mRNAs to ORF21, ORF34 and K8 could be verified by 3'RACE. The usage of each mapped pA site correlates to its peak size, the larger (broad and wide peak size, the more usage and thus, the higher expression of the pA site-associated gene(s. Similar to mammalian transcripts, KSHV RNA polyadenylation employs two major poly(A signals, AAUAAA and AUUAAA, and is regulated by conservation of cis-elements flanking the mapped pA sites. Moreover, we found two or more alternative pA sites downstream of ORF54, K2 (vIL6, K9 (vIRF1, K10.5 (vIRF3, K11 (vIRF2, K12 (Kaposin A, T1.5, and PAN genes and experimentally validated the alternative polyadenylation for the expression of KSHV ORF54, K11, and T1.5 transcripts. Together, our data provide not only a comprehensive pA site landscape for understanding KSHV genome structure and gene expression, but also the first evidence of alternative polyadenylation as another layer of posttranscriptional regulation in viral gene expression.

  12. Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method

    Directory of Open Access Journals (Sweden)

    Dan Dou

    2017-07-01

    Full Text Available Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections.

  13. The latent origin of replication of Epstein-Barr virus directs viral genomes to active regions of the nucleus.

    Science.gov (United States)

    Deutsch, Manuel J; Ott, Elisabeth; Papior, Peer; Schepers, Aloys

    2010-03-01

    The Epstein-Barr virus efficiently infects human B cells. The EBV genome is maintained extrachromosomally and replicates synchronously with the host's chromosomes. The latent origin of replication (oriP) guarantees plasmid stability by mediating two basic functions: replication and segregation of the viral genome. While the segregation process of EBV genomes is well understood, little is known about its chromatin association and nuclear distribution during interphase. Here, we analyzed the nuclear localization of EBV genomes and the role of functional oriP domains FR and DS for basic functions such as the transformation of primary cells, their role in targeting EBV genomes to distinct nuclear regions, and their association with epigenetic domains. Fluorescence in situ hybridization visualized the localization of extrachromosomal EBV genomes in the regions adjacent to chromatin-dense territories called the perichromatin. Further, immunofluorescence experiments demonstrated a preference of the viral genome for histone 3 lysine 4-trimethylated (H3K4me3) and histone 3 lysine 9-acetylated (H3K9ac) nuclear regions. To determine the role of FR and DS for establishment and subnuclear localization of EBV genomes, we transformed primary human B lymphocytes with recombinant mini-EBV genomes containing different oriP mutants. The loss of DS results in a slightly increased association in H3K27me3 domains. This study demonstrates that EBV genomes or oriP-based extrachromosomal vector systems are integrated into the higher order nuclear organization. We found that viral genomes are not randomly distributed in the nucleus. FR but not DS is crucial for the localization of EBV in perichromatic regions that are enriched for H3K4me3 and H3K9ac, which are hallmarks of transcriptionally active regions.

  14. Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes.

    Directory of Open Access Journals (Sweden)

    John F Heidelberg

    Full Text Available CRISPR arrays and associated cas genes are widespread in bacteria and archaea and confer acquired resistance to viruses. To examine viral immunity in the context of naturally evolving microbial populations we analyzed genomic data from two thermophilic Synechococcus isolates (Syn OS-A and Syn OS-B' as well as a prokaryotic metagenome and viral metagenome derived from microbial mats in hotsprings at Yellowstone National Park. Two distinct CRISPR types, distinguished by the repeat sequence, are found in both the Syn OS-A and Syn OS-B' genomes. The genome of Syn OS-A contains a third CRISPR type with a distinct repeat sequence, which is not found in Syn OS-B', but appears to be shared with other microorganisms that inhabit the mat. The CRISPR repeats identified in the microbial metagenome are highly conserved, while the spacer sequences (hereafter referred to as "viritopes" to emphasize their critical role in viral immunity were mostly unique and had no high identity matches when searched against GenBank. Searching the viritopes against the viral metagenome, however, yielded several matches with high similarity some of which were within a gene identified as a likely viral lysozyme/lysin protein. Analysis of viral metagenome sequences corresponding to this lysozyme/lysin protein revealed several mutations all of which translate into silent or conservative mutations which are unlikely to affect protein function, but may help the virus evade the host CRISPR resistance mechanism. These results demonstrate the varied challenges presented by a natural virus population, and support the notion that the CRISPR/viritope system must be able to adapt quickly to provide host immunity. The ability of metagenomics to track population-level variation in viritope sequences allows for a culture-independent method for evaluating the fast co-evolution of host and viral genomes and its consequence on the structuring of complex microbial communities.

  15. Non-Viral Ocular Gene Therapy: Assessment and Future Directions

    OpenAIRE

    2008-01-01

    The purpose of this review is to give the general reader a brief overview of the current state of the field of non-viral ocular gene therapy. For multiple reasons the eye is an excellent organ for gene therapy application and while non-viral gene therapy modalities have been around for quite some time; they have only been applied to the eye in the last few years. This review will cover the exciting current trends in non-viral gene therapy and their application to the eye in addition to a brie...

  16. Hepatitis B and hepatitis C viruses: a review of viral genomes, viral induced host immune responses, genotypic distributions and worldwide epidemiology

    Directory of Open Access Journals (Sweden)

    Umar Saeed

    2014-04-01

    Full Text Available Hepatitis B and hepatitis C viruses (HCV are frequently propagating blood borne pathogens in global community. Viral hepatitis is primarily associated with severe health complications, such as liver cirrhosis, hepatocellular carcinoma, hepatic fibrosis and steatosis. A literature review was conducted on hepatitis B virus (HBV, HBV genome, genotypic distribution and global epidemiology of HBV, HCV, HCV genome, HCV and host immune responses, HCV genotypic distribution and global epidemiology. The valued information was subjected for review. HBV has strict tissue tropism to liver. The virus infecting hepatocytes produces large amount of hepatitis B surface antigen particles which lack the DNA. It has capability to integrate into host genome. It has been found that genotype C is most emerging genotype associated with more severe liver diseases (cirrhosis. The approximate prevalence rate of genotype C is 27.7% which represents a major threat to future generations. Approximately 8% of population is chronic carrier of HBV in developing countries. The chronic carrier rate of HBV is 2%-7% in Middle East, Eastern and Southern Europe, South America and Japan. Among HCV infected individuals, 15% usually have natural tendency to overcome acute viral infection, where as 85% of individuals were unable to control HCV infection. The internal ribosomal entry site contains highly conserved structures important for binding and appropriate positioning of viral genome inside the host cell. HCV infects only in 1%-10% of hepatocytes, but production of tumor necrosis factor alpha (from CD8+ cells and interferon-gamma cause destruction of both infected cells and non-infected surrounding cells. Almost 11 genotypes and above 100 subtypes of HCV exists worldwide with different geographical distribution. Many efforts are still needed to minimize global burden of these infections. For the complete eradication of HBV (just like small pox and polio via vaccination strategies

  17. Pathogenicity of diatraea saccharalis Densovirus to Host Insets and Characterization of its Viral Genome

    Institute of Scientific and Technical Information of China (English)

    Nazaire Kouassi; Jian-xin PENG; Yi LI; Cristina Cavallaro; Jean-Claude Veyrunes; Max Bergoin

    2007-01-01

    Pathogenicity of the Diatraea saccharalis densovirus (DsDNV) was tested on its host larvae.The results showed that up to 4 days after inoculation,no larvae mortality was observed and the infected larvae started to exhibit the infection symptoms from the fourth day.After 5 days of infection,the cumulative mortality of infected larvae increased significantly and reached 60% after 12 days and 100% after 21 days of infection,whereas that of the control group was only 10% and 20%,respectively,after same periods of infection,suggesting that the high mortality of infected larvae groups was due to the high pathogenicity of DsDNV.The size of the DsDNA was determined by Electron microscopy visualization of viral DNA molecules and gel electrophoresis of both native and endonuclease digested DNA fragments.The total length of the native DsDNA was about 5.95 kb.The DsDNV DNA was digested with 16 restriction enzymes and a restriction map of those enzymes was constructed with 41 restriction sites.Comparison of the restriction map of the DsDNV genome with those of the genomes ofJunonia coenia densovirus (JcDNV) and Galleria mellonella densovirus (GmDNV) indicated that the three densovirus genomes were found to share many identical restriction sites.Thus,most of the restriction sites of the following endonucleases Bam H Ⅰ,Hha Ⅰ,Xba Ⅰ,Cla Ⅰ,Asp 700,Spe Ⅰ,Nco Ⅰ and Bcl Ⅰ,were found to be conserved among the three densovirus genomes.Symmetrical cleavage sites mapped at the both ends of the genome suggested the presence of inverted terminal repeats (ITRs) whose size was estimated to be about 500 bp.The similar genome size,almost identical restriction sites and presence of an ITR of about 500 bp for these three densoviruses suggested that they belong to the same group of ambisense densoviruses.

  18. Assessing ubiquitination of viral proteins: lessons from flavivirus NS5

    OpenAIRE

    Taylor, R. Travis; Best, Sonja M.

    2011-01-01

    Ubiquitin (Ub) conjugation to a substrate protein is a widely used cellular mechanism for control of protein stability and function, modulation of signal transduction pathways and antiviral responses. Identification and characterization of ubiquitinated viral proteins is an important step in understanding novel mechanisms of viral protein regulation as well as elucidating cellular antiviral strategies. Here we describe a protocol to easily detect and characterize the ubiquitination status of ...

  19. A genome-wide association study for the incidence of persistent bovine viral diarrhea virus infection in cattle

    Science.gov (United States)

    Bovine Viral Diarrhea Viruses (BVDV) comprises a diverse group of viruses that causes disease in cattle. BVDV may establish both, transient and persistent infections depending on the developmental stage of the animal at exposure. The objective was to determine if genomic regions harboring single nuc...

  20. Viral genome imaging of hepatitis C virus to probe heterogeneous viral infection and responses to antiviral therapies

    NARCIS (Netherlands)

    Ramanan, Vyas; Trehan, Kartik; Ong, Mei-Lyn; Luna, Joseph M; Hoffmann, Hans-Heinrich; Espiritu, Christine; Sheahan, Timothy P; Chandrasekar, Hamsika; Schwartz, Robert E; Christine, Kathleen S; Rice, Charles M; van Oudenaarden, Alexander; Bhatia, Sangeeta N

    Hepatitis C virus (HCV) is a positive single-stranded RNA virus of enormous global health importance, with direct-acting antiviral therapies replacing an immunostimulatory interferon-based regimen. The dynamics of HCV positive and negative-strand viral RNAs (vRNAs) under antiviral perturbations have

  1. Genomic determinants of the efficiency of internal ribosomal entry sites of viral and cellular origin.

    Science.gov (United States)

    Kazadi, Kayole; Loeuillet, Corinne; Deutsch, Samuel; Ciuffi, Angela; Muñoz, Miguel; Beckmann, Jacques S; Moradpour, Darius; Antonarakis, Stylianos E; Telenti, Amalio

    2008-12-01

    Variation in cellular gene expression levels has been shown to be inherited. Expression is controlled at transcriptional and post-transcriptional levels. Internal ribosome entry sites (IRES) are used by viruses to bypass inhibition of cap-dependent translation, and by eukaryotic cells to control translation under conditions when protein synthesis is inhibited. We aimed at identifying genomic determinants of variability in IRES-mediated translation of viral [Encephalomyocarditis virus (EMCV)] and cellular IRES [X-linked inhibitor-of-apoptosis (XIAP) and c-myc]. Bicistronic lentiviral constructs expressing two fluorescent reporters were used to transduce laboratory and B lymphoblastoid cell lines [15 CEPH pedigrees (n = 205) and 50 unrelated individuals]. IRES efficiency varied according to cell type and among individuals. Control of IRES activity has a significant genetic component (h(2) of 0.47 and 0.36 for EMCV and XIAP, respectively). Quantitative linkage analysis identified a suggestive locus (LOD 2.35) on chromosome 18q21.2, and genome-wide association analysis revealed of a cluster of SNPs on chromosome 3, intronic to the FHIT gene, marginally associated (P = 5.9E-7) with XIAP IRES function. This study illustrates the in vitro generation of intermediate phenotypes by using cell lines for the evaluation of genetic determinants of control of elements such as IRES.

  2. Integrative functional genomics of hepatitis C virus infection identifies host dependencies in complete viral replication cycle.

    Science.gov (United States)

    Li, Qisheng; Zhang, Yong-Yuan; Chiu, Stephan; Hu, Zongyi; Lan, Keng-Hsin; Cha, Helen; Sodroski, Catherine; Zhang, Fang; Hsu, Ching-Sheng; Thomas, Emmanuel; Liang, T Jake

    2014-05-01

    Recent functional genomics studies including genome-wide small interfering RNA (siRNA) screens demonstrated that hepatitis C virus (HCV) exploits an extensive network of host factors for productive infection and propagation. How these co-opted host functions interact with various steps of HCV replication cycle and exert pro- or antiviral effects on HCV infection remains largely undefined. Here we present an unbiased and systematic strategy to functionally interrogate HCV host dependencies uncovered from our previous infectious HCV (HCVcc) siRNA screen. Applying functional genomics approaches and various in vitro HCV model systems, including HCV pseudoparticles (HCVpp), single-cycle infectious particles (HCVsc), subgenomic replicons, and HCV cell culture systems (HCVcc), we identified and characterized novel host factors or pathways required for each individual step of the HCV replication cycle. Particularly, we uncovered multiple HCV entry factors, including E-cadherin, choline kinase α, NADPH oxidase CYBA, Rho GTPase RAC1 and SMAD family member 6. We also demonstrated that guanine nucleotide binding protein GNB2L1, E2 ubiquitin-conjugating enzyme UBE2J1, and 39 other host factors are required for HCV RNA replication, while the deubiquitinating enzyme USP11 and multiple other cellular genes are specifically involved in HCV IRES-mediated translation. Families of antiviral factors that target HCV replication or translation were also identified. In addition, various virologic assays validated that 66 host factors are involved in HCV assembly or secretion. These genes included insulin-degrading enzyme (IDE), a proviral factor, and N-Myc down regulated Gene 1 (NDRG1), an antiviral factor. Bioinformatics meta-analyses of our results integrated with literature mining of previously published HCV host factors allows the construction of an extensive roadmap of cellular networks and pathways involved in the complete HCV replication cycle. This comprehensive study of HCV host

  3. Integrative functional genomics of hepatitis C virus infection identifies host dependencies in complete viral replication cycle.

    Directory of Open Access Journals (Sweden)

    Qisheng Li

    2014-05-01

    Full Text Available Recent functional genomics studies including genome-wide small interfering RNA (siRNA screens demonstrated that hepatitis C virus (HCV exploits an extensive network of host factors for productive infection and propagation. How these co-opted host functions interact with various steps of HCV replication cycle and exert pro- or antiviral effects on HCV infection remains largely undefined. Here we present an unbiased and systematic strategy to functionally interrogate HCV host dependencies uncovered from our previous infectious HCV (HCVcc siRNA screen. Applying functional genomics approaches and various in vitro HCV model systems, including HCV pseudoparticles (HCVpp, single-cycle infectious particles (HCVsc, subgenomic replicons, and HCV cell culture systems (HCVcc, we identified and characterized novel host factors or pathways required for each individual step of the HCV replication cycle. Particularly, we uncovered multiple HCV entry factors, including E-cadherin, choline kinase α, NADPH oxidase CYBA, Rho GTPase RAC1 and SMAD family member 6. We also demonstrated that guanine nucleotide binding protein GNB2L1, E2 ubiquitin-conjugating enzyme UBE2J1, and 39 other host factors are required for HCV RNA replication, while the deubiquitinating enzyme USP11 and multiple other cellular genes are specifically involved in HCV IRES-mediated translation. Families of antiviral factors that target HCV replication or translation were also identified. In addition, various virologic assays validated that 66 host factors are involved in HCV assembly or secretion. These genes included insulin-degrading enzyme (IDE, a proviral factor, and N-Myc down regulated Gene 1 (NDRG1, an antiviral factor. Bioinformatics meta-analyses of our results integrated with literature mining of previously published HCV host factors allows the construction of an extensive roadmap of cellular networks and pathways involved in the complete HCV replication cycle. This comprehensive study

  4. Genomic Loads and Genotypes of Respiratory Syncytial Virus: Viral Factors during Lower Respiratory Tract Infection in Chilean Hospitalized Infants

    Science.gov (United States)

    Espinosa, Yazmín; San Martín, Camila; Torres, Alejandro A.; Farfán, Mauricio J.; Torres, Juan P.; Avadhanula, Vasanthi; Piedra, Pedro A.; Tapia, Lorena I.

    2017-01-01

    The clinical impact of viral factors (types and viral loads) during respiratory syncytial virus (RSV) infection is still controversial, especially regarding newly described genotypes. In this study, infants with RSV bronchiolitis were recruited to describe the association of these viral factors with severity of infection. RSV antigenic types, genotypes, and viral loads were determined from hospitalized patients at Hospital Roberto del Río, Santiago, Chile. Cases were characterized by demographic and clinical information, including days of lower respiratory symptoms and severity. A total of 86 patients were included: 49 moderate and 37 severe cases. During 2013, RSV-A was dominant (86%). RSV-B predominated in 2014 (92%). Phylogenetic analyses revealed circulation of GA2, Buenos Aires (BA), and Ontario (ON) genotypes. No association was observed between severity of infection and RSV group (p = 0.69) or genotype (p = 0.87). After a clinical categorization of duration of illness, higher RSV genomic loads were detected in infants evaluated earlier in their disease (p < 0.001) and also in infants evaluated later, but coursing a more severe infection (p = 0.04). Although types and genotypes did not associate with severity in our children, higher RSV genomic loads and delayed viral clearance in severe patients define a group that might benefit from new antiviral therapies. PMID:28335547

  5. A dimeric Rep protein initiates replication of a linear archaeal virus genome: implications for the Rep mechanism and viral replication

    DEFF Research Database (Denmark)

    Oke, Muse; Kerou, Melina; Liu, Huanting

    2011-01-01

    that a protein encoded in the 34-kbp genome of the rudivirus SIRV1 is a member of the replication initiator (Rep) superfamily of proteins, which initiate rolling-circle replication (RCR) of diverse viruses and plasmids. We show that SIRV Rep nicks the viral hairpin terminus, forming a covalent adduct between...... positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral...

  6. Heat shock protein 70 is associated with replicase complex of Japanese encephalitis virus and positively regulates viral genome replication.

    Directory of Open Access Journals (Sweden)

    Jing Ye

    Full Text Available Japanese encephalitis virus (JEV is a mosquito-borne flavivirus that causes the most prevalent viral encephalitis in Asia. The NS5 protein of JEV is a key component of the viral replicase complex, which plays a crucial role in viral pathogenesis. In this study, tandem affinity purification (TAP followed by mass spectrometry analysis was performed to identify novel host proteins that interact with NS5. Heat shock protein 70 (Hsp70, eukaryotic elongation factor 1-alpha (eEF-1α and ras-related nuclear protein (Ran were demonstrated to interact with NS5. In addition to NS5, Hsp70 was also found to interact with NS3 which is another important member of the replicase complex. It was observed that the cytoplasmic Hsp70 partially colocalizes with the components of viral replicase complex including NS3, NS5 and viral dsRNA during JEV infection. Knockdown of Hsp70 resulted in a significantly reduced JEV genome replication. Further analysis reveals that Hsp70 enhances the stability of viral proteins in JEV replicase complex. These results suggest an important role for Hsp70 in regulating JEV replication, which provides a potential target for the development of anti-JEV therapies.

  7. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region

    Energy Technology Data Exchange (ETDEWEB)

    Bienz, K.; Egger, D.; Troxler, M.; Pasamontes, L. (Univ. of Basel (Switzerland))

    1990-03-01

    Transcriptionally active replication complexes bound to smooth membrane vesicles were isolated from poliovirus-infected cells. In electron microscopic, negatively stained preparations, the replication complex appeared as an irregularly shaped, oblong structure attached to several virus-induced vesicles of a rosettelike arrangement. Electron microscopic immunocytochemistry of such preparations demonstrated that the poliovirus replication complex contains the proteins coded by the P2 genomic region (P2 proteins) in a membrane-associated form. In addition, the P2 proteins are also associated with viral RNA, and they can be cross-linked to viral RNA by UV irradiation. Guanidine hydrochloride prevented the P2 proteins from becoming membrane bound but did not change their association with viral RNA. The findings allow the conclusion that the protein 2C or 2C-containing precursor(s) is responsible for the attachment of the viral RNA to the vesicular membrane and for the spatial organization of the replication complex necessary for its proper functioning in viral transcription. A model for the structure of the viral replication complex and for the function of the 2C-containing P2 protein(s) and the vesicular membranes is proposed.

  8. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    Energy Technology Data Exchange (ETDEWEB)

    Brock, K.V.

    1987-01-01

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with /sup 32/P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus.

  9. Concatemeric intermediates of equine herpesvirus type 1 DNA replication contain frequent inversions of adjacent long segments of the viral genome.

    Science.gov (United States)

    Slobedman, B; Simmons, A

    1997-03-17

    In common with other alpha-herpesviruses, the genome of equine herpesvirus type-1 (EHV-1) comprises covalently linked long and short unique sequences of DNA, each flanked by inverted repeats. Equimolar amounts of two genomic isomers, generated by free inversion of the short segment, relative to the long segment, are packaged into EHV-1 virions. In contrast with herpes simplex virus (HSV), inversion of genomic long segments has not been described. In the current work, the structures of high molecular weight intermediates of EHV-1 DNA replication were studied by field inversion gel electrophoresis. It is shown that adjacent long segments of the viral genome are frequently inverted in concatemeric intermediates of EHV-1 DNA replication. Further, like HSV concatemers, high molecular weight intermediates of EHV-1 replication are flanked exclusively by the long segment of the viral genome. Hence, despite the fact that only two, rather than four, isomers of EHV-1 DNA are packaged into virions, the intermediates of EHV-1 DNA replication closely resemble those of herpes simplex virus type 1 in structure. These data have implications relating to the mechanisms involved in packaging of alpha-herpesvirus DNA.

  10. Shrimp viral diseases, import risk assessment and international trade.

    Science.gov (United States)

    Karunasagar, Iddya; Ababouch, Lahsen

    2012-09-01

    Shrimp is an important commodity in international trade accounting for 15 % in terms of value of internationally traded seafood products which reached $102.00 billion in 2008. Aquaculture contributes to over 50 % of global shrimp production. One of the major constraints faced by shrimp aquaculture is the loss due to viral diseases like white spot syndrome, yellow head disease, and Taura syndrome. There are several examples of global spread of shrimp diseases due to importation of live shrimp for aquaculture. Though millions of tonnes of frozen or processed shrimp have been traded internationally during the last two decades despite prevalence of viral diseases in shrimp producing areas in Asia and the Americas, there is no evidence of diseases having been transmitted through shrimp imported for human consumption. The guidelines developed by the World Animal Health Organisation for movement of live animals for aquaculture, frozen crustaceans for human consumption, and the regulations implemented by some shrimp importing regions in the world are reviewed.

  11. Expression of IMP1 enhances production of murine leukemia virus vector by facilitating viral genomic RNA packaging.

    Directory of Open Access Journals (Sweden)

    Yun Mai

    Full Text Available Murine leukemia virus (MLV-based retroviral vector is widely used for gene transfer. Efficient packaging of the genomic RNA is critical for production of high-titer virus. Here, we report that expression of the insulin-like growth factor II mRNA binding protein 1 (IMP1 enhanced the production of infectious MLV vector. Overexpression of IMP1 increased the stability of viral genomic RNA in virus producer cells and packaging of the RNA into progeny virus in a dose-dependent manner. Downregulation of IMP1 in virus producer cells resulted in reduced production of the retroviral vector. These results indicate that IMP1 plays a role in regulating the packaging of MLV genomic RNA and can be used for improving production of retroviral vectors.

  12. Expression of IMP1 enhances production of murine leukemia virus vector by facilitating viral genomic RNA packaging.

    Science.gov (United States)

    Mai, Yun; Gao, Guangxia

    2010-12-29

    Murine leukemia virus (MLV)-based retroviral vector is widely used for gene transfer. Efficient packaging of the genomic RNA is critical for production of high-titer virus. Here, we report that expression of the insulin-like growth factor II mRNA binding protein 1 (IMP1) enhanced the production of infectious MLV vector. Overexpression of IMP1 increased the stability of viral genomic RNA in virus producer cells and packaging of the RNA into progeny virus in a dose-dependent manner. Downregulation of IMP1 in virus producer cells resulted in reduced production of the retroviral vector. These results indicate that IMP1 plays a role in regulating the packaging of MLV genomic RNA and can be used for improving production of retroviral vectors.

  13. Novel viral vectors utilizing intron splice-switching to activate genome rescue, expression and replication in targeted cells

    Directory of Open Access Journals (Sweden)

    El Andaloussi Samir

    2011-05-01

    Full Text Available Abstract Background The outcome of virus infection depends from the precise coordination of viral gene expression and genome replication. The ability to control and regulate these processes is therefore important for analysis of infection process. Viruses are also useful tools in bio- and gene technology; they can efficiently kill cancer cells and trigger immune responses to tumors. However, the methods for constructing tissue- or cell-type specific viruses typically suffer from low target-cell specificity and a high risk of reversion. Therefore novel and universal methods of regulation of viral infection are also important for therapeutic application of virus-based systems. Methods Aberrantly spliced introns were introduced into crucial gene-expression units of adenovirus vector and alphavirus DNA/RNA layered vectors and their effects on the viral gene expression, replication and/or the release of infectious genomes were studied in cell culture. Transfection of the cells with splice-switching oligonucleotides was used to correct the introduced functional defect(s. Results It was demonstrated that viral gene expression, replication and/or the release of infectious genomes can be blocked by the introduction of aberrantly spliced introns. The insertion of such an intron into an adenovirus vector reduced the expression of the targeted gene more than fifty-fold. A similar insertion into an alphavirus DNA/RNA layered vector had a less dramatic effect; here, only the release of the infectious transcript was suppressed but not the subsequent replication and spread of the virus. However the insertion of two aberrantly spliced introns resulted in an over one hundred-fold reduction in the infectivity of the DNA/RNA layered vector. Furthermore, in both systems the observed effects could be reverted by the delivery of splice-switching oligonucleotide(s, which corrected the splicing defects. Conclusions Splice-switch technology, originally developed for

  14. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  15. A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fecally tainted river water.

    Science.gov (United States)

    Fernandez-Cassi, X; Timoneda, N; Gonzales-Gustavson, E; Abril, J F; Bofill-Mas, S; Girones, R

    2017-09-18

    suggests that irrigation on fecally-tainted food may have a role in the transmission of a wide diversity of viral families. This finding reinforces the idea that the best way to avoid food-borne viral diseases is to introduce good field irrigation and production practices. New strains have been identified that are related to the Picornaviridae and distantly related to the Hepeviridae family. However, the detection of a viral genome alone does not necessarily indicate there is a risk of infection or disease development. Thus, further investigation is crucial for correlating the detection of viral metagenomes in samples with the risk of infection. There is also an urgent need to develop new methods to improve the sensitivity of current Next Generation Sequencing (NGS) techniques in the food safety area. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA.

    Directory of Open Access Journals (Sweden)

    Kouichi Kitamura

    Full Text Available The covalently closed circular DNA (cccDNA of the hepatitis B virus (HBV plays an essential role in chronic hepatitis. The cellular repair system is proposed to convert cytoplasmic nucleocapsid (NC DNA (partially double-stranded DNA into cccDNA in the nucleus. Recently, antiviral cytidine deaminases, AID/APOBEC proteins, were shown to generate uracil residues in the NC-DNA through deamination, resulting in cytidine-to-uracil (C-to-U hypermutation of the viral genome. We investigated whether uracil residues in hepadnavirus DNA were excised by uracil-DNA glycosylase (UNG, a host factor for base excision repair (BER. When UNG activity was inhibited by the expression of the UNG inhibitory protein (UGI, hypermutation of NC-DNA induced by either APOBEC3G or interferon treatment was enhanced in a human hepatocyte cell line. To assess the effect of UNG on the cccDNA viral intermediate, we used the duck HBV (DHBV replication model. Sequence analyses of DHBV DNAs showed that cccDNA accumulated G-to-A or C-to-T mutations in APOBEC3G-expressing cells, and this was extensively enhanced by UNG inhibition. The cccDNA hypermutation generated many premature stop codons in the P gene. UNG inhibition also enhanced the APOBEC3G-mediated suppression of viral replication, including reduction of NC-DNA, pre-C mRNA, and secreted viral particle-associated DNA in prolonged culture. Enhancement of APOBEC3G-mediated suppression by UNG inhibition was not observed when the catalytic site of APOBEC3G was mutated. Transfection experiments of recloned cccDNAs revealed that the combination of UNG inhibition and APOBEC3G expression reduced the replication ability of cccDNA. Taken together, these data indicate that UNG excises uracil residues from the viral genome during or after cccDNA formation in the nucleus and imply that BER pathway activities decrease the antiviral effect of APOBEC3-mediated hypermutation.

  17. Up-regulation effect of hepatitis B virus genome A1846T mutation on viral replication and core promoter activity

    Directory of Open Access Journals (Sweden)

    Ling JIANG

    2013-01-01

    Full Text Available Objective  To evaluate the influence of hepatitis B virus (HBV genome nucleotide A1846T mutation on the viral replication capacity and the transcription activity of HBV core promoter (CP in vitro. Methods  A total of 385 patients with hepatitis B admitted to the 302 Hospital of PLA were enrolled in the study, including 116 with moderate chronic hepatitis B (CHB-M, 123 with severe chronic hepatitis B (CHB-S, and 146 with acute-on-chronic liver failure (ACLF. Serum HBV DNA was isolated and full-length HBV genome was amplified. The incidence of A1846T was analyzed. Full-length HBV genomes containing 1846T mutation were cloned into pGEM-T easy vector, and the counterpart wild-type 1846A plasmids were obtained by site-directed mutagenesis. The full-length HBV genome was released from recombinant plasmid by BspQ Ⅰ/Sca Ⅰ digestion, and then transfected into HepG2 cells. Secreted HBsAg level and intracellular HBV core particles were measured 72 hours post-transfection to analyze the replication capacity (a 1.0-fold HBV genome model. 1846 mutant and wild-type full-length HBV genomes were extracted to amplify the fragment of HBV CP region, and the dual luciferase reporter of the pGL3-CP was constructed. The luciferase activity was detected 48 hours post-transfection. Results  The incidence of A1846T mutation gradually increased with the severity of hepatitis B, reaching 31.03%, 42.27%, and 55.48% in CHB-M, CHB-S and ACLF patients respectively (P<0.01. The replication capacity of 1846T mutants, level of secreted HBsAg, and transcriptional activity of CP promoter were increased by 320%, 28% and 85% respectively, compared with 1846A wild-type strains. While the more common double mutation A1762T/G1764A in CP region was increased by 67%, 9% and 72% respectively, compared with its counterpart wild-type strains. A1846T had a greater influence on viral replication capacity in vitro. Conclusions A1846T mutation could significantly increase the

  18. [Genome sequencing and analysis of the bovine viral diarrhea virus-2 strain JZ05-1 isolated in China].

    Science.gov (United States)

    Li, Qing-chao; Miao, Li-guang; Li, Hai-tao; Liu, Yan-huan; Zhang, Guang-lei; Xiao, Jia-mei

    2010-05-01

    Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus, which is a widespread problem for beef and dairy herds, and has given rise to a significant loss in the livestock industry all over the world. The BVDV strain JZ05-1 isolated from cattle in Jilin, China generated cytopathic effect (CPE) in MDBK cells. Eight overlapped gene fragments were amplified by RT-PCR and sequenced, the complete genom sequence of BVDV strain JZ05-1 was assembled. According to the results, the JZ05-1 genome was composed of 12285 nucleotides in length (GenBank accession No. GQ888686), which could be divided into three regions: a 387 nt 5'-untranslated region (UTR), a 11694 nt single large open reading frame encoding a polyprotein, and a 204 nt 3'-UTR. The 5'-UTR and genome sequences were analyzed by sequence alignment and construction of phylogenetic trees. The strain JZ05-1 was classified as BVDV type 2a. The BVDV-2 strain JZ05-1 genome showed high similarity to the p11Q isolated in Canada and the XJ-04 isolated in China, with 90% and 91% identity in nucleotide sequence, respectively. Compared with the similarity within the BVDV-2 genotype (96%), the JZ05-1 had low sequence similarity to other BVDV-2 strains.

  19. DeF-GPU: Efficient and effective deletions finding in hepatitis B viral genomic DNA using a GPU architecture.

    Science.gov (United States)

    Cheng, Chun-Pei; Lan, Kuo-Lun; Liu, Wen-Chun; Chang, Ting-Tsung; Tseng, Vincent S

    2016-12-01

    Hepatitis B viral (HBV) infection is strongly associated with an increased risk of liver diseases like cirrhosis or hepatocellular carcinoma (HCC). Many lines of evidence suggest that deletions occurring in HBV genomic DNA are highly associated with the activity of HBV via the interplay between aberrant viral proteins release and human immune system. Deletions finding on the HBV whole genome sequences is thus a very important issue though there exist underlying the challenges in mining such big and complex biological data. Although some next generation sequencing (NGS) tools are recently designed for identifying structural variations such as insertions or deletions, their validity is generally committed to human sequences study. This design may not be suitable for viruses due to different species. We propose a graphics processing unit (GPU)-based data mining method called DeF-GPU to efficiently and precisely identify HBV deletions from large NGS data, which generally contain millions of reads. To fit the single instruction multiple data instructions, sequencing reads are referred to as multiple data and the deletion finding procedure is referred to as a single instruction. We use Compute Unified Device Architecture (CUDA) to parallelize the procedures, and further validate DeF-GPU on 5 synthetic and 1 real datasets. Our results suggest that DeF-GPU outperforms the existing commonly-used method Pindel and is able to exactly identify the deletions of our ground truth in few seconds. The source code and other related materials are available at https://sourceforge.net/projects/defgpu/.

  20. Maize Elongin C interacts with the viral genome-linked protein, VPg, of Sugarcane mosaic virus and facilitates virus infection.

    Science.gov (United States)

    Zhu, Min; Chen, Yuting; Ding, Xin Shun; Webb, Stephen L; Zhou, Tao; Nelson, Richard S; Fan, Zaifeng

    2014-09-01

    The viral genome-linked protein, VPg, of potyviruses is involved in viral genome replication and translation. To determine host proteins that interact with Sugarcane mosaic virus (SCMV) VPg, a yeast two-hybrid screen was used and a maize (Zea mays) Elongin C (ZmElc) protein was identified. ZmELC transcript was observed in all maize organs, but most highly in leaves and pistil extracts, and ZmElc was present in the cytoplasm and nucleus of maize cells in the presence or absence of SCMV. ZmELC expression was increased in maize tissue at 4 and 6 d post SCMV inoculation. When ZmELC was transiently overexpressed in maize protoplasts the accumulation of SCMV RNA was approximately doubled compared with the amount of virus in control protoplasts. Silencing ZmELC expression using a Brome mosaic virus-based gene silencing vector (virus-induced gene silencing) did not influence maize plant growth and development, but did decrease RNA accumulation of two isolates of SCMV and host transcript encoding ZmeIF4E during SCMV infection. Interestingly, Maize chlorotic mottle virus, from outside the Potyviridae, was increased in accumulation after silencing ZmELC expression. Our results describe both the location of ZmElc expression in maize and a new activity associated with an Elc: support of potyvirus accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  1. Distribution pattern of bovine viral diarrhoea virus type 1 genome in lymphoid tissues of experimentally infected sheep.

    Science.gov (United States)

    Karikalan, M; Rajukumar, K; Mishra, N; Kumar, M; Kalaiyarasu, S; Rajesh, K; Gavade, V; Behera, S P; Dubey, S C

    2016-06-01

    In this study, cellular localization and the distribution pattern of BVDV genome in lymphoid tissues during the course of experimental acute BVDV-1 infection of sheep was investigated. Tonsils, mesenteric lymph nodes (MLN) and spleen were collected on 3, 6, 9, 12 and 15 days post infection (dpi) from twenty 4-month-old lambs, experimentally inoculated intra-nasally with 5 × 10(5) TCID50 of a non-cytopathic (ncp) BVDV-1 isolate, Ind-17555. Tissues collected from ten mock-infected lambs served as controls. In situ hybridization (ISH) was carried out in paraformaldehyde fixed paraffin embedded tissue sections using digoxigenin labelled riboprobe targeting 5'-UTR of BVDV-1. BVDV genome was detected at all the intervals from 3 dpi to 15 dpi in the lymphoid tissues with variations between the intervals and also amongst the infected sheep. During the early phase of acute infection, presence of viral genome was more in tonsils than MLN and spleen, whereas the distribution was higher in MLN during later stages. BVDV-1 genome positive cells included lymphocytes, macrophages, plasma cells, reticular cells and sometimes crypt epithelial cells. Genome distribution was frequently observed in the lymphoid follicles of tonsils, MLN and spleen, besides the crypt epithelium in tonsils, paracortex and medullary sinus and cords of MLN. Most abundant and widespread distribution of BVDV-1 genome was observed on 6 dpi while there was a reduction in number and intensity of positive signals by 15 dpi in most of the infected animals. This is the first attempt made to study the localisation of BVDV-1 in lymphoid tissues of acutely infected sheep by in situ hybridization. The results show that the kinetics of BVDV-1 distribution in lymphoid tissues of experimentally infected non-pregnant sheep follows almost a similar pattern to that demonstrated in BVDV infected cattle.

  2. Genomic analysis of host - Peste des petits ruminants vaccine viral transcriptome uncovers transcription factors modulating immune regulatory pathways.

    Science.gov (United States)

    Manjunath, Siddappa; Kumar, Gandham Ravi; Mishra, Bishnu Prasad; Mishra, Bina; Sahoo, Aditya Prasad; Joshi, Chaitanya G; Tiwari, Ashok K; Rajak, Kaushal Kishore; Janga, Sarath Chandra

    2015-02-24

    Peste des petits ruminants (PPR), is an acute transboundary viral disease of economic importance, affecting goats and sheep. Mass vaccination programs around the world resulted in the decline of PPR outbreaks. Sungri 96 is a live attenuated vaccine, widely used in Northern India against PPR. This vaccine virus, isolated from goat works efficiently both in sheep and goat. Global gene expression changes under PPR vaccine virus infection are not yet well defined. Therefore, in this study we investigated the host-vaccine virus interactions by infecting the peripheral blood mononuclear cells isolated from goat with PPRV (Sungri 96 vaccine virus), to quantify the global changes in the transcriptomic signature by RNA-sequencing. Viral genome of Sungri 96 vaccine virus was assembled from the PPRV infected transcriptome confirming the infection and demonstrating the feasibility of building a complete non-host genome from the blood transcriptome. Comparison of infected transcriptome with control transcriptome revealed 985 differentially expressed genes. Functional analysis showed enrichment of immune regulatory pathways under PPRV infection. Key genes involved in immune system regulation, spliceosomal and apoptotic pathways were identified to be dysregulated. Network analysis revealed that the protein - protein interaction network among differentially expressed genes is significantly disrupted in infected state. Several genes encoding TFs that govern immune regulatory pathways were identified to co-regulate the differentially expressed genes. These data provide insights into the host - PPRV vaccine virus interactome for the first time. Our findings suggested dysregulation of immune regulatory pathways and genes encoding Transcription Factors (TFs) that govern these pathways in response to viral infection.

  3. Resolving bovine viral diarrhea virus subtypes from persistently infected US beef calves with complete genome sequence

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is classified into 2 genotypes, BVDV-1 and BVDV-2, each of which contains distinct subtypes with genetic and antigenic differences. Currently, three major subtypes circulate in the United States: BVDV-1a, 1b, and 2a. In addition, a single case of BVDV-2b infection ...

  4. The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication.

    Science.gov (United States)

    McKnight, K L; Lemon, S M

    1998-12-01

    Cis-acting RNA signals are required for replication of positive-strand viruses such as the picornaviruses. Although these generally have been mapped to the 5' and/or 3' termini of the viral genome, RNAs derived from human rhinovirus type 14 are unable to replicate unless they contain an internal cis-acting replication element (cre) located within the genome segment encoding the capsid proteins. Here, we show that the essential cre sequence is 83-96 nt in length and located between nt 2318-2413 of the genome. Using dicistronic RNAs in which translation of the P1 and P2-P3 segments of the polyprotein were functionally dissociated, we further demonstrate that translation of the cre sequence is not required for RNA replication. Thus, although it is located within a protein-coding segment of the genome, the cre functions as an RNA entity. Computer folds suggested that cre sequences could form a stable structure in either positive- or minus-strand RNA. However, an analysis of mutant RNAs containing multiple covariant and non-covariant nucleotide substitutions within these putative structures demonstrated that only the predicted positive-strand structure is essential for efficient RNA replication. The absence of detectable minus-strand synthesis from RNAs that lack the cre suggests that the cre is required for initiation of minus-strand RNA synthesis. Since a lethal 3' noncoding region mutation could be partially rescued by a compensating mutation within the cre, the cre appears to participate in a long-range RNA-RNA interaction required for this process. These data provide novel insight into the mechanisms of replication of a positive-strand RNA virus, as they define the involvement of an internally located RNA structure in the recognition of viral RNA by the viral replicase complex. Since internally located RNA replication signals have been shown to exist in several other positive-strand RNA virus families, these observations are potentially relevant to a wide array of

  5. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

    Science.gov (United States)

    Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander

    2013-01-01

    Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.

  6. Assessing the relative rate of (mitochondrial) genomic change.

    OpenAIRE

    Dowton, Mark

    2004-01-01

    I report a framework for assessing whether one mitochondrial genome is significantly more rearranged than another. This relative rate of gene rearrangement test (RGR) behaves according to expectation, distinguishing between highly rearranged and mildly rearranged insect mitochondrial genomes. It may be more broadly applied to assess the relative rate of nuclear gene rearrangement.

  7. Assessing the relative rate of (mitochondrial) genomic change.

    Science.gov (United States)

    Dowton, Mark

    2004-06-01

    I report a framework for assessing whether one mitochondrial genome is significantly more rearranged than another. This relative rate of gene rearrangement test (RGR) behaves according to expectation, distinguishing between highly rearranged and mildly rearranged insect mitochondrial genomes. It may be more broadly applied to assess the relative rate of nuclear gene rearrangement.

  8. SIRT1 inhibits EV71 genome replication and RNA translation by interfering with the viral polymerase and 5′UTR RNA

    Science.gov (United States)

    Han, Yang; Wang, Lvyin; Cui, Jin; Song, Yu; Luo, Zhen; Chen, Junbo; Xiong, Ying; Zhang, Qi; Liu, Fang; Ho, Wenzhe; Liu, Yingle; Wu, Jianguo

    2016-01-01

    ABSTRACT Enterovirus 71 (EV71) possesses a single-stranded positive RNA genome that contains a single open reading frame (ORF) flanked by a 5′ untranslated region (5′UTR) and a polyadenylated 3′UTR. Here, we demonstrated that EV71 activates the production of silent mating type information regulation 2 homolog 1 (SIRT1), a histone deacetylase (HDAC). EV71 further stimulates SIRT1 sumoylation and deacetylase activity, and enhances SIRT1 translocation from the nucleus to the cytoplasm. More interestingly, activated SIRT1 subsequently binds with the EV71 3Dpol protein (a viral RNA-dependent RNA polymerase, RdRp) to repress the acetylation and RdRp activity of 3Dpol, resulting in the attenuation of viral genome replication. Moreover, SIRT1 interacts with the cloverleaf structure of the EV71 RNA 5′UTR to inhibit viral RNA transcription, and binds to the internal ribosome entry site (IRES) of the EV71 5′UTR to attenuate viral RNA translation. Thus, EV71 stimulates SIRT1 production and activity, which in turn represses EV71 genome replication by inhibiting viral polymerase, and attenuates EV71 RNA transcription and translation by interfering with viral RNA. These results uncover a new function of SIRT1 and reveal a new mechanism underlying the regulation of EV71 replication. PMID:27875274

  9. MISIS-2: A bioinformatics tool for in-depth analysis of small RNAs and representation of consensus master genome in viral quasispecies.

    Science.gov (United States)

    Seguin, Jonathan; Otten, Patricia; Baerlocher, Loïc; Farinelli, Laurent; Pooggin, Mikhail M

    2016-07-01

    In most eukaryotes, small RNA (sRNA) molecules such as miRNAs, siRNAs and piRNAs regulate gene expression and repress transposons and viruses. AGO/PIWI family proteins sort functional sRNAs based on size, 5'-nucleotide and other sequence features. In plants and some animals, viral sRNAs are extremely diverse and cover the entire viral genome sequences, which allows for de novo reconstruction of a complete viral genome by deep sequencing and bioinformatics analysis of viral sRNAs. Previously, we have developed a tool MISIS to view and analyze sRNA maps of viruses and cellular genome regions which spawn multiple sRNAs. Here we describe a new release of MISIS, MISIS-2, which enables to determine and visualize a consensus sequence and count sRNAs of any chosen sizes and 5'-terminal nucleotide identities. Furthermore we demonstrate the utility of MISIS-2 for identification of single nucleotide polymorphisms (SNPs) at each position of a reference sequence and reconstruction of a consensus master genome in evolving viral quasispecies. MISIS-2 is a Java standalone program. It is freely available along with the source code at the website http://www.fasteris.com/apps.

  10. Three-dimensional Structure of a Viral Genome-delivery Portal Vertex

    Energy Technology Data Exchange (ETDEWEB)

    A Olia; P Prevelige Jr.; J Johnson; G Cingolani

    2011-12-31

    DNA viruses such as bacteriophages and herpesviruses deliver their genome into and out of the capsid through large proteinaceous assemblies, known as portal proteins. Here, we report two snapshots of the dodecameric portal protein of bacteriophage P22. The 3.25-{angstrom}-resolution structure of the portal-protein core bound to 12 copies of gene product 4 (gp4) reveals a {approx}1.1-MDa assembly formed by 24 proteins. Unexpectedly, a lower-resolution structure of the full-length portal protein unveils the unique topology of the C-terminal domain, which forms a {approx}200-{angstrom}-long {alpha}-helical barrel. This domain inserts deeply into the virion and is highly conserved in the Podoviridae family. We propose that the barrel domain facilitates genome spooling onto the interior surface of the capsid during genome packaging and, in analogy to a rifle barrel, increases the accuracy of genome ejection into the host cell.

  11. Integrative Functional Genomics of Hepatitis C Virus Infection Identifies Host Dependencies in Complete Viral Replication Cycle

    OpenAIRE

    Qisheng Li; Yong-Yuan Zhang; Stephan Chiu; Zongyi Hu; Keng-Hsin Lan; Helen Cha; Catherine Sodroski; Fang Zhang; Ching-Sheng Hsu; Emmanuel Thomas; T Jake Liang

    2014-01-01

    Recent functional genomics studies including genome-wide small interfering RNA (siRNA) screens demonstrated that hepatitis C virus (HCV) exploits an extensive network of host factors for productive infection and propagation. How these co-opted host functions interact with various steps of HCV replication cycle and exert pro- or antiviral effects on HCV infection remains largely undefined. Here we present an unbiased and systematic strategy to functionally interrogate HCV host dependencies unc...

  12. The pp24 phosphoprotein of Mason-Pfizer monkey virus contributes to viral genome packaging

    Directory of Open Access Journals (Sweden)

    Weldon Robert A

    2005-11-01

    Full Text Available Abstract Background The Gag protein of Mason-Pfizer monkey virus, a betaretrovirus, contains a phosphoprotein that is cleaved into the Np24 protein and the phosphoprotein pp16/18 during virus maturation. Previous studies by Yasuda and Hunter (J. Virology. 1998. 72:4095–4103 have demonstrated that pp16/18 contains a viral late domain required for budding and that the Np24 protein plays a role during the virus life cycle since deletion of this N-terminal domain blocked virus replication. The function of the Np24 domain, however, is not known. Results Here we identify a region of basic residues (KKPKR within the Np24 domain that is highly conserved among the phosphoproteins of various betaretroviruses. We show that this KKPKR motif is required for virus replication yet dispensable for procapsid assembly, membrane targeting, budding and release, particle maturation, or viral glycoprotein packaging. Additional experiments indicated that deletion of this motif reduced viral RNA packaging 6–8 fold and affected the transient association of Gag with nuclear pores. Conclusion These results demonstrate that the Np24 domain plays an important role in RNA packaging and is in agreement with evidence that suggests that correct intracellular targeting of Gag to the nuclear compartment is an fundamental step in the retroviral life cycle.

  13. The Revolution in Viral Genomics as Exemplified by the Bioinformatic Analysis of Human Adenoviruses

    Directory of Open Access Journals (Sweden)

    Sarah Torres

    2010-06-01

    Full Text Available Over the past 30 years, genomic and bioinformatic analysis of human adenoviruses has been achieved using a variety of DNA sequencing methods; initially with the use of restriction enzymes and more currently with the use of the GS FLX pyrosequencing technology. Following the conception of DNA sequencing in the 1970s, analysis of adenoviruses has evolved from 100 base pair mRNA fragments to entire genomes. Comparative genomics of adenoviruses made its debut in 1984 when nucleotides and amino acids of coding sequences within the hexon genes of two human adenoviruses (HAdV, HAdV–C2 and HAdV–C5, were compared and analyzed. It was determined that there were three different zones (1-393, 394-1410, 1411-2910 within the hexon gene, of which HAdV–C2 and HAdV–C5 shared zones 1 and 3 with 95% and 89.5% nucleotide identity, respectively. In 1992, HAdV-C5 became the first adenovirus genome to be fully sequenced using the Sanger method. Over the next seven years, whole genome analysis and characterization was completed using bioinformatic tools such as blastn, tblastx, ClustalV and FASTA, in order to determine key proteins in species HAdV-A through HAdV-F. The bioinformatic revolution was initiated with the introduction of a novel species, HAdV-G, that was typed and named by the use of whole genome sequencing and phylogenetics as opposed to traditional serology. HAdV bioinformatics will continue to advance as the latest sequencing technology enables scientists to add to and expand the resource databases. As a result of these advancements, how novel HAdVs are typed has changed. Bioinformatic analysis has become the revolutionary tool that has significantly accelerated the in-depth study of HAdV microevolution through comparative genomics.

  14. The AT-hook DNA binding ability of the Epstein Barr virus EBNA1 protein is necessary for the maintenance of viral genomes in latently infected cells.

    Science.gov (United States)

    Chakravorty, Adityarup; Sugden, Bill

    2015-10-01

    Epstein Barr Virus (EBV) is a human tumor virus that is causally linked to malignancies such as Burkitt׳s lymphoma, and gastric and nasopharyngeal carcinomas. Tethering of EBV genomes to cellular chromosomes is required for the synthesis and persistence of viral plasmids in tumor cells. However, it is not established how EBV genomes are tethered to cellular chromosomes. We test the hypothesis that the viral protein EBNA1 tethers EBV genomes to chromosomes specifically through its N-terminal AT-hook DNA-binding domains by using a small molecule, netropsin, that has been shown to inhibit the AT-hook DNA-binding of EBNA1 in vitro. We show that netropsin forces the loss of EBV genomes from epithelial and lymphoid cells in an AT-hook dependent manner and that EBV-positive lymphoma cells are significantly more inhibited in their growth by netropsin than are corresponding EBV-negative cells.

  15. CE: Viral Hepatitis: New U.S. Screening Recommendations, Assessment Tools, and Treatments.

    Science.gov (United States)

    Dan, Corinna; Moses-Eisenstein, Michelle; Valdiserri, Ronald O

    2015-07-01

    Over the past 15 years, the incidences of hepatitis A and B virus infection in the United States have declined significantly. By contrast, the incidence of hepatitis C virus infection, formerly stable or in decline, has increased by 75% since 2010. Suboptimal therapies of the past, insufficient provider awareness, and low screening rates have hampered efforts to improve diagnosis, management, and treatment of viral hepatitis. New screening recommendations, innovations in assessment and treatment, and an updated action plan from the U.S. Department of Health and Human Services (HHS) seem likely to lead to significant progress in the coming years. This article reviews the epidemiology, natural history, and diagnosis of viral hepatitis; discusses new screening recommendations, assessment tools, and treatments; and outlines the HHS action plan, focusing on the role of nurses in prevention and treatment.

  16. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection.

    Science.gov (United States)

    Gillespie, Alyssa Lundgren; Teoh, Jeffrey; Lee, Heather; Prince, Jessica; Stadnisky, Michael D; Anderson, Monique; Nash, William; Rival, Claudia; Wei, Hairong; Gamache, Awndre; Farber, Charles R; Tung, Kenneth; Brown, Michael G

    2016-02-01

    The MHC class I D(k) molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds D(k), are required to control viral spread. The extent of D(k)-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust D(k)-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen.

  17. Identification and Genome Characterization of the First Sicinivirus Isolate from Chickens in Mainland China by Using Viral Metagenomics.

    Science.gov (United States)

    Zhou, Hongzhuan; Zhu, Shanshan; Quan, Rong; Wang, Jing; Wei, Li; Yang, Bing; Xu, Fuzhou; Wang, Jinluo; Chen, Fuyong; Liu, Jue

    2015-01-01

    Unlike traditional virus isolation and sequencing approaches, sequence-independent amplification based viral metagenomics technique allows one to discover unexpected or novel viruses efficiently while bypassing culturing step. Here we report the discovery of the first Sicinivirus isolate (designated as strain JSY) of picornaviruses from commercial layer chickens in mainland China by using a viral metagenomics technique. This Sicinivirus isolate, which contains a whole genome of 9,797 nucleotides (nt) excluding the poly(A) tail, possesses one of the largest picornavirus genome so far reported, but only shares 88.83% and 82.78% of amino acid sequence identity to that of ChPV1 100C (KF979332) and Sicinivirus 1 strain UCC001 (NC_023861), respectively. The complete 939 nt 5'UTR of the isolate strain contains at least twelve stem-loop domains (A-L), representing the highest set of loops reported within Sicinivirus genus. The conserved 'barbell-like' structure was also present in the 272 nt 3'UTR of the isolate as that in the 3' UTR of Sicinivirus 1 strain UCC001. The 8,586 nt large open reading frame encodes a 2,862 amino acids polyprotein precursor. Moreover, Sicinivirus infection might be widely present in commercial chicken farms in Yancheng region of the Jiangsu Province as evidenced by all the tested stool samples from three different farms being positive (17/17) for Sicinivirus detection. This is the first report on identification of Sicinivirus in commercial layer chickens with a severe clinical disease in mainland China, however, further studies are needed to evaluate the pathogenic potential of this picornavirus in chickens.

  18. Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome.

    Science.gov (United States)

    Nawtaisong, Pruksa; Keith, James; Fraser, Tresa; Balaraman, Velmurugan; Kolokoltsov, Andrey; Davey, Robert A; Higgs, Stephen; Mohammed, Ahmed; Rongsriyam, Yupha; Komalamisra, Narumon; Fraser, Malcolm J

    2009-06-04

    Outbreaks of Dengue impose a heavy economic burden on developing countries in terms of vector control and human morbidity. Effective vaccines against all four serotypes of Dengue are in development, but population replacement with transgenic vectors unable to transmit the virus might ultimately prove to be an effective approach to disease suppression, or even eradication. A key element of the refractory transgenic vector approach is the development of transgenes that effectively prohibit viral transmission. In this report we test the effectiveness of several hammerhead ribozymes for suppressing DENV in lentivirus-transduced mosquito cells in an attempt to mimic the transgenic use of these effector molecules in mosquitoes. A lentivirus vector that expresses these ribozymes as a fusion RNA molecule using an Ae. aegypti tRNA(val) promoter and terminating with a 60A tail insures optimal expression, localization, and activity of the hammerhead ribozyme against the DENV genome. Among the 14 hammerhead ribozymes we designed to attack the DENV-2 NGC genome, several appear to be relatively effective in reducing virus production from transduced cells by as much as 2 logs. Among the sequences targeted are 10 that are conserved among all DENV serotype 2 strains. Our results confirm that hammerhead ribozymes can be effective in suppressing DENV in a transgenic approach, and provide an alternative or supplementary approach to proposed siRNA strategies for DENV suppression in transgenic mosquitoes.

  19. Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome

    Directory of Open Access Journals (Sweden)

    Mohammed Ahmed

    2009-06-01

    Full Text Available Abstract Outbreaks of Dengue impose a heavy economic burden on developing countries in terms of vector control and human morbidity. Effective vaccines against all four serotypes of Dengue are in development, but population replacement with transgenic vectors unable to transmit the virus might ultimately prove to be an effective approach to disease suppression, or even eradication. A key element of the refractory transgenic vector approach is the development of transgenes that effectively prohibit viral transmission. In this report we test the effectiveness of several hammerhead ribozymes for suppressing DENV in lentivirus-transduced mosquito cells in an attempt to mimic the transgenic use of these effector molecules in mosquitoes. A lentivirus vector that expresses these ribozymes as a fusion RNA molecule using an Ae. aegypti tRNAval promoter and terminating with a 60A tail insures optimal expression, localization, and activity of the hammerhead ribozyme against the DENV genome. Among the 14 hammerhead ribozymes we designed to attack the DENV-2 NGC genome, several appear to be relatively effective in reducing virus production from transduced cells by as much as 2 logs. Among the sequences targeted are 10 that are conserved among all DENV serotype 2 strains. Our results confirm that hammerhead ribozymes can be effective in suppressing DENV in a transgenic approach, and provide an alternative or supplementary approach to proposed siRNA strategies for DENV suppression in transgenic mosquitoes.

  20. Whole-Genome Sequencing of Measles Virus Genotypes H1 and D8 During Outbreaks of Infection Following the 2010 Olympic Winter Games Reveals Viral Transmission Routes.

    Science.gov (United States)

    Gardy, Jennifer L; Naus, Monika; Amlani, Ashraf; Chung, Walter; Kim, Hochan; Tan, Malcolm; Severini, Alberto; Krajden, Mel; Puddicombe, David; Sahni, Vanita; Hayden, Althea S; Gustafson, Reka; Henry, Bonnie; Tang, Patrick

    2015-11-15

    We used whole-genome sequencing to investigate a dual-genotype outbreak of measles occurring after the XXI Olympic Winter Games in Vancouver, Canada. By sequencing 27 complete genomes from H1 and D8 genotype measles viruses isolated from outbreak cases, we estimated the virus mutation rate, determined that person-to-person transmission is typically associated with 0 mutations between isolates, and established that a single introduction of H1 virus led to the expansion of the outbreak beyond Vancouver. This is the largest measles genomics project to date, revealing novel aspects of measles virus genetics and providing new insights into transmission of this reemerging viral pathogen.

  1. Replication protein of tobacco mosaic virus cotranslationally binds the 5′ untranslated region of genomic RNA to enable viral replication

    Science.gov (United States)

    Kawamura-Nagaya, Kazue; Ishibashi, Kazuhiro; Huang, Ying-Ping; Miyashita, Shuhei; Ishikawa, Masayuki

    2014-01-01

    Genomic RNA of positive-strand RNA viruses replicate via complementary (i.e., negative-strand) RNA in membrane-bound replication complexes. Before replication complex formation, virus-encoded replication proteins specifically recognize genomic RNA molecules and recruit them to sites of replication. Moreover, in many of these viruses, selection of replication templates by the replication proteins occurs preferentially in cis. This property is advantageous to the viruses in several aspects of viral replication and evolution, but the underlying molecular mechanisms have not been characterized. Here, we used an in vitro translation system to show that a 126-kDa replication protein of tobacco mosaic virus (TMV), a positive-strand RNA virus, binds a 5′-terminal ∼70-nucleotide region of TMV RNA cotranslationally, but not posttranslationally. TMV mutants that carried nucleotide changes in the 5′-terminal region and showed a defect in the binding were unable to synthesize negative-strand RNA, indicating that this binding is essential for template selection. A C-terminally truncated 126-kDa protein, but not the full-length 126-kDa protein, was able to posttranslationally bind TMV RNA in vitro, suggesting that binding of the 126-kDa protein to the 70-nucleotide region occurs during translation and before synthesis of the C-terminal inhibitory domain. We also show that binding of the 126-kDa protein prevents further translation of the bound TMV RNA. These data provide a mechanistic explanation of how the 126-kDa protein selects replication templates in cis and how fatal collision between translating ribosomes and negative-strand RNA-synthesizing polymerases on the genomic RNA is avoided. PMID:24711385

  2. Construction of a subgenomic CV-B3 replicon expressing emerald green fluorescent protein to assess viral replication of a cardiotropic enterovirus strain in cultured human cells.

    Science.gov (United States)

    Wehbe, Michel; Huguenin, Antoine; Leveque, Nicolas; Semler, Bert L; Hamze, Monzer; Andreoletti, Laurent; Bouin, Alexis

    2016-04-01

    Coxsackieviruses B (CV-B) (Picornaviridae) are a common infectious cause of acute myocarditis in children and young adults, a disease, which is a precursor to 10-20% of chronic myocarditis and dilated cardiomyopathy (DCM) cases. The mechanisms involved in the disease progression from acute to chronic myocarditis phase and toward the DCM clinical stage are not fully understood but are influenced by both viral and host factors. Subgenomic replicons of CV-B can be used to assess viral replication mechanisms in human cardiac cells and evaluate the effects of potential antiviral drugs on viral replication activities. Our objectives were to generate a reporter replicon from a cardiotropic prototype CV-B3/28 strain and to characterize its replication properties into human cardiac primary cells. To obtain this replicon, a cDNA plasmid containing the full CV-B3/28 genome flanked by a hammerhead ribozyme sequence and an MluI restriction site was generated and used as a platform for the insertion of sequences encoding emerald green fluorescent protein (EmGFP) in place of those encoding VP3. In vitro transcribed RNA from this plasmid was transfected into HeLa cells and human primary cardiac cells and was able to produce EmGFP and VP1-containing polypeptides. Moreover, non-structural protein biological activity was assessed by the specific cleavage of eIF4G1 by viral 2A(pro). Viral RNA replication was indirectly demonstrated by inhibition assays, fluoxetine was added to cell culture and prevented the EmGFP synthesis. Our results indicated that the EmGFP CV-B3 replicon was able to replicate and translate as well as the CV-B3/28 prototype strain. Our EmGFP CV-B3 replicon will be a valuable tool to readily investigate CV-B3 replication activities in human target cell models.

  3. An Endogenous Foamy-like Viral Element in the Coelacanth Genome

    Science.gov (United States)

    Han, Guan-Zhu; Worobey, Michael

    2012-01-01

    Little is known about the origin and long-term evolutionary mode of retroviruses. Retroviruses can integrate into their hosts' genomes, providing a molecular fossil record for studying their deep history. Here we report the discovery of an endogenous foamy virus-like element, which we designate ‘coelacanth endogenous foamy-like virus’ (CoeEFV), within the genome of the coelacanth (Latimeria chalumnae). Phylogenetic analyses place CoeEFV basal to all known foamy viruses, strongly suggesting an ancient ocean origin of this major retroviral lineage, which had previously been known to infect only land mammals. The discovery of CoeEFV reveals the presence of foamy-like viruses in species outside the Mammalia. We show that foamy-like viruses have likely codiverged with their vertebrate hosts for more than 407 million years and underwent an evolutionary transition from water to land with their vertebrate hosts. These findings suggest an ancient marine origin of retroviruses and have important implications in understanding foamy virus biology. PMID:22761578

  4. An endogenous foamy-like viral element in the coelacanth genome.

    Science.gov (United States)

    Han, Guan-Zhu; Worobey, Michael

    2012-01-01

    Little is known about the origin and long-term evolutionary mode of retroviruses. Retroviruses can integrate into their hosts' genomes, providing a molecular fossil record for studying their deep history. Here we report the discovery of an endogenous foamy virus-like element, which we designate 'coelacanth endogenous foamy-like virus' (CoeEFV), within the genome of the coelacanth (Latimeria chalumnae). Phylogenetic analyses place CoeEFV basal to all known foamy viruses, strongly suggesting an ancient ocean origin of this major retroviral lineage, which had previously been known to infect only land mammals. The discovery of CoeEFV reveals the presence of foamy-like viruses in species outside the Mammalia. We show that foamy-like viruses have likely codiverged with their vertebrate hosts for more than 407 million years and underwent an evolutionary transition from water to land with their vertebrate hosts. These findings suggest an ancient marine origin of retroviruses and have important implications in understanding foamy virus biology.

  5. An endogenous foamy-like viral element in the coelacanth genome.

    Directory of Open Access Journals (Sweden)

    Guan-Zhu Han

    Full Text Available Little is known about the origin and long-term evolutionary mode of retroviruses. Retroviruses can integrate into their hosts' genomes, providing a molecular fossil record for studying their deep history. Here we report the discovery of an endogenous foamy virus-like element, which we designate 'coelacanth endogenous foamy-like virus' (CoeEFV, within the genome of the coelacanth (Latimeria chalumnae. Phylogenetic analyses place CoeEFV basal to all known foamy viruses, strongly suggesting an ancient ocean origin of this major retroviral lineage, which had previously been known to infect only land mammals. The discovery of CoeEFV reveals the presence of foamy-like viruses in species outside the Mammalia. We show that foamy-like viruses have likely codiverged with their vertebrate hosts for more than 407 million years and underwent an evolutionary transition from water to land with their vertebrate hosts. These findings suggest an ancient marine origin of retroviruses and have important implications in understanding foamy virus biology.

  6. Combined Antiviral Therapy Using Designed Molecular Scaffolds Targeting Two Distinct Viral Functions, HIV-1 Genome Integration and Capsid Assembly.

    Science.gov (United States)

    Khamaikawin, Wannisa; Saoin, Somphot; Nangola, Sawitree; Chupradit, Koollawat; Sakkhachornphop, Supachai; Hadpech, Sudarat; Onlamoon, Nattawat; Ansari, Aftab A; Byrareddy, Siddappa N; Boulanger, Pierre; Hong, Saw-See; Torbett, Bruce E; Tayapiwatana, Chatchai

    2015-08-25

    Designed molecular scaffolds have been proposed as alternative therapeutic agents against HIV-1. The ankyrin repeat protein (Ank(GAG)1D4) and the zinc finger protein (2LTRZFP) have recently been characterized as intracellular antivirals, but these molecules, used individually, do not completely block HIV-1 replication and propagation. The capsid-binder Ank(GAG)1D4, which inhibits HIV-1 assembly, does not prevent the genome integration of newly incoming viruses. 2LTRZFP, designed to target the 2-LTR-circle junction of HIV-1 cDNA and block HIV-1 integration, would have no antiviral effect on HIV-1-infected cells. However, simultaneous expression of these two molecules should combine the advantage of preventive and curative treatments. To test this hypothesis, the genes encoding the N-myristoylated Myr(+)Ank(GAG)1D4 protein and the 2LTRZFP were introduced into human T-cells, using a third-generation lentiviral vector. SupT1 cells stably expressing 2LTRZFP alone or with Myr(+)Ank(GAG)1D4 showed a complete resistance to HIV-1 in viral challenge. Administration of the Myr(+)Ank(GAG)1D4 vector to HIV-1-preinfected SupT1 cells resulted in a significant antiviral effect. Resistance to viral infection was also observed in primary human CD4+ T-cells stably expressing Myr(+)Ank(GAG)1D4, and challenged with HIV-1, SIVmac, or SHIV. Our data suggest that our two anti-HIV-1 molecular scaffold prototypes are promising antiviral agents for anti-HIV-1 gene therapy.

  7. HIV-1 and M-PMV RNA Nuclear Export Elements Program Viral Genomes for Distinct Cytoplasmic Trafficking Behaviors.

    Science.gov (United States)

    Pocock, Ginger M; Becker, Jordan T; Swanson, Chad M; Ahlquist, Paul; Sherer, Nathan M

    2016-04-01

    Retroviruses encode cis-acting RNA nuclear export elements that override nuclear retention of intron-containing viral mRNAs including the full-length, unspliced genomic RNAs (gRNAs) packaged into assembling virions. The HIV-1 Rev-response element (RRE) recruits the cellular nuclear export receptor CRM1 (also known as exportin-1/XPO1) using the viral protein Rev, while simple retroviruses encode constitutive transport elements (CTEs) that directly recruit components of the NXF1(Tap)/NXT1(p15) mRNA nuclear export machinery. How gRNA nuclear export is linked to trafficking machineries in the cytoplasm upstream of virus particle assembly is unknown. Here we used long-term (>24 h), multicolor live cell imaging to directly visualize HIV-1 gRNA nuclear export, translation, cytoplasmic trafficking, and virus particle production in single cells. We show that the HIV-1 RRE regulates unique, en masse, Rev- and CRM1-dependent "burst-like" transitions of mRNAs from the nucleus to flood the cytoplasm in a non-localized fashion. By contrast, the CTE derived from Mason-Pfizer monkey virus (M-PMV) links gRNAs to microtubules in the cytoplasm, driving them to cluster markedly to the centrosome that forms the pericentriolar core of the microtubule-organizing center (MTOC). Adding each export element to selected heterologous mRNAs was sufficient to confer each distinct export behavior, as was directing Rev/CRM1 or NXF1/NXT1 transport modules to mRNAs using a site-specific RNA tethering strategy. Moreover, multiple CTEs per transcript enhanced MTOC targeting, suggesting that a cooperative mechanism links NXF1/NXT1 to microtubules. Combined, these results reveal striking, unexpected features of retroviral gRNA nucleocytoplasmic transport and demonstrate roles for mRNA export elements that extend beyond nuclear pores to impact gRNA distribution in the cytoplasm.

  8. Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes.

    Science.gov (United States)

    Weingarten-Gabbay, Shira; Elias-Kirma, Shani; Nir, Ronit; Gritsenko, Alexey A; Stern-Ginossar, Noam; Yakhini, Zohar; Weinberger, Adina; Segal, Eran

    2016-01-15

    To investigate gene specificity at the level of translation in both the human genome and viruses, we devised a high-throughput bicistronic assay to quantify cap-independent translation. We uncovered thousands of novel cap-independent translation sequences, and we provide insights on the landscape of translational regulation in both humans and viruses. We find extensive translational elements in the 3' untranslated region of human transcripts and the polyprotein region of uncapped RNA viruses. Through the characterization of regulatory elements underlying cap-independent translation activity, we identify potential mechanisms of secondary structure, short sequence motif, and base pairing with the 18S ribosomal RNA (rRNA). Furthermore, we systematically map the 18S rRNA regions for which reverse complementarity enhances translation. Thus, we make available insights into the mechanisms of translational control in humans and viruses.

  9. Insights into specific DNA recognition during the assembly of a viral genome packaging machine.

    Science.gov (United States)

    de Beer, Tonny; Fang, Jenny; Ortega, Marcos; Yang, Qin; Maes, Levi; Duffy, Carol; Berton, Nancy; Sippy, Jean; Overduin, Michael; Feiss, Michael; Catalano, Carlos Enrique

    2002-05-01

    Terminase enzymes mediate genome "packaging" during the reproduction of DNA viruses. In lambda, the gpNu1 subunit guides site-specific assembly of terminase onto DNA. The structure of the dimeric DNA binding domain of gpNu1 was solved using nuclear magnetic resonance spectroscopy. Its fold contains a unique winged helix-turn-helix (wHTH) motif within a novel scaffold. Surprisingly, a predicted P loop ATP binding motif is in fact the wing of the DNA binding motif. Structural and genetic analysis has identified determinants of DNA recognition specificity within the wHTH motif and the DNA recognition sequence. The structure reveals an unexpected DNA binding mode and provides a mechanistic basis for the concerted action of gpNu1 and Escherichia coli integration host factor during assembly of the packaging machinery.

  10. Evaluation of a Phylogenetic Marker Based on Genomic Segment B of Infectious Bursal Disease Virus: Facilitating a Feasible Incorporation of this Segment to the Molecular Epidemiology Studies for this Viral Agent.

    Directory of Open Access Journals (Sweden)

    Abdulahi Alfonso-Morales

    Full Text Available Infectious bursal disease (IBD is a highly contagious and acute viral disease, which has caused high mortality rates in birds and considerable economic losses in different parts of the world for more than two decades and it still represents a considerable threat to poultry. The current study was designed to rigorously measure the reliability of a phylogenetic marker included into segment B. This marker can facilitate molecular epidemiology studies, incorporating this segment of the viral genome, to better explain the links between emergence, spreading and maintenance of the very virulent IBD virus (vvIBDV strains worldwide.Sequences of the segment B gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank Database; Cuban sequences were obtained in the current work. A phylogenetic marker named B-marker was assessed by different phylogenetic principles such as saturation of substitution, phylogenetic noise and high consistency. This last parameter is based on the ability of B-marker to reconstruct the same topology as the complete segment B of the viral genome. From the results obtained from B-marker, demographic history for both main lineages of IBDV regarding segment B was performed by Bayesian skyline plot analysis. Phylogenetic analysis for both segments of IBDV genome was also performed, revealing the presence of a natural reassortant strain with segment A from vvIBDV strains and segment B from non-vvIBDV strains within Cuban IBDV population.This study contributes to a better understanding of the emergence of vvIBDV strains, describing molecular epidemiology of IBDV using the state-of-the-art methodology concerning phylogenetic reconstruction. This study also revealed the presence of a novel natural reassorted strain as possible manifest of change in the genetic structure and stability of the vvIBDV strains. Therefore, it highlights the need to obtain information about both genome segments of IBDV for

  11. Sequencing Needs for Viral Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S N; Lam, M; Mulakken, N J; Torres, C L; Smith, J R; Slezak, T

    2004-01-26

    We built a system to guide decisions regarding the amount of genomic sequencing required to develop diagnostic DNA signatures, which are short sequences that are sufficient to uniquely identify a viral species. We used our existing DNA diagnostic signature prediction pipeline, which selects regions of a target species genome that are conserved among strains of the target (for reliability, to prevent false negatives) and unique relative to other species (for specificity, to avoid false positives). We performed simulations, based on existing sequence data, to assess the number of genome sequences of a target species and of close phylogenetic relatives (''near neighbors'') that are required to predict diagnostic signature regions that are conserved among strains of the target species and unique relative to other bacterial and viral species. For DNA viruses such as variola (smallpox), three target genomes provide sufficient guidance for selecting species-wide signatures. Three near neighbor genomes are critical for species specificity. In contrast, most RNA viruses require four target genomes and no near neighbor genomes, since lack of conservation among strains is more limiting than uniqueness. SARS and Ebola Zaire are exceptional, as additional target genomes currently do not improve predictions, but near neighbor sequences are urgently needed. Our results also indicate that double stranded DNA viruses are more conserved among strains than are RNA viruses, since in most cases there was at least one conserved signature candidate for the DNA viruses and zero conserved signature candidates for the RNA viruses.

  12. Quantitative assessment of the risk of introduction of bovine viral diarrhea virus in Danish dairy herds

    DEFF Research Database (Denmark)

    Foddai, Alessandro; Boklund, Anette; Stockmarr, Anders

    2014-01-01

    A quantitative risk assessment was carried out to estimate the likelihood of introduc-ing bovine viral diarrhea virus (BVDV) in Danish dairy herds per year and per trimester,respectively. The present study gives important information on the impact of risk mitiga-tion measures and sources of uncer......A quantitative risk assessment was carried out to estimate the likelihood of introduc-ing bovine viral diarrhea virus (BVDV) in Danish dairy herds per year and per trimester,respectively. The present study gives important information on the impact of risk mitiga-tion measures and sources...... of uncertainty due to lack of data. As suggested in the Agreementon the Application of Sanitary and Phytosanitary Measures (SPS Agreement), the OIE Ter-restrial Animal Health Code was followed for a transparent science-based risk assessment.Data from 2010 on imports of live cattle, semen, and embryos, exports...... of live cattle, aswell as use of vaccines were analyzed. Information regarding the application of biosecuritymeasures, by veterinarians and hoof trimmers practicing in Denmark and in other countries,was obtained by contacting several stakeholders, public institutions and experts. Stochas-tic scenario...

  13. Imaging Based Methods of Liver Fibrosis Assessment in Viral Hepatitis: A Practical Approach

    Directory of Open Access Journals (Sweden)

    Hicham Khallafi

    2015-01-01

    Full Text Available Liver fibrosis represents the repair mechanism in liver injury and is a feature of most chronic liver diseases. The degree of liver fibrosis in chronic viral hepatitis infections has major clinical implications and presence of advanced fibrosis or cirrhosis determines prognosis. Treatment initiation for viral hepatitis is indicated in most cases of advanced liver fibrosis and diagnosis of cirrhosis entails hepatology evaluation for specialized clinical care. Liver biopsy is an invasive technique and has been the standard of care of fibrosis assessment for years; however, it has several limitations and procedure related complications. Recently, several methods of noninvasive assessment of liver fibrosis have been developed which require either serologic testing or imaging of liver. Imaging based noninvasive techniques are reviewed here and their clinical use is described. Some of the imaging based tests are becoming widely available, and collectively they are shown to be superior to liver biopsy in important aspects. Clinical utilization of these methods requires understanding of performance and quality related parameters which can affect the results and provide wrong assessment of the extent of liver fibrosis. Familiarity with the strengths and weaknesses of each modality is needed to correctly interpret the results in appropriate clinical context.

  14. Rhabdovirus-like endogenous viral elements in the genome of Spodoptera frugiperda insect cells are actively transcribed: Implications for adventitious virus detection.

    Science.gov (United States)

    Geisler, Christoph; Jarvis, Donald L

    2016-07-01

    Spodoptera frugiperda (Sf) cell lines are used to produce several biologicals for human and veterinary use. Recently, it was discovered that all tested Sf cell lines are persistently infected with Sf-rhabdovirus, a novel rhabdovirus. As part of an effort to search for other adventitious viruses, we searched the Sf cell genome and transcriptome for sequences related to Sf-rhabdovirus. To our surprise, we found intact Sf-rhabdovirus N- and P-like ORFs, and partial Sf-rhabdovirus G- and L-like ORFs. The transcribed and genomic sequences matched, indicating the transcripts were derived from the genomic sequences. These appear to be endogenous viral elements (EVEs), which result from the integration of partial viral genetic material into the host cell genome. It is theoretically impossible for the Sf-rhabdovirus-like EVEs to produce infectious virus particles as 1) they are disseminated across 4 genomic loci, 2) the G and L ORFs are incomplete, and 3) the M ORF is missing. Our finding of transcribed virus-like sequences in Sf cells underscores that MPS-based searches for adventitious viruses in cell substrates used to manufacture biologics should take into account both genomic and transcribed sequences to facilitate the identification of transcribed EVE's, and to avoid false positive detection of replication-competent adventitious viruses.

  15. Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome.

    Science.gov (United States)

    Huang, Yan; Hidalgo-Bravo, Alberto; Zhang, Enjie; Cotton, Victoria E; Mendez-Bermudez, Aaron; Wig, Gunjan; Medina-Calzada, Zahara; Neumann, Rita; Jeffreys, Alec J; Winney, Bruce; Wilson, James F; Clark, Duncan A; Dyer, Martin J; Royle, Nicola J

    2014-01-01

    Linear chromosomes are stabilized by telomeres, but the presence of short dysfunctional telomeres triggers cellular senescence in human somatic tissues, thus contributing to ageing. Approximately 1% of the population inherits a chromosomally integrated copy of human herpesvirus 6 (CI-HHV-6), but the consequences of integration for the virus and for the telomere with the insertion are unknown. Here we show that the telomere on the distal end of the integrated virus is frequently the shortest measured in somatic cells but not the germline. The telomere carrying the CI-HHV-6 is also prone to truncations that result in the formation of a short telomere at a novel location within the viral genome. We detected extra-chromosomal circular HHV-6 molecules, some surprisingly comprising the entire viral genome with a single fully reconstituted direct repeat region (DR) with both terminal cleavage and packaging elements (PAC1 and PAC2). Truncated CI-HHV-6 and extra-chromosomal circular molecules are likely reciprocal products that arise through excision of a telomere-loop (t-loop) formed within the CI-HHV-6 genome. In summary, we show that the CI-HHV-6 genome disrupts stability of the associated telomere and this facilitates the release of viral sequences as circular molecules, some of which have the potential to become fully functioning viruses.

  16. The role of DNA twist in the packaging of viral genomes.

    Science.gov (United States)

    Rollins, Geoffrey C; Petrov, Anton S; Harvey, Stephen C

    2008-03-01

    We performed molecular dynamics simulations of the genome packaging of bacteriophage P4 using two coarse-grained models of DNA. The first model, 1DNA6 (one pseudo-atom per six DNA basepairs), represents DNA as a string of beads, for which DNA torsions are undefined. The second model, 3DNA6 (three pseudo-atoms per six DNA basepairs), represents DNA as a series of base planes with torsions defined by the angles between successive planes. Bacteriophage P4 was packaged with 1DNA6, 3DNA6 in a torsionally relaxed state, and 3DNA6 in a torsionally strained state. We observed good agreement between the packed conformation of 1DNA6 and the packed conformations of 3DNA6. The free energies of packaging were in agreement, as well. Our results suggest that DNA torsions can be omitted from coarse-grained bacteriophage packaging simulations without significantly altering the DNA conformations or free energies of packaging that the simulations predict.

  17. Visualising a viral RNA genome poised for release from its receptor complex.

    Science.gov (United States)

    Toropova, Katerina; Stockley, Peter G; Ranson, Neil A

    2011-05-06

    We describe the cryo-electron microscopy structure of bacteriophage MS2 bound to its receptor, the bacterial F-pilus. The virus contacts the pilus at a capsid 5-fold vertex, thus locating the surface-accessible portion of the single copy of the pilin-binding maturation protein present in virions. This arrangement allows a 5-fold averaged map to be calculated, showing for the first time in any virus-receptor complex the nonuniform distribution of RNA within the capsid. Strikingly, at the vertex that contacts the pilus, a rod of density that may include contributions from both genome and maturation protein sits above a channel that goes through the capsid to the outside. This density is reminiscent of the DNA density observed in the exit channel of double-stranded DNA phages, suggesting that the RNA-maturation protein complex is poised to leave the capsid as the first step of the infection process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping

    DEFF Research Database (Denmark)

    Zhan, Bujie; Fadista, João; Thomsen, Bo

    2011-01-01

    sequence of a single Holstein Friesian bull with data from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was assessed by combining SNPs that were...... of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays. Conclusions Our results provide high resolution mapping of diverse classes of genomic variation...

  19. Viral Genome-Linked Protein (VPg) Is Essential for Translation Initiation of Rabbit Hemorrhagic Disease Virus (RHDV).

    Science.gov (United States)

    Zhu, Jie; Wang, Binbin; Miao, Qiuhong; Tan, Yonggui; Li, Chuanfeng; Chen, Zongyan; Guo, Huimin; Liu, Guangqing

    2015-01-01

    Rabbit hemorrhagic disease virus (RHDV), the causative agent of rabbit hemorrhagic disease, is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, limiting the study of the pathogenesis of RHDV. In addition, the mechanisms underlying RHDV translation and replication are largely unknown compared with other caliciviridae viruses. The RHDV replicon recently constructed in our laboratory provides an appropriate model to study the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon, we demonstrated that the viral genome-linked protein (VPg) is essential for RHDV translation in RK-13 cells for the first time. In addition, we showed that VPg interacts with eukaryotic initiation factor 4E (eIF4E) in vivo and in vitro and that eIF4E silencing inhibits RHDV translation, suggesting the interaction between VPg and eIF4E is involved in RHDV translation. Our results support the hypothesis that VPg serves as a novel cap substitute during the initiation of RHDV translation.

  20. Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast

    Science.gov (United States)

    Li, Ge; Poulsen, Melissa; Fenyvuesvolgyi, Csaba; Yashiroda, Yoko; Yoshida, Minoru; Simard, J. Marc; Gallo, Robert C.; Zhao, Richard Y.

    2017-01-01

    The Zika virus (ZIKV) causes microcephaly and the Guillain-Barré syndrome. Little is known about how ZIKV causes these conditions or which ZIKV viral protein(s) is responsible for the associated ZIKV-induced cytopathic effects, including cell hypertrophy, growth restriction, cell-cycle dysregulation, and cell death. We used fission yeast for the rapid, global functional analysis of the ZIKV genome. All 14 proteins or small peptides were produced under an inducible promoter, and we measured the intracellular localization and the specific effects on ZIKV-associated cytopathic activities of each protein. The subcellular localization of each ZIKV protein was in overall agreement with its predicted protein structure. Five structural and two nonstructural ZIKV proteins showed various levels of cytopathic effects. The expression of these ZIKV proteins restricted cell proliferation, induced hypertrophy, or triggered cellular oxidative stress leading to cell death. The expression of premembrane protein (prM) resulted in cell-cycle G1 accumulation, whereas membrane-anchored capsid (anaC), membrane protein (M), envelope protein (E), and nonstructural protein 4A (NS4A) caused cell-cycle G2/M accumulation. A mechanistic study revealed that NS4A-induced cellular hypertrophy and growth restriction were mediated specifically through the target of rapamycin (TOR) cellular stress pathway involving Tor1 and type 2A phosphatase activator Tip41. These findings should provide a reference for future research on the prevention and treatment of ZIKV diseases. PMID:28049830

  1. Viral Genome-Linked Protein (VPg Is Essential for Translation Initiation of Rabbit Hemorrhagic Disease Virus (RHDV.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Rabbit hemorrhagic disease virus (RHDV, the causative agent of rabbit hemorrhagic disease, is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, limiting the study of the pathogenesis of RHDV. In addition, the mechanisms underlying RHDV translation and replication are largely unknown compared with other caliciviridae viruses. The RHDV replicon recently constructed in our laboratory provides an appropriate model to study the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon, we demonstrated that the viral genome-linked protein (VPg is essential for RHDV translation in RK-13 cells for the first time. In addition, we showed that VPg interacts with eukaryotic initiation factor 4E (eIF4E in vivo and in vitro and that eIF4E silencing inhibits RHDV translation, suggesting the interaction between VPg and eIF4E is involved in RHDV translation. Our results support the hypothesis that VPg serves as a novel cap substitute during the initiation of RHDV translation.

  2. Viral assemblage composition in Yellowstone acidic hot springs assessed by network analysis.

    Science.gov (United States)

    Bolduc, Benjamin; Wirth, Jennifer F; Mazurie, Aurélien; Young, Mark J

    2015-10-01

    Understanding of viral assemblage structure in natural environments remains a daunting task. Total viral assemblage sequencing (for example, viral metagenomics) provides a tractable approach. However, even with the availability of next-generation sequencing technology it is usually only possible to obtain a fragmented view of viral assemblages in natural ecosystems. In this study, we applied a network-based approach in combination with viral metagenomics to investigate viral assemblage structure in the high temperature, acidic hot springs of Yellowstone National Park, USA. Our results show that this approach can identify distinct viral groups and provide insights into the viral assemblage structure. We identified 110 viral groups in the hot springs environment, with each viral group likely representing a viral family at the sub-family taxonomic level. Most of these viral groups are previously unknown DNA viruses likely infecting archaeal hosts. Overall, this study demonstrates the utility of combining viral assemblage sequencing approaches with network analysis to gain insights into viral assemblage structure in natural ecosystems.

  3. From Viral genome to specific peptide epitopes - Methods for identifying porcine T cell epitopes based on in silico predictions, in vitro identification and ex vivo verification

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndahl, Mikkel

    immunity during viral infections and disease. Here we combine the ability of complete nonamer peptide based binding matrices for three different SLA proteins to predict good candidates for peptide-SLA (pSLA) binding with that of an online available algorithm, NetMHCpan. Further we analyze the correlation......The affinity for and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are instrumental factors in presentation of viral epitopes to cytotoxic T lymphocytes (CTLs). In swine, such peptide presentations by swine leukocyte antigens (SLA) are crucial for swine...... can be identified within a given viral genome, along with the elimination of hundreds, or even thousands, of peptide sequences, which are not likely to be bound. Applying these methods can save enormous amounts of time and costs of epitope discovery studies and MHC binding analysis not only in swine...

  4. The C Terminus of the Herpes Simplex Virus UL25 Protein Is Required for Release of Viral Genomes from Capsids Bound to Nuclear Pores.

    Science.gov (United States)

    Huffman, Jamie B; Daniel, Gina R; Falck-Pedersen, Erik; Huet, Alexis; Smith, Greg A; Conway, James F; Homa, Fred L

    2017-08-01

    The herpes simplex virus (HSV) capsid is released into the cytoplasm after fusion of viral and host membranes, whereupon dynein-dependent trafficking along microtubules targets it to the nuclear envelope. Binding of the capsid to the nuclear pore complex (NPC) is mediated by the capsid protein pUL25 and the capsid-tethered tegument protein pUL36. Temperature-sensitive mutants in both pUL25 and pUL36 dock at the NPC but fail to release DNA. The uncoating reaction has been difficult to study due to the rapid release of the genome once the capsid interacts with the nuclear pore. In this study, we describe the isolation and characterization of a truncation mutant of pUL25. Live-cell imaging and immunofluorescence studies demonstrated that the mutant was not impaired in penetration of the host cell or in trafficking of the capsid to the nuclear membrane. However, expression of viral proteins was absent or significantly delayed in cells infected with the pUL25 mutant virus. Transmission electron microscopy revealed capsids accumulated at nuclear pores that retained the viral genome for at least 4 h postinfection. In addition, cryoelectron microscopy (cryo-EM) reconstructions of virion capsids did not detect any obvious differences in the location or structural organization for the pUL25 or pUL36 proteins on the pUL25 mutant capsids. Further, in contrast to wild-type virus, the antiviral response mediated by the viral DNA-sensing cyclic guanine adenine synthase (cGAS) was severely compromised for the pUL25 mutant. These results demonstrate that the pUL25 capsid protein has a critical role in releasing viral DNA from NPC-bound capsids.IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. Early steps in infection include release of the capsid into the cytoplasm, docking of the capsid at a nuclear pore, and release of the viral genome into the nucleus

  5. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8¿ T cells in early viral evolution

    DEFF Research Database (Denmark)

    Callendret, Benoît; Bukh, Jens; Eccleston, Heather B;

    2011-01-01

    The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid...... occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic...... replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered...

  6. Genetics and Molecular Biology of Epstein-Barr Virus-Encoded BART MicroRNA: A Paradigm for Viral Modulation of Host Immune Response Genes and Genome Stability

    Directory of Open Access Journals (Sweden)

    David H. Dreyfus

    2017-01-01

    Full Text Available Epstein-Barr virus, a ubiquitous human herpesvirus, is associated through epidemiologic evidence with common autoimmune syndromes and cancers. However, specific genetic mechanisms of pathogenesis have been difficult to identify. In this review, the author summarizes evidence that recently discovered noncoding RNAs termed microRNA encoded by Epstein-Barr virus BARF (BamHI A right frame termed BART (BamHI A right transcripts are modulators of human immune response genes and genome stability in infected and bystander cells. BART expression is apparently regulated by complex feedback loops with the host immune response regulatory NF-κB transcription factors. EBV-encoded BZLF-1 (ZEBRA protein could also regulate BART since ZEBRA contains a terminal region similar to ankyrin proteins such as IκBα that regulate host NF-κB. BALF-2 (BamHI A left frame transcript, a viral homologue of the immunoglobulin and T cell receptor gene recombinase RAG-1 (recombination-activating gene-1, may also be coregulated with BART since BALF-2 regulatory sequences are located near the BART locus. Viral-encoded microRNA and viral mRNA transferred to bystander cells through vesicles, defective viral particles, or other mechanisms suggest a new paradigm in which bystander or hit-and-run mechanisms enable the virus to transiently or chronically alter human immune response genes as well as the stability of the human genome.

  7. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene

    OpenAIRE

    Cui, Hongguang; Wang, Aiming

    2016-01-01

    Summary RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus?induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile pe...

  8. Comparison of genome size and synthesis of structural proteins of Hirame Rhabdovirus, infectious hematopoietic necrosis virus, and viral hemorrhagic Septicemia virus

    Science.gov (United States)

    Nishizawa, Toyohiko; Yoshimizu, Mamoru; Winton, James R.; Kimura, Takahisa

    1991-01-01

    Genomic RNA was extracted from purified virions of hirame rhabdovirus (HRV), infectious hematopoietic necrosis virus (IHNV), and viral hemorrhagic septicemia virus (VHSV). The full-length RNA was analyzed using formaldehyde agarose gel electrophoresis followed by ethidium bromide staining. Compared with an internal RNA size standard, all three viral genomic RNAs appeared to have identical relative mobilities and were estimated to be approximately 10.7 kilobases in length or about 3.7 megadaltons in molecular mass. Structural protein synthesis of HRV, IHNV, and VHSV was studied using cell cultures treated with actinomycin D. At 2 h intervals, proteins were labeled with 35S-methionine, extracted, and analyzed by SDS-polyacrylamide gel electrophoresis and autoradiography. The five structural proteins of each of the three viruses appeared in the following order : nucleoprotein (N), matrix protein 1 (M1), matrix protein 2 (M2), glycoprotein (G), and polymerase (L) reflecting both the approximate relative abundance of each protein within infected cells and the gene order within the viral genome.

  9. Molecular cloning, sequence analysis and expression of genome segment 7 (S7) of Antheraea mylitta cypovirus (AmCPV) that encodes a viral structural protein.

    Science.gov (United States)

    Chavali, Venkata Ramana Murthy; Ghosh, Ananta K

    2007-10-01

    The Genome segment 7 (S7) of the 11 double stranded RNA genomes from Antheraea mylitta cypovirus (AmCPV) was converted to cDNA, cloned and sequenced. The nucleotide sequence showed that segment 7 consisted of 1789 nucleotides with an ORF of 530 amino acids and could encode a protein of approximately 61 kDa, termed P61. The 5' terminal sequence, AGTAAT and the 3' terminal sequence, AGAGC of the plus strand was found to be the same as genome segment 10 of AmCPV encoding polyhedrin. No sequence similarity was found by searching nucleic acid and protein sequence databases using BLAST. The secondary structure prediction showed the presence of 17 alpha-helices, 18 extended beta-sheets along the entire length of P61. The ORF of segment 7 was expressed in E. coli as His-tagged fusion protein, purified through Ni-NTA chromatography, and polyclonal antibody was raised in rabbit indicating that P61 is immunogenic. Immunoblot analysis using this antibody on viral infected cells as well as purified polyhedra showed that P61 is a viral structural protein. Motif scan search showed some similarity of P61 with Inosine monophosphate dehydrogenase (IMPDH) cystathionine-beta-synthase (CBS) domain at the C-terminus and it was hypothesized that by binding to single stranded viral RNA through its CBS domain P61 may help in virus replication or transcription.

  10. Emerging viral zoonoses: frameworks for spatial and spatiotemporal risk assessment and resource planning.

    Science.gov (United States)

    Clements, Archie C A; Pfeiffer, Dirk U

    2009-10-01

    Spatial epidemiological tools are increasingly being applied to emerging viral zoonoses (EVZ), partly because of improving analytical methods and technologies for data capture and management, and partly because the demand is growing for more objective ways of allocating limited resources in the face of the emerging threat posed by these diseases. This review documents applications of geographical information systems (GIS), remote sensing (RS) and spatially-explicit statistical and mathematical models to epidemiological studies of EVZ. Landscape epidemiology uses statistical associations between environmental variables and diseases to study and predict their spatial distributions. Phylogeography augments epidemiological knowledge by studying the evolution of viral genetics through space and time. Cluster detection and early warning systems assist surveillance and can permit timely interventions. Advanced statistical models can accommodate spatial dependence present in epidemiological datasets and can permit assessment of uncertainties in disease data and predictions. Mathematical models are particularly useful for testing and comparing alternative control strategies, whereas spatial decision-support systems integrate a variety of spatial epidemiological tools to facilitate widespread dissemination and interpretation of disease data. Improved spatial data collection systems and greater practical application of spatial epidemiological tools should be applied in real-world scenarios.

  11. Quantitative analysis of viral load per haploid genome revealed the different biological features of Merkel cell polyomavirus infection in skin tumor.

    Directory of Open Access Journals (Sweden)

    Satoshi Ota

    Full Text Available Merkel cell polyomavirus (MCPyV has recently been identified in Merkel cell carcinoma (MCC, an aggressive cancer that occurs in sun-exposed skin. Conventional technologies, such as polymerase chain reaction (PCR and immunohistochemistry, have produced conflicting results for MCPyV infections in non-MCC tumors. Therefore, we performed quantitative analyses of the MCPyV copy number in various skin tumor tissues, including MCC (n = 9 and other sun exposure-related skin tumors (basal cell carcinoma [BCC, n = 45], actinic keratosis [AK, n = 52], Bowen's disease [n = 34], seborrheic keratosis [n = 5], primary cutaneous anaplastic large-cell lymphoma [n = 5], malignant melanoma [n = 5], and melanocytic nevus [n = 6]. In a conventional PCR analysis, MCPyV DNA was detected in MCC (9 cases; 100%, BCC (1 case; 2%, and AK (3 cases; 6%. We then used digital PCR technology to estimate the absolute viral copy number per haploid human genome in these tissues. The viral copy number per haploid genome was estimated to be around 1 in most MCC tissues, and there were marked differences between the MCC (0.119-42.8 and AK (0.02-0.07 groups. PCR-positive BCC tissue showed a similar viral load as MCC tissue (0.662. Immunohistochemistry with a monoclonal antibody against the MCPyV T antigen (CM2B4 demonstrated positive nuclear localization in most of the high-viral-load tumor groups (8 of 9 MCC and 1 BCC, but not in the low-viral-load or PCR-negative tumor groups. These results demonstrated that MCPyV infection is possibly involved in a minority of sun-exposed skin tumors, including BCC and AK, and that these tumors display different modes of infection.

  12. nGASP - the nematode genome annotation assessment project

    Energy Technology Data Exchange (ETDEWEB)

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C

  13. Multiple-integrations of HPV16 genome and altered transcription of viral oncogenes and cellular genes are associated with the development of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Xulian Lu

    Full Text Available The constitutive expression of the high-risk HPV E6 and E7 viral oncogenes is the major cause of cervical cancer. To comprehensively explore the composition of HPV16 early transcripts and their genomic annotation, cervical squamous epithelial tissues from 40 HPV16-infected patients were collected for analysis of papillomavirus oncogene transcripts (APOT. We observed different transcription patterns of HPV16 oncogenes in progression of cervical lesions to cervical cancer and identified one novel transcript. Multiple-integration events in the tissues of cervical carcinoma (CxCa are significantly more often than those of low-grade squamous intraepithelial lesions (LSIL and high-grade squamous intraepithelial lesions (HSIL. Moreover, most cellular genes within or near these integration sites are cancer-associated genes. Taken together, this study suggests that the multiple-integrations of HPV genome during persistent viral infection, which thereby alters the expression patterns of viral oncogenes and integration-related cellular genes, play a crucial role in progression of cervical lesions to cervix cancer.

  14. Assessment of public health risk associated with viral contamination in harvested urban stormwater for domestic applications.

    Science.gov (United States)

    Lim, Keah-Ying; Hamilton, Andrew J; Jiang, Sunny C

    2015-08-01

    Capturing stormwater is becoming a new standard for sustainable urban stormwater management, which can be used to supplement water supply portfolios in water-stressed cities. The key advantage of harvesting stormwater is to use low impact development (LID) systems for treatment to meet water quality requirement for non-potable uses. However, the lack of scientific studies to validate the safety of such practice has limited its adoption. Microbial hazards in stormwater, especially human viruses, represent the primary public health threat. Using adenovirus and norovirus as target pathogens, we investigated the viral health risk associated with a generic scenario of urban stormwater harvesting practice and its application for three non-potable uses: 1) toilet flushing, 2) showering, and 3) food-crop irrigation. The Quantitative Microbial Risk Assessment (QMRA) results showed that food-crop irrigation has the highest annual viral infection risk (median range: 6.8×10(-4)-9.7×10(-1) per-person-per-year or pppy), followed by showering (3.6×10(-7)-4.3×10(-2)pppy), and toilet flushing (1.1×10(-7)-1.3×10(-4)pppy). Disease burden of each stormwater use was ranked in the same order as its viral infection risk: food-crop irrigation>showering>toilet flushing. The median and 95th percentile risk values of toilet-flushing using treated stormwater are below U.S. EPA annual risk benchmark of ≤10(-4)pppy, whereas the disease burdens of both toilet-flushing and showering are within the WHO recommended disease burdens of ≤10(-6)DALYspppy. However, the acceptability of showering risk interpreted based on the U.S. EPA and WHO benchmarks is in disagreement. These results confirm the safety of stormwater application in toilet flushing, but call for further research to fill the data gaps in risk modeling as well as risk benchmarks. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Assessment of public health risk associated with viral contamination in harvested urban stormwater for domestic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Keah-Ying [Department of Civil and Environmental Engineering, University of California, Irvine, CA 92617-2175 (United States); Hamilton, Andrew J. [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Dookie Campus, Currawa, VIC 3647 (Australia); Federation University Australia, Mt Helen Campus, VIC 3353 (Australia); Jiang, Sunny C., E-mail: sjiang@uci.edu [Department of Civil and Environmental Engineering, University of California, Irvine, CA 92617-2175 (United States)

    2015-08-01

    Capturing stormwater is becoming a new standard for sustainable urban stormwater management, which can be used to supplement water supply portfolios in water-stressed cities. The key advantage of harvesting stormwater is to use low impact development (LID) systems for treatment to meet water quality requirement for non-potable uses. However, the lack of scientific studies to validate the safety of such practice has limited its adoption. Microbial hazards in stormwater, especially human viruses, represent the primary public health threat. Using adenovirus and norovirus as target pathogens, we investigated the viral health risk associated with a generic scenario of urban stormwater harvesting practice and its application for three non-potable uses: 1) toilet flushing, 2) showering, and 3) food-crop irrigation. The Quantitative Microbial Risk Assessment (QMRA) results showed that food-crop irrigation has the highest annual viral infection risk (median range: 6.8 × 10{sup −4}–9.7 × 10{sup −1} per-person-per-year or pppy), followed by showering (3.6 × 10{sup −7}–4.3 × 10{sup −2} pppy), and toilet flushing (1.1 × 10{sup −7}–1.3 × 10{sup −4} pppy). Disease burden of each stormwater use was ranked in the same order as its viral infection risk: food-crop irrigation > showering > toilet flushing. The median and 95th percentile risk values of toilet-flushing using treated stormwater are below U.S. EPA annual risk benchmark of ≤ 10{sup −4} pppy, whereas the disease burdens of both toilet-flushing and showering are within the WHO recommended disease burdens of ≤ 10{sup −6} DALYs pppy. However, the acceptability of showering risk interpreted based on the U.S. EPA and WHO benchmarks is in disagreement. These results confirm the safety of stormwater application in toilet flushing, but call for further research to fill the data gaps in risk modeling as well as risk benchmarks. - Highlights: • Human health risks for three non-potable uses of treated

  16. Viral epigenetics.

    Science.gov (United States)

    Milavetz, Barry I; Balakrishnan, Lata

    2015-01-01

    DNA tumor viruses including members of the polyomavirus, adenovirus, papillomavirus, and herpes virus families are presently the subject of intense interest with respect to the role that epigenetics plays in control of the virus life cycle and the transformation of a normal cell to a cancer cell. To date, these studies have primarily focused on the role of histone modification, nucleosome location, and DNA methylation in regulating the biological consequences of infection. Using a wide variety of strategies and techniques ranging from simple ChIP to ChIP-chip and ChIP-seq to identify histone modifications, nuclease digestion to genome wide next generation sequencing to identify nucleosome location, and bisulfite treatment to MeDIP to identify DNA methylation sites, the epigenetic regulation of these viruses is slowly becoming better understood. While the viruses may differ in significant ways from each other and cellular chromatin, the role of epigenetics appears to be relatively similar. Within the viral genome nucleosomes are organized for the expression of appropriate genes with relevant histone modifications particularly histone acetylation. DNA methylation occurs as part of the typical gene silencing during latent infection by herpesviruses. In the simple tumor viruses like the polyomaviruses, adenoviruses, and papillomaviruses, transformation of the cell occurs via integration of the virus genome such that the virus's normal regulation is disrupted. This results in the unregulated expression of critical viral genes capable of redirecting cellular gene expression. The redirected cellular expression is a consequence of either indirect epigenetic regulation where cellular signaling or transcriptional dysregulation occurs or direct epigenetic regulation where epigenetic cofactors such as histone deacetylases are targeted. In the more complex herpersviruses transformation is a consequence of the expression of the viral latency proteins and RNAs which again can

  17. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene.

    Science.gov (United States)

    Cui, Hongguang; Wang, Aiming

    2017-03-01

    RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees.

  18. Basil (Ocimum basilicum Genetic Variability and Viral Disease Assessment in Nigeria

    Directory of Open Access Journals (Sweden)

    O.D. Ojo

    2012-01-01

    Full Text Available The study aims at assessing Basil’s genetic phenotypic variability and viral disease incidence in Nigeria for sustainable pathological interventions. Basil (Ocimum basilicum is important for it’s medicinal and nutritive value. It is highly adaptable as a potential crop in the tropics and could therefore enhance the food security of sub Saharan Africa nations. Germplasm seed evaluation and characterization was therefore carried out from the nationwide National Horticultural Research Institute (NIHORT seed collection survey to expand NIHORT basil genetic base. The field layout was completely randomized design with five replications. The treatments were: O. basilicum, O. gratissimum and the local basil. Treatments were randomly allocated per replication. There were significant phenotypic differences in the O. basilicum variety. These differences were observed in the plant coloration ranging from deep to light purple coloration of stem, leaf, leaf vein and petiole. Our observations also revealed for the first time significant tolerance to Venial Mottle Mosaic Virus (VMMV in the purple colored compared to the green O. basilicum in the early stages of growth till 50% anthesis. This is the first report of this observation in the African continent. Tolerance to VMMV symptoms increased significantly (LSD 5% with purplish coloration. We concluded that inducement of purplish coloration in Basil through breeding might improve tolerance to VMMV and thereby increase market value of Basil with sustainable pathological interventions.

  19. Assessing pneumococcal meningitis association with viral respiratory infections and antibiotics: insights from statistical and mathematical models.

    Science.gov (United States)

    Opatowski, Lulla; Varon, Emmanuelle; Dupont, Claire; Temime, Laura; van der Werf, Sylvie; Gutmann, Laurent; Boëlle, Pierre-Yves; Watier, Laurence; Guillemot, Didier

    2013-08-01

    Pneumococcus is an important human pathogen, highly antibiotic resistant and a major cause of bacterial meningitis worldwide. Better prevention requires understanding the drivers of pneumococcal infection incidence and antibiotic susceptibility. Although respiratory viruses (including influenza) have been suggested to influence pneumococcal infections, the underlying mechanisms are still unknown, and viruses are rarely considered when studying pneumococcus epidemiology. Here, we propose a novel mathematical model to examine hypothetical relationships between Streptococcus pneumoniae meningitis incidence (SPMI), acute viral respiratory infections (AVRIs) and antibiotic exposure. French time series of SPMI, AVRI and penicillin consumption over 2001-2004 are analysed and used to assess four distinct virus-bacteria interaction submodels, ascribing the interaction on pneumococcus transmissibility and/or pathogenicity. The statistical analysis reveals strong associations between time series: SPMI increases shortly after AVRI incidence and decreases overall as the antibiotic-prescription rate rises. Model simulations require a combined impact of AVRI on both pneumococcal transmissibility (up to 1.3-fold increase at the population level) and pathogenicity (up to threefold increase) to reproduce the data accurately, along with diminished epidemic fitness of resistant pneumococcal strains causing meningitis (0.97 (0.96-0.97)). Overall, our findings suggest that AVRI and antibiotics strongly influence SPMI trends. Consequently, vaccination protecting against respiratory virus could have unexpected benefits to limit invasive pneumococcal infections.

  20. The influence of the human genome on chronic viral hepatitis outcome A influência do genoma humano no curso das hepatites virais crônicas

    Directory of Open Access Journals (Sweden)

    Dahir Ramos de Andrade Júnior

    2004-06-01

    Full Text Available The mechanisms that determine viral clearance or viral persistence in chronic viral hepatitis have yet to be identified. Recent advances in molecular genetics have permitted the detection of variations in immune response, often associated with polymorphism in the human genome. Differences in host susceptibility to infectious disease and disease severity cannot be attributed solely to the virulence of microbial agents. Several recent advances concerning the influence of human genes in chronic viral hepatitis B and C are discussed in this article: a the associations between human leukocyte antigen polymorphism and viral hepatic disease susceptibility or resistance; b protective alleles influencing hepatitis B virus (HBV and hepatitis C virus (HCV evolution; c prejudicial alleles influencing HBV and HCV; d candidate genes associated with HBV and HCV evolution; d other genetic factors that may contribute to chronic hepatitis C evolution (genes influencing hepatic stellate cells, TGF-beta1 and TNF-alpha production, hepatic iron deposits and angiotensin II production, among others. Recent discoveries regarding genetic associations with chronic viral hepatitis may provide clues to understanding the development of end-stage complications such as cirrhosis or hepatocellular carcinoma. In the near future, analysis of the human genome will allow the elucidation of both the natural course of viral hepatitis and its response to therapy.Os mecanismos que determinam o clearance ou a persistência da infecção viral nas hepatites virais crônicas não estão ainda bem identificados. O progresso no conhecimento sobre as ferramentas genéticas moleculares tem permitido detectar variações na resposta imune, que freqüentemente são associadas com polimorfismos do genoma humano. As diferenças na susceptibilidade do hospedeiro para as doenças infecciosas e a intensidade das doenças não podem ser atribuídas apenas à virulência do agente microbiano. Neste

  1. CNARA: reliability assessment for genomic copy number profiles.

    Science.gov (United States)

    Ai, Ni; Cai, Haoyang; Solovan, Caius; Baudis, Michael

    2016-10-12

    DNA copy number profiles from microarray and sequencing experiments sometimes contain wave artefacts which may be introduced during sample preparation and cannot be removed completely by existing preprocessing methods. Besides, large derivative log ratio spread (DLRS) of the probes correlating with poor DNA quality is sometimes observed in genome screening experiments and may lead to unreliable copy number profiles. Depending on the extent of these artefacts and the resulting misidentification of copy number alterations/variations (CNA/CNV), it may be desirable to exclude such samples from analyses or to adapt the downstream data analysis strategy accordingly. Here, we propose a method to distinguish reliable genomic copy number profiles from those containing heavy wave artefacts and/or large DLRS. We define four features that adequately summarize the copy number profiles for reliability assessment, and train a classifier on a dataset of 1522 copy number profiles from various microarray platforms. The method can be applied to predict the reliability of copy number profiles irrespective of the underlying microarray platform and may be adapted for those sequencing platforms from which copy number estimates could be computed as a piecewise constant signal. Further details can be found at https://github.com/baudisgroup/CNARA . We have developed a method for the assessment of genomic copy number profiling data, and suggest to apply the method in addition to and after other state-of-the-art noise correction and quality control procedures. CNARA could be instrumental in improving the assessment of data used for genomic data mining experiments and support the reliable functional attribution of copy number aberrations especially in cancer research.

  2. Genetics and Genomics of Cotton Leaf Curl Disease, Its Viral Causal Agents and Whitefly Vector: A Way Forward to Sustain Cotton Fiber Security

    Directory of Open Access Journals (Sweden)

    Mehboob-ur- Rahman

    2017-07-01

    Full Text Available Cotton leaf curl disease (CLCuD after its first epidemic in 1912 in Nigeria, has spread to different cotton growing countries including United States, Pakistan, India, and China. The disease is of viral origin—transmitted by the whitefly Bemisia tabaci, which is difficult to control because of the prevalence of multiple virulent viral strains or related species. The problem is further complicated as the CLCuD causing virus complex has a higher recombination rate. The availability of alternate host crops like tomato, okra, etc., and practicing mixed type farming system have further exaggerated the situation by adding synergy to the evolution of new viral strains and vectors. Efforts to control this disease using host plant resistance remained successful using two gene based-resistance that was broken by the evolution of new resistance breaking strain called Burewala virus. Development of transgenic cotton using both pathogen and non-pathogenic derived approaches are in progress. In future, screening for new forms of host resistance, use of DNA markers for the rapid incorporation of resistance into adapted cultivars overlaid with transgenics and using genome editing by CRISPR/Cas system would be instrumental in adding multiple layers of defense to control the disease—thus cotton fiber production will be sustained.

  3. Genetics and Genomics of Cotton Leaf Curl Disease, Its Viral Causal Agents and Whitefly Vector: A Way Forward to Sustain Cotton Fiber Security.

    Science.gov (United States)

    Rahman, Mehboob-Ur-; Khan, Ali Q; Rahmat, Zainab; Iqbal, Muhammad A; Zafar, Yusuf

    2017-01-01

    Cotton leaf curl disease (CLCuD) after its first epidemic in 1912 in Nigeria, has spread to different cotton growing countries including United States, Pakistan, India, and China. The disease is of viral origin-transmitted by the whitefly Bemisia tabaci, which is difficult to control because of the prevalence of multiple virulent viral strains or related species. The problem is further complicated as the CLCuD causing virus complex has a higher recombination rate. The availability of alternate host crops like tomato, okra, etc., and practicing mixed type farming system have further exaggerated the situation by adding synergy to the evolution of new viral strains and vectors. Efforts to control this disease using host plant resistance remained successful using two gene based-resistance that was broken by the evolution of new resistance breaking strain called Burewala virus. Development of transgenic cotton using both pathogen and non-pathogenic derived approaches are in progress. In future, screening for new forms of host resistance, use of DNA markers for the rapid incorporation of resistance into adapted cultivars overlaid with transgenics and using genome editing by CRISPR/Cas system would be instrumental in adding multiple layers of defense to control the disease-thus cotton fiber production will be sustained.

  4. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2003-01-01

    The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness.......The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness....

  5. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2003-01-01

    The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness.......The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness....

  6. A Dimeric Rep Protein Initiates Replication of a Linear Archaeal Virus Genome: Implications for the Rep Mechanism and Viral Replication ▿ †

    Science.gov (United States)

    Oke, Muse; Kerou, Melina; Liu, Huanting; Peng, Xu; Garrett, Roger A.; Prangishvili, David; Naismith, James H.; White, Malcolm F.

    2011-01-01

    The Rudiviridae are a family of rod-shaped archaeal viruses with covalently closed, linear double-stranded DNA (dsDNA) genomes. Their replication mechanisms remain obscure, although parallels have been drawn to the Poxviridae and other large cytoplasmic eukaryotic viruses. Here we report that a protein encoded in the 34-kbp genome of the rudivirus SIRV1 is a member of the replication initiator (Rep) superfamily of proteins, which initiate rolling-circle replication (RCR) of diverse viruses and plasmids. We show that SIRV Rep nicks the viral hairpin terminus, forming a covalent adduct between an active-site tyrosine and the 5′ end of the DNA, releasing a 3′ DNA end as a primer for DNA synthesis. The enzyme can also catalyze the joining reaction that is necessary to reseal the DNA hairpin and terminate replication. The dimeric structure points to a simple mechanism through which two closely positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral replication are discussed. PMID:21068244

  7. A Genome Sequence of Novel SARS-CoV Isolates: the Genotype,GD-Ins29, Leads to a Hypothesis of Viral Transmission in South China

    Institute of Scientific and Technical Information of China (English)

    E'de Qin; Guohui Chang; Wuchun Cao; Zuyuan Xu; Ruifu Yang; Jing Wang; Man Yu; Yan Li; Jing Xu; Bingyin Si; Yongwu Hu; Xionglei He; Wenming Peng; Lin Tang; Tao Jiang; Jianping Shi; Jia Ji; Yu Zhang; Jia Ye; Cui'e Wang; Yujun Han; Jun Zhou; Wei Tian; Yajun Deng; Xiaoyu Li; Jianfei Hu; Caiping Wang; Chunxia Yan; Qingrun Zhang; Jingyue Bao; Guoqing Li; Weijun Chen; Lin Fang; Yong Liu; Changfeng Li; Meng Lei; Dawei Li; Wei Tong; Xiangjun Tian; Jin Wang; Bo Zhang; Haiqing Zhang; Yilin Zhang; Hui Zhao; Wei Li; Xiaowei Zhang; Shuangli Li; Xiaojie Cheng; Xiuqing Zhang; Bin Liu; Changqing Zeng; Songgang Li; Xuehai Tan; Siqi Liu; Wei Dong; Jie Wen; Jun Wang; Gane Ka-Shu Wong; Jun Yu; Jian Wang; Qingyu Zhu; Huanming Yang; Jingqiang Wang; Baochang Fan; Qingfa Wu

    2003-01-01

    We report a complete genomic sequence of rare isolates (minor genotype) of theSARS-CoV from SARS patients in Guangdong, China, where the first few casesemerged. The most striking discovery from the isolate is an extra 29-nucleotidesequence located at the nucleotide positions between 27,863 and 27,864 (referredto the complete sequence of B J01) within an overlapped region composed of BGI-PUP5 (BGI-postulated uncharacterized protein 5) and BGI-PUP6 upstream ofthe N (nucleocapsid) protein. The discovery of this minor genotype, GD-Ins29,suggests a significant genetic event and differentiates it from the previously re-ported genotype, the dominant form among all sequenced SARS-CoV isolates. A17-nt segment of this extra sequence is identical to a segment of the same size intwo human mRNA sequences that may interfere with viral genome replication andtranscription in the cytosol of the infected cells. It provides a new avenue for theexploration of the virus-host interaction in viral evolution, host pathogenesis, andvaccine development.

  8. Collembase: a repository for springtail genomics and soil quality assessment

    Directory of Open Access Journals (Sweden)

    Klein-Lankhorst Rene M

    2007-09-01

    Full Text Available Abstract Background Environmental quality assessment is traditionally based on responses of reproduction and survival of indicator organisms. For soil assessment the springtail Folsomia candida (Collembola is an accepted standard test organism. We argue that environmental quality assessment using gene expression profiles of indicator organisms exposed to test substrates is more sensitive, more toxicant specific and significantly faster than current risk assessment methods. To apply this species as a genomic model for soil quality testing we conducted an EST sequencing project and developed an online database. Description Collembase is a web-accessible database comprising springtail (F. candida genomic data. Presently, the database contains information on 8686 ESTs that are assembled into 5952 unique gene objects. Of those gene objects ~40% showed homology to other protein sequences available in GenBank (blastx analysis; non-redundant (nr database; expect-value -5. Software was applied to infer protein sequences. The putative peptides, which had an average length of 115 amino-acids (ranging between 23 and 440 were annotated with Gene Ontology (GO terms. In total 1025 peptides (~17% of the gene objects were assigned at least one GO term (expect-value -25. Within Collembase searches can be conducted based on BLAST and GO annotation, cluster name or using a BLAST server. The system furthermore enables easy sequence retrieval for functional genomic and Quantitative-PCR experiments. Sequences are submitted to GenBank (Accession numbers: EV473060 – EV481745. Conclusion Collembase http://www.collembase.org is a resource of sequence data on the springtail F. candida. The information within the database will be linked to a custom made microarray, based on the Agilent platform, which can be applied for soil quality testing. In addition, Collembase supplies information that is valuable for related scientific disciplines such as molecular ecology

  9. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Directory of Open Access Journals (Sweden)

    Stephanie M Rainey

    2016-04-01

    Full Text Available The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus. Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to

  10. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Science.gov (United States)

    Rainey, Stephanie M; Martinez, Julien; McFarlane, Melanie; Juneja, Punita; Sarkies, Peter; Lulla, Aleksei; Schnettler, Esther; Varjak, Margus; Merits, Andres; Miska, Eric A; Jiggins, Francis M; Kohl, Alain

    2016-04-01

    The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus). Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs) have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to an induced

  11. Impact of collection method on assessment of semen HIV RNA viral load.

    Directory of Open Access Journals (Sweden)

    Brendan J W Osborne

    Full Text Available BACKGROUND: The blood HIV RNA viral load is the best-defined predictor of HIV transmission, in part due to ease of measurement and the correlation of blood and genital tract (semen or cervico-vaginal viral load, although recent studies found semen HIV RNA concentration to be a stronger predictor of HIV transmission. There is currently no standardized method for semen collection when measuring HIV RNA concentration. Therefore, we compared two collection techniques in order to study of the impact of antiretroviral therapy on the semen viral load. METHODOLOGY/PRINCIPAL FINDINGS: Semen was collected by masturbation from HIV-infected, therapy-naïve men who have sex with men (MSM either undiluted (Visit 1 or directly into transport medium (Visit 2. Seminal plasma was then isolated, and the HIV RNA concentration obtained with each collection technique was measured and corrected for dilution if necessary. Collection of semen directly into transport medium resulted in a median HIV RNA viral load that was 0.4 log10 higher than undiluted samples. CONCLUSIONS/SIGNIFICANCE: The method of semen collection is an important consideration when quantifying the HIV RNA viral load in this compartment.

  12. An improved probability mapping approach to assess genome mosaicism

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2003-09-01

    Full Text Available Abstract Background Maximum likelihood and posterior probability mapping are useful visualization techniques that are used to ascertain the mosaic nature of prokaryotic genomes. However, posterior probabilities, especially when calculated for four-taxon cases, tend to overestimate the support for tree topologies. Furthermore, because of poor taxon sampling four-taxon analyses suffer from sensitivity to the long branch attraction artifact. Here we extend the probability mapping approach by improving taxon sampling of the analyzed datasets, and by using bootstrap support values, a more conservative tool to assess reliability. Results Quartets of orthologous proteins were complemented with homologs from selected reference genomes. The mapping of bootstrap support values from these extended datasets gives results similar to the original maximum likelihood and posterior probability mapping. The more conservative nature of the plotted support values allows to focus further analyses on those protein families that strongly disagree with the majority or plurality of genes present in the analyzed genomes. Conclusion Posterior probability is a non-conservative measure for support, and posterior probability mapping only provides a quick estimation of phylogenetic information content of four genomes. This approach can be utilized as a pre-screen to select genes that might have been horizontally transferred. Better taxon sampling combined with subtree analyses prevents the inconsistencies associated with four-taxon analyses, but retains the power of visual representation. Nevertheless, a case-by-case inspection of individual multi-taxon phylogenies remains necessary to differentiate unrecognized paralogy and shared phylogenetic reconstruction artifacts from horizontal gene transfer events.

  13. Assessing performance of orthology detection strategies applied to eukaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Feng Chen

    Full Text Available Orthology detection is critically important for accurate functional annotation, and has been widely used to facilitate studies on comparative and evolutionary genomics. Although various methods are now available, there has been no comprehensive analysis of performance, due to the lack of a genomic-scale 'gold standard' orthology dataset. Even in the absence of such datasets, the comparison of results from alternative methodologies contains useful information, as agreement enhances confidence and disagreement indicates possible errors. Latent Class Analysis (LCA is a statistical technique that can exploit this information to reasonably infer sensitivities and specificities, and is applied here to evaluate the performance of various orthology detection methods on a eukaryotic dataset. Overall, we observe a trade-off between sensitivity and specificity in orthology detection, with BLAST-based methods characterized by high sensitivity, and tree-based methods by high specificity. Two algorithms exhibit the best overall balance, with both sensitivity and specificity>80%: INPARANOID identifies orthologs across two species while OrthoMCL clusters orthologs from multiple species. Among methods that permit clustering of ortholog groups spanning multiple genomes, the (automated OrthoMCL algorithm exhibits better within-group consistency with respect to protein function and domain architecture than the (manually curated KOG database, and the homolog clustering algorithm TribeMCL as well. By way of using LCA, we are also able to comprehensively assess similarities and statistical dependence between various strategies, and evaluate the effects of parameter settings on performance. In summary, we present a comprehensive evaluation of orthology detection on a divergent set of eukaryotic genomes, thus providing insights and guides for method selection, tuning and development for different applications. Many biological questions have been addressed by multiple

  14. An HIV epidemic model based on viral load dynamics: value in assessing empirical trends in HIV virulence and community viral load.

    Science.gov (United States)

    Herbeck, Joshua T; Mittler, John E; Gottlieb, Geoffrey S; Mullins, James I

    2014-06-01

    Trends in HIV virulence have been monitored since the start of the AIDS pandemic, as studying HIV virulence informs our understanding of HIV epidemiology and pathogenesis. Here, we model changes in HIV virulence as a strictly evolutionary process, using set point viral load (SPVL) as a proxy, to make inferences about empirical SPVL trends from longitudinal HIV cohorts. We develop an agent-based epidemic model based on HIV viral load dynamics. The model contains functions for viral load and transmission, SPVL and disease progression, viral load trajectories in multiple stages of infection, and the heritability of SPVL across transmissions. We find that HIV virulence evolves to an intermediate level that balances infectiousness with longer infected lifespans, resulting in an optimal SPVL∼4.75 log10 viral RNA copies/mL. Adaptive viral evolution may explain observed HIV virulence trends: our model produces SPVL trends with magnitudes that are broadly similar to empirical trends. With regard to variation among studies in empirical SPVL trends, results from our model suggest that variation may be explained by the specific epidemic context, e.g. the mean SPVL of the founding lineage or the age of the epidemic; or improvements in HIV screening and diagnosis that results in sampling biases. We also use our model to examine trends in community viral load, a population-level measure of HIV viral load that is thought to reflect a population's overall transmission potential. We find that community viral load evolves in association with SPVL, in the absence of prevention programs such as antiretroviral therapy, and that the mean community viral load is not necessarily a strong predictor of HIV incidence.

  15. An HIV epidemic model based on viral load dynamics: value in assessing empirical trends in HIV virulence and community viral load.

    Directory of Open Access Journals (Sweden)

    Joshua T Herbeck

    2014-06-01

    Full Text Available Trends in HIV virulence have been monitored since the start of the AIDS pandemic, as studying HIV virulence informs our understanding of HIV epidemiology and pathogenesis. Here, we model changes in HIV virulence as a strictly evolutionary process, using set point viral load (SPVL as a proxy, to make inferences about empirical SPVL trends from longitudinal HIV cohorts. We develop an agent-based epidemic model based on HIV viral load dynamics. The model contains functions for viral load and transmission, SPVL and disease progression, viral load trajectories in multiple stages of infection, and the heritability of SPVL across transmissions. We find that HIV virulence evolves to an intermediate level that balances infectiousness with longer infected lifespans, resulting in an optimal SPVL∼4.75 log10 viral RNA copies/mL. Adaptive viral evolution may explain observed HIV virulence trends: our model produces SPVL trends with magnitudes that are broadly similar to empirical trends. With regard to variation among studies in empirical SPVL trends, results from our model suggest that variation may be explained by the specific epidemic context, e.g. the mean SPVL of the founding lineage or the age of the epidemic; or improvements in HIV screening and diagnosis that results in sampling biases. We also use our model to examine trends in community viral load, a population-level measure of HIV viral load that is thought to reflect a population's overall transmission potential. We find that community viral load evolves in association with SPVL, in the absence of prevention programs such as antiretroviral therapy, and that the mean community viral load is not necessarily a strong predictor of HIV incidence.

  16. Assessing the diversity and specificity of two freshwater viral communities through metagenomics.

    Science.gov (United States)

    Roux, Simon; Enault, Francois; Robin, Agnès; Ravet, Viviane; Personnic, Sébastien; Theil, Sébastien; Colombet, Jonathan; Sime-Ngando, Télesphore; Debroas, Didier

    2012-01-01

    Transitions between saline and fresh waters have been shown to be infrequent for microorganisms. Based on host-specific interactions, the presence of specific clades among hosts suggests the existence of freshwater-specific viral clades. Yet, little is known about the composition and diversity of the temperate freshwater viral communities, and even if freshwater lakes and marine waters harbor distinct clades for particular viral sub-families, this distinction remains to be demonstrated on a community scale.To help identify the characteristics and potential specificities of freshwater viral communities, such communities from two lakes differing by their ecological parameters were studied through metagenomics. Both the cluster richness and the species richness of the Lake Bourget virome were significantly higher that those of the Lake Pavin, highlighting a trend similar to the one observed for microorganisms (i.e. the specie richness observed in mesotrophic lakes is greater than the one observed in oligotrophic lakes). Using 29 previously published viromes, the cluster richness was shown to vary between different environment types and appeared significantly higher in marine ecosystems than in other biomes. Furthermore, significant genetic similarity between viral communities of related environments was highlighted as freshwater, marine and hypersaline environments were separated from each other despite the vast geographical distances between sample locations within each of these biomes. An automated phylogeny procedure was then applied to marker genes of the major families of single-stranded (Microviridae, Circoviridae, Nanoviridae) and double-stranded (Caudovirales) DNA viruses. These phylogenetic analyses all spotlighted a very broad diversity and previously unknown clades undetectable by PCR analysis, clades that gathered sequences from the two lakes. Thus, the two freshwater viromes appear closely related, despite the significant ecological differences between

  17. A sensitive, support-vector-machine method for the detection of horizontal gene transfers in viral, archaeal and bacterial genomes.

    Science.gov (United States)

    Tsirigos, Aristotelis; Rigoutsos, Isidore

    2005-01-01

    In earlier work, we introduced and discussed a generalized computational framework for identifying horizontal transfers. This framework relied on a gene's nucleotide composition, obviated the need for knowledge of codon boundaries and database searches, and was shown to perform very well across a wide range of archaeal and bacterial genomes when compared with previously published approaches, such as Codon Adaptation Index and C + G content. Nonetheless, two considerations remained outstanding: we wanted to further increase the sensitivity of detecting horizontal transfers and also to be able to apply the method to increasingly smaller genomes. In the discussion that follows, we present such a method, Wn-SVM, and show that it exhibits a very significant improvement in sensitivity compared with earlier approaches. Wn-SVM uses a one-class support-vector machine and can learn using rather small training sets. This property makes Wn-SVM particularly suitable for studying small-size genomes, similar to those of viruses, as well as the typically larger archaeal and bacterial genomes. We show experimentally that the new method results in a superior performance across a wide range of organisms and that it improves even upon our own earlier method by an average of 10% across all examined genomes. As a small-genome case study, we analyze the genome of the human cytomegalovirus and demonstrate that Wn-SVM correctly identifies regions that are known to be conserved and prototypical of all beta-herpesvirinae, regions that are known to have been acquired horizontally from the human host and, finally, regions that had not up to now been suspected to be horizontally transferred. Atypical region predictions for many eukaryotic viruses, including the alpha-, beta- and gamma-herpesvirinae, and 123 archaeal and bacterial genomes, have been made available online at http://cbcsrv.watson.ibm.com/HGT_SVM/.

  18. Reciprocal functional pseudotyping of HIV-1 and HTLV-1 viral genomes by the heterologous counterpart envelope proteins.

    Science.gov (United States)

    Klase, Zachary; Jeang, Kuan-Teh

    2013-08-15

    HIV-1 and HTLV-1 can infect CD4+ T cells and can co-infect the same individual. In principle, it is possible that both viruses can infect the same CD4+ T cells in dually infected persons. Currently, how efficiently HTLV-1 and HIV-1 co-infects the same cell and the full extent of their biological interactions are not well-understood. Here, we report evidence confirming that both viruses can infect the same cells and that HTLV-1 envelope (Env) can pseudotype HIV-1 viral particles and HIV-1 envelope (Env) can pseudotype HTLV-1 virions to mediate subsequent infections of substrate cells. We also show that the construction of a chimeric HTLV-1 molecular clone carrying the HIV-1 Env in place of its HTLV-1 counterpart results in a replication competent moiety. These findings raise new implications of viral complementation and assortment between HIV-1 and HTLV-1 in dually infected persons.

  19. The development of a viral mediated CRISPR/Cas9 system with doxycycline dependent gRNA expression for inducible in vitro and in vivo genome editing.

    Directory of Open Access Journals (Sweden)

    Christopher A. de Solis

    2016-08-01

    Full Text Available The RNA-guided Cas9 nuclease, from the type II prokaryotic Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR adaptive immune system, has been adapted and utilized by scientists to edit the genomes of eukaryotic cells. Here, we report the development of a viral mediated CRISPR/Cas9 system that can be rendered inducible utilizing doxycycline (Dox and can be delivered to cells in vitro and in vivo utilizing adeno-associated virus (AAV. Specifically, we developed an inducible gRNA (gRNAi AAV vector that is designed to express the gRNA from a H1/TO promoter. This AAV vector is also designed to express the Tet repressor (TetR to regulate the expression of the gRNAi in a Dox dependent manner. We show that H1/TO promoters of varying length and a U6/TO promoter can edit DNA with similar efficiency in vitro, in a Dox dependent manner. We also demonstrate that our inducible gRNAi vector can be used to edit the genomes of neurons in vivo within the mouse brain in a Dox dependent manner. Genome editing can be induced in vivo with this system by supplying animals Dox containing food for as little as one day. This system might be cross compatible with many existing S. pyogenes Cas9 systems (i.e. Cas9 mouse, CRISPRi, etc., and therefore it likely can be used to render these systems inducible as well.

  20. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2007-01-01

    Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness.......Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness....

  1. The G1613A mutation in the HBV genome affects HBeAg expression and viral replication through altered core promoter activity.

    Directory of Open Access Journals (Sweden)

    Man-Shan Li

    Full Text Available Infection of hepatitis B virus (HBV causes acute and chronic hepatitis and is closely associated with the development of cirrhosis and hepatocellular carcinoma (HCC. Previously, we demonstrated that the G1613A mutation in the HBV negative regulatory element (NRE is a hotspot mutation in HCC patients. In this study, we further investigated the functional consequences of this mutation in the context of the full length HBV genome and its replication. We showed that the G1613A mutation significantly suppresses the secretion of e antigen (HBeAg and enhances the synthesis of viral DNA, which is in consistence to our clinical result that the G1613A mutation associates with high viral load in chronic HBV carriers. To further investigate the molecular mechanism of the mutation, we performed the electrophoretic mobility shift assay with the recombinant RFX1 protein, a trans-activator that was shown to interact with the NRE of HBV. Intriguingly, RFX1 binds to the G1613A mutant with higher affinity than the wild-type sequence, indicating that the mutation possesses the trans-activating effect to the core promoter via NRE. The trans-activating effect was further validated by the enhancement of the core promoter activity after overexpression of RFX1 in liver cell line. In summary, our results suggest the functional consequences of the hotspot G1613A mutation found in HBV. We also provide a possible molecular mechanism of this hotspot mutation to the increased viral load of HBV carriers, which increases the risk to HCC.

  2. Norovirus translation requires an interaction between the C Terminus of the genome-linked viral protein VPg and eukaryotic translation initiation factor 4G.

    Science.gov (United States)

    Chung, Liliane; Bailey, Dalan; Leen, Eoin N; Emmott, Edward P; Chaudhry, Yasmin; Roberts, Lisa O; Curry, Stephen; Locker, Nicolas; Goodfellow, Ian G

    2014-08-01

    Viruses have evolved a variety of mechanisms to usurp the host cell translation machinery to enable translation of the viral genome in the presence of high levels of cellular mRNAs. Noroviruses, a major cause of gastroenteritis in man, have evolved a mechanism that relies on the interaction of translation initiation factors with the virus-encoded VPg protein covalently linked to the 5' end of the viral RNA. To further characterize this novel mechanism of translation initiation, we have used proteomics to identify the components of the norovirus translation initiation factor complex. This approach revealed that VPg binds directly to the eIF4F complex, with a high affinity interaction occurring between VPg and eIF4G. Mutational analyses indicated that the C-terminal region of VPg is important for the VPg-eIF4G interaction; viruses with mutations that alter or disrupt this interaction are debilitated or non-viable. Our results shed new light on the unusual mechanisms of protein-directed translation initiation.

  3. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection.

    Science.gov (United States)

    Butterbach, Patrick; Verlaan, Maarten G; Dullemans, Annette; Lohuis, Dick; Visser, Richard G F; Bai, Yuling; Kormelink, Richard

    2014-09-02

    Tomato yellow leaf curl virus (TYLCV) and related begomoviruses are a major threat to tomato production worldwide and, to protect against these viruses, resistance genes from different wild tomato species are introgressed. Recently, the Ty-1 resistance gene was identified, shown to code for an RNA-dependent RNA polymerase and to be allelic with Ty-3. Here we show that upon TYLCV challenging of resistant lines carrying Ty-1 or Ty-3, low virus titers were detected concomitant with the production of relatively high levels of siRNAs whereas, in contrast, susceptible tomato Moneymaker (MM) revealed higher virus titers but lower amounts of siRNAs. Comparative analysis of the spatial genomic siRNA distribution showed a consistent and subtle enrichment for siRNAs derived from the V1 and C3 genes in Ty-1 and Ty-3. In plants containing Ty-2 resistance the virus was hardly detectable, but the siRNA profile resembled the one observed in TYLCV-challenged susceptible tomato (MM). Furthermore, a relative hypermethylation of the TYLCV V1 promoter region was observed in genomic DNA collected from Ty-1 compared with that from (MM). The resistance conferred by Ty-1 was also effective against the bipartite tomato severe rugose begomovirus, where a similar genome hypermethylation of the V1 promoter region was discerned. However, a mixed infection of TYLCV with cucumber mosaic virus compromised the resistance. The results indicate that Ty-1 confers resistance to geminiviruses by increasing cytosine methylation of viral genomes, suggestive of enhanced transcriptional gene silencing. The mechanism of resistance and its durability toward geminiviruses under natural field conditions is discussed.

  4. Assessing the genomic evidence for conserved transcribed pseudogenes under selection

    Directory of Open Access Journals (Sweden)

    Harrison Paul M

    2009-09-01

    Full Text Available Abstract Background Transcribed pseudogenes are copies of protein-coding genes that have accumulated indicators of coding-sequence decay (such as frameshifts and premature stop codons, but nonetheless remain transcribed. Recent experimental evidence indicates that transcribed pseudogenes may regulate the expression of homologous genes, through antisense interference, or generation of small interfering RNAs (siRNAs. Here, we assessed the genomic evidence for such transcribed pseudogenes of potential functional importance, in the human genome. The most obvious indicators of such functional importance are significant evidence of conservation and selection pressure. Results A variety of pseudogene annotations from multiple sources were pooled and filtered to obtain a subset of sequences that have significant mid-sequence disablements (frameshifts and premature stop codons, and that have clear evidence of full-length mRNA transcription. We found 1750 such transcribed pseudogene annotations (TPAs in the human genome (corresponding to ~11.5% of human pseudogene annotations. We checked for syntenic conservation of TPAs in other mammals (rhesus monkey, mouse, rat, dog and cow. About half of the human TPAs are conserved in rhesus monkey, but strikingly, very few in mouse (~3%. The TPAs conserved in rhesus monkey show evidence of selection pressure (relative to surrounding intergenic DNA on: (i their GC content, and (ii their rate of nucleotide substitution. This is in spite of distributions of Ka/Ks (ratios of non-synonymous to synonymous substitution rates, congruent with a lack of protein-coding ability. Furthermore, we have identified 68 human TPAs that are syntenically conserved in at least two other mammals. Interestingly, we observe three TPA sequences conserved in dog that have intermediate character (i.e., evidence of both protein-coding ability and pseudogenicity, and discuss the implications of this. Conclusion Through evolutionary analysis, we

  5. Assessing the significance of conserved genomic aberrations using high resolution genomic microarrays.

    Directory of Open Access Journals (Sweden)

    Mitchell Guttman

    2007-08-01

    Full Text Available Genomic aberrations recurrent in a particular cancer type can be important prognostic markers for tumor progression. Typically in early tumorigenesis, cells incur a breakdown of the DNA replication machinery that results in an accumulation of genomic aberrations in the form of duplications, deletions, translocations, and other genomic alterations. Microarray methods allow for finer mapping of these aberrations than has previously been possible; however, data processing and analysis methods have not taken full advantage of this higher resolution. Attention has primarily been given to analysis on the single sample level, where multiple adjacent probes are necessarily used as replicates for the local region containing their target sequences. However, regions of concordant aberration can be short enough to be detected by only one, or very few, array elements. We describe a method called Multiple Sample Analysis for assessing the significance of concordant genomic aberrations across multiple experiments that does not require a-priori definition of aberration calls for each sample. If there are multiple samples, representing a class, then by exploiting the replication across samples our method can detect concordant aberrations at much higher resolution than can be derived from current single sample approaches. Additionally, this method provides a meaningful approach to addressing population-based questions such as determining important regions for a cancer subtype of interest or determining regions of copy number variation in a population. Multiple Sample Analysis also provides single sample aberration calls in the locations of significant concordance, producing high resolution calls per sample, in concordant regions. The approach is demonstrated on a dataset representing a challenging but important resource: breast tumors that have been formalin-fixed, paraffin-embedded, archived, and subsequently UV-laser capture microdissected and hybridized to two

  6. Qualitative and quantitative assessment of viral contamination in bivalve molluscs harvested in Italy.

    Science.gov (United States)

    Suffredini, Elisabetta; Lanni, Luigi; Arcangeli, Giuseppe; Pepe, Tiziana; Mazzette, Rina; Ciccaglioni, Gianni; Croci, Luciana

    2014-08-01

    Bivalve molluscs are a well documented source of viral infection. Further data on shellfish viral contamination are needed to implement European Regulations with sanitary measures more effective against viral pathogens. To this aim, 336 samples of bivalve molluscs (185 mussels, 66 clams, 23 oysters and 62 samples from other species) collected in harvesting areas of class A and B of four Italian Regions were analyzed for qualitative and quantitative determination of hepatitis A virus (HAV) and Norovirus (NoV) GI and GII, using real time RT-PCR. The results showed a wide diffusion of viral contamination in the shellfish production areas considered. HAV prevalence was low (0.9%) with contamination levels that varied from 5 to 7 × 10(2)copies/g. On the contrary, NoV showed a high prevalence (51.5%), with a large variability according to the group considered (e.g. 47.8% for Crassostrea in Veneto, 79.7% for Mytilus in Campania, 84.6% for Tapes in Sardinia). NoV contamination affected class A and class B production areas to a different extent, with a statistically significant difference in both contamination prevalence (22.1% vs. 66.3%; pdata obtained, together with other quantitative information to estimate consumer exposure, in association with studies on dose-response and on the effectiveness of post-harvest treatments, will provide a useful tool for the definition of microbiological criteria related to the different shellfish species. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A tail at the 3'-end.

    Directory of Open Access Journals (Sweden)

    Shushan Harutyunyan

    Full Text Available Upon infection, many RNA viruses reorganize their capsid for release of the genome into the host cell cytosol for replication. Often, this process is triggered by receptor binding and/or by the acidic environment in endosomes. In the genus Enterovirus, which includes more than 150 human rhinovirus (HRV serotypes causing the common cold, there is persuasive evidence that the viral RNA exits single-stranded through channels formed in the protein shell. We have determined the time-dependent emergence of the RNA ends from HRV2 on incubation of virions at 56°C using hybridization with specific oligonucleotides and detection by fluorescence correlation spectroscopy. We report that psoralen UV crosslinking prevents complete RNA release, allowing for identification of the sequences remaining inside the capsid. We also present the structure of uncoating intermediates in which parts of the RNA are condensed and take the form of a rod that is directed roughly towards a two-fold icosahedral axis, the presumed RNA exit point. Taken together, in contrast to schemes frequently depicted in textbooks and reviews, our findings demonstrate that exit of the RNA starts from the 3'-end. This suggests that packaging also occurs in an ordered manner resulting in the 3'-poly-(A tail becoming located close to a position of pore formation during conversion of the virion into a subviral particle. This directional genome release may be common to many icosahedral non-enveloped single-stranded RNA viruses.

  8. Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3'-end.

    Science.gov (United States)

    Harutyunyan, Shushan; Kumar, Mohit; Sedivy, Arthur; Subirats, Xavier; Kowalski, Heinrich; Köhler, Gottfried; Blaas, Dieter

    2013-01-01

    Upon infection, many RNA viruses reorganize their capsid for release of the genome into the host cell cytosol for replication. Often, this process is triggered by receptor binding and/or by the acidic environment in endosomes. In the genus Enterovirus, which includes more than 150 human rhinovirus (HRV) serotypes causing the common cold, there is persuasive evidence that the viral RNA exits single-stranded through channels formed in the protein shell. We have determined the time-dependent emergence of the RNA ends from HRV2 on incubation of virions at 56°C using hybridization with specific oligonucleotides and detection by fluorescence correlation spectroscopy. We report that psoralen UV crosslinking prevents complete RNA release, allowing for identification of the sequences remaining inside the capsid. We also present the structure of uncoating intermediates in which parts of the RNA are condensed and take the form of a rod that is directed roughly towards a two-fold icosahedral axis, the presumed RNA exit point. Taken together, in contrast to schemes frequently depicted in textbooks and reviews, our findings demonstrate that exit of the RNA starts from the 3'-end. This suggests that packaging also occurs in an ordered manner resulting in the 3'-poly-(A) tail becoming located close to a position of pore formation during conversion of the virion into a subviral particle. This directional genome release may be common to many icosahedral non-enveloped single-stranded RNA viruses.

  9. Isolation of bluetongue virus serotype 1 from Culicoides vector captured in livestock farms and sequence analysis of the viral genome segment-2.

    Science.gov (United States)

    Dadawala, A I; Biswas, S K; Rehman, W; Chand, K; De, A; Mathapati, B S; Kumar, P; Chauhan, H C; Chandel, B S; Mondal, B

    2012-08-01

    Bluetongue virus serotype-1 (BTV-1) was isolated from Culicoides oxystoma vectors captured on livestock farms in two places of Gujarat, India. The viruses were isolated on BHK-21 cells, which produced characteristic BTV-related cytopathic effects between 24 and 48 h post-infection. Virus antigen was demonstrated in infected cells at different passage by a BTV-specific sandwich ELISA. Further, polyacrylamide gel electrophoresis and silver staining of viral genomic RNA revealed ten double-stranded RNA segments characteristic of BTV. Serotype of the isolates was identified by virus neutralization and PCR coupled with sequencing. The isolates were designated as SKN-7 and SKN-8 and their genome segment-2 (VP2) were sequenced. Phylogenetic analyses revealed very close relationship between them although they are not identical. SKN-8 showed closer relationship with a recently isolated BTV-1 from goat. Bluetongue virus was earlier isolated from Culicoides in adjacent state more than 20 years ago, although the serotype of the virus was not determined.

  10. Optimized design and assessment of whole genome tiling arrays.

    NARCIS (Netherlands)

    Graf, S.; Nielsen, F.G.G.; Kurtz, S.; Huynen, M.A.; Birney, E.; Stunnenberg, H.G.; Flicek, P.

    2007-01-01

    MOTIVATION: Recent advances in microarray technologies have made it feasible to interrogate whole genomes with tiling arrays and this technique is rapidly becoming one of the most important high-throughput functional genomics assays. For large mammalian genomes, analyzing oligonucleotide tiling arra

  11. Viral marketing

    OpenAIRE

    Král, Jiří

    2015-01-01

    Bachelor's Thesis deals with effective promotional tools called viral marketing. The main contribution of the thesis is the definition and history of viral marketing, making analysis of process of viral marketing, progresses definition and rules for creating a viral campaign. And also aspects are necessary for a successful viral spread. There are analysis of the characteristics of social media which are dividing according to the orientation and marketing tactics. Thesis is especially about so...

  12. The genomic CDS sandbox: An assessment among domain experts.

    Science.gov (United States)

    Aziz, Ayesha; Kawamoto, Kensaku; Eilbeck, Karen; Williams, Marc S; Freimuth, Robert R; Hoffman, Mark A; Rasmussen, Luke V; Overby, Casey L; Shirts, Brian H; Hoffman, James M; Welch, Brandon M

    2016-04-01

    Genomics is a promising tool that is becoming more widely available to improve the care and treatment of individuals. While there is much assertion, genomics will most certainly require the use of clinical decision support (CDS) to be fully realized in the routine clinical setting. The National Human Genome Research Institute (NHGRI) of the National Institutes of Health recently convened an in-person, multi-day meeting on this topic. It was widely recognized that there is a need to promote the innovation and development of resources for genomic CDS such as a CDS sandbox. The purpose of this study was to evaluate a proposed approach for such a genomic CDS sandbox among domain experts and potential users. Survey results indicate a significant interest and desire for a genomic CDS sandbox environment among domain experts. These results will be used to guide the development of a genomic CDS sandbox.

  13. Determination of the complete genome sequence of infectious hematopoietic necrosis virus (IHNV) Ch20101008 and viral molecular evolution in China.

    Science.gov (United States)

    Jia, Peng; Zheng, Xiao-Cong; Shi, Xiu-Jie; Kan, Shi-Fu; Wang, Jin-Jin; He, Jun-Qiang; Zheng, Wei; Yu, Li; Lan, Wen-Sheng; Hua, Qun-Yi; Liu, Hong; Jin, Ning-Yi

    2014-10-01

    This study determined the complete genomic sequence of the infectious hematopoietic necrosis virus (IHNV) strain Ch20101008 isolated from farmed brook trout (Salvelinus fontinalis) that died from a disease caused by the virus in northeast China. The sequence was determined from 10 overlapping clones obtained through RT-PCR amplification. The whole genome length of Ch20101008 comprised 11,129 nucleotides (nt), and the overall organization was typical of that observed for all other IHNV strains. The phylogenetic analysis results of the 65 IHNV glycoprotein genes and 47 IHNV partial nucleoprotein genes presented five major genogroups (J, U, L, E and M). The J genogroup included the J Nagano and J Shizuoka subgroups. The IHNV Ch20101008 strain belonged to the J Nagano subgroup of the J genogroup and was significantly related to other Chinese IHNV strains. All Chinese IHNV isolates are monophyletic, with a recent common ancestor, except for the BjLL strain. The N, P, M, G, NV and L genes of Ch20101008 were compared with the available IHNV sequences in GenBank. The results indicated that 198 nt were substituted, 53 of which exhibited amino acid change in the Ch20101008 genome. An adenine nucleotide deletion was found at position 4959 of the 5' UTR of the L gene. In the G gene, specific nucleotides and amino acid variations of the Chinese IHNV strains were observed when compared with 23 isolates from other countries. Of the 15 nucleotide sites that changed, seven resulted in amino acid substitution. The data further demonstrated that the J genogroup IHNV was introduced to and evolved in salmon farm environments in China.

  14. Hepatic failure in pregnancy successfully treated by online hemodiafiltration: Chronic hepatitis B virus infection without viral genome mutation.

    Science.gov (United States)

    Arata, Shinju; Nozaki, Akito; Takizawa, Kenichi; Kondo, Masaaki; Morimoto, Manabu; Numata, Kazushi; Hayashi, Sanae; Watanabe, Tsunamasa; Tanaka, Yasuhito; Tanaka, Katsuaki

    2013-12-01

    A 23-year-old nulliparous woman, a hepatitis B virus (HBV) carrier with stable liver functions, presented with exacerbation of viral replication (HBV DNA level >9.0 log copies/mL) in gestational week 26. During the subsequent follow up without antiviral therapy, she was hospitalized with progression to hepatic failure in gestational week 35. Following initiation of antiviral therapy with lamivudine, emergent cesarean delivery was conducted for fetal safety. Liver atrophy and persistent hepatic encephalopathy (stage 2) necessitated artificial liver support (ALS) involving online hemodiafiltration (HDF) and plasma exchange. She regained full consciousness after the sixth online HDF session. ALS was terminated after the seventh online HDF session. On day 33 of hospitalization, she was discharged home without sequelae. Genetic analysis of the HBV strain isolated from her serum showed that this strain had genotype C. Direct full-length sequencing identified no known mutations associated with fulminant hepatitis B. HBV-related hepatic failure observed in the present case might have been related to perinatal changes in the host immune response.

  15. The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3'-terminal region of the viral genome.

    Science.gov (United States)

    Albiach-Marti, Maria R; Robertson, Cecile; Gowda, Siddarame; Tatineni, Satyanarayana; Belliure, Belén; Garnsey, Stephen M; Folimonova, Svetlana Y; Moreno, Pedro; Dawson, William O

    2010-01-01

    Citrus tristeza virus (CTV) (genus Closterovirus, family Closteroviridae) causes some of the more important viral diseases of citrus worldwide. The ability to map disease-inducing determinants of CTV is needed to develop better diagnostic and disease control procedures. A distinctive phenotype of some isolates of CTV is the ability to induce seedling yellows (SY) in sour orange, lemon and grapefruit seedlings. In Florida, the decline isolate of CTV, T36, induces SY, whereas a widely distributed mild isolate, T30, does not. To delimit the viral sequences associated with the SY syndrome, we created a number of T36/T30 hybrids by substituting T30 sequences into different regions of the 3' half of the genome of an infectious cDNA of T36. Eleven T36/T30 hybrids replicated in Nicotiana benthamiana protoplasts. Five of these hybrids formed viable virions that were mechanically transmitted to Citrus macrophylla, a permissive host for CTV. All induced systemic infections, similar to that of the parental T36 clone. Tissues from these C. macrophylla source plants were then used to graft inoculate sour orange and grapefruit seedlings. Inoculation with three of the T30/T36 hybrid constructs induced SY symptoms identical to those of T36; however, two hybrids with T30 substitutions in the p23-3' nontranslated region (NTR) (nucleotides 18 394-19 296) failed to induce SY. Sour orange seedlings infected with a recombinant non-SY p23-3' NTR hybrid also remained symptomless when challenged with the parental virus (T36), demonstrating the potential feasibility of using engineered constructs of CTV to mitigate disease.

  16. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia

    OpenAIRE

    Iwata, Hiroyoshi; Hayashi, Takeshi; Terakami, Shingo; Takada, Norio; Sawamura, Yutaka; Yamamoto, Toshiya

    2013-01-01

    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding w...

  17. Genomic resources in fruit plants: an assessment of current status.

    Science.gov (United States)

    Rai, Manoj K; Shekhawat, N S

    2015-01-01

    The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants.

  18. Viral marketing

    OpenAIRE

    BLÁHOVÁ, Adéla

    2012-01-01

    The aim of my thesis is to provide a comprehensive overview of the viral marketing and to analyze selected viral campaigns. There is a description of advantages and disadvantages of this marketing tool. In the end I suggest for which companies viral marketing is an appropriate form of the promotion.

  19. Risk Assessment of Synergism and Recombination on the Transgenic Plants Containing Viral Movement Protein and Replicase Genes

    Institute of Scientific and Technical Information of China (English)

    NIU Yan-bing; LI Gui-xin; WEN Rui; ZHOU Xue-ping

    2003-01-01

    The transgenic tobacco plants transformed with movement protein gene of Tomato mosaic virus (ToMV) or Tobacco mosaic virus (TMV) and partial replicase gene of Cucumber mosaic virus (CMV) P1 isolate (CMV-P1), were inoculated with Potato virus X, Potato virus Y, TMV and CMV isolate RB (CMVRB), respectively. Symptom observation showed there were no symptom differences in transgenic tobacco plants as compared with those in non-transgenic tobacco plants. ELISA also illustrated that the virus concentrations in the transgenic plants were similar to those in non-transgenic plants, indicating that no synergism is found in these plants. The transgenic tobacco plants expressing movement protein gene of ToMV or partial replicase gene of CMV-P1 were inoculated with TMV and CMV-RB, respectively. The local or systemic infected leaves were then used for elucidation of the possible virus recombination in transgenic plants with biological infectivity test, ELISA and immuno-capture RT-PCR. Within 16 months, no recombination was found between transformed genes and inoculated virus genomes. The research provides fundamental data for understanding of the possible risk of the transgenic plants expressing viral sequences.

  20. Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome.

    Science.gov (United States)

    Liu, Xing; Hao, Ruidong; Chen, Shuliang; Guo, Deyin; Chen, Yu

    2015-08-01

    Hepatitis B virus (HBV) remains a global health threat as chronic HBV infection may lead to liver cirrhosis or cancer. Current antiviral therapies with nucleoside analogues can inhibit the replication of HBV, but do not disrupt the already existing HBV covalently closed circular DNA. The newly developed CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a powerful tool to target cellular genome DNA for gene editing. In order to investigate the possibility of using the CRISPR/Cas9 system to disrupt the HBV DNA templates, we designed eight guide RNAs (gRNAs) that targeted the conserved regions of different HBV genotypes, which could significantly inhibit HBV replication both in vitro and in vivo. Moreover, the HBV-specific gRNA/Cas9 system could inhibit the replication of HBV of different genotypes in cells, and the viral DNA was significantly reduced by a single gRNA/Cas9 system and cleared by a combination of different gRNA/Cas9 systems.

  1. Novel ATPase activity of the polyprotein intermediate, Viral Protein genome-linked-Nuclear Inclusion-a protease, of Pepper vein banding potyvirus

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Chhavi [Department of Biochemistry, Indian Institute of Science, Bangalore 560012 (India); Savithri, Handanahal S., E-mail: bchss@biochem.iisc.ernet.in [Department of Biochemistry, Indian Institute of Science, Bangalore 560012 (India)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Pepper vein banding potyvirus VPg harbors Walker motifs. Black-Right-Pointing-Pointer VPg exhibits ATPase activity in the presence of NIa-Pro. Black-Right-Pointing-Pointer Plausible structural and functional interplay between VPg and NIa-Pro. Black-Right-Pointing-Pointer Functional relevance of prolonged presence of VPg-Pro during infection. -- Abstract: Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, and the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity.

  2. Discovery of flavivirus-derived endogenous viral elements in Anopheles mosquito genomes supports the existence of Anopheles-associated insect-specific flaviviruses.

    Science.gov (United States)

    Lequime, Sebastian; Lambrechts, Louis

    2017-01-01

    The Flavivirus genus encompasses several arboviruses of public health significance such as dengue, yellow fever, and Zika viruses. It also includes insect-specific flaviviruses (ISFs) that are only capable of infecting insect hosts. The vast majority of mosquito-infecting flaviviruses have been associated with mosquito species of the Aedes and Culex genera in the Culicinae subfamily, which also includes most arbovirus vectors. Mosquitoes of the Anophelinae subfamily are not considered significant arbovirus vectors; however, flaviviruses have occasionally been detected in field-caught Anopheles specimens. Whether such observations reflect occasional spillover or laboratory contamination or whether Anopheles mosquitoes are natural hosts of flaviviruses is unknown. Here, we provide in silico and in vivo evidence of transcriptionally active, flavivirus-derived endogenous viral elements (EVEs) in the genome of Anopheles minimus and Anopheles sinensis. Such non-retroviral endogenization of RNA viruses is consistent with a shared evolutionary history between flaviviruses and Anopheles mosquitoes. Phylogenetic analyses of the two newly described EVEs support the existence of a distinct clade of Anopheles-associated ISFs.

  3. HBV Infection and Methylation of Host and Viral Genome%HBV感染与宿主基因及病毒DNA甲基化

    Institute of Scientific and Technical Information of China (English)

    张敏洁

    2012-01-01

    乙型肝炎病毒(HBV)感染是慢性肝炎、肝硬化及肝癌的重要病因,HBV感染诱导的宿主基因组甲基化及病毒自身DNA甲基化改变可能是病毒感染慢性化及慢性肝病形成的重要发病机制之一,HBV基因组及HBV共价闭合环状DNA的甲基化在调控病毒复制和蛋白表达中起着重要作用.探讨HBV DNA甲基化对于研究病毒的致病机制、指导HBV感染的治疗有重要意义.%Hepatitis B virus( HBV )infection is a major cause of chronic hepatitis, cirrhosis, and development of hepatocellular carcinoma( HCC ). Methylation of host genome and 11BV DNA induced by 11BV infection may be one of the major pathogenesis leading to persistent virus infection and cause chronic liver disease. Methylation of 11BV and covalently closed circular DNA( HBV cccDNA )plays an important role in regulation of viral replication and protein expression. Discussion of methylation of 11BV is of great importance for the research of pathogenic mechanism and guiding HBV infection treatment.

  4. A comparison between previous and present histologic assessments of chronic hepatitis C viral infections in humans

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    AIM To compare the previously employed classification of liver histology (minimal, chronic persistent hepatitis, chronic active hepatitis and cirrhosis) with a new classification recently described by Sheuer et al (activity grade and fibrosis stage) in percutaneous liver biopsies from patients with chronic hepatitis C viral infections.METHODS Liver biopsies from 79 untreated patients were reviewed. Anti-HCV testing had been performed by ELISA and confirmed by a recombinant immunoblot assay. With respect to the new classification, all the specimens were evaluated using the Knodell score for activity.RESULTS A good correlation was revealed between the previous and more recent histologic classifications in patients with abnormal liver enzyme tests. However, in 13/ 15 (87%) of patients with normal aminotransferase values, changes were consistent with chronic persistent hepatitis whereas normal activity and no fibrosis were demonstrated by the Sheuer classification.CONCLUSION The old classification is more often misleading but correlates well with the new classification and thereby permits comparisons between historically clinical studies.

  5. Optogenetics-enabled assessment of viral gene and cell therapy for restoration of cardiac excitability.

    Science.gov (United States)

    Ambrosi, Christina M; Boyle, Patrick M; Chen, Kay; Trayanova, Natalia A; Entcheva, Emilia

    2015-12-01

    Multiple cardiac pathologies are accompanied by loss of tissue excitability, which leads to a range of heart rhythm disorders (arrhythmias). In addition to electronic device therapy (i.e. implantable pacemakers and cardioverter/defibrillators), biological approaches have recently been explored to restore pacemaking ability and to correct conduction slowing in the heart by delivering excitatory ion channels or ion channel agonists. Using optogenetics as a tool to selectively interrogate only cells transduced to produce an exogenous excitatory ion current, we experimentally and computationally quantify the efficiency of such biological approaches in rescuing cardiac excitability as a function of the mode of application (viral gene delivery or cell delivery) and the geometry of the transduced region (focal or spatially-distributed). We demonstrate that for each configuration (delivery mode and spatial pattern), the optical energy needed to excite can be used to predict therapeutic efficiency of excitability restoration. Taken directly, these results can help guide optogenetic interventions for light-based control of cardiac excitation. More generally, our findings can help optimize gene therapy for restoration of cardiac excitability.

  6. Quantification of viral genome in cord blood donors by real time PCR to investigate human herpesvirus type 8 active infection.

    Science.gov (United States)

    Golchin, Neda; Kheirandish, Maryam; Sharifi, Zohreh; Samiee, Shahram; Kokhaei, Parviz; Pourpak, Zahra

    2015-12-01

    Umbilical cord blood (UCB) is one of the most important sources of hematopoietic stem cells which can be used for transplantation. The transplanted CB stem cells might cause infections in recipients. The aim of this study is to evaluate Human Herpes Virus8 (HHV8) as a Rhadinovirus among CB samples in order to assess safety of cord blood stem cells transplantation. To assess this aim, we surveyed 800 cord blood specimens by Real Time PCR.The overall HHV8 incidence in cord blood mononuclear cells was 1.38% and none of them was in lytic phase of HHV8. The authors suggest further HHV8 study on CB samples for transplantation.

  7. Complete Genome Sequencing of Influenza A Viruses within Swine Farrow-to-Wean Farms Reveals the Emergence, Persistence, and Subsidence of Diverse Viral Genotypes.

    Science.gov (United States)

    Diaz, Andres; Marthaler, Douglas; Culhane, Marie; Sreevatsan, Srinand; Alkhamis, Moh; Torremorell, Montserrat

    2017-09-15

    Influenza A viruses (IAVs) are endemic in swine and represent a public health risk. However, there is limited information on the genetic diversity of swine IAVs within farrow-to-wean farms, which is where most pigs are born. In this longitudinal study, we sampled 5 farrow-to-wean farms for a year and collected 4,190 individual nasal swabs from three distinct pig subpopulations. Of these, 207 (4.9%) samples tested PCR positive for IAV, and 124 IAVs were isolated. We sequenced the complete genomes of 123 IAV isolates and found 31 H1N1, 26 H1N2, 63 H3N2, and 3 mixed IAVs. Based on the IAV hemagglutinin, seven different influenza A viral groups (VGs) were identified. Most of the remaining IAV gene segments allowed us to differentiate the same VGs, although an additional viral group was identified for gene segment 3 (PA). Moreover, the codetection of more than one IAV VG was documented at different levels (farm, subpopulation, and individual pigs), highlighting the environment for potential IAV reassortment. Additionally, 3 out of 5 farms contained IAV isolates (n = 5) with gene segments from more than one VG, and 79% of all the IAVs sequenced contained a signature mutation (S31N) in the matrix gene that has been associated with resistance to the antiviral amantadine. Within farms, some IAVs were detected only once, while others were detected for 283 days. Our results illustrate the maintenance and subsidence of different IAVs within swine farrow-to-wean farms over time, demonstrating that pig subpopulation dynamics are important to better understand the diversity and epidemiology of swine IAVs.IMPORTANCE On a global scale, swine are one of the main reservoir species for influenza A viruses (IAVs) and play a key role in the transmission of IAVs between species. Additionally, the 2009 IAV pandemics highlighted the role of pigs in the emergence of IAVs with pandemic potential. However, limited information is available regarding the diversity and distribution of swine IAVs

  8. Genotyping-by-sequencing for Populus population genomics: an assessment of genome sampling patterns and filtering approaches.

    Directory of Open Access Journals (Sweden)

    Martin P Schilling

    Full Text Available Continuing advances in nucleotide sequencing technology are inspiring a suite of genomic approaches in studies of natural populations. Researchers are faced with data management and analytical scales that are increasing by orders of magnitude. With such dramatic advances comes a need to understand biases and error rates, which can be propagated and magnified in large-scale data acquisition and processing. Here we assess genomic sampling biases and the effects of various population-level data filtering strategies in a genotyping-by-sequencing (GBS protocol. We focus on data from two species of Populus, because this genus has a relatively small genome and is emerging as a target for population genomic studies. We estimate the proportions and patterns of genomic sampling by examining the Populus trichocarpa genome (Nisqually-1, and demonstrate a pronounced bias towards coding regions when using the methylation-sensitive ApeKI restriction enzyme in this species. Using population-level data from a closely related species (P. tremuloides, we also investigate various approaches for filtering GBS data to retain high-depth, informative SNPs that can be used for population genetic analyses. We find a data filter that includes the designation of ambiguous alleles resulted in metrics of population structure and Hardy-Weinberg equilibrium that were most consistent with previous studies of the same populations based on other genetic markers. Analyses of the filtered data (27,910 SNPs also resulted in patterns of heterozygosity and population structure similar to a previous study using microsatellites. Our application demonstrates that technically and analytically simple approaches can readily be developed for population genomics of natural populations.

  9. Assessing genomic sequencing information for health care decision making: workshop summary

    National Research Council Canada - National Science Library

    Beachy, Sarah H; Johnson, Samuel G; Olson, Steve; Berger, Adam C

    2014-01-01

    ... and have correspondingly greatly expanded the use of genomic information in medicine. Because of the lack of evidence available for assessing variants, evaluation bodies have made only a few recommendations for the use of genetic tests in health care...

  10. BYSTANDER EFFECTS GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIAION AND CHEMICAL EXPOSURES

    Science.gov (United States)

    BYSTANDER EFFECTS, GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIATION AND CHEMICAL EXPOSURESR. Julian PrestonEnvironmental Carcinogenesis Division, U.S. Environmental Protection Agency, Research Triangle Park, N.C. 27711, USAThere ...

  11. Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing

    Directory of Open Access Journals (Sweden)

    Plant Ramona N

    2006-08-01

    Full Text Available Abstract Background Whole genome amplification is an increasingly common technique through which minute amounts of DNA can be multiplied to generate quantities suitable for genetic testing and analysis. Questions of amplification-induced error and template bias generated by these methods have previously been addressed through either small scale (SNPs or large scale (CGH array, FISH methodologies. Here we utilized whole genome sequencing to assess amplification-induced bias in both coding and non-coding regions of two bacterial genomes. Halobacterium species NRC-1 DNA and Campylobacter jejuni were amplified by several common, commercially available protocols: multiple displacement amplification, primer extension pre-amplification and degenerate oligonucleotide primed PCR. The amplification-induced bias of each method was assessed by sequencing both genomes in their entirety using the 454 Sequencing System technology and comparing the results with those obtained from unamplified controls. Results All amplification methodologies induced statistically significant bias relative to the unamplified control. For the Halobacterium species NRC-1 genome, assessed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 119 times greater than those from unamplified material, 164.0 times greater for Repli-G, 165.0 times greater for PEP-PCR and 252.0 times greater than the unamplified controls for DOP-PCR. For Campylobacter jejuni, also analyzed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 15 times greater than those from unamplified material, 19.8 times greater for Repli-G, 61.8 times greater for PEP-PCR and 220.5 times greater than the unamplified controls for DOP-PCR. Conclusion Of the amplification methodologies examined in this paper, the multiple displacement amplification products generated the least bias, and produced significantly higher yields of amplified DNA.

  12. Similarity-based disease risk assessment for personal genomes: proof of concept.

    Science.gov (United States)

    Woo, Jung Hoon; Lai, Albert M; Chung, Wendy K; Weng, Chunhua

    2011-01-01

    The increasing availability of personal genome data has led to escalating needs by consumers to understand the implications of their gene sequences. At present, poorly integrated genetic knowledge has not met these needs. This proof-of-concept study proposes a similarity-based approach to assess the disease risk predisposition for personal genomes. We hypothesize that the semantic similarity between a personal genome and a disease can indicate the disease risks in the person. We developed a knowledge network that integrates existing knowledge of genes, diseases, and symptoms from six sources using the Semantic Web standard, Resource Description Framework (RDF). We then used latent relationships between genes and diseases derived from our knowledge network to measure the semantic similarity between a personal genome and a genetic disease. For demonstration, we showed the feasibility of assessing the disease risks in one personal genome and discussed related methodology issues.

  13. Recovery of community genomes to assess subsurface metabolic potential: exploiting the capacity of next generation sequencing-based metagenomics

    Science.gov (United States)

    Wrighton, K. C.; Thomas, B.; Miller, C. S.; Sharon, I.; Wilkins, M. J.; VerBerkmoes, N. C.; Handley, K. M.; Lipton, M. S.; Hettich, R. L.; Williams, K. H.; Long, P. E.; Banfield, J. F.

    2011-12-01

    With the goal of developing a deterministic understanding of the microbiological and geochemical processes controlling subsurface environments, groundwater bacterial communities were collected from the Rifle Integrated Field Research Challenge (IFRC) site. Biomass from three temporal acetate-stimulated groundwater samples were collected during a period of dominant Fe(III)-reduction, in a region of the aquifer that had previously received acetate amendment the year prior. Phylogenetic analysis revealed a diverse Bacterial community, notably devoid of Archaea with 249 taxa from 9 Bacterial phyla including the dominance of uncultured candidate divisions, BD1-5, OD1, and OP11. We have reconstructed 86 partial to near-complete genomes and have performed a detailed characterization of the underlying metabolic potential of the ecosystem. We assessed the natural variation and redundancy in multi-heme c-type cytochromes, sulfite reductases, and central carbon metabolic pathways. Deep genomic sampling indicated the community contained various metabolic pathways: sulfur oxidation coupled to microaerophilic conditions, nitrate reduction with both acetate and inorganic compounds as donors, carbon and nitrogen fixation, antibiotic warfare, and heavy-metal detoxification. Proteomic investigations using predicted proteins from metagenomics corroborated that acetate oxidation is coupled to reduction of oxygen, sulfur, nitrogen, and iron across the samples. Of particular interest was the detection of acetate oxidizing and sulfate reducing proteins from a Desulfotalea-like bacterium in all three time points, suggesting that aqueous sulfide produced by active sulfate-reducing bacteria could contribute to abiotic iron reduction during the dominant iron reduction phase. Additionally, proteogenomic analysis verified that a large portion of the community, including members of the uncultivated BD1-5, are obligate fermenters, characterized by the presence of hydrogen-evolving hydrogenases

  14. A search for RNA insertions and NS3 gene duplication in the genome of cytopathic isolates of bovine viral diarrhea virus

    Directory of Open Access Journals (Sweden)

    V.L. Quadros

    2006-07-01

    Full Text Available Calves born persistently infected with non-cytopathic bovine viral diarrhea virus (ncpBVDV frequently develop a fatal gastroenteric illness called mucosal disease. Both the original virus (ncpBVDV and an antigenically identical but cytopathic virus (cpBVDV can be isolated from animals affected by mucosal disease. Cytopathic BVDVs originate from their ncp counterparts by diverse genetic mechanisms, all leading to the expression of the non-structural polypeptide NS3 as a discrete protein. In contrast, ncpBVDVs express only the large precursor polypeptide, NS2-3, which contains the NS3 sequence within its carboxy-terminal half. We report here the investigation of the mechanism leading to NS3 expression in 41 cpBVDV isolates. An RT-PCR strategy was employed to detect RNA insertions within the NS2-3 gene and/or duplication of the NS3 gene, two common mechanisms of NS3 expression. RT-PCR amplification revealed insertions in the NS2-3 gene of three cp isolates, with the inserts being similar in size to that present in the cpBVDV NADL strain. Sequencing of one such insert revealed a 296-nucleotide sequence with a central core of 270 nucleotides coding for an amino acid sequence highly homologous (98% to the NADL insert, a sequence corresponding to part of the cellular J-Domain gene. One cpBVDV isolate contained a duplication of the NS3 gene downstream from the original locus. In contrast, no detectable NS2-3 insertions or NS3 gene duplications were observed in the genome of 37 cp isolates. These results demonstrate that processing of NS2-3 without bulk mRNA insertions or NS3 gene duplications seems to be a frequent mechanism leading to NS3 expression and BVDV cytopathology.

  15. A systematic review of financial and economic assessments of bovine viral diarrhea virus (BVDV) prevention and mitigation activities worldwide.

    Science.gov (United States)

    Pinior, Beate; Firth, Clair L; Richter, Veronika; Lebl, Karin; Trauffler, Martine; Dzieciol, Monika; Hutter, Sabine E; Burgstaller, Johann; Obritzhauser, Walter; Winter, Petra; Käsbohrer, Annemarie

    2017-02-01

    Infection with bovine viral diarrhea virus (BVDV) results in major economic losses either directly through decreased productive performance in cattle herds or indirectly, such as through expenses for control programs. The aim of this systematic review was to review financial and/or economic assessment studies of prevention and/or mitigation activities of BVDV at national, regional and farm level worldwide. Once all predefined criteria had been met, 35 articles were included for this systematic review. Studies were analyzed with particular focus on the type of financially and/or economically-assessed prevention and/or mitigation activities. Due to the wide range of possible prevention and/or mitigation activities, these activities were grouped into five categories: i) control and/or eradication programs, ii) monitoring or surveillance, iii) prevention, iv) vaccination and v) individual culling, control and testing strategies. Additionally, the studies were analyzed according to economically-related variables such as efficiency, costs or benefits of prevention and/or mitigation activities, the applied financial and/or economic and statistical methods, the payers of prevention and/or mitigation activities, the assessed production systems, and the countries for which such evaluations are available. Financial and/or economic assessments performed in Europe were dominated by those from the United Kingdom, which assessed mostly vaccination strategies, and Norway which primarily carried out assessments in the area of control and eradication programs; whereas among non-European countries the United States carried out the majority of financial and/or economic assessments in the area of individual culling, control and testing. More than half of all studies provided an efficiency calculation of prevention and/or mitigation activities and demonstrated whether the inherent costs of implemented activities were or were not justified. The dairy sector was three times more likely to

  16. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia.

    Science.gov (United States)

    Iwata, Hiroyoshi; Hayashi, Takeshi; Terakami, Shingo; Takada, Norio; Sawamura, Yutaka; Yamamoto, Toshiya

    2013-03-01

    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding with 76 Japanese pear cultivars to detect significant associations of 162 markers with nine agronomic traits. We applied multilocus Bayesian models accounting for ordinal categorical phenotypes for GWAS and GS model training. Significant associations were detected at harvest time, black spot resistance and the number of spurs and two of the associations were closely linked to known loci. Genome-wide predictions for GS were accurate at the highest level (0.75) in harvest time, at medium levels (0.38-0.61) in resistance to black spot, firmness of flesh, fruit shape in longitudinal section, fruit size, acid content and number of spurs and at low levels (pear.

  17. Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes

    Directory of Open Access Journals (Sweden)

    Feltus F

    2011-04-01

    Full Text Available Abstract Background We investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the "whole genome shotgun" (WGS approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using in silico simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence. Results The best assembly quality scores were obtained using 454 coverage of 15× linear and 5× paired (3kb insert size reads (15L-5P on Arabidopsis. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most. Conclusions BAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies.

  18. The contribution of health technology assessment, health needs assessment, and health impact assessment to the assessment and translation of technologies in the field of public health genomics.

    Science.gov (United States)

    Rosenkötter, N; Vondeling, H; Blancquaert, I; Mekel, O C L; Kristensen, F B; Brand, A

    2011-01-01

    The European Union has named genomics as one of the promising research fields for the development of new health technologies. Major concerns with regard to these fields are, on the one hand, the rather slow and limited translation of new knowledge and, on the other hand, missing insights into the impact on public health and health care practice of those technologies that are actually introduced. This paper aims to give an overview of the major assessment instruments in public health [health technology assessment (HTA), health needs assessment (HNA) and health impact assessment (HIA)] which could contribute to the systematic translation and assessment of genomic health applications by focussing at population level and on public health policy making. It is shown to what extent HTA, HNA and HIA contribute to translational research by using the continuum of translational research (T1-T4) in genomic medicine as an analytic framework. The selected assessment methodologies predominantly cover 2 to 4 phases within the T1-T4 system. HTA delivers the most complete set of methodologies when assessing health applications. HNA can be used to prioritize areas where genomic health applications are needed or to identify infrastructural needs. HIA delivers information on the impact of technologies in a wider scope and promotes informed decision making. HTA, HNA and HIA provide a partly overlapping and partly unique set of methodologies and infrastructure for the translation and assessment of genomic health applications. They are broad in scope and go beyond the continuum of T1-T4 translational research regarding policy translation.

  19. The Contribution of Health Technology Assessment, Health Needs Assessment, and Health Impact Assessment to the Assessment and Translation of Technologies in the Field of Public Health Genomics

    DEFF Research Database (Denmark)

    Rosenkotter, N.; Vondeling, H.; Blancquaert, I.

    2011-01-01

    or to identify infrastructural needs. HIA delivers information on the impact of technologies in a wider scope and promotes informed decision making. HTA, HNA and HIA provide a partly overlapping and partly unique set of methodologies and infrastructure for the translation and assessment of genomic health...... into the impact on public health and health care practice of those technologies that are actually introduced. This paper aims to give an overview of the major assessment instruments in public health [ health technology assessment (HTA), health needs assessment (HNA) and health impact assessment (HIA)] which could......The European Union has named genomics as one of the promising research fields for the development of new health technologies. Major concerns with regard to these fields are, on the one hand, the rather slow and limited translation of new knowledge and, on the other hand, missing insights...

  20. On detection and assessment of statistical significance of Genomic Islands

    Directory of Open Access Journals (Sweden)

    Chaudhuri Probal

    2008-04-01

    Full Text Available Abstract Background Many of the available methods for detecting Genomic Islands (GIs in prokaryotic genomes use markers such as transposons, proximal tRNAs, flanking repeats etc., or they use other supervised techniques requiring training datasets. Most of these methods are primarily based on the biases in GC content or codon and amino acid usage of the islands. However, these methods either do not use any formal statistical test of significance or use statistical tests for which the critical values and the P-values are not adequately justified. We propose a method, which is unsupervised in nature and uses Monte-Carlo statistical tests based on randomly selected segments of a chromosome. Such tests are supported by precise statistical distribution theory, and consequently, the resulting P-values are quite reliable for making the decision. Results Our algorithm (named Design-Island, an acronym for Detection of Statistically Significant Genomic Island runs in two phases. Some 'putative GIs' are identified in the first phase, and those are refined into smaller segments containing horizontally acquired genes in the refinement phase. This method is applied to Salmonella typhi CT18 genome leading to the discovery of several new pathogenicity, antibiotic resistance and metabolic islands that were missed by earlier methods. Many of these islands contain mobile genetic elements like phage-mediated genes, transposons, integrase and IS elements confirming their horizontal acquirement. Conclusion The proposed method is based on statistical tests supported by precise distribution theory and reliable P-values along with a technique for visualizing statistically significant islands. The performance of our method is better than many other well known methods in terms of their sensitivity and accuracy, and in terms of specificity, it is comparable to other methods.

  1. Assessment of virally vectored autoimmunity as a biocontrol strategy for cane toads.

    Directory of Open Access Journals (Sweden)

    Jackie A Pallister

    Full Text Available BACKGROUND: The cane toad, Bufo (Chaunus marinus, is one of the most notorious vertebrate pests introduced into Australia over the last 200 years and, so far, efforts to identify a naturally occurring B. marinus-specific pathogen for use as a biological control agent have been unsuccessful. We explored an alternative approach that entailed genetically modifying a pathogen with broad host specificity so that it no longer caused disease, but carried a gene to disrupt the cane toad life cycle in a species specific manner. METHODOLOGY/PRINCIPAL FINDINGS: The adult beta globin gene was selected as the model gene for proof of concept of autoimmunity as a biocontrol method for cane toads. A previous report showed injection of bullfrog tadpoles with adult beta globin resulted in an alteration in the form of beta globin expressed in metamorphs as well as reduced survival. In B. marinus we established for the first time that the switch from tadpole to adult globin exists. The effect of injecting B. marinus tadpoles with purified recombinant adult globin protein was then assessed using behavioural (swim speed in tadpoles and jump length in metamorphs, developmental (time to metamorphosis, weight and length at various developmental stages, protein profile of adult globin and genetic (adult globin mRNA levels measures. However, we were unable to detect any differences between treated and control animals. Further, globin delivery using Bohle iridovirus, an Australian ranavirus isolate belonging to the Iridovirus family, did not reduce the survival of metamorphs or alter the form of beta globin expressed in metamorphs. CONCLUSIONS/SIGNIFICANCE: While we were able to show for the first time that the switch from tadpole to adult globin does occur in B. marinus, we were not able to induce autoimmunity and disrupt metamorphosis. The short development time of B. marinus tadpoles may preclude this approach.

  2. Viral information.

    Science.gov (United States)

    Rohwer, Forest; Barott, Katie

    2013-03-01

    Viruses are major drivers of global biogeochemistry and the etiological agents of many diseases. They are also the winners in the game of life: there are more viruses on the planet than cellular organisms and they encode most of the genetic diversity on the planet. In fact, it is reasonable to view life as a viral incubator. Nevertheless, most ecological and evolutionary theories were developed, and continue to be developed, without considering the virosphere. This means these theories need to be to reinterpreted in light of viral knowledge or we need to develop new theory from the viral point-of-view. Here we briefly introduce our viral planet and then address a major outstanding question in biology: why is most of life viral? A key insight is that during an infection cycle the original virus is completely broken down and only the associated information is passed on to the next generation. This is different for cellular organisms, which must pass on some physical part of themselves from generation to generation. Based on this premise, it is proposed that the thermodynamic consequences of physical information (e.g., Landauer's principle) are observed in natural viral populations. This link between physical and genetic information is then used to develop the Viral Information Hypothesis, which states that genetic information replicates itself to the detriment of system energy efficiency (i.e., is viral in nature). Finally, we show how viral information can be tested, and illustrate how this novel view can explain existing ecological and evolutionary theories from more fundamental principles.

  3. VIRAL MARKETING

    OpenAIRE

    OLENTSOVA Y.A.

    2016-01-01

    Abstract This project seeks to investigate how the company Gitz can create awareness towards their brand by using viral marketing. To do this we analyze which elements of viral marketing the company can use, to reach their goal. In order to utilize the selected tools of viral marketing best possible, we need to figure out the company’s customer segment and figure out how to reach that segment. This has been done with the use of Henrik Dahl’s Minerva-model that divides the population into f...

  4. Molecular Heterogeneity in Primary Breast Carcinomas and Axillary Lymph Node Metastases Assessed by Genomic Fingerprinting Analysis

    Science.gov (United States)

    Ellsworth, Rachel E; Toro, Allyson L; Blackburn, Heather L; Decewicz, Alisha; Deyarmin, Brenda; Mamula, Kimberly A; Costantino, Nicholas S; Hooke, Jeffrey A; Shriver, Craig D; Ellsworth, Darrell L

    2015-01-01

    Molecular heterogeneity within primary breast carcinomas and among axillary lymph node (LN) metastases may impact diagnosis and confound treatment. In this study, we used short tandem repeated sequences to assess genomic heterogeneity and to determine hereditary relationships among primary tumor areas and regional metastases from 30 breast cancer patients. We found that primary carcinomas were genetically heterogeneous and sampling multiple areas was necessary to adequately assess genomic variability. LN metastases appeared to originate at different time periods during disease progression from different sites of the primary tumor and the extent of genomic divergence among regional metastases was associated with a less favorable patient outcome (P = 0.009). In conclusion, metastasis is a complex process influenced by primary tumor heterogeneity and variability in the timing of dissemination. Genomic variation in primary breast tumors and regional metastases may negatively impact clinical diagnostics and contribute to therapeutic resistance. PMID:26279627

  5. Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells

    Science.gov (United States)

    Aguirre, Sebastian; Pallarés, Horacio M.; Blair, Carol D.; Fabri, Cintia; Morales, Maria A.; Fernandez-Sesma, Ana; Gamarnik, Andrea V.

    2017-01-01

    The Flavivirus genus includes a large number of medically relevant pathogens that cycle between humans and arthropods. This host alternation imposes a selective pressure on the viral population. Here, we found that dengue virus, the most important viral human pathogen transmitted by insects, evolved a mechanism to differentially regulate the production of viral non-coding RNAs in mosquitos and humans, with a significant impact on viral fitness in each host. Flavivirus infections accumulate non-coding RNAs derived from the viral 3’UTRs (known as sfRNAs), relevant in viral pathogenesis and immune evasion. We found that dengue virus host adaptation leads to the accumulation of different species of sfRNAs in vertebrate and invertebrate cells. This process does not depend on differences in the host machinery; but it was found to be dependent on the selection of specific mutations in the viral 3’UTR. Dissecting the viral population and studying phenotypes of cloned variants, the molecular determinants for the switch in the sfRNA pattern during host change were mapped to a single RNA structure. Point mutations selected in mosquito cells were sufficient to change the pattern of sfRNAs, induce higher type I interferon responses and reduce viral fitness in human cells, explaining the rapid clearance of certain viral variants after host change. In addition, using epidemic and pre-epidemic Zika viruses, similar patterns of sfRNAs were observed in mosquito and human infected cells, but they were different from those observed during dengue virus infections, indicating that distinct selective pressures act on the 3’UTR of these closely related viruses. In summary, we present a novel mechanism by which dengue virus evolved an RNA structure that is under strong selective pressure in the two hosts, as regulator of non-coding RNA accumulation and viral fitness. This work provides new ideas about the impact of host adaptation on the variability and evolution of flavivirus 3

  6. Genome assembly quality: Assessment and improvement using the neutral indel model

    Science.gov (United States)

    Meader, Stephen; Hillier, LaDeana W.; Locke, Devin; Ponting, Chris P.; Lunter, Gerton

    2010-01-01

    We describe a statistical and comparative-genomic approach for quantifying error rates of genome sequence assemblies. The method exploits not substitutions but the pattern of insertions and deletions (indels) in genome-scale alignments for closely related species. Using two- or three-way alignments, the approach estimates the amount of aligned sequence containing clusters of nucleotides that were wrongly inserted or deleted during sequencing or assembly. Thus, the method is well-suited to assessing fine-scale sequence quality within single assemblies, between different assemblies of a single set of reads, and between genome assemblies for different species. When applying this approach to four primate genome assemblies, we found that average gap error rates per base varied considerably, by up to sixfold. As expected, bacterial artificial chromosome (BAC) sequences contained lower, but still substantial, predicted numbers of errors, arguing for caution in regarding BACs as the epitome of genome fidelity. We then mapped short reads, at approximately 10-fold statistical coverage, from a Bornean orangutan onto the Sumatran orangutan genome assembly originally constructed from capillary reads. This resulted in a reduced gap error rate and a separation of error-prone from high-fidelity sequence. Over 5000 predicted indel errors in protein-coding sequence were corrected in a hybrid assembly. Our approach contributes a new fine-scale quality metric for assemblies that should facilitate development of improved genome sequencing and assembly strategies. PMID:20305016

  7. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment.

    Science.gov (United States)

    Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy

    2016-07-27

    Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome.

  8. Chronic viral hepatitis C in pediatric age group; assessment of viral activity and hepatic fibrosis by 1H magnetic resonance spectroscopy and diffusion weighted imaging in asymptomatic

    Directory of Open Access Journals (Sweden)

    Shereen Mansour Galal

    2016-09-01

    Conclusion: Early diagnosis of asymptomatic chronic hepatitis C is essential to prevent or delay end stage chronic parenchymal liver disease. 1H MRS may be a potential noninvasive helpful diagnostic tool in the assessment of staging and fibrosis of asymptomatic chronic hepatitis C. The increase in metabolites were correlated with histopathological changes. DW-MRI can be considered as an effective predictor in the assessment of activity in chronic hepatitis C.

  9. 76 FR 38399 - Assessing the Current Research, Policy, and Practice Environment in Public Health Genomics

    Science.gov (United States)

    2011-06-30

    ... HUMAN SERVICES Centers for Disease Control and Prevention Assessing the Current Research, Policy, and..., and other information helpful to assess the current research, policy, and practice environment in... Control and Prevention (CDC) has worked to integrate genomics into public health research, policy,...

  10. Assessing the HIV Care Continuum in Latin America: progress in clinical retention, cART use and viral suppression

    Directory of Open Access Journals (Sweden)

    Peter F Rebeiro

    2016-04-01

    Full Text Available Introduction: We assessed trends in HIV Care Continuum outcomes associated with delayed disease progression and reduced transmission within a large Latin American cohort over a decade: clinical retention, combination antiretroviral therapy (cART use and viral suppression (VS. Methods: Adults from Caribbean, Central and South America network for HIV epidemiology clinical cohorts in seven countries contributed data between 2003 and 2012. Retention was defined as two or more HIV care visits annually, >90 days apart. cART was defined as prescription of three or more antiretroviral agents annually. VS was defined as HIV-1 RNA <200 copies/mL at last measurement annually. cART and VS denominators were subjects with at least one visit annually. Multivariable modified Poisson regression was used to assess temporal trends and examine associations between age, sex, HIV transmission mode, cohort, calendar year and time in care. Results: Among 18,799 individuals in retention analyses, 14,380 in cART analyses and 13,330 in VS analyses, differences existed between those meeting indicator definitions versus those not by most characteristics. Retention, cART and VS significantly improved from 2003 to 2012 (63 to 77%, 74 to 91% and 53 to 82%, respectively; p<0.05, each. Female sex (risk ratio (RR=0.97 vs. males and injection drug use as HIV transmission mode (RR=0.83 vs. male sexual contact with males (MSM were significantly associated with lower retention, but unrelated with cART or VS. MSM (RR=0.96 significantly decreased the probability of cART compared with heterosexual transmission. Conclusions: HIV Care Continuum outcomes improved over time in Latin America, though disparities for vulnerable groups remain. Efforts must be made to increase retention, cART and VS, while engaging in additional research to sustain progress in these settings.

  11. Assessing the HIV Care Continuum in Latin America: progress in clinical retention, cART use and viral suppression

    Science.gov (United States)

    Rebeiro, Peter F; Cesar, Carina; Shepherd, Bryan E; De Boni, Raquel B; Cortés, Claudia P; Rodriguez, Fernanda; Belaunzarán-Zamudio, Pablo; Pape, Jean W; Padgett, Denis; Hoces, Daniel; McGowan, Catherine C; Cahn, Pedro

    2016-01-01

    Introduction We assessed trends in HIV Care Continuum outcomes associated with delayed disease progression and reduced transmission within a large Latin American cohort over a decade: clinical retention, combination antiretroviral therapy (cART) use and viral suppression (VS). Methods Adults from Caribbean, Central and South America network for HIV epidemiology clinical cohorts in seven countries contributed data between 2003 and 2012. Retention was defined as two or more HIV care visits annually, >90 days apart. cART was defined as prescription of three or more antiretroviral agents annually. VS was defined as HIV-1 RNA <200 copies/mL at last measurement annually. cART and VS denominators were subjects with at least one visit annually. Multivariable modified Poisson regression was used to assess temporal trends and examine associations between age, sex, HIV transmission mode, cohort, calendar year and time in care. Results Among 18,799 individuals in retention analyses, 14,380 in cART analyses and 13,330 in VS analyses, differences existed between those meeting indicator definitions versus those not by most characteristics. Retention, cART and VS significantly improved from 2003 to 2012 (63 to 77%, 74 to 91% and 53 to 82%, respectively; p<0.05, each). Female sex (risk ratio (RR)=0.97 vs. males) and injection drug use as HIV transmission mode (RR=0.83 vs. male sexual contact with males (MSM)) were significantly associated with lower retention, but unrelated with cART or VS. MSM (RR=0.96) significantly decreased the probability of cART compared with heterosexual transmission. Conclusions HIV Care Continuum outcomes improved over time in Latin America, though disparities for vulnerable groups remain. Efforts must be made to increase retention, cART and VS, while engaging in additional research to sustain progress in these settings. PMID:27065108

  12. Greater numbers of nucleotide substitutions are introduced into the genomic RNA of bovine viral diarrhea virus during acute infections of pregnant cattle than of non-pregnant cattle

    Directory of Open Access Journals (Sweden)

    Neill John D

    2012-08-01

    Full Text Available Abstract Background Bovine viral diarrhea virus (BVDV strains circulating in livestock herds show significant sequence variation. Conventional wisdom states that most sequence variation arises during acute infections in response to immune or other environmental pressures. A recent study showed that more nucleotide changes were introduced into the BVDV genomic RNA during the establishment of a single fetal persistent infection than following a series of acute infections of naïve cattle. However, it was not known if nucleotide changes were introduce when the virus crossed the placenta and infected the fetus or during the acute infection of the dam. Methods The sequence of the open reading frame (ORF from viruses isolated from four acutely infected pregnant heifers following exposure to persistently infected (PI calves was compared to the sequences of the virus from the progenitor PI calf and the virus from the resulting progeny PI calf to determine when genetic change was introduced. This was compared to genetic change found in viruses isolated from a pregnant PI cow and its PI calf, and in three viruses isolated from acutely infected, non-pregnant cattle exposed to PI calves. Results Most genetic changes previously identified between the progenitor and progeny PI viruses were in place in the acute phase viruses isolated from the dams six days post-exposure to the progenitor PI calf. Additionally, each progeny PI virus had two to three unique nucleotide substitutions that were introduced in crossing the placenta and infection of the fetus. The nucleotide sequence of two acute phase viruses isolated from steers exposed to PI calves revealed that six and seven nucleotide changes were introduced during the acute infection. The sequence of the BVDV-2 virus isolated from an acute infection of a PI calf (BVDV-1a co-housed with a BVDV-2 PI calf had ten nucleotides that were different from the progenitor PI virus. Finally, twenty nucleotide changes were

  13. Viral arthritis

    Science.gov (United States)

    Infectious arthritis - viral ... Arthritis may be a symptom of many virus-related illnesses. It usually disappears on its own without ... the rubella vaccine, only a few people develop arthritis. No risk factors are known.

  14. Assessing the functionality of viral entry-associated domains of porcine reproductive and respiratory syndrome virus during inactivation procedures, a potential tool to optimize inactivated vaccines.

    Science.gov (United States)

    Delrue, Iris; Delputte, Peter L; Nauwynck, Hans J

    2009-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe economic losses in the pig industry worldwide. Currently, vaccines based on inactivated PRRSV provide limited protection of pigs against infection, most likely because viral epitopes associated with the induction of neutralizing antibodies are not or poorly conserved during inactivation. To analyze the effect of inactivation procedures on the interaction of PRRSV with receptors involved in virus entry, a new assay was set up in this study. Viral entry-associated domains are most likely important for the induction of neutralizing antibodies, since neutralizing antibodies block interaction of PRRSV with cellular receptors. To investigate the interaction of PRRSV with the cellular receptors upon different inactivation procedures, attachment to and internalization of inactivated PRRSV into macrophages were monitored. AT-2 could not inactivate PRRSV completely and is therefore not useful for vaccine development. PRRSV inactivated with ultraviolet light, binary ethyleneimine and gamma irradiation, which all mainly have an effect at the genomic level, showed no difference compared to control live virus at all levels of virus entry, whereas PRRSV treated with formaldehyde, glutaraldehyde and pH changes, which all have a modifying effect on proteins, was not able to internalize into macrophages anymore. These results suggest that inactivation with methods with a main effect on the viral genome preserve PRRSV entry-associated domains and are useful for future development of an effective inactivated vaccine against PRRSV. Although PRRSV incubation at 37 degrees C can completely inactivate PRRSV with preservation of entry-associated domains, this method is not recommended for vaccine development, since the mechanism is yet unknown.

  15. An assessment on epitope prediction methods for protozoa genomes

    Directory of Open Access Journals (Sweden)

    Resende Daniela M

    2012-11-01

    Full Text Available Abstract Background Epitope prediction using computational methods represents one of the most promising approaches to vaccine development. Reduction of time, cost, and the availability of completely sequenced genomes are key points and highly motivating regarding the use of reverse vaccinology. Parasites of genus Leishmania are widely spread and they are the etiologic agents of leishmaniasis. Currently, there is no efficient vaccine against this pathogen and the drug treatment is highly toxic. The lack of sufficiently large datasets of experimentally validated parasites epitopes represents a serious limitation, especially for trypanomatids genomes. In this work we highlight the predictive performances of several algorithms that were evaluated through the development of a MySQL database built with the purpose of: a evaluating individual algorithms prediction performances and their combination for CD8+ T cell epitopes, B-cell epitopes and subcellular localization by means of AUC (Area Under Curve performance and a threshold dependent method that employs a confusion matrix; b integrating data from experimentally validated and in silico predicted epitopes; and c integrating the subcellular localization predictions and experimental data. NetCTL, NetMHC, BepiPred, BCPred12, and AAP12 algorithms were used for in silico epitope prediction and WoLF PSORT, Sigcleave and TargetP for in silico subcellular localization prediction against trypanosomatid genomes. Results A database-driven epitope prediction method was developed with built-in functions that were capable of: a removing experimental data redundancy; b parsing algorithms predictions and storage experimental validated and predict data; and c evaluating algorithm performances. Results show that a better performance is achieved when the combined prediction is considered. This is particularly true for B cell epitope predictors, where the combined prediction of AAP12 and BCPred12 reached an AUC value

  16. Genome-Environmental Risk Assessment of Cocaine Dependence

    Directory of Open Access Journals (Sweden)

    Changshuai eWei

    2012-05-01

    Full Text Available Cocaine-associated biomedical and psychosocial problems are substantial 21st century global burdens of disease. This burden is largely driven by a cocaine dependence process that becomes engaged with increasing occasions of cocaine product use. For this reason, the development of a risk prediction model for cocaine dependence may be of special value. Ultimately, success in building such a risk prediction model may help promote personalized cocaine dependence prediction, prevention, and treatment approaches not presently available. As an initial step toward this goal, we conducted a genome-environmental risk prediction study for cocaine dependence, simultaneously considering 948,658 single nucleotide polymorphisms (SNPs, six potentially cocaine-related facets of environment, and three personal characteristics. In this study, a novel statistical approach was applied to 1045 case-control samples from the Family Study of Cocaine Dependence. The results identify 330 low- to medium-effect size SNPs (i.e., those with a single locus p-value of less than 10-4 that made a substantial contribution to cocaine dependence risk prediction (AUC=0.718. Inclusion of six facets of environment and three personal characteristics yielded greater accuracy (AUC=0.809. Of special importance was childhood abuse (CA among trauma experiences, with a potentially important interaction of CA and the GBE1 gene in cocaine dependence risk prediction. Genome-environmental risk prediction models may become more promising in future risk prediction research, once a more substantial array of environmental facets are taken into account, sometimes with model improvement when gene-by-environment product terms are included as part of these risk predication models.

  17. Assessment of Field-Grown Cucurbit Crops and Weeds within Farms in South-West Nigeria for Viral Diseases

    Directory of Open Access Journals (Sweden)

    Emily Ibitaiyewa AYO-JOHN

    2014-09-01

    Full Text Available Cucurbits are economic crops in Nigeria which serve as additional nutritional supplements and also good sources of income for farmers. Viral diseases are a worldwide problem of cucurbits and a major limiting factor for cucurbit production. A survey of farmer’s fields where cucurbit crops were grown was carried out to assess the incidence and severity of virus symptoms and viruses associated with the crops and weeds in selected locations in Ogun and Osun, in southwest Nigeria, in June, 2012. In all, 38 leaf samples were collected in Ogun state and 52 in Osun state from cucurbit crops and weeds. Leaf samples were tested against  Cucumber mosaic virus (CMV, Melon necrotic spot virus (MNSV, Papaya ringspot virus (PRSV, Watermelon mosaic virus (WMV,Zucchini yellow mosaic virus (ZYMV and Cucumber green mottle mosaic virus (CGMMV using Double Antibody Sandwich (DAS enzyme-linked immunosorbent assay (ELISA. All the fields surveyed had virus symptom incidences of 100% except for melon fields in Osun state with incidences of between 10 and 30%. In Ogun state, the occurrence of CMV was 5/31 (16.1% while MNSV was detected in Lagenaria siceraria and T. occidentalis and it occurred in 6.5% of the leaf samples. In Osun state, CMV was detected in watermelon, melon and weeds found in all locations surveyed. The occurrence of CMV was 9/38 (23.7% in the cucurbit crops and in 78.6% (11/14 of the weeds. PRSV and WMV also occurred in mixed infection with CMV in 7.1% respectively. CMV was the most widespread and prevalent virus infecting cucurbit crops and weeds.Cucurbits are economic crops in Nigeria which serve as additional nutritional supplements and also good sources of income for farmers. Viral diseases are a worldwide problem of cucurbits and a major limiting factor for cucurbit production. A survey of farmer’s fields where cucurbit crops were grown was carried out to assess the incidence and severity of virus symptoms and viruses associated with the crops

  18. Mechanisms of inhibition of viral replication in plants

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    We have made a number of interesting observations of importance to the fields of virology and plant molecular biology. Topics include the genome of cucumber mosaic virus (CMV), recombination of the CMV genome, transgenic plants and viral movement genes, mapping resistance breakage sequences in the tomato mosaic virus (TMV) genome, and mapping pathogeneticity domains and viral RNA heterogeneity. 1 fig., 1 tab.

  19. Experimental risk assessment of bovine viral diarrhea virus transmission via in vitro embryo production using somatic cell nucleus transfer.

    Science.gov (United States)

    Gregg, K; Chen, S H; Sadeghieh, S; Guerra, T; Xiang, T; Meredith, J; Polejaeva, I

    2009-07-01

    The objective of this study was to perform a comprehensive risk assessment on infectious disease transmission in the system of in vitro embryo production via somatic cell nucleus transfer (SCNT) technology using bovine viral diarrhea virus (BVDV) as a model. The risks of BVDV transmission in each step of the SCNT embryo production procedure, from donor cells to preimplantation SCNT embryo culture, were carefully examined using a sensitive real-time polymerase chain reaction assay. The identified primary source of BVDV transmission in SCNT embryo production was donor cell infection, most likely caused by contaminated fetal bovine serum in the culture medium. The risk of disease transmission through contaminated oocytes from an abattoir was relatively low, and it can be greatly minimized by cumulus cell removal and adequate oocyte washing procedures. Of the 200 cumulus-oocyte complexes (COCs) and more than 1500 cumulus cell-free oocyte (CFO) samples collected from multiple sources over a course of 7 months, only 2.5% of the COCs were BVDV positive, and all of the CFOs (100%) were BVDV negative. To evaluate the risk of BVDV introduction during in vitro SCNT embryo culture, 324 SCNT embryos were produced from 18 different cell lines using oocytes from 26 different batches collected over a course of 9 months. The embryos were cultured in vitro for 7 days and then tested for BVDV. All of the 324 SCNT embryos (100%) were negative, indicating that the embryo culture system is virtually risk-free for BVDV transmission. Based on these results, a standard operational protocol (SOP) for SCNT embryo production was proposed to greatly minimize the risk of BVDV transmission through the SCNT embryo production system. This SOP could be a starting point to produce a SCNT system that is virtually risk-free for disease transmission in general.

  20. Preclinical assessment of viral vectored and protein vaccines targeting the Duffy-binding protein region II of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Simone C de Cassan

    2015-07-01

    Full Text Available Malaria vaccine development has largely focused on Plasmodium falciparum; however a reawakening to the importance of P. vivax has spurred efforts to develop vaccines against this difficult to treat and at times severe form of relapsing malaria, which constitutes a significant proportion of human malaria cases worldwide. The almost complete dependence of P. vivax red blood cell invasion on the interaction of the P. vivax Duffy-binding protein region II (PvDBP_RII with the human Duffy antigen receptor for chemokines (DARC, makes this antigen an attractive vaccine candidate against blood-stage P. vivax. Here, we generated both preclinical and clinically-compatible adenoviral and poxviral vectored vaccine candidates expressing the Salvador I allele of PvDBP_RII – including human adenovirus serotype 5 (HAdV5, chimpanzee adenovirus serotype 63 (ChAd63 and modified vaccinia virus Ankara (MVA vectors. We report on the antibody and T cell immunogenicity of these vaccines in mice or rabbits, either used alone in a viral vectored prime-boost regime, or in ‘mixed-modality’ adenovirus prime – protein-in-adjuvant boost regimes (using a recombinant protein PvDBP_RII protein antigen formulated in Montanide®ISA720 or Abisco®100 adjuvants. Antibodies induced by these regimes were found to bind to native parasite antigen from P. vivax infected Thai patients and were capable of inhibiting the binding of PvDBP_RII to its receptor DARC using an in vitro binding inhibition assay. In recent years, recombinant ChAd63 and MVA vectors have been quickly translated into human clinical trials for numerous antigens from P. falciparum as well as a growing number of other pathogens. The vectors reported here are immunogenic in small animals, elicit antibodies against PvDBP_RII and have recently entered clinical trials which will provide the first assessment of the safety and immunogenicity of the PvDBP_RII antigen in humans.

  1. Investigation of RNA Viral Genome Amplification by Multiple Displacement Amplification Technique%基于多重置换扩增技术的RNA病毒基因组扩增方法研究

    Institute of Scientific and Technical Information of China (English)

    庞正; 李建东; 李川; 梁米芳; 李德新

    2013-01-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases,a negativestrand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus,and a positive-strand RNA virus-dengue virus,were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples.Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads,after a series of reactions were sequentially processed,single-strand cDNA,double-strand cDNA,double-strand cDNA treated with ligation without or with supplemental RNA were generated,then a Phi29 DNA polymerase depended isothermal amplification was employed,and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods.The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited,while the fold increases of doublestrand cDNA templates treated with ligation could be up to 6× 103,even 2 × 105 when supplemental RNA existed,and better results were obtained when viral RNA loads were lower.A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved,which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.%为了便于新发或罕见病毒性传染病的筛查检测,本研究利用多重置换扩增技术,以负链RNA病毒一发热伴血小板减少综合征病毒和正链RNA病毒一登革病毒为模拟样本探索临床样本中RNA病毒基因组非特异性扩增方法.研究中通过梯度稀释的RNA病毒模拟样本中可能存在的不同丰度的病原体,样本核酸依次加工成单链cDNA、双链cDNA、T4 DNA连接酶处理后的双链cDNA以及添加外源辅助RNA后合成并连接的

  2. Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations.

    Science.gov (United States)

    Dearfield, Kerry L; Gollapudi, B Bhaskar; Bemis, Jeffrey C; Benz, R Daniel; Douglas, George R; Elespuru, Rosalie K; Johnson, George E; Kirkland, David J; LeBaron, Matthew J; Li, Albert P; Marchetti, Francesco; Pottenger, Lynn H; Rorije, Emiel; Tanir, Jennifer Y; Thybaud, Veronique; van Benthem, Jan; Yauk, Carole L; Zeiger, Errol; Luijten, Mirjam

    2016-09-21

    For several decades, regulatory testing schemes for genetic damage have been standardized where the tests being utilized examined mutations and structural and numerical chromosomal damage. This has served the genetic toxicity community well when most of the substances being tested were amenable to such assays. The outcome from this testing is usually a dichotomous (yes/no) evaluation of test results, and in many instances, the information is only used to determine whether a substance has carcinogenic potential or not. Over the same time period, mechanisms and modes of action (MOAs) that elucidate a wider range of genomic damage involved in many adverse health outcomes have been recognized. In addition, a paradigm shift in applied genetic toxicology is moving the field toward a more quantitative dose-response analysis and point-of-departure (PoD) determination with a focus on risks to exposed humans. This is directing emphasis on genomic damage that is likely to induce changes associated with a variety of adverse health outcomes. This paradigm shift is moving the testing emphasis for genetic damage from a hazard identification only evaluation to a more comprehensive risk assessment approach that provides more insightful information for decision makers regarding the potential risk of genetic damage to exposed humans. To enable this broader context for examining genetic damage, a next generation testing strategy needs to take into account a broader, more flexible approach to testing, and ultimately modeling, of genomic damage as it relates to human exposure. This is consistent with the larger risk assessment context being used in regulatory decision making. As presented here, this flexible approach for examining genomic damage focuses on testing for relevant genomic effects that can be, as best as possible, associated with an adverse health effect. The most desired linkage for risk to humans would be changes in loci associated with human diseases, whether in somatic

  3. A Critical Analysis of Assessment Quality in Genomics and Bioinformatics Education Research

    Science.gov (United States)

    Campbell, Chad E.; Nehm, Ross H.

    2013-01-01

    The growing importance of genomics and bioinformatics methods and paradigms in biology has been accompanied by an explosion of new curricula and pedagogies. An important question to ask about these educational innovations is whether they are having a meaningful impact on students’ knowledge, attitudes, or skills. Although assessments are necessary tools for answering this question, their outputs are dependent on their quality. Our study 1) reviews the central importance of reliability and construct validity evidence in the development and evaluation of science assessments and 2) examines the extent to which published assessments in genomics and bioinformatics education (GBE) have been developed using such evidence. We identified 95 GBE articles (out of 226) that contained claims of knowledge increases, affective changes, or skill acquisition. We found that 1) the purpose of most of these studies was to assess summative learning gains associated with curricular change at the undergraduate level, and 2) a minority (assessment quality in GBE. PMID:24006400

  4. Viral quasispecies.

    Science.gov (United States)

    Andino, Raul; Domingo, Esteban

    2015-05-01

    New generation sequencing is greatly expanding the capacity to examine the composition of mutant spectra of viral quasispecies in infected cells and host organisms. Here we review recent progress in the understanding of quasispecies dynamics, notably the occurrence of intra-mutant spectrum interactions, and implications of fitness landscapes for virus adaptation and de-adaptation. Complementation or interference can be established among components of the same mutant spectrum, dependent on the mutational status of the ensemble. Replicative fitness relates to an optimal mutant spectrum that provides the molecular basis for phenotypic flexibility, with implications for antiviral therapy. The biological impact of viral fitness renders particularly relevant the capacity of new generation sequencing to establish viral fitness landscapes. Progress with experimental model systems is becoming an important asset to understand virus behavior in the more complex environments faced during natural infections.

  5. Genomics and its role in Cancer Risk Assessment

    Science.gov (United States)

    The traditional risk assessment paradigm is based on exposure - dose - response. The individual is exposed to a chemical or other stressor at some dose and a response in the organism or tissue is elicited. Though precursor events such as taret cell proliferation may be used as ...

  6. Generation of dried tube specimen for HIV-1 viral load proficiency test panels: a cost-effective alternative for external quality assessment programs.

    Science.gov (United States)

    Ramos, Artur; Nguyen, Shon; Garcia, Albert; Subbarao, Shambavi; Nkengasong, John N; Ellenberger, Dennis

    2013-03-01

    Participation in external quality assessment programs is critical to ensure quality clinical laboratory testing. Commercially available proficiency test panels for HIV-1 virus load testing that are used commonly in external quality assessment programs remain a financial obstacle to resource-limited countries. Maintaining cold-chain transportation largely contributes to the cost of traditional liquid proficiency test panels. Therefore, we developed and evaluated a proficiency test panel using dried tube specimens that can be shipped and stored at ambient temperature. This dried tube specimens panel consisted of 20 μl aliquots of a HIV-1 stock that were added to 2 ml tubes and left uncapped for drying, as a preservation method. The stability of dried tube specimens at concentrations ranging from 10² to 10⁶·⁵ RNA copies/ml was tested at different temperatures over time, showing no viral load reduction at 37 °C and a decrease in viral load smaller than 0.5 Log₁₀ at 45 °C for up to eight weeks when compared to initial results. Eight cycles of freezing-thawing had no effect on the stability of the dried tube specimens. Comparable viral load results were observed when dried tube specimen panels were tested on Roche CAPTAQ, Abbott m2000, and Biomerieux easyMAG viral load systems. Preliminary test results of dried proficiency test panels shipped to four African countries at ambient temperature demonstrated a low inter assay variation (SD range: 0.29-0.41 Log₁₀ RNA copies/ml). These results indicated that HIV-1 proficiency test panels generated by this methodology might be an acceptable alternative for laboratories in resource-limited countries to participate in external quality assessment programs.

  7. Specific binding of Fusarium graminearum Hex1 protein to untranslated regions of the genomic RNA of Fusarium graminearum virus 1 correlates with increased accumulation of both strands of viral RNA.

    Science.gov (United States)

    Son, Moonil; Choi, Hoseong; Kim, Kook-Hyung

    2016-02-01

    The HEX1 gene of Fusarium graminearum was previously reported to be required for the efficient accumulation of Fusarium graminearum virus 1 (FgV1) RNA in its host. To investigate the molecular mechanism underlying the production of FgHEX1 and the replication of FgV1 viral RNA, we conducted electrophoretic mobility shift assays (EMSA) with recombinant FgHex1 protein and RNA sequences derived from various regions of FgV1 genomic RNA. These analyses demonstrated that FgHex1 and both the 5'- and 3'-untranslated regions of plus-strand FgV1 RNA formed complexes. To determine whether FgHex1 protein affects FgV1 replication, we quantified accumulation viral RNAs in protoplasts and showed that both (+)- and (-)-strands of FgV1 RNAs were increased in the over-expression mutant and decreased in the deletion mutant. These results indicate that the FgHex1 functions in the synthesis of both strands of FgV1 RNA and therefore in FgV1 replication probably by specifically binding to the FgV1 genomic RNA. Copyright © 2016. Published by Elsevier Inc.

  8. A Critical Analysis of Assessment Quality in Genomics and Bioinformatics Education Research

    Science.gov (United States)

    Campbell, Chad E.; Nehm, Ross H.

    2013-01-01

    The growing importance of genomics and bioinformatics methods and paradigms in biology has been accompanied by an explosion of new curricula and pedagogies. An important question to ask about these educational innovations is whether they are having a meaningful impact on students' knowledge, attitudes, or skills. Although assessments are…

  9. GENEPEASE Genomic tools for assessment of pesticide effects on the agricultural soil ecosystem

    DEFF Research Database (Denmark)

    Jacobsen, Carsten Suhr; Feld, Louise; Hjelmsø, Mathis Hjort;

    The project focussed on validating RNA based methods as potential genomic tools in assessment of agricultural soil ecosystems. It was shown that the mRNA based technique was very sensitive and the effects was seen in the same situations as when the OECD nitrification assay showed an effect. 16S r...

  10. A Critical Analysis of Assessment Quality in Genomics and Bioinformatics Education Research

    Science.gov (United States)

    Campbell, Chad E.; Nehm, Ross H.

    2013-01-01

    The growing importance of genomics and bioinformatics methods and paradigms in biology has been accompanied by an explosion of new curricula and pedagogies. An important question to ask about these educational innovations is whether they are having a meaningful impact on students' knowledge, attitudes, or skills. Although assessments are…

  11. Solutions for data integration in functional genomics: a critical assessment and case study.

    Science.gov (United States)

    Smedley, Damian; Swertz, Morris A; Wolstencroft, Katy; Proctor, Glenn; Zouberakis, Michael; Bard, Jonathan; Hancock, John M; Schofield, Paul

    2008-11-01

    The torrent of data emerging from the application of new technologies to functional genomics and systems biology can no longer be contained within the traditional modes of data sharing and publication with the consequence that data is being deposited in, distributed across and disseminated through an increasing number of databases. The resulting fragmentation poses serious problems for the model organism community which increasingly rely on data mining and computational approaches that require gathering of data from a range of sources. In the light of these problems, the European Commission has funded a coordination action, CASIMIR (coordination and sustainability of international mouse informatics resources), with a remit to assess the technical and social aspects of database interoperability that currently prevent the full realization of the potential of data integration in mouse functional genomics. In this article, we assess the current problems with interoperability, with particular reference to mouse functional genomics, and critically review the technologies that can be deployed to overcome them. We describe a typical use-case where an investigator wishes to gather data on variation, genomic context and metabolic pathway involvement for genes discovered in a genome-wide screen. We go on to develop an automated approach involving an in silico experimental workflow tool, Taverna, using web services, BioMart and MOLGENIS technologies for data retrieval. Finally, we focus on the current impediments to adopting such an approach in a wider context, and strategies to overcome them.

  12. Insertion of the CXC chemokine ligand 9 (CXCL9) into the mouse hepatitis virus genome results in protection from viral-induced encephalitis and hepatitis.

    Science.gov (United States)

    Muse, Michael; Kane, Joy A C; Carr, Daniel J J; Farber, Joshua M; Lane, Thomas E

    2008-12-20

    The role of the CXC chemokine ligand 9 (CXCL9) in host defense following infection with mouse hepatitis virus (MHV) was determined. Inoculation of the central nervous system (CNS) of CXCL9-/- mice with MHV resulted in accelerated and increased mortality compared to wild type mice supporting an important role for CXCL9 in anti-viral defense. In addition, infection of RAG1-/- or CXCL9-/- mice with a recombinant MHV expressing CXCL9 (MHV-CXCL9) resulted in protection from disease that correlated with reduced viral titers within the brain and NK cell-mediated protection in the liver. Survival in MHV-CXCL9-infected CXCL9-/- mice was associated with reduced viral burden within the brain that coincided with increased T cell infiltration. Similarly, viral clearance from the livers of MHV-CXCL9-infected mice was accelerated but independent of increased T cell or NK cell infiltration. These observations indicate that CXCL9 promotes protection from coronavirus-induced neurological and liver disease.

  13. From viral genome to specific peptide epitopes: methods for identifying porcine T cell epitopes based on in silico predictions, in vitro identification and ex vivo verification

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndah, Mikkel

    2013-01-01

    The affinity with which major histocompatibility complex (MHC) class I molecules bind peptides is instrumental to presentation of viral epitopes to cytotoxic T lymphocytes (CTLs). We analyzed three swine leukocyte antigen (SLA) molecules for complete nonamer peptide-based binding matrices in orde...

  14. Modification of picornavirus genomic RNA using 'click' chemistry shows that unlinking of the VPg peptide is dispensable for translation and replication of the incoming viral RNA

    NARCIS (Netherlands)

    Langereis, Martijn A; Feng, Qian; Nelissen, Frank H T; Virgen-Slane, Richard; van der Heden van Noort, Gerbrand J; Maciejewski, Sonia; Filippov, Dmitri V; Semler, Bert L; van Delft, Floris L; van Kuppeveld, Frank J M

    2014-01-01

    Picornaviruses constitute a large group of viruses comprising medically and economically important pathogens such as poliovirus, coxsackievirus, rhinovirus, enterovirus 71 and foot-and-mouth disease virus. A unique characteristic of these viruses is the use of a viral peptide (VPg) as primer for vir

  15. Viral RNAs are unusually compact.

    Directory of Open Access Journals (Sweden)

    Ajaykumar Gopal

    Full Text Available A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly.

  16. Reporting of Human Genome Epidemiology (HuGE association studies: An empirical assessment

    Directory of Open Access Journals (Sweden)

    Gwinn Marta

    2008-05-01

    Full Text Available Abstract Background Several thousand human genome epidemiology association studies are published every year investigating the relationship between common genetic variants and diverse phenotypes. Transparent reporting of study methods and results allows readers to better assess the validity of study findings. Here, we document reporting practices of human genome epidemiology studies. Methods Articles were randomly selected from a continuously updated database of human genome epidemiology association studies to be representative of genetic epidemiology literature. The main analysis evaluated 315 articles published in 2001–2003. For a comparative update, we evaluated 28 more recent articles published in 2006, focusing on issues that were poorly reported in 2001–2003. Results During both time periods, most studies comprised relatively small study populations and examined one or more genetic variants within a single gene. Articles were inconsistent in reporting the data needed to assess selection bias and the methods used to minimize misclassification (of the genotype, outcome, and environmental exposure or to identify population stratification. Statistical power, the use of unrelated study participants, and the use of replicate samples were reported more often in articles published during 2006 when compared with the earlier sample. Conclusion We conclude that many items needed to assess error and bias in human genome epidemiology association studies are not consistently reported. Although some improvements were seen over time, reporting guidelines and online supplemental material may help enhance the transparency of this literature.

  17. U.S. Environmental Protection Agency's activities to prepare for regulatory and risk assessment applications of genomics information.

    Science.gov (United States)

    Benson, William H; Gallagher, Kathryn; McClintock, J Thomas

    2007-06-01

    Genomics is expected to have significant implications for risk assessment and regulatory decision making. Since 2002, the U.S. Environmental Protection Agency (EPA) has undertaken a number of cross-agency activities to further prepare itself to receive, interpret, and apply genomics information for risk assessment and regulatory purposes. These activities include: (1) the issuance of an Interim Genomics Policy on the use of genomics information in risk assessments and decision making, (2) the release of the 2004 Genomics White Paper, which outlines potential applications and implications of genomics for EPA, and (3) the recent release of the external review draft of the Interim Guidance on Microarray-Based Assays, which outlines data submission, quality, analysis, management, and training considerations for such data. This manuscript discusses these activities and more recent follow-up activities with the aim of further communicating these efforts to the broader scientific and stakeholder community.

  18. Large scale in vivo risk assessment of bovine viral diarrhea virus (BVDV) transmission through transfer of bovine embryos produced via somatic cell nuclear transfer (SCNT).

    Science.gov (United States)

    Gregg, K; Gosch, G; Guerra, T; Chen, S H; Xiang, T; Broek, D; Bruner, B; Polejaeva, I

    2010-10-15

    The objective was to use the bovine viral diarrhea virus (BVDV) as a model to assess the risk of infectious disease transmission in the system of in vitro embryo production and transfer via somatic cell nuclear transfer (SCNT) technology. The risks of BVDV transmission in the SCNT embryo production were previously evaluated. In that in vitro study, following standard operating procedures (SOP), including pre-nuclear transfer donor cell testing, oocyte decontamination and virus-free cell and embryo culture conditions, SCNT embryos produced were free of detectable viral RNA. The current study focused on the evaluation of the potential risk of disease transmission from SCNT embryos to recipients, and the risk of producing persistently infected animals via SCNT embryo transfer. Blood samples were collected from 553 recipients of SCNT embryos and 438 cloned calves and tested for the presence of BVDV viral RNA via a sensitive real time PCR method. All samples tested were negative. These results, in conjunction with the previous in vitro study, confirmed that the established SCNT embryo production and transfer system is safe and presents no detectable risk of disease transmission. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Safety assessment of Staphylococcus phages of the family Myoviridae based on complete genome sequences

    Science.gov (United States)

    Cui, Zelin; Guo, Xiaokui; Dong, Ke; Zhang, Yan; Li, Qingtian; Zhu, Yongzhang; Zeng, Lingbing; Tang, Rong; Li, Li

    2017-01-01

    Staphylococcus phages of the Myoviridae family have a wide host range and potential applications in phage therapy. In this report, safety assessments of these phages were conducted based on their complete genome sequences. The complete genomes of Staphylococcus phages of the Myoviridae family were analyzed, and the Open Reading Frame (ORFs) were compared with a pool of virulence and antibiotic resistance genes using the BLAST algorithm. In addition, the lifestyle of the phages (virulent or temperate) was also confirmed using PHACTS. The results showed that all phages were lytic and did not contain resistance or virulence genes based on bioinformatic analyses, excluding the possibility that they could be vectors for the dissemination of these undesirable genes. These findings suggest that the phages are safe at the genome level. The SceD-like transglycosylase, which is a biomarker for vancomycin-intermediate strains, was widely distributed in the phage genomes. Approximately 70% of the ORFs encoded in the phage genomes have unknown functions; therefore, their roles in the antibiotic resistance and virulence of Staphylococcus aureus are still unknown and require consideration before use in phage therapy. PMID:28117392

  20. Comparing viral metagenomics methods using a highly multiplexed human viral pathogens reagent.

    Science.gov (United States)

    Li, Linlin; Deng, Xutao; Mee, Edward T; Collot-Teixeira, Sophie; Anderson, Rob; Schepelmann, Silke; Minor, Philip D; Delwart, Eric

    2015-03-01

    Unbiased metagenomic sequencing holds significant potential as a diagnostic tool for the simultaneous detection of any previously genetically described viral nucleic acids in clinical samples. Viral genome sequences can also inform on likely phenotypes including drug susceptibility or neutralization serotypes. In this study, different variables of the laboratory methods often used to generate viral metagenomics libraries were compared for their abilities to detect multiple viruses and generate full genome coverage. A biological reagent consisting of 25 different human RNA and DNA viral pathogens was used to estimate the effect of filtration and nuclease digestion, DNA/RNA extraction methods, pre-amplification and the use of different library preparation kits on the detection of viral nucleic acids. Filtration and nuclease treatment led to slight decreases in the percentage of viral sequence reads and number of viruses detected. For nucleic acid extractions silica spin columns improved viral sequence recovery relative to magnetic beads and Trizol extraction. Pre-amplification using random RT-PCR while generating more viral sequence reads resulted in detection of fewer viruses, more overlapping sequences, and lower genome coverage. The ScriptSeq library preparation method retrieved more viruses and a greater fraction of their genomes than the TruSeq and Nextera methods. Viral metagenomics sequencing was able to simultaneously detect up to 22 different viruses in the biological reagent analyzed including all those detected by qPCR. Further optimization will be required for the detection of viruses in biologically more complex samples such as tissues, blood, or feces.

  1. Genome sequence diversity and clues to the evolution of variola (smallpox) virus.

    Science.gov (United States)

    Esposito, Joseph J; Sammons, Scott A; Frace, A Michael; Osborne, John D; Olsen-Rasmussen, Melissa; Zhang, Ming; Govil, Dhwani; Damon, Inger K; Kline, Richard; Laker, Miriam; Li, Yu; Smith, Geoffrey L; Meyer, Hermann; Leduc, James W; Wohlhueter, Robert M

    2006-08-11

    Comparative genomics of 45 epidemiologically varied variola virus isolates from the past 30 years of the smallpox era indicate low sequence diversity, suggesting that there is probably little difference in the isolates' functional gene content. Phylogenetic clustering inferred three clades coincident with their geographical origin and case-fatality rate; the latter implicated putative proteins that mediate viral virulence differences. Analysis of the viral linear DNA genome suggests that its evolution involved direct descent and DNA end-region recombination events. Knowing the sequences will help understand the viral proteome and improve diagnostic test precision, therapeutics, and systems for their assessment.

  2. Assembly of a marine viral metagenome after physical fractionation.

    Directory of Open Access Journals (Sweden)

    Jennifer R Brum

    Full Text Available Metagenomic analyses of marine viruses generate an overview of viral genes present in a sample, but the percentage of the resulting sequence fragments that can be reassembled is low and the phenotype of the virus from which a given sequence derives is usually unknown. In this study, we employed physical fractionation to characterize the morphological and genomic traits of a subset of uncultivated viruses from a natural marine assemblage. Viruses from Kāne'ohe Bay, Hawai'i were fractionated by equilibrium buoyant density centrifugation in a cesium chloride (CsCl gradient, and one fraction from the CsCl gradient was then further fractionated by strong anion-exchange chromatography. One of the fractions resulting from this two-dimensional separation appeared to be dominated by only a few virus types based on genome sizes and morphology. Sequences generated from a shotgun clone library of the viruses in this fraction were assembled into significantly more numerous contigs than have been generated with previous metagenomic investigations of whole DNA viral assemblages with comparable sequencing effort. Analysis of the longer contigs (up to 6.5 kb assembled from our metagenome allowed us to assess gene arrangement in this subset of marine viruses. Our results demonstrate the potential for physical fractionation to facilitate sequence assembly from viral metagenomes and permit linking of morphological and genomic data for uncultivated viruses.

  3. Assessing computational genomics skills: Our experience in the H3ABioNet African bioinformatics network.

    Directory of Open Access Journals (Sweden)

    C Victor Jongeneel

    2017-06-01

    Full Text Available The H3ABioNet pan-African bioinformatics network, which is funded to support the Human Heredity and Health in Africa (H3Africa program, has developed node-assessment exercises to gauge the ability of its participating research and service groups to analyze typical genome-wide datasets being generated by H3Africa research groups. We describe a framework for the assessment of computational genomics analysis skills, which includes standard operating procedures, training and test datasets, and a process for administering the exercise. We present the experiences of 3 research groups that have taken the exercise and the impact on their ability to manage complex projects. Finally, we discuss the reasons why many H3ABioNet nodes have declined so far to participate and potential strategies to encourage them to do so.

  4. Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics

    Directory of Open Access Journals (Sweden)

    Richard Mark Leggett

    2013-12-01

    Full Text Available The processes of quality assessment and control are an active area of research at The Genome Analysis Centre (TGAC. Unlike other sequencing centres that often concentrate on a certain species or technology, TGAC applies expertise in genomics and bioinformatics to a wide range of projects, often requiring bespoke wet lab and in silico workflows. TGAC is fortunate to have access to a diverse range of sequencing and analysis platforms, and we are at the forefront of investigations into library quality and sequence data assessment. We have developed and implemented a number of algorithms, tools, pipelines and packages to ascertain, store, and expose quality metrics across a number of next-generation sequencing platforms, allowing rapid and in-depth cross-platform QC bioinformatics. In this review, we describe these tools as a vehicle for data-driven informatics, offering the potential to provide richer context for downstream analysis and to inform experimental design.

  5. Viral Subversion of the Nuclear Pore Complex

    Directory of Open Access Journals (Sweden)

    Valerie Le Sage

    2013-08-01

    Full Text Available The nuclear pore complex (NPC acts as a selective barrier between the nucleus and the cytoplasm and is responsible for mediating communication by regulating the transport of RNA and proteins. Numerous viral pathogens have evolved different mechanisms to hijack the NPC in order to regulate trafficking of viral proteins, genomes and even capsids into and out of the nucleus thus promoting virus replication. The present review examines the different strategies and the specific nucleoporins utilized during viral infections as a means of promoting their life cycle and inhibiting host viral defenses.

  6. From viral genome to specific peptide epitopes: methods for identifying porcine T cell epitopes based on in silico predictions, in vitro identification and ex vivo verification

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndah, Mikkel;

    2013-01-01

    The affinity with which major histocompatibility complex (MHC) class I molecules bind peptides is instrumental to presentation of viral epitopes to cytotoxic T lymphocytes (CTLs). We analyzed three swine leukocyte antigen (SLA) molecules for complete nonamer peptide-based binding matrices in order.......000 peptides. T cell epitopes were identified using peptide-SLA complexes assembled into fluorescent tetramers to stain swine influenza specific CTLs derived from immunized animals and MHC-defined pigs vaccinated against foot-and-mouth disease virus. These results demonstrate the broad applicability of methods...

  7. [Kunjin virus replicon--a novel viral vector].

    Science.gov (United States)

    Li, Shihua; Li, Xiaofeng; Qin, E'de; Qin, Chengfeng

    2011-02-01

    Viral replicon is a kind of self-replicating viral RNA sourced from viral genome, which contains viral non-structural genes that are critical for viral genome replication with structural proteins deleted or replaced by foreign genes. Kunjin virus is a member of the Flavivirida family, Flavivirus genus, and Kunjin virus replicon is the first and the clearly defined flavivirus replicon. Kunjun virus replicon has been regarded as an excellent viral vector on account of its high expression, lower cytotoxicity and genetic stability. These unique characteristics of kunjin virus replicons make them suitable for the study of viral genome replication, recombinant proteins production, vaccine development and gene therapy. In this article, recent progress in the development, properties and applications of kunjin virus replicon system was briefly reviewed.

  8. Presence of Viral Genome in Urine and Development of Hematuria and Pathological Changes in Kidneys in Common Marmoset (Callithrix jacchus after Inoculation with Dengue Virus

    Directory of Open Access Journals (Sweden)

    Hirofumi Akari

    2013-05-01

    Full Text Available Common marmosets (Callithrix jacchus developed high levels of viremia, clinical signs including fever, weight loss, a decrease in activity and hematuria upon inoculation with dengue virus (DENV. Presence of DENV genome in urine samples and pathological changes in kidneys were examined in the present study. Levels of DENV genome were determined in 228 urine samples from 20 primary DENV-inoculated marmosets and in 56 urine samples from four secondary DENV-inoculated marmosets. DENV genome was detected in 75% (15/20 of marmosets after primary DENV infection. No DENV genome was detected in urine samples from the marmosets with secondary infection with homologous DENV (0%, 0/4. Two marmosets demonstrated hematuria. Pathological analysis of the kidneys demonstrated non-suppressive interstitial nephritis with renal tubular regeneration. DENV antigen-positive cells were detected in kidneys. In human dengue virus infections, some patients present renal symptoms. The results indicate that marmosets recapitulate some aspects of the involvement of kidneys in human DENV infection, and suggest that marmosets are potentially useful for the studies of the pathogenesis of DENV infection, including kidneys.

  9. Genomic-based tools for the risk assessment, management, and prevention of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Johansen Taber KA

    2015-01-01

    Full Text Available Katherine A Johansen Taber, Barry D DickinsonDepartment of Science and Biotechnology, American Medical Association, Chicago, IL, USAAbstract: Type 2 diabetes (T2D is a common and serious disorder and is a significant risk factor for the development of cardiovascular disease, neuropathy, nephropathy, retinopathy, periodontal disease, and foot ulcers and amputations. The burden of disease associated with T2D has led to an emphasis on early identification of the millions of individuals at high risk so that management and intervention strategies can be effectively implemented before disease progression begins. With increasing knowledge about the genetic basis of T2D, several genomic-based strategies have been tested for their ability to improve risk assessment, management and prevention. Genetic risk scores have been developed with the intent to more accurately identify those at risk for T2D and to potentially improve motivation and adherence to lifestyle modification programs. In addition, evidence is building that oral antihyperglycemic medications are subject to pharmacogenomic variation in a substantial number of patients, suggesting genomics may soon play a role in determining the most effective therapies. T2D is a complex disease that affects individuals differently, and risk prediction and treatment may be challenging for health care providers. Genomic approaches hold promise for their potential to improve risk prediction and tailor management for individual patients and to contribute to better health outcomes for those with T2D.Keywords: diabetes, genomic, risk prediction, management

  10. In Situ Dynamics of F-Specific RNA Bacteriophages in a Small River: New Way to Assess Viral Propagation in Water Quality Studies.

    Science.gov (United States)

    Fauvel, Blandine; Gantzer, Christophe; Cauchie, Henry-Michel; Ogorzaly, Leslie

    2017-03-01

    The occurrence and propagation of enteric viruses in rivers constitute a major public health issue. However, little information is available on the in situ transport and spread of viruses in surface water. In this study, an original in situ experimental approach using the residence time of the river water mass was developed to accurately follow the propagation of F-specific RNA bacteriophages (FRNAPHs) along a 3-km studied river. Surface water and sediment of 9 sampling campaigns were collected and analyzed using both infectivity and RT-qPCR assays. In parallel, some physico-chemical variables such as flow rate, water temperature, conductivity and total suspended solids were measured to investigate the impact of environmental conditions on phage propagation. For campaigns with low flow rate and high temperature, the results highlight a decrease of infectious phage concentration along the river, which was successfully modelled according to a first-order negative exponential decay. The monitoring of infectious FRNAPHs belonging mainly to the genogroup II was confirmed with direct phage genotyping and total phage particle quantification. Reported k decay coefficients according to exponential models allowed for the determination of the actual in situ distance and time necessary for removing 90 % of infectious phage particles. This present work provides a new way to assess the true in situ viral propagation along a small river. These findings can be highly useful in water quality and risk assessment studies to determine the viral contamination spread from a point contamination source to the nearest recreational areas.

  11. Assessment of the genomic prediction accuracy for feed efficiency traits in meat-type chickens.

    Science.gov (United States)

    Liu, Tianfei; Luo, Chenglong; Wang, Jie; Ma, Jie; Shu, Dingming; Lund, Mogens Sandø; Su, Guosheng; Qu, Hao

    2017-01-01

    Feed represents the major cost of chicken production. Selection for improving feed utilization is a feasible way to reduce feed cost and greenhouse gas emissions. The objectives of this study were to investigate the efficiency of genomic prediction for feed conversion ratio (FCR), residual feed intake (RFI), average daily gain (ADG) and average daily feed intake (ADFI) and to assess the impact of selection for feed efficiency traits FCR and RFI on eviscerating percentage (EP), breast muscle percentage (BMP) and leg muscle percentage (LMP) in meat-type chickens. Genomic prediction was assessed using a 4-fold cross-validation for two validation scenarios. The first scenario was a random family sampling validation (CVF), and the second scenario was a random individual sampling validation (CVR). Variance components were estimated based on the genomic relationship built with single nucleotide polymorphism markers. Genomic estimated breeding values (GEBV) were predicted using a genomic best linear unbiased prediction model. The accuracies of GEBV were evaluated in two ways: the correlation between GEBV and corrected phenotypic value divided by the square root of heritability, i.e., the correlation-based accuracy, and model-based theoretical accuracy. Breeding values were also predicted using a conventional pedigree-based best linear unbiased prediction model in order to compare accuracies of genomic and conventional predictions. The heritability estimates of FCR and RFI were 0.29 and 0.50, respectively. The heritability estimates of ADG, ADFI, EP, BMP and LMP ranged from 0.34 to 0.53. In the CVF scenario, the correlation-based accuracy and the theoretical accuracy of genomic prediction for FCR were slightly higher than those for RFI. The correlation-based accuracies for FCR, RFI, ADG and ADFI were 0.360, 0.284, 0.574 and 0.520, respectively, and the model-based theoretical accuracies were 0.420, 0.414, 0.401 and 0.382, respectively. In the CVR scenario, the correlation

  12. Assessment of the genomic prediction accuracy for feed efficiency traits in meat-type chickens

    Science.gov (United States)

    Wang, Jie; Ma, Jie; Shu, Dingming; Lund, Mogens Sandø; Su, Guosheng; Qu, Hao

    2017-01-01

    Feed represents the major cost of chicken production. Selection for improving feed utilization is a feasible way to reduce feed cost and greenhouse gas emissions. The objectives of this study were to investigate the efficiency of genomic prediction for feed conversion ratio (FCR), residual feed intake (RFI), average daily gain (ADG) and average daily feed intake (ADFI) and to assess the impact of selection for feed efficiency traits FCR and RFI on eviscerating percentage (EP), breast muscle percentage (BMP) and leg muscle percentage (LMP) in meat-type chickens. Genomic prediction was assessed using a 4-fold cross-validation for two validation scenarios. The first scenario was a random family sampling validation (CVF), and the second scenario was a random individual sampling validation (CVR). Variance components were estimated based on the genomic relationship built with single nucleotide polymorphism markers. Genomic estimated breeding values (GEBV) were predicted using a genomic best linear unbiased prediction model. The accuracies of GEBV were evaluated in two ways: the correlation between GEBV and corrected phenotypic value divided by the square root of heritability, i.e., the correlation-based accuracy, and model-based theoretical accuracy. Breeding values were also predicted using a conventional pedigree-based best linear unbiased prediction model in order to compare accuracies of genomic and conventional predictions. The heritability estimates of FCR and RFI were 0.29 and 0.50, respectively. The heritability estimates of ADG, ADFI, EP, BMP and LMP ranged from 0.34 to 0.53. In the CVF scenario, the correlation-based accuracy and the theoretical accuracy of genomic prediction for FCR were slightly higher than those for RFI. The correlation-based accuracies for FCR, RFI, ADG and ADFI were 0.360, 0.284, 0.574 and 0.520, respectively, and the model-based theoretical accuracies were 0.420, 0.414, 0.401 and 0.382, respectively. In the CVR scenario, the correlation

  13. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes

    Directory of Open Access Journals (Sweden)

    Stefania eMagnusdottir

    2015-04-01

    Full Text Available The human gut microbiota supplies its host with essential nutrients, including B-vitamins. Using the PubSEED platform, we systematically assessed the genomes of 256 common human gut bacteria for the presence of biosynthesis pathways for eight B-vitamins: biotin, cobalamin, folate, niacin, pantothenate, pyridoxine, riboflavin, and thiamin. On the basis of the presence and absence of genome annotations, we predicted that each of the eight vitamins was produced by 40-65% of the 256 human gut microbes. The distribution of synthesis pathways was diverse; some genomes had all eight biosynthesis pathways, whereas others contained no de novo synthesis pathways. We compared our predictions to experimental data from 16 organisms and found 88% of our predictions to be in agreement with published data. In addition, we identified several pairs of organisms whose vitamin synthesis pathway pattern complemented those of other organisms. This analysis suggests that human gut bacteria actively exchange B-vitamins among each other, thereby enabling the survival of organisms that do not synthesize any of these essential cofactors. This result indicates the co-evolution of the gut microbes in the human gut environment. Our work presents the first comprehensive assessment of the B-vitamin synthesis capabilities of the human gut microbiota. We propose that in addition to diet, the gut microbiota is an important source of B-vitamins, and that changes in the gut microbiota composition can severely affect our dietary B-vitamin requirements.

  14. Safety assessment of Bifidobacterium longum J DM301 based on complete genome sequences

    Institute of Scientific and Technical Information of China (English)

    Yan-Xia Wei; Zhuo-Yang Zhang; Chang Liu; Xiao-Kui Guo; Pradeep K Malakar

    2012-01-01

    AIM: To assess the safety of Bifidobacterium longum (B.longum) JDM301 based on complete genome sequences. METHODS: The complete genome sequences of JDM301 were determined using the GS 20 system. Putative virulence factors, putative antibiotic resistance genes and genes encoding enzymes responsible for harmful metabolites were identified by blast with virulence factors database, antibiotic resistance genes database and genes associated with harmful metabolites in previous reports. Minimum inhibitory concentration of 16 common antimicrobial agents was evaluated by E-test. RESULTS: JDM301 was shown to contain 36 genes associated with antibiotic resistance, 5 enzymes related to harmful metabolites and 162 nonspecific virulence factors mainly associated with transcriptional regulation, adhesion, sugar and amino acid transport. B. longum JDM301 was intrinsically resistant tocipro ciprofloxacin,amikacin, gentamicin and streptomycin and susceptible to vancomycin, amoxicillin, cephalothin, chloramphenicol, erythromycin, ampicillin, cefotaxime, rifampicin, imipenemandtrimethoprim and trimethoprim-sulphamethoxazol. JDM301.JDM301 was moderately resistant to bacitracin, while an earlier study showed that bifidobacteria were susceptible to this antibiotic. A tetracycline resistance gene with the risk of transfer was found in JDM301, which needs to be experimentally validated. CONCLUSION: The safety assessment of JDM301 using information derived from complete bacterial genome will contribute to a wider and deeper insight into the safety of probiotic bacteria.

  15. Two families of rep-like genes that probably originated by interspecies recombination are represented in viral, plasmid, bacterial, and parasitic protozoan genomes.

    Science.gov (United States)

    Gibbs, Mark J; Smeianov, Vladimir V; Steele, James L; Upcroft, Peter; Efimov, Boris A

    2006-06-01

    Two families of genes related to, and including, rolling circle replication initiator protein (Rep) genes were defined by sequence similarity and by evidence of intergene family recombination. The Rep genes of circoviruses were the best characterized members of the "RecRep1 family." Other members of the RecRep1 family were Rep-like genes found in the genomes of the Canarypox virus, Entamoeba histolytica, and Giardia duodenalis and in a plasmid, p4M, from the Gram-positive bacterium, Bifidobacterium pseudocatenulatum. The "RecRep2 family" comprised some previously identified Rep-like genes from plasmids of phytoplasmas and similar Rep-like genes from the genomes of Lactobacillus acidophilus, Lactococcus lactis, and Phytoplasma asteris. Both RecRep1 and RecRep2 proteins have a nucleotide-binding domain significantly similar to the helicases (2C proteins) of picorna-like viruses. On the N-terminal side of the nucleotide binding domain, RecRep1 proteins have a domain significantly similar to one found in nanovirus Reps, whereas RecRep2 proteins have a domain significantly similar to one in the Reps of pLS1 plasmids. We speculate that RecRep genes have been transferred from viruses or plasmids to parasitic protozoan and bacterial genomes and that Rep proteins were themselves involved in the original recombination events that generated the ancestral RecRep genes.

  16. Comparative assessment of performance and genome dependence among phylogenetic profiling methods

    Directory of Open Access Journals (Sweden)

    Wu Jie

    2006-09-01

    Full Text Available Abstract Background The rapidly increasing speed with which genome sequence data can be generated will be accompanied by an exponential increase in the number of sequenced eukaryotes. With the increasing number of sequenced eukaryotic genomes comes a need for bioinformatic techniques to aid in functional annotation. Ideally, genome context based techniques such as proximity, fusion, and phylogenetic profiling, which have been so successful in prokaryotes, could be utilized in eukaryotes. Here we explore the application of phylogenetic profiling, a method that exploits the evolutionary co-occurrence of genes in the assignment of functional linkages, to eukaryotic genomes. Results In order to evaluate the performance of phylogenetic profiling in eukaryotes, we assessed the relative performance of commonly used profile construction techniques and genome compositions in predicting functional linkages in both prokaryotic and eukaryotic organisms. When predicting linkages in E. coli with a prokaryotic profile, the use of continuous values constructed from transformed BLAST bit-scores performed better than profiles composed of discretized E-values; the use of discretized E-values resulted in more accurate linkages when using S. cerevisiae as the query organism. Extending this analysis by incorporating several eukaryotic genomes in profiles containing a majority of prokaryotes resulted in similar overall accuracy, but with a surprising reduction in pathway diversity among the most significant linkages. Furthermore, the application of phylogenetic profiling using profiles composed of only eukaryotes resulted in the loss of the strong correlation between common KEGG pathway membership and profile similarity score. Profile construction methods, orthology definitions, ontology and domain complexity were explored as possible sources of the poor performance of eukaryotic profiles, but with no improvement in results. Conclusion Given the current set of

  17. Ebolavirus comparative genomics

    DEFF Research Database (Denmark)

    Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat

    2015-01-01

    The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms...

  18. Hepatitis C viral quasispecies from infected individuals originate from the mutation of viral genome during infection%丙型肝炎病毒感染个体的准种源于感染过程中的病毒核酸突变

    Institute of Scientific and Technical Information of China (English)

    彭晓谋; 陈雪娟; 谢冬英; 高志良; 彭文伟

    2000-01-01

    Objective To study the source of hepatitis C viral quasispecies and its relationship with chronic infection of hepatitis C virus(HCV).Methods Viral quasispecies from 10 cases of acute hepatitis C,20 cases of chronic hepatitis C and 11 cases of hepatic cellular cancer(HCC)patients with serum HCV RNA positive were detected by single-strand conformation polymorphism(SSCP)analysis.Results 2,7±1.16.4.8±1.68 and 5.2±2.85 SSCP bands were detected in the patients with acute hepatitis C,chronic hepatitis C and HCC respectively.The number of viral quasispecies in chronic hepatitis C and HCC with HCV infection were significantly higher than that in acute hepatitis C(P<0.05).The variance of high variable region in quasispecies was found to be much smaller than that in local isolates and distant isolates by DNA sequencing analysis(6.50±2.00 vs 20.33±2.31 and 24.33±4.04 respectively,P<0.01).Conclusion SSCP analysis is an efficient and relatively simple method for detection of viral quasispecies.Hepatitis C viral quasispecies are strongly related with chronic infection.The source of HCV quasispecies from infected individuals may originate from viral genome mutation during persistent infection.%目的 研究丙型肝炎病毒(HCV)准种特性与感染慢性化的关系,以及个体准种特性的来源形式.方法 收集HCV RNA阳性的10例急性丙肝、20例慢性丙型肝炎(丙肝)和11例肝细胞癌(HCC)患者,采用单链构型多态性分析(sscP)方法进行HCV准种检测.结果 急性丙肝、慢性丙肝和HCC患者中,SSCP电泳条带数分别为2.7±1.16、4.8±1.68和5.2±2.85.慢性丙肝和HCC的条带数显著高于急性丙肝(P<0.05).进行DNA序列分析研究发现,准种高变区间的变异性显著低于本地株间和异地株间的变异性(P<0.01).结论 SSCP是检测准种相对简便而有效的方法.HCV准种特性与其感染慢性化相关.HCV感染个体准种的来源主要为感染过程中的核酸突变.

  19. RNA silencing and plant viral diseases.

    Science.gov (United States)

    Wang, Ming-Bo; Masuta, Chikara; Smith, Neil A; Shimura, Hanako

    2012-10-01

    RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.

  20. Assessing the knowledge of expectant mothers on mother-to-child transmission of viral hepatitis B in Upper West region of Ghana.

    Science.gov (United States)

    Dun-Dery, Frederick; Adokiya, Martin Nyaaba; Walana, Williams; Yirkyio, Ernestina; Ziem, Juventus B

    2017-06-12

    Viral Hepatitis B is of a major public health concern globally, especially in developing countries. Expectant mothers' knowledge of Mother-To-Child Transmission (MTCT) of the disease is significant in preventing the spread from an infected mother to her child. This study sought to assess the expectant mothers' knowledge of Mother-To-Child Transmission of viral hepatitis B in the Wa Municipality and Lawra District of Upper West Region, Ghana. A descriptive cross-sectional study with a multi-stage sampling technique was employed to select a total of 450 study respondents (expectant mothers), and a semi-structured questionnaire was used for the data collection. Respondents were interviewed using face-to-face interview technique. Majority (54.0%) of the respondents were aged between 25 and 35 years and the results were similar in both districts. Overall, 62.4% (281/450) of the respondents had at least Junior High level education, and 76.2% (343/450) were multigravida. Educational levels among respondents in the two areas were above 50.0% and considered relatively high. Respondents' general knowledge of hepatitis B infection and disease was 46.0% (208/450). However, there was a slight difference between the two districts (40.1% in Lawra District and 51.6% in Wa Municipality). The overall knowledge level on MTCT of viral hepatitis B among the respondents was 34.7% (156/450): the Wa Municipality recorded higher knowledge (43.3%) compared to 24.8% in Lawra District. The knowledge level of the expectant mothers on MTCT of viral hepatitis B is relatively low in Upper West Region, Ghana. Majority of the respondents had some form of formal education. The age, marital status, education, occupation, gravity and family setup were found to be associated with knowledge of Hepatitis B infection and MTCT. Thus, there is urgent need to intensify efforts of health staff to educate expectant mothers. In addition, home education and outreach activities should be intensified on HBV

  1. Virulence of viral haemorrhagic septicaemia virus (VHSV) genotype III in rainbow trout

    OpenAIRE

    Ito, Takafumi; Kurita, Jun; Mori, Koh-Ichiro; Olesen, Niels Jørgen

    2016-01-01

    In general, viral haemorrhagic septicaemia virus (VHSV) isolates from marine fish species in European waters (genotypes GIb, GII and GIII) are non- to low virulent in rainbow trout. However, a VHSV isolation was made in 2007 from a disease outbreak in sea farmed rainbow trout in Norway. The isolate, named NO-2007-50-385, was demonstrated to belong to GIII. This isolate has attracted attention to assess which of the viral genome/proteins might be associated with the virulence in rainbow trout....

  2. Hepatitis B virus: pathogenesis, viral intermediates, and viral replication.

    Science.gov (United States)

    Lee, Jia-Yee; Locarnini, Stephen

    2004-05-01

    Although HBV has the potential to generate an almost limitless spectrum of quasispecies during chronic infection, the viability of the majority of these quasispecies is almost certainly impaired due to constraints imposed by the remarkably compact organization of the HBV genome. On the other hand, single mutations may affect more than one gene and result in complex and unpredictable effects on viral phenotype. Better understanding of the constraints imposed by gene overlap and of genotype-phenotype relationships should help in the development of improved antiviral strategies and management approaches. Although the probability of developing viral resistance is directly proportional to the intensity of selection pressure and the diversity of quasispecies, potent inhibition of HBV replication should be able to prevent development of drug resistance because mutagenesis is replication dependent. If viral replication can be suppressed for a sufficient length of time, viral load should decline to a point where the continued production of quasispecies with the potential to resist new drug treatments no longer occurs. Clinical application of this concept will require optimization of combination therapies analogous to highly active antiretroviral therapy (HAART) for HIV infection. Total cure of hepatitis B will require elimination of the intranuclear pool of viral minichromosomes, which will probably only be achieved by normal cell turnover, reactivation of host immunity, or elucidation of the antiviral mechanisms operating during cytokine clearance in acute hepatitis B (see Fig. 1).

  3. Analysis of the beak and feather disease viral genome indicates the existence of several genotypes which have a complex psittacine host specificity.

    Science.gov (United States)

    de Kloet, E; de Kloet, S R

    2004-12-01

    A study was made of the phylogenetic relationships between fifteen complete nucleotide sequences as well as 43 nucleotide sequences of the putative coat protein gene of different strains belonging to the virus species Beak and feather disease virus obtained from 39 individuals of 16 psittacine species. The species included among others, cockatoos ( Cacatuini), African grey parrots ( Psittacus erithacus) and peach-faced lovebirds ( Agapornis roseicollis), which were infected at different geographical locations, within and outside Australia, the native origin of the virus. The derived amino acid sequences of the putative coat protein were highly diverse, with differences between some strains amounting to 50 of the 250 amino acids. Phylogenetic analysis demonstrated that the putative coat gene sequences form six clusters which show a varying degree of psittacine species specificity. Most, but not all strains infecting African grey parrots formed a single cluster as did the strains infecting the cockatoos. Strains infecting the lovebirds clustered with those infecting such Australasian species as Eclectus roratus, Psittacula kramerii and Psephotus haematogaster. Although individual birds included in this study were, where studied, often infected by closely related strains, infection by highly diverged trains was also detected. The possible relationship between BFD viral strains and clinical disease signs is discussed.

  4. Rapid genome detection of Schmallenberg virus and bovine viral diarrhea virus by use of isothermal amplification methods and high-speed real-time reverse transcriptase PCR.

    Science.gov (United States)

    Aebischer, Andrea; Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin

    2014-06-01

    Over the past few years, there has been an increasing demand for rapid and simple diagnostic tools that can be applied outside centralized laboratories by using transportable devices. In veterinary medicine, such mobile test systems would circumvent barriers associated with the transportation of samples and significantly reduce the time to diagnose important infectious animal diseases. Among a wide range of available technologies, high-speed real-time reverse transcriptase quantitative PCR (RT-qPCR) and the two isothermal amplification techniques loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) represent three promising candidates for integration into mobile pen-side tests. The aim of this study was to investigate the performance of these amplification strategies and to evaluate their suitability for field application. In order to enable a valid comparison, novel pathogen-specific assays have been developed for the detection of Schmallenberg virus and bovine viral diarrhea virus. The newly developed assays were evaluated in comparison with established standard RT-qPCR using samples from experimentally or field-infected animals. Even though all assays allowed detection of the target virus in less than 30 min, major differences were revealed concerning sensitivity, specificity, robustness, testing time, and complexity of assay design. These findings indicated that the success of an assay will depend on the integrated amplification technology. Therefore, the application-specific pros and cons of each method that were identified during this study provide very valuable insights for future development and optimization of pen-side tests.

  5. Functional genomic analysis of the response of Atlantic cod (Gadus morhua) spleen to the viral mimic polyriboinosinic polyribocytidylic acid (pIC).

    Science.gov (United States)

    Rise, Matthew L; Hall, Jennifer; Rise, Marlies; Hori, Tiago; Gamperl, A Kurt; Kimball, Jennifer; Hubert, Sophie; Bowman, Sharen; Johnson, Stewart C

    2008-01-01

    In order to improve our understanding of how Atlantic cod (Gadus morhua) respond to viruses, we characterized immune-related gene expression in spleen tissues following stimulation with a synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid (pIC). We used reciprocal suppression subtractive hybridization (SSH) cDNA libraries and quantitative RTPCR (QPCR) to identify and quantify pIC-responsive transcripts. A total of 3874 expressed sequence tags (ESTs) were generated from SSH libraries enriched for genes responsive to pIC. Thirteen immune-relevant genes from the libraries were subjected to QPCR. Genes confirmed as up-regulated by pIC included interferon stimulated gene 15, a small inducible cytokine, interferon regulatory factors (1, 7, and 10), MHC class I, viperin, and ATP-dependent helicase LGP2. Alpha-1-microglobulin (bikunin) was down-regulated, suggesting that pIC may suppress the acute phase response. Since the SSH libraries built for this study identified genes involved in the antiviral response, they are important resources for studying the responses of Atlantic cod to viruses. Evidence is provided for the existence of a RIG-I-like RNA helicase viral recognition pathway in Atlantic cod. Taken together, our data show that Atlantic cod can recognize double-stranded RNA and mount a rapid and potent interferon pathway response that is similar to that observed in other fish species and higher vertebrates.

  6. Assessment of the Utility of Whole Genome Sequencing of Measles Virus in the Characterisation of Outbreaks.

    Directory of Open Access Journals (Sweden)

    Ana Raquel Penedos

    Full Text Available Measles is a highly infectious disease caused by measles virus (MeV. Despite the availability of a safe and cost-effective vaccine, measles is one of the world-leading causes of death in young children. Within Europe, there is a target for eliminating endemic measles in 2015, with molecular epidemiology required on 80% of cases for inclusion/exclusion of outbreak transmission chains. Currently, MeV is genotyped on the basis of a 450 nucleotide region of the nucleoprotein gene (N-450 and the hemagglutinin gene (H. However, this is not sufficiently informative for distinguishing endemic from imported MeV. We have developed an amplicon-based method for obtaining whole genome sequences (WGS using NGS or Sanger methodologies from cell culture isolates or oral fluid specimens, and have sequenced over 60 samples, including 42 from the 2012 outbreak in the UK.Overall, NGS coverage was over 90% for approximately 71% of the samples tested. Analysis of 32 WGS excluding 3' and 5' termini (WGS-t obtained from the outbreak indicates that the single nucleotide difference found between the two major groups of N-450 sequences detected during the outbreak is most likely a result of stochastic viral mutation during endemic transmission rather than of multiple importation events: earlier strains appear to have evolved into two distinct strain clusters in 2013, one containing strains with both outbreak-associated N-450 sequences. Additionally, phylogenetic analysis of each genomic region of MeV for the strains in this study suggests that the most information is acquired from the non-coding region located between the matrix and fusion protein genes (M/F NCR and the N-450 genotyping sequence, an observation supported by entropy analysis across genotypes.We suggest that both M/F NCR and WGS-t could be used to complement the information from classical epidemiology and N-450 sequencing to address specific questions in the context of measles elimination.

  7. A Possible Mechanism of Zika Virus Associated Microcephaly: Imperative Role of Retinoic Acid Response Element (RARE Consensus Sequence Repeats in the Viral Genome.

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2016-08-01

    Full Text Available Owing to the reports of microcephaly as a consistent outcome in the foetuses of pregnant women infected with ZIKV in Brazil, Zika virus (ZIKV - microcephaly etiomechanistic relationship has recently been implicated. Researchers, however, are still struggling to establish an embryological basis for this interesting causal handcuff. The present study reveals robust evidence in favour of a plausible ZIKV-microcephaly cause-effect liaison. The rationale is based on: (1 sequence homology between ZIKV genome and the response element of an early neural tube developmental marker ‘retinoic acid’ in human DNA and (2 comprehensive similarities between the details of brain defects in ZIKV-microcephaly and retinoic acid embryopathy. Retinoic acid is considered as the earliest factor for regulating anteroposterior axis of neural tube and positioning of structures in developing brain through retinoic acid response elements (RARE consensus sequence (5′–AGGTCA–3′ in promoter regions of retinoic acid-dependent genes. We screened genomic sequences of already reported virulent ZIKV strains (including those linked to microcephaly and other viruses available in National Institute of Health genetic sequence database (GenBank for the RARE consensus repeats and obtained results strongly bolstering our hypothesis that ZIKV strains associated with microcephaly may act through precipitation of dysregulation in retinoic acid-dependent genes by introducing extra stretches of RARE consensus sequence repeats in the genome of developing brain cells. Additional support to our hypothesis comes from our findings that screening of other viruses for RARE consensus sequence repeats is positive only for those known to display neurotropism and cause foetal brain defects (for which maternal-foetal transmission during developing stage may be required. The numbers of RARE sequence repeats appeared to match with the virulence of screened positive viruses. Although bioinformatic

  8. A Possible Mechanism of Zika Virus Associated Microcephaly: Imperative Role of Retinoic Acid Response Element (RARE) Consensus Sequence Repeats in the Viral Genome

    Science.gov (United States)

    Kumar, Ashutosh; Singh, Himanshu N.; Pareek, Vikas; Raza, Khursheed; Dantham, Subrahamanyam; Kumar, Pavan; Mochan, Sankat; Faiq, Muneeb A.

    2016-01-01

    Owing to the reports of microcephaly as a consistent outcome in the fetuses of pregnant women infected with ZIKV in Brazil, Zika virus (ZIKV)—microcephaly etiomechanistic relationship has recently been implicated. Researchers, however, are still struggling to establish an embryological basis for this interesting causal handcuff. The present study reveals robust evidence in favor of a plausible ZIKV-microcephaly cause-effect liaison. The rationale is based on: (1) sequence homology between ZIKV genome and the response element of an early neural tube developmental marker “retinoic acid” in human DNA and (2) comprehensive similarities between the details of brain defects in ZIKV-microcephaly and retinoic acid embryopathy. Retinoic acid is considered as the earliest factor for regulating anteroposterior axis of neural tube and positioning of structures in developing brain through retinoic acid response elements (RARE) consensus sequence (5′–AGGTCA–3′) in promoter regions of retinoic acid-dependent genes. We screened genomic sequences of already reported virulent ZIKV strains (including those linked to microcephaly) and other viruses available in National Institute of Health genetic sequence database (GenBank) for the RARE consensus repeats and obtained results strongly bolstering our hypothesis that ZIKV strains associated with microcephaly may act through precipitation of dysregulation in retinoic acid-dependent genes by introducing extra stretches of RARE consensus sequence repeats in the genome of developing brain cells. Additional support to our hypothesis comes from our findings that screening of other viruses for RARE consensus sequence repeats is positive only for those known to display neurotropism and cause fetal brain defects (for which maternal-fetal transmission during developing stage may be required). The numbers of RARE sequence repeats appeared to match with the virulence of screened positive viruses. Although, bioinformatic evidence and

  9. Recommendations from the EGAPP Working Group: genomic profiling to assess cardiovascular risk to improve cardiovascular health.

    Science.gov (United States)

    2010-12-01

    The Evaluation of Genomic Applications in Practice and Prevention Working Group (EWG) found insufficient evidence to recommend testing for the 9p21 genetic variant or 57 other variants in 28 genes (listed in ) to assess risk for cardiovascular disease (CVD) in the general population, specifically heart disease and stroke. The EWG found that the magnitude of net health benefit from use of any of these tests alone or in combination is negligible. The EWG discourages clinical use unless further evidence supports improved clinical outcomes. Based on the available evidence, the overall certainty of net health benefit is deemed "Low." It has been suggested that an improvement in CVD risk classification (adjusting intermediate risk of CVD into high- or low-risk categories) might lead to management changes (e.g., earlier initiation or higher rates of medical interventions, or targeted recommendations for behavioral change) that improve CVD outcomes. In the absence of direct evidence to support this possibility, this review sought indirect evidence aimed at documenting the extent to which genomic profiling alters CVD risk estimation, alone and in combination with traditional risk factors, and the extent to which risk reclassification improves health outcomes. Assay-related evidence on available genomic profiling tests was deemed inadequate. However, based on existing technologies that have been or may be used and on data from two of the companies performing such testing, the analytic sensitivity and specificity of tests for individual gene variants might be at least satisfactory. Twenty-nine gene candidates were evaluated, with 58 different gene variant/disease associations. Evidence on clinical validity was rated inadequate for 34 of these associations (59%) and adequate for 23 (40%). Inadequate grades were based on limited evidence, poor replication, existence of possible biases, or combinations of these factors. For heart disease (25 combined associations) and stroke (13

  10. Assessment of HTLV-I proviral load, HIV viral load and CD4 T cell count in infected subjects; with an emphasis on viral replication in co-infection

    Directory of Open Access Journals (Sweden)

    Hossein Rahimi

    2014-01-01

    The mean viral load of HIV infected subjects and HTLV-I infected individuals were 134626.07±60031.07 copies/ml and 373.6±143.3 copies/104 cells, respectively. The mean HIV viral load in co-infected group was 158947±78203.59 copies/ml which is higher than HIV infected group. The mean proviral load of HTLV-I in co-infected group was 222.33±82.56 copies/ml which is lower than HTLV-I infected group (P

  11. Comparative genomic assessment of Multi-Locus Sequence Typing: rapid accumulation of genomic heterogeneity among clonal isolates of Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Nash John HE

    2008-08-01

    Full Text Available Abstract Background Multi-Locus Sequence Typing (MLST has emerged as a leading molecular typing method owing to its high ability to discriminate among bacterial isolates, the relative ease with which data acquisition and analysis can be standardized, and the high portability of the resulting sequence data. While MLST has been successfully applied to the study of the population structure for a number of different bacterial species, it has also provided compelling evidence for high rates of recombination in some species. We have analyzed a set of Campylobacter jejuni strains using MLST and Comparative Genomic Hybridization (CGH on a full-genome microarray in order to determine whether recombination and high levels of genomic mosaicism adversely affect the inference of strain relationships based on the analysis of a restricted number of genetic loci. Results Our results indicate that, in general, there is significant concordance between strain relationships established by MLST and those based on shared gene content as established by CGH. While MLST has significant predictive power with respect to overall genome similarity of isolates, we also found evidence for significant differences in genomic content among strains that would otherwise appear to be highly related based on their MLST profiles. Conclusion The extensive genomic mosaicism between closely related strains has important implications in the context of establishing strain to strain relationships because it suggests that the exact gene content of strains, and by extension their phenotype, is less likely to be "predicted" based on a small number of typing loci. This in turn suggests that a greater emphasis should be placed on analyzing genes of clinical interest as we forge ahead with the next generation of molecular typing methods.

  12. Assessment of Liver Fibrosis with Diffusion-Weighted Magnetic Resonance Imaging Using Different b-values in Chronic Viral Hepatitis.

    Science.gov (United States)

    Kocakoc, Ercan; Bakan, Ayse Ahsen; Poyrazoglu, Orhan Kursat; Dagli, Adile Ferda; Gul, Yeliz; Cicekci, Mehtap; Bahcecioglu, Ibrahim Halil

    2015-01-01

    To examine the effectiveness of apparent diffusion coefficient (ADC) values and to compare the reliability of different b-values in detecting and identifying significant liver fibrosis. There were 44 patients with chronic viral hepatitis (CVH) in the study group and 30 healthy participants in the control group. Diffusion-weighted magnetic resonance imaging (DWI) was performed before the liver biopsy in patients with CVH. The values of ADC were measured with 3 different b-values (100, 600, 1,000 s/mm2). In addition, liver fibrosis was classified using the modified Ishak scoring system. Liver fibrosis stages and ADC values were compared using areas under the receiver-operating characteristic (ROC) curve. The study group's mean ADC value was not statistically significantly different from the control group's mean ADC value at b = 100 s/mm2 (3.69 ± 0.5 × 10-3 vs. 3.7 ± 0.3 × 10-3 mm2/s) and b = 600 s/mm2 (2.40 ± 0.3 × 10-3 vs. 2.5 ± 0.5 × 10-3 mm2/s). However, the study group's mean ADC value (0.99 ± 0.3 × 10-3 mm2/s) was significantly lower than that of the control group (1.2 ± 0.1 × 10-3 mm2/s) at b = 1,000 s/mm2. With b = 1,000 s/mm2 and the cutoff ADC value of 0.0011 mm2/s for the diagnosis of liver fibrosis, the mean area under the ROC curve was 0.702 ± 0.07 (p = 0.0015). For b = 1,000 s/mm2 and the cutoff ADC value of 0.0011 mm2/s to diagnose significant liver fibrosis (Ishak score = 3), the mean area under the ROC curve was 0.759 ± 0.07 (p = 0.0001). Measurement of ADC values by DWI was effective in detecting liver fibrosis and accurately identifying significant liver fibrosis when a b-value of 1,000 s/mm2 was used. © 2015 S. Karger AG, Basel.

  13. Assessment of osteoarthritis candidate genes in a meta-analysis of nine genome-wide association studies

    NARCIS (Netherlands)

    C. Rodriguez-Fontenla (Cristina); M. Calaza (Manuel); E. Evangelou (Evangelos); A.M. Valdes (Ana Maria); N.K. Arden (Nigel); F.J. Blanco; A.J. Carr (Andrew Jonathan); K. Chapman (Kay); P. Deloukas (Panagiotis); M. Doherty (Michael); T. Esko (Tõnu); C.M. Garcés Aletá (Carlos); J.J. Gomez-Reino Carnota (Juan); H.T. Helgadottir (Hafdis); A. Hofman (Albert); I. Jonsdottir (Ingileif); J.M. Kerkhof (Hanneke); M. Kloppenburg (Margreet); A. McCaskie (Andrew); E.E. Ntzani (Evangelia); W.E.R. Ollier (William); N. Oreiro (Natividad); K. Panoutsopoulou (Kalliope); S.H. Ralston (Stuart); Y.F.M. Ramos (Yolande); J.A. Riancho (José); F. Rivadeneira Ramirez (Fernando); P.E. Slagboom (Eline); U. Styrkarsdottir (Unnur); U. Thorsteinsdottir (Unnur); G. Thorleifsson (Gudmar); A. Tsezou (Aspasia); A.G. Uitterlinden (André); G.A. Wallis (Gillian); J.M. Wilkinson (Mark); G. Zhai (Guangju); Y. Zhu (Yanyan); D. Felson; J.P.A. Ioannidis (John); J. Loughlin (John); A. Metspalu (Andres); I. Meulenbelt (Ingrid); J-A. Zwart (John-Anker); J.B.J. van Meurs (Joyce); E. Zeggini (Eleftheria); T.D. Spector (Timothy); A. Gonzalez (Antonio)

    2014-01-01

    textabstractObjective To assess candidate genes for association with osteoarthritis (OA) and identify promising genetic factors and, secondarily, to assess the candidate gene approach in OA. Methods A total of 199 candidate genes for association with OA were identified using Human Genome Epidemiolog

  14. Population Dynamics of Viral Inactivation

    Science.gov (United States)

    Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex

    We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.

  15. The yellow fever 17D vaccine virus: molecular basis of viral attenuation and its use as an expression vector

    Directory of Open Access Journals (Sweden)

    Galler R.

    1997-01-01

    Full Text Available The yellow fever (YF virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed

  16. Whole Genome Sequencing of a Canadian Bovine Gammaherpesvirus 4 Strain and the Possible Link between the Viral Infection and Respiratory and Reproductive Clinical Manifestations in Dairy Cattle

    Directory of Open Access Journals (Sweden)

    Carl A. Gagnon

    2017-06-01

    Full Text Available Bovine gammaherpesvirus 4 (BoHV-4 is a herpesvirus widespread in cattle populations, and with no clear disease association. Its genome contains a long unique coding region (LUR flanked by polyrepetitive DNA and 79 open reading frames (ORFs, with unique 17 ORFs, named Bo1 to Bo17. In 2009, a BoHV-4 strain was isolated (FMV09-1180503: BoHV-4-FMV from cattle with respiratory disease from Quebec, Canada, and its LUR was sequenced. Despite the overall high similarity, BoHV-4-FMV had the most divergent LUR sequence compared to the two known BoHV-4 reference strain genomes; most of the divergences were in the Bo genes and in the repeat regions. Our phylogenetic analysis based on DNA polymerase and thymidine kinase genes revealed that virus isolate was BoHV-4 gammaherpesvirus and clustered it together with European BoHV-4 strains. Because BoHV-4-FMV was isolated from animals presenting respiratory signs, we have updated the BoHV-4 Canadian cattle seroprevalence data and tried to find out whether there is a link between clinical manifestation and BoHV-4 seropositivity. An indirect immunofluorescence assay (IFA was performed with nearly 200 randomized sera of dairy cattle from two Canadian provinces, Quebec (n = 100 and Ontario (n = 91. An additional set of sera obtained from Quebec, from the healthy (n = 48 cows or from the animals experiencing respiratory or reproductive problems (n = 75, was also analyzed by IFA. BoHV-4 seroprevalence in Canadian dairy cattle was 7.9% (Quebec: 6% and Ontario: 9.9%. Among animals from the Quebec-based farms, diseased animals showed higher BoHV-4 seropositivity than healthy animals (P < 0.05, with a significant 2.494 odds ratio of being seropositive in sick compared to healthy animals. Although there is no established direct link between BoHV-4 and specific diseases, these seroprevalence data suggest the possible involvement of BoHV-4 in dairy cattle diseases.

  17. Kissing-loop interaction between 5' and 3' ends of tick-borne Langat virus genome 'bridges the gap' between mosquito- and tick-borne flaviviruses in mechanisms of viral RNA cyclization: applications for virus attenuation and vaccine development.

    Science.gov (United States)

    Tsetsarkin, Konstantin A; Liu, Guangping; Shen, Kui; Pletnev, Alexander G

    2016-04-20

    Insertion of microRNA target sequences into the flavivirus genome results in selective tissue-specific attenuation and host-range restriction of live attenuated vaccine viruses. However, previous strategies for miRNA-targeting did not incorporate a mechanism to prevent target elimination under miRNA-mediated selective pressure, restricting their use in vaccine development. To overcome this limitation, we developed a new approach for miRNA-targeting of tick-borne flavivirus (Langat virus, LGTV) in the duplicated capsid gene region (DCGR). Genetic stability of viruses with DCGR was ensured by the presence of multiple cis-acting elements within the N-terminal capsid coding region, including the stem-loop structure (5'SL6) at the 3' end of the promoter. We found that the 5'SL6 functions as a structural scaffold for the conserved hexanucleotide motif at its tip and engages in a complementary interaction with the region present in the 3' NCR to enhance viral RNA replication. The resulting kissing-loop interaction, common in tick-borne flaviviruses, supports a single pair of cyclization elements (CYC) and functions as a homolog of the second pair of CYC that is present in the majority of mosquito-borne flaviviruses. Placing miRNA targets into the DCGR results in superior attenuation of LGTV in the CNS and does not interfere with development of protective immunity in immunized mice.

  18. Assessing the functionality of viral entry-associated domains of porcine reproductive and respiratory syndrome virus during inactivation procedures, a potential tool to optimize inactivated vaccines

    National Research Council Canada - National Science Library

    Delrue, Iris; Delputte, Peter L; Nauwynck, Hans J

    2009-01-01

    .... Currently, vaccines based on inactivated PRRSV provide limited protection of pigs against infection, most likely because viral epitopes associated with the induction of neutralizing antibodies...

  19. Genome-wide association study confirming association of HLA-DP with protection against chronic hepatitis B and viral clearance in Japanese and Korean.

    Directory of Open Access Journals (Sweden)

    Nao Nishida

    Full Text Available Hepatitis B virus (HBV infection can lead to serious liver diseases, including liver cirrhosis (LC and hepatocellular carcinoma (HCC; however, about 85-90% of infected individuals become inactive carriers with sustained biochemical remission and very low risk of LC or HCC. To identify host genetic factors contributing to HBV clearance, we conducted genome-wide association studies (GWAS and replication analysis using samples from HBV carriers and spontaneously HBV-resolved Japanese and Korean individuals. Association analysis in the Japanese and Korean data identified the HLA-DPA1 and HLA-DPB1 genes with P(meta = 1.89×10⁻¹² for rs3077 and P(meta = 9.69×10⁻¹⁰ for rs9277542. We also found that the HLA-DPA1 and HLA-DPB1 genes were significantly associated with protective effects against chronic hepatitis B (CHB in Japanese, Korean and other Asian populations, including Chinese and Thai individuals (P(meta = 4.40×10⁻¹⁹ for rs3077 and P(meta = 1.28×10⁻¹⁵ for rs9277542. These results suggest that the associations between the HLA-DP locus and the protective effects against persistent HBV infection and with clearance of HBV were replicated widely in East Asian populations; however, there are no reports of GWAS in Caucasian or African populations. Based on the GWAS in this study, there were no significant SNPs associated with HCC development. To clarify the pathogenesis of CHB and the mechanisms of HBV clearance, further studies are necessary, including functional analyses of the HLA-DP molecule.

  20. Integration host factor assembly at the cohesive end site of the bacteriophage lambda genome: implications for viral DNA packaging and bacterial gene regulation.

    Science.gov (United States)

    Sanyal, Saurarshi J; Yang, Teng-Chieh; Catalano, Carlos Enrique

    2014-12-09

    Integration host factor (IHF) is an Escherichia coli protein involved in (i) condensation of the bacterial nucleoid and (ii) regulation of a variety of cellular functions. In its regulatory role, IHF binds to a specific sequence to introduce a strong bend into the DNA; this provides a duplex architecture conducive to the assembly of site-specific nucleoprotein complexes. Alternatively, the protein can bind in a sequence-independent manner that weakly bends and wraps the duplex to promote nucleoid formation. IHF is also required for the development of several viruses, including bacteriophage lambda, where it promotes site-specific assembly of a genome packaging motor required for lytic development. Multiple IHF consensus sequences have been identified within the packaging initiation site (cos), and we here interrogate IHF-cos binding interactions using complementary electrophoretic mobility shift (EMS) and analytical ultracentrifugation (AUC) approaches. IHF recognizes a single consensus sequence within cos (I1) to afford a strongly bent nucleoprotein complex. In contrast, IHF binds weakly but with positive cooperativity to nonspecific DNA to afford an ensemble of complexes with increasing masses and levels of condensation. Global analysis of the EMS and AUC data provides constrained thermodynamic binding constants and nearest neighbor cooperativity factors for binding of IHF to I1 and to nonspecific DNA substrates. At elevated IHF concentrations, the nucleoprotein complexes undergo a transition from a condensed to an extended rodlike conformation; specific binding of IHF to I1 imparts a significant energy barrier to the transition. The results provide insight into how IHF can assemble specific regulatory complexes in the background of extensive nonspecific DNA condensation.

  1. Genomic insights from whole genome sequencing of four clonal outbreak Campylobacter jejuni assessed within the global C. jejuni population.

    Science.gov (United States)

    Clark, Clifford G; Berry, Chrystal; Walker, Matthew; Petkau, Aaron; Barker, Dillon O R; Guan, Cai; Reimer, Aleisha; Taboada, Eduardo N

    2016-12-03

    Whole genome sequencing (WGS) is useful for determining clusters of human cases, investigating outbreaks, and defining the population genetics of bacteria. It also provides information about other aspects of bacterial biology, including classical typing results, virulence, and adaptive strategies of the organism. Cell culture invasion and protein expression patterns of four related multilocus sequence type 21 (ST21) C. jejuni isolates from a significant Canadian water-borne outbreak were previously associated with the presence of a CJIE1 prophage. Whole genome sequencing was used to examine the genetic diversity among these isolates and confirm that previous observations could be attributed to differential prophage carriage. Moreover, we sought to determine the presence of genome sequences that could be used as surrogate markers to delineate outbreak-associated isolates. Differential carriage of the CJIE1 prophage was identified as the major genetic difference among the four outbreak isolates. High quality single-nucleotide variant (hqSNV) and core genome multilocus sequence typing (cgMLST) clustered these isolates within expanded datasets consisting of additional C. jejuni strains. The number and location of homopolymeric tract regions was identical in all four outbreak isolates but differed from all other C. jejuni examined. Comparative genomics and PCR amplification enabled the identification of large chromosomal inversions of approximately 93 kb and 388 kb within the outbreak isolates associated with transducer-like proteins containing long nucleotide repeat sequences. The 93-kb inversion was characteristic of the outbreak-associated isolates, and the gene content of this inverted region displayed high synteny with the reference strain. The four outbreak isolates were clonally derived and differed mainly in the presence of the CJIE1 prophage, validating earlier findings linking the prophage to phenotypic differences in virulence assays and protein expression

  2. Quantitative assessment of thermodynamic constraints on the solution space of genome-scale metabolic models.

    Science.gov (United States)

    Hamilton, Joshua J; Dwivedi, Vivek; Reed, Jennifer L

    2013-07-16

    Constraint-based methods provide powerful computational techniques to allow understanding and prediction of cellular behavior. These methods rely on physiochemical constraints to eliminate infeasible behaviors from the space of available behaviors. One such constraint is thermodynamic feasibility, the requirement that intracellular flux distributions obey the laws of thermodynamics. The past decade has seen several constraint-based methods that interpret this constraint in different ways, including those that are limited to small networks, rely on predefined reaction directions, and/or neglect the relationship between reaction free energies and metabolite concentrations. In this work, we utilize one such approach, thermodynamics-based metabolic flux analysis (TMFA), to make genome-scale, quantitative predictions about metabolite concentrations and reaction free energies in the absence of prior knowledge of reaction directions, while accounting for uncertainties in thermodynamic estimates. We applied TMFA to a genome-scale network reconstruction of Escherichia coli and examined the effect of thermodynamic constraints on the flux space. We also assessed the predictive performance of TMFA against gene essentiality and quantitative metabolomics data, under both aerobic and anaerobic, and optimal and suboptimal growth conditions. Based on these results, we propose that TMFA is a useful tool for validating phenotypes and generating hypotheses, and that additional types of data and constraints can improve predictions of metabolite concentrations.

  3. An invertebrate signal transducer and activator of transcription 5 (STAT5) ortholog from the disk abalone, Haliotis discus discus: Genomic structure, early developmental expression, and immune responses to bacterial and viral stresses.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Park, Hae-Chul; Lee, Jehee

    2016-03-01

    Signal transducer and activator of transcription (STAT) family members are key signaling molecules that transduce cellular responses from the cell membrane to the nucleus upon Janus kinase (JAK) activation. Although seven STAT members have been reported in mammals, very limited information on STAT genes in molluscans is available. In this study, we identified and characterized a STAT paralog that is homologous to STAT5 from the disk abalone, Haliotis discus discus, and designated as AbSTAT5. Comparison of the deduced amino acid sequence for AbSTAT5 (790 amino acids) with other counterparts revealed conserved residues important for functions and typical domain regions, including the N-terminal domain, coiled-coil domain, DNA-binding domain, linker domain, and Src homology 2 (SH2) domains as mammalian counterparts. Analysis of STAT phylogeny revealed that AbSTAT5 was clustered with the molluscan subgroup in STAT5 clade with distinct evolution. According to the genomic structure of AbSTAT5, the coding sequence was distributed into 20 exons with 19 introns. Immunologically essential transcription factor-binding sites, such as GATA-1, HNF, SP1, C/EBP, Oct-1, AP1, c-Jun, and Sox-2, were predicted at the 5'-proximal region of AbSTAT5. Expression of AbSTAT5 mRNA was detected in different stages of embryonic development and observed at considerably higher levels in the morula and late veliger stages. Tissue-specific expressional studies revealed that the highest level of AbSTAT5 transcripts was detected in hemocytes, followed by gill tissues. Temporal expressions of AbSTAT5 were analyzed upon live bacterial (Vibrio parahemolyticus and Listeria monocytogenes), viral (viral hemorrhagic septicemia virus), and pathogen-associated molecular pattern (lipopolysaccharides and Poly I:C) stimulations, and significant elevations indicated immune modulation. These results suggest that AbSTAT5 may be involved in maintaining innate immune responses from developmental to adult stages in

  4. Nucleic Acid-Based Approaches for Detection of Viral Hepatitis

    OpenAIRE

    BEHZADI, Payam; Ranjbar, Reza; Alavian, Seyed Moayed

    2014-01-01

    Context: To determining suitable nucleic acid diagnostics for individual viral hepatitis agent, an extensive search using related keywords was done in major medical library and data were collected, categorized, and summarized in different sections. Results: Various types of molecular biology tools can be used to detect and quantify viral genomic elements and analyze the sequences. These molecular assays are proper technologies for rapidly detecting viral agents with high accuracy, high sensit...

  5. Noninvasive assessment of hepatic fibrosis in patients with chronic hepatic B viral Infection using magnetic resonance elastography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Eun [Dept. of Radiology, Chungnam National University Hospital, Daejeon (Korea, Republic of); Lee, Jeong Min; Yoon, Jeong Hee; Shin, Cheong Il; Han, Joon Koo; Choi, Byung Ihn [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Kyung Bun [Dept. of Pathology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-04-15

    To evaluate the diagnostic performance of magnetic resonance elastography (MRE) for staging hepatic fibrosis in patients with chronic hepatitis B virus (HBV) infection. Patients with chronic HBV infection who were suspected of having focal or diffuse liver diseases (n = 195) and living donor candidates (n = 166) underwent MRE as part of the routine liver MRI examination. We measured liver stiffness (LS) values on quantitative shear stiffness maps. The technical success rate of MRE was then determined. Liver cell necroinflammatory activity and fibrosis were assessed using histopathologic examinations as the reference. Areas under the receiver operating characteristic curve (Az) were calculated in order to predict the liver fibrosis stage. The technical success rate of MRE was 92.5% (334/361). The causes of technical failure were poor wave propagation (n = 12), severe respiratory motion (n = 3), or the presence of iron deposits in the liver (n = 12). The mean LS values, as measured by MRE, increased significantly along with an increase in the fibrosis stage (r = 0.901, p < 0.001); however, the mean LS values did not increase significantly along with the degree of necroinflammatory activity. The cutoff values of LS for ≥ F1, ≥ F2, ≥ F3, and F4 were 2.45 kPa, 2.69 kPa, 3.0 kPa, and 3.94 kPa, respectively, and with Az values of 0.987-0.988. MRE has a high technical success rate and excellent diagnostic accuracy for staging hepatic fibrosis in patients with chronic HBV infection.

  6. Integrated genomic and BMI analysis for type 2 diabetes risk assessment

    Science.gov (United States)

    Lebrón-Aldea, Dayanara; Dhurandhar, Emily J.; Pérez-Rodríguez, Paulino; Klimentidis, Yann C.; Tiwari, Hemant K.; Vazquez, Ana I.

    2015-01-01

    Type 2 Diabetes (T2D) is a chronic disease arising from the development of insulin absence or resistance within the body, and a complex interplay of environmental and genetic factors. The incidence of T2D has increased throughout the last few decades, together with the occurrence of the obesity epidemic. The consideration of variants identified by Genome Wide Association Studies (GWAS) into risk assessment models for T2D could aid in the identification of at-risk patients who could benefit from preventive medicine. In this study, we build several risk assessment models, evaluated with two different classification approaches (Logistic Regression and Neural Networks), to measure the effect of including genetic information in the prediction of T2D. We used data from to the Original and the Offspring cohorts of the Framingham Heart Study, which provides phenotypic and genetic information for 5245 subjects (4306 controls and 939 cases). Models were built by using several covariates: gender, exposure time, cohort, body mass index (BMI), and 65 SNPs associated to T2D. We fitted Logistic Regressions and Bayesian Regularized Neural Networks and then assessed their predictive ability by using a ten-fold cross validation. We found that the inclusion of genetic information into the risk assessment models increased the predictive ability by 2%, when compared to the baseline model. Furthermore, the models that included BMI at the onset of diabetes as a possible effector, gave an improvement of 6% in the area under the curve derived from the ROC analysis. The highest AUC achieved (0.75) belonged to the model that included BMI, and a genetic score based on the 65 established T2D-associated SNPs. Finally, the inclusion of SNPs and BMI raised predictive ability in all models as expected; however, results from the AUC in Neural Networks and Logistic Regression did not differ significantly in their prediction accuracy. PMID:25852736

  7. Integrated genomic and BMI analysis for type 2 diabetes risk assessment.

    Directory of Open Access Journals (Sweden)

    Dayanara eLebrón-Aldea

    2015-03-01

    Full Text Available Type 2 Diabetes (T2D is a chronic disease arising from the development of insulin absence or resistance within the body, and a complex interplay of environmental and genetic factors. The incidence of T2D has increased throughout the last few decades, together with the occurrence of the obesity epidemic. The consideration of variants identified by Genome Wide Association Studies (GWAS into risk assessment models for T2D could aid in the identification of at-risk patients who could benefit from preventive medicine. In this study, we build several risk assessment models, and evaluated them with two different classification approaches (Logistic Regression and Neural Networks, to measure the effect of including genetic information in the prediction of T2D. We used data from to the Original and the Offspring cohorts of the Framingham Heart Study, which provides phenotypic and genetic information for 5,245 subjects (4,306 controls and 939 cases. Models were built by using several covariates: gender, exposure time, cohort, body mass index (BMI, and 65 established T2D-associated SNPs. We fitted Logistic Regressions and Bayesian Regularized Neural Network and then assessed their predictive ability by using a ten-fold cross validation. We found that the inclusion of genetic information into the risk assessment models increased the predictive ability by 2%, when compared to the baseline model. Furthermore, the models that included BMI at the onset of diabetes as a possible effector, gave an improvement of 6% in the area under the curve derived from the ROC analysis. The highest AUC achieved (0.75 belonged to the model that included BMI, and a genetic score based on the 65 established T2D-associated SNPs. Finally, the inclusion of SNPs and BMI raised predictive ability in all models as expected; however, results from the AUC in Neural Networks and Logistic Regression did not differ significantly in their prediction accuracy.

  8. The fecal viral flora of wild rodents.

    Directory of Open Access Journals (Sweden)

    Tung G Phan

    2011-09-01

    Full Text Available The frequent interactions of rodents with humans make them a common source of zoonotic infections. To obtain an initial unbiased measure of the viral diversity in the enteric tract of wild rodents we sequenced partially purified, randomly amplified viral RNA and DNA in the feces of 105 wild rodents (mouse, vole, and rat collected in California and Virginia. We identified in decreasing frequency sequences related to the mammalian viruses families Circoviridae, Picobirnaviridae, Picornaviridae, Astroviridae, Parvoviridae, Papillomaviridae, Adenoviridae, and Coronaviridae. Seventeen small circular DNA genomes containing one or two replicase genes distantly related to the Circoviridae representing several potentially new viral families were characterized. In the Picornaviridae family two new candidate genera as well as a close genetic relative of the human pathogen Aichi virus were characterized. Fragments of the first mouse sapelovirus and picobirnaviruses were identified and the first murine astrovirus genome was characterized. A mouse papillomavirus genome and fragments of a novel adenovirus and adenovirus-associated virus were also sequenced. The next largest fraction of the rodent fecal virome was related to insect viruses of the Densoviridae, Iridoviridae, Polydnaviridae, Dicistroviriade, Bromoviridae, and Virgaviridae families followed by plant virus-related sequences in the Nanoviridae, Geminiviridae, Phycodnaviridae, Secoviridae, Partitiviridae, Tymoviridae, Alphaflexiviridae, and Tombusviridae families reflecting the largely insect and plant rodent diet. Phylogenetic analyses of full and partial viral genomes therefore revealed many previously unreported viral species, genera, and families. The close genetic similarities noted between some rodent and human viruses might reflect past zoonoses. This study increases our understanding of the viral diversity in wild rodents and highlights the large number of still uncharacterized viruses in

  9. Simultaneous assessment of cytotoxic T lymphocyte responses against multiple viral infections by combined usage of optimal epitope matrices, anti- CD3 mAb T-cell expansion and "RecycleSpot"

    Directory of Open Access Journals (Sweden)

    Wong Johnson T

    2005-05-01

    Full Text Available Abstract The assessment of cellular anti-viral immunity is often hampered by the limited availability of adequate samples, especially when attempting simultaneous, high-resolution determination of T cell responses against multiple viral infections. Thus, the development of assay systems, which optimize cell usage, while still allowing for the detailed determination of breadth and magnitude of virus-specific cytotoxic T lymphocyte (CTL responses, is urgently needed. This study provides an up-to-date listing of currently known, well-defined viral CTL epitopes for HIV, EBV, CMV, HCV and HBV and describes an approach that overcomes some of the above limitations through the use of peptide matrices of optimally defined viral CTL epitopes in combination with anti-CD3 in vitro T cell expansion and re-use of cells from negative ELISpot wells. The data show that, when compared to direct ex vivo cell preparations, antigen-unspecific in vitro T cell expansion maintains the breadth of detectable T cell responses and demonstrates that harvesting cells from negative ELISpot wells for re-use in subsequent ELISpot assays (RecycleSpot, further maximized the use of available cells. Furthermore when combining T cell expansion and RecycleSpot with the use of rationally designed peptide matrices, antiviral immunity against more than 400 different CTL epitopes from five different viruses can be reproducibly assessed from samples of less than 10 milliliters of blood without compromising information on the breadth and magnitude of these responses. Together, these data support an approach that facilitates the assessment of cellular immunity against multiple viral co-infections in settings where sample availability is severely limited.

  10. Advances in Non-Viral DNA Vectors for Gene Therapy

    Directory of Open Access Journals (Sweden)

    Cinnamon L. Hardee

    2017-02-01

    Full Text Available Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic

  11. Advances in Non-Viral DNA Vectors for Gene Therapy

    Science.gov (United States)

    Hardee, Cinnamon L.; Arévalo-Soliz, Lirio Milenka; Hornstein, Benjamin D.; Zechiedrich, Lynn

    2017-01-01

    Uses of viral vectors have thus far eclipsed uses of non-viral vectors for gene therapy delivery in the clinic. Viral vectors, however, have certain issues involving genome integration, the inability to be delivered repeatedly, and possible host rejection. Fortunately, development of non-viral DNA vectors has progressed steadily, especially in plasmid vector length reduction, now allowing these tools to fill in specifically where viral or other non-viral vectors may not be the best options. In this review, we examine the improvements made to non-viral DNA gene therapy vectors, highlight opportunities for their further development, address therapeutic needs for which their use is the logical choice, and discuss their future expansion into the clinic. PMID:28208635

  12. Viral Marketing Past Present Future

    OpenAIRE

    Nessipbekova, Zarina

    2010-01-01

    The work studies the viral marketing. These are past viral campaigns, viral campaigns today, and evaluates their actuality. The work tries to predict the development of viral marketing on the basis of the research done by the author.

  13. Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response

    NARCIS (Netherlands)

    Lee, R. van der; Feng, Q.; Langereis, M.A.; Horst, R. ter; Szklarczyk, R.J.; Netea, M.G.; Andeweg, A.C.; Kuppeveld, F.J.M. van; Huynen, M.A.

    2015-01-01

    The RIG-I-like receptor (RLR) pathway is essential for detecting cytosolic viral RNA to trigger the production of type I interferons (IFNalpha/beta) that initiate an innate antiviral response. Through systematic assessment of a wide variety of genomics data, we discovered 10 molecular signatures of

  14. Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response

    NARCIS (Netherlands)

    van der Lee, Robin; Feng, Qian; Langereis, Martijn A; Ter Horst, Rob; Szklarczyk, Radek; Netea, Mihai G; Andeweg, Arno C; van Kuppeveld, Frank J M; Huynen, Martijn A

    2015-01-01

    The RIG-I-like receptor (RLR) pathway is essential for detecting cytosolic viral RNA to trigger the production of type I interferons (IFNα/β) that initiate an innate antiviral response. Through systematic assessment of a wide variety of genomics data, we discovered 10 molecular signatures of known R

  15. Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response

    NARCIS (Netherlands)

    R. van der Lee (Robin); Q. Feng (Qian); M.A. Langereis (Martijn A.); R. ter Horst (Rob); R. Szklarczyk (Radek); M.G. Netea (Mihai); A.C. Andeweg (Arno); F.J.M. van Kuppeveld (Frank ); M. Huynen (Martijn)

    2015-01-01

    textabstractThe RIG-I-like receptor (RLR) pathway is essential for detecting cytosolic viral RNA to trigger the production of type I interferons (IFNα/β) that initiate an innate antiviral response. Through systematic assessment of a wide variety of genomics data, we discovered 10 molecular signature

  16. Viral genome analysis and knowledge management.

    Science.gov (United States)

    Kuiken, Carla; Yoon, Hyejin; Abfalterer, Werner; Gaschen, Brian; Lo, Chienchi; Korber, Bette

    2013-01-01

    One of the challenges of genetic data analysis is to combine information from sources that are distributed around the world and accessible through a wide array of different methods and interfaces. The HIV database and its footsteps, the hepatitis C virus (HCV) and hemorrhagic fever virus (HFV) databases, have made it their mission to make different data types easily available to their users. This involves a large amount of behind-the-scenes processing, including quality control and analysis of the sequences and their annotation. Gene and protein sequences are distilled from the sequences that are stored in GenBank; to this end, both submitter annotation and script-generated sequences are used. Alignments of both nucleotide and amino acid sequences are generated, manually curated, distilled into an alignment model, and regenerated in an iterative cycle that results in ever better new alignments. Annotation of epidemiological and clinical information is parsed, checked, and added to the database. User interfaces are updated, and new interfaces are added based upon user requests. Vital for its success, the database staff are heavy users of the system, which enables them to fix bugs and find opportunities for improvement. In this chapter we describe some of the infrastructure that keeps these heavily used analysis platforms alive and vital after nearly 25 years of use. The database/analysis platforms described in this chapter can be accessed at http://hiv.lanl.gov http://hcv.lanl.gov http://hfv.lanl.gov.

  17. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs

    Directory of Open Access Journals (Sweden)

    Elisabeth eJonas

    2015-02-01

    Full Text Available Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies. It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating genomic selection into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken and fish. It outlines tasks to help understanding possible consequences when applying genomic information in

  18. The Contribution of Health Technology Assessment, Health Needs Assessment, and Health Impact Assessment to the Assessment and Translation of Technologies in the Field of Public Health Genomics

    NARCIS (Netherlands)

    Rosenköttera, N.; Vondeling, H.; Blancquaert, I.; Mekel, O.C.L.; Kristensen, F.B.; Brand, A.

    2011-01-01

    The European Union has named genomics as one of the promising research fields for the development of new health technologies. Major concerns with regard to these fields are, on the one hand, the rather slow and limited translation of new knowledge and, on the other hand, missing insights into the im

  19. Integration of HIV in the Human Genome: Which Sites Are Preferential? A Genetic and Statistical Assessment

    Directory of Open Access Journals (Sweden)

    Juliana Gonçalves

    2016-01-01

    Full Text Available Chromosomal fragile sites (FSs are loci where gaps and breaks may occur and are preferential integration targets for some viruses, for example, Hepatitis B, Epstein-Barr virus, HPV16, HPV18, and MLV vectors. However, the integration of the human immunodeficiency virus (HIV in Giemsa bands and in FSs is not yet completely clear. This study aimed to assess the integration preferences of HIV in FSs and in Giemsa bands using an in silico study. HIV integration positions from Jurkat cells were used and two nonparametric tests were applied to compare HIV integration in dark versus light bands and in FS versus non-FS (NFSs. The results show that light bands are preferential targets for integration of HIV-1 in Jurkat cells and also that it integrates with equal intensity in FSs and in NFSs. The data indicates that HIV displays different preferences for FSs compared to other viruses. The aim was to develop and apply an approach to predict the conditions and constraints of HIV insertion in the human genome which seems to adequately complement empirical data.

  20. Global organization of a positive-strand RNA virus genome.

    Directory of Open Access Journals (Sweden)

    Baodong Wu

    Full Text Available The genomes of plus-strand RNA viruses contain many regulatory sequences and structures that direct different viral processes. The traditional view of these RNA elements are as local structures present in non-coding regions. However, this view is changing due to the discovery of regulatory elements in coding regions and functional long-range intra-genomic base pairing interactions. The ∼4.8 kb long RNA genome of the tombusvirus tomato bushy stunt virus (TBSV contains these types of structural features, including six different functional long-distance interactions. We hypothesized that to achieve these multiple interactions this viral genome must utilize a large-scale organizational strategy and, accordingly, we sought to assess the global conformation of the entire TBSV genome. Atomic force micrographs of the genome indicated a mostly condensed structure composed of interconnected protrusions extending from a central hub. This configuration was consistent with the genomic secondary structure model generated using high-throughput selective 2'-hydroxyl acylation analysed by primer extension (i.e. SHAPE, which predicted different sized RNA domains originating from a central region. Known RNA elements were identified in both domain and inter-domain regions, and novel structural features were predicted and functionally confirmed. Interestingly, only two of the six long-range interactions known to form were present in the structural model. However, for those interactions that did not form, complementary partner sequences were positioned relatively close to each other in the structure, suggesting that the secondary structure level of viral genome structure could provide a basic scaffold for the formation of different long-range interactions. The higher-order structural model for the TBSV RNA genome provides a snapshot of the complex framework that allows multiple functional components to operate in concert within a confined context.

  1. Towards a typing strategy for Arcobacter species isolated from humans and animals and assessment of the in vitro genomic stability.

    Science.gov (United States)

    Douidah, Laid; De Zutter, Lieven; Baré, Julie; Houf, Kurt

    2014-04-01

    Arcobacter species have a widespread distribution with a broad range of animal hosts and environmental reservoirs, and are increasingly associated with human illness. To elucidate the routes of infection, several characterization methods such as pulsed-field gel electrophoresis (PFGE), amplified fragment-length polymorphism, and enterobacterial repetitive intergenic consensus (ERIC)-PCR have already been applied, but without proper validation or comparison. At present, no criterion standard typing method or strategy has been proposed. Therefore, after the validation of PFGE, those commonly applied typing methods were compared for the characterization of six human- and animal-associated Arcobacter species. With a limited number of isolates to be characterized, PFGE with restriction by KpnI is proposed as the first method of choice. However, ERIC-PCR represents a more convenient genomic fingerprinting technique when a large number of isolates is involved. Therefore, a first clustering of similar patterns obtained after ERIC-PCR, with a subsequent typing of some representatives per ERIC cluster by PFGE, is recommended. As multiple genotypes are commonly isolated from the same host and food, genomic plasticity has been suggested. The in vitro genomic stability of Arcobacter butzleri and A. cryaerophilus was assessed under two temperatures and two oxygen concentrations. Variability in the genomic profile of A. cryaerophilus was observed after different passages for different strains at 37°C under microaerobic conditions. The bias due to these genomic changes must be taken into account in the evaluation of the relationship of strains.

  2. Viral miRNA targeting of bicistronic and polycistronic transcripts.

    Science.gov (United States)

    Zhu, Ying; Huang, Yufei; Jung, Jae U; Lu, Chun; Gao, Shou-Jiang

    2014-08-01

    Successful viral infection entails a choreographic regulation of viral gene expression program. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes numerous miRNAs that regulate viral life cycle. However, few viral targets have been identified due to the lack of information on KSHV 3' untranslated regions (3'UTRs). Recent genome-wide mapping of KSHV transcripts and 3'UTRs has revealed abundant bicistronic and polycistronic transcripts. The extended 3'UTRs of the 5' proximal genes of bicistronic and polycistronic transcripts offer additional regulatory targets. Indeed, a genome-wide screening of KSHV 3'UTRs has identified several bicistronic and polycistronic transcripts as the novel targets of viral miRNAs. Together, these works have expanded our knowledge of the unique features of KSHV gene regulation program and provided valuable resources for the research community.

  3. Dicer-2 processes diverse viral RNA species.

    Directory of Open Access Journals (Sweden)

    Leah R Sabin

    Full Text Available RNA silencing pathways play critical roles in gene regulation, virus infection, and transposon control. RNA interference (RNAi is mediated by small interfering RNAs (siRNAs, which are liberated from double-stranded (dsRNA precursors by Dicer and guide the RNA-induced silencing complex (RISC to targets. Although principles governing small RNA sorting into RISC have been uncovered, the spectrum of RNA species that can be targeted by Dicer proteins, particularly the viral RNAs present during an infection, are poorly understood. Dicer-2 potently restricts viral infection in insects by generating virus-derived siRNAs from viral RNA. To better characterize the substrates of Dicer-2, we examined the virus-derived siRNAs produced during the Drosophila antiviral RNAi response to four different viruses using high-throughput sequencing. We found that each virus was uniquely targeted by the RNAi pathway; dicing substrates included dsRNA replication intermediates and intramolecular RNA stem loops. For instance, a putative intergenic RNA hairpin encoded by Rift Valley Fever virus generates abundant small RNAs in both Drosophila and mosquito cells, while repetitive sequences within the genomic termini of Vaccinia virus, which give rise to abundant small RNAs in Drosophila, were found to be transcribed in both insect and mammalian cells. Moreover, we provide evidence that the RNA species targeted by Dicer-2 can be modulated by the presence of a viral suppressor of RNAi. This study uncovered several novel, heavily targeted features within viral genomes, offering insight into viral replication, viral immune evasion strategies, and the mechanism of antiviral RNAi.

  4. Nidovirus ribonucleases: Structures and functions in viral replication.

    NARCIS (Netherlands)

    Ulferts, R.; Ziebuhr, J.

    2011-01-01

    Nidoviruses employ unique strategies to replicate and express their exceptionally large RNA genomes. The viruses use a variety of enzymes to synthesize, modify and process an extensive set of viral RNAs of both genome and subgenome length, including RNA polymerase, primase, helicase, ribose 2'-O and

  5. A critical assessment of cross-species detection of gene duplicates using comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Renn Suzy CP

    2010-05-01

    Full Text Available Abstract Background Comparison of genomic DNA among closely related strains or species is a powerful approach for identifying variation in evolutionary processes. One potent source of genomic variation is gene duplication, which is prevalent among individuals and species. Array comparative genomic hybridization (aCGH has been successfully utilized to detect this variation among lineages. Here, beyond the demonstration that gene duplicates among species can be quantified with aCGH, we consider the effect of sequence divergence on the ability to detect gene duplicates. Results Using the X chromosome genomic content difference between male D. melanogaster and female D. yakuba and D. simulans, we describe a decrease in the ability to accurately measure genomic content (copy number for orthologs that are only 90% identical. We demonstrate that genome characteristics (e.g. chromatin environment and non-orthologous sequence similarity can also affect the ability to accurately measure genomic content. We describe a normalization strategy and statistical criteria to be used for the identification of gene duplicates among any species group for which an array platform is available from a closely related species. Conclusions Array CGH can be used to effectively identify gene duplication and genome content; however, certain biases are present due to sequence divergence and other genome characteristics resulting from the divergence between lineages. Highly conserved gene duplicates will be more readily recovered by aCGH. Duplicates that have been retained for a selective advantage due to directional selection acting on many loci in one or both gene copies are likely to be under-represented. The results of this study should inform the interpretation of both previously published and future work that employs this powerful technique.

  6. Comparative assessment of genetic diversity in cytoplasmic and nuclear genome of upland cotton.

    Science.gov (United States)

    Egamberdiev, Sharof S; Saha, Sukumar; Salakhutdinov, Ilkhom; Jenkins, Johnie N; Deng, Dewayne; Y Abdurakhmonov, Ibrokhim

    2016-06-01

    The importance of the cytoplasmic genome for many economically important traits is well documented in several crop species, including cotton. There is no report on application of cotton chloroplast specific SSR markers as a diagnostic tool to study genetic diversity among improved Upland cotton lines. The complete plastome sequence information in GenBank provided us an opportunity to report on 17 chloroplast specific SSR markers using a cost-effective data mining strategy. Here we report the comparative analysis of genetic diversity among a set of 42 improved Upland cotton lines using SSR markers specific to chloroplast and nuclear genome, respectively. Our results revealed that low to moderate level of genetic diversity existed in both nuclear and cytoplasm genome among this set of cotton lines. However, the specific estimation suggested that genetic diversity is lower in cytoplasmic genome compared to the nuclear genome among this set of Upland cotton lines. In summary, this research is important from several perspectives. We detected a set of cytoplasm genome specific SSR primer pairs by using a cost-effective data mining strategy. We reported for the first time the genetic diversity in the cytoplasmic genome within a set of improved Upland cotton accessions. Results revealed that the genetic diversity in cytoplasmic genome is narrow, compared to the nuclear genome within this set of Upland cotton accessions. Our results suggested that most of these polymorphic chloroplast SSRs would be a valuable complementary tool in addition to the nuclear SSR in the study of evolution, gene flow and genetic diversity in Upland cotton.

  7. Viral genetic variation accounts for a third of variability in HIV-1 set-point viral load in Europe.

    Science.gov (United States)

    Blanquart, François; Wymant, Chris; Cornelissen, Marion; Gall, Astrid; Bakker, Margreet; Bezemer, Daniela; Hall, Matthew; Hillebregt, Mariska; Ong, Swee Hoe; Albert, Jan; Bannert, Norbert; Fellay, Jacques; Fransen, Katrien; Gourlay, Annabelle J; Grabowski, M Kate; Gunsenheimer-Bartmeyer, Barbara; Günthard, Huldrych F; Kivelä, Pia; Kouyos, Roger; Laeyendecker, Oliver; Liitsola, Kirsi; Meyer, Laurence; Porter, Kholoud; Ristola, Matti; van Sighem, Ard; Vanham, Guido; Berkhout, Ben; Kellam, Paul; Reiss, Peter; Fraser, Christophe

    2017-06-01

    HIV-1 set-point viral load-the approximately stable value of viraemia in the first years of chronic infection-is a strong predictor of clinical outcome and is highly variable across infected individuals. To better understand HIV-1 pathogenesis and the evolution of the viral population, we must quantify the heritability of set-point viral load, which is the fraction of variation in this phenotype attributable to viral genetic variation. However, current estimates of heritability vary widely, from 6% to 59%. Here we used a dataset of 2,028 seroconverters infected between 1985 and 2013 from 5 European countries (Belgium, Switzerland, France, the Netherlands and the United Kingdom) and estimated the heritability of set-point viral load at 31% (CI 15%-43%). Specifically, heritability was measured using models of character evolution describing how viral load evolves on the phylogeny of whole-genome viral sequences. In contrast to previous studies, (i) we measured viral loads using standardized assays on a sample collected in a strict time window of 6 to 24 months after infection, from which the viral genome was also sequenced; (ii) we compared 2 models of character evolution, the classical "Brownian motion" model and another model ("Ornstein-Uhlenbeck") that includes stabilising selection on viral load; (iii) we controlled for covariates, including age and sex, which may inflate estimates of heritability; and (iv) we developed a goodness of fit test based on the correlation of viral loads in cherries of the phylogenetic tree, showing that both models of character evolution fit the data well. An overall heritability of 31% (CI 15%-43%) is consistent with other studies based on regression of viral load in donor-recipient pairs. Thus, about a third of variation in HIV-1 virulence is attributable to viral genetic variation.

  8. Viral genetic variation accounts for a third of variability in HIV-1 set-point viral load in Europe

    Science.gov (United States)

    Wymant, Chris; Cornelissen, Marion; Gall, Astrid; Bakker, Margreet; Bezemer, Daniela; Hall, Matthew; Hillebregt, Mariska; Ong, Swee Hoe; Albert, Jan; Bannert, Norbert; Fellay, Jacques; Fransen, Katrien; Gourlay, Annabelle J.; Grabowski, M. Kate; Gunsenheimer-Bartmeyer, Barbara; Günthard, Huldrych F.; Kivelä, Pia; Kouyos, Roger; Laeyendecker, Oliver; Liitsola, Kirsi; Meyer, Laurence; Porter, Kholoud; Ristola, Matti; van Sighem, Ard; Vanham, Guido; Berkhout, Ben; Kellam, Paul; Reiss, Peter; Fraser, Christophe

    2017-01-01

    HIV-1 set-point viral load—the approximately stable value of viraemia in the first years of chronic infection—is a strong predictor of clinical outcome and is highly variable across infected individuals. To better understand HIV-1 pathogenesis and the evolution of the viral population, we must quantify the heritability of set-point viral load, which is the fraction of variation in this phenotype attributable to viral genetic variation. However, current estimates of heritability vary widely, from 6% to 59%. Here we used a dataset of 2,028 seroconverters infected between 1985 and 2013 from 5 European countries (Belgium, Switzerland, France, the Netherlands and the United Kingdom) and estimated the heritability of set-point viral load at 31% (CI 15%–43%). Specifically, heritability was measured using models of character evolution describing how viral load evolves on the phylogeny of whole-genome viral sequences. In contrast to previous studies, (i) we measured viral loads using standardized assays on a sample collected in a strict time window of 6 to 24 months after infection, from which the viral genome was also sequenced; (ii) we compared 2 models of character evolution, the classical “Brownian motion” model and another model (“Ornstein–Uhlenbeck”) that includes stabilising selection on viral load; (iii) we controlled for covariates, including age and sex, which may inflate estimates of heritability; and (iv) we developed a goodness of fit test based on the correlation of viral loads in cherries of the phylogenetic tree, showing that both models of character evolution fit the data well. An overall heritability of 31% (CI 15%–43%) is consistent with other studies based on regression of viral load in donor–recipient pairs. Thus, about a third of variation in HIV-1 virulence is attributable to viral genetic variation. PMID:28604782

  9. Generating viral metagenomes from the coral holobiont

    Directory of Open Access Journals (Sweden)

    Karen Dawn Weynberg

    2014-05-01

    Full Text Available Reef-building corals comprise multipartite symbioses where the cnidarian animal is host to an array of eukaryotic and prokaryotic organisms, and the viruses that infect them. These viruses are critical elements of the coral holobiont, serving not only as agents of mortality, but also as potential vectors for lateral gene flow, and as elements encoding a variety of auxiliary metabolic functions. Consequently, understanding the functioning and health of the coral holobiont requires detailed knowledge of the associated viral assemblage and its function. Currently, the most tractable way of uncovering viral diversity and function is through metagenomic approaches, which is inherently difficult in corals because of the complex holobiont community, an extracellular mucus layer that all corals secrete, and the variety of sizes and structures of nucleic acids found in viruses. Here we present the first protocol for isolating, purifying and amplifying viral nucleic acids from corals based on mechanical disruption of cells. This method produces at least 50% higher yields of viral nucleic acids, has very low levels of cellular sequence contamination and captures wider viral diversity than previously used chemical-based extraction methods. We demonstrate that our mechanical-based method profiles a greater diversity of DNA and RNA genomes, including virus groups such as Retro-transcribing and ssRNA viruses, which are absent from metagenomes generated via chemical-based methods. In addition, we briefly present (and make publically available the first paired DNA and RNA viral metagenomes from the coral Acropora tenuis.

  10. Viral Metagenomics: MetaView Software

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C; Smith, J

    2007-10-22

    The purpose of this report is to design and develop a tool for analysis of raw sequence read data from viral metagenomics experiments. The tool should compare read sequences of known viral nucleic acid sequence data and enable a user to attempt to determine, with some degree of confidence, what virus groups may be present in the sample. This project was conducted in two phases. In phase 1 we surveyed the literature and examined existing metagenomics tools to educate ourselves and to more precisely define the problem of analyzing raw read data from viral metagenomic experiments. In phase 2 we devised an approach and built a prototype code and database. This code takes viral metagenomic read data in fasta format as input and accesses all complete viral genomes from Kpath for sequence comparison. The system executes at the UNIX command line, producing output that is stored in an Oracle relational database. We provide here a description of the approach we came up with for handling un-assembled, short read data sets from viral metagenomics experiments. We include a discussion of the current MetaView code capabilities and additional functionality that we believe should be added, should additional funding be acquired to continue the work.

  11. Viral population analysis and minority-variant detection using short read next-generation sequencing.

    Science.gov (United States)

    Watson, Simon J; Welkers, Matthijs R A; Depledge, Daniel P; Coulter, Eve; Breuer, Judith M; de Jong, Menno D; Kellam, Paul

    2013-03-19

    RNA viruses within infected individuals exist as a population of evolutionary-related variants. Owing to evolutionary change affecting the constitution of this population, the frequency and/or occurrence of individual viral variants can show marked or subtle fluctuations. Since the development of massively parallel sequencing platforms, such viral populations can now be investigated to unprecedented resolution. A critical problem with such analyses is the presence of sequencing-related errors that obscure the identification of true biological variants present at low frequency. Here, we report the development and assessment of the Quality Assessment of Short Read (QUASR) Pipeline (http://sourceforge.net/projects/quasr) specific for virus genome short read analysis that minimizes sequencing errors from multiple deep-sequencing platforms, and enables post-mapping analysis of the minority variants within the viral population. QUASR significantly reduces the error-related noise in deep-sequencing datasets, resulting in increased mapping accuracy and reduction of erroneous mutations. Using QUASR, we have determined influenza virus genome dynamics in sequential samples from an in vitro evolution of 2009 pandemic H1N1 (A/H1N1/09) influenza from samples sequenced on both the Roche 454 GSFLX and Illumina GAIIx platforms. Importantly, concordance between the 454 and Illumina sequencing allowed unambiguous minority-variant detection and accurate determination of virus population turnover in vitro.

  12. Viral Evasion and Manipulation of Host RNA Quality Control Pathways.

    Science.gov (United States)

    Hogg, J Robert

    2016-08-15

    Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance.

  13. Phosphorylation of the viral coat protein regulates RNA virus infection

    Directory of Open Access Journals (Sweden)

    Hoover HS

    2016-11-01

    Full Text Available Haley S Hoover, C Cheng Kao Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA Abstract: Coat proteins (CPs are the most abundant protein produced during a viral infection. CPs have been shown to regulate the infection processes of RNA viruses, including RNA replication and gene expression. The numerous activities of the CP in infection are likely to require regulation, possibly through posttranslational modifications. Protein posttranslational modifications are involved in signal transduction, expanding and regulating protein function, and responding to changes in the environment. Accumulating evidence suggests that phosphorylation of viral CPs is involved in the regulation of the viral infection process from enabling virion disassembly to regulation of viral protein synthesis and replication. CP phosphorylation also affects viral trafficking and virion assembly. This review focuses on the regulatory roles that phosphorylation of CPs has in the life cycle of viruses with RNA genomes. Keywords: viral capsid protein, posttranslational modification, phosphorylation, protein–RNA interaction

  14. Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences.

    Science.gov (United States)

    Triant, Deborah A; Dewoody, J Andrew

    2006-01-01

    Microtus is one of the most taxonomically diverse mammalian genera, including over 60 extant species. These rodents have evolved rapidly, as the genus originated less than 2 million years ago. If these numbers are taken at face value, then an average of 30 microtine speciation events have occurred every million years. One explanation for the rapid rate of cladogenesis in Microtus could be the karyotypic differentiation exhibited across the genus: diploid numbers range from 17 to 64. Despite the striking chromosomal variability within Microtus, phenotypic variation is unremarkable. To determine whether nucleotide substitution rates are also elevated in voles, we sequenced the entire mitochondrial DNA (mtDNA) genome of the Eurasian sibling vole (Microtus rossiaemeridionalis). We compared this genome to another previously sequenced vole mtDNA genome (Microtus kikuchii) and performed pairwise sequence comparisons with the mtDNA genomes of ten additional mammalian genera. We found that microtine mtDNA genomes are evolving more rapidly than any other mammalian lineage we sampled, as gauged by the rate of nucleotide substitution across the entire mtDNA genome as well as at each individual protein-coding gene. Additionally, we compared substitution rates within the cytochrome b gene to seven other rodent genera and found that Microtus mtDNA is evolving fastest. The root cause of accelerated evolution in Microtus remains uncertain, but merits further investigation.

  15. Use of microsatellite markers for the assessment of bambara groundnut breeding system and varietal purity before genome sequencing.

    Science.gov (United States)

    Ho, Wai Kuan; Muchugi, Alice; Muthemba, Samuel; Kariba, Robert; Mavenkeni, Busiso Olga; Hendre, Prasad; Song, Bo; Van Deynze, Allen; Massawe, Festo; Mayes, Sean

    2016-06-01

    Maximizing the research output from a limited investment is often the major challenge for minor and underutilized crops. However, such crops may be tolerant to biotic and abiotic stresses and are adapted to local, marginal, and low-input environments. Their development through breeding will provide an important resource for future agricultural system resilience and diversification in the context of changing climates and the need to achieve food security. The African Orphan Crops Consortium recognizes the values of genomic resources in facilitating the improvement of such crops. Prior to beginning genome sequencing there is a need for an assessment of line varietal purity and to estimate any residual heterozygosity. Here we present an example from bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilized drought tolerant African legume. Two released varieties from Zimbabwe, identified as potential genotypes for whole genome sequencing (WGS), were genotyped with 20 species-specific SSR markers. The results indicate that the cultivars are actually a mix of related inbred genotypes, and the analysis allowed a strategy of single plant selection to be used to generate non-heterogeneous DNA for WGS. The markers also confirmed very low levels of heterozygosity within individual plants. The application of a pre-screen using co-dominant microsatellite markers is expected to substantially improve the genome assembly, compared to a cultivar bulking approach that could have been adopted.

  16. ViralORFeome: an integrated database to generate a versatile collection of viral ORFs.

    Science.gov (United States)

    Pellet, J; Tafforeau, L; Lucas-Hourani, M; Navratil, V; Meyniel, L; Achaz, G; Guironnet-Paquet, A; Aublin-Gex, A; Caignard, G; Cassonnet, P; Chaboud, A; Chantier, T; Deloire, A; Demeret, C; Le Breton, M; Neveu, G; Jacotot, L; Vaglio, P; Delmotte, S; Gautier, C; Combet, C; Deleage, G; Favre, M; Tangy, F; Jacob, Y; Andre, P; Lotteau, V; Rabourdin-Combe, C; Vidalain, P O

    2010-01-01

    Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such 'ORFeome' resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway(R) system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins.

  17. Viral Haemorrhagic Septicaemia Virus

    DEFF Research Database (Denmark)

    Olesen, Niels Jørgen; Skall, Helle Frank

    2013-01-01

    This chapter covers the genetics (genotypes and serotypes), clinical signs, host species, transmission, prevalence, diagnosis, control and prevention of viral haemorrhagic septicaemia virus.......This chapter covers the genetics (genotypes and serotypes), clinical signs, host species, transmission, prevalence, diagnosis, control and prevention of viral haemorrhagic septicaemia virus....

  18. [Emergent viral infections

    NARCIS (Netherlands)

    Galama, J.M.D.

    2001-01-01

    The emergence and re-emergence of viral infections is an ongoing process. Large-scale vaccination programmes led to the eradication or control of some viral infections in the last century, but new viruses are always emerging. Increased travel is leading to a rise in the importation of exotic infecti

  19. Viral Haemorrhagic Septicaemia Virus

    DEFF Research Database (Denmark)

    Olesen, Niels Jørgen; Skall, Helle Frank

    2013-01-01

    This chapter covers the genetics (genotypes and serotypes), clinical signs, host species, transmission, prevalence, diagnosis, control and prevention of viral haemorrhagic septicaemia virus.......This chapter covers the genetics (genotypes and serotypes), clinical signs, host species, transmission, prevalence, diagnosis, control and prevention of viral haemorrhagic septicaemia virus....

  20. Fragmentation and coverage variation in viral metagenome assemblies, and their effect in diversity calculations

    Directory of Open Access Journals (Sweden)

    Rodrigo eGarcía-López

    2015-09-01

    Full Text Available Metagenomic libraries consist of DNA fragments from diverse species, with varying genome size and abundance. High-throughput sequencing platforms produce large volumes of reads from these libraries which may be assembled into contigs, ideally resembling the original larger genomic sequences. The uneven species distribution, along with the stochasticity in sample processing and sequencing bias, impact the success of accurate sequence assembly. Several assemblers enable the processing of viral metagenomic data de novo, generally using Overlap Layout Consensus or de Bruijn graph approaches for contig assembly. The success of viral genomic reconstruction in these datasets is limited by the degree of fragmentation of each genome in the sample, which is dependent on the sequencing effort and the genome length. Depending on ecological, biological or procedural biases, some fragments have a higher prevalence, or coverage, in the assembly. However, assemblers must face challenges such as the formation of chimerical structures and intra-species variability.Diversity calculation relies on the classification of the sequences that comprise a metagenomic dataset. Whenever the corresponding genomic and taxonomic information is available, contigs matching the same species can be classified accordingly and the coverage of its genome can be calculated for that species. This may be used to compare populations by estimating abundance and assessing species distribution from this data. Nevertheless, the coverage does not take into account the degree of fragmentation, or else genome completeness, and is not necessarily representative of actual species distribution in the samples. Furthermore, undetermined sequences are abundant in viral metagenomic datasets, resulting in several independent contigs that cannot be assigned by homology or genomic information. These may only be classified as different Operational Taxonomic Units (OTUs, sometimes remaining inadvisably

  1. Viral Disease Networks?

    Science.gov (United States)

    Gulbahce, Natali; Yan, Han; Vidal, Marc; Barabasi, Albert-Laszlo

    2010-03-01

    Viral infections induce multiple perturbations that spread along the links of the biological networks of the host cells. Understanding the impact of these cascading perturbations requires an exhaustive knowledge of the cellular machinery as well as a systems biology approach that reveals how individual components of the cellular system function together. Here we describe an integrative method that provides a new approach to studying virus-human interactions and its correlations with diseases. Our method involves the combined utilization of protein - protein interactions, protein -- DNA interactions, metabolomics and gene - disease associations to build a ``viraldiseasome''. By solely using high-throughput data, we map well-known viral associated diseases and predict new candidate viral diseases. We use microarray data of virus-infected tissues and patient medical history data to further test the implications of the viral diseasome. We apply this method to Epstein-Barr virus and Human Papillomavirus and shed light into molecular development of viral diseases and disease pathways.

  2. De novo assembly of highly diverse viral populations

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    2012-09-01

    Full Text Available Abstract Background Extensive genetic diversity in viral populations within infected hosts and the divergence of variants from existing reference genomes impede the analysis of deep viral sequencing data. A de novo population consensus assembly is valuable both as a single linear representation of the population and as a backbone on which intra-host variants can be accurately mapped. The availability of consensus assemblies and robustly mapped variants are crucial to the genetic study of viral disease progression, transmission dynamics, and viral evolution. Existing de novo assembly techniques fail to robustly assemble ultra-deep sequence data from genetically heterogeneous populations such as viruses into full-length genomes due to the presence of extensive genetic variability, contaminants, and variable sequence coverage. Results We present VICUNA, a de novo assembly algorithm suitable for generating consensus assemblies from genetically heterogeneous populations. We demonstrate its effectiveness on Dengue, Human Immunodeficiency and West Nile viral populations, representing a range of intra-host diversity. Compared to state-of-the-art assemblers designed for haploid or diploid systems, VICUNA recovers full-length consensus and captures insertion/deletion polymorphisms in diverse samples. Final assemblies maintain a high base calling accuracy. VICUNA program is publicly available at: http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/ viral-genomics-analysis-software. Conclusions We developed VICUNA, a publicly available software tool, that enables consensus assembly of ultra-deep sequence derived from diverse viral populations. While VICUNA was developed for the analysis of viral populations, its application to other heterogeneous sequence data sets such as metagenomic or tumor cell population samples may prove beneficial in these fields of research.

  3. Genome Wide assessment of Early Osseointegration in Implant-Adherent Cells

    Science.gov (United States)

    Thalji, Ghadeer N.

    Objectives: To determine the molecular processes involved in osseointegration. Materials and methods: A structured literature review concerning in vitro and in vivo molecular assessment of osseointegration was performed. A rat and a human model were then used to identify the early molecular processes involved in osseointegration associated with a micro roughened and nanosurface superimposed featured implants. In the rat model, 32 titanium implants with surface topographies exhibiting a micro roughened (AT-II) and nanosurface superimposed featured implants (AT-I) were placed in the tibiae of 8 rats and subsequently harvested at 2 and 4 days after placement. Whereas in the human model, four titanium mini-implants with either a moderately roughened surface (TiOblast) or super-imposed nanoscale topography (Osseospeed) were placed in edentulous sites of eleven systemically healthy subjects and subsequently removed after 3 and 7 days. Total RNA was isolated from cells adherent to retrieved implants. A whole genome microarray using the Affymetrix 1.1 ST Array platform was used to describe the gene expression profiles that were differentially regulated by the implant surfaces. Results: The literature review provided evidence that particular topographic cues can be specifically integrated among the many extracellular signals received by the cell in its signal transduction network. In the rat model, functionally relevant categories related to ossification, skeletal system development, osteoblast differentiation, bone development and biomineral tissue development were upregulated and more prominent at AT-I compared to AT-II. In the human model, there were no significant differences when comparing the two-implant surfaces at each time point. However, the microarray identified several genes that were differentially regulated at day 7 vs. day 3 for both implant surfaces. Functionally relevant categories related to the extracellular matrix, collagen fibril organization and

  4. Genome-wide compendium and functional assessment of in vivo heart enhancers.

    Science.gov (United States)

    Dickel, Diane E; Barozzi, Iros; Zhu, Yiwen; Fukuda-Yuzawa, Yoko; Osterwalder, Marco; Mannion, Brandon J; May, Dalit; Spurrell, Cailyn H; Plajzer-Frick, Ingrid; Pickle, Catherine S; Lee, Elizabeth; Garvin, Tyler H; Kato, Momoe; Akiyama, Jennifer A; Afzal, Veena; Lee, Ah Young; Gorkin, David U; Ren, Bing; Rubin, Edward M; Visel, Axel; Pennacchio, Len A

    2016-10-05

    Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of >35 epigenomic data sets from mouse and human pre- and postnatal hearts we created a comprehensive reference of >80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs of two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function.

  5. Genome damage in induced pluripotent stem cells: assessing the mechanisms and their consequences.

    Science.gov (United States)

    Hussein, Samer M I; Elbaz, Judith; Nagy, Andras A

    2013-03-01

    In 2006, Shinya Yamanaka and colleagues discovered how to reprogram terminally differentiated somatic cells to a pluripotent stem cell state. The resulting induced pluripotent stem cells (iPSCs) made a paradigm shift in the field, further nailing down the disproval of the long-held dogma that differentiation is unidirectional. The prospect of using iPSCs for patient-specific cell-based therapies has been enticing. This promise, however, has been questioned in the last two years as several studies demonstrated intrinsic epigenetic and genomic anomalies in these cells. Here, we not only review the recent critical studies addressing the genome integrity during the reprogramming process, but speculate about the underlying mechanisms that could create de novo genome damage in iPSCs. Finally, we discuss how much an elevated mutation load really matters considering the safety of future therapies with cells heavily cultured in vitro.

  6. Cas-analyzer: an online tool for assessing genome editing results using NGS data.

    Science.gov (United States)

    Park, Jeongbin; Lim, Kayeong; Kim, Jin-Soo; Bae, Sangsu

    2017-01-15

    Genome editing with programmable nucleases has been widely adopted in research and medicine. Next generation sequencing (NGS) platforms are now widely used for measuring the frequencies of mutations induced by CRISPR-Cas9 and other programmable nucleases. Here, we present an online tool, Cas-Analyzer, a JavaScript-based implementation for NGS data analysis. Because Cas-Analyzer is completely used at a client-side web browser on-the-fly, there is no need to upload very large NGS datasets to a server, a time-consuming step in genome editing analysis. Currently, Cas-Analyzer supports various programmable nucleases, including single nucleases and paired nucleases.

  7. Assessing the efficiency and significance of Methylated DNA Immunoprecipitation (MeDIP assays in using in vitro methylated genomic DNA

    Directory of Open Access Journals (Sweden)

    Jia Jinsong

    2010-09-01

    Full Text Available Abstract Background DNA methylation contributes to the regulation of gene expression during development and cellular differentiation. The recently developed Methylated DNA ImmunoPrecipitation (MeDIP assay allows a comprehensive analysis of this epigenetic mark at the genomic level in normal and disease-derived cells. However, estimating the efficiency of the MeDIP technique is difficult without previous knowledge of the methylation status of a given cell population. Attempts to circumvent this problem have involved the use of in vitro methylated DNA in parallel to the investigated samples. Taking advantage of this stratagem, we sought to improve the sensitivity of the approach and to assess potential biases resulting from DNA amplification and hybridization procedures using MeDIP samples. Findings We performed MeDIP assays using in vitro methylated DNA, with or without previous DNA amplification, and hybridization to a human promoter array. We observed that CpG content at gene promoters indeed correlates strongly with the MeDIP signal obtained using in vitro methylated DNA, even when lowering significantly the amount of starting material. In analyzing MeDIP products that were subjected to whole genome amplification (WGA, we also revealed a strong bias against CpG-rich promoters during this amplification procedure, which may potentially affect the significance of the resulting data. Conclusion We illustrate the use of in vitro methylated DNA to assess the efficiency and accuracy of MeDIP procedures. We report that efficient and reproducible genome-wide data can be obtained via MeDIP experiments using relatively low amount of starting genomic DNA; and emphasize for the precaution that must be taken in data analysis when an additional DNA amplification step is required.

  8. Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/founder genome

    Directory of Open Access Journals (Sweden)

    Song Hongshuo

    2012-10-01

    Full Text Available Abstract Background A modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL on viral fitness in the context of the cognate transmitted/founder (T/F genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS method. Results The T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K in Env and a reversion mutation in the Tat/Rev overlapping region. Conclusions These findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.

  9. Viral marketing on the Internet

    OpenAIRE

    Štverák, Martin

    2008-01-01

    Thesis provides an overview of viral marketing. It describes the process by which you can be inspired to implement viral campaign. The thesis includes analysis of specific viral Web project. The aim of this thesis is to create a breakdown of the various components of viral marketing, to establish conditions that should be satisfied for the viral marketing to success, suggesting how to use viral marketing on social network Facebook and evaluate the various components of this service for the pr...

  10. Deep Assessment of Genomic Diversity in Cassava for Herbicide Tolerance and Starch Biosynthesis.

    Science.gov (United States)

    Duitama, Jorge; Kafuri, Lina; Tello, Daniel; Leiva, Ana María; Hofinger, Bernhard; Datta, Sneha; Lentini, Zaida; Aranzales, Ericson; Till, Bradley; Ceballos, Hernán

    2017-01-01

    Cassava is one of the most important food security crops in tropical countries, and a competitive resource for the starch, food, feed and ethanol industries. However, genomics research in this crop is much less developed compared to other economically important crops such as rice or maize. The International Center for Tropical Agriculture (CIAT) maintains the largest cassava germplasm collection in the world. Unfortunately, the genetic potential of this diversity for breeding programs remains underexploited due to the difficulties in phenotypic screening and lack of deep genomic information about the different accessions. A chromosome-level assembly of the cassava reference genome was released this year and only a handful of studies have been made, mainly to find quantitative trait loci (QTL) on breeding populations with limited variability. This work presents the results of pooled targeted resequencing of more than 1500 cassava accessions from the CIAT germplasm collection to obtain a dataset of more than 2000 variants within genes related to starch functional properties and herbicide tolerance. Results of twelve bioinformatic pipelines for variant detection in pooled samples were compared to ensure the quality of the variant calling process. Predictions of functional impact were performed using two separate methods to prioritize interesting variation for genotyping and cultivar selection. Targeted resequencing, either by pooled samples or by similar approaches such as Ecotilling or capture, emerges as a cost effective alternative to whole genome sequencing to identify interesting alleles of genes related to relevant traits within large germplasm collections.

  11. Genomic diversity among Danish field strains of Mycoplasma hyosynoviae assessed by amplified fragment length polymorphism analysis

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Friis, Niels F.; Nielsen, Elisabeth O.;

    2002-01-01

    ) were concurrently examined for variance in BglII-MfeI and EcoRI-Csp6I-A AFLP markers. A total of 56 different genomic fingerprints having an overall similarity between 77 and 96% were detected. No correlation between AFLP variability and period of isolation or anatomical site of isolation could...

  12. Assessment of whole genome amplification for sequence capture and massively parallel sequencing.

    Directory of Open Access Journals (Sweden)

    Johanna Hasmats

    Full Text Available Exome sequence capture and massively parallel sequencing can be combined to achieve inexpensive and rapid global analyses of the functional sections of the genome. The difficulties of working with relatively small quantities of genetic material, as may be necessary when sharing tumor biopsies between collaborators for instance, can be overcome using whole genome amplification. However, the potential drawbacks of using a whole genome amplification technology based on random primers in combination with sequence capture followed by massively parallel sequencing have not yet been examined in detail, especially in the context of mutation discovery in tumor material. In this work, we compare mutations detected in sequence data for unamplified DNA, whole genome amplified DNA, and RNA originating from the same tumor tissue samples from 16 patients diagnosed with non-small cell lung cancer. The results obtained provide a comprehensive overview of the merits of these techniques for mutation analysis. We evaluated the identified genetic variants, and found that most (74% of them were observed in both the amplified and the unamplified sequence data. Eighty-nine percent of the variations found by WGA were shared with unamplified DNA. We demonstrate a strategy for avoiding allelic bias by including RNA-sequencing information.

  13. Assessment of whole genome amplification for sequence capture and massively parallel sequencing.

    Science.gov (United States)

    Hasmats, Johanna; Gréen, Henrik; Orear, Cedric; Validire, Pierre; Huss, Mikael; Käller, Max; Lundeberg, Joakim

    2014-01-01

    Exome sequence capture and massively parallel sequencing can be combined to achieve inexpensive and rapid global analyses of the functional sections of the genome. The difficulties of working with relatively small quantities of genetic material, as may be necessary when sharing tumor biopsies between collaborators for instance, can be overcome using whole genome amplification. However, the potential drawbacks of using a whole genome amplification technology based on random primers in combination with sequence capture followed by massively parallel sequencing have not yet been examined in detail, especially in the context of mutation discovery in tumor material. In this work, we compare mutations detected in sequence data for unamplified DNA, whole genome amplified DNA, and RNA originating from the same tumor tissue samples from 16 patients diagnosed with non-small cell lung cancer. The results obtained provide a comprehensive overview of the merits of these techniques for mutation analysis. We evaluated the identified genetic variants, and found that most (74%) of them were observed in both the amplified and the unamplified sequence data. Eighty-nine percent of the variations found by WGA were shared with unamplified DNA. We demonstrate a strategy for avoiding allelic bias by including RNA-sequencing information.

  14. Hepatitis viral aguda

    OpenAIRE

    Héctor Rubén Hernández Garcés; René F Espinosa Álvarez

    1998-01-01

    Se realizó una revisión bibliográfica de las hepatitis virales agudas sobre aspectos vinculados a su etiología. Se tuvieron en cuenta además algunos datos epidemiológicos, las formas clínicas más importantes, los exámenes complementarios con especial énfasis en los marcadores virales y el diagnóstico positivoA bibliographical review of acute viral hepatitis was made taking into account those aspects connected with its etiology. Some epidemiological markers, the most important clinical forms, ...

  15. Understanding Image Virality

    Science.gov (United States)

    2015-06-08

    Example non-viral images. Figure 1: Top: Images with high viral scores in our dataset depict internet “celebrity” memes ex. “Grumpy Cat”; Bottom: Images...of images that is most similar to ours is the concurrently introduced viral meme generator of Wang et al., that combines NLP and Computer Vision (low...doing any of our tasks. The test included questions about widely spread Reddit memes and jargon so that anyone familiar with Reddit can easily get a high

  16. Genome-environment interactions and prospective technology assessment: evolution from pharmacogenomics to nutrigenomics and ecogenomics.

    Science.gov (United States)

    Ozdemir, Vural; Motulsky, Arno G; Kolker, Eugene; Godard, Béatrice

    2009-02-01

    The relationships between food, nutrition science, and health outcomes have been mapped over the past century. Genomic variation among individuals and populations is a new factor that enriches and challenges our understanding of these complex relationships. Hence, the confluence of nutritional science and genomics-nutrigenomics--was the focus of the OMICS: A Journal of Integrative Biology in December 2008 (Part 1). The 2009 Special Issue (Part 2) concludes the analysis of nutrigenomics research and innovations. Together, these two issues expand the scope and depth of critical scholarship in nutrigenomics, in keeping with an integrated multidisciplinary analysis across the bioscience, omics technology, social, ethical, intellectual property and policy dimensions. Historically, the field of pharmacogenetics provided the first examples of specifically identifiable gene variants predisposing to unexpected responses to drugs since the 1950s. Brewer coined the term ecogenetics in 1971 to broaden the concept of gene-environment interactions from drugs and nutrition to include environmental agents in general. In the mid-1990s, introduction of high-throughput technologies led to the terms pharmacogenomics, nutrigenomics and ecogenomics to describe, respectively, the contribution of genomic variability to differential responses to drugs, food, and environment defined in the broadest sense. The distinctions, if any, between these newer fields (e.g., nutrigenomics) and their predecessors (e.g., nutrigenetics) remain to be delineated. For nutrigenomics, its reliance on genome-wide analyses may lead to detection of new biological mechanisms governing host response to food. Recognizing "genome-environment interactions" as the conceptual thread that connects and runs through pharmacogenomics, nutrigenomics, and ecogenomics may contribute toward anticipatory governance and prospective real-time analysis of these omics fields. Such real-time analysis of omics technologies and

  17. Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing

    Science.gov (United States)

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A.

    2014-01-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. PMID:24814796

  18. Assessing genetic diversity among Brettanomyces yeasts by DNA fingerprinting and whole-genome sequencing.

    Science.gov (United States)

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A; Verstrepen, Kevin J; Lievens, Bart

    2014-07-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Molecular piracy: the viral link to carcinogenesis.

    Science.gov (United States)

    Flaitz, C M; Hicks, M J

    1998-11-01

    The vast majority of the human experience with viral infections is associated with acute symptoms, such as malaise, fever, chills, rhinitis and diarrhea. With this acute or lytic phase, the immune system mounts a response and eliminates the viral agent while acquiring antibodies to that specific viral subtype. With latent or chronic infections, the viral agent becomes incorporated into the human genome. Viral agents capable of integration into the host's genetic material are particularly dangerous and may commandeer the host's ability to regulate normal cell growth and proliferation. The oncogenic viruses may immortalize the host cell, and facilitate malignant transformation. Cell growth and proliferation may be enhanced by viral interference with tumor suppressor gene function (p53 and pRb). Viruses may act as vectors for mutated proto-oncogenes (oncogenes). Overexpression of these oncogenes in viral-infected cells interferes with normal cell function and allows unregulated cell growth and proliferation, which may lead to malignant transformation and tumour formation. Development of oral neoplasms, both benign and malignant, has been linked to several viruses. Epstein-Barr virus is associated with oral hairy leukoplakia, lymphoproliferative disease, lymphoepithelial carcinoma, B-cell lymphomas, and nasopharyngeal carcinoma. Human herpesvirus-8 has been implicated in all forms of Kaposi's sarcoma, primary effusion lymphomas, multiple myeloma, angioimmunoblastic lymphadenopathy, and Castleman's disease. Human herpesvirus-6 has been detected in lymphoproliferative disease, lymphomas, Hodgkin's disease, and oral squamous cell carcinoma. The role of human papillomavirus in benign (squamous papilloma, focal epithelial hyperplasia, condyloma acuminatum, verruca vulgaris), premalignant (oral epithelial dysplasia), and malignant (squamous cell carcinoma) neoplasms within the oral cavity is well recognized. Herpes simplex virus may participate as a cofactor in oral squamous

  20. Approaches to advancing quantitative human health risk assessment of environmental chemicals in the post-genomic era

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Weihsueh A., E-mail: chiu.weihsueh@epa.gov [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington DC, 20460 (United States); Euling, Susan Y.; Scott, Cheryl Siegel; Subramaniam, Ravi P. [National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington DC, 20460 (United States)

    2013-09-15

    The contribution of genomics and associated technologies to human health risk assessment for environmental chemicals has focused largely on elucidating mechanisms of toxicity, as discussed in other articles in this issue. However, there is interest in moving beyond hazard characterization to making more direct impacts on quantitative risk assessment (QRA) — i.e., the determination of toxicity values for setting exposure standards and cleanup values. We propose that the evolution of QRA of environmental chemicals in the post-genomic era will involve three, somewhat overlapping phases in which different types of approaches begin to mature. The initial focus (in Phase I) has been and continues to be on “augmentation” of weight of evidence — using genomic and related technologies qualitatively to increase the confidence in and scientific basis of the results of QRA. Efforts aimed towards “integration” of these data with traditional animal-based approaches, in particular quantitative predictors, or surrogates, for the in vivo toxicity data to which they have been anchored are just beginning to be explored now (in Phase II). In parallel, there is a recognized need for “expansion” of the use of established biomarkers of susceptibility or risk of human diseases and disorders for QRA, particularly for addressing the issues of cumulative assessment and population risk. Ultimately (in Phase III), substantial further advances could be realized by the development of novel molecular and pathway-based biomarkers and statistical and in silico models that build on anticipated progress in understanding the pathways of human diseases and disorders. Such efforts would facilitate a gradual “reorientation” of QRA towards approaches that more directly link environmental exposures to human outcomes.

  1. Epigenetic control of viral life-cycle by a DNA-methylation dependent transcription factor.

    Directory of Open Access Journals (Sweden)

    Kirsty Flower

    Full Text Available Epstein-Barr virus (EBV encoded transcription factor Zta (BZLF1, ZEBRA, EB1 is the prototype of a class of transcription factor (including C/EBPalpha that interact with CpG-containing DNA response elements in a methylation-dependent manner. The EBV genome undergoes a biphasic methylation cycle; it is extensively methylated during viral latency but is reset to an unmethylated state following viral lytic replication. Zta is expressed transiently following infection and again during the switch between latency and lytic replication. The requirement for CpG-methylation at critical Zta response elements (ZREs has been proposed to regulate EBV replication, specifically it could aid the activation of viral lytic gene expression from silenced promoters on the methylated genome during latency in addition to preventing full lytic reactivation from the non-methylated EBV genome immediately following infection. We developed a computational approach to predict the location of ZREs which we experimentally assessed using in vitro and in vivo DNA association assays. A remarkably different binding motif is apparent for the CpG and non-CpG ZREs. Computational prediction of the location of these binding motifs in EBV revealed that the majority of lytic cycle genes have at least one and many have multiple copies of methylation-dependent CpG ZREs within their promoters. This suggests that the abundance of Zta protein coupled with the methylation status of the EBV genome act together to co-ordinate the expression of lytic cycle genes at the majority of EBV promoters.

  2. Viral Gastroenteritis (Stomach Flu)

    Science.gov (United States)

    ... contaminated food or water, although person-to-person transmission also is possible. Rotavirus. Worldwide, this is the ... contaminated drinking water is a cause of viral diarrhea, in many cases the virus is passed through ...

  3. Hepatitis viral aguda

    Directory of Open Access Journals (Sweden)

    Héctor Rubén Hernández Garcés

    1998-10-01

    Full Text Available Se realizó una revisión bibliográfica de las hepatitis virales agudas sobre aspectos vinculados a su etiología. Se tuvieron en cuenta además algunos datos epidemiológicos, las formas clínicas más importantes, los exámenes complementarios con especial énfasis en los marcadores virales y el diagnóstico positivoA bibliographical review of acute viral hepatitis was made taking into account those aspects connected with its etiology. Some epidemiological markers, the most important clinical forms, and the complementary examinations with special emphasis on the viral markers and the positive diagnosis were also considered

  4. Viral quasispecies complexity measures.

    Science.gov (United States)

    Gregori, Josep; Perales, Celia; Rodriguez-Frias, Francisco; Esteban, Juan I; Quer, Josep; Domingo, Esteban

    2016-06-01

    Mutant spectrum dynamics (changes in the related mutants that compose viral populations) has a decisive impact on virus behavior. The several platforms of next generation sequencing (NGS) to study viral quasispecies offer a magnifying glass to study viral quasispecies complexity. Several parameters are available to quantify the complexity of mutant spectra, but they have limitations. Here we critically evaluate the information provided by several population diversity indices, and we propose the introduction of some new ones used in ecology. In particular we make a distinction between incidence, abundance and function measures of viral quasispecies composition. We suggest a multidimensional approach (complementary information contributed by adequately chosen indices), propose some guidelines, and illustrate the use of indices with a simple example. We apply the indices to three clinical samples of hepatitis C virus that display different population heterogeneity. Areas of virus biology in which population complexity plays a role are discussed.

  5. Reference genome-independent assessment of mutation density using restriction enzyme-phased sequencing

    Directory of Open Access Journals (Sweden)

    Monson-Miller Jennifer

    2012-02-01

    Full Text Available Abstract Background The availability of low cost sequencing has spurred its application to discovery and typing of variation, including variation induced by mutagenesis. Mutation discovery is challenging as it requires a substantial amount of sequencing and analysis to detect very rare changes and distinguish them from noise. Also challenging are the cases when the organism of interest has not been sequenced or is highly divergent from the reference. Results We describe the development of a simple method for reduced representation sequencing. Input DNA was digested with a single restriction enzyme and ligated to Y adapters modified to contain a sequence barcode and to provide a compatible overhang for ligation. We demonstrated the efficiency of this method at SNP discovery using rice and arabidopsis. To test its suitability for the discovery of very rare SNP, one control and three mutagenized rice individuals (1, 5 and 10 mM sodium azide were used to prepare genomic libraries for Illumina sequencers by ligating barcoded adapters to NlaIII restriction sites. For genome-dependent discovery 15-30 million of 80 base reads per individual were aligned to the reference sequence achieving individual sequencing coverage from 7 to 15×. We identified high-confidence base changes by comparing sequences across individuals and identified instances consistent with mutations, i.e. changes that were found in a single treated individual and were solely GC to AT transitions. For genome-independent discovery 70-mers were extracted from the sequence of the control individual and single-copy sequence was identified by comparing the 70-mers across samples to evaluate copy number and variation. This de novo "genome" was used to align the reads and identify mutations as above. Covering approximately 1/5 of the 380 Mb genome of rice we detected mutation densities ranging from 0.6 to 4 per Mb of diploid DNA depending on the mutagenic treatment. Conclusions The

  6. Viral fitness: definitions, measurement, and current insights

    Science.gov (United States)

    Wargo, Andrew R.; Kurath, Gael

    2012-01-01

    Viral fitness is an active area of research, with recent work involving an expanded number of human, non-human vertebrate, invertebrate, plant, and bacterial viruses. Many publications deal with RNA viruses associated with major disease emergence events, such as HIV-1, influenza virus, and Dengue virus. Study topics include drug resistance, immune escape, viral emergence, host jumps, mutation effects, quasispecies diversity, and mathematical models of viral fitness. Important recent trends include increasing use of in vivo systems to assess vertebrate virus fitness, and a broadening of research beyond replicative fitness to also investigate transmission fitness and epidemiologic fitness. This is essential for a more integrated understanding of overall viral fitness, with implications for disease management in the future.

  7. Assessment of the genetic relationship between Dictyocaulus species from Bos taurus and Cervus elaphus using complete mitochondrial genomic datasets

    Directory of Open Access Journals (Sweden)

    Gasser Robin B

    2012-10-01

    Full Text Available Abstract Background Dictyocaulus species are strongylid nematodes of major veterinary significance in ruminants, such as cattle and cervids, and cause serious bronchitis or pneumonia (dictyocaulosis or “husk”. There has been ongoing controversy surrounding the validity of some Dictyocaulus species and their host specificity. Here, we sequenced and characterized the mitochondrial (mt genomes of Dictyocaulus viviparus (from Bos taurus with Dictyocaulus sp. cf. eckerti from red deer (Cervus elaphus, used mt datasets to assess the genetic relationship between these and related parasites, and predicted markers for future population genetic or molecular epidemiological studies. Methods The mt genomes were amplified from single adult males of D. viviparus and Dictyocaulus sp. cf. eckerti (from red deer by long-PCR, sequenced using 454-technology and annotated using bioinformatic tools. Amino acid sequences inferred from individual genes of each of the two mt genomes were compared, concatenated and subjected to phylogenetic analysis using Bayesian inference (BI, also employing data for other strongylids for comparative purposes. Results The circular mt genomes were 13,310 bp (D. viviparus and 13,296 bp (Dictyocaulus sp. cf. eckerti in size, and each contained 12 protein-encoding, 22 transfer RNA and 2 ribosomal RNA genes, consistent with other strongylid nematodes sequenced to date. Sliding window analysis identified genes with high or low levels of nucleotide diversity between the mt genomes. At the predicted mt proteomic level, there was an overall sequence difference of 34.5% between D. viviparus and Dictyocaulus sp. cf. eckerti, and amino acid sequence variation within each species was usually much lower than differences between species. Phylogenetic analysis of the concatenated amino acid sequence data for all 12 mt proteins showed that both D. viviparus and Dictyocaulus sp. cf. eckerti were closely related, and grouped to the exclusion of

  8. Advances of Studies on the Viral Proteins of PRRSV

    Institute of Scientific and Technical Information of China (English)

    Cao; Zongxi; Shi; Zhihai; Lin; Zhemin; Jiao; Peirong; Zhang; Guihong

    2014-01-01

    Porcine reproductive and respiratory syndrome( PRRS) is one of viral diseases with severe reproductive obstacle of pregnant sows and respiratory tract symptoms and higher mortality of piglets as characteristics,which is caused by porcine reproductive and respiratory syndrome virus( PRRSV). PRRS has brought great threats to swine industry in the world. The advances of studies on the viral proteins of PRRSV were reviewed from the genome,non-structural proteins and structural proteins of PRRSV.

  9. Treatment of viral encephalitis.

    Science.gov (United States)

    Domingues, Renan Barros

    2009-03-01

    Several viruses may cause central nervous system diseases with a broad range of clinical manifestations. The time course of the viral encephalitis can be acute, subacute, or chronic. Pathologically there are encephalitis with direct viral entry into the CNS in which brain parenchyma exhibits neuronal damaging and viral antigens and there are postinfectious autoimmune encephalitis associated with systemic viral infections with brain tissue presenting perivascular aggregation of immune cells and myelin damaging. Some virus affect previously healthy individuals while others produce encephalitis among imunocompromised ones. Factors such evolving lifestyles and ecological changes have had a considerable impact on the epidemiology of some viral encephalitis [e.g. West-Nile virus, and Japanese B virus]. Citomegalovirus and JC virus are examples of infections of the brain that have been seen more frequently because they occur in immunocompromised patients. In the other hand many scientific achievements in neuroimaging, molecular diagnosis, antiviral therapy, immunomodulatory treatments, and neurointensive care have allowed more precise and earlier diagnoses and more efficient treatments, resulting in improved outcomes. In this article, we will present the current drug options in the management of the main acute and chronic viral infection of the central nervous system of immunocompetent and immunocompromised adults, focusing on drugs mechanisms of action, efficacy, and side effects. The early diagnosis and correct management of such diseases can reduce mortality and neurological sequelae; however, even with recent treatment advances, potentially devastating outcomes are still possible.

  10. Immigration and viral hepatitis.

    Science.gov (United States)

    Sharma, Suraj; Carballo, Manuel; Feld, Jordan J; Janssen, Harry L A

    2015-08-01

    WHO estimates reveal that the global prevalence of viral hepatitis may be as high as 500 million, with an annual mortality rate of up to 1.3 million individuals. The majority of this global burden of disease is borne by nations of the developing world with high rates of vertical and iatrogenic transmission of HBV and HCV, as well as poor access to healthcare. In 2013, 3.2% of the global population (231 million individuals) migrated into a new host nation. Migrants predominantly originate from the developing countries of the south, into the developed economies of North America and Western Europe. This mass migration of individuals from areas of high-prevalence of viral hepatitis poses a unique challenge to the healthcare systems of the host nations. Due to a lack of universal standards for screening, vaccination and treatment of viral hepatitis, the burden of chronic liver disease and hepatocellular carcinoma continues to increase among migrant populations globally. Efforts to increase case identification and treatment among migrants have largely been limited to small outreach programs in urban centers, such that the majority of migrants with viral hepatitis continue to remain unaware of their infection. This review summarizes the data on prevalence of viral hepatitis and burden of chronic liver disease among migrants, current standards for screening and treatment of immigrants and refugees, and efforts to improve the identification and treatment of viral hepatitis among migrants.

  11. Microvesicles and Viral Infection▿

    Science.gov (United States)

    Meckes, David G.; Raab-Traub, Nancy

    2011-01-01

    Cells secrete various membrane-enclosed microvesicles from their cell surface (shedding microvesicles) and from internal, endosome-derived membranes (exosomes). Intriguingly, these vesicles have many characteristics in common with enveloped viruses, including biophysical properties, biogenesis, and uptake by cells. Recent discoveries describing the microvesicle-mediated intercellular transfer of functional cellular proteins, RNAs, and mRNAs have revealed additional similarities between viruses and cellular microvesicles. Apparent differences include the complexity of viral entry, temporally regulated viral expression, and self-replication proceeding to infection of new cells. Interestingly, many virally infected cells secrete microvesicles that differ in content from their virion counterparts but may contain various viral proteins and RNAs. For the most part, these particles have not been analyzed for their content or functions during viral infection. However, early studies of microvesicles (L-particles) secreted from herpes simplex virus-infected cells provided the first evidence of microvesicle-mediated intercellular communication. In the case of Epstein-Barr virus, recent evidence suggests that this tumorigenic herpesvirus also utilizes exosomes as a mechanism of cell-to-cell communication through the transfer of signaling competent proteins and functional microRNAs to uninfected cells. This review focuses on aspects of the biology of microvesicles with an emphasis on their potential contributions to viral infection and pathogenesis. PMID:21976651

  12. Microvesicles and viral infection.

    Science.gov (United States)

    Meckes, David G; Raab-Traub, Nancy

    2011-12-01

    Cells secrete various membrane-enclosed microvesicles from their cell surface (shedding microvesicles) and from internal, endosome-derived membranes (exosomes). Intriguingly, these vesicles have many characteristics in common with enveloped viruses, including biophysical properties, biogenesis, and uptake by cells. Recent discoveries describing the microvesicle-mediated intercellular transfer of functional cellular proteins, RNAs, and mRNAs have revealed additional similarities between viruses and cellular microvesicles. Apparent differences include the complexity of viral entry, temporally regulated viral expression, and self-replication proceeding to infection of new cells. Interestingly, many virally infected cells secrete microvesicles that differ in content from their virion counterparts but may contain various viral proteins and RNAs. For the most part, these particles have not been analyzed for their content or functions during viral infection. However, early studies of microvesicles (L-particles) secreted from herpes simplex virus-infected cells provided the first evidence of microvesicle-mediated intercellular communication. In the case of Epstein-Barr virus, recent evidence suggests that this tumorigenic herpesvirus also utilizes exosomes as a mechanism of cell-to-cell communication through the transfer of signaling competent proteins and functional microRNAs to uninfected cells. This review focuses on aspects of the biology of microvesicles with an emphasis on their potential contributions to viral infection and pathogenesis.

  13. Carbohydrate-active enzymes from pigmented Bacilli: a genomic approach to assess carbohydrate utilization and degradation

    Directory of Open Access Journals (Sweden)

    Henrissat Bernard

    2011-09-01

    Full Text Available Abstract Background Spore-forming Bacilli are Gram-positive bacteria commonly found in a variety of natural habitats, including soil, water and the gastro-intestinal (GI-tract of animals. Isolates of various Bacillus species produce pigments, mostly carotenoids, with a putative protective role against UV irradiation and oxygen-reactive forms. Results We report the annotation of carbohydrate active enzymes (CAZymes of two pigmented Bacilli isolated from the human GI-tract and belonging to the Bacillus indicus and B. firmus species. A high number of glycoside hydrolases (GHs and carbohydrate binding modules (CBMs were found in both isolates. A detailed analysis of CAZyme families, was performed and supported by growth data. Carbohydrates able to support growth as the sole carbon source negatively effected carotenoid formation in rich medium, suggesting that a catabolite repression-like mechanism controls carotenoid biosynthesis in both Bacilli. Experimental results on biofilm formation confirmed genomic data on the potentials of B. indicus HU36 to produce a levan-based biofilm, while mucin-binding and -degradation experiments supported genomic data suggesting the ability of both Bacilli to degrade mammalian glycans. Conclusions CAZy analyses of the genomes of the two pigmented Bacilli, compared to other Bacillus species and validated by experimental data on carbohydrate utilization, biofilm formation and mucin degradation, suggests that the two pigmented Bacilli are adapted to the intestinal environment and are suited to grow in and colonize the human gut.

  14. Carbohydrate-active enzymes from pigmented Bacilli: a genomic approach to assess carbohydrate utilization and degradation

    Science.gov (United States)

    2011-01-01

    Background Spore-forming Bacilli are Gram-positive bacteria commonly found in a variety of natural habitats, including soil, water and the gastro-intestinal (GI)-tract of animals. Isolates of various Bacillus species produce pigments, mostly carotenoids, with a putative protective role against UV irradiation and oxygen-reactive forms. Results We report the annotation of carbohydrate active enzymes (CAZymes) of two pigmented Bacilli isolated from the human GI-tract and belonging to the Bacillus indicus and B. firmus species. A high number of glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) were found in both isolates. A detailed analysis of CAZyme families, was performed and supported by growth data. Carbohydrates able to support growth as the sole carbon source negatively effected carotenoid formation in rich medium, suggesting that a catabolite repression-like mechanism controls carotenoid biosynthesis in both Bacilli. Experimental results on biofilm formation confirmed genomic data on the potentials of B. indicus HU36 to produce a levan-based biofilm, while mucin-binding and -degradation experiments supported genomic data suggesting the ability of both Bacilli to degrade mammalian glycans. Conclusions CAZy analyses of the genomes of the two pigmented Bacilli, compared to other Bacillus species and validated by experimental data on carbohydrate utilization, biofilm formation and mucin degradation, suggests that the two pigmented Bacilli are adapted to the intestinal environment and are suited to grow in and colonize the human gut. PMID:21892951

  15. Carbohydrate-active enzymes from pigmented Bacilli: a genomic approach to assess carbohydrate utilization and degradation.

    Science.gov (United States)

    Manzo, Nicola; D'Apuzzo, Enrica; Coutinho, Pedro M; Cutting, Simon M; Henrissat, Bernard; Ricca, Ezio

    2011-09-05

    Spore-forming Bacilli are gram-positive bacteria commonly found in a variety of natural habitats, including soil, water and the gastro-intestinal (GI)-tract of animals. Isolates of various Bacillus species produce pigments, mostly carotenoids, with a putative protective role against UV irradiation and oxygen-reactive forms. We report the annotation of carbohydrate active enzymes (CAZymes) of two pigmented Bacilli isolated from the human GI-tract and belonging to the Bacillus indicus and B. firmus species. A high number of glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) were found in both isolates. A detailed analysis of CAZyme families, was performed and supported by growth data. Carbohydrates able to support growth as the sole carbon source negatively effected carotenoid formation in rich medium, suggesting that a catabolite repression-like mechanism controls carotenoid biosynthesis in both Bacilli. Experimental results on biofilm formation confirmed genomic data on the potentials of B. indicus HU36 to produce a levan-based biofilm, while mucin-binding and -degradation experiments supported genomic data suggesting the ability of both Bacilli to degrade mammalian glycans. CAZy analyses of the genomes of the two pigmented Bacilli, compared to other Bacillus species and validated by experimental data on carbohydrate utilization, biofilm formation and mucin degradation, suggests that the two pigmented Bacilli are adapted to the intestinal environment and are suited to grow in and colonize the human gut.

  16. Mitochondrial genome sequences of Artemia tibetiana and Artemia urmiana: assessing molecular changes for high plateau adaptation.

    Science.gov (United States)

    Zhang, Hangxiao; Luo, Qibin; Sun, Jing; Liu, Fei; Wu, Gang; Yu, Jun; Wang, Weiwei

    2013-05-01

    Brine shrimps, Artemia (Crustacea, Anostraca), inhabit hypersaline environments and have a broad geographical distribution from sea level to high plateaus. Artemia therefore possess significant genetic diversity, which gives them their outstanding adaptability. To understand this remarkable plasticity, we sequenced the mitochondrial genomes of two Artemia tibetiana isolates from the Tibetan Plateau in China and one Artemia urmiana isolate from Lake Urmia in Iran and compared them with the genome of a low-altitude Artemia, A. franciscana. We compared the ratio of the rate of nonsynonymous (Ka) and synonymous (Ks) substitutions (Ka/Ks ratio) in the mitochondrial protein-coding gene sequences and found that atp8 had the highest Ka/Ks ratios in comparisons of A. franciscana with either A. tibetiana or A. urmiana and that atp6 had the highest Ka/Ks ratio between A. tibetiana and A. urmiana. Atp6 may have experienced strong selective pressure for high-altitude adaptation because although A. tibetiana and A. urmiana are closely related they live at different altitudes. We identified two extended termination-associated sequences and three conserved sequence blocks in the D-loop region of the mitochondrial genomes. We propose that sequence variations in the D-loop region and in the subunits of the respiratory chain complexes independently or collectively contribute to the adaptation of Artemia to different altitudes.

  17. RNAi, a new therapeutic strategy against viral infection

    Institute of Scientific and Technical Information of China (English)

    Fischer L. TAN; James Q. YIN

    2004-01-01

    RNA interference (RNAi) is an adaptive defense mechanism triggered by double-stranded RNA (dsRNA). It is a powerful reverse genetic tool that has been widely employed to silence gene expression in mammalian and human cells.RNAi-based gene therapies, especially in viral diseases have become more and more interesting and promising. Recently,small interfering RNA (siRNA) can be used to protect host from viral infection, inhibit the expression of viral antigen and accessory genes, control the transcription and replication of viral genome, hinder the assembly of viral particles, and display influences in virus-host interactions. In this review, we attempt to present recent progresses of this breakthrough technology in the above fields and summarize the possibilities of siRNA-based drugs.

  18. Dengue Virus Genome Uncoating Requires Ubiquitination

    Directory of Open Access Journals (Sweden)

    Laura A. Byk

    2016-06-01

    Full Text Available The process of genome release or uncoating after viral entry is one of the least-studied steps in the flavivirus life cycle. Flaviviruses are mainly arthropod-borne viruses, including emerging and reemerging pathogens such as dengue, Zika, and West Nile viruses. Currently, dengue virus is one of the most significant human viral pathogens transmitted by mosquitoes and is responsible for about 390 million infections every year around the world. Here, we examined for the first time molecular aspects of dengue virus genome uncoating. We followed the fate of the capsid protein and RNA genome early during infection and found that capsid is degraded after viral internalization by the host ubiquitin-proteasome system. However, proteasome activity and capsid degradation were not necessary to free the genome for initial viral translation. Unexpectedly, genome uncoating was blocked by inhibiting ubiquitination. Using different assays to bypass entry and evaluate the first rounds of viral translation, a narrow window of time during infection that requires ubiquitination but not proteasome activity was identified. In this regard, ubiquitin E1-activating enzyme inhibition was sufficient to stabilize the incoming viral genome in the cytoplasm of infected cells, causing its retention in either endosomes or nucleocapsids. Our data support a model in which dengue virus genome uncoating requires a nondegradative ubiquitination step, providing new insights into this crucial but understudied viral process.

  19. Viral Genetic Linkage Analysis in the Presence of Missing Data.

    Directory of Open Access Journals (Sweden)

    Shelley H Liu

    Full Text Available Analyses of viral genetic linkage can provide insight into HIV transmission dynamics and the impact of prevention interventions. For example, such analyses have the potential to determine whether recently-infected individuals have acquired viruses circulating within or outside a given community. In addition, they have the potential to identify characteristics of chronically infected individuals that make their viruses likely to cluster with others circulating within a community. Such clustering can be related to the potential of such individuals to contribute to the spread of the virus, either directly through transmission to their partners or indirectly through further spread of HIV from those partners. Assessment of the extent to which individual (incident or prevalent viruses are clustered within a community will be biased if only a subset of subjects are observed, especially if that subset is not representative of the entire HIV infected population. To address this concern, we develop a multiple imputation framework in which missing sequences are imputed based on a model for the diversification of viral genomes. The imputation method decreases the bias in clustering that arises from informative missingness. Data from a household survey conducted in a village in Botswana are used to illustrate these methods. We demonstrate that the multiple imputation approach reduces bias in the overall proportion of clustering due to the presence of missing observations.

  20. Viral induced demyelination.

    Science.gov (United States)

    Stohlman, S A; Hinton, D R

    2001-01-01

    Viral induced demyelination, in both humans and rodent models, has provided unique insights into the cell biology of oligodendroglia, their complex cell-cell interactions and mechanisms of myelin destruction. They illustrate mechanisms of viral persistence, including latent infections in which no infectious virus is readily evident, virus reactivation and viral-induced tissue damage. These studies have also provided excellent paradigms to study the interactions between the immune system and the central nervous system (CNS). Although of interest in their own right, an understanding of the diverse mechanisms used by viruses to induce demyelination may shed light into the etiology and pathogenesis of the common demyelinating disorder multiple sclerosis (MS). This notion is supported by the persistent view that a viral infection acquired during adolescence might initiate MS after a long period of quiescence. Demyelination in both humans and rodents can be initiated by infection with a diverse group of enveloped and non-enveloped RNA and DNA viruses (Table 1). The mechanisms that ultimately result in the loss of CNS myelin appear to be equally diverse as the etiological agents capable of causing diseases which result in demyelination. Although demyelination can be a secondary result of axonal loss, in many examples of viral induced demyelination, myelin loss is primary and associated with axonal sparing. This suggests that demyelination induced by viral infections can result from: 1) a direct viral infection of oligodendroglia resulting in cell death with degeneration of myelin and its subsequent removal; 2) a persistent viral infection, in the presence or absence of infectious virus, resulting in the loss of normal cellular homeostasis and subsequent oligodendroglial death; 3) a vigorous virus-specific inflammatory response wherein the virus replicates in a cell type other than oligodendroglia, but cytokines and other immune mediators directly damage the

  1. Sensitive detection of viral transcripts in human tumor transcriptomes.

    Directory of Open Access Journals (Sweden)

    Sven-Eric Schelhorn

    Full Text Available In excess of 12% of human cancer incidents have a viral cofactor. Epidemiological studies of idiopathic human cancers indicate that additional tumor viruses remain to be discovered. Recent advances in sequencing technology have enabled systematic screenings of human tumor transcriptomes for viral transcripts. However, technical problems such as low abundances of viral transcripts in large volumes of sequencing data, viral sequence divergence, and homology between viral and human factors significantly confound identification of tumor viruses. We have developed a novel computational approach for detecting viral transcripts in human cancers that takes the aforementioned confounding factors into account and is applicable to a wide variety of viruses and tumors. We apply the approach to conducting the first systematic search for viruses in neuroblastoma, the most common cancer in infancy. The diverse clinical progression of this disease as well as related epidemiological and virological findings are highly suggestive of a pathogenic cofactor. However, a viral etiology of neuroblastoma is currently contested. We mapped 14 transcriptomes of neuroblastoma as well as positive and negative controls to the human and all known viral genomes in order to detect both known and unknown viruses. Analysis of controls, comparisons with related methods, and statistical estimates demonstrate the high sensitivity of our approach. Detailed investigation of putative viral transcripts within neuroblastoma samples did not provide evidence for the existence of any known human viruses. Likewise, de-novo assembly and analysis of chimeric transcripts did not result in expression signatures associated with novel human pathogens. While confounding factors such as sample dilution or viral clearance in progressed tumors may mask viral cofactors in the data, in principle, this is rendered less likely by the high sensitivity of our approach and the number of biological replicates

  2. Multimedia Presentations on the Human Genome: Implementation and Assessment of a Teaching Program for the Introduction to Genome Science Using a Poster and Animations

    Science.gov (United States)

    Kano, Kei; Yahata, Saiko; Muroi, Kaori; Kawakami, Masahiro; Tomoda, Mari; Miyaki, Koichi; Nakayama, Takeo; Kosugi, Shinji; Kato, Kazuto

    2008-01-01

    Genome science, including topics such as gene recombination, cloning, genetic tests, and gene therapy, is now an established part of our daily lives; thus we need to learn genome science to better equip ourselves for the present day. Learning from topics directly related to the human has been suggested to be more effective than learning from…

  3. Assessing the Genotypic Differences between Strains of Corynebacterium pseudotuberculosis biovar equi through Comparative Genomics.

    Science.gov (United States)

    Baraúna, Rafael A; Ramos, Rommel T J; Veras, Adonney A O; Pinheiro, Kenny C; Benevides, Leandro J; Viana, Marcus V C; Guimarães, Luís C; Edman, Judy M; Spier, Sharon J; Azevedo, Vasco; Silva, Artur

    2017-01-01

    Seven genomes of Corynebacterium pseudotuberculosis biovar equi were sequenced on the Ion Torrent PGM platform, generating high-quality scaffolds over 2.35 Mbp. This bacterium is the causative agent of disease known as "pigeon fever" which commonly affects horses worldwide. The pangenome of biovar equi was calculated and two phylogenomic approaches were used to identify clustering patterns within Corynebacterium genus. Furthermore, other comparative analyses were performed including the prediction of genomic islands and prophages, and SNP-based phylogeny. In the phylogenomic tree, C. pseudotuberculosis was divided into two distinct clades, one formed by nitrate non-reducing species (biovar ovis) and another formed by nitrate-reducing species (biovar equi). In the latter group, the strains isolated from California were more related to each other, while the strains CIP 52.97 and 1/06-A formed the outermost clade of the biovar equi. A total of 1,355 core genes were identified, corresponding to 42.5% of the pangenome. This pangenome has one of the smallest core genomes described in the literature, suggesting a high genetic variability of biovar equi of C. pseudotuberculosis. The analysis of the similarity between the resistance islands identified a higher proximity between the strains that caused more severe infectious conditions (infection in the internal organs). Pathogenicity islands were largely conserved between strains. Several genes that modulate the pathogenicity of C. pseudotuberculosis were described including peptidases, recombination enzymes, micoside synthesis enzymes, bacteriocins with antimicrobial activity and several others. Finally, no genotypic differences were observed between the strains that caused the three different types of infection (external abscess formation, infection with abscess formation in the internal organs, and ulcerative lymphangitis). Instead, it was noted that there is a higher phenetic correlation between strains isolated at

  4. Assessing the Genotypic Differences between Strains of Corynebacterium pseudotuberculosis biovar equi through Comparative Genomics

    Science.gov (United States)

    Ramos, Rommel T. J.; Veras, Adonney A. O.; Pinheiro, Kenny C.; Benevides, Leandro J.; Edman, Judy M.; Spier, Sharon J.; Azevedo, Vasco; Silva, Artur

    2017-01-01

    Seven genomes of Corynebacterium pseudotuberculosis biovar equi were sequenced on the Ion Torrent PGM platform, generating high-quality scaffolds over 2.35 Mbp. This bacterium is the causative agent of disease known as “pigeon fever” which commonly affects horses worldwide. The pangenome of biovar equi was calculated and two phylogenomic approaches were used to identify clustering patterns within Corynebacterium genus. Furthermore, other comparative analyses were performed including the prediction of genomic islands and prophages, and SNP-based phylogeny. In the phylogenomic tree, C. pseudotuberculosis was divided into two distinct clades, one formed by nitrate non-reducing species (biovar ovis) and another formed by nitrate-reducing species (biovar equi). In the latter group, the strains isolated from California were more related to each other, while the strains CIP 52.97 and 1/06-A formed the outermost clade of the biovar equi. A total of 1,355 core genes were identified, corresponding to 42.5% of the pangenome. This pangenome has one of the smallest core genomes described in the literature, suggesting a high genetic variability of biovar equi of C. pseudotuberculosis. The analysis of the similarity between the resistance islands identified a higher proximity between the strains that caused more severe infectious conditions (infection in the internal organs). Pathogenicity islands were largely conserved between strains. Several genes that modulate the pathogenicity of C. pseudotuberculosis were described including peptidases, recombination enzymes, micoside synthesis enzymes, bacteriocins with antimicrobial activity and several others. Finally, no genotypic differences were observed between the strains that caused the three different types of infection (external abscess formation, infection with abscess formation in the internal organs, and ulcerative lymphangitis). Instead, it was noted that there is a higher phenetic correlation between strains isolated at

  5. Assessment of REPLI-g Multiple Displacement Whole Genome Amplification (WGA) Techniques for Metagenomic Applications.

    Science.gov (United States)

    Ahsanuddin, Sofia; Afshinnekoo, Ebrahim; Gandara, Jorge; Hakyemezoğlu, Mustafa; Bezdan, Daniela; Minot, Samuel; Greenfield, Nick; Mason, Christopher E

    2017-04-01

    Amplification of minute quantities of DNA is a fundamental challenge in low-biomass metagenomic and microbiome studies because of potential biases in coverage, guanine-cytosine (GC) content, and altered species abundances. Whole genome amplification (WGA), although widely used, is notorious for introducing artifact sequences, either by amplifying laboratory contaminants or by nonrandom amplification of a sample's DNA. In this study, we investigate the effect of REPLI-g multiple displacement amplification (MDA; Qiagen, Valencia, CA, USA) on sequencing data quality and species abundance detection in 8 paired metagenomic samples and 1 titrated, mixed control sample. We extracted and sequenced genomic DNA (gDNA) from 8 environmental samples and compared the quality of the sequencing data for the MDA and their corresponding non-MDA samples. The degree of REPLI-g MDA bias was evaluated by sequence metrics, species composition, and cross-validating observed species abundance and species diversity estimates using the One Codex and MetaPhlAn taxonomic classification tools. Here, we provide evidence of the overall efficacy of REPLI-g MDA on retaining sequencing data quality and species abundance measurements while providing increased yields of high-fidelity DNA. We find that species abundance estimates are largely consistent across samples, even with REPLI-g amplification, as demonstrated by the Spearman's rank order coefficient (R(2) > 0.8). However, REPLI-g MDA often produced fewer classified reads at the species, genera, and family level, resulting in decreased species diversity. We also observed some areas with the PCR "jackpot effect," with varying input DNA values for the Metagenomics Research Group (MGRG) controls at specific genomic loci. We visualize this effect in whole genome coverage plots and with sequence composition analyses and note these caveats of the MDA method. Despite overall concordance of species abundance between the amplified and unamplified samples

  6. Assessment of REPLI-g Multiple Displacement Whole Genome Amplification (WGA) Techniques for Metagenomic Applications

    Science.gov (United States)

    Ahsanuddin, Sofia; Afshinnekoo, Ebrahim; Gandara, Jorge; Hakyemezoğlu, Mustafa; Bezdan, Daniela; Minot, Samuel; Greenfield, Nick; Mason, Christopher E.

    2017-01-01

    Amplification of minute quantities of DNA is a fundamental challenge in low-biomass metagenomic and microbiome studies because of potential biases in coverage, guanine-cytosine (GC) content, and altered species abundances. Whole genome amplification (WGA), although widely used, is notorious for introducing artifact sequences, either by amplifying laboratory contaminants or by nonrandom amplification of a sample’s DNA. In this study, we investigate the effect of REPLI-g multiple displacement amplification (MDA; Qiagen, Valencia, CA, USA) on sequencing data quality and species abundance detection in 8 paired metagenomic samples and 1 titrated, mixed control sample. We extracted and sequenced genomic DNA (gDNA) from 8 environmental samples and compared the quality of the sequencing data for the MDA and their corresponding non-MDA samples. The degree of REPLI-g MDA bias was evaluated by sequence metrics, species composition, and cross-validating observed species abundance and species diversity estimates using the One Codex and MetaPhlAn taxonomic classification tools. Here, we provide evidence of the overall efficacy of REPLI-g MDA on retaining sequencing data quality and species abundance measurements while providing increased yields of high-fidelity DNA. We find that species abundance estimates are largely consistent across samples, even with REPLI-g amplification, as demonstrated by the Spearman’s rank order coefficient (R2 > 0.8). However, REPLI-g MDA often produced fewer classified reads at the species, genera, and family level, resulting in decreased species diversity. We also observed some areas with the PCR “jackpot effect,” with varying input DNA values for the Metagenomics Research Group (MGRG) controls at specific genomic loci. We visualize this effect in whole genome coverage plots and with sequence composition analyses and note these caveats of the MDA method. Despite overall concordance of species abundance between the amplified and unamplified

  7. Colocalization of different influenza viral RNA segments in the cytoplasm before viral budding as shown by single-molecule sensitivity FISH analysis.

    Directory of Open Access Journals (Sweden)

    Yi-ying Chou

    Full Text Available The Influenza A virus genome consists of eight negative sense, single-stranded RNA segments. Although it has been established that most virus particles contain a single copy of each of the eight viral RNAs, the packaging selection mechanism remains poorly understood. Influenza viral RNAs are synthesized in the nucleus, exported into the cytoplasm and travel to the plasma membrane where viral budding and genome packaging occurs. Due to the difficulties in analyzing associated vRNPs while preserving information about their positions within the cell, it has remained unclear how and where during cellular trafficking the viral RNAs of different segments encounter each other. Using a multicolor single-molecule sensitivity fluorescence in situ hybridization (smFISH approach, we have quantitatively monitored the colocalization of pairs of influenza viral RNAs in infected cells. We found that upon infection, the viral RNAs from the incoming particles travel together until they reach the nucleus. The viral RNAs were then detected in distinct locations in the nucleus; they are then exported individually and initially remain separated in the cytoplasm. At later time points, the different viral RNA segments gather together in the cytoplasm in a microtubule independent manner. Viral RNAs of different identities colocalize at a high frequency when they are associated with Rab11 positive vesicles, suggesting that Rab11 positive organelles may facilitate the association of different viral RNAs. Using engineered influenza viruses lacking the expression of HA or M2 protein, we showed that these viral proteins are not essential for the colocalization of two different viral RNAs in the cytoplasm. In sum, our smFISH results reveal that the viral RNAs travel together in the cytoplasm before their arrival at the plasma membrane budding sites. This newly characterized step of the genome packaging process demonstrates the precise spatiotemporal regulation of the

  8. Thousands of Viral Populations Recovered from Peatland Soil Metagenomes Reveal Viral Impacts on Carbon Cycling in Thawing Permafrost

    Science.gov (United States)

    Emerson, J. B.; Brum, J. R.; Roux, S.; Bolduc, B.; Woodcroft, B. J.; Singleton, C. M.; Boyd, J. A.; Hodgkins, S. B.; Wilson, R.; Trubl, G. G.; Jang, H. B.; Crill, P. M.; Chanton, J.; Saleska, S. R.; Rich, V. I.; Tyson, G. W.; Sullivan, M. B.

    2016-12-01

    Methane and carbon dioxide emissions, which are under significant microbial control, provide positive feedbacks to climate change in thawing permafrost peatlands. Although viruses in marine systems have been shown to impact microbial ecology and biogeochemical cycling through host cell lysis, horizontal gene transfer, and auxiliary metabolic gene expression, viral ecology in permafrost and other soils remains virtually unstudied due to methodological challenges. Here, we identified viral sequences in 208 assembled bulk soil metagenomes derived from a permafrost thaw gradient in Stordalen Mire, northern Sweden, from 2010-2012. 2,048 viral populations were recovered, which genome- and network-based classification revealed to be largely novel, increasing known viral genera globally by 40%. Ecologically, viral communities differed significantly across the thaw gradient and by soil depth. Co-occurring microbial community composition, soil moisture, and pH were predictors of viral community composition, indicative of biological and biogeochemical feedbacks as permafrost thaws. Host prediction—achieved through clustered regularly interspaced short palindromic repeats (CRISPRs), tetranucleotide frequency patterns, and other sequence similarities to binned microbial population genomes—was able to link 38% of the viral populations to a microbial host. 5% of the implicated hosts were archaea, predominantly methanogens and ammonia-oxidizing Nitrososphaera, 45% were Acidobacteria or Verrucomicrobia (mostly predicted heterotrophic complex carbon degraders), and 21% were Proteobacteria, including methane oxidizers. Recovered viral genome fragments also contained auxiliary metabolic genes involved in carbon and nitrogen cycling. Together, these data reveal multiple levels of previously unknown viral contributions to biogeochemical cycling, including to carbon gas emissions, in peatland soils undergoing and contributing to climate change. This work represents a significant step

  9. Viral exploitation of actin:force-generation and scaffolding functions in viral infection

    Institute of Scientific and Technical Information of China (English)

    Mark Spear; Yuntao Wu

    2014-01-01

    As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array of mechanisms for manipulating the actin cytoskeleton for efifcacious infection. An ongoing chorus of research now indicates that the actin cytoskeleton is critical for viral replication at many stages of the viral life cycle, including binding, entry, nuclear localization, genomic transcription and reverse transcription, assembly, and egress/dissemination. Speciifcally, viruses subvert the force-generating and macromolecular scaffolding properties of the actin cytoskeleton to propel viral surifng, internalization, and migration within the cell. Additionally, viruses utilize the actin cytoskeleton to support and organize assembly sites, and eject budding virions for cell-to-cell transmission. It is the purpose of this review to provide an overview of current research, focusing on the various mechanisms and themes of virus-mediated actin modulation described therein.

  10. Components of Adenovirus Genome Packaging

    Science.gov (United States)

    Ahi, Yadvinder S.; Mittal, Suresh K.

    2016-01-01

    Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging. PMID:27721809

  11. Cardiovascular genetic medicine: genomic assessment of prognosis and diagnosis in patients with cardiomyopathy and heart failure.

    Science.gov (United States)

    Heidecker, Bettina; Hare, Joshua M

    2008-09-01

    In the last half century, epidemiologic studies and basic science investigations revealed that hypertension (Kannel et al., Ann Intern Med 55:33-50, 1961), hyperlipidemia (Dawber et al., Am J Public Health Nations Health 49:1349-1356, 1959), diabetes (Kannel et al., Am J Cardiol 34(1):29-34, 1974), smoking (Dawber et al., Am J Public Health Nations Health 49:1349-1356, 1959), and inflammation (Rossmann et al., Exp Gerontol 43(3):229-237, 2008) posed increased risk for cardiovascular disease. These associations served both as risk factors and offered insight into disease pathophysiology. Currently, it is increasingly appreciated that polygenic factors may also play a role as etiologic or risk factors (Chakravarti and Little, Nature 421(6921):412-414, 2003; Dorn and Molkentin, Circulation 109(2):150-158, 2004). Recent technologic advances in genomic screening make the search for these factors possible, and robust technologies are now available for both entire genome screening for expression or single nucleotide polymorphisms. In this paper, we review the basic principles of gene expression and molecular signature analysis in the context of potential clinical applications of transcriptomics.

  12. A Genomic Encyclopedia of the Root Nodule Bacteria: assessing genetic diversity through a systematic biogeographic survey.

    Science.gov (United States)

    Reeve, Wayne; Ardley, Julie; Tian, Rui; Eshragi, Leila; Yoon, Je Won; Ngamwisetkun, Pinyaruk; Seshadri, Rekha; Ivanova, Natalia N; Kyrpides, Nikos C

    2015-01-01

    Root nodule bacteria are free-living soil bacteria, belonging to diverse genera within the Alphaproteobacteria and Betaproteobacteria, that have the capacity to form nitrogen-fixing symbioses with legumes. The symbiosis is specific and is governed by signaling molecules produced from both host and bacteria. Sequencing of several model RNB genomes has provided valuable insights into the genetic basis of symbiosis. However, the small number of sequenced RNB genomes available does not currently reflect the phylogenetic diversity of RNB, or the variety of mechanisms that lead to symbiosis in different legume hosts. This prevents a broad understanding of symbiotic interactions and the factors that govern the biogeography of host-microbe symbioses. Here, we outline a proposal to expand the number of sequenced RNB strains, which aims to capture this phylogenetic and biogeographic diversity. Through the Vavilov centers of diversity (Proposal ID: 231) and GEBA-RNB (Proposal ID: 882) projects we will sequence 107 RNB strains, isolated from diverse legume hosts in various geographic locations around the world. The nominated strains belong to nine of the 16 currently validly described RNB genera. They include 13 type strains, as well as elite inoculant strains of high commercial importance. These projects will strongly support systematic sequence-based studies of RNB and contribute to our understanding of the effects of biogeography on the evolution of different species of RNB, as well as the mechanisms that determine the specificity and effectiveness of nodulation and symbiotic nitrogen fixation by RNB with diverse legume hosts.

  13. Viral meningitis and encephalitis.

    Science.gov (United States)

    Tuppeny, Misti

    2013-09-01

    Meningitis is an inflammation of the meninges, whereas encephalitis is inflammation of the parenchymal brain tissue. The single distinguishing element between the 2 diagnoses is the altered state of consciousness, focal deficits, and seizures found in encephalitis. Consequently meningoencephalitis is a term used when both findings are present in the patient. Viral meningitis is not necessarily reported as it is often underdiagnosed, whereas encephalitis cases are on the increase in various areas of North America. Improved imaging and viral diagnostics, as well as enhanced neurocritical care management, have improved patient outcomes to date.

  14. Viral infections in pigeons.

    Science.gov (United States)

    Marlier, D; Vindevogel, H

    2006-07-01

    This review provides a current update on the major viral diseases of the domestic pigeon (Columba livia domestica), based on scientific reports and clinical experience. Paramyxovirus 1, adenovirus, rotavirus, herpesvirus 1, poxvirus and circovirus infections are described according to common clinical signs and target tissues. Since pigeons are sometimes treated as if they were poultry, the review also summarises the common viral infections of poultry for which pigeons are considered resistant. It is hoped that the review will provide a useful reference for veterinarians and others and offer advice on the diagnosis, treatment and prevention of the major infectious diseases of pigeons.

  15. Optimal cytoplasmic transport in viral infections.

    Directory of Open Access Journals (Sweden)

    Maria R D'Orsogna

    Full Text Available For many viruses, the ability to infect eukaryotic cells depends on their transport through the cytoplasm and across the nuclear membrane of the host cell. During this journey, viral contents are biochemically processed into complexes capable of both nuclear penetration and genomic integration. We develop a stochastic model of viral entry that incorporates all relevant aspects of transport, including convection along microtubules, biochemical conversion, degradation, and nuclear entry. Analysis of the nuclear infection probabilities in terms of the transport velocity, degradation, and biochemical conversion rates shows how certain values of key parameters can maximize the nuclear entry probability of the viral material. The existence of such "optimal" infection scenarios depends on the details of the biochemical conversion process and implies potentially counterintuitive effects in viral infection, suggesting new avenues for antiviral treatment. Such optimal parameter values provide a plausible transport-based explanation of the action of restriction factors and of experimentally observed optimal capsid stability. Finally, we propose a new interpretation of how genetic mutations unrelated to the mechanism of drug action may nonetheless confer novel types of overall drug resistance.

  16. A Bayesian approach to analyse genetic variation within RNA viral populations.

    Directory of Open Access Journals (Sweden)

    Trevelyan J McKinley

    2011-03-01

    Full Text Available The development of modern and affordable sequencing technologies has allowed the study of viral populations to an unprecedented depth. This is of particular interest for the study of within-host RNA viral populations, where variation due to error-prone polymerases can lead to immune escape, antiviral resistance and adaptation to new host species. Methods to sequence RNA virus genomes include reverse transcription (RT and polymerase chain reaction (PCR. RT-PCR is a molecular biology technique widely used to amplify DNA from an RNA template. The method itself relies on the in vitro synthesis of copy DNA from RNA followed by multiple cycles of DNA amplification. However, this method introduces artefactual errors that can act as confounding factors when the sequence data are analysed. Although there are a growing number of published studies exploring the intra- and inter-host evolutionary dynamics of RNA viruses, the complexity of the methods used to generate sequences makes it difficult to produce probabilistic statements about the likely sources of observed sequence variants. This complexity is further compounded as both the depth of sequencing and the length of the genome segment of interest increase. Here we develop a bayesian method to characterise and differentiate between likely structures for the background viral population. This approach can then be used to identify nucleotide sites that show evidence of change in the within-host viral population structure, either over time or relative to a reference sequence (e.g. an inoculum or another source of infection, or both, without having to build complex evolutionary models. Identification of these sites can help to inform the design of more focussed experiments using molecular biology tools, such as site-directed mutagenesis, to assess the function of specific amino acids. We illustrate the method by applying to datasets from experimental transmission of equine influenza, and a pre

  17. Systematic Identification and Assessment of Therapeutic Targets for Breast Cancer Based on Genome-Wide RNA Interference Transcriptomes

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2017-02-01

    Full Text Available With accumulating public omics data, great efforts have been made to characterize the genetic heterogeneity of breast cancer. However, identifying novel targets and selecting the best from the sizeable lists of candidate targets is still a key challenge for targeted therapy, largely owing to the lack of economical, efficient and systematic discovery and assessment to prioritize potential therapeutic targets. Here, we describe an approach that combines the computational evaluation and objective, multifaceted assessment to systematically identify and prioritize targets for biological validation and therapeutic exploration. We first establish the reference gene expression profiles from breast cancer cell line MCF7 upon genome-wide RNA interference (RNAi of a total of 3689 genes, and the breast cancer query signatures using RNA-seq data generated from tissue samples of clinical breast cancer patients in the Cancer Genome Atlas (TCGA. Based on gene set enrichment analysis, we identified a set of 510 genes that when knocked down could significantly reverse the transcriptome of breast cancer state. We then perform multifaceted assessment to analyze the gene set to prioritize potential targets for gene therapy. We also propose drug repurposing opportunities and identify potentially druggable proteins that have been poorly explored with regard to the discovery of small-molecule modulators. Finally, we obtained a small list of candidate therapeutic targets for four major breast cancer subtypes, i.e., luminal A, luminal B, HER2+ and triple negative breast cancer. This RNAi transcriptome-based approach can be a helpful paradigm for relevant researches to identify and prioritize candidate targets for experimental validation.

  18. Assessment of genotype imputation performance using 1000 Genomes in African American studies.

    Directory of Open Access Journals (Sweden)

    Dana B Hancock

    Full Text Available Genotype imputation, used in genome-wide association studies to expand coverage of single nucleotide polymorphisms (SNPs, has performed poorly in African Americans compared to less admixed populations. Overall, imputation has typically relied on HapMap reference haplotype panels from Africans (YRI, European Americans (CEU, and Asians (CHB/JPT. The 1000 Genomes project offers a wider range of reference populations, such as African Americans (ASW, but their imputation performance has had limited evaluation. Using 595 African Americans genotyped on Illumina's HumanHap550v3 BeadChip, we compared imputation results from four software programs (IMPUTE2, BEAGLE, MaCH, and MaCH-Admix and three reference panels consisting of different combinations of 1000 Genomes populations (February 2012 release: (1 3 specifically selected populations (YRI, CEU, and ASW; (2 8 populations of diverse African (AFR or European (AFR descent; and (3 all 14 available populations (ALL. Based on chromosome 22, we calculated three performance metrics: (1 concordance (percentage of masked genotyped SNPs with imputed and true genotype agreement; (2 imputation quality score (IQS; concordance adjusted for chance agreement, which is particularly informative for low minor allele frequency [MAF] SNPs; and (3 average r2hat (estimated correlation between the imputed and true genotypes, for all imputed SNPs. Across the reference panels, IMPUTE2 and MaCH had the highest concordance (91%-93%, but IMPUTE2 had the highest IQS (81%-83% and average r2hat (0.68 using YRI+ASW+CEU, 0.62 using AFR+EUR, and 0.55 using ALL. Imputation quality for most programs was reduced by the addition of more distantly related reference populations, due entirely to the introduction of low frequency SNPs (MAF≤2% that are monomorphic in the more closely related panels. While imputation was optimized by using IMPUTE2 with reference to the ALL panel (average r2hat = 0.86 for SNPs with MAF>2%, use of the ALL

  19. Minimus: a fast, lightweight genome assembler

    Directory of Open Access Journals (Sweden)

    Salzberg Steven L

    2007-02-01

    Full Text Available Abstract Background Genome assemblers have grown very large and complex in response to the need for algorithms to handle the challenges of large whole-genome sequencing projects. Many of the most common uses of assemblers, however, are best served by a simpler type of assembler that requires fewer software components, uses less memory, and is far easier to install and run. Results We have developed the Minimus assembler to address these issues, and tested it on a range of assembly problems. We show that Minimus performs well on several small assembly tasks, including the assembly of viral genomes, individual genes, and BAC clones. In addition, we evaluate Minimus' performance in assembling bacterial genomes in order to assess its suitability as a component of a larger assembly pipeline. We show that, unlike other software currently used for these tasks, Minimus produces significantly fewer assembly errors, at the cost of generating a more fragmented assembly. Conclusion We find that for small genomes and other small assembly tasks, Minimus is faster and far more flexible than existing tools. Due to its small size and modular design Minimus is perfectly suited to be a component of complex assembly pipelines. Minimus is released as an open-source software project and the code is available as part of the AMOS project at Sourceforge.

  20. Comparative assessment of genomic DNA extraction processes for Plasmodium: Identifying the appropriate method.

    Science.gov (United States)

    Mann, Riti; Sharma, Supriya; Mishra, Neelima; Valecha, Neena; Anvikar, Anupkumar R

    2015-12-01

    Plasmodium DNA, in addition to being used for molecular diagnosis of malaria, find utility in monitoring patient responses to antimalarial drugs, drug resistance studies, genotyping and sequencing purposes. Over the years, numerous protocols have been proposed for extracting Plasmodium DNA from a variety of sources. Given that DNA isolation is fundamental to successful molecular studies, here we review the most commonly used methods for Plasmodium genomic DNA isolation, emphasizing their pros and cons. A comparison of these existing methods has been made, to evaluate their appropriateness for use in different applications and identify the method suitable for a particular laboratory based study. Selection of a suitable and accessible DNA extraction method for Plasmodium requires consideration of many factors, the most important being sensitivity, cost-effectiveness and, purity and stability of isolated DNA. Need of the hour is to accentuate on the development of a method that upholds well on all these parameters.

  1. Genome-Wide Assessment of Outer Membrane Vesicle Production in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Adam J Kulp

    Full Text Available The production of outer membrane vesicles by Gram-negative bacteria has been well documented; however, the mechanism behind the biogenesis of these vesicles remains unclear. Here a high-throughput experimental method and systems-scale analysis was conducted to determine vesiculation values for the whole genome knockout library of Escherichia coli mutant strains (Keio collection. The resultant dataset quantitatively recapitulates previously observed phenotypes and implicates nearly 150 new genes in the process of vesiculation. Gene functional and biochemical pathway analyses suggest that mutations that truncate outer membrane structures such as lipopolysaccharide and enterobacterial common antigen lead to hypervesiculation, whereas mutants in oxidative stress response pathways result in lower levels. This study expands and refines the current knowledge regarding the cellular pathways required for outer membrane vesiculation in E. coli.

  2. Genome-Wide Assessment of Outer Membrane Vesicle Production in Escherichia coli.

    Science.gov (United States)

    Kulp, Adam J; Sun, Bo; Ai, Teresa; Manning, Andrew J; Orench-Rivera, Nichole; Schmid, Amy K; Kuehn, Meta J

    2015-01-01

    The production of outer membrane vesicles by Gram-negative bacteria has been well documented; however, the mechanism behind the biogenesis of these vesicles remains unclear. Here a high-throughput experimental method and systems-scale analysis was conducted to determine vesiculation values for the whole genome knockout library of Escherichia coli mutant strains (Keio collection). The resultant dataset quantitatively recapitulates previously observed phenotypes and implicates nearly 150 new genes in the process of vesiculation. Gene functional and biochemical pathway analyses suggest that mutations that truncate outer membrane structures such as lipopolysaccharide and enterobacterial common antigen lead to hypervesiculation, whereas mutants in oxidative stress response pathways result in lower levels. This study expands and refines the current knowledge regarding the cellular pathways required for outer membrane vesiculation in E. coli.

  3. Chromatinization of the KSHV Genome During the KSHV Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Uppal, Timsy [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Jha, Hem C. [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States); Verma, Subhash C. [Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557 (United States); Robertson, Erle S., E-mail: erle@mail.med.upenn.edu [Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)

    2015-01-14

    Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.

  4. Assessment of adaptability of zebu cattle ( Bos indicus) breeds in two different climatic conditions: using cytogenetic techniques on genome integrity

    Science.gov (United States)

    Kumar, Anil; Waiz, Syma Ashraf; Sridhar Goud, T.; Tonk, R. K.; Grewal, Anita; Singh, S. V.; Yadav, B. R.; Upadhyay, R. C.

    2016-06-01

    The aim of this study was to evaluate the genome integrity so as to assess the adaptability of three breeds of indigenous cattle reared under arid and semi-arid regions of Rajasthan (Bikaner) and Haryana (Karnal) India. The cattle were of homogenous group (same age and sex) of indigenous breeds viz. Sahiwal, Tharparkar and Kankrej. A total of 100 animals were selected for this study from both climatic conditions. The sister chromatid exchanges (SCE's), chromosomal gaps and chromatid breaks were observed in metaphase plates of chromosome preparations obtained from in vitro culture of peripheral blood lymphocytes. The mean number of breaks and gaps in Sahiwal and Tharparkar of semi-arid zone were 8.56 ± 3.16, 6.4 ± 3.39 and 8.72 ± 2.04, 3.52 ± 6.29, respectively. Similarly, the mean number of breaks and gaps in Tharparkar and Kankrej cattle of arid zone were 5.26 ± 1.76, 2.74 ± 1.76 and 5.24 ± 1.84, 2.5 ± 1.26, respectively. The frequency of SCEs in chromosomes was found significantly higher ( P 0.05) was observed in the same zone. The analysis of frequency of CAs and SCEs revealed significant effects of environmental conditions on the genome integrity of animals, thereby indicating an association with their adaptability.

  5. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis

    Science.gov (United States)

    te Velthuis, Aartjan J.W.; Fodor, Ervin

    2016-01-01

    The genome of influenza viruses consists of multiple segments of single stranded negative-sense RNA. Each of these segments is bound by the heterotrimeric viral RNA-dependent RNA polymerase and multiple copies of nucleoprotein, forming viral ribonucleoprotein (vRNP) complexes. It is in the context of these vRNPs that the viral RNA polymerase carries out transcription of viral genes and replication of the viral RNA genome. In this Review, we discuss our current knowledge of the structure of the influenza virus RNA polymerase, how it carries out transcription and replication, and how its activities are modulated by viral and host factors. Furthermore, we discuss how advances in our understanding of polymerase function could help identifying new antiviral targets. PMID:27396566

  6. Viral diseases of the rabbit.

    Science.gov (United States)

    Krogstad, Aric P; Simpson, Janet E; Korte, Scott W

    2005-01-01

    Viral disease in the rabbit is encountered infrequently by the clinical practitioner; however, several viral diseases were reported to occur in this species. Viral diseases that are described in the rabbit primarily may affect the integument, gastrointestinal tract or, central nervous system or maybe multi-systemic in nature. Rabbit viral diseases range from oral papillomatosis, with benign clinical signs, to rabbit hemorrhagic disease and myxomatosis, which may result in significant clinical disease and mortality. The wild rabbit may serve as a reservoir for disease transmission for many of these viral agents. In general, treatment of viral disease in the rabbit is supportive in nature.

  7. Zoonotic Viral Deseases and Virus Discovery

    DEFF Research Database (Denmark)

    Nielsen, Sandra Cathrine Abel

    Viruses are the most abundant organisms on earth and are ubiquitous in all environments where life is present. They are capable of infecting all cellular forms of life, sometimes causing disease in the infected host. This thesis is broadly divided into two main sections with three projects...... representing work on viruses that are transmitted between humans and animals, and 3 three projects describing the search for (novel) viruses or a viral association in human diseases with no known cause. Common for all projects was the need for employing a range of different molecular tools examples...... program of wildlife, and with the purpose of preventing the next disease emerging from these animals. Numerous viruses were detected of which many were novel variants, thus reaffirming the notion that attention should be focused at these animals. Near-complete viral genome sequencing was performed...

  8. Crosslinking in viral capsids via tiling theory.

    Science.gov (United States)

    Twarock, R; Hendrix, R W

    2006-06-07

    A vital part of a virus is its protein shell, called the viral capsid, that encapsulates and hence protects the viral genome. It has been shown in Twarock [2004. A tiling approach to vius capsids assembly explaining a structural puzzle in virology. J. Theor. Biol. 226, 477-482] that the surface structures of viruses with icosahedrally symmetric capsids can be modelled in terms of tilings that encode the locations of the protein subunits. This theory is extended here to multi-level tilings in order to model crosslinking structures. The new framework is demonstrated for the case of bacteriophage HK97, and it is shown, how the theory can be used in general to decide if crosslinking, and what type of crosslinking, is compatible from a mathematical point of view with the geometrical surface structure of a virus.

  9. Immigration and viral hepatitis

    NARCIS (Netherlands)

    S. Sharma (Suraj); M. Carballo (Manuel); J.J. Feld (Jordan J.); H.L.A. Janssen (Harry)

    2015-01-01

    textabstractWHO estimates reveal that the global prevalence of viral hepatitis may be as high as 500 million, with an annual mortality rate of up to 1.3 million individuals. The majority of this global burden of disease is borne by nations of the developing world with high rates of vertical and

  10. Hepatitis E virus mutations associated with ribavirin treatment failure result in altered viral fitness and ribavirin sensitivity.

    Science.gov (United States)

    Debing, Yannick; Ramière, Christophe; Dallmeier, Kai; Piorkowski, Géraldine; Trabaud, Mary-Anne; Lebossé, Fanny; Scholtès, Caroline; Roche, Magali; Legras-Lachuer, Catherine; de Lamballerie, Xavier; André, Patrice; Neyts, Johan

    2016-09-01

    Ribavirin monotherapy is the preferred treatment for chronic hepatitis E, although occasional treatment failure occurs. We present a patient with chronic hepatitis E experiencing ribavirin treatment failure with a completely resistant phenotype. We aimed to identify viral mutations associated with treatment failure and explore the underlying mechanisms. Viral genomes were deep-sequenced at different time points and the role of identified mutations was assessed in vitro using mutant replicons, antiviral assays, cell culture of patient-derived virus and deep-sequencing. Ribavirin resistance was associated with Y1320H, K1383N and G1634R mutations in the viral polymerase, but also an insertion in the hypervariable region comprising a duplication and a polymerase-derived fragment. Analysis of these genome alterations in vitro revealed replication-increasing roles for Y1320H and G1634R mutations and the hypervariable region insertion. In contrast, the K1383N mutation in the polymerase F1-motif suppressed viral replication and increased the in vitro sensitivity to ribavirin, contrary to the clinical phenotype. Analysis of the replication of mutant full-length virus and in vitro culturing of patient-derived virus confirmed that sensitivity to ribavirin was retained. Finally, deep-sequencing of hepatitis E virus genomes revealed that ribavirin is mutagenic to viral replication in vitro and in vivo. Mutations Y1320H, G1634R and the hypervariable region insertion compensated for K1383N-associated replication defects. The specific role of the K1383N mutation remains enigmatic, but it appears to be of importance for the ribavirin resistant phenotype in this patient. Ribavirin is the most common treatment for chronic hepatitis E and is mostly effective, although some cases of ribavirin treatment failure have been described. Here, we report on a particular case of ribavirin resistance and investigate the underlying causes of treatment failure. Mutations in the viral polymerase

  11. Meta-analyses on viral hepatitis

    DEFF Research Database (Denmark)

    Gluud, Lise L; Gluud, Christian

    2009-01-01

    This article summarizes the meta-analyses of interventions for viral hepatitis A, B, and C. Some of the interventions assessed are described in small trials with unclear bias control. Other interventions are supported by large, high-quality trials. Although attempts have been made to adjust...

  12. Challenging the knowledge bio-based fisheries of tropical tuna stocks: assessing genomic population structure in yellowfin (Thunnus albacares

    Directory of Open Access Journals (Sweden)

    Carlo Pecoraro

    2014-06-01

    The YFT genetic population structure will be investigated at global scale (between- and within-ocean, using next-generation sequencing (2b-RAD method for genotyping by sequencing through examination of Single Nucleotide Polymorphisms (SNPs. This approach can represent a major advancement over classical techniques used until now (i.e. based on allozymes, DNA microsatellites and mitochondrial DNA in order to reveal the YFT stock structure between and within each ocean. The novel genomic data that will be generated can potentially reveal YFT population structure at a level not possible through classical latter approaches with significant implication for YFT stock assessment and management. In fact a carelessness of the proper genetic structure might lead to the over-exploitation and depletion of some populations with dramatic consequences for the long-term conservation and sustainable use of YFT stocks.

  13. Recommendations from the EGAPP Working Group: does genomic profiling to assess type 2 diabetes risk improve health outcomes?

    Science.gov (United States)

    2013-08-01

    The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group (EWG) found insufficient evidence to recommend testing for predictive variants in 28 variants (listed in Table 1) to assess risk for type 2 diabetes in the general population, on the basis of studies in populations of northern European descent. The EWG found that the magnitude of net health benefit from the use of any of these tests alone or in combination is close to zero. The EWG discourages clinical use unless further evidence supports improved clinical outcomes.The EWG found insufficient evidence to recommend testing for the TCF7L2 gene to assess risk for type 2 diabetes in high-risk individuals. The EWG found that the magnitude of net health benefit from the use of this test is close to zero. The EWG discourages clinical use unless further evidence supports improved clinical outcomes.On the basis of the available evidence for both the scenarios, the overall certainty of net health benefit is deemed "low." It has been suggested that genomic profiling in the general population or in high-risk populations for type 2 diabetes might lead to management changes (e.g., earlier initiation or higher rates of medical interventions, or targeted recommendations for behavioral change) that improve type 2 diabetes outcomes or prevent type 2 diabetes. The EWG found no direct evidence to support this possibility; therefore, this review sought indirect evidence aimed at documenting the extent to which genomic profiling alters type 2 diabetes risk estimation, alone and in combination with traditional risk factors, and the extent to which risk classification improves health outcomes. Assay-related evidence on available genomic profiling tests was deemed inadequate. However, on the basis of existing technologies that have been or may be used, the analytic sensitivity and specificity of tests for individual gene variants might be at least satisfactory. Twenty-eight candidate markers were

  14. Viral discovery and sequence recovery using DNA microarrays.

    Directory of Open Access Journals (Sweden)

    David Wang

    2003-11-01

    Full Text Available Because of the constant threat posed by emerging infectious diseases and the limitations of existing approaches used to identify new pathogens, there is a great demand for new technological methods for viral discovery. We describe herein a DNA microarray-based platform for novel virus identification and characterization. Central to this approach was a DNA microarray designed to detect a wide range of known viruses as well as novel members of existing viral families; this microarray contained the most highly conserved 70mer sequences from every fully sequenced reference viral genome in GenBank. During an outbreak of severe acute respiratory syndrome (SARS in March 2003, hybridization to this microarray revealed the presence of a previously uncharacterized coronavirus in a viral isolate cultivated from a SARS patient. To further characterize this new virus, approximately 1 kb of the unknown virus genome was cloned by physically recovering viral sequences hybridized to individual array elements. Sequencing of these fragments confirmed that the virus was indeed a new member of the coronavirus family. This combination of array hybridization followed by direct viral sequence recovery should prove to be a general strategy for the rapid identification and characterization of novel viruses and emerging infectious disease.

  15. Concordance of HIV type 1 tropism phenotype to predictions using web-based analysis of V3 sequences: composite algorithms may be needed to properly assess viral tropism.

    Science.gov (United States)

    Cabral, Gabriela Bastos; Ferreira, João Leandro de Paula; Coelho, Luana Portes Osório; Fonsi, Mylva; Estevam, Denise Lotufo; Cavalcanti, Jaqueline Souza; Brígido, Luis Fernando de Macedo

    2012-07-01

    Genotypic prediction of HIV-1 tropism has been considered a practical surrogate for phenotypic tests and recently an European Consensus has set up recommendations for its use in clinical practice. Twenty-five antiretroviral-experienced patients, all heavily treated cases with a median of 16 years of antiretroviral therapy, had viral tropism determined by the Trofile assay and predicted by HIV-1 sequencing of partial env, followed by interpretation using web-based tools. Trofile determined 17/24 (71%) as X4 tropic or dual/mixed viruses, with one nonreportable result. The use of European consensus recommendations for single sequences (geno2pheno false-positive rates 20% cutoff) would lead to 4/24 (16.7%) misclassifications, whereas a composite algorithm misclassified 1/24 (4%). The use of the geno2pheno clinical option using CD4 T cell counts at collection was useful in resolving some discrepancies. Applying the European recommendations followed by additional web-based tools for cases around the recommended cutoff would resolve most misclassifications.

  16. Arrhythmias in viral myocarditis and pericarditis.

    Science.gov (United States)

    Baksi, A John; Kanaganayagam, G Sunthar; Prasad, Sanjay K

    2015-06-01

    Acute viral myocarditis and acute pericarditis are self-limiting conditions that run a benign course and that may not involve symptoms that lead to medical assessment. However, ventricular arrhythmia is frequent in viral myocarditis. Myocarditis is thought to account for a large proportion of sudden cardiac deaths in young people without prior structural heart disease. Identification of acute myocarditis either with or without pericarditis is therefore important. However, therapeutic interventions are limited and nonspecific. Identifying those at greatest risk of a life-threatening arrhythmia is critical to reducing the mortality. This review summarizes current understanding of this challenging area in which many questions remain.

  17. Hepatitis A through E (Viral Hepatitis)

    Science.gov (United States)

    ... Nutrition Clinical Trials Primary Sclerosing Cholangitis Wilson Disease Hepatitis (Viral) View or Print All Sections What is Viral Hepatitis? Viral hepatitis is an infection that causes liver inflammation ...

  18. Viral Marketing and Academic Institution

    OpenAIRE

    Koktová, Silvie

    2010-01-01

    This bachelor thesis examines modern and constantly developing kind of internet marketing -- the so called viral marketing. It deals with its origin, principle, process, advantages and disadvantages, types of viral marketing and presumptions of creating successful viral campaign. The aim of the theoretical part is especially the understanding of viral marketing as one of the effective instruments of contemporary marketing. In this theoretical part the thesis also elaborates a marketing school...

  19. Viral Marketing and Academic Institution

    OpenAIRE

    Koktová, Silvie

    2010-01-01

    This bachelor thesis examines modern and constantly developing kind of internet marketing -- the so called viral marketing. It deals with its origin, principle, process, advantages and disadvantages, types of viral marketing and presumptions of creating successful viral campaign. The aim of the theoretical part is especially the understanding of viral marketing as one of the effective instruments of contemporary marketing. In this theoretical part the thesis also elaborates a marketing school...

  20. Assessing the evolutionary impact of amino acid mutations in the human genome

    DEFF Research Database (Denmark)

    Boyko, Adam R; Williamson, Scott H; Indap, Amit R

    2008-01-01

    with non-stationary demographic history (such as that of modern humans). Application of our method to 47,576 coding SNPs found by direct resequencing of 11,404 protein coding-genes in 35 individuals (20 European Americans and 15 African Americans) allows us to assess the relative contribution...

  1. BYSTANDER EFFECTS, GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIATION AND CHEMICAL EXPOSURES

    Science.gov (United States)

    There is an increased interest in utilizing mechanistic data in support of the cancer risk assessment process for ionizing radiation and environmental chemical exposures. In this regard the use of biologically based dose-response models is particularly advocated. The aim is to pr...

  2. GENOMIC FEATURES OF COTESIA PLUTELLAE POLYDNAVIRUS

    Institute of Scientific and Technical Information of China (English)

    LIUCai-ling; ZHUXiang-xiong; FuWen-jun; ZHAOMu-jun

    2003-01-01

    Polydnavirus was purified from the calyx fluid of Cotesia plutellae ovary. The genomic features of C. plutellae polydnavirus (CpPDV) were investigated. The viral genome consists of at least 12 different segments and the aggregate genome size is a lower estimate of 80kbp. By partial digestion of CpPDV DNA with BamHI and subsequent ligation with BamHI-cut plasmid Bluescript, a representative library of CpPDV genome was obtained.

  3. Description of viral assemblages associated with the Gorgonia ventalina holobiont

    Science.gov (United States)

    Hewson, I.; Brown, J. M.; Burge, C. A.; Couch, C. S.; LaBarre, B. A.; Mouchka, M. E.; Naito, M.; Harvell, C. D.

    2012-06-01

    The diversity and function of viruses in coral holobionts has only recently received attention. The non-reef building gorgonian octocoral, Gorgonia ventalina, is a major constituent of Caribbean reefs. We investigated viral communities associated with G. ventalina tissues to understand their role in gorgonian ecology. Pyrosequencing was used to prepare a total of 514,632 sequence reads of DNA- and RNA-based mixed-community viral genomes (metaviromes). RNA viral assemblages were comprised of primarily unidentifiable reads, with most matching host transcripts and other RNA metaviromes. DNA metaviromes were similar between healthy and diseased tissues and comprised of contiguous sequences (contigs) that matched primarily metazoan and bacterial proteins. Only ~5% of contigs matched viral proteins that were primarily cyanophage and viruses of Chlorella and Ostreococcus. Our results confirm that DNA and RNA viruses comprise a component of the gorgonian holobiont, suggesting that they may play a role in the ecology of G. ventalina.

  4. First evaluation of an influenza viral vector based Brucella abortus vaccine in sheep and goats: Assessment of safety, immunogenicity and protective efficacy against Brucella melitensis infection.

    Science.gov (United States)

    Tabynov, Kaissar; Yespembetov, Bolat; Matikhan, Nurali; Ryskeldinova, Sholpan; Zinina, Nadezhda; Kydyrbayev, Zhailaubay; Assanzhanova, Nurika; Tabynov, Kairat; Renukaradhya, Gourapura J; Mukhitdinova, Gulnara; Sansyzbay, Abylai

    2016-12-25

    Previously we developed and evaluated a candidate influenza viral vector based Brucella abortus vaccine (Flu-BA) administered with a potent adjuvant Montanide Gel01 in cattle, which was found safe and highly effective. This study was aimed to establish a proof-of-concept of the efficacy of Flu-BA vaccine formulation in sheep and goats. We vaccinated sheep and goats with Flu-BA vaccine and as a positive control vaccinated a group of animals with a commercial B. melitensis Rev.1 vaccine. Clinically, both Flu-BA and Rev.1 vaccines were found safe. Serological analysis showed the animals received Flu-BA vaccine did not induce antibody response against Brucella Omp16 and L7/L12 proteins during the period of our study (56days post-initial vaccination, PIV). But observed significant antigen-specific T cell response indicated by increased lymphocyte stimulation index and enhanced secretion of IFN-γ at day 56 PIV in Flu-BA group. The Flu-BA vaccinated animals completely protected 57.1% of sheep and 42.9% of goats against B. melitensis 16M challenge. The severity of brucellosis in terms of infection index and colonization of Brucella in tissues was significantly lower in the Flu-BA group compared to negative control animals group. Nevertheless, positive control commercial Rev.1 vaccine provided strong antigen-specific T cell immunity and protection against B. melitensis 16M infection. We conclude that the Flu-BA vaccine induces a significant antigen-specific T-cell response and provides complete protection in approximately 50% of sheep and goats against B. melitensis 16M infection. Further investigations are needed to improve the efficacy of Flu-BA and explore its practical application in small ruminants.

  5. The use of DWI to assess spleen and liver quantitative ADC changes in the detection of liver fibrosis stages in chronic viral hepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Cece, Hasan, E-mail: hasan_cece@yahoo.com [Harran University, Faculty of Medicine, Department of Radiology, Sanliurfa (Turkey); Ercan, Abdulbasit, E-mail: abdulbasitercan@hotmail.com [Harran University, Faculty of Medicine, Department of Radiology, Sanliurfa (Turkey); Yıldız, Sema, E-mail: drsemayildiz@yahoo.com [Harran University, Faculty of Medicine, Department of Radiology, Sanliurfa (Turkey); Karakas, Ekrem, E-mail: karakasekrem@yahoo.com [Harran University, Faculty of Medicine, Department of Radiology, Sanliurfa (Turkey); Karakas, Omer, E-mail: dromerkarakas@hotmail.com [Harran University, Faculty of Medicine, Department of Radiology, Sanliurfa (Turkey); Boyacı, Fatıma Nurefsan, E-mail: drnurefsan@yahoo.com [Harran University, Faculty of Medicine, Department of Radiology, Sanliurfa (Turkey); Aydogan, Timucin, E-mail: drtaydogan@yahoo.com.tr [Harran University, Faculty of Medicine, Department of Gastroenterology, Sanliurfa (Turkey); Karakas, Emel Yigit, E-mail: e.ygtkarakas@yahoo.com.tr [Sanliurfa Training and Research Hospital, Department of İnternal Medicine, Sanliurfa (Turkey); Cullu, Nesat, E-mail: nesatcullu77@gmail.com [Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Radiology, Mugla (Turkey); Ulas, Turgay, E-mail: turgayulas@yahoo.com [Harran University, Faculty of Medicine, Department of İnternal Medicine, Sanliurfa (Turkey)

    2013-08-15

    This study aimed to evaluate the changes in spleen and liver diffusion-weighted magnetic resonance imaging (DWI) in chronic viral hepatitis patients. The study comprised 47 patients and 30 healthy volunteers. DWIs were obtained. Apparent Diffusion Coefficient (ADC) measurements were made by transferring the images to the workstation. The measurements of value b 1000 were made from a total of five points of the liver and three points of the spleen. Liver biopsy was performed on the 47 patients. The fibrosis stages of the patients were defined according to the METAVIR scoring system. Student's t-test was used in the comparison of mean ages, liver and spleen ADC values between the patient and the control group. Kruskal–Wallis followed by Mann–Whitney U Test with Bonferroni adjustment was performed in the comparison of mean ADC values of the patients at different stages and the control group. A statistically significant difference was determined between the patient and control group in respect of liver and spleen mean ADC values (P < 0.05). F3 group showed a significant difference compared to control and F1 and F4 group showed a significant difference compared to control, F1, F2 and F3 group in terms of the mean liver ADC value (P < 0.01). F3 and F4 group showed a significant difference compared to control and F1 group in terms of the mean spleen ADC value (P < 0.01). As a result we believe that the measurement of liver and spleen ADC values may be an indicator in the determination of the level of fibrosis.

  6. Genome-Scale Assessment of Age-Related DNA Methylation Changes in Mouse Spermatozoa

    Science.gov (United States)

    Kobayashi, Norio; Okae, Hiroaki; Hiura, Hitoshi; Chiba, Hatsune; Shirakata, Yoshiki; Hara, Kenshiro; Tanemura, Kentaro; Arima, Takahiro

    2016-01-01

    DNA methylation plays important roles in the production and functioning of spermatozoa. Recent studies have suggested that DNA methylation patterns in spermatozoa can change with age, but the regions susceptible to age-related methylation changes remain to be fully elucidated. In this study, we conducted genome-scale DNA methylation profiling of spermatozoa obtained from C57BL/6N mice at 8 weeks (8w), 18 weeks (18w) and 17 months of age (17m). There was no substantial difference in the global DNA methylation patterns between 18w and 17m samples except for a slight increase of methylation levels in long interspersed nuclear elements in the 17m samples. We found that maternally methylated imprinting control regions (mICRs) and spermatogenesis-related gene promoters had 5–10% higher methylation levels in 8w samples than in 18w or 17m samples. Analysis of individual sequence reads suggested that these regions were fully methylated (80–100%) in a subset of 8w spermatozoa. These regions are also known to be highly methylated in a subset of postnatal spermatogonia, which might be the source of the increased DNA methylation in 8w spermatozoa. Another possible source was contamination by somatic cells. Although we carefully purified the spermatozoa, it was difficult to completely exclude the possibility of somatic cell contamination. Further studies are needed to clarify the source of the small increase in DNA methylation in the 8w samples. Overall, our findings suggest that DNA methylation patterns in mouse spermatozoa are relatively stable throughout reproductive life. PMID:27880848

  7. Transcriptional control in embryonic Drosophila midline guidance assessed through a whole genome approach

    Directory of Open Access Journals (Sweden)

    Tomancak Pavel

    2007-07-01

    Full Text Available Abstract Background During the development of the Drosophila central nervous system the process of midline crossing is orchestrated by a number of guidance receptors and ligands. Many key axon guidance molecules have been identified in both invertebrates and vertebrates, but the transcriptional regulation of growth cone guidance remains largely unknown. It is established that translational regulation plays a role in midline crossing, and there are indications that transcriptional regulation is also involved. To investigate this issue, we conducted a genome-wide study of transcription in Drosophila embryos using wild type and a number of well-characterized Drosophila guidance mutants and transgenics. We also analyzed a previously published microarray time course of Drosophila embryonic development with an axon guidance focus. Results Using hopach, a novel clustering method which is well suited to microarray data analysis, we identified groups of genes with similar expression patterns across guidance mutants and transgenics. We then systematically characterized the resulting clusters with respect to their relevance to axon guidance using two complementary controlled vocabularies: the Gene Ontology (GO and anatomical annotations of the Atlas of Pattern of Gene Expression (APoGE in situ hybridization database. The analysis indicates that regulation of gene expression does play a role in the process of axon guidance in Drosophila. We also find a strong link between axon guidance and hemocyte migration, a result that agrees with mounting evidence that axon guidance molecules are co-opted in vertebrate vascularization. Cell cyclin activity in the context of axon guidance is also suggested from our array data. RNA and protein expression patterns of cell cyclins in axon guidance mutants and transgenics support this possible link. Conclusion This study provides important insights into the regulation of axon guidance in vivo.

  8. Pancreatic involvement in chronic viral hepatitis

    Institute of Scientific and Technical Information of China (English)

    Yoshiki Katakura; Hiroshi Yotsuyanagi; Kiyoe Hashizume; Chiaki Okuse; Noriaki Okuse; Kohji Nishikawa; Michihiro Suzuki; Shiro Iino; Fumio Itoh

    2005-01-01

    AIM: To elucidate the frequency and characteristics of pancreatic disorders in the course of chronic viral hepatitis. METHODS: We prospectively assessed the serum pancreatic enzyme levels and imaging findings in patients with chronic viral hepatitis and healthy control subjects. RESULTS: Serum amylase (t-Amy), salivary amylase (s-Amy), pancreatic amylase (p-Amy) and serum lipase levels were higher in hepatitis patients in comparison to control subjects. However, in asymptomatic viral carriers, only the serum t-Amy levels were higher than those of the controls. The levels of each enzyme rose with the progression of liver disease in patients with hepatitis B or C; whereas the levels of each enzyme within the same clinical stage of the disease did not differ between patients diagnosed with either hepatitis B or hepatitis C virus. Imaging findings demonstrated chronic pancreatitis in only 1 out of 202 patients (0.5%).CONCLUSION: Our data suggest that serum levels of pancreatic enzymes increase with the progression of liver disease in patients diagnosed with viral hepatitis. Pancreatic disease, asymptomatic in most cases, may represent an extrahepatic manifestation of chronic viral hepatitis.

  9. Pancreatic involvement in chronic viral hepatitis

    Science.gov (United States)

    Katakura, Yoshiki; Yotsuyanagi, Hiroshi; Hashizume, Kiyoe; Okuse, Chiaki; Okuse, Noriaki; Nishikawa, Kohji; Suzuki, Michihiro; Iino, Shiro; Itoh, Fumio

    2005-01-01

    AIM: To elucidate the frequency and characteristics of pancreatic disorders in the course of chronic viral hepatitis. METHODS: We prospectively assessed the serum pancreatic enzyme levels and imaging findings in patients with chronic viral hepatitis and healthy control subjects. RESULTS: Serum amylase (t-Amy), salivary amylase (s-Amy), pancreatic amylase (p-Amy) and serum lipase levels were higher in hepatitis patients in comparison to control subjects. However, in asymptomatic viral carriers, only the serum t-Amy levels were higher than those of the controls. The levels of each enzyme rose with the progression of liver disease in patients with hepatitis B or C; whereas the levels of each enzyme within the same clinical stage of the disease did not differ between patients diagnosed with either hepatitis B or hepatitis C virus. Imaging findings demonstrated chronic pancreatitis in only 1 out of 202 patients (0.5%). CONCLUSION: Our data suggest that serum levels of pancreatic enzymes increase with the progression of liver disease in patients diagnosed with viral hepatitis. Pancreatic disease, asymptomatic in most cases, may represent an extrahepatic manifestation of chronic viral hepatitis. PMID:15962364

  10. Computational tools for viral metagenomics and their application in clinical research.

    Science.gov (United States)

    Fancello, L; Raoult, D; Desnues, C

    2012-12-20

    There are 100 times more virions than eukaryotic cells in a healthy human body. The characterization of human-associated viral communities in a non-pathological state and the detection of viral pathogens in cases of infection are essential for medical care and epidemic surveillance. Viral metagenomics, the sequenced-based analysis of the complete collection of viral genomes directly isolated from an organism or an ecosystem, bypasses the "single-organism-level" point of view of clinical diagnostics and thus the need to isolate and culture the targeted organism. The first part of this review is dedicated to a presentation of past research in viral metagenomics with an emphasis on human-associated viral communities (eukaryotic viruses and bacteriophages). In the second part, we review more precisely the computational challenges posed by the analysis of viral metagenomes, and we illustrate the problem of sequences that do not have homologs in public databases and the possible approaches to characterize them.

  11. Immunogenetics of viral infections.

    Science.gov (United States)

    Martin, Maureen P; Carrington, Mary

    2005-10-01

    The HLA class I and II genes encode molecules that lie at the heart of the acquired immune response against infectious diseases. Associations between these polymorphic loci and genetically complex infectious diseases have been historically elusive, in contrast to the more obvious HLA associations with autoimmune diseases. High resolution molecular typing of large, clinically well-defined cohorts has begun to uncover evidence for the influence of HLA diversity on diseases of viral etiology, such as those caused by HIV-1, hepatitis B virus, hepatitis C virus and human papilloma virus. Combinations of HLA and KIR also appear to affect outcome to viral infection, supporting a role for HLA class I diversity in the innate immune response in addition to the acquired immune response.

  12. Viral quasispecies evolution

    OpenAIRE

    Domingo, Esteban; Sheldon, Julie; Perales, Celia

    2012-01-01

    Summary: Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of...

  13. Metagenomic Analysis of the Viral Communities in Fermented Foods▿ †

    Science.gov (United States)

    Park, Eun-Jin; Kim, Kyoung-Ho; Abell, Guy C. J.; Kim, Min-Soo; Roh, Seong Woon; Bae, Jin-Woo

    2011-01-01

    Viruses are recognized as the most abundant biological components on Earth, and they regulate the structure of microbial communities in many environments. In soil and marine environments, microorganism-infecting phages are the most common type of virus. Although several types of bacteriophage have been isolated from fermented foods, little is known about the overall viral assemblages (viromes) of these environments. In this study, metagenomic analyses were performed on the uncultivated viral communities from three fermented foods, fermented shrimp, kimchi, and sauerkraut. Using a high-throughput pyrosequencing technique, a total of 81,831, 70,591 and 69,464 viral sequences were obtained from fermented shrimp, kimchi and sauerkraut, respectively. Moreover, 37 to 50% of these sequences showed no significant hit against sequences in public databases. There were some discrepancies between the prediction of bacteriophages hosts via homology comparison and bacterial distribution, as determined from 16S rRNA gene sequencing. These discrepancies likely reflect the fact that the viral genomes of fermented foods are poorly represented in public databases. Double-stranded DNA viral communities were amplified from fermented foods by using a linker-amplified shotgun library. These communities were dominated by bacteriophages belonging to the viral order Caudovirales (i.e., Myoviridae, Podoviridae, and Siphoviridae). This study indicates that fermented foods contain less complex viral communities than many other environmental habitats, such as seawater, human feces, marine sediment, and soil. PMID:21183634

  14. From disease association to risk assessment: an optimistic view from genome-wide association studies on type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Zhi Wei

    2009-10-01

    Full Text Available Genome-wide association studies (GWAS have been fruitful in identifying disease susceptibility loci for common and complex diseases. A remaining question is whether we can quantify individual disease risk based on genotype data, in order to facilitate personalized prevention and treatment for complex diseases. Previous studies have typically failed to achieve satisfactory performance, primarily due to the use of only a limited number of confirmed susceptibility loci. Here we propose that sophisticated machine-learning approaches with a large ensemble of markers may improve the performance of disease risk assessment. We applied a Support Vector Machine (SVM algorithm on a GWAS dataset generated on the Affymetrix genotyping platform for type 1 diabetes (T1D and optimized a risk assessment model with hundreds of markers. We subsequently tested this model on an independent Illumina-genotyped dataset with imputed genotypes (1,008 cases and 1,000 controls, as well as a separate Affymetrix-genotyped dataset (1,529 cases and 1,458 controls, resulting in area under ROC curve (AUC of approximately 0.84 in both datasets. In contrast, poor performance was achieved when limited to dozens of known susceptibility loci in the SVM model or logistic regression model. Our study suggests that improved disease risk assessment can be achieved by using algorithms that take into account interactions between a large ensemble of markers. We are optimistic that genotype-based disease risk assessment may be feasible for diseases where a notable proportion of the risk has already been captured by SNP arrays.

  15. Viral membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  16. Hepatitis viral C

    Directory of Open Access Journals (Sweden)

    Pedro A. Poma

    2011-12-01

    Full Text Available El virus de la hepatitis C se trasmite por contacto directo con la sangre de la persona infectada. La mayoría de los pacientes no presenta síntomas en la fase aguda o crónica de la hepatitis. Dos a tres décadas después, algunos pacientes progresan a la cirrosis compensada, que también es asintomática. En un examen de sangre, los anticuerpos se presentan como una sorpresa, porque no se les relaciona con un episodio de contagio. Un embarazo ocasiona la posibilidad de efectos negativos de la infección en la madre o el niño. El tratamiento actual no ofrece la certeza de cura, dependiendo del genotipo viral, y presenta efectos adversos que pueden ser severos. La cirrosis descompensada causa la mayoría de muertes relacionadas con esta infección; algunos de estos pacientes desarrollan carcinoma hepatocelular. La reproducción viral causa partículas virales diferentes del virus original, característica que ha impedido el desarrollo de una vacuna. Actualmente, la prevención consiste en evitar el contacto con sangre infectada. Este artículo revisa la infección con el virus de la hepatitis C, incluyendo los últimos progresos en tratamiento. Es necesario educar a la comunidad acerca de los efectos de este virus en la salud pública.

  17. Zoonotic Viral Deseases and Virus Discovery

    DEFF Research Database (Denmark)

    Nielsen, Sandra Cathrine Abel

    program of wildlife, and with the purpose of preventing the next disease emerging from these animals. Numerous viruses were detected of which many were novel variants, thus reaffirming the notion that attention should be focused at these animals. Near-complete viral genome sequencing was performed...... in three studies and used for genome characterization and to infer the evolutionary relationship to other similar viruses. Finally, no known viruses were detected in one of the “human disease”-studies and although the other study is currently ongoing and at a very preliminary stage, results are encouraging.......Viruses are the most abundant organisms on earth and are ubiquitous in all environments where life is present. They are capable of infecting all cellular forms of life, sometimes causing disease in the infected host. This thesis is broadly divided into two main sections with three projects...

  18. Genome-wide assessment for genetic variants associated with ventricular dysfunction after primary coronary artery bypass graft surgery.

    Directory of Open Access Journals (Sweden)

    Amanda A Fox

    Full Text Available BACKGROUND: Postoperative ventricular dysfunction (VnD occurs in 9-20% of coronary artery bypass graft (CABG surgical patients and is associated with increased postoperative morbidity and mortality. Understanding genetic causes of postoperative VnD should enhance patient risk stratification and improve treatment and prevention strategies. We aimed to determine if genetic variants associate with occurrence of in-hospital VnD after CABG surgery. METHODS: A genome-wide association study identified single nucleotide polymorphisms (SNPs associated with postoperative VnD in male subjects of European ancestry undergoing isolated primary CABG surgery with cardiopulmonary bypass. VnD was defined as the need for ≥2 inotropes or mechanical ventricular support after CABG surgery. Validated SNPs were assessed further in two replication CABG cohorts and meta-analysis was performed. RESULTS: Over 100 SNPs were associated with VnD (P2.1 of developing in-hospital VnD after CABG surgery. However, three genetic loci identified by meta-analysis were more modestly associated with development of postoperative VnD. Studies of larger cohorts to assess these loci as well as to define other genetic mechanisms and related biology that link genetic variants to postoperative ventricular dysfunction are warranted.

  19. Functional toxicogenomic assessment of triclosan in human HepG2 cells using genome-wide CRISPR-Cas9 screen

    Science.gov (United States)

    Thousands of chemicals for which limited toxicological data are available are used and then detected in humans and the environment. Rapid and cost-effective approaches for assessing the toxicological properties of chemicals are needed. We used CRISPR-Cas9 functional genomic scree...

  20. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments

    Science.gov (United States)

    Sun, Kun; Jiang, Peiyong; Chan, K. C. Allen; Wong, John; Cheng, Yvonne K. Y.; Liang, Raymond H. S.; Chan, Wai-kong; Ma, Edmond S. K.; Chan, Stephen L.; Cheng, Suk Hang; Chan, Rebecca W. Y.; Tong, Yu K.; Ng, Simon S. M.; Wong, Raymond S. M.; Hui, David S. C.; Leung, Tse Ngong; Leung, Tak Y.; Lai, Paul B. S.; Chiu, Rossa W. K.; Lo, Yuk Ming Dennis

    2015-01-01

    Plasma consists of DNA released from multiple tissues within the body. Using genome-wide bisulfite sequencing of plasma DNA and deconvolution of the sequencing data with reference to methylation profiles of different tissues, we developed a general approach for studying the major tissue contributors to the circulating DNA pool. We tested this method in pregnant women, patients with hepatocellular carcinoma, and subjects following bone marrow and liver transplantation. In most subjects, white blood cells were the predominant contributors to the circulating DNA pool. The placental contributions in the plasma of pregnant women correlated with the proportional contributions as revealed by fetal-specific genetic markers. The graft-derived contributions to the plasma in the transplant recipients correlated with those determined using donor-specific genetic markers. Patients with hepatocellular carcinoma showed elevated plasma DNA contributions from the liver, which correlated with measurements made using tumor-associated copy number aberrations. In hepatocellular carcinoma patients and in pregnant women exhibiting copy number aberrations in plasma, comparison of methylation deconvolution results using genomic regions with different copy number status pinpointed the tissue type responsible for the aberrations. In a pregnant woman diagnosed as having follicular lymphoma during pregnancy, methylation deconvolution indicated a grossly elevated contribution from B cells into the plasma DNA pool and localized B cells as the origin of the copy number aberrations observed in plasma. This method may serve as a powerful tool for assessing a wide range of physiological and pathological conditions based on the identification of perturbed proportional contributions of different tissues into plasma. PMID:26392541