WorldWideScience

Sample records for genome-wide exon arrays

  1. ExonMiner: Web service for analysis of GeneChip Exon array data

    Directory of Open Access Journals (Sweden)

    Imoto Seiya

    2008-11-01

    Full Text Available Abstract Background Some splicing isoform-specific transcriptional regulations are related to disease. Therefore, detection of disease specific splice variations is the first step for finding disease specific transcriptional regulations. Affymetrix Human Exon 1.0 ST Array can measure exon-level expression profiles that are suitable to find differentially expressed exons in genome-wide scale. However, exon array produces massive datasets that are more than we can handle and analyze on personal computer. Results We have developed ExonMiner that is the first all-in-one web service for analysis of exon array data to detect transcripts that have significantly different splicing patterns in two cells, e.g. normal and cancer cells. ExonMiner can perform the following analyses: (1 data normalization, (2 statistical analysis based on two-way ANOVA, (3 finding transcripts with significantly different splice patterns, (4 efficient visualization based on heatmaps and barplots, and (5 meta-analysis to detect exon level biomarkers. We implemented ExonMiner on a supercomputer system in order to perform genome-wide analysis for more than 300,000 transcripts in exon array data, which has the potential to reveal the aberrant splice variations in cancer cells as exon level biomarkers. Conclusion ExonMiner is well suited for analysis of exon array data and does not require any installation of software except for internet browsers. What all users need to do is to access the ExonMiner URL http://ae.hgc.jp/exonminer. Users can analyze full dataset of exon array data within hours by high-level statistical analysis with sound theoretical basis that finds aberrant splice variants as biomarkers.

  2. Comprehensive survey of SNPs in the Affymetrix exon array using the 1000 Genomes dataset.

    Directory of Open Access Journals (Sweden)

    Eric R Gamazon

    Full Text Available Microarray gene expression data has been used in genome-wide association studies to allow researchers to study gene regulation as well as other complex phenotypes including disease risks and drug response. To reach scientifically sound conclusions from these studies, however, it is necessary to get reliable summarization of gene expression intensities. Among various factors that could affect expression profiling using a microarray platform, single nucleotide polymorphisms (SNPs in target mRNA may lead to reduced signal intensity measurements and result in spurious results. The recently released 1000 Genomes Project dataset provides an opportunity to evaluate the distribution of both known and novel SNPs in the International HapMap Project lymphoblastoid cell lines (LCLs. We mapped the 1000 Genomes Project genotypic data to the Affymetrix GeneChip Human Exon 1.0ST array (exon array, which had been used in our previous studies and for which gene expression data had been made publicly available. We also evaluated the potential impact of these SNPs on the differentially spliced probesets we had identified previously. Though the 1000 Genomes Project data allowed a comprehensive survey of the SNPs in this particular array, the same approach can certainly be applied to other microarray platforms. Furthermore, we present a detailed catalogue of SNP-containing probesets (exon-level and transcript clusters (gene-level, which can be considered in evaluating findings using the exon array as well as benefit the design of follow-up experiments and data re-analysis.

  3. Novel applications of array comparative genomic hybridization in molecular diagnostics.

    Science.gov (United States)

    Cheung, Sau W; Bi, Weimin

    2018-05-31

    In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.

  4. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array

    Directory of Open Access Journals (Sweden)

    Sugnet Charles

    2006-12-01

    Full Text Available Abstract Background Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. Results We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic

  5. Transcription and splicing regulation in human umbilical vein endothelial cells under hypoxic stress conditions by exon array

    Directory of Open Access Journals (Sweden)

    Wu Yonghong

    2009-03-01

    Full Text Available Abstract Background The balance between endothelial cell survival and apoptosis during stress is an important cellular process for vessel integrity and vascular homeostasis, and it is also pivotal in angiogenesis during the development of many vascular diseases. However, the underlying molecular mechanisms remain largely unknown. Although both transcription and alternative splicing are important in regulating gene expression in endothelial cells under stress, the regulatory mechanisms underlying this state and their interactions have not yet been studied on a genome-wide basis. Results Human umbilical vein endothelial cells (HUVECs were treated with cobalt chloride (CoCl2 both to mimic hypoxia and to induce cell apoptosis and alternative splicing responses. Cell apoptosis rate analysis indicated that HUVECs exposed to 300 μM CoCl2 for 24 hrs were initially counterbalancing apoptosis with cell survival. We therefore used the Affymetrix exon array system to determine genome-wide transcript- and exon-level differential expression. Other than 1583 differentially expressed transcripts, 342 alternatively spliced exons were detected and classified by different splicing types. Sixteen alternatively spliced exons were validated by RT-PCR. Furthermore, direct evidence for the ongoing balance between HUVEC survival and apoptosis was provided by Gene Ontology (GO and protein function, as well as protein domain and pathway enrichment analyses of the differentially expressed transcripts. Importantly, a novel molecular module, in which the heat shock protein (HSP families play a significant role, was found to be activated under mimicked hypoxia conditions. In addition, 46% of the transcripts containing stress-modulated exons were differentially expressed, indicating the possibility of combinatorial regulation of transcription and splicing. Conclusion The exon array system effectively profiles gene expression and splicing on the genome-wide scale. Based on

  6. EXONSAMPLER: a computer program for genome-wide and candidate gene exon sampling for targeted next-generation sequencing.

    Science.gov (United States)

    Cosart, Ted; Beja-Pereira, Albano; Luikart, Gordon

    2014-11-01

    The computer program EXONSAMPLER automates the sampling of thousands of exon sequences from publicly available reference genome sequences and gene annotation databases. It was designed to provide exon sequences for the efficient, next-generation gene sequencing method called exon capture. The exon sequences can be sampled by a list of gene name abbreviations (e.g. IFNG, TLR1), or by sampling exons from genes spaced evenly across chromosomes. It provides a list of genomic coordinates (a bed file), as well as a set of sequences in fasta format. User-adjustable parameters for collecting exon sequences include a minimum and maximum acceptable exon length, maximum number of exonic base pairs (bp) to sample per gene, and maximum total bp for the entire collection. It allows for partial sampling of very large exons. It can preferentially sample upstream (5 prime) exons, downstream (3 prime) exons, both external exons, or all internal exons. It is written in the Python programming language using its free libraries. We describe the use of EXONSAMPLER to collect exon sequences from the domestic cow (Bos taurus) genome for the design of an exon-capture microarray to sequence exons from related species, including the zebu cow and wild bison. We collected ~10% of the exome (~3 million bp), including 155 candidate genes, and ~16,000 exons evenly spaced genomewide. We prioritized the collection of 5 prime exons to facilitate discovery and genotyping of SNPs near upstream gene regulatory DNA sequences, which control gene expression and are often under natural selection. © 2014 John Wiley & Sons Ltd.

  7. Genome-wide survey of allele-specific splicing in humans

    Directory of Open Access Journals (Sweden)

    Scheffler Konrad

    2008-06-01

    Full Text Available Abstract Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a mutation on the efficiency of mRNA splicing is often difficult to predict, many mutations that cause disease through an effect on splicing are likely to remain undiscovered. Results We have combined a genome-wide scan for sequence polymorphisms likely to affect mRNA splicing with analysis of publicly available Expressed Sequence Tag (EST and exon array data. The genome-wide scan uses published tools and identified 30,977 SNPs located within donor and acceptor splice sites, branch points and exonic splicing enhancer elements. For 1,185 candidate splicing polymorphisms the difference in splicing between alternative alleles was corroborated by publicly available exon array data from 166 lymphoblastoid cell lines. We developed a novel probabilistic method to infer allele-specific splicing from EST data. The method uses SNPs and alternative mRNA isoforms mapped to EST sequences and models both regulated alternative splicing as well as allele-specific splicing. We have also estimated heritability of splicing and report that a greater proportion of genes show evidence of splicing heritability than show heritability of overall gene expression level. Our results provide an extensive resource that can be used to assess the possible effect on splicing of human polymorphisms in putative splice-regulatory sites. Conclusion We report a set of genes showing evidence of allele-specific splicing from an integrated analysis of genomic polymorphisms, EST data and exon array

  8. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple.

    Directory of Open Access Journals (Sweden)

    David Chagné

    Full Text Available As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of 'Golden Delicious', SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional, and genomic selection in apple.

  9. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    Science.gov (United States)

    Chagné, David; Crowhurst, Ross N.; Troggio, Michela; Davey, Mark W.; Gilmore, Barbara; Lawley, Cindy; Vanderzande, Stijn; Hellens, Roger P.; Kumar, Satish; Cestaro, Alessandro; Velasco, Riccardo; Main, Dorrie; Rees, Jasper D.; Iezzoni, Amy; Mockler, Todd; Wilhelm, Larry; Van de Weg, Eric; Gardiner, Susan E.; Bassil, Nahla; Peace, Cameron

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide evaluation of allelic variation in apple (Malus×domestica) breeding germplasm. For genome-wide SNP discovery, 27 apple cultivars were chosen to represent worldwide breeding germplasm and re-sequenced at low coverage with the Illumina Genome Analyzer II. Following alignment of these sequences to the whole genome sequence of ‘Golden Delicious’, SNPs were identified using SoapSNP. A total of 2,113,120 SNPs were detected, corresponding to one SNP to every 288 bp of the genome. The Illumina GoldenGate® assay was then used to validate a subset of 144 SNPs with a range of characteristics, using a set of 160 apple accessions. This validation assay enabled fine-tuning of the final subset of SNPs for the Illumina Infinium® II system. The set of stringent filtering criteria developed allowed choice of a set of SNPs that not only exhibited an even distribution across the apple genome and a range of minor allele frequencies to ensure utility across germplasm, but also were located in putative exonic regions to maximize genotyping success rate. A total of 7867 apple SNPs was established for the IRSC apple 8K SNP array v1, of which 5554 were polymorphic after evaluation in segregating families and a germplasm collection. This publicly available genomics resource will provide an unprecedented resolution of SNP haplotypes, which will enable marker-locus-trait association discovery, description of the genetic architecture of quantitative traits, investigation of genetic variation (neutral and functional), and genomic selection in apple. PMID:22363718

  10. Balanced into array : genome-wide array analysis in 54 patients with an apparently balanced de novo chromosome rearrangement and a meta-analysis

    NARCIS (Netherlands)

    Feenstra, Ilse; Hanemaaijer, Nicolien; Sikkema-Raddatz, Birgit; Yntema, Helger; Dijkhuizen, Trijnie; Lugtenberg, Dorien; Verheij, Joke; Green, Andrew; Hordijk, Roel; Reardon, William; de Vries, Bert; Brunner, Han; Bongers, Ernie; de Leeuw, Nicole; van Ravenswaaij-Arts, Conny

    2011-01-01

    High-resolution genome-wide array analysis enables detailed screening for cryptic and submicroscopic imbalances of microscopically balanced de novo rearrangements in patients with developmental delay and/or congenital abnormalities. In this report, we added the results of genome-wide array analysis

  11. Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays

    Directory of Open Access Journals (Sweden)

    Nixon Tamara J

    2008-05-01

    Full Text Available Abstract Background Tumor-predominant splice isoforms were identified during comparative in silico sequence analysis of EST clones, suggesting that global aberrant alternative pre-mRNA splicing may be an epigenetic phenomenon in cancer. We used an exon expression array to perform an objective, genome-wide survey of glioma-specific splicing in 24 GBM and 12 nontumor brain samples. Validation studies were performed using RT-PCR on glioma cell lines, patient tumor and nontumor brain samples. Results In total, we confirmed 14 genes with glioma-specific splicing; seven were novel events identified by the exon expression array (A2BP1, BCAS1, CACNA1G, CLTA, KCNC2, SNCB, and TPD52L2. Our data indicate that large changes (> 5-fold in alternative splicing are infrequent in gliomagenesis ( Conclusion While we observed some tumor-specific alternative splicing, the number of genes showing exclusive tumor-specific isoforms was on the order of tens, rather than the hundreds suggested previously by in silico mining. Given the important role of alternative splicing in neural differentiation, there may be selective pressure to maintain a majority of splicing events in order to retain glial-like characteristics of the tumor cells.

  12. OpenADAM: an open source genome-wide association data management system for Affymetrix SNP arrays

    Directory of Open Access Journals (Sweden)

    Sham P C

    2008-12-01

    Full Text Available Abstract Background Large scale genome-wide association studies have become popular since the introduction of high throughput genotyping platforms. Efficient management of the vast array of data generated poses many challenges. Description We have developed an open source web-based data management system for the large amount of genotype data generated from the Affymetrix GeneChip® Mapping Array and Affymetrix Genome-Wide Human SNP Array platforms. The database supports genotype calling using DM, BRLMM, BRLMM-P or Birdseed algorithms provided by the Affymetrix Power Tools. The genotype and corresponding pedigree data are stored in a relational database for efficient downstream data manipulation and analysis, such as calculation of allele and genotype frequencies, sample identity checking, and export of genotype data in various file formats for analysis using commonly-available software. A novel method for genotyping error estimation is implemented using linkage disequilibrium information from the HapMap project. All functionalities are accessible via a web-based user interface. Conclusion OpenADAM provides an open source database system for management of Affymetrix genome-wide association SNP data.

  13. Genome-wide association between DNA methylation and alternative splicing in an invertebrate

    Directory of Open Access Journals (Sweden)

    Flores Kevin

    2012-09-01

    Full Text Available Abstract Background Gene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee and Nasonia vitripennis (jewel wasp analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data. Results We generated RNA deep sequencing data (RNA-seq to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation. Conclusions This study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice

  14. Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies

    DEFF Research Database (Denmark)

    Li, Yun R.; van Setten, Jessica; Verma, Shefali S.

    2015-01-01

    genome-wide genotyping array, the 'TxArray', comprising approximately 782,000 markers with tailored content for deeper capture of variants across HLA, KIR, pharmacogenomic, and metabolic loci important in transplantation. To test concordance and genotyping quality, we genotyped 85 HapMap samples...

  15. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Davey Smith, G; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  16. Tracking the evolution of alternatively spliced exons within the Dscam family

    Directory of Open Access Journals (Sweden)

    Vision Todd J

    2006-02-01

    Full Text Available Abstract Background The Dscam gene in the fruit fly, Drosophila melanogaster, contains twenty-four exons, four of which are composed of tandem arrays that each undergo mutually exclusive alternative splicing (4, 6, 9 and 17, potentially generating 38,016 protein isoforms. This degree of transcript diversity has not been found in mammalian homologs of Dscam. We examined the molecular evolution of exons within this gene family to locate the point of divergence for this alternative splicing pattern. Results Using the fruit fly Dscam exons 4, 6, 9 and 17 as seed sequences, we iteratively searched sixteen genomes for homologs, and then performed phylogenetic analyses of the resulting sequences to examine their evolutionary history. We found homologs in the nematode, arthropod and vertebrate genomes, including homologs in several vertebrates where Dscam had not been previously annotated. Among these, only the arthropods contain homologs arranged in tandem arrays indicative of mutually exclusive splicing. We found no homologs to these exons within the Arabidopsis, yeast, tunicate or sea urchin genomes but homologs to several constitutive exons from fly Dscam were present within tunicate and sea urchin. Comparing the rate of turnover within the tandem arrays of the insect taxa (fruit fly, mosquito and honeybee, we found the variants within exons 4 and 17 are well conserved in number and spatial arrangement despite 248–283 million years of divergence. In contrast, the variants within exons 6 and 9 have undergone considerable turnover since these taxa diverged, as indicated by deeply branching taxon-specific lineages. Conclusion Our results suggest that at least one Dscam exon array may be an ancient duplication that predates the divergence of deuterostomes from protostomes but that there is no evidence for the presence of arrays in the common ancestor of vertebrates. The different patterns of conservation and turnover among the Dscam exon arrays

  17. A high-density Diversity Arrays Technology (DArT microarray for genome-wide genotyping in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Myburg Alexander A

    2010-06-01

    Full Text Available Abstract Background A number of molecular marker technologies have allowed important advances in the understanding of the genetics and evolution of Eucalyptus, a genus that includes over 700 species, some of which are used worldwide in plantation forestry. Nevertheless, the average marker density achieved with current technologies remains at the level of a few hundred markers per population. Furthermore, the transferability of markers produced with most existing technology across species and pedigrees is usually very limited. High throughput, combined with wide genome coverage and high transferability are necessary to increase the resolution, speed and utility of molecular marker technology in eucalypts. We report the development of a high-density DArT genome profiling resource and demonstrate its potential for genome-wide diversity analysis and linkage mapping in several species of Eucalyptus. Findings After testing several genome complexity reduction methods we identified the PstI/TaqI method as the most effective for Eucalyptus and developed 18 genomic libraries from PstI/TaqI representations of 64 different Eucalyptus species. A total of 23,808 cloned DNA fragments were screened and 13,300 (56% were found to be polymorphic among 284 individuals. After a redundancy analysis, 6,528 markers were selected for the operational array and these were supplemented with 1,152 additional clones taken from a library made from the E. grandis tree whose genome has been sequenced. Performance validation for diversity studies revealed 4,752 polymorphic markers among 174 individuals. Additionally, 5,013 markers showed segregation when screened using six inter-specific mapping pedigrees, with an average of 2,211 polymorphic markers per pedigree and a minimum of 859 polymorphic markers that were shared between any two pedigrees. Conclusions This operational DArT array will deliver 1,000-2,000 polymorphic markers for linkage mapping in most eucalypt pedigrees

  18. Exome-wide DNA capture and next generation sequencing in domestic and wild species

    Directory of Open Access Journals (Sweden)

    Ng Sarah B

    2011-07-01

    Full Text Available Abstract Background Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses. We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus to capture (enrich for, and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison. Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits. Results We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes. Conclusions This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.

  19. Exome-wide DNA capture and next generation sequencing in domestic and wild species.

    Science.gov (United States)

    Cosart, Ted; Beja-Pereira, Albano; Chen, Shanyuan; Ng, Sarah B; Shendure, Jay; Luikart, Gordon

    2011-07-05

    Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits. We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes. This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.

  20. Characterization of novel RS1 exonic deletions in juvenile X-linked retinoschisis.

    Science.gov (United States)

    D'Souza, Leera; Cukras, Catherine; Antolik, Christian; Craig, Candice; Lee, Ji-Yun; He, Hong; Li, Shibo; Smaoui, Nizar; Hejtmancik, James F; Sieving, Paul A; Wang, Xinjing

    2013-01-01

    X-linked juvenile retinoschisis (XLRS) is a vitreoretinal dystrophy characterized by schisis (splitting) of the inner layers of the neuroretina. Mutations within the retinoschisis (RS1) gene are responsible for this disease. The mutation spectrum consists of amino acid substitutions, splice site variations, small indels, and larger genomic deletions. Clinically, genomic deletions are rarely reported. Here, we characterize two novel full exonic deletions: one encompassing exon 1 and the other spanning exons 4-5 of the RS1 gene. We also report the clinical findings in these patients with XLRS with two different exonic deletions. Unrelated XLRS men and boys and their mothers (if available) were enrolled for molecular genetics evaluation. The patients also underwent ophthalmologic examination and in some cases electroretinogram (ERG) recording. All the exons and the flanking intronic regions of the RS1 gene were analyzed with direct sequencing. Two patients with exonic deletions were further evaluated with array comparative genomic hybridization to define the scope of the genomic aberrations. After the deleted genomic region was identified, primer walking followed by direct sequencing was used to determine the exact breakpoints. Two novel exonic deletions of the RS1 gene were identified: one including exon 1 and the other spanning exons 4 and 5. The exon 1 deletion extends from the 5' region of the RS1 gene (including the promoter) through intron 1 (c.(-35)-1723_c.51+2664del4472). The exon 4-5 deletion spans introns 3 to intron 5 (c.185-1020_c.522+1844del5764). Here we report two novel exonic deletions within the RS1 gene locus. We have also described the clinical presentations and hypothesized the genomic mechanisms underlying these schisis phenotypes.

  1. Detection of Hereditary 1,25-Hydroxyvitamin D-Resistant Rickets Caused by Uniparental Disomy of Chromosome 12 Using Genome-Wide Single Nucleotide Polymorphism Array.

    Directory of Open Access Journals (Sweden)

    Mayuko Tamura

    Full Text Available Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR is an autosomal recessive disease caused by biallelic mutations in the vitamin D receptor (VDR gene. No patients have been reported with uniparental disomy (UPD.Using genome-wide single nucleotide polymorphism (SNP array to confirm whether HVDRR was caused by UPD of chromosome 12.A 2-year-old girl with alopecia and short stature and without any family history of consanguinity was diagnosed with HVDRR by typical laboratory data findings and clinical features of rickets. Sequence analysis of VDR was performed, and the origin of the homozygous mutation was investigated by target SNP sequencing, short tandem repeat analysis, and genome-wide SNP array.The patient had a homozygous p.Arg73Ter nonsense mutation. Her mother was heterozygous for the mutation, but her father was negative. We excluded gross deletion of the father's allele or paternal discordance. Genome-wide SNP array of the family (the patient and her parents showed complete maternal isodisomy of chromosome 12. She was successfully treated with high-dose oral calcium.This is the first report of HVDRR caused by UPD, and the third case of complete UPD of chromosome 12, in the published literature. Genome-wide SNP array was useful for detecting isodisomy and the parental origin of the allele. Comprehensive examination of the homozygous state is essential for accurate genetic counseling of recurrence risk and appropriate monitoring for other chromosome 12 related disorders. Furthermore, oral calcium therapy was effective as an initial treatment for rickets in this instance.

  2. Identification of protein features encoded by alternative exons using Exon Ontology.

    Science.gov (United States)

    Tranchevent, Léon-Charles; Aubé, Fabien; Dulaurier, Louis; Benoit-Pilven, Clara; Rey, Amandine; Poret, Arnaud; Chautard, Emilie; Mortada, Hussein; Desmet, François-Olivier; Chakrama, Fatima Zahra; Moreno-Garcia, Maira Alejandra; Goillot, Evelyne; Janczarski, Stéphane; Mortreux, Franck; Bourgeois, Cyril F; Auboeuf, Didier

    2017-06-01

    Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing variation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named "Exon Ontology," based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encoded protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splicing. We also show that Exon Ontology helps to unravel biological processes that depend on suites of coregulated alternative exons, as we uncovered a role of epithelial cell-enriched splicing factors in the AKT signaling pathway and of mesenchymal cell-enriched splicing factors in driving splicing events impacting on autophagy. Freely available on the web, Exon Ontology is the first computational resource that allows getting a quick insight into the protein features encoded by alternative exons and investigating whether coregulated exons contain the same biological information. © 2017 Tranchevent et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Early-onset seizures due to mosaic exonic deletions of CDKL5 in a male and two females.

    Science.gov (United States)

    Bartnik, Magdalena; Derwińska, Katarzyna; Gos, Monika; Obersztyn, Ewa; Kołodziejska, Katarzyna E; Erez, Ayelet; Szpecht-Potocka, Agnieszka; Fang, Ping; Terczyńska, Iwona; Mierzewska, Hanna; Lohr, Naomi J; Bellus, Gary A; Reimschisel, Tyler; Bocian, Ewa; Mazurczak, Tadeusz; Cheung, Sau Wai; Stankiewicz, Paweł

    2011-05-01

    Mutations in the CDKL5 gene have been associated with an X-linked dominant early infantile epileptic encephalopathy-2. The clinical presentation is usually of severe encephalopathy with refractory seizures and Rett syndrome (RTT)-like phenotype. We attempted to assess the role of mosaic intragenic copy number variation in CDKL5. We have used comparative genomic hybridization with a custom-designed clinical oligonucleotide array targeting exons of selected disease and candidate genes, including CDKL5. We have identified mosaic exonic deletions of CDKL5 in one male and two females with developmental delay and medically intractable seizures. These three mosaic changes represent 60% of all deletions detected in 12,000 patients analyzed by array comparative genomic hybridization and involving the exonic portion of CDKL5. We report the first case of an exonic deletion of CDKL5 in a male and emphasize the importance of underappreciated mosaic exonic copy number variation in patients with early-onset seizures and RTT-like features of both genders.

  4. Dissecting an alternative splicing analysis workflow for GeneChip® Exon 1.0 ST Affymetrix arrays

    Directory of Open Access Journals (Sweden)

    Calogero Raffaele A

    2008-11-01

    Full Text Available Abstract Background A new microarray platform (GeneChip® Exon 1.0 ST has recently been developed by Affymetrix http://www.affymetrix.com. This microarray platform changes the conventional view of transcript analysis since it allows the evaluation of the expression level of a transcript by querying each exon component. The Exon 1.0 ST platform does however raise some issues regarding the approaches to be used in identifying genome-wide alternative splicing events (ASEs. In this study an exon-level data analysis workflow is dissected in order to detect limit and strength of each step, thus modifying the overall workflow and thereby optimizing the detection of ASEs. Results This study was carried out using a semi-synthetic exon-skipping benchmark experiment embedding a total of 268 exon skipping events. Our results point out that summarization methods (RMA, PLIER do not affect the efficacy of statistical tools in detecting ASEs. However, data pre-filtering is mandatory if the detected number of false ASEs are to be reduced. MiDAS and Rank Product methods efficiently detect true ASEs but they suffer from the lack of multiple test error correction. The intersection of MiDAS and Rank Product results efficiently moderates the detection of false ASEs. Conclusion To optimize the detection of ASEs we propose the following workflow: i data pre-filtering, ii statistical selection of ASEs using both MiDAS and Rank Product, iii intersection of results derived from the two statistical analyses in order to moderate family-wise errors (FWER.

  5. Genome-wide comparison of paired fresh frozen and formalin-fixed paraffin-embedded gliomas by custom BAC and oligonucleotide array comparative genomic hybridization: facilitating analysis of archival gliomas.

    Science.gov (United States)

    Mohapatra, Gayatry; Engler, David A; Starbuck, Kristen D; Kim, James C; Bernay, Derek C; Scangas, George A; Rousseau, Audrey; Batchelor, Tracy T; Betensky, Rebecca A; Louis, David N

    2011-04-01

    Array comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA). Because diffuse malignant gliomas are often sampled by small biopsies, formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis; FFPE tissues are also needed to study the intratumoral heterogeneity that characterizes these neoplasms. In this paper, we present a combination of evaluations and technical advances that provide strong support for the ready use of oligonucleotide aCGH on FFPE diffuse gliomas. We first compared aCGH using bacterial artificial chromosome (BAC) arrays in 45 paired frozen and FFPE gliomas, and demonstrate a high concordance rate between FFPE and frozen DNA in an individual clone-level analysis of sensitivity and specificity, assuring that under certain array conditions, frozen and FFPE DNA can perform nearly identically. However, because oligonucleotide arrays offer advantages to BAC arrays in genomic coverage and practical availability, we next developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. To demonstrate utility in FFPE tissues, we applied this approach to biphasic anaplastic oligoastrocytomas and demonstrate CNA differences between DNA obtained from the two components. Therefore, BAC and oligonucleotide aCGH can be sensitive and specific tools for detecting CNAs in FFPE DNA, and novel labeling techniques enable the routine use of oligonucleotide arrays for FFPE DNA. In combination, these advances should facilitate genome-wide analysis of rare, small and/or histologically heterogeneous gliomas from FFPE tissues.

  6. Genomic V exons from whole genome shotgun data in reptiles.

    Science.gov (United States)

    Olivieri, D N; von Haeften, B; Sánchez-Espinel, C; Faro, J; Gambón-Deza, F

    2014-08-01

    Reptiles and mammals diverged over 300 million years ago, creating two parallel evolutionary lineages amongst terrestrial vertebrates. In reptiles, two main evolutionary lines emerged: one gave rise to Squamata, while the other gave rise to Testudines, Crocodylia, and Aves. In this study, we determined the genomic variable (V) exons from whole genome shotgun sequencing (WGS) data in reptiles corresponding to the three main immunoglobulin (IG) loci and the four main T cell receptor (TR) loci. We show that Squamata lack the TRG and TRD genes, and snakes lack the IGKV genes. In representative species of Testudines and Crocodylia, the seven major IG and TR loci are maintained. As in mammals, genes of the IG loci can be grouped into well-defined IMGT clans through a multi-species phylogenetic analysis. We show that the reptilian IGHV and IGLV genes are distributed amongst the established mammalian clans, while their IGKV genes are found within a single clan, nearly exclusive from the mammalian sequences. The reptilian and mammalian TRAV genes cluster into six common evolutionary clades (since IMGT clans have not been defined for TR). In contrast, the reptilian TRBV genes cluster into three clades, which have few mammalian members. In this locus, the V exon sequences from mammals appear to have undergone different evolutionary diversification processes that occurred outside these shared reptilian clans. These sequences can be obtained in a freely available public repository (http://vgenerepertoire.org).

  7. Comparison of Nasal Epithelial Smoking-Induced Gene Expression on Affymetrix Exon 1.0 and Gene 1.0 ST Arrays

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2013-01-01

    Full Text Available We have previously defined the impact of tobacco smoking on nasal epithelium gene expression using Affymetrix Exon 1.0 ST arrays. In this paper, we compared the performance of the Affymetrix GeneChip Human Gene 1.0 ST array with the Human Exon 1.0 ST array for detecting nasal smoking-related gene expression changes. RNA collected from the nasal epithelium of five current smokers and five never smokers was hybridized to both arrays. While the intersample correlation within each array platform was relatively higher in the Gene array than that in the Exon array, the majority of the genes most changed by smoking were tightly correlated between platforms. Although neither array dataset was powered to detect differentially expressed genes (DEGs at a false discovery rate (FDR <0.05, we identified more DEGs than expected by chance using the Gene ST array. These findings suggest that while both platforms show a high degree of correlation for detecting smoking-induced differential gene expression changes, the Gene ST array may be a more cost-effective platform in a clinical setting for gene-level genomewide expression profiling and an effective tool for exploring the host response to cigarette smoking and other inhaled toxins.

  8. A Genome-Wide Breast Cancer Scan in African Americans

    Science.gov (United States)

    2010-06-01

    SNPs from the African American breast cancer scan to COGs , a European collaborative study which is has designed a SNP array with that will be genotyped...Award Number: W81XWH-08-1-0383 TITLE: A Genome-wide Breast Cancer Scan in African Americans PRINCIPAL INVESTIGATOR: Christopher A...SUBTITLE A Genome-wide Breast Cancer Scan in African Americans 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-1-0383 5c. PROGRAM

  9. Mosaic maternal uniparental disomy of chromosome 15 in Prader-Willi syndrome: utility of genome-wide SNP array.

    Science.gov (United States)

    Izumi, Kosuke; Santani, Avni B; Deardorff, Matthew A; Feret, Holly A; Tischler, Tanya; Thiel, Brian D; Mulchandani, Surabhi; Stolle, Catherine A; Spinner, Nancy B; Zackai, Elaine H; Conlin, Laura K

    2013-01-01

    Prader-Willi syndrome is caused by the loss of paternal gene expression on 15q11.2-q13.2, and one of the mechanisms resulting in Prader-Willi syndrome phenotype is maternal uniparental disomy of chromosome 15. Various mechanisms including trisomy rescue, monosomy rescue, and post fertilization errors can lead to uniparental disomy, and its mechanism can be inferred from the pattern of uniparental hetero and isodisomy. Detection of a mosaic cell line provides a unique opportunity to understand the mechanism of uniparental disomy; however, mosaic uniparental disomy is a rare finding in patients with Prader-Willi syndrome. We report on two infants with Prader-Willi syndrome caused by mosaic maternal uniparental disomy 15. Patient 1 has mosaic uniparental isodisomy of the entire chromosome 15, and Patient 2 has mosaic uniparental mixed iso/heterodisomy 15. Genome-wide single-nucleotide polymorphism array was able to demonstrate the presence of chromosomally normal cell line in the Patient 1 and trisomic cell line in Patient 2, and provide the evidence that post-fertilization error and trisomy rescue as a mechanism of uniparental disomy in each case, respectively. Given its ability of detecting small percent mosaicism as well as its capability of identifying the loss of heterozygosity of chromosomal regions, genome-wide single-nucleotide polymorphism array should be utilized as an adjunct to the standard methylation analysis in the evaluation of Prader-Willi syndrome. Copyright © 2012 Wiley Periodicals, Inc.

  10. Genome-wide approaches towards identification of susceptibility genes in complex diseases

    NARCIS (Netherlands)

    Franke, L.H.

    2008-01-01

    Throughout the human genome millions of places exist where humans differ gentically. The aim of this PhD thesis was to systematically assess this genetic variation and its biological consequences in a genome-wide way, through the utilization of DNA oligonucleotide arrays that assess hundres of

  11. Targeting 160 candidate genes for blood pressure regulation with a genome-wide genotyping array.

    Directory of Open Access Journals (Sweden)

    Siim Sõber

    2009-06-01

    Full Text Available The outcome of Genome-Wide Association Studies (GWAS has challenged the field of blood pressure (BP genetics as previous candidate genes have not been among the top loci in these scans. We used Affymetrix 500K genotyping data of KORA S3 cohort (n = 1,644; Southern-Germany to address (i SNP coverage in 160 BP candidate genes; (ii the evidence for associations with BP traits in genome-wide and replication data, and haplotype analysis. In total, 160 gene regions (genic region+/-10 kb covered 2,411 SNPs across 11.4 Mb. Marker densities in genes varied from 0 (n = 11 to 0.6 SNPs/kb. On average 52.5% of the HAPMAP SNPs per gene were captured. No evidence for association with BP was obtained for 1,449 tested SNPs. Considerable associations (P50% of HAPMAP SNPs were tagged. In general, genes with higher marker density (>0.2 SNPs/kb revealed a better chance to reach close to significance associations. Although, none of the detected P-values remained significant after Bonferroni correction (P<0.05/2319, P<2.15 x 10(-5, the strength of some detected associations was close to this level: rs10889553 (LEPR and systolic BP (SBP (P = 4.5 x 10(-5 as well as rs10954174 (LEP and diastolic BP (DBP (P = 5.20 x 10(-5. In total, 12 markers in 7 genes (ADRA2A, LEP, LEPR, PTGER3, SLC2A1, SLC4A2, SLC8A1 revealed considerable association (P<10(-3 either with SBP, DBP, and/or hypertension (HYP. None of these were confirmed in replication samples (KORA S4, HYPEST, BRIGHT. However, supportive evidence for the association of rs10889553 (LEPR and rs11195419 (ADRA2A with BP was obtained in meta-analysis across samples stratified either by body mass index, smoking or alcohol consumption. Haplotype analysis highlighted LEPR and PTGER3. In conclusion, the lack of associations in BP candidate genes may be attributed to inadequate marker coverage on the genome-wide arrays, small phenotypic effects of the loci and/or complex interaction with life-style and metabolic parameters.

  12. Imputation across genotyping arrays for genome-wide association studies: assessment of bias and a correction strategy.

    Science.gov (United States)

    Johnson, Eric O; Hancock, Dana B; Levy, Joshua L; Gaddis, Nathan C; Saccone, Nancy L; Bierut, Laura J; Page, Grier P

    2013-05-01

    A great promise of publicly sharing genome-wide association data is the potential to create composite sets of controls. However, studies often use different genotyping arrays, and imputation to a common set of SNPs has shown substantial bias: a problem which has no broadly applicable solution. Based on the idea that using differing genotyped SNP sets as inputs creates differential imputation errors and thus bias in the composite set of controls, we examined the degree to which each of the following occurs: (1) imputation based on the union of genotyped SNPs (i.e., SNPs available on one or more arrays) results in bias, as evidenced by spurious associations (type 1 error) between imputed genotypes and arbitrarily assigned case/control status; (2) imputation based on the intersection of genotyped SNPs (i.e., SNPs available on all arrays) does not evidence such bias; and (3) imputation quality varies by the size of the intersection of genotyped SNP sets. Imputations were conducted in European Americans and African Americans with reference to HapMap phase II and III data. Imputation based on the union of genotyped SNPs across the Illumina 1M and 550v3 arrays showed spurious associations for 0.2 % of SNPs: ~2,000 false positives per million SNPs imputed. Biases remained problematic for very similar arrays (550v1 vs. 550v3) and were substantial for dissimilar arrays (Illumina 1M vs. Affymetrix 6.0). In all instances, imputing based on the intersection of genotyped SNPs (as few as 30 % of the total SNPs genotyped) eliminated such bias while still achieving good imputation quality.

  13. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  14. GST-PRIME: an algorithm for genome-wide primer design.

    Science.gov (United States)

    Leister, Dario; Varotto, Claudio

    2007-01-01

    The profiling of mRNA expression based on DNA arrays has become a powerful tool to study genome-wide transcription of genes in a number of organisms. GST-PRIME is a software package created to facilitate large-scale primer design for the amplification of probes to be immobilized on arrays for transcriptome analyses, even though it can be also applied in low-throughput approaches. GST-PRIME allows highly efficient, direct amplification of gene-sequence tags (GSTs) from genomic DNA (gDNA), starting from annotated genome or transcript sequences. GST-PRIME provides a customer-friendly platform for automatic primer design, and despite the relative simplicity of the algorithm, experimental tests in the model plant species Arabidopsis thaliana confirmed the reliability of the software. This chapter describes the algorithm used for primer design, its input and output files, and the installation of the standalone package and its use.

  15. Genome-Wide Screening of Cytogenetic Abnormalities in Multiple Myeloma Patients Using Array-CGH Technique: A Czech Multicenter Experience

    Directory of Open Access Journals (Sweden)

    Jan Smetana

    2014-01-01

    Full Text Available Characteristic recurrent copy number aberrations (CNAs play a key role in multiple myeloma (MM pathogenesis and have important prognostic significance for MM patients. Array-based comparative genomic hybridization (aCGH provides a powerful tool for genome-wide classification of CNAs and thus should be implemented into MM routine diagnostics. We demonstrate the possibility of effective utilization of oligonucleotide-based aCGH in 91 MM patients. Chromosomal aberrations associated with effect on the prognosis of MM were initially evaluated by I-FISH and were found in 93.4% (85/91. Incidence of hyperdiploidy was 49.5% (45/91; del(13(q14 was detected in 57.1% (52/91; gain(1(q21 occurred in 58.2% (53/91; del(17(p13 was observed in 15.4% (14/91; and t(4;14(p16;q32 was found in 18.6% (16/86. Genome-wide screening using Agilent 44K aCGH microarrays revealed copy number alterations in 100% (91/91. Most common deletions were found at 13q (58.9%, 1p (39.6%, and 8p (31.1%, whereas gain of whole 1q was the most often duplicated region (50.6%. Furthermore, frequent homozygous deletions of genes playing important role in myeloma biology such as TRAF3, BIRC1/BIRC2, RB1, or CDKN2C were observed. Taken together, we demonstrated the utilization of aCGH technique in clinical diagnostics as powerful tool for identification of unbalanced genomic abnormalities with prognostic significance for MM patients.

  16. Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2009-09-01

    Full Text Available Abstract Background Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results This paper presents a new probe selection algorithm (PanArray that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pan-genome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on

  17. Genome-wide comparison of paired fresh frozen and formalin-fixed paraffin-embedded gliomas by custom BAC and oligonucleotide array comparative genomic hybridization: facilitating analysis of archival gliomas

    Science.gov (United States)

    Mohapatra, Gayatry; Engler, David A.; Starbuck, Kristen D.; Kim, James C.; Bernay, Derek C.; Scangas, George A.; Rousseau, Audrey; Batchelor, Tracy T.; Betensky, Rebecca A.; Louis, David N.

    2010-01-01

    Molecular genetic analysis of cancer is rapidly evolving as a result of improvement in genomic technologies and the growing applicability of such analyses to clinical oncology. Array based comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA), particularly in solid tumors, and has been applied to the study of malignant gliomas. In the clinical setting, however, gliomas are often sampled by small biopsies and thus formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis, especially for rare types of gliomas. Moreover, the biological basis for the marked intratumoral heterogeneity in gliomas is most readily addressed in FFPE material. Therefore, for gliomas, the ability to use DNA from FFPE tissue is essential for both clinical and research applications. In this study, we have constructed a custom bacterial artificial chromosome (BAC) array and show excellent sensitivity and specificity for detecting CNAs in a panel of paired frozen and FFPE glioma samples. Our study demonstrates a high concordance rate between CNAs detected in FFPE compared to frozen DNA. We have also developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. This labeling technique was applied to a panel of biphasic anaplastic oligoastrocytomas (AOA) to identify genetic changes unique to each component. Together, results from these studies suggest that BAC and oligonucleotide aCGH are sensitive tools for detecting CNAs in FFPE DNA, and can enable genome-wide analysis of rare, small and/or histologically heterogeneous gliomas. PMID:21080181

  18. Targeted exonic sequencing of GWAS loci in the high extremes of the plasma lipids distribution

    NARCIS (Netherlands)

    Patel, Aniruddh P.; Peloso, Gina M.; Pirruccello, James P.; Johansen, Christopher T.; Dubé, Joseph B.; Larach, Daniel B.; Ban, Matthew R.; Dallinge-Thie, Geesje M.; Gupta, Namrata; Boehnke, Michael; Abecasis, Gonçalo R.; Kastelein, John J. P.; Hovingh, G. Kees; Hegele, Robert A.; Rader, Daniel J.; Kathiresan, Sekar

    2016-01-01

    Genome-wide association studies (GWAS) for plasma lipid levels have mapped numerous genomic loci, with each region often containing many protein-coding genes. Targeted re-sequencing of exons is a strategy to pinpoint causal variants and genes. We performed solution-based hybrid selection of 9008

  19. Exon-primed intron-crossing (EPIC markers for non-model teleost fishes

    Directory of Open Access Journals (Sweden)

    Riethoven Jean-Jack M

    2010-03-01

    Full Text Available Abstract Background Exon-primed intron-crossing (EPIC markers have three advantages over anonymous genomic sequences in studying evolution of natural populations. First, the universal primers designed in exon regions can be applied across a broad taxonomic range. Second, the homology of EPIC-amplified sequences can be easily determined by comparing either their exon or intron portion depending on the genetic distance between the taxa. Third, having both the exon and intron fragments could help in examining genetic variation at the intraspecific and interspecific level simultaneously, particularly helpful when studying species complex. However, the paucity of EPIC markers has hindered multilocus studies using nuclear gene sequences, particularly in teleost fishes. Results We introduce a bioinformatics pipeline for developing EPIC markers by comparing the whole genome sequences between two or more species. By applying this approach on five teleost fishes whose genomes were available in the Ensembl database http://www.ensembl.org, we identified 210 EPIC markers that have single-copy and conserved exon regions with identity greater than 85% among the five teleost fishes. We tested 12 randomly chosen EPIC markers in nine teleost species having a wide phylogenetic range. The success rate of amplifying and sequencing those markers varied from 44% to 100% in different species. We analyzed the exon sequences of the 12 EPIC markers from 13 teleosts. The resulting phylogeny contains many traditionally well-supported clades, indicating the usefulness of the exon portion of EPIC markers in reconstructing species phylogeny, in addition to the value of the intron portion of EPIC markers in interrogating the population history. Conclusions This study illustrated an effective approach to develop EPIC markers in a taxonomic group, where two or more genome sequences are available. The markers identified could be amplified across a broad taxonomic range of teleost

  20. Genome-wide association study for ovarian cancer susceptibility using pooled DNA.

    NARCIS (Netherlands)

    Lu, Y.; Chen, X.; Beesley, J.; Johnatty, S.E.; Defazio, A.; Lambrechts, S.; Lambrechts, D.; Despierre, E.; Vergotes, I.; Chang-Claude, J.; Hein, R.; Nickels, S.; Wang-Gohrke, S.; Dork, T.; Durst, M.; Antonenkova, N.; Bogdanova, N.; Goodman, M.T.; Lurie, G.; Wilkens, L.R.; Carney, M.E.; Butzow, R.; Nevanlinna, H.; Heikkinen, T.; Leminen, A.; Kiemeney, L.A.L.M.; Massuger, L.F.A.G.; Altena, A.M. van; Aben, K.K.H.; Kjaer, S.K.; Hogdall, E.; Jensen, A.; Brooks-Wilson, A.; Le, N.; Cook, L.; Earp, M.; Kelemen, L.; Easton, D.; Pharoah, P.; Song, H.; Tyrer, J.; Ramus, S.; Menon, U.; Gentry-Maharaj, A.; Gayther, S.A.; Bandera, E.V.; Olson, S.H.; Orlow, I.; Rodriguez-Rodriguez, L.; MacGregor, S.; Chenevix-Trench, G.

    2012-01-01

    Recent Genome-Wide Association Studies (GWAS) have identified four low-penetrance ovarian cancer susceptibility loci. We hypothesized that further moderate- or low-penetrance variants exist among the subset of single-nucleotide polymorphisms (SNPs) not well tagged by the genotyping arrays used in

  1. Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene

    Directory of Open Access Journals (Sweden)

    Shomron Noam

    2007-11-01

    Full Text Available Abstract Background Gene duplication and exonization of intronic transposed elements are two mechanisms that enhance genomic diversity. We examined whether there is less selection against exonization of transposed elements in duplicated genes than in single-copy genes. Results Genome-wide analysis of exonization of transposed elements revealed a higher rate of exonization within duplicated genes relative to single-copy genes. The gene for TIF-IA, an RNA polymerase I transcription initiation factor, underwent a humanoid-specific triplication, all three copies of the gene are active transcriptionally, although only one copy retains the ability to generate the TIF-IA protein. Prior to TIF-IA triplication, an Alu element was inserted into the first intron. In one of the non-protein coding copies, this Alu is exonized. We identified a single point mutation leading to exonization in one of the gene duplicates. When this mutation was introduced into the TIF-IA coding copy, exonization was activated and the level of the protein-coding mRNA was reduced substantially. A very low level of exonization was detected in normal human cells. However, this exonization was abundant in most leukemia cell lines evaluated, although the genomic sequence is unchanged in these cancerous cells compared to normal cells. Conclusion The definition of the Alu element within the TIF-IA gene as an exon is restricted to certain types of cancers; the element is not exonized in normal human cells. These results further our understanding of the delicate interplay between gene duplication and alternative splicing and of the molecular evolutionary mechanisms leading to genetic innovations. This implies the existence of purifying selection against exonization in single copy genes, with duplicate genes free from such constrains.

  2. Genome-wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays

    OpenAIRE

    Zhu, Caiye; Fan, Hongying; Yuan, Zehu; Hu, Shijin; Ma, Xiaomeng; Xuan, Junli; Wang, Hongwei; Zhang, Li; Wei, Caihong; Zhang, Qin; Zhao, Fuping; Du, Lixin

    2016-01-01

    Chinese indigenous sheep can be classified into three types based on tail morphology: fat-tailed, fat-rumped, and thin-tailed sheep, of which the typical breeds are large-tailed Han sheep, Altay sheep, and Tibetan sheep, respectively. To unravel the genetic mechanisms underlying the phenotypic differences among Chinese indigenous sheep with tails of three different types, we used ovine high-density 600K SNP arrays to detect genome-wide copy number variation (CNV). In large-tailed Han sheep, A...

  3. Genome-wide analysis of cell wall-related genes in Tuber melanosporum.

    Science.gov (United States)

    Balestrini, Raffaella; Sillo, Fabiano; Kohler, Annegret; Schneider, Georg; Faccio, Antonella; Tisserant, Emilie; Martin, Francis; Bonfante, Paola

    2012-06-01

    A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.

  4. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts

    Directory of Open Access Journals (Sweden)

    Herington Adrian C

    2007-08-01

    Full Text Available Abstract Background Ghrelin is a multifunctional peptide hormone expressed in a range of normal tissues and pathologies. It has been reported that the human ghrelin gene consists of five exons which span 5 kb of genomic DNA on chromosome 3 and includes a 20 bp non-coding first exon (20 bp exon 0. The availability of bioinformatic tools enabling comparative analysis and the finalisation of the human genome prompted us to re-examine the genomic structure of the ghrelin locus. Results We have demonstrated the presence of an additional novel exon (exon -1 and 5' extensions to exon 0 and 1 using comparative in silico analysis and have demonstrated their existence experimentally using RT-PCR and 5' RACE. A revised exon-intron structure demonstrates that the human ghrelin gene spans 7.2 kb and consists of six rather than five exons. Several ghrelin gene-derived splice forms were detected in a range of human tissues and cell lines. We have demonstrated ghrelin gene-derived mRNA transcripts that do not code for ghrelin, but instead may encode the C-terminal region of full-length preproghrelin (C-ghrelin, which contains the coding region for obestatin and a transcript encoding obestatin-only. Splice variants that differed in their 5' untranslated regions were also found, suggesting a role of these regions in the post-transcriptional regulation of preproghrelin translation. Finally, several natural antisense transcripts, termed ghrelinOS (ghrelin opposite strand transcripts, were demonstrated via orientation-specific RT-PCR, 5' RACE and in silico analysis of ESTs and cloned amplicons. Conclusion The sense and antisense alternative transcripts demonstrated in this study may function as non-coding regulatory RNA, or code for novel protein isoforms. This is the first demonstration of putative obestatin and C-ghrelin specific transcripts and these findings suggest that these ghrelin gene-derived peptides may also be produced independently of preproghrelin

  5. Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution.

    Directory of Open Access Journals (Sweden)

    Pawandeep Dhami

    2010-08-01

    Full Text Available It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II occupancy show preferential association with exons ("exon-intron marking", linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing.

  6. Genome-Wide Meta-Analysis of Longitudinal Alcohol Consumption Across Youth and Early Adulthood.

    Science.gov (United States)

    Adkins, Daniel E; Clark, Shaunna L; Copeland, William E; Kennedy, Martin; Conway, Kevin; Angold, Adrian; Maes, Hermine; Liu, Youfang; Kumar, Gaurav; Erkanli, Alaattin; Patkar, Ashwin A; Silberg, Judy; Brown, Tyson H; Fergusson, David M; Horwood, L John; Eaves, Lindon; van den Oord, Edwin J C G; Sullivan, Patrick F; Costello, E J

    2015-08-01

    The public health burden of alcohol is unevenly distributed across the life course, with levels of use, abuse, and dependence increasing across adolescence and peaking in early adulthood. Here, we leverage this temporal patterning to search for common genetic variants predicting developmental trajectories of alcohol consumption. Comparable psychiatric evaluations measuring alcohol consumption were collected in three longitudinal community samples (N=2,126, obs=12,166). Consumption-repeated measurements spanning adolescence and early adulthood were analyzed using linear mixed models, estimating individual consumption trajectories, which were then tested for association with Illumina 660W-Quad genotype data (866,099 SNPs after imputation and QC). Association results were combined across samples using standard meta-analysis methods. Four meta-analysis associations satisfied our pre-determined genome-wide significance criterion (FDR<0.1) and six others met our 'suggestive' criterion (FDR<0.2). Genome-wide significant associations were highly biological plausible, including associations within GABA transporter 1, SLC6A1 (solute carrier family 6, member 1), and exonic hits in LOC100129340 (mitofusin-1-like). Pathway analyses elaborated single marker results, indicating significant enriched associations to intuitive biological mechanisms, including neurotransmission, xenobiotic pharmacodynamics, and nuclear hormone receptors (NHR). These findings underscore the value of combining longitudinal behavioral data and genome-wide genotype information in order to study developmental patterns and improve statistical power in genomic studies.

  7. Optimized Exon-Exon Junction Library and its Application on Rodents' Brain Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Tong-Hai Dou

    2017-05-01

    Full Text Available ABSTRACT Background: Alternative splicing (AS, which plays an important role in gene expression and functional regulation, has been analyzed on genome-scale by various bioinformatic approaches based on RNA-seq data. Compared with the huge number of studies on mouse, the AS researches approaching the rat, whose genome is intermedia between mouse and human, were still limited. To enrich the knowledge on AS events in rodents' brain, we perfomed a comprehensive analysis on four transcriptome libraries (mouse cerebrum, mouse cerebellum, rat cerebrum, and rat cerebellum, recruiting high-throughput sequencing technology. An optimized exon-exon junction library approach was introduced to adapt the longer RNA-seq reads and to improve mapping efficiency. Results: In total, 7,106 mouse genes and 2,734 rat genes were differentially expressed between cerebrum and cerebellum, while 7,125 mouse genes and 1,795 rat genes exhibited varieties on transcript variant level. Only half of the differentially expressed exon-exon junctions could be reflected at gene expression level. Functional cluster analysis showed that 32 pathways in mouse and 9 pathways in rat were significantly enriched, and 6 of them were in both. Interestingly, some differentially expressed transcript variants did not show difference on gene expression level, such as PLCβ1 and Kcnma1. Conclusion: Our work provided a case study of a novel exon-exon junction strategy to analyze the expression of genes and isoforms, helping us understand which transcript contributes to the overall expression and further functional change.

  8. Genome-wide single nucleotide polymorphisms (SNPs) for a model invasive ascidian Botryllus schlosseri.

    Science.gov (United States)

    Gao, Yangchun; Li, Shiguo; Zhan, Aibin

    2018-04-01

    Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.

  9. PeakAnalyzer: Genome-wide annotation of chromatin binding and modification loci

    Directory of Open Access Journals (Sweden)

    Tammoja Kairi

    2010-08-01

    Full Text Available Abstract Background Functional genomic studies involving high-throughput sequencing and tiling array applications, such as ChIP-seq and ChIP-chip, generate large numbers of experimentally-derived signal peaks across the genome under study. In analyzing these loci to determine their potential regulatory functions, areas of signal enrichment must be considered relative to proximal genes and regulatory elements annotated throughout the target genome Regions of chromatin association by transcriptional regulators should be distinguished as individual binding sites in order to enhance downstream analyses, such as the identification of known and novel consensus motifs. Results PeakAnalyzer is a set of high-performance utilities for the automated processing of experimentally-derived peak regions and annotation of genomic loci. The programs can accurately subdivide multimodal regions of signal enrichment into distinct subpeaks corresponding to binding sites or chromatin modifications, retrieve genomic sequences encompassing the computed subpeak summits, and identify positional features of interest such as intersection with exon/intron gene components, proximity to up- or downstream transcriptional start sites and cis-regulatory elements. The software can be configured to run either as a pipeline component for high-throughput analyses, or as a cross-platform desktop application with an intuitive user interface. Conclusions PeakAnalyzer comprises a number of utilities essential for ChIP-seq and ChIP-chip data analysis. High-performance implementations are provided for Unix pipeline integration along with a GUI version for interactive use. Source code in C++ and Java is provided, as are native binaries for Linux, Mac OS X and Windows systems.

  10. Array-based assay detects genome-wide 5-mC and 5-hmC in the brains of humans, non-human primates, and mice.

    Science.gov (United States)

    Chopra, Pankaj; Papale, Ligia A; White, Andrew T J; Hatch, Andrea; Brown, Ryan M; Garthwaite, Mark A; Roseboom, Patrick H; Golos, Thaddeus G; Warren, Stephen T; Alisch, Reid S

    2014-02-13

    Methylation on the fifth position of cytosine (5-mC) is an essential epigenetic mark that is linked to both normal neurodevelopment and neurological diseases. The recent identification of another modified form of cytosine, 5-hydroxymethylcytosine (5-hmC), in both stem cells and post-mitotic neurons, raises new questions as to the role of this base in mediating epigenetic effects. Genomic studies of these marks using model systems are limited, particularly with array-based tools, because the standard method of detecting DNA methylation cannot distinguish between 5-mC and 5-hmC and most methods have been developed to only survey the human genome. We show that non-human data generated using the optimization of a widely used human DNA methylation array, designed only to detect 5-mC, reproducibly distinguishes tissue types within and between chimpanzee, rhesus, and mouse, with correlations near the human DNA level (R(2) > 0.99). Genome-wide methylation analysis, using this approach, reveals 6,102 differentially methylated loci between rhesus placental and fetal tissues with pathways analysis significantly overrepresented for developmental processes. Restricting the analysis to oncogenes and tumor suppressor genes finds 76 differentially methylated loci, suggesting that rhesus placental tissue carries a cancer epigenetic signature. Similarly, adapting the assay to detect 5-hmC finds highly reproducible 5-hmC levels within human, rhesus, and mouse brain tissue that is species-specific with a hierarchical abundance among the three species (human > rhesus > mouse). Annotation of 5-hmC with respect to gene structure reveals a significant prevalence in the 3'UTR and an association with chromatin-related ontological terms, suggesting an epigenetic feedback loop mechanism for 5-hmC. Together, these data show that this array-based methylation assay is generalizable to all mammals for the detection of both 5-mC and 5-hmC, greatly improving the utility of mammalian model systems

  11. Imputation and quality control steps for combining multiple genome-wide datasets

    Directory of Open Access Journals (Sweden)

    Shefali S Verma

    2014-12-01

    Full Text Available The electronic MEdical Records and GEnomics (eMERGE network brings together DNA biobanks linked to electronic health records (EHRs from multiple institutions. Approximately 52,000 DNA samples from distinct individuals have been genotyped using genome-wide SNP arrays across the nine sites of the network. The eMERGE Coordinating Center and the Genomics Workgroup developed a pipeline to impute and merge genomic data across the different SNP arrays to maximize sample size and power to detect associations with a variety of clinical endpoints. The 1000 Genomes cosmopolitan reference panel was used for imputation. Imputation results were evaluated using the following metrics: accuracy of imputation, allelic R2 (estimated correlation between the imputed and true genotypes, and the relationship between allelic R2 and minor allele frequency. Computation time and memory resources required by two different software packages (BEAGLE and IMPUTE2 were also evaluated. A number of challenges were encountered due to the complexity of using two different imputation software packages, multiple ancestral populations, and many different genotyping platforms. We present lessons learned and describe the pipeline implemented here to impute and merge genomic data sets. The eMERGE imputed dataset will serve as a valuable resource for discovery, leveraging the clinical data that can be mined from the EHR.

  12. Cloud-based adaptive exon prediction for DNA analysis.

    Science.gov (United States)

    Putluri, Srinivasareddy; Zia Ur Rahman, Md; Fathima, Shaik Yasmeen

    2018-02-01

    Cloud computing offers significant research and economic benefits to healthcare organisations. Cloud services provide a safe place for storing and managing large amounts of such sensitive data. Under conventional flow of gene information, gene sequence laboratories send out raw and inferred information via Internet to several sequence libraries. DNA sequencing storage costs will be minimised by use of cloud service. In this study, the authors put forward a novel genomic informatics system using Amazon Cloud Services, where genomic sequence information is stored and accessed for processing. True identification of exon regions in a DNA sequence is a key task in bioinformatics, which helps in disease identification and design drugs. Three base periodicity property of exons forms the basis of all exon identification techniques. Adaptive signal processing techniques found to be promising in comparison with several other methods. Several adaptive exon predictors (AEPs) are developed using variable normalised least mean square and its maximum normalised variants to reduce computational complexity. Finally, performance evaluation of various AEPs is done based on measures such as sensitivity, specificity and precision using various standard genomic datasets taken from National Center for Biotechnology Information genomic sequence database.

  13. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Canine Cohort, Canine Intelligence Assessment Regimen, Genome-Wide Single Nucleotide Polymorphism (SNP) Typing, and Unsupervised Classification Algorithm for Genome-Wide Association Data Analysis

    Science.gov (United States)

    2011-09-01

    SNP Array v2. A ‘proof-of-concept’ advanced data mining algorithm for unsupervised analysis of genome-wide association study (GWAS) dataset was... Opal F AUS Yes U141 Peggs F AUS Yes U142 Taxi F AUS Yes U143 Riso MI MAL Yes U144 Szarik MI GSD Yes U145 Astor MI MAL Yes U146 Roy MC MAL Yes... mining of genetic studies in general, and especially GWAS. As a proof-of-concept, a classification analysis of the WG SNP typing dataset of a

  14. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies.

    Directory of Open Access Journals (Sweden)

    Zhi Yon Charles Toh

    Full Text Available Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes.

  15. Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA.

    Science.gov (United States)

    Skvortsova, Ksenia; Zotenko, Elena; Luu, Phuc-Loi; Gould, Cathryn M; Nair, Shalima S; Clark, Susan J; Stirzaker, Clare

    2017-01-01

    The discovery that 5-methylcytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation (TET) proteins has prompted wide interest in the potential role of 5hmC in reshaping the mammalian DNA methylation landscape. The gold-standard bisulphite conversion technologies to study DNA methylation do not distinguish between 5mC and 5hmC. However, new approaches to mapping 5hmC genome-wide have advanced rapidly, although it is unclear how the different methods compare in accurately calling 5hmC. In this study, we provide a comparative analysis on brain DNA using three 5hmC genome-wide approaches, namely whole-genome bisulphite/oxidative bisulphite sequencing (WG Bis/OxBis-seq), Infinium HumanMethylation450 BeadChip arrays coupled with oxidative bisulphite (HM450K Bis/OxBis) and antibody-based immunoprecipitation and sequencing of hydroxymethylated DNA (hMeDIP-seq). We also perform loci-specific TET-assisted bisulphite sequencing (TAB-seq) for validation of candidate regions. We show that whole-genome single-base resolution approaches are advantaged in providing precise 5hmC values but require high sequencing depth to accurately measure 5hmC, as this modification is commonly in low abundance in mammalian cells. HM450K arrays coupled with oxidative bisulphite provide a cost-effective representation of 5hmC distribution, at CpG sites with 5hmC levels >~10%. However, 5hmC analysis is restricted to the genomic location of the probes, which is an important consideration as 5hmC modification is commonly enriched at enhancer elements. Finally, we show that the widely used hMeDIP-seq method provides an efficient genome-wide profile of 5hmC and shows high correlation with WG Bis/OxBis-seq 5hmC distribution in brain DNA. However, in cell line DNA with low levels of 5hmC, hMeDIP-seq-enriched regions are not detected by WG Bis/OxBis or HM450K, either suggesting misinterpretation of 5hmC calls by hMeDIP or lack of sensitivity of the latter methods. We

  16. First Exon Length Controls Active Chromatin Signatures and Transcription

    Directory of Open Access Journals (Sweden)

    Nicole I. Bieberstein

    2012-07-01

    Full Text Available Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.

  17. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    Directory of Open Access Journals (Sweden)

    Moreau Yves

    2005-05-01

    Full Text Available Abstract Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH. One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at http://medgen.ugent.be/arrayCGHbase/.

  18. Practical Calling Approach for Exome Array-Based Genome-Wide Association Studies in Korean Population

    Directory of Open Access Journals (Sweden)

    Tae-Joon Park

    2015-01-01

    Full Text Available Exome-based genotyping arrays are cost-effective and have recently been used as alternative platforms to whole-exome sequencing. However, the automated clustering algorithm in an exome array has a genotype calling problem in accuracy for identifying rare and low-frequency variants. To address these shortcomings, we present a practical approach for accurate genotype calling using the Illumina Infinium HumanExome BeadChip. We present comparison results and a statistical summary of our genotype data sets. Our data set comprises 14,647 Korean samples. To solve the limitation of automated clustering, we performed manual genotype clustering for the targeted identification of 46,076 variants that were identified using GenomeStudio software. To evaluate the effects of applying custom cluster files, we tested cluster files using 804 independent Korean samples and the same platform. Our study firstly suggests practical guidelines for exome chip quality control in Asian populations and provides valuable insight into an association study using exome chip.

  19. Genome-Wide Association Study of Antiphospholipid Antibodies

    Directory of Open Access Journals (Sweden)

    M. Ilyas Kamboh

    2013-01-01

    Full Text Available Background. The persistent presence of antiphospholipid antibodies (APA may lead to the development of primary or secondary antiphospholipid syndrome. Although the genetic basis of APA has been suggested, the identity of the underlying genes is largely unknown. In this study, we have performed a genome-wide association study (GWAS in an effort to identify susceptibility loci/genes for three main APA: anticardiolipin antibodies (ACL, lupus anticoagulant (LAC, and anti-β2 glycoprotein I antibodies (anti-β2GPI. Methods. DNA samples were genotyped using the Affymetrix 6.0 array containing 906,600 single-nucleotide polymorphisms (SNPs. Association of SNPs with the antibody status (positive/negative was tested using logistic regression under the additive model. Results. We have identified a number of suggestive novel loci with Pgenome-wide significance, many of the suggestive loci are potential candidates for the production of APA. We have replicated the previously reported associations of HLA genes and APOH with APA but these were not the top loci. Conclusions. We have identified a number of suggestive novel loci for APA that will stimulate follow-up studies in independent and larger samples to replicate our findings.

  20. Tandemly Arrayed Genes in Vertebrate Genomes

    Directory of Open Access Journals (Sweden)

    Deng Pan

    2008-01-01

    Full Text Available Tandemly arrayed genes (TAGs are duplicated genes that are linked as neighbors on a chromosome, many of which have important physiological and biochemical functions. Here we performed a survey of these genes in 11 available vertebrate genomes. TAGs account for an average of about 14% of all genes in these vertebrate genomes, and about 25% of all duplications. The majority of TAGs (72–94% have parallel transcription orientation (i.e., they are encoded on the same strand in contrast to the genome, which has about 50% of its genes in parallel transcription orientation. The majority of tandem arrays have only two members. In all species, the proportion of genes that belong to TAGs tends to be higher in large gene families than in small ones; together with our recent finding that tandem duplication played a more important role than retroposition in large families, this fact suggests that among all types of duplication mechanisms, tandem duplication is the predominant mechanism of duplication, especially in large families. Finally, several species have a higher proportion of large tandem arrays that are species-specific than random expectation.

  1. Genome-wide association study of susceptibility loci for breast cancer in Sardinian population.

    Science.gov (United States)

    Palomba, Grazia; Loi, Angela; Porcu, Eleonora; Cossu, Antonio; Zara, Ilenia; Budroni, Mario; Dei, Mariano; Lai, Sandra; Mulas, Antonella; Olmeo, Nina; Ionta, Maria Teresa; Atzori, Francesco; Cuccuru, Gianmauro; Pitzalis, Maristella; Zoledziewska, Magdalena; Olla, Nazario; Lovicu, Mario; Pisano, Marina; Abecasis, Gonçalo R; Uda, Manuela; Tanda, Francesco; Michailidou, Kyriaki; Easton, Douglas F; Chanock, Stephen J; Hoover, Robert N; Hunter, David J; Schlessinger, David; Sanna, Serena; Crisponi, Laura; Palmieri, Giuseppe

    2015-05-10

    Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p <  0(-6) level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10(-5), we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16 x 10(-5)), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population.

  2. Genome-wide association study of susceptibility loci for breast cancer in Sardinian population

    International Nuclear Information System (INIS)

    Palomba, Grazia; Loi, Angela; Porcu, Eleonora; Cossu, Antonio; Zara, Ilenia

    2015-01-01

    Despite progress in identifying genes associated with breast cancer, many more risk loci exist. Genome-wide association analyses in genetically-homogeneous populations, such as that of Sardinia (Italy), could represent an additional approach to detect low penetrance alleles. We performed a genome-wide association study comparing 1431 Sardinian patients with non-familial, BRCA1/2-mutation-negative breast cancer to 2171 healthy Sardinian blood donors. DNA was genotyped using GeneChip Human Mapping 500 K Arrays or Genome-Wide Human SNP Arrays 6.0. To increase genomic coverage, genotypes of additional SNPs were imputed using data from HapMap Phase II. After quality control filtering of genotype data, 1367 cases (9 men) and 1658 controls (1156 men) were analyzed on a total of 2,067,645 SNPs. Overall, 33 genomic regions (67 candidate SNPs) were associated with breast cancer risk at the p < 10 −6 level. Twenty of these regions contained defined genes, including one already associated with breast cancer risk: TOX3. With a lower threshold for preliminary significance to p < 10 −5 , we identified 11 additional SNPs in FGFR2, a well-established breast cancer-associated gene. Ten candidate SNPs were selected, excluding those already associated with breast cancer, for technical validation as well as replication in 1668 samples from the same population. Only SNP rs345299, located in intron 1 of VAV3, remained suggestively associated (p-value, 1.16x10 −5 ), but it did not associate with breast cancer risk in pooled data from two large, mixed-population cohorts. This study indicated the role of TOX3 and FGFR2 as breast cancer susceptibility genes in BRCA1/2-wild-type breast cancer patients from Sardinian population. The online version of this article (doi:10.1186/s12885-015-1392-9) contains supplementary material, which is available to authorized users

  3. Genome-wide single-generation signatures of local selection in the panmictic European eel

    DEFF Research Database (Denmark)

    Pujolar, J. M.; Jacobsen, M. W.; Als, Thomas Damm

    2014-01-01

    Next-generation sequencing and the collection of genome-wide data allow identifying adaptive variation and footprints of directional selection. Using a large SNP data set from 259 RAD-sequenced European eel individuals (glass eels) from eight locations between 34 and 64oN, we examined the patterns...... of genome-wide genetic diversity across locations. We tested for local selection by searching for increased population differentiation using FST-based outlier tests and by testing for significant associations between allele frequencies and environmental variables. The overall low genetic differentiation...... with single-generation signatures of spatially varying selection acting on glass eels. After screening 50 354 SNPs, a total of 754 potentially locally selected SNPs were identified. Candidate genes for local selection constituted a wide array of functions, including calcium signalling, neuroactive ligand...

  4. Genome-wide transcriptional reprogramming under drought stress

    KAUST Repository

    Chen, Hao

    2012-01-01

    Soil water deficit is one of the major factors limiting plant productivity. Plants cope with this adverse environmental condition by coordinating the up- or downregulation of an array of stress responsive genes. Reprogramming the expression of these genes leads to rebalanced development and growth that are in concert with the reduced water availability and that ultimately confer enhanced stress tolerance. Currently, several techniques have been employed to monitor genome-wide transcriptional reprogramming under drought stress. The results from these high throughput studies indicate that drought stress-induced transcriptional reprogramming is dynamic, has temporal and spatial specificity, and is coupled with the circadian clock and phytohormone signaling pathways. © 2012 Springer-Verlag Berlin Heidelberg. All rights are reserved.

  5. Genome-wide identification, phylogenetic classification, and exon-intron structure characterisation of the tubulin and actin genes in flax (Linum usitatissimum).

    Science.gov (United States)

    Pydiura, Nikolay; Pirko, Yaroslav; Galinousky, Dmitry; Postovoitova, Anastasiia; Yemets, Alla; Kilchevsky, Aleksandr; Blume, Yaroslav

    2018-06-08

    Flax (Linum usitatissimum L.) is a valuable food and fiber crop cultivated for its quality fiber and seed oil. α-, β-, γ-tubulins and actins are the main structural proteins of the cytoskeleton. α- and γ-tubulin and actin genes have not been characterized yet in the flax genome. In this study, we have identified 6 α-tubulin genes, 13 β-tubulin genes, 2 γ-tubulin genes, and 15 actin genes in the flax genome and analysed the phylogenetic relationships between flax and A. thaliana tubulin and actin genes. Six α-tubulin genes are represented by 3 paralogous pairs, among 13 β-tubulin genes 7 different isotypes can be distinguished, 6 of which are encoded by two paralogous genes each. γ-tubulin is represented by a paralogous pair of genes one of which may be not functional. Fifteen actin genes represent 7 paralogous pairs - 7 actin isotypes and a sequentially duplicated copy of one of the genes of one of the isotypes. Exon-intron structure analysis has shown intron length polymorphism within the β-tubulin genes and intron number variation among the α-tubulin gene: 3 or 4 introns are found in two or four genes, respectively. Intron positioning occurs at conservative sites, as observed in numerous other plant species. Flax actin genes show both intron length polymorphisms and variation in the number of intron that may be 2 or 3. These data will be useful to support further studies on the specificity, functioning, regulation and evolution of the flax cytoskeleton proteins. This article is protected by copyright. All rights reserved.

  6. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast

    Science.gov (United States)

    Oud, Bart; Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-01-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. PMID:22152095

  7. Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.

    Science.gov (United States)

    Oud, Bart; van Maris, Antonius J A; Daran, Jean-Marc; Pronk, Jack T

    2012-03-01

    Successful reverse engineering of mutants that have been obtained by nontargeted strain improvement has long presented a major challenge in yeast biotechnology. This paper reviews the use of genome-wide approaches for analysis of Saccharomyces cerevisiae strains originating from evolutionary engineering or random mutagenesis. On the basis of an evaluation of the strengths and weaknesses of different methods, we conclude that for the initial identification of relevant genetic changes, whole genome sequencing is superior to other analytical techniques, such as transcriptome, metabolome, proteome, or array-based genome analysis. Key advantages of this technique over gene expression analysis include the independency of genome sequences on experimental context and the possibility to directly and precisely reproduce the identified changes in naive strains. The predictive value of genome-wide analysis of strains with industrially relevant characteristics can be further improved by classical genetics or simultaneous analysis of strains derived from parallel, independent strain improvement lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Efficient genome-wide genotyping strategies and data integration in crop plants.

    Science.gov (United States)

    Torkamaneh, Davoud; Boyle, Brian; Belzile, François

    2018-03-01

    Next-generation sequencing (NGS) has revolutionized plant and animal research by providing powerful genotyping methods. This review describes and discusses the advantages, challenges and, most importantly, solutions to facilitate data processing, the handling of missing data, and cross-platform data integration. Next-generation sequencing technologies provide powerful and flexible genotyping methods to plant breeders and researchers. These methods offer a wide range of applications from genome-wide analysis to routine screening with a high level of accuracy and reproducibility. Furthermore, they provide a straightforward workflow to identify, validate, and screen genetic variants in a short time with a low cost. NGS-based genotyping methods include whole-genome re-sequencing, SNP arrays, and reduced representation sequencing, which are widely applied in crops. The main challenges facing breeders and geneticists today is how to choose an appropriate genotyping method and how to integrate genotyping data sets obtained from various sources. Here, we review and discuss the advantages and challenges of several NGS methods for genome-wide genetic marker development and genotyping in crop plants. We also discuss how imputation methods can be used to both fill in missing data in genotypic data sets and to integrate data sets obtained using different genotyping tools. It is our hope that this synthetic view of genotyping methods will help geneticists and breeders to integrate these NGS-based methods in crop plant breeding and research.

  9. Characterization of genomic alterations in radiation-associated breast cancer among childhood cancer survivors, using comparative genomic hybridization (CGH arrays.

    Directory of Open Access Journals (Sweden)

    Xiaohong R Yang

    Full Text Available Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS. Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29, had invasive ductal tumors (81%, n = 26, estrogen receptor (ER-positive staining (68%, n = 19 out of 28, and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22. Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2 was much higher among CCSS cases (38%, n = 12. Our findings suggest that second primary breast cancers in CCSS were enriched for an "amplifier" genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings.

  10. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis

    Science.gov (United States)

    2012-01-01

    Background The MYB gene family comprises one of the richest groups of transcription factors in plants. Plant MYB proteins are characterized by a highly conserved MYB DNA-binding domain. MYB proteins are classified into four major groups namely, 1R-MYB, 2R-MYB, 3R-MYB and 4R-MYB based on the number and position of MYB repeats. MYB transcription factors are involved in plant development, secondary metabolism, hormone signal transduction, disease resistance and abiotic stress tolerance. A comparative analysis of MYB family genes in rice and Arabidopsis will help reveal the evolution and function of MYB genes in plants. Results A genome-wide analysis identified at least 155 and 197 MYB genes in rice and Arabidopsis, respectively. Gene structure analysis revealed that MYB family genes possess relatively more number of introns in the middle as compared with C- and N-terminal regions of the predicted genes. Intronless MYB-genes are highly conserved both in rice and Arabidopsis. MYB genes encoding R2R3 repeat MYB proteins retained conserved gene structure with three exons and two introns, whereas genes encoding R1R2R3 repeat containing proteins consist of six exons and five introns. The splicing pattern is similar among R1R2R3 MYB genes in Arabidopsis. In contrast, variation in splicing pattern was observed among R1R2R3 MYB members of rice. Consensus motif analysis of 1kb upstream region (5′ to translation initiation codon) of MYB gene ORFs led to the identification of conserved and over-represented cis-motifs in both rice and Arabidopsis. Real-time quantitative RT-PCR analysis showed that several members of MYBs are up-regulated by various abiotic stresses both in rice and Arabidopsis. Conclusion A comprehensive genome-wide analysis of chromosomal distribution, tandem repeats and phylogenetic relationship of MYB family genes in rice and Arabidopsis suggested their evolution via duplication. Genome-wide comparative analysis of MYB genes and their expression analysis

  11. Genome-wide association study for milking speed in French Holstein cows

    DEFF Research Database (Denmark)

    Marete, Andrew Gitahi; Sahana, Goutam; Fritz, Sebastian

    2018-01-01

    Using a combination of data from the BovineSNP50 BeadChip SNP array (Illumina, San Diego, CA) and a EuroGenomics (Amsterdam, the Netherlands) custom single nucleotide polymorphism (SNP) chip with SNP pre-selected from whole genome sequence data, we carried out an association study of milking speed...... associated with milking speed. As clinical mastitis and somatic cell score have an unfavorable genetic correlation with milking speed, we tested whether the most significant SNP on these 22 chromosomes associated with milking speed were also associated with clinical mastitis or somatic cell score. Nine...... hundred seventy-one genome-wide significant SNP were associated with milking speed. Of these, 86 were associated with clinical mastitis and 198 with somatic cell score. The most significant association signals for milking speed were observed on chromosomes 7, 8, 10, 14, and 18. The most significant signal...

  12. A Pooled Genome-Wide Association Study of Asperger Syndrome.

    Directory of Open Access Journals (Sweden)

    Varun Warrier

    Full Text Available Asperger Syndrome (AS is a neurodevelopmental condition characterized by impairments in social interaction and communication, alongside the presence of unusually repetitive, restricted interests and stereotyped behaviour. Individuals with AS have no delay in cognitive and language development. It is a subset of Autism Spectrum Conditions (ASC, which are highly heritable and has a population prevalence of approximately 1%. Few studies have investigated the genetic basis of AS. To address this gap in the literature, we performed a genome-wide pooled DNA association study to identify candidate loci in 612 individuals (294 cases and 318 controls of Caucasian ancestry, using the Affymetrix GeneChip Human Mapping version 6.0 array. We identified 11 SNPs that had a p-value below 1x10-5. These SNPs were independently genotyped in the same sample. Three of the SNPs (rs1268055, rs7785891 and rs2782448 were nominally significant, though none remained significant after Bonferroni correction. Two of our top three SNPs (rs7785891 and rs2782448 lie in loci previously implicated in ASC. However, investigation of the three SNPs in the ASC genome-wide association dataset from the Psychiatric Genomics Consortium indicated that these three SNPs were not significantly associated with ASC. The effect sizes of the variants were modest, indicating that our study was not sufficiently powered to identify causal variants with precision.

  13. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh).

    Science.gov (United States)

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  14. Development and validation of a 20K single nucleotide polymorphism (SNP whole genome genotyping array for apple (Malus × domestica Borkh.

    Directory of Open Access Journals (Sweden)

    Luca Bianco

    Full Text Available High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus. A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs. Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  15. Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh)

    Science.gov (United States)

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088

  16. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing.

    Science.gov (United States)

    Yi, Guoqiang; Qu, Lujiang; Liu, Jianfeng; Yan, Yiyuan; Xu, Guiyun; Yang, Ning

    2014-11-07

    Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.

  17. Whole genome DNA copy number changes identified by high density oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Huang Jing

    2004-05-01

    Full Text Available Abstract Changes in DNA copy number are one of the hallmarks of the genetic instability common to most human cancers. Previous micro-array-based methods have been used to identify chromosomal gains and losses; however, they are unable to genotype alleles at the level of single nucleotide polymorphisms (SNPs. Here we describe a novel algorithm that uses a recently developed high-density oligonucleotide array-based SNP genotyping method, whole genome sampling analysis (WGSA, to identify genome-wide chromosomal gains and losses at high resolution. WGSA simultaneously genotypes over 10,000 SNPs by allele-specific hybridisation to perfect match (PM and mismatch (MM probes synthesised on a single array. The copy number algorithm jointly uses PM intensity and discrimination ratios between paired PM and MM intensity values to identify and estimate genetic copy number changes. Values from an experimental sample are compared with SNP-specific distributions derived from a reference set containing over 100 normal individuals to gain statistical power. Genomic regions with statistically significant copy number changes can be identified using both single point analysis and contiguous point analysis of SNP intensities. We identified multiple regions of amplification and deletion using a panel of human breast cancer cell lines. We verified these results using an independent method based on quantitative polymerase chain reaction and found that our approach is both sensitive and specific and can tolerate samples which contain a mixture of both tumour and normal DNA. In addition, by using known allele frequencies from the reference set, statistically significant genomic intervals can be identified containing contiguous stretches of homozygous markers, potentially allowing the detection of regions undergoing loss of heterozygosity (LOH without the need for a matched normal control sample. The coupling of LOH analysis, via SNP genotyping, with copy number

  18. Genome-wide association study for ovarian cancer susceptibility using pooled DNA

    DEFF Research Database (Denmark)

    Lu, Yi; Chen, Xiaoqing; Beesley, Jonathan

    2012-01-01

    stage 1 GWAS rather than due to problems with the pooling approach. We conclude that there are unlikely to be any moderate or large effects on ovarian cancer risk untagged by less dense arrays. However, our study lacked power to make clear statements on the existence of hitherto untagged small......Recent Genome-Wide Association Studies (GWAS) have identified four low-penetrance ovarian cancer susceptibility loci. We hypothesized that further moderate- or low-penetrance variants exist among the subset of single-nucleotide polymorphisms (SNPs) not well tagged by the genotyping arrays used...... in the previous studies, which would account for some of the remaining risk. We therefore conducted a time- and cost-effective stage 1 GWAS on 342 invasive serous cases and 643 controls genotyped on pooled DNA using the high-density Illumina 1M-Duo array. We followed up 20 of the most significantly associated...

  19. DEDB: a database of Drosophila melanogaster exons in splicing graph form

    Directory of Open Access Journals (Sweden)

    Tan Tin

    2004-12-01

    Full Text Available Abstract Background A wealth of quality genomic and mRNA/EST sequences in recent years has provided the data required for large-scale genome-wide analysis of alternative splicing. We have capitalized on this by constructing a database that contains alternative splicing information organized as splicing graphs, where all transcripts arising from a single gene are collected, organized and classified. The splicing graph then serves as the basis for the classification of the various types of alternative splicing events. Description DEDB http://proline.bic.nus.edu.sg/dedb/index.html is a database of Drosophila melanogaster exons obtained from FlyBase arranged in a splicing graph form that permits the creation of simple rules allowing for the classification of alternative splicing events. Pfam domains were also mapped onto the protein sequences allowing users to access the impact of alternative splicing events on domain organization. Conclusions DEDB's catalogue of splicing graphs facilitates genome-wide classification of alternative splicing events for genome analysis. The splicing graph viewer brings together genome, transcript, protein and domain information to facilitate biologists in understanding the implications of alternative splicing.

  20. Genome-wide Association Study Implicates PARD3B-based AIDS Restriction

    Science.gov (United States)

    Nelson, George W.; Lautenberger, James A.; Chinn, Leslie; McIntosh, Carl; Johnson, Randall C.; Sezgin, Efe; Kessing, Bailey; Malasky, Michael; Hendrickson, Sher L.; Pontius, Joan; Tang, Minzhong; An, Ping; Winkler, Cheryl A.; Limou, Sophie; Le Clerc, Sigrid; Delaneau, Olivier; Zagury, Jean-François; Schuitemaker, Hanneke; van Manen, Daniëlle; Bream, Jay H.; Gomperts, Edward D.; Buchbinder, Susan; Goedert, James J.; Kirk, Gregory D.; O'Brien, Stephen J.

    2011-01-01

    Background. Host genetic variation influences human immunodeficiency virus (HIV) infection and progression to AIDS. Here we used clinically well-characterized subjects from 5 pretreatment HIV/AIDS cohorts for a genome-wide association study to identify gene associations with rate of AIDS progression. Methods.  European American HIV seroconverters (n = 755) were interrogated for single-nucleotide polymorphisms (SNPs) (n = 700,022) associated with progression to AIDS 1987 (Cox proportional hazards regression analysis, co-dominant model). Results.  Association with slower progression was observed for SNPs in the gene PARD3B. One of these, rs11884476, reached genome-wide significance (relative hazard = 0.3; P =3. 370 × 10−9) after statistical correction for 700,022 SNPs and contributes 4.52% of the overall variance in AIDS progression in this study. Nine of the top-ranked SNPs define a PARD3B haplotype that also displays significant association with progression to AIDS (hazard ratio, 0.3; P = 3.220 × 10−8). One of these SNPs, rs10185378, is a predicted exonic splicing enhancer; significant alteration in the expression profile of PARD3B splicing transcripts was observed in B cell lines with alternate rs10185378 genotypes. This SNP was typed in European cohorts of rapid progressors and was found to be protective for AIDS 1993 definition (odds ratio, 0.43, P = .025). Conclusions. These observations suggest a potential unsuspected pathway of host genetic influence on the dynamics of AIDS progression. PMID:21502085

  1. Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms.

    Science.gov (United States)

    Yamamoto, Toshio; Nagasaki, Hideki; Yonemaru, Jun-ichi; Ebana, Kaworu; Nakajima, Maiko; Shibaya, Taeko; Yano, Masahiro

    2010-04-27

    To create useful gene combinations in crop breeding, it is necessary to clarify the dynamics of the genome composition created by breeding practices. A large quantity of single-nucleotide polymorphism (SNP) data is required to permit discrimination of chromosome segments among modern cultivars, which are genetically related. Here, we used a high-throughput sequencer to conduct whole-genome sequencing of an elite Japanese rice cultivar, Koshihikari, which is closely related to Nipponbare, whose genome sequencing has been completed. Then we designed a high-throughput typing array based on the SNP information by comparison of the two sequences. Finally, we applied this array to analyze historical representative rice cultivars to understand the dynamics of their genome composition. The total 5.89-Gb sequence for Koshihikari, equivalent to 15.7 x the entire rice genome, was mapped using the Pseudomolecules 4.0 database for Nipponbare. The resultant Koshihikari genome sequence corresponded to 80.1% of the Nipponbare sequence and led to the identification of 67,051 SNPs. A high-throughput typing array consisting of 1917 SNP sites distributed throughout the genome was designed to genotype 151 representative Japanese cultivars that have been grown during the past 150 years. We could identify the ancestral origin of the pedigree haplotypes in 60.9% of the Koshihikari genome and 18 consensus haplotype blocks which are inherited from traditional landraces to current improved varieties. Moreover, it was predicted that modern breeding practices have generally decreased genetic diversity Detection of genome-wide SNPs by both high-throughput sequencer and typing array made it possible to evaluate genomic composition of genetically related rice varieties. With the aid of their pedigree information, we clarified the dynamics of chromosome recombination during the historical rice breeding process. We also found several genomic regions decreasing genetic diversity which might be

  2. Experimental annotation of the human genome using microarray technology.

    Science.gov (United States)

    Shoemaker, D D; Schadt, E E; Armour, C D; He, Y D; Garrett-Engele, P; McDonagh, P D; Loerch, P M; Leonardson, A; Lum, P Y; Cavet, G; Wu, L F; Altschuler, S J; Edwards, S; King, J; Tsang, J S; Schimmack, G; Schelter, J M; Koch, J; Ziman, M; Marton, M J; Li, B; Cundiff, P; Ward, T; Castle, J; Krolewski, M; Meyer, M R; Mao, M; Burchard, J; Kidd, M J; Dai, H; Phillips, J W; Linsley, P S; Stoughton, R; Scherer, S; Boguski, M S

    2001-02-15

    The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.

  3. Estimating the Nucleotide Diversity in Ceratodon purpureus (Ditrichaceae from 218 Conserved Exon-Primed, Intron-Spanning Nuclear Loci

    Directory of Open Access Journals (Sweden)

    Stuart F. McDaniel

    2013-04-01

    Full Text Available Premise of the study: We developed and tested primers for 218 nuclear loci for studying population genetics, phylogeography, and genome evolution in bryophytes. Methods and Results: We aligned expressed sequence tags (ESTs from Ceratodon purpureus to the Physcomitrella patens genome sequence, and designed primers that are homologous to conserved exons but span introns in the P. patens genome. We tested these primers on four isolates from New York, USA; Otavalo, Ecuador; and two laboratory isolates from Austria (WT4 and GG1. The median genome-wide nucleotide diversity was 0.008 substitutions/site, but the range was large (0–0.14, illustrating the among-locus heterogeneity in the species. Conclusions: These loci provide a valuable resource for finely resolved, genome-wide population genetic and species-level phylogenetic analyses of C. purpureus and its relatives.

  4. Lex-SVM: exploring the potential of exon expression profiling for disease classification.

    Science.gov (United States)

    Yuan, Xiongying; Zhao, Yi; Liu, Changning; Bu, Dongbo

    2011-04-01

    Exon expression profiling technologies, including exon arrays and RNA-Seq, measure the abundance of every exon in a gene. Compared with gene expression profiling technologies like 3' array, exon expression profiling technologies could detect alterations in both transcription and alternative splicing, therefore they are expected to be more sensitive in diagnosis. However, exon expression profiling also brings higher dimension, more redundancy, and significant correlation among features. Ignoring the correlation structure among exons of a gene, a popular classification method like L1-SVM selects exons individually from each gene and thus is vulnerable to noise. To overcome this limitation, we present in this paper a new variant of SVM named Lex-SVM to incorporate correlation structure among exons and known splicing patterns to promote classification performance. Specifically, we construct a new norm, ex-norm, including our prior knowledge on exon correlation structure to regularize the coefficients of a linear SVM. Lex-SVM can be solved efficiently using standard linear programming techniques. The advantage of Lex-SVM is that it can select features group-wisely, force features in a subgroup to take equal weihts and exclude the features that contradict the majority in the subgroup. Experimental results suggest that on exon expression profile, Lex-SVM is more accurate than existing methods. Lex-SVM also generates a more compact model and selects genes more consistently in cross-validation. Unlike L1-SVM selecting only one exon in a gene, Lex-SVM assigns equal weights to as many exons in a gene as possible, lending itself easier for further interpretation.

  5. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple

    NARCIS (Netherlands)

    Chagné, D.; Crowhurst, R.N.; Troggio, M.; Davey, M.W.; Gilmore, B.; Lawley, C.; Vanderzande, S.; Hellens, R.P.; Kumar, S.; Cestaro, A.; Velasco, R.; Main, D.; Rees, J.D.; Iezzoni, A.F.; Mockler, T.; Wilhelm, L.; Weg, van de W.E.; Gardiner, S.E.; Bassil, N.; Peace, C.

    2012-01-01

    As high-throughput genetic marker screening systems are essential for a range of genetics studies and plant breeding applications, the International RosBREED SNP Consortium (IRSC) has utilized the Illumina Infinium® II system to develop a medium- to high-throughput SNP screening tool for genome-wide

  6. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, E.A.; Cho, M.; Milewicz, D.M. [Univ. of Texas-Houston Medical School, Houston, TX (United States)] [and others

    1996-03-29

    Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-based exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.

  7. Polygenic analysis of genome-wide SNP data identifies common variants on allergic rhinitis

    DEFF Research Database (Denmark)

    Mohammadnejad, Afsaneh; Brasch-Andersen, Charlotte; Haagerup, Annette

    Background: Allergic Rhinitis (AR) is a complex disorder that affects many people around the world. There is a high genetic contribution to the development of the AR, as twins and family studies have estimated heritability of more than 33%. Due to the complex nature of the disease, single SNP...... analysis has limited power in identifying the genetic variations for AR. We combined genome-wide association analysis (GWAS) with polygenic risk score (PRS) in exploring the genetic basis underlying the disease. Methods: We collected clinical data on 631 Danish subjects with AR cases consisting of 434...... sibling pairs and unrelated individuals and control subjects of 197 unrelated individuals. SNP genotyping was done by Affymetrix Genome-Wide Human SNP Array 5.0. SNP imputation was performed using "IMPUTE2". Using additive effect model, GWAS was conducted in discovery sample, the genotypes...

  8. Genome-wide transcription analyses in rice using tiling microarrays

    DEFF Research Database (Denmark)

    Li, Lei; Wang, Xiangfeng; Stolc, Viktor

    2006-01-01

    . We report here a full-genome transcription analysis of the indica rice subspecies using high-density oligonucleotide tiling microarrays. Our results provided expression data support for the existence of 35,970 (81.9%) annotated gene models and identified 5,464 unique transcribed intergenic regions...... that share similar compositional properties with the annotated exons and have significant homology to other plant proteins. Elucidating and mapping of all transcribed regions revealed an association between global transcription and cytological chromosome features, and an overall similarity of transcriptional......Sequencing and computational annotation revealed several features, including high gene numbers, unusual composition of the predicted genes and a large number of genes lacking homology to known genes, that distinguish the rice (Oryza sativa) genome from that of other fully sequenced model species...

  9. Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping

    Directory of Open Access Journals (Sweden)

    Maruoka Shuichiro

    2008-12-01

    Full Text Available Abstract Background The study of genome-wide DNA methylation changes has become more accessible with the development of various array-based technologies though when studying species other than human the choice of applications are limited and not always within reach. In this study, we adapted and tested the applicability of Methylation Specific Digital Karyotyping (MSDK, a non-array based method, for the prospective analysis of epigenetic changes after perinatal nutritional modifications in a mouse model of allergic airway disease. MSDK is a sequenced based method that allows a comprehensive and unbiased methylation profiling. The method generates 21 base pairs long sequence tags derived from specific locations in the genome. The resulting tag frequencies determine in a quantitative manner the methylation level of the corresponding loci. Results Genomic DNA from whole lung was isolated and subjected to MSDK analysis using the methylation-sensitive enzyme Not I as the mapping enzyme and Nla III as the fragmenting enzyme. In a pair wise comparison of the generated mouse MSDK libraries we identified 158 loci that are significantly differentially methylated (P-value = 0.05 after perinatal dietary changes in our mouse model. Quantitative methylation specific PCR and sequence analysis of bisulfate modified genomic DNA confirmed changes in methylation at specific loci. Differences in genomic MSDK tag counts for a selected set of genes, correlated well with changes in transcription levels as measured by real-time PCR. Furthermore serial analysis of gene expression profiling demonstrated a dramatic difference in expressed transcripts in mice exposed to perinatal nutritional changes. Conclusion The genome-wide methylation survey applied in this study allowed for an unbiased methylation profiling revealing subtle changes in DNA methylation in mice maternally exposed to dietary changes in methyl-donor content. The MSDK method is applicable for mouse models

  10. The role of exon shuffling in shaping protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    França Gustavo S

    2010-12-01

    Full Text Available Abstract Background Physical protein-protein interaction (PPI is a critical phenomenon for the function of most proteins in living organisms and a significant fraction of PPIs are the result of domain-domain interactions. Exon shuffling, intron-mediated recombination of exons from existing genes, is known to have been a major mechanism of domain shuffling in metazoans. Thus, we hypothesized that exon shuffling could have a significant influence in shaping the topology of PPI networks. Results We tested our hypothesis by compiling exon shuffling and PPI data from six eukaryotic species: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Cryptococcus neoformans and Arabidopsis thaliana. For all four metazoan species, genes enriched in exon shuffling events presented on average higher vertex degree (number of interacting partners in PPI networks. Furthermore, we verified that a set of protein domains that are simultaneously promiscuous (known to interact to multiple types of other domains, self-interacting (able to interact with another copy of themselves and abundant in the genomes presents a stronger signal for exon shuffling. Conclusions Exon shuffling appears to have been a recurrent mechanism for the emergence of new PPIs along metazoan evolution. In metazoan genomes, exon shuffling also promoted the expansion of some protein domains. We speculate that their promiscuous and self-interacting properties may have been decisive for that expansion.

  11. Multi-exon deletions of the FBN1 gene in Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Schrijver Iris

    2001-10-01

    Full Text Available Abstract Background Mutations in the fibrillin -1 gene (FBN1 cause Marfan syndrome (MFS, an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion. Methods We used long-range RT-PCR for mutation detection and long-range genomic PCR and DNA sequencing for identification of deletion breakpoints, allele-specific transcript analyses to determine stability of the mutant RNA, and pulse-chase studies to quantitate fibrillin synthesis and extracellular matrix deposition in cultured fibroblasts. Southern blots of genomic DNA were probed with three overlapping fragments covering the FBN1 coding exons Results Two novel multi-exon FBN1 deletions were discovered. Identical nucleotide pentamers were found at or near the intronic breakpoints. In a Case with classic MFS, an in-frame deletion of exons 42 and 43 removed the C-terminal 24 amino acids of the 5th LTBP (8-cysteine domain and the adjacent 25th calcium-binding EGF-like (6-cysteine domain. The mutant mRNA was stable, but fibrillin synthesis and matrix deposition were significantly reduced. A Case with severe childhood-onset MFS has a de novo deletion of exons 44–46 that removed three EGF-like domains. Fibrillin protein synthesis was normal, but matrix deposition was strikingly reduced. No genomic rearrangements were detected by Southern analysis of 18 unrelated MFS samples negative for FBN1 mutation screening. Conclusions Two novel deletion cases expand knowledge of mutational mechanisms and genotype/phenotype correlations of fibrillinopathies. Deletions or mutations affecting an LTBP domain may result in unstable mutant protein cleavage products that interfere with microfibril assembly.

  12. A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

    Directory of Open Access Journals (Sweden)

    Huiying Qi

    2016-01-01

    Full Text Available Design of antenna array under the limitation of restricted size is a challenging problem. Cavity-backed slot antenna is widely used because of its advantages of small size, wide band, and wide beam. In this paper, a design of wide band and wide beam cavity-backed slot antenna array with the slant polarization is proposed. To obtain wide band and wide beam with limited size, the inverted microstrip-fed cavity-backed slot antenna (IMF-CBSA is adopted as the element of 1 × 4 antenna array. The slant polarized antennas and their feeding networks are adopted because of their simple structures. The performance of the proposed antenna array is verified by the simulations and experiments. The measured VSWR < 2 bandwidth is 55% at the center frequency 21.8 GHz, and the gain is larger than 12.2 dB. Experimental results demonstrate that the proposed design achieves wide band and beam with the size of 68 mm × 56 mm × 14.5 mm.

  13. Genomic selection: genome-wide prediction in plant improvement.

    Science.gov (United States)

    Desta, Zeratsion Abera; Ortiz, Rodomiro

    2014-09-01

    Association analysis is used to measure relations between markers and quantitative trait loci (QTL). Their estimation ignores genes with small effects that trigger underpinning quantitative traits. By contrast, genome-wide selection estimates marker effects across the whole genome on the target population based on a prediction model developed in the training population (TP). Whole-genome prediction models estimate all marker effects in all loci and capture small QTL effects. Here, we review several genomic selection (GS) models with respect to both the prediction accuracy and genetic gain from selection. Phenotypic selection or marker-assisted breeding protocols can be replaced by selection, based on whole-genome predictions in which phenotyping updates the model to build up the prediction accuracy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A genome-wide association search for type 2 diabetes genes in African Americans

    DEFF Research Database (Denmark)

    Palmer, Nicholette D; McDonough, Caitrin W; Hicks, Pamela J

    2012-01-01

    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide...... Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n¿=¿550 independent loci) were genotyped in a replication cohort and 122 SNPs (n¿=¿98 independent loci) were...... further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P...

  15. Detecting single DNA copy number variations in complex genomes using one nanogram of starting DNA and BAC-array CGH.

    Science.gov (United States)

    Guillaud-Bataille, Marine; Valent, Alexander; Soularue, Pascal; Perot, Christine; Inda, Maria Mar; Receveur, Aline; Smaïli, Sadek; Roest Crollius, Hugues; Bénard, Jean; Bernheim, Alain; Gidrol, Xavier; Danglot, Gisèle

    2004-07-29

    Comparative genomic hybridization to bacterial artificial chromosome (BAC)-arrays (array-CGH) is a highly efficient technique, allowing the simultaneous measurement of genomic DNA copy number at hundreds or thousands of loci, and the reliable detection of local one-copy-level variations. We report a genome-wide amplification method allowing the same measurement sensitivity, using 1 ng of starting genomic DNA, instead of the classical 1 microg usually necessary. Using a discrete series of DNA fragments, we defined the parameters adapted to the most faithful ligation-mediated PCR amplification and the limits of the technique. The optimized protocol allows a 3000-fold DNA amplification, retaining the quantitative characteristics of the initial genome. Validation of the amplification procedure, using DNA from 10 tumour cell lines hybridized to BAC-arrays of 1500 spots, showed almost perfectly superimposed ratios for the non-amplified and amplified DNAs. Correlation coefficients of 0.96 and 0.99 were observed for regions of low-copy-level variations and all regions, respectively (including in vivo amplified oncogenes). Finally, labelling DNA using two nucleotides bearing the same fluorophore led to a significant increase in reproducibility and to the correct detection of one-copy gain or loss in >90% of the analysed data, even for pseudotriploid tumour genomes.

  16. Genome wide analysis of stress responsive WRKY transcription factors in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shaiq Sultan

    2016-04-01

    Full Text Available WRKY transcription factors are a class of DNA-binding proteins that bind with a specific sequence C/TTGACT/C known as W-Box found in promoters of genes which are regulated by these WRKYs. From previous studies, 43 different stress responsive WRKY transcription factors in Arabidopsis thaliana, identified and then categorized in three groups viz., abiotic, biotic and both of these stresses. A comprehensive genome wide analysis including chromosomal localization, gene structure analysis, multiple sequence alignment, phylogenetic analysis and promoter analysis of these WRKY genes was carried out in this study to determine the functional homology in Arabidopsis. This analysis led to the classification of these WRKY family members into 3 major groups and subgroups and showed evolutionary relationship among these groups on the base of their functional WRKY domain, chromosomal localization and intron/exon structure. The proposed groups of these stress responsive WRKY genes and annotation based on their position on chromosomes can also be explored to determine their functional homology in other plant species in relation to different stresses. The result of the present study provides indispensable genomic information for the stress responsive WRKY transcription factors in Arabidopsis and will pave the way to explain the precise role of various AtWRKYs in plant growth and development under stressed conditions.

  17. GWAMA: software for genome-wide association meta-analysis

    Directory of Open Access Journals (Sweden)

    Mägi Reedik

    2010-05-01

    Full Text Available Abstract Background Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. Results We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. Conclusions The GWAMA (Genome-Wide Association Meta-Analysis software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.

  18. Genome-wide assessment in Escherichia coli reveals time-dependent nanotoxicity paradigms.

    Science.gov (United States)

    Reyes, Vincent C; Li, Minghua; Hoek, Eric M V; Mahendra, Shaily; Damoiseaux, Robert

    2012-11-27

    The use of engineered nanomaterials (eNM) in consumer and industrial products is increasing exponentially. Our ability to rapidly assess their potential effects on human and environmental health is limited by our understanding of nanomediated toxicity. High-throughput screening (HTS) enables the investigation of nanomediated toxicity on a genome-wide level, thus uncovering their novel mechanisms and paradigms. Herein, we investigate the toxicity of zinc-containing nanomaterials (Zn-eNMs) using a time-resolved HTS methodology in an arrayed Escherichia coli genome-wide knockout (KO) library. The library was screened against nanoscale zerovalent zinc (nZn), nanoscale zinc oxide (nZnO), and zinc chloride (ZnCl(2)) salt as reference. Through sequential screening over 24 h, our method identified 173 sensitive clones from diverse biological pathways, which fell into two general groups: early and late responders. The overlap between these groups was small. Our results suggest that bacterial toxicity mechanisms change from pathways related to general metabolic function, transport, signaling, and metal ion homeostasis to membrane synthesis pathways over time. While all zinc sources shared pathways relating to membrane damage and metal ion homeostasis, Zn-eNMs and ZnCl(2) displayed differences in their sensitivity profiles. For example, ZnCl(2) and nZnO elicited unique responses in pathways related to two-component signaling and monosaccharide biosynthesis, respectively. Single isolated measurements, such as MIC or IC(50), are inadequate, and time-resolved approaches utilizing genome-wide assays are therefore needed to capture this crucial dimension and illuminate the dynamic interplay at the nano-bio interface.

  19. Three gangliogliomas: results of GTG-banding, SKY, genome-wide high resolution SNP-array, gene expression and review of the literature.

    Science.gov (United States)

    Xu, Li-Xin; Holland, Heidrun; Kirsten, Holger; Ahnert, Peter; Krupp, Wolfgang; Bauer, Manfred; Schober, Ralf; Mueller, Wolf; Fritzsch, Dominik; Meixensberger, Jürgen; Koschny, Ronald

    2015-04-01

    According to the World Health Organization gangliogliomas are classified as well-differentiated and slowly growing neuroepithelial tumors, composed of neoplastic mature ganglion and glial cells. It is the most frequent tumor entity observed in patients with long-term epilepsy. Comprehensive cytogenetic and molecular cytogenetic data including high-resolution genomic profiling (single nucleotide polymorphism (SNP)-array) of gangliogliomas are scarce but necessary for a better oncological understanding of this tumor entity. For a detailed characterization at the single cell and cell population levels, we analyzed genomic alterations of three gangliogliomas using trypsin-Giemsa banding (GTG-banding) and by spectral karyotyping (SKY) in combination with SNP-array and gene expression array experiments. By GTG and SKY, we could confirm frequently detected chromosomal aberrations (losses within chromosomes 10, 13 and 22; gains within chromosomes 5, 7, 8 and 12), and identify so far unknown genetic aberrations like the unbalanced non-reciprocal translocation t(1;18)(q21;q21). Interestingly, we report on the second so far detected ganglioglioma with ring chromosome 1. Analyses of SNP-array data from two of the tumors and respective germline DNA (peripheral blood) identified few small gains and losses and a number of copy-neutral regions with loss of heterozygosity (LOH) in germline and in tumor tissue. In comparison to germline DNA, tumor tissues did not show substantial regions with significant loss or gain or with newly developed LOH. Gene expression analyses of tumor-specific genes revealed similarities in the profile of the analyzed samples regarding different relevant pathways. Taken together, we describe overlapping but also distinct and novel genetic aberrations of three gangliogliomas. © 2014 Japanese Society of Neuropathology.

  20. Genome wide identification of aberrant alternative splicing events in myotonic dystrophy type 2.

    Science.gov (United States)

    Perfetti, Alessandra; Greco, Simona; Fasanaro, Pasquale; Bugiardini, Enrico; Cardani, Rosanna; Garcia-Manteiga, Jose M; Manteiga, Jose M Garcia; Riba, Michela; Cittaro, Davide; Stupka, Elia; Meola, Giovanni; Martelli, Fabio

    2014-01-01

    Myotonic dystrophy type 2 (DM2) is a genetic, autosomal dominant disease due to expansion of tetraplet (CCTG) repetitions in the first intron of the ZNF9/CNBP gene. DM2 is a multisystemic disorder affecting the skeletal muscle, the heart, the eye and the endocrine system. According to the proposed pathological mechanism, the expanded tetraplets have an RNA toxic effect, disrupting the splicing of many mRNAs. Thus, the identification of aberrantly spliced transcripts is instrumental for our understanding of the molecular mechanisms underpinning the disease. The aim of this study was the identification of new aberrant alternative splicing events in DM2 patients. By genome wide analysis of 10 DM2 patients and 10 controls (CTR), we identified 273 alternative spliced exons in 218 genes. While many aberrant splicing events were already identified in the past, most were new. A subset of these events was validated by qPCR assays in 19 DM2 and 15 CTR subjects. To gain insight into the molecular pathways involving the identified aberrantly spliced genes, we performed a bioinformatics analysis with Ingenuity system. This analysis indicated a deregulation of development, cell survival, metabolism, calcium signaling and contractility. In conclusion, our genome wide analysis provided a database of aberrant splicing events in the skeletal muscle of DM2 patients. The affected genes are involved in numerous pathways and networks important for muscle physio-pathology, suggesting that the identified variants may contribute to DM2 pathogenesis.

  1. SAQC: SNP Array Quality Control

    Directory of Open Access Journals (Sweden)

    Li Ling-Hui

    2011-04-01

    Full Text Available Abstract Background Genome-wide single-nucleotide polymorphism (SNP arrays containing hundreds of thousands of SNPs from the human genome have proven useful for studying important human genome questions. Data quality of SNP arrays plays a key role in the accuracy and precision of downstream data analyses. However, good indices for assessing data quality of SNP arrays have not yet been developed. Results We developed new quality indices to measure the quality of SNP arrays and/or DNA samples and investigated their statistical properties. The indices quantify a departure of estimated individual-level allele frequencies (AFs from expected frequencies via standardized distances. The proposed quality indices followed lognormal distributions in several large genomic studies that we empirically evaluated. AF reference data and quality index reference data for different SNP array platforms were established based on samples from various reference populations. Furthermore, a confidence interval method based on the underlying empirical distributions of quality indices was developed to identify poor-quality SNP arrays and/or DNA samples. Analyses of authentic biological data and simulated data show that this new method is sensitive and specific for the detection of poor-quality SNP arrays and/or DNA samples. Conclusions This study introduces new quality indices, establishes references for AFs and quality indices, and develops a detection method for poor-quality SNP arrays and/or DNA samples. We have developed a new computer program that utilizes these methods called SNP Array Quality Control (SAQC. SAQC software is written in R and R-GUI and was developed as a user-friendly tool for the visualization and evaluation of data quality of genome-wide SNP arrays. The program is available online (http://www.stat.sinica.edu.tw/hsinchou/genetics/quality/SAQC.htm.

  2. Genome-Wide Association of Copy Number Polymorphisms and Kidney Function.

    Directory of Open Access Journals (Sweden)

    Man Li

    Full Text Available Genome-wide association studies (GWAS using single nucleotide polymorphisms (SNPs have identified more than 50 loci associated with estimated glomerular filtration rate (eGFR, a measure of kidney function. However, significant SNPs account for a small proportion of eGFR variability. Other forms of genetic variation have not been comprehensively evaluated for association with eGFR. In this study, we assess whether changes in germline DNA copy number are associated with GFR estimated from serum creatinine, eGFRcrea. We used hidden Markov models (HMMs to identify copy number polymorphic regions (CNPs from high-throughput SNP arrays for 2,514 African (AA and 8,645 European ancestry (EA participants in the Atherosclerosis Risk in Communities (ARIC study. Separately for the EA and AA cohorts, we used Bayesian Gaussian mixture models to estimate copy number at regions identified by the HMM or previously reported in the HapMap Project. We identified 312 and 464 autosomal CNPs among individuals of EA and AA, respectively. Multivariate models adjusted for SNP-derived covariates of population structure identified one CNP in the EA cohort near genome-wide statistical significance (Bonferroni-adjusted p = 0.067 located on chromosome 5 (876-880kb. Overall, our findings suggest a limited role of CNPs in explaining eGFR variability.

  3. GOBASE: an organelle genome database

    OpenAIRE

    O?Brien, Emmet A.; Zhang, Yue; Wang, Eric; Marie, Veronique; Badejoko, Wole; Lang, B. Franz; Burger, Gertraud

    2008-01-01

    The organelle genome database GOBASE, now in its 21st release (June 2008), contains all published mitochondrion-encoded sequences (?913 000) and chloroplast-encoded sequences (?250 000) from a wide range of eukaryotic taxa. For all sequences, information on related genes, exons, introns, gene products and taxonomy is available, as well as selected genome maps and RNA secondary structures. Recent major enhancements to database functionality include: (i) addition of an interface for RNA editing...

  4. Arrays in Postnatal and Prenatal Diagnosis : An Exploration of the Ethics of Consent

    NARCIS (Netherlands)

    Dondorp, Wybo; Sikkema-Raddatz, Birgit; de Die-Smulders, Christine; de Wert, Guido

    The introduction of genome-wide arrays in postnatal and prenatal diagnosis raises challenging ethical issues. Here, we explore questions with regard to the ethics of consent. One important issue is whether informed consent for genome-wide array-based testing is in fact feasible, given the wide range

  5. USH1G with unique retinal findings caused by a novel truncating mutation identified by genome-wide linkage analysis

    Science.gov (United States)

    Taibah, Khalid; Bin-Khamis, Ghada; Kennedy, Shelley; Hemidan, Amal; Al-Qahtani, Faisal; Tabbara, Khalid; Mubarak, Bashayer Al; Ramzan, Khushnooda; Meyer, Brian F.; Al-Owain, Mohammed

    2012-01-01

    Purpose Usher syndrome (USH) is an autosomal recessive disorder divided into three distinct clinical subtypes based on the severity of the hearing loss, manifestation of vestibular dysfunction, and the age of onset of retinitis pigmentosa and visual symptoms. To date, mutations in seven different genes have been reported to cause USH type 1 (USH1), the most severe form. Patients diagnosed with USH1 are known to be ideal candidates to benefit from cochlear implantation. Methods Genome-wide linkage analysis using Affymetrix GeneChip Human Mapping 10K arrays were performed in three cochlear implanted Saudi siblings born from a consanguineous marriage, clinically diagnosed with USH1 by comprehensive clinical, audiological, and ophthalmological examinations. From the linkage results, the USH1G gene was screened for mutations by direct sequencing of the coding exons. Results We report the identification of a novel p.S243X truncating mutation in USH1G that segregated with the disease phenotype and was not present in 300 ethnically matched normal controls. We also report on the novel retinal findings and the outcome of cochlear implantation in the affected individuals. Conclusions In addition to reporting a novel truncating mutation, this report expands the retinal phenotype in USH1G and presents the first report of successful cochlear implants in this disease. PMID:22876113

  6. Review The Ooty Wide Field Array

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. DOI 10.1007/s12036-017-9430-4. Review. The Ooty Wide Field ... salient features of the upgrade, as well as its main science drivers. There are three ..... tecture for low frequency arrays, Ph.D. thesis, Jawaharalal.

  7. Exonization of active mouse L1s: a driver of transcriptome evolution?

    Directory of Open Access Journals (Sweden)

    Badge Richard

    2007-10-01

    Full Text Available Abstract Background Long interspersed nuclear elements (LINE-1s, L1s have been recently implicated in the regulation of mammalian transcriptomes. Results Here, we show that members of the three active mouse L1 subfamilies (A, GF and TF contain, in addition to those on their sense strands, conserved functional splice sites on their antisense strands, which trigger multiple exonization events. The latter is particularly intriguing in the light of the strong antisense orientation bias of intronic L1s, implying that the toleration of antisense insertions results in an increased potential for exonization. Conclusion In a genome-wide analysis, we have uncovered evidence suggesting that the mobility of the large number of retrotransposition-competent mouse L1s (~2400 potentially active L1s in NCBIm35 has significant potential to shape the mouse transcriptome by continuously generating insertions into transcriptional units.

  8. Genome-wide association and biological pathway analysis for milk-fat composition in Danish Holstein and Danish Jersey cattle

    DEFF Research Database (Denmark)

    Buitenhuis, Bart; Janss, Luc L G; Poulsen, Nina Aagaard

    2014-01-01

    provide new possibilities to change the milk fat composition by selective breeding. In this study a genome wide association scan (GWAS) in the DH and DJ was performed for a detailed milk fatty acid (FA) profile using the HD bovine SNP array and subsequently a biological pathway analysis based on the SNP...

  9. Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Bassett, Anne S; Lowther, Chelsea; Merico, Daniele; Costain, Gregory; Chow, Eva W C; van Amelsvoort, Therese; McDonald-McGinn, Donna; Gur, Raquel E; Swillen, Ann; Van den Bree, Marianne; Murphy, Kieran; Gothelf, Doron; Bearden, Carrie E; Eliez, Stephan; Kates, Wendy; Philip, Nicole; Sashi, Vandana; Campbell, Linda; Vorstman, Jacob; Cubells, Joseph; Repetto, Gabriela M; Simon, Tony; Boot, Erik; Heung, Tracy; Evers, Rens; Vingerhoets, Claudia; van Duin, Esther; Zackai, Elaine; Vergaelen, Elfi; Devriendt, Koen; Vermeesch, Joris R; Owen, Michael; Murphy, Clodagh; Michaelovosky, Elena; Kushan, Leila; Schneider, Maude; Fremont, Wanda; Busa, Tiffany; Hooper, Stephen; McCabe, Kathryn; Duijff, Sasja; Isaev, Karin; Pellecchia, Giovanna; Wei, John; Gazzellone, Matthew J; Scherer, Stephen W; Emanuel, Beverly S; Guo, Tingwei; Morrow, Bernice E; Marshall, Christian R

    2017-11-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS) is associated with a more than 20-fold increased risk for developing schizophrenia. The aim of this study was to identify additional genetic factors (i.e., "second hits") that may contribute to schizophrenia expression. Through an international consortium, the authors obtained DNA samples from 329 psychiatrically phenotyped subjects with 22q11.2DS. Using a high-resolution microarray platform and established methods to assess copy number variation (CNV), the authors compared the genome-wide burden of rare autosomal CNV, outside of the 22q11.2 deletion region, between two groups: a schizophrenia group and those with no psychotic disorder at age ≥25 years. The authors assessed whether genes overlapped by rare CNVs were overrepresented in functional pathways relevant to schizophrenia. Rare CNVs overlapping one or more protein-coding genes revealed significant between-group differences. For rare exonic duplications, six of 19 gene sets tested were enriched in the schizophrenia group; genes associated with abnormal nervous system phenotypes remained significant in a stepwise logistic regression model and showed significant interactions with 22q11.2 deletion region genes in a connectivity analysis. For rare exonic deletions, the schizophrenia group had, on average, more genes overlapped. The additional rare CNVs implicated known (e.g., GRM7, 15q13.3, 16p12.2) and novel schizophrenia risk genes and loci. The results suggest that additional rare CNVs overlapping genes outside of the 22q11.2 deletion region contribute to schizophrenia risk in 22q11.2DS, supporting a multigenic hypothesis for schizophrenia. The findings have implications for understanding expression of psychotic illness and herald the importance of whole-genome sequencing to appreciate the overall genomic architecture of schizophrenia.

  10. Transcriptome analysis of exosome-compromised human cells using high-density tiling arrays

    DEFF Research Database (Denmark)

    Jensen, Torben Heick

    The extent of RNA degradation in the nucleus has traditionally been underestimated. However, all major RNA species are synthesized, processed and can be degraded in this compartment and consequently an enormous amount of nucleosides are turned over and recycled. The RNA exosome, a multisubunit co......) tiling array that covers discrete regions from different chromosomes to represent a range of gene content and exonic/nonexonic conservation grades of the human genome....

  11. Genome wide selection in Citrus breeding.

    Science.gov (United States)

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq TM (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  12. Genome-wide DNA polymorphism analyses using VariScan

    Directory of Open Access Journals (Sweden)

    Vilella Albert J

    2006-09-01

    Full Text Available Abstract Background DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. Results We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i exhaustive population-genetic analyses including those based on the coalescent theory; ii analysis adapted to the shallow data generated by the high-throughput genome projects; iii use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v visualization of the results integrated with current genome annotations in commonly available genome browsers. Conclusion VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.

  13. A novel statistic for genome-wide interaction analysis.

    Directory of Open Access Journals (Sweden)

    Xuesen Wu

    2010-09-01

    Full Text Available Although great progress in genome-wide association studies (GWAS has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked. The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001genome-wide interaction analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  14. Genome-wide loss of heterozygosity and copy number alteration in esophageal squamous cell carcinoma using the Affymetrix GeneChip Mapping 10 K array

    Directory of Open Access Journals (Sweden)

    Goldstein Alisa M

    2006-11-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC is a common malignancy worldwide. Comprehensive genomic characterization of ESCC will further our understanding of the carcinogenesis process in this disease. Results Genome-wide detection of chromosomal changes was performed using the Affymetrix GeneChip 10 K single nucleotide polymorphism (SNP array, including loss of heterozygosity (LOH and copy number alterations (CNA, for 26 pairs of matched germ-line and micro-dissected tumor DNA samples. LOH regions were identified by two methods – using Affymetrix's genotype call software and using Affymetrix's copy number alteration tool (CNAT software – and both approaches yielded similar results. Non-random LOH regions were found on 10 chromosomal arms (in decreasing order of frequency: 17p, 9p, 9q, 13q, 17q, 4q, 4p, 3p, 15q, and 5q, including 20 novel LOH regions (10 kb to 4.26 Mb. Fifteen CNA-loss regions (200 kb to 4.3 Mb and 36 CNA-gain regions (200 kb to 9.3 Mb were also identified. Conclusion These studies demonstrate that the Affymetrix 10 K SNP chip is a valid platform to integrate analyses of LOH and CNA. The comprehensive knowledge gained from this analysis will enable improved strategies to prevent, diagnose, and treat ESCC.

  15. Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species

    Directory of Open Access Journals (Sweden)

    Townsend Henrik J

    2005-11-01

    Full Text Available Abstract High-density oligonucleotide (oligo arrays are a powerful tool for transcript profiling. Arrays based on GeneChip® technology are amongst the most widely used, although GeneChip® arrays are currently available for only a small number of plant and animal species. Thus, we have developed a method to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species and tested the method by analysing the transcriptome of Brassica oleracea L., a species for which no GeneChip® array is available, using a GeneChip® array designed for Arabidopsis thaliana (L. Heynh. Genomic DNA from B. oleracea was labelled and hybridised to the ATH1-121501 GeneChip® array. Arabidopsis thaliana probe-pairs that hybridised to the B. oleracea genomic DNA on the basis of the perfect-match (PM probe signal were then selected for subsequent B. oleracea transcriptome analysis using a .cel file parser script to generate probe mask files. The transcriptional response of B. oleracea to a mineral nutrient (phosphorus; P stress was quantified using probe mask files generated for a wide range of gDNA hybridisation intensity thresholds. An example probe mask file generated with a gDNA hybridisation intensity threshold of 400 removed > 68 % of the available PM probes from the analysis but retained >96 % of available A. thaliana probe-sets. Ninety-nine of these genes were then identified as significantly regulated under P stress in B. oleracea, including the homologues of P stress responsive genes in A. thaliana. Increasing the gDNA hybridisation intensity thresholds up to 500 for probe-selection increased the sensitivity of the GeneChip® array to detect regulation of gene expression in B. oleracea under P stress by up to 13-fold. Our open-source software to create probe mask files is freely available http://affymetrix.arabidopsis.info/xspecies/ and may be used to facilitate transcriptomic analyses of a wide range of plant and animal

  16. The ICR96 exon CNV validation series: a resource for orthogonal assessment of exon CNV calling in NGS data [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Shazia Mahamdallie

    2017-05-01

    Full Text Available Detection of deletions and duplications of whole exons (exon CNVs is a key requirement of genetic testing. Accurate detection of this variant type has proved very challenging in targeted next-generation sequencing (NGS data, particularly if only a single exon is involved. Many different NGS exon CNV calling methods have been developed over the last five years. Such methods are usually evaluated using simulated and/or in-house data due to a lack of publicly-available datasets with orthogonally generated results. This hinders tool comparisons, transparency and reproducibility. To provide a community resource for assessment of exon CNV calling methods in targeted NGS data, we here present the ICR96 exon CNV validation series. The dataset includes high-quality sequencing data from a targeted NGS assay (the TruSight Cancer Panel together with Multiplex Ligation-dependent Probe Amplification (MLPA results for 96 independent samples. 66 samples contain at least one validated exon CNV and 30 samples have validated negative results for exon CNVs in 26 genes. The dataset includes 46 exon CNVs in BRCA1, BRCA2, TP53, MLH1, MSH2, MSH6, PMS2, EPCAM or PTEN, giving excellent representation of the cancer predisposition genes most frequently tested in clinical practice. Moreover, the validated exon CNVs include 25 single exon CNVs, the most difficult type of exon CNV to detect. The FASTQ files for the ICR96 exon CNV validation series can be accessed through the European-Genome phenome Archive (EGA under the accession number EGAS00001002428.

  17. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    Science.gov (United States)

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  18. Evaluation of SNP Data from the Malus Infinium Array Identifies Challenges for Genetic Analysis of Complex Genomes of Polyploid Origin.

    Directory of Open Access Journals (Sweden)

    Michela Troggio

    Full Text Available High throughput arrays for the simultaneous genotyping of thousands of single-nucleotide polymorphisms (SNPs have made the rapid genetic characterisation of plant genomes and the development of saturated linkage maps a realistic prospect for many plant species of agronomic importance. However, the correct calling of SNP genotypes in divergent polyploid genomes using array technology can be problematic due to paralogy, and to divergence in probe sequences causing changes in probe binding efficiencies. An Illumina Infinium II whole-genome genotyping array was recently developed for the cultivated apple and used to develop a molecular linkage map for an apple rootstock progeny (M432, but a large proportion of segregating SNPs were not mapped in the progeny, due to unexpected genotype clustering patterns. To investigate the causes of this unexpected clustering we performed BLAST analysis of all probe sequences against the 'Golden Delicious' genome sequence and discovered evidence for paralogous annealing sites and probe sequence divergence for a high proportion of probes contained on the array. Following visual re-evaluation of the genotyping data generated for 8,788 SNPs for the M432 progeny using the array, we manually re-scored genotypes at 818 loci and mapped a further 797 markers to the M432 linkage map. The newly mapped markers included the majority of those that could not be mapped previously, as well as loci that were previously scored as monomorphic, but which segregated due to divergence leading to heterozygosity in probe annealing sites. An evaluation of the 8,788 probes in a diverse collection of Malus germplasm showed that more than half the probes returned genotype clustering patterns that were difficult or impossible to interpret reliably, highlighting implications for the use of the array in genome-wide association studies.

  19. Preliminary genome-wide association study of bipolar disorder in the Japanese population.

    Science.gov (United States)

    Hattori, Eiji; Toyota, Tomoko; Ishitsuka, Yuichi; Iwayama, Yoshimi; Yamada, Kazuo; Ujike, Hiroshi; Morita, Yukitaka; Kodama, Masafumi; Nakata, Kenji; Minabe, Yoshio; Nakamura, Kazuhiko; Iwata, Yasuhide; Takei, Nori; Mori, Norio; Naitoh, Hiroshi; Yamanouchi, Yoshio; Iwata, Nakao; Ozaki, Norio; Kato, Tadafumi; Nishikawa, Toru; Kashiwa, Atsushi; Suzuki, Mika; Shioe, Kunihiko; Shinohara, Manabu; Hirano, Masami; Nanko, Shinichiro; Akahane, Akihisa; Ueno, Mikako; Kaneko, Naoshi; Watanabe, Yuichiro; Someya, Toshiyuki; Hashimoto, Kenji; Iyo, Masaomi; Itokawa, Masanari; Arai, Makoto; Nankai, Masahiro; Inada, Toshiya; Yoshida, Sumiko; Kunugi, Hiroshi; Nakamura, Michiko; Iijima, Yoshimi; Okazaki, Yuji; Higuchi, Teruhiko; Yoshikawa, Takeo

    2009-12-05

    Recent progress in genotyping technology and the development of public databases has enabled large-scale genome-wide association tests with diseases. We performed a two-stage genome-wide association study (GWAS) of bipolar disorder (BD) in Japanese cohorts. First we used Affymetrix 100K GeneChip arrays in the analysis of 107 cases with bipolar I disorder and 107 controls, and selected markers that were nominally significant (P < 0.01) in at least one of the three models (1,577 markers in total). In the follow-up stage, we analyzed these markers using an Illumina platform (1,526 markers; 51 markers were not designable for the platform) and an independent sample set, which consisted of 395 cases (bipolar I + II) and 409 controls. We also assessed the population stratification of current samples using principal components analysis. After the two-stage analysis, 89 markers remained nominally significant (allelic P < 0.05) with the same allele being consistently over-represented in both the first and the follow-up stages. However, none of these were significant after correction for multiple-testing by false discovery rates. Sample stratification was virtually negligible. Collectively, this is the first GWAS of BD in the Japanese population. But given the small sample size and the limited genomic coverage, these results should be taken as preliminary. 2009 Wiley-Liss, Inc.

  20. A Universal Genome Array and Transcriptome Atlas for Brachypodium Distachyon

    Energy Technology Data Exchange (ETDEWEB)

    Mockler, Todd [Oregon State Univ., Corvallis, OR (United States)

    2017-04-17

    Brachypodium distachyon is the premier experimental model grass platform and is related to candidate feedstock crops for bioethanol production. Based on the DOE-JGI Brachypodium Bd21 genome sequence and annotation we designed a whole genome DNA microarray platform. The quality of this array platform is unprecedented due to the exceptional quality of the Brachypodium genome assembly and annotation and the stringent probe selection criteria employed in the design. We worked with members of the international community and the bioinformatics/design team at Affymetrix at all stages in the development of the array. We used the Brachypodium arrays to interrogate the transcriptomes of plants grown in a variety of environmental conditions including diurnal and circadian light/temperature conditions and under a variety of environmental conditions. We examined the transciptional responses of Brachypodium seedlings subjected to various abiotic stresses including heat, cold, salt, and high intensity light. We generated a gene expression atlas representing various organs and developmental stages. The results of these efforts including all microarray datasets are published and available at online public databases.

  1. Genome-wide association analysis identifies a mutation in the thiamine transporter 2 (SLC19A3 gene associated with Alaskan Husky encephalopathy.

    Directory of Open Access Journals (Sweden)

    Karen M Vernau

    Full Text Available Alaskan Husky Encephalopathy (AHE has been previously proposed as a mitochondrial encephalopathy based on neuropathological similarities with human Leigh Syndrome (LS. We studied 11 Alaskan Husky dogs with AHE, but found no abnormalities in respiratory chain enzyme activities in muscle and liver, or mutations in mitochondrial or nuclear genes that cause LS in people. A genome wide association study was performed using eight of the affected dogs and 20 related but unaffected control AHs using the Illumina canine HD array. SLC19A3 was identified as a positional candidate gene. This gene controls the uptake of thiamine in the CNS via expression of the thiamine transporter protein THTR2. Dogs have two copies of this gene located within the candidate interval (SLC19A3.2 - 43.36-43.38 Mb and SLC19A3.1 - 43.411-43.419 Mb on chromosome 25. Expression analysis in a normal dog revealed that one of the paralogs, SLC19A3.1, was expressed in the brain and spinal cord while the other was not. Subsequent exon sequencing of SLC19A3.1 revealed a 4bp insertion and SNP in the second exon that is predicted to result in a functional protein truncation of 279 amino acids (c.624 insTTGC, c.625 C>A. All dogs with AHE were homozygous for this mutation, 15/41 healthy AH control dogs were heterozygous carriers while 26/41 normal healthy AH dogs were wild type. Furthermore, this mutation was not detected in another 187 dogs of different breeds. These results suggest that this mutation in SLC19A3.1, encoding a thiamine transporter protein, plays a critical role in the pathogenesis of AHE.

  2. Genome-wide DNA methylation analysis of pseudohypoparathyroidism patients with GNAS imprinting defects.

    Science.gov (United States)

    Rochtus, Anne; Martin-Trujillo, Alejandro; Izzi, Benedetta; Elli, Francesca; Garin, Intza; Linglart, Agnes; Mantovani, Giovanna; Perez de Nanclares, Guiomar; Thiele, Suzanne; Decallonne, Brigitte; Van Geet, Chris; Monk, David; Freson, Kathleen

    2016-01-01

    Pseudohypoparathyroidism (PHP) is caused by (epi)genetic defects in the imprinted GNAS cluster. Current classification of PHP patients is hampered by clinical and molecular diagnostic overlaps. The European Consortium for the study of PHP designed a genome-wide methylation study to improve molecular diagnosis. The HumanMethylation 450K BeadChip was used to analyze genome-wide methylation in 24 PHP patients with parathyroid hormone resistance and 20 age- and gender-matched controls. Patients were previously diagnosed with GNAS-specific differentially methylated regions (DMRs) and include 6 patients with known STX16 deletion (PHP(Δstx16)) and 18 without deletion (PHP(neg)). The array demonstrated that PHP patients do not show DNA methylation differences at the whole-genome level. Unsupervised clustering of GNAS-specific DMRs divides PHP(Δstx16) versus PHP(neg) patients. Interestingly, in contrast to the notion that all PHP patients share methylation defects in the A/B DMR while only PHP(Δstx16) patients have normal NESP, GNAS-AS1 and XL methylation, we found a novel DMR (named GNAS-AS2) in the GNAS-AS1 region that is significantly different in both PHP(Δstx16) and PHP(neg), as validated by Sequenom EpiTYPER in a larger PHP cohort. The analysis of 58 DMRs revealed that 8/18 PHP(neg) and 1/6 PHP(Δstx16) patients have multi-locus methylation defects. Validation was performed for FANCC and SVOPL DMRs. This is the first genome-wide methylation study for PHP patients that confirmed that GNAS is the most significant DMR, and the presence of STX16 deletion divides PHP patients in two groups. Moreover, a novel GNAS-AS2 DMR affects all PHP patients, and PHP patients seem sensitive to multi-locus methylation defects.

  3. High-Resolution Genome-Wide Linkage Mapping Identifies Susceptibility Loci for BMI in the Chinese Population

    DEFF Research Database (Denmark)

    Zhang, Dong Feng; Pang, Zengchang; Li, Shuxia

    2012-01-01

    The genetic loci affecting the commonly used BMI have been intensively investigated using linkage approaches in multiple populations. This study aims at performing the first genome-wide linkage scan on BMI in the Chinese population in mainland China with hypothesis that heterogeneity in genetic...... linkage could exist in different ethnic populations. BMI was measured from 126 dizygotic twins in Qingdao municipality who were genotyped using high-resolution Affymetrix Genome-Wide Human SNP arrays containing about 1 million single-nucleotide polymorphisms (SNPs). Nonparametric linkage analysis...... in western countries. Multiple loci showing suggestive linkage were found on chromosome 1 (lod score 2.38 at 242 cM), chromosome 8 (2.48 at 95 cM), and chromosome 14 (2.2 at 89.4 cM). The strong linkage identified in the Chinese subjects that is consistent with that found in populations of European origin...

  4. Genome-wide association study of response to cognitive–behavioural therapy in children with anxiety disorders

    Science.gov (United States)

    Coleman, Jonathan R. I.; Lester, Kathryn J.; Keers, Robert; Roberts, Susanna; Curtis, Charles; Arendt, Kristian; Bögels, Susan; Cooper, Peter; Creswell, Cathy; Dalgleish, Tim; Hartman, Catharina A.; Heiervang, Einar R.; Hötzel, Katrin; Hudson, Jennifer L.; In-Albon, Tina; Lavallee, Kristen; Lyneham, Heidi J.; Marin, Carla E.; Meiser-Stedman, Richard; Morris, Talia; Nauta, Maaike H.; Rapee, Ronald M.; Schneider, Silvia; Schneider, Sophie C.; Silverman, Wendy K.; Thastum, Mikael; Thirlwall, Kerstin; Waite, Polly; Wergeland, Gro Janne; Breen, Gerome; Eley, Thalia C.

    2016-01-01

    Background Anxiety disorders are common, and cognitive–behavioural therapy (CBT) is a first-line treatment. Candidate gene studies have suggested a genetic basis to treatment response, but findings have been inconsistent. Aims To perform the first genome-wide association study (GWAS) of psychological treatment response in children with anxiety disorders (n = 980). Method Presence and severity of anxiety was assessed using semi-structured interview at baseline, on completion of treatment (post-treatment), and 3 to 12 months after treatment completion (follow-up). DNA was genotyped using the Illumina Human Core Exome-12v1.0 array. Linear mixed models were used to test associations between genetic variants and response (change in symptom severity) immediately post-treatment and at 6-month follow-up. Results No variants passed a genome-wide significance threshold (P = 5 × 10−8) in either analysis. Four variants met criteria for suggestive significance (P<5 × 10−6) in association with response post-treatment, and three variants in the 6-month follow-up analysis. Conclusions This is the first genome-wide therapygenetic study. It suggests no common variants of very high effect underlie response to CBT. Future investigations should maximise power to detect single-variant and polygenic effects by using larger, more homogeneous cohorts. PMID:26989097

  5. A genome-wide association analysis of a broad psychosis phenotype identifies three loci for further investigation

    OpenAIRE

    Psychosis Endophenotypes International Consortium; Wellcome Trust Case-Control Consortium; Bramon, E.; Pirinen, M.; Strange, A.; Lin, K.; Freeman, C.; Bellenguez, C.; Su, Z.; Band, G.; Pearson, R.; Vukcevic, D.; Langford, C.; Deloukas, P.; Hunt, S.

    2014-01-01

    BACKGROUND: Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. METHODS: 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 69...

  6. A Genome-wide Association Analysis of a Broad Psychosis Phenotype Identifies Three Loci for Further Investigation

    OpenAIRE

    Tosato, Sarah; Myin-germeys, Inez; Barroso, Ines; Bender, Stephan; Giegling, Ina; Arranz, Maria J.; Donnelly, Peter; Bellenguez, Celine; Brown, Matthew A.; Lawrie, Stephen; Kalaydjieva, Luba; Vukcevic, Damjan; Kahn, Rene S.; Dronov, Serge; Walshe, Muriel

    2014-01-01

    Background: Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories.Methods: 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 695,19...

  7. Genome-Wide Approaches to Drosophila Heart Development

    Directory of Open Access Journals (Sweden)

    Manfred Frasch

    2016-05-01

    Full Text Available The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.

  8. Risk Prediction Using Genome-Wide Association Studies on Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Sungkyoung Choi

    2016-12-01

    Full Text Available The success of genome-wide association studies (GWASs has enabled us to improve risk assessment and provide novel genetic variants for diagnosis, prevention, and treatment. However, most variants discovered by GWASs have been reported to have very small effect sizes on complex human diseases, which has been a big hurdle in building risk prediction models. Recently, many statistical approaches based on penalized regression have been developed to solve the “large p and small n” problem. In this report, we evaluated the performance of several statistical methods for predicting a binary trait: stepwise logistic regression (SLR, least absolute shrinkage and selection operator (LASSO, and Elastic-Net (EN. We first built a prediction model by combining variable selection and prediction methods for type 2 diabetes using Affymetrix Genome-Wide Human SNP Array 5.0 from the Korean Association Resource project. We assessed the risk prediction performance using area under the receiver operating characteristic curve (AUC for the internal and external validation datasets. In the internal validation, SLR-LASSO and SLR-EN tended to yield more accurate predictions than other combinations. During the external validation, the SLR-SLR and SLR-EN combinations achieved the highest AUC of 0.726. We propose these combinations as a potentially powerful risk prediction model for type 2 diabetes.

  9. Genome-wide data-mining of candidate human splice translational efficiency polymorphisms (STEPs and an online database.

    Directory of Open Access Journals (Sweden)

    Christopher A Raistrick

    2010-10-01

    Full Text Available Variation in pre-mRNA splicing is common and in some cases caused by genetic variants in intronic splicing motifs. Recent studies into the insulin gene (INS discovered a polymorphism in a 5' non-coding intron that influences the likelihood of intron retention in the final mRNA, extending the 5' untranslated region and maintaining protein quality. Retention was also associated with increased insulin levels, suggesting that such variants--splice translational efficiency polymorphisms (STEPs--may relate to disease phenotypes through differential protein expression. We set out to explore the prevalence of STEPs in the human genome and validate this new category of protein quantitative trait loci (pQTL using publicly available data.Gene transcript and variant data were collected and mined for candidate STEPs in motif regions. Sequences from transcripts containing potential STEPs were analysed for evidence of splice site recognition and an effect in expressed sequence tags (ESTs. 16 publicly released genome-wide association data sets of common diseases were searched for association to candidate polymorphisms with HapMap frequency data. Our study found 3324 candidate STEPs lying in motif sequences of 5' non-coding introns and further mining revealed 170 with transcript evidence of intron retention. 21 potential STEPs had EST evidence of intron retention or exon extension, as well as population frequency data for comparison.Results suggest that the insulin STEP was not a unique example and that many STEPs may occur genome-wide with potentially causal effects in complex disease. An online database of STEPs is freely accessible at http://dbstep.genes.org.uk/.

  10. SinEx DB: a database for single exon coding sequences in mammalian genomes.

    Science.gov (United States)

    Jorquera, Roddy; Ortiz, Rodrigo; Ossandon, F; Cárdenas, Juan Pablo; Sepúlveda, Rene; González, Carolina; Holmes, David S

    2016-01-01

    Eukaryotic genes are typically interrupted by intragenic, noncoding sequences termed introns. However, some genes lack introns in their coding sequence (CDS) and are generally known as 'single exon genes' (SEGs). In this work, a SEG is defined as a nuclear, protein-coding gene that lacks introns in its CDS. Whereas, many public databases of Eukaryotic multi-exon genes are available, there are only two specialized databases for SEGs. The present work addresses the need for a more extensive and diverse database by creating SinEx DB, a publicly available, searchable database of predicted SEGs from 10 completely sequenced mammalian genomes including human. SinEx DB houses the DNA and protein sequence information of these SEGs and includes their functional predictions (KOG) and the relative distribution of these functions within species. The information is stored in a relational database built with My SQL Server 5.1.33 and the complete dataset of SEG sequences and their functional predictions are available for downloading. SinEx DB can be interrogated by: (i) a browsable phylogenetic schema, (ii) carrying out BLAST searches to the in-house SinEx DB of SEGs and (iii) via an advanced search mode in which the database can be searched by key words and any combination of searches by species and predicted functions. SinEx DB provides a rich source of information for advancing our understanding of the evolution and function of SEGs.Database URL: www.sinex.cl. © The Author(s) 2016. Published by Oxford University Press.

  11. Changes in exon–intron structure during vertebrate evolution affect the splicing pattern of exons

    Science.gov (United States)

    Gelfman, Sahar; Burstein, David; Penn, Osnat; Savchenko, Anna; Amit, Maayan; Schwartz, Schraga; Pupko, Tal; Ast, Gil

    2012-01-01

    Exon–intron architecture is one of the major features directing the splicing machinery to the short exons that are located within long flanking introns. However, the evolutionary dynamics of exon–intron architecture and its impact on splicing is largely unknown. Using a comparative genomic approach, we analyzed 17 vertebrate genomes and reconstructed the ancestral motifs of both 3′ and 5′ splice sites, as also the ancestral length of exons and introns. Our analyses suggest that vertebrate introns increased in length from the shortest ancestral introns to the longest primate introns. An evolutionary analysis of splice sites revealed that weak splice sites act as a restrictive force keeping introns short. In contrast, strong splice sites allow recognition of exons flanked by long introns. Reconstruction of the ancestral state suggests these phenomena were not prevalent in the vertebrate ancestor, but appeared during vertebrate evolution. By calculating evolutionary rate shifts in exons, we identified cis-acting regulatory sequences that became fixed during the transition from early vertebrates to mammals. Experimental validations performed on a selection of these hexamers confirmed their regulatory function. We additionally revealed many features of exons that can discriminate alternative from constitutive exons. These features were integrated into a machine-learning approach to predict whether an exon is alternative. Our algorithm obtains very high predictive power (AUC of 0.91), and using these predictions we have identified and successfully validated novel alternatively spliced exons. Overall, we provide novel insights regarding the evolutionary constraints acting upon exons and their recognition by the splicing machinery. PMID:21974994

  12. Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences

    Directory of Open Access Journals (Sweden)

    De Marzo Angelo M

    2011-06-01

    Full Text Available Abstract Background DNA methylation has been linked to genome regulation and dysregulation in health and disease respectively, and methods for characterizing genomic DNA methylation patterns are rapidly emerging. We have developed/refined methods for enrichment of methylated genomic fragments using the methyl-binding domain of the human MBD2 protein (MBD2-MBD followed by analysis with high-density tiling microarrays. This MBD-chip approach was used to characterize DNA methylation patterns across all non-repetitive sequences of human chromosomes 21 and 22 at high-resolution in normal and malignant prostate cells. Results Examining this data using computational methods that were designed specifically for DNA methylation tiling array data revealed widespread methylation of both gene promoter and non-promoter regions in cancer and normal cells. In addition to identifying several novel cancer hypermethylated 5' gene upstream regions that mediated epigenetic gene silencing, we also found several hypermethylated 3' gene downstream, intragenic and intergenic regions. The hypermethylated intragenic regions were highly enriched for overlap with intron-exon boundaries, suggesting a possible role in regulation of alternative transcriptional start sites, exon usage and/or splicing. The hypermethylated intergenic regions showed significant enrichment for conservation across vertebrate species. A sampling of these newly identified promoter (ADAMTS1 and SCARF2 genes and non-promoter (downstream or within DSCR9, C21orf57 and HLCS genes hypermethylated regions were effective in distinguishing malignant from normal prostate tissues and/or cell lines. Conclusions Comparison of chromosome-wide DNA methylation patterns in normal and malignant prostate cells revealed significant methylation of gene-proximal and conserved intergenic sequences. Such analyses can be easily extended for genome-wide methylation analysis in health and disease.

  13. Differential GC Content between Exons and Introns Establishes Distinct Strategies of Splice-Site Recognition

    Directory of Open Access Journals (Sweden)

    Maayan Amit

    2012-05-01

    Full Text Available During evolution segments of homeothermic genomes underwent a GC content increase. Our analyses reveal that two exon-intron architectures have evolved from an ancestral state of low GC content exons flanked by short introns with a lower GC content. One group underwent a GC content elevation that abolished the differential exon-intron GC content, with introns remaining short. The other group retained the overall low GC content as well as the differential exon-intron GC content, and is associated with longer introns. We show that differential exon-intron GC content regulates exon inclusion level in this group, in which disease-associated mutations often lead to exon skipping. This group's exons also display higher nucleosome occupancy compared to flanking introns and exons of the other group, thus “marking” them for spliceosomal recognition. Collectively, our results reveal that differential exon-intron GC content is a previously unidentified determinant of exon selection and argue that the two GC content architectures reflect the two mechanisms by which splicing signals are recognized: exon definition and intron definition.

  14. Genome-wide association study of multiplex schizophrenia pedigrees

    DEFF Research Database (Denmark)

    Levinson, Douglas F; Shi, Jianxin; Wang, Kai

    2012-01-01

    The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs).......The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs)....

  15. Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Thudi, Mahendar; Khan, Aamir W; Kumar, Vinay; Gaur, Pooran M; Katta, Krishnamohan; Garg, Vanika; Roorkiwal, Manish; Samineni, Srinivasan; Varshney, Rajeev K

    2016-01-27

    Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in South Asia and Sub-Saharan Africa. In order to harness the untapped genetic potential available for chickpea improvement, we re-sequenced 35 chickpea genotypes representing parental lines of 16 mapping populations segregating for abiotic (drought, heat, salinity), biotic stresses (Fusarium wilt, Ascochyta blight, Botrytis grey mould, Helicoverpa armigera) and nutritionally important (protein content) traits using whole genome re-sequencing approach. A total of 192.19 Gb data, generated on 35 genotypes of chickpea, comprising 973.13 million reads, with an average sequencing depth of ~10 X for each line. On an average 92.18 % reads from each genotype were aligned to the chickpea reference genome with 82.17 % coverage. A total of 2,058,566 unique single nucleotide polymorphisms (SNPs) and 292,588 Indels were detected while comparing with the reference chickpea genome. Highest number of SNPs were identified on the Ca4 pseudomolecule. In addition, copy number variations (CNVs) such as gene deletions and duplications were identified across the chickpea parental genotypes, which were minimum in PI 489777 (1 gene deletion) and maximum in JG 74 (1,497). A total of 164,856 line specific variations (144,888 SNPs and 19,968 Indels) with the highest percentage were identified in coding regions in ICC 1496 (21 %) followed by ICCV 97105 (12 %). Of 539 miscellaneous variations, 339, 138 and 62 were inter-chromosomal variations (CTX), intra-chromosomal variations (ITX) and inversions (INV) respectively. Genome-wide SNPs, Indels, CNVs, PAVs, and miscellaneous variations identified in different mapping populations are a valuable resource in genetic research and helpful in locating genes/genomic segments responsible for economically important traits. Further, the genome-wide variations identified in the present study can be used for developing high density SNP arrays for

  16. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed Missael Vargas

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence...... data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery...

  17. Modifiers of notch transcriptional activity identified by genome-wide RNAi

    Directory of Open Access Journals (Sweden)

    Firnhaber Christopher B

    2010-10-01

    Full Text Available Abstract Background The Notch signaling pathway regulates a diverse array of developmental processes, and aberrant Notch signaling can lead to diseases, including cancer. To obtain a more comprehensive understanding of the genetic network that integrates into Notch signaling, we performed a genome-wide RNAi screen in Drosophila cell culture to identify genes that modify Notch-dependent transcription. Results Employing complementary data analyses, we found 399 putative modifiers: 189 promoting and 210 antagonizing Notch activated transcription. These modifiers included several known Notch interactors, validating the robustness of the assay. Many novel modifiers were also identified, covering a range of cellular localizations from the extracellular matrix to the nucleus, as well as a large number of proteins with unknown function. Chromatin-modifying proteins represent a major class of genes identified, including histone deacetylase and demethylase complex components and other chromatin modifying, remodeling and replacement factors. A protein-protein interaction map of the Notch-dependent transcription modifiers revealed that a large number of the identified proteins interact physically with these core chromatin components. Conclusions The genome-wide RNAi screen identified many genes that can modulate Notch transcriptional output. A protein interaction map of the identified genes highlighted a network of chromatin-modifying enzymes and remodelers that regulate Notch transcription. Our results open new avenues to explore the mechanisms of Notch signal regulation and the integration of this pathway into diverse cellular processes.

  18. Adiponectin Concentrations: A Genome-wide Association Study

    OpenAIRE

    Jee, Sun Ha; Sull, Jae Woong; Lee, Jong-Eun; Shin, Chol; Park, Jongkeun; Kimm, Heejin; Cho, Eun-Young; Shin, Eun-Soon; Yun, Ji Eun; Park, Ji Wan; Kim, Sang Yeun; Lee, Sun Ju; Jee, Eun Jung; Baik, Inkyung; Kao, Linda

    2010-01-01

    Adiponectin is associated with obesity and insulin resistance. To date, there has been no genome-wide association study (GWAS) of adiponectin levels in Asians. Here we present a GWAS of a cohort of Korean volunteers. A total of 4,001 subjects were genotyped by using a genome-wide marker panel in a two-stage design (979 subjects initially and 3,022 in a second stage). Another 2,304 subjects were used for follow-up replication studies with selected markers. In the discovery phase, the top SNP a...

  19. Genome-wide copy number variation (CNV) in patients with autoimmune Addison's disease

    Science.gov (United States)

    2011-01-01

    Background Addison's disease (AD) is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV) could add to the repertoire of genetic susceptibility to autoimmune AD. Methods A genome-wide study using the Affymetrix GeneChip® Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352) and healthy controls (n = 353) by duplex Taqman real-time polymerase chain reaction assays. Results We found that low copy number of UGT2B28 was significantly more frequent in AD patients compared to controls; conversely high copy number of ADAM3A was associated with AD. Conclusions We have identified two novel CNV associations to ADAM3A and UGT2B28 in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (UGT2B28) and T cell maturation (ADAM3A). Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity. PMID:21851588

  20. Genome-wide copy number variation (CNV in patients with autoimmune Addison's disease

    Directory of Open Access Journals (Sweden)

    Brønstad Ingeborg

    2011-08-01

    Full Text Available Abstract Background Addison's disease (AD is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV could add to the repertoire of genetic susceptibility to autoimmune AD. Methods A genome-wide study using the Affymetrix GeneChip® Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352 and healthy controls (n = 353 by duplex Taqman real-time polymerase chain reaction assays. Results We found that low copy number of UGT2B28 was significantly more frequent in AD patients compared to controls; conversely high copy number of ADAM3A was associated with AD. Conclusions We have identified two novel CNV associations to ADAM3A and UGT2B28 in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (UGT2B28 and T cell maturation (ADAM3A. Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity.

  1. Multiplex amplification of large sets of human exons.

    Science.gov (United States)

    Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay

    2007-11-01

    A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

  2. Genomic organization of plant aminopropyl transferases.

    Science.gov (United States)

    Rodríguez-Kessler, Margarita; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Gabriela Theresia; Moriguchi, Takaya; Jiménez-Bremont, Juan Francisco

    2010-07-01

    Aminopropyl transferases like spermidine synthase (SPDS; EC 2.5.1.16), spermine synthase and thermospermine synthase (SPMS, tSPMS; EC 2.5.1.22) belong to a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor and putrescine or spermidine as an amino acceptor to form in that order spermidine, spermine or thermospermine. We describe the analysis of plant genomic sequences encoding SPDS, SPMS, tSPMS and PMT (putrescine N-methyltransferase; EC 2.1.1.53). Genome organization (including exon size, gain and loss, as well as intron number, size, loss, retention, placement and phase, and the presence of transposons) of plant aminopropyl transferase genes were compared between the genomic sequences of SPDS, SPMS and tSPMS from Zea mays, Oryza sativa, Malus x domestica, Populus trichocarpa, Arabidopsis thaliana and Physcomitrella patens. In addition, the genomic organization of plant PMT genes, proposed to be derived from SPDS during the evolution of alkaloid metabolism, is illustrated. Herein, a particular conservation and arrangement of exon and intron sequences between plant SPDS, SPMS and PMT genes that clearly differs with that of ACL5 genes, is shown. The possible acquisition of the plant SPMS exon II and, in particular exon XI in the monocot SPMS genes, is a remarkable feature that allows their differentiation from SPDS genes. In accordance with our in silico analysis, functional complementation experiments of the maize ZmSPMS1 enzyme (previously considered to be SPDS) in yeast demonstrated its spermine synthase activity. Another significant aspect is the conservation of intron sequences among SPDS and PMT paralogs. In addition the existence of microsynteny among some SPDS paralogs, especially in P. trichocarpa and A. thaliana, supports duplication events of plant SPDS genes. Based in our analysis, we hypothesize that SPMS genes appeared with the divergence of vascular plants by a processes of gene duplication and the

  3. Copy Number Variations in Tilapia Genomes.

    Science.gov (United States)

    Li, Bi Jun; Li, Hong Lian; Meng, Zining; Zhang, Yong; Lin, Haoran; Yue, Gen Hua; Xia, Jun Hong

    2017-02-01

    Discovering the nature and pattern of genome variation is fundamental in understanding phenotypic diversity among populations. Although several millions of single nucleotide polymorphisms (SNPs) have been discovered in tilapia, the genome-wide characterization of larger structural variants, such as copy number variation (CNV) regions has not been carried out yet. We conducted a genome-wide scan for CNVs in 47 individuals from three tilapia populations. Based on 254 Gb of high-quality paired-end sequencing reads, we identified 4642 distinct high-confidence CNVs. These CNVs account for 1.9% (12.411 Mb) of the used Nile tilapia reference genome. A total of 1100 predicted CNVs were found overlapping with exon regions of protein genes. Further association analysis based on linear model regression found 85 CNVs ranging between 300 and 27,000 base pairs significantly associated to population types (R 2  > 0.9 and P > 0.001). Our study sheds first insights on genome-wide CNVs in tilapia. These CNVs among and within tilapia populations may have functional effects on phenotypes and specific adaptation to particular environments.

  4. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica.

    Science.gov (United States)

    Zhang, Shizhong; Xu, Ruirui; Luo, Xiaocui; Jiang, Zesheng; Shu, Huairui

    2013-12-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, which are composed of three classes of hierarchically organized protein kinases, namely MAPKKKs, MAPKKs, and MAPKs. Although genome-wide analysis of this family has been carried out in some species, little is known about MAPK and MAPKK genes in apple (Malus domestica). In this study, a total of 26 putative apple MAPK genes (MdMPKs) and 9 putative apple MAPKK genes (MdMKKs) have been identified and located within the apple genome. Phylogenetic analysis revealed that MdMAPKs and MdMAPKKs could be divided into 4 subfamilies (groups A, B, C and D), respectively. The predicted MdMAPKs and MdMAPKKs were distributed across 13 out of 17 chromosomes with different densities. In addition, analysis of exon-intron junctions and of intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. According to the microarray and expressed sequence tag (EST) analysis, the different expression patterns indicate that they may play different roles during fruit development and rootstock-scion interaction process. Moreover, MAPK and MAPKK genes were performed expression profile analyses in different tissues (root, stem, leaf, flower and fruit), and all of the selected genes were expressed in at least one of the tissues tested, indicating that the MAPKs and MAPKKs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this is the first report of a genome-wide analysis of the apple MAPK and MAPKK gene family. This study provides valuable information for understanding the classification and putative functions of the MAPK signal in apple. © 2013.

  5. Concentrating and labeling genomic DNA in a nanofluidic array

    DEFF Research Database (Denmark)

    Marie, Rodolphe; Pedersen, Jonas Nyvold; Mir, Kalim U.

    2018-01-01

    , however, hinder the polymerase activity. We demonstrate a device and a protocol for the enzymatic labeling of genomic DNA arranged in a dense array of single molecules without attaching the enzyme or the DNA to a surface. DNA molecules accumulate in a dense array of pits embedded within a nanoslit due...... to entropic trapping. We then perform ϕ29 polymerase extension from single-strand nicks created on the trapped molecules to incorporate fluorescent nucleotides into the DNA. The array of entropic traps can be loaded with λ-DNA molecules to more than 90% of capacity at a flow rate of 10 pL min-1. The final...

  6. ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation

    Directory of Open Access Journals (Sweden)

    Porter Christopher J

    2007-09-01

    Full Text Available Abstract Background SNP microarrays are designed to genotype Single Nucleotide Polymorphisms (SNPs. These microarrays report hybridization of DNA fragments and therefore can be used for the purpose of detecting genomic fragments. Results Here, we demonstrate that a SNP microarray can be effectively used in this way to perform chromatin immunoprecipitation (ChIP on chip as an alternative to tiling microarrays. We illustrate this novel application by mapping whole genome histone H4 hyperacetylation in human myoblasts and myotubes. We detect clusters of hyperacetylated histone H4, often spanning across up to 300 kilobases of genomic sequence. Using complementary genome-wide analyses of gene expression by DNA microarray we demonstrate that these clusters of hyperacetylated histone H4 tend to be associated with expressed genes. Conclusion The use of a SNP array for a ChIP-on-chip application (ChIP on SNP-chip will be of great value to laboratories whose interest is the determination of general rules regarding the relationship of specific chromatin modifications to transcriptional status throughout the genome and to examine the asymmetric modification of chromatin at heterozygous loci.

  7. Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers.

    Science.gov (United States)

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.

  8. Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers.

    Directory of Open Access Journals (Sweden)

    Laia Ramos

    Full Text Available Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb. Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14(q10;q10. Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.

  9. Oligonucleotide Arrays vs. Metaphase-Comparative Genomic Hybridisation and BAC Arrays for Single-Cell Analysis: First Applications to Preimplantation Genetic Diagnosis for Robertsonian Translocation Carriers

    Science.gov (United States)

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers. PMID:25415307

  10. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  11. Genome-wide sequencing for the identification of rearrangements associated with Tourette syndrome and obsessive-compulsive disorder

    Directory of Open Access Journals (Sweden)

    Hooper Sean D

    2012-12-01

    Full Text Available Abstract Background Tourette Syndrome (TS is a neuropsychiatric disorder in children characterized by motor and verbal tics. Although several genes have been suggested in the etiology of TS, the genetic mechanisms remain poorly understood. Methods Using cytogenetics and FISH analysis, we identified an apparently balanced t(6,22(q16.2;p13 in a male patient with TS and obsessive-compulsive disorder (OCD. In order to map the breakpoints and to identify additional submicroscopic rearrangements, we performed whole genome mate-pair sequencing and CGH-array analysis on DNA from the proband. Results Sequence and CGH array analysis revealed a 400 kb deletion located 1.3 Mb telomeric of the chromosome 6q breakpoint, which has not been reported in controls. The deletion affects three genes (GPR63, NDUFA4 and KLHL32 and overlaps a region previously found deleted in a girl with autistic features and speech delay. The proband’s mother, also a carrier of the translocation, was diagnosed with OCD and shares the deletion. We also describe a further potentially related rearrangement which, while unmapped in Homo sapiens, was consistent with the chimpanzee genome. Conclusions We conclude that genome-wide sequencing at relatively low resolution can be used for the identification of submicroscopic rearrangements. We also show that large rearrangements may escape detection using standard analysis of whole genome sequencing data. Our findings further provide a candidate region for TS and OCD on chromosome 6q16.

  12. Genome-wide association study of Lp-PLA(2 activity and mass in the Framingham Heart Study.

    Directory of Open Access Journals (Sweden)

    Sunil Suchindran

    2010-04-01

    Full Text Available Lipoprotein-associated phospholipase A(2 (Lp-PLA(2 is an emerging risk factor and therapeutic target for cardiovascular disease. The activity and mass of this enzyme are heritable traits, but major genetic determinants have not been explored in a systematic, genome-wide fashion. We carried out a genome-wide association study of Lp-PLA(2 activity and mass in 6,668 Caucasian subjects from the population-based Framingham Heart Study. Clinical data and genotypes from the Affymetrix 550K SNP array were obtained from the open-access Framingham SHARe project. Each polymorphism that passed quality control was tested for associations with Lp-PLA(2 activity and mass using linear mixed models implemented in the R statistical package, accounting for familial correlations, and controlling for age, sex, smoking, lipid-lowering-medication use, and cohort. For Lp-PLA(2 activity, polymorphisms at four independent loci reached genome-wide significance, including the APOE/APOC1 region on chromosome 19 (p = 6 x 10(-24; CELSR2/PSRC1 on chromosome 1 (p = 3 x 10(-15; SCARB1 on chromosome 12 (p = 1x10(-8 and ZNF259/BUD13 in the APOA5/APOA1 gene region on chromosome 11 (p = 4 x 10(-8. All of these remained significant after accounting for associations with LDL cholesterol, HDL cholesterol, or triglycerides. For Lp-PLA(2 mass, 12 SNPs achieved genome-wide significance, all clustering in a region on chromosome 6p12.3 near the PLA2G7 gene. Our analyses demonstrate that genetic polymorphisms may contribute to inter-individual variation in Lp-PLA(2 activity and mass.

  13. Genome-wide screening and identification of antigens for rickettsial vaccine development

    Science.gov (United States)

    The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of complete microbial genome sequences coupled to rapid proteomic and bioinformatic analysis. Critical to this genome-wide screening is in vivo testing in the context o...

  14. Genome-wide Association Study for Ovarian Cancer Susceptibility using Pooled DNA

    Science.gov (United States)

    Lu, Yi; Chen, Xiaoqing; Beesley, Jonathan; Johnatty, Sharon E.; deFazio, Anna; Lambrechts, Sandrina; Lambrechts, Diether; Despierre, Evelyn; Vergotes, Ignace; Chang-Claude, Jenny; Hein, Rebecca; Nickels, Stefan; Wang-Gohrke, Shan; Dörk, Thilo; Dürst, Matthias; Antonenkova, Natalia; Bogdanova, Natalia; Goodman, Marc T.; Lurie, Galina; Wilkens, Lynne R.; Carney, Michael E.; Butzow, Ralf; Nevanlinna, Heli; Heikkinen, Tuomas; Leminen, Arto; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; van Altena, Anne M.; Aben, Katja K.; Kjaer, Susanne Krüger; Høgdall, Estrid; Jensen, Allan; Brooks-Wilson, Angela; Le, Nhu; Cook, Linda; Earp, Madalene; Kelemen, Linda; Easton, Douglas; Pharoah, Paul; Song, Honglin; Tyrer, Jonathan; Ramus, Susan; Menon, Usha; Gentry-Maharaj, Alexandra; Gayther, Simon A.; Bandera, Elisa V.; Olson, Sara H.; Orlow, Irene; Rodriguez-Rodriguez, Lorna

    2013-01-01

    Recent genome-wide association studies (GWAS) have identified four low-penetrance ovarian cancer susceptibility loci. We hypothesized that further moderate or low penetrance variants exist among the subset of SNPs not well tagged by the genotyping arrays used in the previous studies which would account for some of the remaining risk. We therefore conducted a time- and cost-effective stage 1 GWAS on 342 invasive serous cases and 643 controls genotyped on pooled DNA using the high density Illumina 1M-Duo array. We followed up 20 of the most significantly associated SNPs, which are not well tagged by the lower density arrays used by the published GWAS, and genotyping them on individual DNA. Most of the top 20 SNPs were clearly validated by individually genotyping the samples used in the pools. However, none of the 20 SNPs replicated when tested for association in a much larger stage 2 set of 4,651 cases and 6,966 controls from the Ovarian Cancer Association Consortium. Given that most of the top 20 SNPs from pooling were validated in the same samples by individual genotyping, the lack of replication is likely to be due to the relatively small sample size in our stage 1 GWAS rather than due to problems with the pooling approach. We conclude that there are unlikely to be any moderate or large effects on ovarian cancer risk untagged by the less dense arrays. However our study lacked power to make clear statements on the existence of hitherto untagged small effect variants. PMID:22794196

  15. Quality control and conduct of genome-wide association meta-analyses

    DEFF Research Database (Denmark)

    Winkler, Thomas W; Day, Felix R; Croteau-Chonka, Damien C

    2014-01-01

    Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC...

  16. Genome-wide association study of pathological gambling.

    Science.gov (United States)

    Lang, M; Leménager, T; Streit, F; Fauth-Bühler, M; Frank, J; Juraeva, D; Witt, S H; Degenhardt, F; Hofmann, A; Heilmann-Heimbach, S; Kiefer, F; Brors, B; Grabe, H-J; John, U; Bischof, A; Bischof, G; Völker, U; Homuth, G; Beutel, M; Lind, P A; Medland, S E; Slutske, W S; Martin, N G; Völzke, H; Nöthen, M M; Meyer, C; Rumpf, H-J; Wurst, F M; Rietschel, M; Mann, K F

    2016-08-01

    Pathological gambling is a behavioural addiction with negative economic, social, and psychological consequences. Identification of contributing genes and pathways may improve understanding of aetiology and facilitate therapy and prevention. Here, we report the first genome-wide association study of pathological gambling. Our aims were to identify pathways involved in pathological gambling, and examine whether there is a genetic overlap between pathological gambling and alcohol dependence. Four hundred and forty-five individuals with a diagnosis of pathological gambling according to the Diagnostic and Statistical Manual of Mental Disorders were recruited in Germany, and 986 controls were drawn from a German general population sample. A genome-wide association study of pathological gambling comprising single marker, gene-based, and pathway analyses, was performed. Polygenic risk scores were generated using data from a German genome-wide association study of alcohol dependence. No genome-wide significant association with pathological gambling was found for single markers or genes. Pathways for Huntington's disease (P-value=6.63×10(-3)); 5'-adenosine monophosphate-activated protein kinase signalling (P-value=9.57×10(-3)); and apoptosis (P-value=1.75×10(-2)) were significant. Polygenic risk score analysis of the alcohol dependence dataset yielded a one-sided nominal significant P-value in subjects with pathological gambling, irrespective of comorbid alcohol dependence status. The present results accord with previous quantitative formal genetic studies which showed genetic overlap between non-substance- and substance-related addictions. Furthermore, pathway analysis suggests shared pathology between Huntington's disease and pathological gambling. This finding is consistent with previous imaging studies. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Assessing genome-wide copy number variation in the Han Chinese population.

    Science.gov (United States)

    Lu, Jianqi; Lou, Haiyi; Fu, Ruiqing; Lu, Dongsheng; Zhang, Feng; Wu, Zhendong; Zhang, Xi; Li, Changhua; Fang, Baijun; Pu, Fangfang; Wei, Jingning; Wei, Qian; Zhang, Chao; Wang, Xiaoji; Lu, Yan; Yan, Shi; Yang, Yajun; Jin, Li; Xu, Shuhua

    2017-10-01

    Copy number variation (CNV) is a valuable source of genetic diversity in the human genome and a well-recognised cause of various genetic diseases. However, CNVs have been considerably under-represented in population-based studies, particularly the Han Chinese which is the largest ethnic group in the world. To build a representative CNV map for the Han Chinese population. We conducted a genome-wide CNV study involving 451 male Han Chinese samples from 11 geographical regions encompassing 28 dialect groups, representing a less-biased panel compared with the currently available data. We detected CNVs by using 4.2M NimbleGen comparative genomic hybridisation array and whole-genome deep sequencing of 51 samples to optimise the filtering conditions in CNV discovery. A comprehensive Han Chinese CNV map was built based on a set of high-quality variants (positive predictive value >0.8, with sizes ranging from 369 bp to 4.16 Mb and a median of 5907 bp). The map consists of 4012 CNV regions (CNVRs), and more than half are novel to the 30 East Asian CNV Project and the 1000 Genomes Project Phase 3. We further identified 81 CNVRs specific to regional groups, which was indicative of the subpopulation structure within the Han Chinese population. Our data are complementary to public data sources, and the CNV map may facilitate in the identification of pathogenic CNVs and further biomedical research studies involving the Han Chinese population. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells.

    Science.gov (United States)

    Xia, Heng; Chen, Dong; Wu, Qijia; Wu, Gang; Zhou, Yanhong; Zhang, Yi; Zhang, Libin

    2017-09-01

    The current RIP-seq approach has been developed for the identification of genome-wide interaction between RNA binding protein (RBP) and the bound RNA transcripts, but still rarely for identifying its binding sites. In this study, we performed RIP-seq experiments in HeLa cells using a monoclonal antibody against CELF1. Mapping of the RIP-seq reads showed a biased distribution at the 3'UTR and intronic regions. A total of 15,285 and 1384 CELF1-specific sense and antisense peaks were identified using the ABLIRC software tool. Our bioinformatics analyses revealed that 5' and 3' splice site motifs and GU-rich motifs were highly enriched in the CELF1-bound peaks. Furthermore, transcriptome analyses revealed that alternative splicing was globally regulated by CELF1 in HeLa cells. For example, the inclusion of exon 16 of LMO7 gene, a marker gene of breast cancer, is positively regulated by CELF1. Taken together, we have shown that RIP-seq data can be used to decipher RBP binding sites and reveal an unexpected landscape of the genome-wide CELF1-RNA interactions in HeLa cells. In addition, we found that CELF1 globally regulates the alternative splicing by binding the exon-intron boundary in HeLa cells, which will deepen our understanding of the regulatory roles of CELF1 in the pre-mRNA splicing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Lin, Hailan; Xia, Xiaofeng; Yu, Liying; Vasseur, Liette; Gurr, Geoff M; Yao, Fengluan; Yang, Guang; You, Minsheng

    2015-12-10

    Serine proteases (SPs) are crucial proteolytic enzymes responsible for digestion and other processes including signal transduction and immune responses in insects. Serine protease homologs (SPHs) lack catalytic activity but are involved in innate immunity. This study presents a genome-wide investigation of SPs and SPHs in the diamondback moth, Plutella xylostella (L.), a globally-distributed destructive pest of cruciferous crops. A total of 120 putative SPs and 101 putative SPHs were identified in the P. xylostella genome by bioinformatics analysis. Based on the features of trypsin, 38 SPs were putatively designated as trypsin genes. The distribution, transcription orientation, exon-intron structure and sequence alignments suggested that the majority of trypsin genes evolved from tandem duplications. Among the 221 SP/SPH genes, ten SP and three SPH genes with one or more clip domains were predicted and designated as PxCLIPs. Phylogenetic analysis of CLIPs in P. xylostella, two other Lepidoptera species (Bombyx mori and Manduca sexta), and two more distantly related insects (Drosophila melanogaster and Apis mellifera) showed that seven of the 13 PxCLIPs were clustered with homologs of the Lepidoptera rather than other species. Expression profiling of the P. xylostella SP and SPH genes in different developmental stages and tissues showed diverse expression patterns, suggesting high functional diversity with roles in digestion and development. This is the first genome-wide investigation on the SP and SPH genes in P. xylostella. The characterized features and profiled expression patterns of the P. xylostella SPs and SPHs suggest their involvement in digestion, development and immunity of this species. Our findings provide a foundation for further research on the functions of this gene family in P. xylostella, and a better understanding of its capacity to rapidly adapt to a wide range of environmental variables including host plants and insecticides.

  20. Genome-Wide Association Analysis of Age-Dependent Egg Weights in Chickens

    Directory of Open Access Journals (Sweden)

    Zhuang Liu

    2018-04-01

    Full Text Available Egg weight (EW is an economically-important trait and displays a consecutive increase with the hen's age. Because extremely large eggs cause a range of problems in the poultry industry, we performed a genome-wide association study (GWAS in order to identify genomic variations that are associated with EW. We utilized the Affymetrix 600 K high density SNP array in a population of 1,078 hens at seven time points from day at first egg to 80 weeks age (EW80. Results reveal that a 90 Kb genomic region (169.42 Mb ~ 169.51 Mb in GGA1 is significantly associated with EW36 and is also potentially associated with egg weight at 28, 56, and 66 week of age. The leading SNP could account for 3.66% of the phenotypic variation, while two promising genes (DLEU7 and MIR15A can be mapped to this narrow significant region and may affect EW in a pleiotropic manner. In addition, one gene (CECR2 on GGA1 and two genes (MEIS1 and SPRED2 on GGA3, which involved in the processes of embryogenesis and organogenesis, were also considered to be candidates related to first egg weight (FEW and EW56, respectively. Findings in our study could provide worthy theoretical basis to generate eggs of ideal size based on marker assisted breeding selection.

  1. Genome-wide association study of pigmentary traits (skin and iris color in individuals of East Asian ancestry

    Directory of Open Access Journals (Sweden)

    Lida Rawofi

    2017-11-01

    Full Text Available Background Currently, there is limited knowledge about the genetics underlying pigmentary traits in East Asian populations. Here, we report the results of the first genome-wide association study of pigmentary traits (skin and iris color in individuals of East Asian ancestry. Methods We obtained quantitative skin pigmentation measures (M-index in the inner upper arm of the participants using a portable reflectometer (N = 305. Quantitative measures of iris color (expressed as L*, a* and b* CIELab coordinates were extracted from high-resolution iris pictures (N = 342. We also measured the color differences between the pupillary and ciliary regions of the iris (e.g., iris heterochromia. DNA samples were genotyped with Illumina’s Infinium Multi-Ethnic Global Array (MEGA and imputed using the 1000 Genomes Phase 3 samples as reference haplotypes. Results For skin pigmentation, we did not observe any genome-wide significant signal. We followed-up in three independent Chinese samples the lead SNPs of five regions showing multiple common markers (minor allele frequency ≥ 5% with good imputation scores and suggestive evidence of association (p-values < 10−5. One of these markers, rs2373391, which is located in an intron of the ZNF804B gene on chromosome 7, was replicated in one of the Chinese samples (p = 0.003. For iris color, we observed genome-wide signals in the OCA2 region on chromosome 15. This signal is driven by the non-synonymous rs1800414 variant, which explains 11.9%, 10.4% and 6% of the variation observed in the b*, a* and L* coordinates in our sample, respectively. However, the OCA2 region was not associated with iris heterochromia. Discussion Additional genome-wide association studies in East Asian samples will be necessary to further disentangle the genetic architecture of pigmentary traits in East Asian populations.

  2. Genome-Wide Identification, Phylogenetic and Expression Analyses of the Ubiquitin-Conjugating Enzyme Gene Family in Maize

    Science.gov (United States)

    Jue, Dengwei; Sang, Xuelian; Lu, Shengqiao; Dong, Chen; Zhao, Qiufang; Chen, Hongliang; Jia, Liqiang

    2015-01-01

    Background Ubiquitination is a post-translation modification where ubiquitin is attached to a substrate. Ubiquitin-conjugating enzymes (E2s) play a major role in the ubiquitin transfer pathway, as well as a variety of functions in plant biological processes. To date, no genome-wide characterization of this gene family has been conducted in maize (Zea mays). Methodology/Principal Findings In the present study, a total of 75 putative ZmUBC genes have been identified and located in the maize genome. Phylogenetic analysis revealed that ZmUBC proteins could be divided into 15 subfamilies, which include 13 ubiquitin-conjugating enzymes (ZmE2s) and two independent ubiquitin-conjugating enzyme variant (UEV) groups. The predicted ZmUBC genes were distributed across 10 chromosomes at different densities. In addition, analysis of exon-intron junctions and sequence motifs in each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Tissue expression analysis indicated that most ZmUBC genes were expressed in at least one of the tissues, indicating that these are involved in various physiological and developmental processes in maize. Moreover, expression profile analyses of ZmUBC genes under different stress treatments (4°C, 20% PEG6000, and 200 mM NaCl) and various expression patterns indicated that these may play crucial roles in the response of plants to stress. Conclusions Genome-wide identification, chromosome organization, gene structure, evolutionary and expression analyses of ZmUBC genes have facilitated in the characterization of this gene family, as well as determined its potential involvement in growth, development, and stress responses. This study provides valuable information for better understanding the classification and putative functions of the UBC-encoding genes of maize. PMID:26606743

  3. Analysis of genomic alterations in neuroblastoma by multiplex ligation-dependent probe amplification and array comparative genomic hybridization: a comparison of results.

    Science.gov (United States)

    Combaret, Valérie; Iacono, Isabelle; Bréjon, Stéphanie; Schleiermacher, Gudrun; Pierron, Gäelle; Couturier, Jérôme; Bergeron, Christophe; Blay, Jean-Yves

    2012-12-01

    In cases of neuroblastoma, recurring genetic alterations--losses of the 1p, 3p, 4p, and 11q and/or gains of 1q, 2p, and 17q chromosome arms--are currently used to define the therapeutic strategy in therapeutic protocols for low- and intermediate-risk patients. Different genome-wide analysis techniques, such as array comparative genomic hybridization (aCGH) or multiplex ligation-dependent probe amplification (MLPA), have been suggested for detecting chromosome segmental abnormalities. In this study, we compared the results of the two technologies in the analyses of the DNA of tumor samples from 91 neuroblastoma patients. Similar results were obtained with the two techniques for 75 samples (82%). In five cases (5.5%), the MLPA results were not interpretable. Discrepancies between the aCGH and MLPA results were observed in 11 cases (12%). Among the discrepancies, a 18q21.2-qter gain and 16p11.2 and 11q14.1-q14.3 losses were detected only by aCGH. The MLPA results showed that the 7p, 7q, and 14q chromosome arms were affected in six cases, while in two cases, 2p and 17q gains were observed; these results were confirmed by neither aCGH nor fluorescence in situ hybridization (FISH) analysis. Because of the higher sensitivity and specificity of genome-wide information, reasonable cost, and shorter time of aCGH analysis, we recommend the aCGH procedure for the analysis of genomic alterations in neuroblastoma. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Combined genome-wide expression profiling and targeted RNA interference in primary mouse macrophages reveals perturbation of transcriptional networks associated with interferon signalling

    Directory of Open Access Journals (Sweden)

    Craigon Marie

    2009-08-01

    Full Text Available Abstract Background Interferons (IFNs are potent antiviral cytokines capable of reprogramming the macrophage phenotype through the induction of interferon-stimulated genes (ISGs. Here we have used targeted RNA interference to suppress the expression of a number of key genes associated with IFN signalling in murine macrophages prior to stimulation with interferon-gamma. Genome-wide changes in transcript abundance caused by siRNA activity were measured using exon-level microarrays in the presence or absence of IFNγ. Results Transfection of murine bone-marrow derived macrophages (BMDMs with a non-targeting (control siRNA and 11 sequence-specific siRNAs was performed using a cationic lipid transfection reagent (Lipofectamine2000 prior to stimulation with IFNγ. Total RNA was harvested from cells and gene expression measured on Affymetrix GeneChip Mouse Exon 1.0 ST Arrays. Network-based analysis of these data revealed six siRNAs to cause a marked shift in the macrophage transcriptome in the presence or absence IFNγ. These six siRNAs targeted the Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2 transcripts. The perturbation of the transcriptome by the six siRNAs was highly similar in each case and affected the expression of over 600 downstream transcripts. Regulated transcripts were clustered based on co-expression into five major groups corresponding to transcriptional networks associated with the type I and II IFN response, cell cycle regulation, and NF-KB signalling. In addition we have observed a significant non-specific immune stimulation of cells transfected with siRNA using Lipofectamine2000, suggesting use of this reagent in BMDMs, even at low concentrations, is enough to induce a type I IFN response. Conclusion Our results provide evidence that the type I IFN response in murine BMDMs is dependent on Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2, and that siRNAs targeted to these genes results in perturbation of key transcriptional networks associated

  5. Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study

    DEFF Research Database (Denmark)

    Dijkstra, Akkelies E; Smolonska, Joanna; van den Berge, Maarten

    2014-01-01

    by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism...... (SNP). RESULTS: A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25×10(-6), OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression...... of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations. METHODS: GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed...

  6. Genome-wide association study of clinical dimensions of schizophrenia

    DEFF Research Database (Denmark)

    Fanous, Ayman H; Zhou, Baiyu; Aggen, Steven H

    2012-01-01

    Multiple sources of evidence suggest that genetic factors influence variation in clinical features of schizophrenia. The authors present the first genome-wide association study (GWAS) of dimensional symptom scores among individuals with schizophrenia.......Multiple sources of evidence suggest that genetic factors influence variation in clinical features of schizophrenia. The authors present the first genome-wide association study (GWAS) of dimensional symptom scores among individuals with schizophrenia....

  7. Targeted Exon Skipping to Correct Exon Duplications in the Dystrophin Gene

    Directory of Open Access Journals (Sweden)

    Kane L Greer

    2014-01-01

    Full Text Available Duchenne muscular dystrophy is a severe muscle-wasting disease caused by mutations in the dystrophin gene that ablate functional protein expression. Although exonic deletions are the most common Duchenne muscular dystrophy lesion, duplications account for 10–15% of reported disease-causing mutations, and exon 2 is the most commonly duplicated exon. Here, we describe the in vitro evaluation of phosphorodiamidate morpholino oligomers coupled to a cell-penetrating peptide and 2′-O-methyl phosphorothioate oligonucleotides, using three distinct strategies to reframe the dystrophin transcript in patient cells carrying an exon 2 duplication. Differences in exon-skipping efficiencies in vitro were observed between oligomer analogues of the same sequence, with the phosphorodiamidate morpholino oligomer coupled to a cell-penetrating peptide proving the most effective. Differences in exon 2 excision efficiency between normal and exon 2 duplication cells, were apparent, indicating that exon context influences oligomer-induced splice switching. Skipping of a single copy of exon 2 was induced in the cells carrying an exon 2 duplication, the simplest strategy to restore the reading frame and generate a normal dystrophin transcript. In contrast, multiexon skipping of exons 2–7 to generate a Becker muscular dystrophy-like dystrophin transcript was more challenging and could only be induced efficiently with the phosphorodiamidate morpholino oligomer chemistry.

  8. GWIS: Genome-Wide Inferred Statistics for Functions of Multiple Phenotypes

    NARCIS (Netherlands)

    Nieuwboer, H.A.; Pool, R.; Dolan, C.V.; Boomsma, D.I.; Nivard, M.G.

    2016-01-01

    Here we present a method of genome-wide inferred study (GWIS) that provides an approximation of genome-wide association study (GWAS) summary statistics for a variable that is a function of phenotypes for which GWAS summary statistics, phenotypic means, and covariances are available. A GWIS can be

  9. Genome-wide characterization of the WRKY gene family in radish (Raphanus sativus L.) reveals its critical functions under different abiotic stresses.

    Science.gov (United States)

    Karanja, Bernard Kinuthia; Fan, Lianxue; Xu, Liang; Wang, Yan; Zhu, Xianwen; Tang, Mingjia; Wang, Ronghua; Zhang, Fei; Muleke, Everlyne M'mbone; Liu, Liwang

    2017-11-01

    The radish WRKY gene family was genome-widely identified and played critical roles in response to multiple abiotic stresses. The WRKY is among the largest transcription factors (TFs) associated with multiple biological activities for plant survival, including control response mechanisms against abiotic stresses such as heat, salinity, and heavy metals. Radish is an important root vegetable crop and therefore characterization and expression pattern investigation of WRKY transcription factors in radish is imperative. In the present study, 126 putative WRKY genes were retrieved from radish genome database. Protein sequence and annotation scrutiny confirmed that RsWRKY proteins possessed highly conserved domains and zinc finger motif. Based on phylogenetic analysis results, RsWRKYs candidate genes were divided into three groups (Group I, II and III) with the number 31, 74, and 20, respectively. Additionally, gene structure analysis revealed that intron-exon patterns of the WRKY genes are highly conserved in radish. Linkage map analysis indicated that RsWRKY genes were distributed with varying densities over nine linkage groups. Further, RT-qPCR analysis illustrated the significant variation of 36 RsWRKY genes under one or more abiotic stress treatments, implicating that they might be stress-responsive genes. In total, 126 WRKY TFs were identified from the R. sativus genome wherein, 35 of them showed abiotic stress-induced expression patterns. These results provide a genome-wide characterization of RsWRKY TFs and baseline for further functional dissection and molecular evolution investigation, specifically for improving abiotic stress resistances with an ultimate goal of increasing yield and quality of radish.

  10. Nanobody®-based chromatin immunoprecipitation/micro-array analysis for genome-wide identification of transcription factor DNA binding sites

    Science.gov (United States)

    Nguyen-Duc, Trong; Peeters, Eveline; Muyldermans, Serge; Charlier, Daniel; Hassanzadeh-Ghassabeh, Gholamreza

    2013-01-01

    Nanobodies® are single-domain antibody fragments derived from camelid heavy-chain antibodies. Because of their small size, straightforward production in Escherichia coli, easy tailoring, high affinity, specificity, stability and solubility, nanobodies® have been exploited in various biotechnological applications. A major challenge in the post-genomics and post-proteomics era is the identification of regulatory networks involving nucleic acid–protein and protein–protein interactions. Here, we apply a nanobody® in chromatin immunoprecipitation followed by DNA microarray hybridization (ChIP-chip) for genome-wide identification of DNA–protein interactions. The Lrp-like regulator Ss-LrpB, arguably one of the best-studied specific transcription factors of the hyperthermophilic archaeon Sulfolobus solfataricus, was chosen for this proof-of-principle nanobody®-assisted ChIP. Three distinct Ss-LrpB-specific nanobodies®, each interacting with a different epitope, were generated for ChIP. Genome-wide ChIP-chip with one of these nanobodies® identified the well-established Ss-LrpB binding sites and revealed several unknown target sequences. Furthermore, these ChIP-chip profiles revealed auxiliary operator sites in the open reading frame of Ss-lrpB. Our work introduces nanobodies® as a novel class of affinity reagents for ChIP. Taking into account the unique characteristics of nanobodies®, in particular, their short generation time, nanobody®-based ChIP is expected to further streamline ChIP-chip and ChIP-Seq experiments, especially in organisms with no (or limited) possibility of genetic manipulation. PMID:23275538

  11. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins.

    Science.gov (United States)

    Ramírez-Sánchez, Obed; Pérez-Rodríguez, Paulino; Delaye, Luis; Tiessen, Axel

    2016-12-01

    Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa), average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt)]. Streptophyta have on average only ∼5.7 exons of medium size (∼230nt). Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400nt). Among subcellular compartments, membrane proteins are the largest (∼520aa), whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240aa). Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  12. Plant Proteins Are Smaller Because They Are Encoded by Fewer Exons than Animal Proteins

    Directory of Open Access Journals (Sweden)

    Obed Ramírez-Sánchez

    2016-12-01

    Full Text Available Protein size is an important biochemical feature since longer proteins can harbor more domains and therefore can display more biological functionalities than shorter proteins. We found remarkable differences in protein length, exon structure, and domain count among different phylogenetic lineages. While eukaryotic proteins have an average size of 472 amino acid residues (aa, average protein sizes in plant genomes are smaller than those of animals and fungi. Proteins unique to plants are ∼81 aa shorter than plant proteins conserved among other eukaryotic lineages. The smaller average size of plant proteins could neither be explained by endosymbiosis nor subcellular compartmentation nor exon size, but rather due to exon number. Metazoan proteins are encoded on average by ∼10 exons of small size [∼176 nucleotides (nt]. Streptophyta have on average only ∼5.7 exons of medium size (∼230 nt. Multicellular species code for large proteins by increasing the exon number, while most unicellular organisms employ rather larger exons (>400 nt. Among subcellular compartments, membrane proteins are the largest (∼520 aa, whereas the smallest proteins correspond to the gene ontology group of ribosome (∼240 aa. Plant genes are encoded by half the number of exons and also contain fewer domains than animal proteins on average. Interestingly, endosymbiotic proteins that migrated to the plant nucleus became larger than their cyanobacterial orthologs. We thus conclude that plants have proteins larger than bacteria but smaller than animals or fungi. Compared to the average of eukaryotic species, plants have ∼34% more but ∼20% smaller proteins. This suggests that photosynthetic organisms are unique and deserve therefore special attention with regard to the evolutionary forces acting on their genomes and proteomes.

  13. Genome-Wide Detection and Analysis of Multifunctional Genes

    Science.gov (United States)

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  14. A hidden Markov model approach for determining expression from genomic tiling micro arrays

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Gardner, P. P.; Arctander, Peter

    2006-01-01

    Background Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. Results We present a probabilistic procedure, ExpressHMM, that adaptiv......Background Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. Results We present a probabilistic procedure, Express...

  15. Genome-Wide Association Study (GWAS) and Genome-Wide Environment Interaction Study (GWEIS) of Depressive Symptoms in African American and Hispanic/Latina Women

    Science.gov (United States)

    Dunn, Erin C.; Wiste, Anna; Radmanesh, Farid; Almli, Lynn M.; Gogarten, Stephanie M.; Sofer, Tamar; Faul, Jessica D.; Kardia, Sharon L.R.; Smith, Jennifer A.; Weir, David R.; Zhao, Wei; Soare, Thomas W.; Mirza, Saira S.; Hek, Karin; Tiemeier, Henning W.; Goveas, Joseph S.; Sarto, Gloria E.; Snively, Beverly M.; Cornelis, Marilyn; Koenen, Karestan C.; Kraft, Peter; Purcell, Shaun; Ressler, Kerry J.; Rosand, Jonathan; Wassertheil-Smoller, Sylvia; Smoller, Jordan W.

    2016-01-01

    Background Genome-wide association studies (GWAS) have been unable to identify variants linked to depression. We hypothesized that examining depressive symptoms and considering gene-environment interaction (G×E) might improve efficiency for gene discovery. We therefore conducted a GWAS and genome-wide environment interaction study (GWEIS) of depressive symptoms. Methods Using data from the SHARe cohort of the Women’s Health Initiative, comprising African Americans (n=7179) and Hispanics/Latinas (n=3138), we examined genetic main effects and G×E with stressful life events and social support. We also conducted a heritability analysis using genome-wide complex trait analysis (GCTA). Replication was attempted in four independent cohorts. Results No SNPs achieved genome-wide significance for main effects in either discovery sample. The top signals in African Americans were rs73531535 (located 20kb from GPR139, p=5.75×10−8) and rs75407252 (intronic to CACNA2D3, p=6.99×10−7). In Hispanics/Latinas, the top signals were rs2532087 (located 27kb from CD38, p=2.44×10−7) and rs4542757 (intronic to DCC, p=7.31×10−7). In the GWEIS with stressful life events, one interaction signal was genome-wide significant in African Americans (rs4652467; p=4.10×10−10; located 14kb from CEP350). This interaction was not observed in a smaller replication cohort. Although heritability estimates for depressive symptoms and stressful life events were each less than 10%, they were strongly genetically correlated (rG=0.95), suggesting that common variation underlying depressive symptoms and stressful life event exposure, though modest on their own, were highly overlapping in this sample. Conclusions Our results underscore the need for larger samples, more GWEIS, and greater investigation into genetic and environmental determinants of depressive symptoms in minorities. PMID:27038408

  16. A genome-wide association study of serum uric acid in African Americans

    Directory of Open Access Journals (Sweden)

    Gerry Norman P

    2011-02-01

    Full Text Available Abstract Background Uric acid is the primary byproduct of purine metabolism. Hyperuricemia is associated with body mass index (BMI, sex, and multiple complex diseases including gout, hypertension (HTN, renal disease, and type 2 diabetes (T2D. Multiple genome-wide association studies (GWAS in individuals of European ancestry (EA have reported associations between serum uric acid levels (SUAL and specific genomic loci. The purposes of this study were: 1 to replicate major signals reported in EA populations; and 2 to use the weak LD pattern in African ancestry population to better localize (fine-map reported loci and 3 to explore the identification of novel findings cognizant of the moderate sample size. Methods African American (AA participants (n = 1,017 from the Howard University Family Study were included in this study. Genotyping was performed using the Affymetrix® Genome-wide Human SNP Array 6.0. Imputation was performed using MACH and the HapMap reference panels for CEU and YRI. A total of 2,400,542 single nucleotide polymorphisms (SNPs were assessed for association with serum uric acid under the additive genetic model with adjustment for age, sex, BMI, glomerular filtration rate, HTN, T2D, and the top two principal components identified in the assessment of admixture and population stratification. Results Four variants in the gene SLC2A9 achieved genome-wide significance for association with SUAL (p-values ranging from 8.88 × 10-9 to 1.38 × 10-9. Fine-mapping of the SLC2A9 signals identified a 263 kb interval of linkage disequilibrium in the HapMap CEU sample. This interval was reduced to 37 kb in our AA and the HapMap YRI samples. Conclusions The most strongly associated locus for SUAL in EA populations was also the most strongly associated locus in this AA sample. This finding provides evidence for the role of SLC2A9 in uric acid metabolism across human populations. Additionally, our findings demonstrate the utility of following-up EA

  17. THE EXON 5, 6, 7, 8 OF P53 MUTATIONS IN ORAL SQUAMOUS CELLS CARCINOMA

    Directory of Open Access Journals (Sweden)

    Retno P Rahayu

    2012-04-01

    Full Text Available Genetic instability may underlie the etiology of multistep carcinogenesis. The altered p53 gene observed in tumors may represent the expression of such instability and may allow the accumulation of other gene alterations caused by multiple mechanism. p53 gene is the guardian of the genome, that is why we pay more attention to this gene. In this study, we evaluated the significance of p53 mutation in 55 patient with oral squamous carcinoma. Thirty among them underwent well-differentiated carcinoma, while the remaining 25 patients underwent poorly differentiated carcinoma. The mutations were detected by PCR-SSCP (Single strand Conformational Polymorphism analysis in the region between exon 5 and exon 8. The results indicated that the p53 mutation in exon 5 (40%, exon 6 (28%, exon 7 (24% and exon 8 (8% were associated with poorly differentiated carcinoma, whereas mutation in exon 5 (10%, exon 6 (30%, exon 7 (40% and exon 8 (20% were associated with well-differentiated carcinoma. These observations suggest that p53 mutation in exon 5, 6, and 7 have strong correlation with poorly differentiated in oral squamous carcinoma while well-differentiated level was related with mutation in exon 6,7 and 8.

  18. A DEL phenotype attributed to RHD Exon 9 sequence deletion: slipped-strand mispairing and blood group polymorphisms.

    Science.gov (United States)

    Lopez, Genghis H; Turner, Robyn M; McGowan, Eunike C; Schoeman, Elizna M; Scott, Stacy A; O'Brien, Helen; Millard, Glenda M; Roulis, Eileen V; Allen, Amanda J; Liew, Yew-Wah; Flower, Robert L; Hyland, Catherine A

    2018-03-01

    The RhD blood group antigen is extremely polymorphic and the DEL phenotype represents one such class of polymorphisms. The DEL phenotype prevalent in East Asian populations arises from a synonymous substitution defined as RHD*1227A. However, initially, based on genomic and cDNA studies, the genetic basis for a DEL phenotype in Taiwan was attributed to a deletion of RHD Exon 9 that was never verified at the genomic level by any other independent group. Here we investigate the genetic basis for a Caucasian donor with a DEL partial D phenotype and compare the genomic findings to those initial molecular studies. The 3'-region of the RHD gene was amplified by long-range polymerase chain reaction (PCR) for massively parallel sequencing. Primers were designed to encompass a deletion, flanking Exon 9, by standard PCR for Sanger sequencing. Targeted sequencing of exons and flanking introns was also performed. Genomic DNA exhibited a 1012-bp deletion spanning from Intron 8, across Exon 9 into Intron 9. The deletion breakpoints occurred between two 25-bp repeat motifs flanking Exon 9 such that one repeat sequence remained. Deletion mutations bordered by repeat sequences are a hallmark of slipped-strand mispairing (SSM) event. We propose this genetic mechanism generated the germline deletion in the Caucasian donor. Extensive studies show that the RHD*1227A is the most prevalent DEL allele in East Asian populations and may have confounded the initial molecular studies. Review of the literature revealed that the SSM model explains some of the extreme polymorphisms observed in the clinically significant RhD blood group antigen. © 2017 AABB.

  19. Genome-wide identification and analysis of the aldehyde dehydrogenase (ALDH) gene superfamily in apple (Malus × domestica Borkh.).

    Science.gov (United States)

    Li, Xiaoqin; Guo, Rongrong; Li, Jun; Singer, Stacy D; Zhang, Yucheng; Yin, Xiangjing; Zheng, Yi; Fan, Chonghui; Wang, Xiping

    2013-10-01

    Aldehyde dehydrogenases (ALDHs) represent a protein superfamily encoding NAD(P)(+)-dependent enzymes that oxidize a wide range of endogenous and exogenous aliphatic and aromatic aldehydes. In plants, they are involved in many biological processes and play a role in the response to environmental stress. In this study, a total of 39 ALDH genes from ten families were identified in the apple (Malus × domestica Borkh.) genome. Synteny analysis of the apple ALDH (MdALDH) genes indicated that segmental and tandem duplications, as well as whole genome duplications, have likely contributed to the expansion and evolution of these gene families in apple. Moreover, synteny analysis between apple and Arabidopsis demonstrated that several MdALDH genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes appeared before the divergence of lineages that led to apple and Arabidopsis. In addition, phylogenetic analysis, as well as comparisons of exon-intron and protein structures, provided further insight into both their evolutionary relationships and their putative functions. Tissue-specific expression analysis of the MdALDH genes demonstrated diverse spatiotemporal expression patterns, while their expression profiles under abiotic stress and various hormone treatments indicated that many MdALDH genes were responsive to high salinity and drought, as well as different plant hormones. This genome-wide identification, as well as characterization of evolutionary relationships and expression profiles, of the apple MdALDH genes will not only be useful for the further analysis of ALDH genes and their roles in stress response, but may also aid in the future improvement of apple stress tolerance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Genome-wide mapping of Painting of fourth on Drosophila melanogaster salivary gland polytene chromosomes.

    Science.gov (United States)

    Johansson, Anna-Mia; Larsson, Jan

    2014-12-01

    The protein Painting of fourth (POF) in Drosophila melanogaster specifically targets and stimulates expression output from the heterochromatic 4th chromosome, thereby representing an autosome specific protein [1,2]. Despite the high specificity for chromosome 4 genes, POF is occasionally observed binding to the cytological region 2L:31 in males and females [3] and two loci on the X-chromosome, PoX1 and PoX2 only in females [4]. Here we provide a detailed description of the experimental design and analysis of the tiling array data presented by Lundberg and colleagues in G3: Genes, Genomes, Genetics 2013 [4], where the female specific POF binding to PoX1 and PoX2 loci on the X chromosome was reported. We show the genome-wide high resolution binding profile of the POF protein where these different POF binding sites are detected. The complete data set is available at http://www.ncbi.nlm.nih.gov/geo/ (accession: GSE45402).

  1. Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses.

    Science.gov (United States)

    Jing, Zhaobin; Liu, Zhande

    2018-04-01

    As one of the largest transcriptional factor families in plants, WRKY transcription factors play important roles in various biotic and abiotic stress responses. To date, WRKY genes in kiwifruit (Actinidia spp.) remain poorly understood. In our study, o total of 97 AcWRKY genes have been identified in the kiwifruit genome. An overview of these AcWRKY genes is analyzed, including the phylogenetic relationships, exon-intron structures, synteny and expression profiles. The 97 AcWRKY genes were divided into three groups based on the conserved WRKY domain. Synteny analysis indicated that segmental duplication events contributed to the expansion of the kiwifruit AcWRKY family. In addition, the synteny analysis between kiwifruit and Arabidopsis suggested that some of the AcWRKY genes were derived from common ancestors before the divergence of these two species. Conserved motifs outside the AcWRKY domain may reflect their functional conservation. Genome-wide segmental and tandem duplication were found, which may contribute to the expansion of AcWRKY genes. Furthermore, the analysis of selected AcWRKY genes showed a variety of expression patterns in five different organs as well as during biotic and abiotic stresses. The genome-wide identification and characterization of kiwifruit WRKY transcription factors provides insight into the evolutionary history and is a useful resource for further functional analyses of kiwifruit.

  2. Genome-wide association studies and resting heart rate

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas

    2016-01-01

    Genome-wide association studies (GWASs) have revolutionized the search for genetic variants regulating resting heart rate. In the last 10 years, GWASs have led to the identification of at least 21 novel heart rate loci. These discoveries have provided valuable insights into the mechanisms...... and pathways that regulate heart rate and link heart rate to cardiovascular morbidity and mortality. GWASs capture majority of genetic variation in a population sample by utilizing high-throughput genotyping chips measuring genotypes for up to several millions of SNPs across the genome in thousands...... of individuals. This allows the identification of the strongest heart rate associated signals at genome-wide level. While GWASs provide robust statistical evidence of the association of a given genetic locus with heart rate, they are only the starting point for detailed follow-up studies to locate the causal...

  3. Intron Retention and TE Exonization Events in ZRANB2

    Directory of Open Access Journals (Sweden)

    Sang-Je Park

    2012-01-01

    Full Text Available The Zinc finger, RAN-binding domain-containing protein 2 (ZRANB2, contains arginine/serine-rich (RS domains that mediate its function in the regulation of alternative splicing. The ZRANB2 gene contains 2 LINE elements (L3b, Plat_L3 between the 9th and 10th exons. We identified the exonization event of a LINE element (Plat_L3. Using genomic PCR, RT-PCR amplification, and sequencing of primate DNA and RNA samples, we analyzed the evolutionary features of ZRANB2 transcripts. The results indicated that 2 of the LINE elements were integrated in human and all of the tested primate samples (hominoids: 3 species; Old World monkey: 8 species; New World monkey: 6 species; prosimian: 1 species. Human, rhesus monkey, crab-eating monkey, African-green monkey, and marmoset harbor the exon derived from LINE element (Plat_L3. RT-PCR amplification revealed the long transcripts and their differential expression patterns. Intriguingly, these long transcripts were abundantly expressed in Old World monkey lineages (rhesus, crab-eating, and African-green monkeys and were expressed via intron retention (IR. Thus, the ZRANB2 gene produces 3 transcript variants in which the Cterminus varies by transposable elements (TEs exonization and IR mechanisms. Therefore, ZRANB2 is valuable for investigating the evolutionary mechanisms of TE exonization and IR during primate evolution.

  4. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women

    DEFF Research Database (Denmark)

    Fox, Caroline S; Liu, Yongmei; White, Charles C

    2012-01-01

    of European ancestry. Subcutaneous and visceral fat were quantified in 5,560 women and 4,997 men from 4 population-based studies. Genome-wide genotyping was performed using standard arrays and imputed to ~2.5 million Hapmap SNPs. Each study performed a genome-wide association analysis of subcutaneous adipose...... tissue (SAT), visceral adipose tissue (VAT), VAT adjusted for body mass index, and VAT/SAT ratio (a metric of the propensity to store fat viscerally as compared to subcutaneously) in the overall sample and in women and men separately. A weighted z-score meta-analysis was conducted. For the VAT/SAT ratio......-specific analyses. Our most significant finding was for VAT in women, rs1659258 near THNSL2 (p = 1.6 × 10-08), but not men (p = 0.75). Validation of this SNP in the GIANT consortium data demonstrated a similar sex-specific pattern, with observed significance in women (p = 0.006) but not men (p = 0.24) for BMI...

  5. Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists

    Directory of Open Access Journals (Sweden)

    Matheus Sanitá Lima

    2017-11-01

    Full Text Available Organelle genomes are among the most sequenced kinds of chromosome. This is largely because they are small and widely used in molecular studies, but also because next-generation sequencing technologies made sequencing easier, faster, and cheaper. However, studies of organelle RNA have not kept pace with those of DNA, despite huge amounts of freely available eukaryotic RNA-sequencing (RNA-seq data. Little is known about organelle transcription in nonmodel species, and most of the available eukaryotic RNA-seq data have not been mined for organelle transcripts. Here, we use publicly available RNA-seq experiments to investigate organelle transcription in 30 diverse plastid-bearing protists with varying organelle genomic architectures. Mapping RNA-seq data to organelle genomes revealed pervasive, genome-wide transcription, regardless of the taxonomic grouping, gene organization, or noncoding content. For every species analyzed, transcripts covered ≥85% of the mitochondrial and/or plastid genomes (all of which were ≤105 kb, indicating that most of the organelle DNA—coding and noncoding—is transcriptionally active. These results follow earlier studies of model species showing that organellar transcription is coupled and ubiquitous across the genome, requiring significant downstream processing of polycistronic transcripts. Our findings suggest that noncoding organelle DNA can be transcriptionally active, raising questions about the underlying function of these transcripts and underscoring the utility of publicly available RNA-seq data for recovering complete genome sequences. If pervasive transcription is also found in bigger organelle genomes (>105 kb and across a broader range of eukaryotes, this could indicate that noncoding organelle RNAs are regulating fundamental processes within eukaryotic cells.

  6. Adiponectin Concentrations: A Genome-wide Association Study

    Science.gov (United States)

    Jee, Sun Ha; Sull, Jae Woong; Lee, Jong-Eun; Shin, Chol; Park, Jongkeun; Kimm, Heejin; Cho, Eun-Young; Shin, Eun-Soon; Yun, Ji Eun; Park, Ji Wan; Kim, Sang Yeun; Lee, Sun Ju; Jee, Eun Jung; Baik, Inkyung; Kao, Linda; Yoon, Sungjoo Kim; Jang, Yangsoo; Beaty, Terri H.

    2010-01-01

    Adiponectin is associated with obesity and insulin resistance. To date, there has been no genome-wide association study (GWAS) of adiponectin levels in Asians. Here we present a GWAS of a cohort of Korean volunteers. A total of 4,001 subjects were genotyped by using a genome-wide marker panel in a two-stage design (979 subjects initially and 3,022 in a second stage). Another 2,304 subjects were used for follow-up replication studies with selected markers. In the discovery phase, the top SNP associated with mean log adiponectin was rs3865188 in CDH13 on chromosome 16 (p = 1.69 × 10−15 in the initial sample, p = 6.58 × 10−39 in the second genome-wide sample, and p = 2.12 × 10−32 in the replication sample). The meta-analysis p value for rs3865188 in all 6,305 individuals was 2.82 × 10−83. The association of rs3865188 with high-molecular-weight adiponectin (p = 7.36 × 10−58) was even stronger in the third sample. A reporter assay that evaluated the effects of a CDH13 promoter SNP in complete linkage disequilibrium with rs3865188 revealed that the major allele increased expression 2.2-fold. This study clearly shows that genetic variants in CDH13 influence adiponectin levels in Korean adults. PMID:20887962

  7. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate

    Science.gov (United States)

    Roffler, Gretchen H.; Amish, Stephen J.; Smith, Seth; Cosart, Ted F.; Kardos, Marty; Schwartz, Michael K.; Luikart, Gordon

    2016-01-01

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding and nearby 5′ and 3′ untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR-based SNP chip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan and bayescan), we detected 28 SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease-regulating functions (e.g. Ovar-DRA, APC, BATF2, MAGEB18), cell regulation signalling pathways (e.g. KRIT1, PI3K, ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene-targeted SNP discovery and subsequent SNP chip genotyping using low-quality samples in a nonmodel species.

  8. Population structure revealed by different marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars

    NARCIS (Netherlands)

    Matthies, I.E.; Hintum, van T.J.L.; Weise, S.; Röder, M.S.

    2012-01-01

    Diversity arrays technology (DArT) and simple sequence repeat (SSR) markers were applied to investigate population structure, extent of linkage disequilibrium and genetic diversity (kinship) on a genome-wide level in European barley (Hordeum vulgare L.) cultivars. A set of 183 varieties could be

  9. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    OpenAIRE

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitulkumar Nandlal; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S

    2015-01-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ~14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of Europea...

  10. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer

    OpenAIRE

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Stephen; Canisius, Sander; Dennis, Joe; Lush, Michael; Maranian, Melanie; Bolla, Manjeet; Wang, Qing; Shah, Mitul; Perkins, Barbara; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S.

    2015-01-01

    textabstractGenome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to wome...

  11. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array--comparative genomic hybridization

    DEFF Research Database (Denmark)

    Isinger-Ekstrand, Anna; Johansson, Jan; Ohlsson, Mattias

    2010-01-01

    15, 13q34, and 12q13, whereas different profiles with gains at 5p15, 7p22, 2q35, and 13q34 characterized gastric cancers. CDK6 and EGFR were identified as putative target genes in cancers of the esophagus and the gastroesophageal junction, with upregulation in one quarter of the tumors. Gains......We aimed to characterize the genomic profiles of adenocarcinomas in the gastroesophageal junction in relation to cancers in the esophagus and the stomach. Profiles of gains/losses as well as gene expression profiles were obtained from 27 gastroesophageal adenocarcinomas by means of 32k high......-resolution array-based comparative genomic hybridization and 27k oligo gene expression arrays, and putative target genes were validated in an extended series. Adenocarcinomas in the distal esophagus and the gastroesophageal junction showed strong similarities with the most common gains at 20q13, 8q24, 1q21-23, 5p...

  12. Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Chambers David

    2011-04-01

    Full Text Available Abstract Background In ovo electroporation is a widely used technique to study gene function in developmental biology. Despite the widespread acceptance of this technique, no genome-wide analysis of the effects of in ovo electroporation, principally the current applied across the tissue and exogenous vector DNA introduced, on endogenous gene expression has been undertaken. Here, the effects of electric current and expression of a GFP-containing construct, via electroporation into the midbrain of Hamburger-Hamilton stage 10 chicken embryos, are analysed by microarray. Results Both current alone and in combination with exogenous DNA expression have a small but reproducible effect on endogenous gene expression, changing the expression of the genes represented on the array by less than 0.1% (current and less than 0.5% (current + DNA, respectively. The subset of genes regulated by electric current and exogenous DNA span a disparate set of cellular functions. However, no genes involved in the regional identity were affected. In sharp contrast to this, electroporation of a known transcription factor, Dmrt5, caused a much greater change in gene expression. Conclusions These findings represent the first systematic genome-wide analysis of the effects of in ovo electroporation on gene expression during embryonic development. The analysis reveals that this process has minimal impact on the genetic basis of cell fate specification. Thus, the study demonstrates the validity of the in ovo electroporation technique to study gene function and expression during development. Furthermore, the data presented here can be used as a resource to refine the set of transcriptional responders in future in ovo electroporation studies of specific gene function.

  13. Genome-wide association study identifies five new schizophrenia loci.

    LENUS (Irish Health Repository)

    Ripke, Stephan

    2011-10-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10(-11)) was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA 137), a known regulator of neuronal development. Four other schizophrenia loci achieving genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10(-9)), ANK3 (rs10994359, P = 2.5 × 10(-8)) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10(-9)).

  14. Genome-Wide SNP Discovery, Genotyping and Their Preliminary Applications for Population Genetic Inference in Spotted Sea Bass (Lateolabrax maculatus.

    Directory of Open Access Journals (Sweden)

    Juan Wang

    Full Text Available Next-generation sequencing and the collection of genome-wide single-nucleotide polymorphisms (SNPs allow identifying fine-scale population genetic structure and genomic regions under selection. The spotted sea bass (Lateolabrax maculatus is a non-model species of ecological and commercial importance and widely distributed in northwestern Pacific. A total of 22 648 SNPs was discovered across the genome of L. maculatus by paired-end sequencing of restriction-site associated DNA (RAD-PE for 30 individuals from two populations. The nucleotide diversity (π for each population was 0.0028±0.0001 in Dandong and 0.0018±0.0001 in Beihai, respectively. Shallow but significant genetic differentiation was detected between the two populations analyzed by using both the whole data set (FST = 0.0550, P < 0.001 and the putatively neutral SNPs (FST = 0.0347, P < 0.001. However, the two populations were highly differentiated based on the putatively adaptive SNPs (FST = 0.6929, P < 0.001. Moreover, a total of 356 SNPs representing 298 unique loci were detected as outliers putatively under divergent selection by FST-based outlier tests as implemented in BAYESCAN and LOSITAN. Functional annotation of the contigs containing putatively adaptive SNPs yielded hits for 22 of 55 (40% significant BLASTX matches. Candidate genes for local selection constituted a wide array of functions, including binding, catalytic and metabolic activities, etc. The analyses with the SNPs developed in the present study highlighted the importance of genome-wide genetic variation for inference of population structure and local adaptation in L. maculatus.

  15. A novel deletion in the thyrotropin Beta-subunit gene identified by array comparative genomic hybridization analysis causes central congenital hypothyroidism in a boy originating from Turkey.

    Science.gov (United States)

    Hermanns, Pia; Couch, Robert; Leonard, Norma; Klotz, Cherise; Pohlenz, Joachim

    2014-01-01

    Isolated central congenital hypothyroidism (ICCH) is rare but important. Most ICCH patients are diagnosed later, which results in severe growth failure and intellectual disability. We describe a boy with ICCH due to a large homozygous TSHβ gene deletion. A 51-day-old male Turkish infant, whose parents were first cousins, was admitted for evaluation of prolonged jaundice. His clinical appearance was compatible with hypothyroidism. Venous thyrotropin (TSH) was undetectably low, with a subsequent low free T4 and a low free T3, suggestive of central hypothyroidism. Using different PCR protocols, we could not amplify both coding exons of the boy's TSHβ gene, which suggested a deletion. An array comparative genomic hybridization (aCGH) using specific probes around the TSHβ gene locus showed him to be homozygous for a 6-kb deletion spanning all exons and parts of the 5' untranslated region of the gene. Infants who are clinically suspected of having hypothyroidism should be evaluated thoroughly, even if their TSH-based screening result is normal. In cases with ICCH and undetectably low TSH serum concentrations, a TSHβ gene deletion should be considered; aCGH should be performed when gene deletions are suspected. In such cases, PCR-based sequencing techniques give negative results.

  16. Genome-wide association studies identify four ER negative-specific breast cancer risk loci

    DEFF Research Database (Denmark)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara

    2013-01-01

    differences in genetic predisposition. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls......), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10(-12) and LGR6, P = 1.4 × 10(-8)), 2p24.1 (P = 4.6 × 10(-8)) and 16q12.2 (FTO, P = 4.0 × 10(-8)), were associated with ER-negative but not ER...

  17. FGWAS: Functional genome wide association analysis.

    Science.gov (United States)

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Physical mapping of QTL for tuber yield, starch content and starch yield in tetraploid potato (Solanum tuberosum L.) by means of genome wide genotyping by sequencing and the 8.3 K SolCAP SNP array.

    Science.gov (United States)

    Schönhals, Elske Maria; Ding, Jia; Ritter, Enrique; Paulo, Maria João; Cara, Nicolás; Tacke, Ekhard; Hofferbert, Hans-Reinhard; Lübeck, Jens; Strahwald, Josef; Gebhardt, Christiane

    2017-08-22

    Tuber yield and starch content of the cultivated potato are complex traits of decisive importance for breeding improved varieties. Natural variation of tuber yield and starch content depends on the environment and on multiple, mostly unknown genetic factors. Dissection and molecular identification of the genes and their natural allelic variants controlling these complex traits will lead to the development of diagnostic DNA-based markers, by which precision and efficiency of selection can be increased (precision breeding). Three case-control populations were assembled from tetraploid potato cultivars based on maximizing the differences between high and low tuber yield (TY), starch content (TSC) and starch yield (TSY, arithmetic product of TY and TSC). The case-control populations were genotyped by restriction-site associated DNA sequencing (RADseq) and the 8.3 k SolCAP SNP genotyping array. The allele frequencies of single nucleotide polymorphisms (SNPs) were compared between cases and controls. RADseq identified, depending on data filtering criteria, between 6664 and 450 genes with one or more differential SNPs for one, two or all three traits. Differential SNPs in 275 genes were detected using the SolCAP array. A genome wide association study using the SolCAP array on an independent, unselected population identified SNPs associated with tuber starch content in 117 genes. Physical mapping of the genes containing differential or associated SNPs, and comparisons between the two genome wide genotyping methods and two different populations identified genome segments on all twelve potato chromosomes harboring one or more quantitative trait loci (QTL) for TY, TSC and TSY. Several hundred genes control tuber yield and starch content in potato. They are unequally distributed on all potato chromosomes, forming clusters between 0.5-4 Mbp width. The largest fraction of these genes had unknown function, followed by genes with putative signalling and regulatory functions. The

  19. Genome-wide comparison of medieval and modern Mycobacterium leprae.

    Science.gov (United States)

    Schuenemann, Verena J; Singh, Pushpendra; Mendum, Thomas A; Krause-Kyora, Ben; Jäger, Günter; Bos, Kirsten I; Herbig, Alexander; Economou, Christos; Benjak, Andrej; Busso, Philippe; Nebel, Almut; Boldsen, Jesper L; Kjellström, Anna; Wu, Huihai; Stewart, Graham R; Taylor, G Michael; Bauer, Peter; Lee, Oona Y-C; Wu, Houdini H T; Minnikin, David E; Besra, Gurdyal S; Tucker, Katie; Roffey, Simon; Sow, Samba O; Cole, Stewart T; Nieselt, Kay; Krause, Johannes

    2013-07-12

    Leprosy was endemic in Europe until the Middle Ages. Using DNA array capture, we have obtained genome sequences of Mycobacterium leprae from skeletons of five medieval leprosy cases from the United Kingdom, Sweden, and Denmark. In one case, the DNA was so well preserved that full de novo assembly of the ancient bacterial genome could be achieved through shotgun sequencing alone. The ancient M. leprae sequences were compared with those of 11 modern strains, representing diverse genotypes and geographic origins. The comparisons revealed remarkable genomic conservation during the past 1000 years, a European origin for leprosy in the Americas, and the presence of an M. leprae genotype in medieval Europe now commonly associated with the Middle East. The exceptional preservation of M. leprae biomarkers, both DNA and mycolic acids, in ancient skeletons has major implications for palaeomicrobiology and human pathogen evolution.

  20. Genome-wide DNA methylation profiling in infants born to gestational diabetes mellitus.

    Science.gov (United States)

    Weng, Xiaoling; Liu, Fatao; Zhang, Hong; Kan, Mengyuan; Wang, Ting; Dong, Mingyue; Liu, Yun

    2018-03-26

    Offspring exposed to gestational diabetes mellitus (GDM) are at a high risk for metabolic diseases. The mechanisms behind the association between offspring exposed to GDM in utero and an increased risk of health consequences later in life remain unclear. The aim of this study was to clarify the changes in methylation levels in the foetuses of women with GDM and to explore the possible mechanisms linking maternal GDM with a high risk of metabolic diseases in offspring later in life. A genome-wide comparative methylome analysis on the umbilical cord blood of infants born to 30 women with GDM and 33 women with normal pregnancy was performed using Infinium HumanMethylation 450 BeadChip assays. A quantitative methylation analysis of 18 CpG dinucleotides was verified in the validation umbilical cord blood samples from 102 newborns exposed to GDM and 103 newborns who experienced normal pregnancy by MassARRAY EpiTYPER. A total of 4485 differentially methylated sites (DMSs), including 2150 hypermethylated sites and 2335 hypomethylated sites, with a mean β-value difference of >0.05, were identified by the 450k array. Good agreement was observed between the massarray validation data and the 450k array data (R 2 > 0.99; P 0.15 between the GDM and healthy groups were identified and showed potential as clinical biomarkers for GDM. "hsa04940: Type I diabetes mellitus" was the most significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, with a P-value = 3.20E-07 and 1.36E-02 in the hypermethylated and hypomethylated genepathway enrichment analyses, respectively. In the Gene Ontology (GO) pathway analyses, immune MHC-related pathways and neuron development-related pathways were significantly enriched. Our results suggest that GDM has epigenetic effects on genes that are preferentially involved in the Type I diabetes mellitus pathway, immune MHC (major histocompatibility complex)-related pathways and neuron development-related pathways, with consequences on fetal growth

  1. Meta-analysis of genome-wide association from genomic prediction models

    Science.gov (United States)

    A limitation of many genome-wide association studies (GWA) in animal breeding is that there are many loci with small effect sizes; thus, larger sample sizes (N) are required to guarantee suitable power of detection. To increase sample size, results from different GWA can be combined in a meta-analys...

  2. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis.

    Science.gov (United States)

    Bi, Changwei; Xu, Yiqing; Ye, Qiaolin; Yin, Tongming; Ye, Ning

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon-intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of

  3. Determination of exon 7 SMN1 deletion in Iranian patients and ...

    Indian Academy of Sciences (India)

    In consideration of these defects and in line with the latter references, we have ... master mix (Roche, Mannheim, Germany), 5 ng of genomic. DNA, and 10 pmol of .... PCR test which can evaluate comprehensively the status of. SMN1 exon 7 ...

  4. Revisiting the classification of curtoviruses based on genome-wide pairwise identity

    KAUST Repository

    Varsani, Arvind; Martin, Darren Patrick; Navas-Castillo, Jesú s; Moriones, Enrique; Herná ndez-Zepeda, Cecilia; Idris, Ali; Murilo Zerbini, F.; Brown, Judith K.

    2014-01-01

    Members of the genus Curtovirus (family Geminiviridae) are important pathogens of many wild and cultivated plant species. Until recently, relatively few full curtovirus genomes have been characterised. However, with the 19 full genome sequences now available in public databases, we revisit the proposed curtovirus species and strain classification criteria. Using pairwise identities coupled with phylogenetic evidence, revised species and strain demarcation guidelines have been instituted. Specifically, we have established 77% genome-wide pairwise identity as a species demarcation threshold and 94% genome-wide pairwise identity as a strain demarcation threshold. Hence, whereas curtovirus sequences with >77% genome-wide pairwise identity would be classified as belonging to the same species, those sharing >94% identity would be classified as belonging to the same strain. We provide step-by-step guidelines to facilitate the classification of newly discovered curtovirus full genome sequences and a set of defined criteria for naming new species and strains. The revision yields three curtovirus species: Beet curly top virus (BCTV), Spinach severe surly top virus (SpSCTV) and Horseradish curly top virus (HrCTV). © 2014 Springer-Verlag Wien.

  5. Revisiting the classification of curtoviruses based on genome-wide pairwise identity

    KAUST Repository

    Varsani, Arvind

    2014-01-25

    Members of the genus Curtovirus (family Geminiviridae) are important pathogens of many wild and cultivated plant species. Until recently, relatively few full curtovirus genomes have been characterised. However, with the 19 full genome sequences now available in public databases, we revisit the proposed curtovirus species and strain classification criteria. Using pairwise identities coupled with phylogenetic evidence, revised species and strain demarcation guidelines have been instituted. Specifically, we have established 77% genome-wide pairwise identity as a species demarcation threshold and 94% genome-wide pairwise identity as a strain demarcation threshold. Hence, whereas curtovirus sequences with >77% genome-wide pairwise identity would be classified as belonging to the same species, those sharing >94% identity would be classified as belonging to the same strain. We provide step-by-step guidelines to facilitate the classification of newly discovered curtovirus full genome sequences and a set of defined criteria for naming new species and strains. The revision yields three curtovirus species: Beet curly top virus (BCTV), Spinach severe surly top virus (SpSCTV) and Horseradish curly top virus (HrCTV). © 2014 Springer-Verlag Wien.

  6. Comparison between fluorescent in-situ hybridisation and array comparative genomic hybridisation in preimplantation genetic diagnosis in translocation carriers.

    Science.gov (United States)

    Lee, Vivian C Y; Chow, Judy F C; Lau, Estella Y L; Yeung, William S B; Ho, P C; Ng, Ernest H Y

    2015-02-01

    To compare the pregnancy outcome of the fluorescent in-situ hybridisation and array comparative genomic hybridisation in preimplantation genetic diagnosis of translocation carriers. Historical cohort. A teaching hospital in Hong Kong. All preimplantation genetic diagnosis treatment cycles performed for translocation carriers from 2001 to 2013. Overall, 101 treatment cycles for preimplantation genetic diagnosis in translocation were included: 77 cycles for reciprocal translocation and 24 cycles for Robertsonian translocation. Fluorescent in-situ hybridisation and array comparative genomic hybridisation were used in 78 and 11 cycles, respectively. The ongoing pregnancy rate per initiated cycle after array comparative genomic hybridisation was significantly higher than that after fluorescent in-situ hybridisation in all translocation carriers (36.4% vs 9.0%; P=0.010). The miscarriage rate was comparable with both techniques. The testing method (array comparative genomic hybridisation or fluorescent in-situ hybridisation) was the only significant factor affecting the ongoing pregnancy rate after controlling for the women's age, type of translocation, and clinical information of the preimplantation genetic diagnosis cycles by logistic regression (odds ratio=1.875; P=0.023; 95% confidence interval, 1.090-3.226). This local retrospective study confirmed that comparative genomic hybridisation is associated with significantly higher pregnancy rates versus fluorescent in-situ hybridisation in translocation carriers. Array comparative genomic hybridisation should be the technique of choice in preimplantation genetic diagnosis cycles in translocation carriers.

  7. Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists.

    Science.gov (United States)

    Sanitá Lima, Matheus; Smith, David Roy

    2017-11-06

    Organelle genomes are among the most sequenced kinds of chromosome. This is largely because they are small and widely used in molecular studies, but also because next-generation sequencing technologies made sequencing easier, faster, and cheaper. However, studies of organelle RNA have not kept pace with those of DNA, despite huge amounts of freely available eukaryotic RNA-sequencing (RNA-seq) data. Little is known about organelle transcription in nonmodel species, and most of the available eukaryotic RNA-seq data have not been mined for organelle transcripts. Here, we use publicly available RNA-seq experiments to investigate organelle transcription in 30 diverse plastid-bearing protists with varying organelle genomic architectures. Mapping RNA-seq data to organelle genomes revealed pervasive, genome-wide transcription, regardless of the taxonomic grouping, gene organization, or noncoding content. For every species analyzed, transcripts covered ≥85% of the mitochondrial and/or plastid genomes (all of which were ≤105 kb), indicating that most of the organelle DNA-coding and noncoding-is transcriptionally active. These results follow earlier studies of model species showing that organellar transcription is coupled and ubiquitous across the genome, requiring significant downstream processing of polycistronic transcripts. Our findings suggest that noncoding organelle DNA can be transcriptionally active, raising questions about the underlying function of these transcripts and underscoring the utility of publicly available RNA-seq data for recovering complete genome sequences. If pervasive transcription is also found in bigger organelle genomes (>105 kb) and across a broader range of eukaryotes, this could indicate that noncoding organelle RNAs are regulating fundamental processes within eukaryotic cells. Copyright © 2017 Sanitá Lima and Smith.

  8. a potential source of spurious associations in genome-wide ...

    Indian Academy of Sciences (India)

    2010-04-01

    Apr 1, 2010 ... Genome-wide association studies (GWAS) examine the entire human genome with the goal of identifying genetic variants. (usually single nucleotide polymorphisms (SNPs)) that are associated with phenotypic traits such as disease status and drug response. The discordance of significantly associated ...

  9. Novel candidate genes and regions for childhood apraxia of speech identified by array comparative genomic hybridization.

    Science.gov (United States)

    Laffin, Jennifer J S; Raca, Gordana; Jackson, Craig A; Strand, Edythe A; Jakielski, Kathy J; Shriberg, Lawrence D

    2012-11-01

    The goal of this study was to identify new candidate genes and genomic copy-number variations associated with a rare, severe, and persistent speech disorder termed childhood apraxia of speech. Childhood apraxia of speech is the speech disorder segregating with a mutation in FOXP2 in a multigenerational London pedigree widely studied for its role in the development of speech-language in humans. A total of 24 participants who were suspected to have childhood apraxia of speech were assessed using a comprehensive protocol that samples speech in challenging contexts. All participants met clinical-research criteria for childhood apraxia of speech. Array comparative genomic hybridization analyses were completed using a customized 385K Nimblegen array (Roche Nimblegen, Madison, WI) with increased coverage of genes and regions previously associated with childhood apraxia of speech. A total of 16 copy-number variations with potential consequences for speech-language development were detected in 12 or half of the 24 participants. The copy-number variations occurred on 10 chromosomes, 3 of which had two to four candidate regions. Several participants were identified with copy-number variations in two to three regions. In addition, one participant had a heterozygous FOXP2 mutation and a copy-number variation on chromosome 2, and one participant had a 16p11.2 microdeletion and copy-number variations on chromosomes 13 and 14. Findings support the likelihood of heterogeneous genomic pathways associated with childhood apraxia of speech.

  10. Genome-wide association study of smoking initiation and current smoking

    DEFF Research Database (Denmark)

    Vink, Jacqueline M; Smit, August B; de Geus, Eco J C

    2009-01-01

    For the identification of genes associated with smoking initiation and current smoking, genome-wide association analyses were carried out in 3497 subjects. Significant genes that replicated in three independent samples (n = 405, 5810, and 1648) were visualized into a biologically meaningful network......) and cell-adhesion molecules (e.g., CDH23). We conclude that a network-based genome-wide association approach can identify genes influencing smoking behavior....

  11. Genetic mapping using the Diversity Arrays Technology (DArT) : application and validation using the whole-genome sequences of Arabidopsis thaliana and the fungal wheat pathogen Mycosphaerella graminicola

    NARCIS (Netherlands)

    Wittenberg, A.H.J.

    2007-01-01

    Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds- to thousands of restriction site based polymorphisms between genotypes and does not require DNA sequence

  12. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Deokar, Amit A; Tar'an, Bunyamin

    2016-01-01

    Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea ( Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis -acting regulatory elements revealed enrichment of cis -elements involved in circadian control, light response, defense and stress responsiveness

  13. A genome-wide association study of aging.

    Science.gov (United States)

    Walter, Stefan; Atzmon, Gil; Demerath, Ellen W; Garcia, Melissa E; Kaplan, Robert C; Kumari, Meena; Lunetta, Kathryn L; Milaneschi, Yuri; Tanaka, Toshiko; Tranah, Gregory J; Völker, Uwe; Yu, Lei; Arnold, Alice; Benjamin, Emelia J; Biffar, Reiner; Buchman, Aron S; Boerwinkle, Eric; Couper, David; De Jager, Philip L; Evans, Denis A; Harris, Tamara B; Hoffmann, Wolfgang; Hofman, Albert; Karasik, David; Kiel, Douglas P; Kocher, Thomas; Kuningas, Maris; Launer, Lenore J; Lohman, Kurt K; Lutsey, Pamela L; Mackenbach, Johan; Marciante, Kristin; Psaty, Bruce M; Reiman, Eric M; Rotter, Jerome I; Seshadri, Sudha; Shardell, Michelle D; Smith, Albert V; van Duijn, Cornelia; Walston, Jeremy; Zillikens, M Carola; Bandinelli, Stefania; Baumeister, Sebastian E; Bennett, David A; Ferrucci, Luigi; Gudnason, Vilmundur; Kivimaki, Mika; Liu, Yongmei; Murabito, Joanne M; Newman, Anne B; Tiemeier, Henning; Franceschini, Nora

    2011-11-01

    Human longevity and healthy aging show moderate heritability (20%-50%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10(-8)). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10(-5)). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer's disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Gigwa-Genotype investigator for genome-wide analyses.

    Science.gov (United States)

    Sempéré, Guilhem; Philippe, Florian; Dereeper, Alexis; Ruiz, Manuel; Sarah, Gautier; Larmande, Pierre

    2016-06-06

    Exploring the structure of genomes and analyzing their evolution is essential to understanding the ecological adaptation of organisms. However, with the large amounts of data being produced by next-generation sequencing, computational challenges arise in terms of storage, search, sharing, analysis and visualization. This is particularly true with regards to studies of genomic variation, which are currently lacking scalable and user-friendly data exploration solutions. Here we present Gigwa, a web-based tool that provides an easy and intuitive way to explore large amounts of genotyping data by filtering it not only on the basis of variant features, including functional annotations, but also on genotype patterns. The data storage relies on MongoDB, which offers good scalability properties. Gigwa can handle multiple databases and may be deployed in either single- or multi-user mode. In addition, it provides a wide range of popular export formats. The Gigwa application is suitable for managing large amounts of genomic variation data. Its user-friendly web interface makes such processing widely accessible. It can either be simply deployed on a workstation or be used to provide a shared data portal for a given community of researchers.

  15. Analysis of Genome-Wide Copy Number Variations in Chinese Indigenous and Western Pig Breeds by 60 K SNP Genotyping Arrays

    Science.gov (United States)

    Sun, Yaqi; Wang, Hongyang; Wang, Chao; Yu, Shaobo; Liu, Jing; Zhang, Yu; Fan, Bin; Li, Kui; Liu, Bang

    2014-01-01

    Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs. PMID:25198154

  16. A hidden Markov model approach for determining expression from genomic tiling micro arrays

    Directory of Open Access Journals (Sweden)

    Krogh Anders

    2006-05-01

    Full Text Available Abstract Background Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. Results We present a probabilistic procedure, ExpressHMM, that adaptively models tiling data prior to predicting expression on genomic sequence. A hidden Markov model (HMM is used to model the distributions of tiling array probe scores in expressed and non-expressed regions. The HMM is trained on sets of probes mapped to regions of annotated expression and non-expression. Subsequently, prediction of transcribed fragments is made on tiled genomic sequence. The prediction is accompanied by an expression probability curve for visual inspection of the supporting evidence. We test ExpressHMM on data from the Cheng et al. (2005 tiling array experiments on ten Human chromosomes 1. Results can be downloaded and viewed from our web site 2. Conclusion The value of adaptive modelling of fluorescence scores prior to categorisation into expressed and non-expressed probes is demonstrated. Our results indicate that our adaptive approach is superior to the previous analysis in terms of nucleotide sensitivity and transfrag specificity.

  17. Genome-wide association study of Tourette's syndrome

    NARCIS (Netherlands)

    Scharf, J. M.; Yu, D.; Mathews, C. A.; Neale, B. M.; Stewart, S. E.; Fagerness, J. A.; Evans, P.; Gamazon, E.; Edlund, C. K.; Service, S. K.; Tikhomirov, A.; Osiecki, L.; Illmann, C.; Pluzhnikov, A.; Konkashbaev, A.; Davis, L. K.; Han, B.; Crane, J.; Moorjani, P.; Crenshaw, A. T.; Parkin, M. A.; Reus, V. I.; Lowe, T. L.; Rangel-Lugo, M.; Chouinard, S.; Dion, Y.; Girard, S.; Cath, D. C.; Smit, J. H.; King, R. A.; Fernandez, T. V.; Leckman, J. F.; Kidd, K. K.; Kidd, J. R.; Pakstis, A. J.; State, M. W.; Herrera, L. D.; Romero, R.; Fournier, E.; Sandor, P.; Barr, C. L.; Phan, N.; Gross-Tsur, V.; Benarroch, F.; Pollak, Y.; Budman, C. L.; Bruun, R. D.; Erenberg, G.; Naarden, A. L.; Hoekstra, P. J.

    2013-01-01

    Tourette's syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association

  18. A PLSPM-Based Test Statistic for Detecting Gene-Gene Co-Association in Genome-Wide Association Study with Case-Control Design

    Science.gov (United States)

    Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong

    2013-01-01

    For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods. PMID:23620809

  19. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder.

    LENUS (Irish Health Repository)

    Williams, H J

    2011-04-01

    A recent genome-wide association study (GWAS) reported evidence for association between rs1344706 within ZNF804A (encoding zinc-finger protein 804A) and schizophrenia (P=1.61 × 10(-7)), and stronger evidence when the phenotype was broadened to include bipolar disorder (P=9.96 × 10(-9)). In this study we provide additional evidence for association through meta-analysis of a larger data set (schizophrenia\\/schizoaffective disorder N=18 945, schizophrenia plus bipolar disorder N=21 274 and controls N=38 675). We also sought to better localize the association signal using a combination of de novo polymorphism discovery in exons, pooled de novo polymorphism discovery spanning the genomic sequence of the locus and high-density linkage disequilibrium (LD) mapping. The meta-analysis provided evidence for association between rs1344706 that surpasses widely accepted benchmarks of significance by several orders of magnitude for both schizophrenia (P=2.5 × 10(-11), odds ratio (OR) 1.10, 95% confidence interval 1.07-1.14) and schizophrenia and bipolar disorder combined (P=4.1 × 10(-13), OR 1.11, 95% confidence interval 1.07-1.14). After de novo polymorphism discovery and detailed association analysis, rs1344706 remained the most strongly associated marker in the gene. The allelic association at the ZNF804A locus is now one of the most compelling in schizophrenia to date, and supports the accumulating data suggesting overlapping genetic risk between schizophrenia and bipolar disorder.

  20. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  1. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill; Shamim, Atif; Sharawi, Mohammad Said

    2017-01-01

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  2. A genome-wide association study by ImmunoChip reveals potential modifiers in myelodysplastic syndromes.

    Science.gov (United States)

    Danjou, Fabrice; Fozza, Claudio; Zoledziewska, Magdalena; Mulas, Antonella; Corda, Giovanna; Contini, Salvatore; Dore, Fausto; Galleu, Antonio; Di Tucci, Anna Angela; Caocci, Giovanni; Gaviano, Eleonora; Latte, Giancarlo; Gabbas, Attilio; Casula, Paolo; Delogu, Lucia Gemma; La Nasa, Giorgio; Angelucci, Emanuele; Cucca, Francesco; Longinotti, Maurizio

    2016-11-01

    Because different findings suggest that an immune dysregulation plays a role in the pathogenesis of myelodysplastic syndrome (MDS), we analyzed a large cohort of patients from a homogeneous Sardinian population using ImmunoChip, a genotyping array exploring 147,954 single-nucleotide polymorphisms (SNPs) localized in genomic regions displaying some degree of association with immune-mediated diseases or pathways. The population studied included 133 cases and 3,894 controls, and a total of 153,978 autosomal markers and 971 non-autosomal markers were genotyped. After association analysis, only one variant passed the genome-wide significance threshold: rs71325459 (p = 1.16 × 10 -12 ), which is situated on chromosome 20. The variant is in high linkage disequilibrium with rs35640778, an untested missense variant situated in the RTEL1 gene, an interesting candidate that encodes for an ATP-dependent DNA helicase implicated in telomere-length regulation, DNA repair, and maintenance of genomic stability. The second most associated signal is composed of five variants that fall slightly below the genome-wide significance threshold but point out another interesting gene candidate. These SNPs, with p values between 2.53 × 10 -6 and 3.34 × 10 -6 , are situated in the methylene tetrahydrofolate reductase (MTHFR) gene. The most associated of these variants, rs1537514, presents an increased frequency of the derived C allele in cases, with 11.4% versus 4.4% in controls. MTHFR is the rate-limiting enzyme in the methyl cycle and genetic variations in this gene have been strongly associated with the risk of neoplastic diseases. The current understanding of the MDS biology, which is based on the hypothesis of the sequential development of multiple subclonal molecular lesions, fits very well with the demonstration of a possible role for RTEL1 and MTHFR gene polymorphisms, both of which are related to a variable risk of genomic instability. Copyright © 2016 ISEH - International

  3. A deep intronic CLRN1 (USH3A) founder mutation generates an aberrant exon and underlies severe Usher syndrome on the Arabian Peninsula.

    Science.gov (United States)

    Khan, Arif O; Becirovic, Elvir; Betz, Christian; Neuhaus, Christine; Altmüller, Janine; Maria Riedmayr, Lisa; Motameny, Susanne; Nürnberg, Gudrun; Nürnberg, Peter; Bolz, Hanno J

    2017-05-03

    Deafblindness is mostly due to Usher syndrome caused by recessive mutations in the known genes. Mutation-negative patients therefore either have distinct diseases, mutations in yet unknown Usher genes or in extra-exonic parts of the known genes - to date a largely unexplored possibility. In a consanguineous Saudi family segregating Usher syndrome type 1 (USH1), NGS of genes for Usher syndrome, deafness and retinal dystrophy and subsequent whole-exome sequencing each failed to identify a mutation. Genome-wide linkage analysis revealed two small candidate regions on chromosome 3, one containing the USH3A gene CLRN1, which has never been associated with Usher syndrome in Saudi Arabia. Whole-genome sequencing (WGS) identified a homozygous deep intronic mutation, c.254-649T > G, predicted to generate a novel donor splice site. CLRN1 minigene-based analysis confirmed the splicing of an aberrant exon due to usage of this novel motif, resulting in a frameshift and a premature termination codon. We identified this mutation in an additional two of seven unrelated mutation-negative Saudi USH1 patients. Locus-specific markers indicated that c.254-649T > G CLRN1 represents a founder allele that may significantly contribute to deafblindness in this population. Our finding underlines the potential of WGS to uncover atypically localized, hidden mutations in patients who lack exonic mutations in the known disease genes.

  4. A genome-wide association search for type 2 diabetes genes in African Americans.

    Directory of Open Access Journals (Sweden)

    Nicholette D Palmer

    Full Text Available African Americans are disproportionately affected by type 2 diabetes (T2DM yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD and 1029 population-based controls. The most significant SNPs (n = 550 independent loci were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071, were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05. Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8. SNP rs7560163 (P = 7.0×10(-9, OR (95% CI = 0.75 (0.67-0.84 is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217 were associated with T2DM (P<0.05 and reached more nominal levels of significance (P<2.5×10(-5 in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.

  5. Genome-wide linkage analysis for human longevity

    DEFF Research Database (Denmark)

    Beekman, Marian; Blanché, Hélène; Perola, Markus

    2013-01-01

    Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian...

  6. Genome-wide identification and characterization of putative lncRNAs in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Wang, Yue; Xu, Tingting; He, Weiyi; Shen, Xiujing; Zhao, Qian; Bai, Jianlin; You, Minsheng

    2018-01-01

    Long non-coding RNAs (lncRNAs) are of particular interest because of their contributions to many biological processes. Here, we present the genome-wide identification and characterization of putative lncRNAs in a global insect pest, Plutella xylostella. A total of 8096 lncRNAs were identified and classified into three groups. The average length of exons in lncRNAs was longer than that in coding genes and the GC content was lower than that in mRNAs. Most lncRNAs were flanked by canonical splice sites, similar to mRNAs. Expression profiling identified 114 differentially expressed lncRNAs during the DBM development and found that majority were temporally specific. While the biological functions of lncRNAs remain uncharacterized, many are microRNA precursors or competing endogenous RNAs involved in micro-RNA regulatory pathways. This work provides a valuable resource for further studies on molecular bases for development of DBM and lay the foundation for discovery of lncRNA functions in P. xylostella. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Epigenetic Variation in Monozygotic Twins: A Genome-Wide Analysis of DNA Methylation in Buccal Cells

    Directory of Open Access Journals (Sweden)

    Jenny van Dongen

    2014-05-01

    Full Text Available DNA methylation is one of the most extensively studied epigenetic marks in humans. Yet, it is largely unknown what causes variation in DNA methylation between individuals. The comparison of DNA methylation profiles of monozygotic (MZ twins offers a unique experimental design to examine the extent to which such variation is related to individual-specific environmental influences and stochastic events or to familial factors (DNA sequence and shared environment. We measured genome-wide DNA methylation in buccal samples from ten MZ pairs (age 8–19 using the Illumina 450k array and examined twin correlations for methylation level at 420,921 CpGs after QC. After selecting CpGs showing the most variation in the methylation level between subjects, the mean genome-wide correlation (rho was 0.54. The correlation was higher, on average, for CpGs within CpG islands (CGIs, compared to CGI shores, shelves and non-CGI regions, particularly at hypomethylated CpGs. This finding suggests that individual-specific environmental and stochastic influences account for more variation in DNA methylation in CpG-poor regions. Our findings also indicate that it is worthwhile to examine heritable and shared environmental influences on buccal DNA methylation in larger studies that also include dizygotic twins.

  8. High-resolution SNP array analysis of patients with developmental disorder and normal array CGH results

    Directory of Open Access Journals (Sweden)

    Siggberg Linda

    2012-09-01

    Full Text Available Abstract Background Diagnostic analysis of patients with developmental disorders has improved over recent years largely due to the use of microarray technology. Array methods that facilitate copy number analysis have enabled the diagnosis of up to 20% more patients with previously normal karyotyping results. A substantial number of patients remain undiagnosed, however. Methods and Results Using the Genome-Wide Human SNP array 6.0, we analyzed 35 patients with a developmental disorder of unknown cause and normal array comparative genomic hybridization (array CGH results, in order to characterize previously undefined genomic aberrations. We detected no seemingly pathogenic copy number aberrations. Most of the vast amount of data produced by the array was polymorphic and non-informative. Filtering of this data, based on copy number variant (CNV population frequencies as well as phenotypically relevant genes, enabled pinpointing regions of allelic homozygosity that included candidate genes correlating to the phenotypic features in four patients, but results could not be confirmed. Conclusions In this study, the use of an ultra high-resolution SNP array did not contribute to further diagnose patients with developmental disorders of unknown cause. The statistical power of these results is limited by the small size of the patient cohort, and interpretation of these negative results can only be applied to the patients studied here. We present the results of our study and the recurrence of clustered allelic homozygosity present in this material, as detected by the SNP 6.0 array.

  9. Genome-wide comparative analysis of four Indian Drosophila species.

    Science.gov (United States)

    Mohanty, Sujata; Khanna, Radhika

    2017-12-01

    Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.

  10. Wide-area SWIR arrays and active illuminators

    Science.gov (United States)

    MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Chad; Renner, Daniel; Follman, David; Heu, Paula

    2012-01-01

    We describe the factors that go into the component choices for a short wavelength (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7°C. We have mated our InGaAs detector arrays to 640x512 readout integrated integrated circuits (ROICs) to make focal plane arrays (FPAs). In addition, we have fabricated high definition 1920x1080 FPAs for wide field of view imaging. The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0°C. FLIR has also developed a high definition, 1920x1080, 15 um pitch SWIR sensor. In addition, FLIR has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, provide artifact-free imagery versus conventional laser illuminators.

  11. Genome-wide association studies (GWAS) of adiposity

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas; Ingelsson, Erik

    2016-01-01

    Adiposity is strongly heritable and one of the leading risk factors for type 2 diabetes, cardiovascular disease, cancer, and premature death. In the past 8 years, genome-wide association studies (GWAS) have greatly increased our understanding of the genes and biological pathways that regulate...

  12. Meta-analysis of Genome-Wide Association Studies for Extraversion

    DEFF Research Database (Denmark)

    van den Berg, Stéphanie M; de Moor, Marleen H M; Verweij, K. J. H.

    2016-01-01

    small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found...... at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero...

  13. Integrative Genomics Viewer (IGV) | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    The Integrative Genomics Viewer (IGV) is a high-performance visualization tool for interactive exploration of large, integrated genomic datasets. It supports a wide variety of data types, including array-based and next-generation sequence data, and genomic annotations.

  14. The Glyphosate-Based Herbicide Roundup Does not Elevate Genome-Wide Mutagenesis of Escherichia coli.

    Science.gov (United States)

    Tincher, Clayton; Long, Hongan; Behringer, Megan; Walker, Noah; Lynch, Michael

    2017-10-05

    Mutations induced by pollutants may promote pathogen evolution, for example by accelerating mutations conferring antibiotic resistance. Generally, evaluating the genome-wide mutagenic effects of long-term sublethal pollutant exposure at single-nucleotide resolution is extremely difficult. To overcome this technical barrier, we use the mutation accumulation/whole-genome sequencing (MA/WGS) method as a mutagenicity test, to quantitatively evaluate genome-wide mutagenesis of Escherichia coli after long-term exposure to a wide gradient of the glyphosate-based herbicide (GBH) Roundup Concentrate Plus. The genome-wide mutation rate decreases as GBH concentration increases, suggesting that even long-term GBH exposure does not compromise the genome stability of bacteria. Copyright © 2017 Tincher et al.

  15. Cross-platform array comparative genomic hybridization meta-analysis separates hematopoietic and mesenchymal from epithelial tumors

    NARCIS (Netherlands)

    Jong, C.; Marchiori, E.; van der Vaart, A.W.; Chin, S.F.; Carvalho, B; Tijssen, M.; Eijk, P.P.; van den IJssel, P.; Grabsch, H.; Quirke, P.; Oudejans, J.J.; Meijer, G.J.; Caldas, C.; Ylstra, B.

    2007-01-01

    A series of studies have been published that evaluate the chromosomal copy number changes of different tumor classes using array comparative genomic hybridization (array CGH); however, the chromosomal aberrations that distinguish the different tumor classes have not been fully characterized.

  16. Genome-wide and gene-based association studies of anxiety disorders in European and African American samples.

    Directory of Open Access Journals (Sweden)

    Takeshi Otowa

    Full Text Available Anxiety disorders (ADs are common mental disorders caused by a combination of genetic and environmental factors. Since ADs are highly comorbid with each other, partially due to shared genetic basis, studying AD phenotypes in a coordinated manner may be a powerful strategy for identifying potential genetic loci for ADs. To detect these loci, we performed genome-wide association studies (GWAS of ADs. In addition, as a complementary approach to single-locus analysis, we also conducted gene- and pathway-based analyses. GWAS data were derived from the control sample of the Molecular Genetics of Schizophrenia (MGS project (2,540 European American and 849 African American subjects genotyped on the Affymetrix GeneChip 6.0 array. We applied two phenotypic approaches: (1 categorical case-control comparisons (CC based upon psychiatric diagnoses, and (2 quantitative phenotypic factor scores (FS derived from a multivariate analysis combining information across the clinical phenotypes. Linear and logistic models were used to analyse the association with ADs using FS and CC traits, respectively. At the single locus level, no genome-wide significant association was found. A trans-population gene-based meta-analysis across both ethnic subsamples using FS identified three genes (MFAP3L on 4q32.3, NDUFAB1 and PALB2 on 16p12 with genome-wide significance (false discovery rate (FDR] <5%. At the pathway level, several terms such as transcription regulation, cytokine binding, and developmental process were significantly enriched in ADs (FDR <5%. Our approaches studying ADs as quantitative traits and utilizing the full GWAS data may be useful in identifying susceptibility genes and pathways for ADs.

  17. Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster

    Science.gov (United States)

    Adrion, Jeffrey R.; Song, Michael J.; Schrider, Daniel R.; Hahn, Matthew W.

    2017-01-01

    Abstract Knowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D. melanogaster. We found a significant effect of background genotype on TE activity, with higher rates of insertions in one MA line. We also found significant rate heterogeneity between the chromosomes, with both insertion and deletion rates elevated on the X relative to the autosomes. Further, we identified significant associations between TE activity and chromatin state, and tested for associations between TE activity and other features of the local genomic environment such as TE content, exon content, GC content, and recombination rate. Our results provide the most detailed assessment of TE mobility in any organism to date, and provide a useful benchmark for both addressing theoretical predictions of TE dynamics and for exploring large-scale patterns of TE movement in D. melanogaster and other species. PMID:28338986

  18. Genetic Variance Partitioning and Genome-Wide Prediction with Allele Dosage Information in Autotetraploid Potato.

    Science.gov (United States)

    Endelman, Jeffrey B; Carley, Cari A Schmitz; Bethke, Paul C; Coombs, Joseph J; Clough, Mark E; da Silva, Washington L; De Jong, Walter S; Douches, David S; Frederick, Curtis M; Haynes, Kathleen G; Holm, David G; Miller, J Creighton; Muñoz, Patricio R; Navarro, Felix M; Novy, Richard G; Palta, Jiwan P; Porter, Gregory A; Rak, Kyle T; Sathuvalli, Vidyasagar R; Thompson, Asunta L; Yencho, G Craig

    2018-05-01

    As one of the world's most important food crops, the potato ( Solanum tuberosum L.) has spurred innovation in autotetraploid genetics, including in the use of SNP arrays to determine allele dosage at thousands of markers. By combining genotype and pedigree information with phenotype data for economically important traits, the objectives of this study were to (1) partition the genetic variance into additive vs. nonadditive components, and (2) determine the accuracy of genome-wide prediction. Between 2012 and 2017, a training population of 571 clones was evaluated for total yield, specific gravity, and chip fry color. Genomic covariance matrices for additive ( G ), digenic dominant ( D ), and additive × additive epistatic ( G # G ) effects were calculated using 3895 markers, and the numerator relationship matrix ( A ) was calculated from a 13-generation pedigree. Based on model fit and prediction accuracy, mixed model analysis with G was superior to A for yield and fry color but not specific gravity. The amount of additive genetic variance captured by markers was 20% of the total genetic variance for specific gravity, compared to 45% for yield and fry color. Within the training population, including nonadditive effects improved accuracy and/or bias for all three traits when predicting total genotypic value. When six F 1 populations were used for validation, prediction accuracy ranged from 0.06 to 0.63 and was consistently lower (0.13 on average) without allele dosage information. We conclude that genome-wide prediction is feasible in potato and that it will improve selection for breeding value given the substantial amount of nonadditive genetic variance in elite germplasm. Copyright © 2018 by the Genetics Society of America.

  19. Genome-wide linkage, exome sequencing and functional analyses identify ABCB6 as the pathogenic gene of dyschromatosis universalis hereditaria.

    Directory of Open Access Journals (Sweden)

    Hong Liu

    Full Text Available As a genetic disorder of abnormal pigmentation, the molecular basis of dyschromatosis universalis hereditaria (DUH had remained unclear until recently when ABCB6 was reported as a causative gene of DUH.We performed genome-wide linkage scan using Illumina Human 660W-Quad BeadChip and exome sequencing analyses using Agilent SureSelect Human All Exon Kits in a multiplex Chinese DUH family to identify the pathogenic mutations and verified the candidate mutations using Sanger sequencing. Quantitative RT-PCR and Immunohistochemistry was performed to verify the expression of the pathogenic gene, Zebrafish was also used to confirm the functional role of ABCB6 in melanocytes and pigmentation.Genome-wide linkage (assuming autosomal dominant inheritance mode and exome sequencing analyses identified ABCB6 as the disease candidate gene by discovering a coding mutation (c.1358C>T; p.Ala453Val that co-segregates with the disease phenotype. Further mutation analysis of ABCB6 in four other DUH families and two sporadic cases by Sanger sequencing confirmed the mutation (c.1358C>T; p.Ala453Val and discovered a second, co-segregating coding mutation (c.964A>C; p.Ser322Lys in one of the four families. Both mutations were heterozygous in DUH patients and not present in the 1000 Genome Project and dbSNP database as well as 1,516 unrelated Chinese healthy controls. Expression analysis in human skin and mutagenesis interrogation in zebrafish confirmed the functional role of ABCB6 in melanocytes and pigmentation. Given the involvement of ABCB6 mutations in coloboma, we performed ophthalmological examination of the DUH carriers of ABCB6 mutations and found ocular abnormalities in them.Our study has advanced our understanding of DUH pathogenesis and revealed the shared pathological mechanism between pigmentary DUH and ocular coloboma.

  20. Differentially regulated splice variants and systems biology analysis of Kaposi's sarcoma-associated herpesvirus-infected lymphatic endothelial cells.

    Science.gov (United States)

    Chang, Ting-Yu; Wu, Yu-Hsuan; Cheng, Cheng-Chung; Wang, Hsei-Wei

    2011-09-01

    Alternative RNA splicing greatly increases proteome diversity, and the possibility of studying genome-wide alternative splicing (AS) events becomes available with the advent of high-throughput genomics tools devoted to this issue. Kaposi's sarcoma associated herpesvirus (KSHV) is the etiological agent of KS, a tumor of lymphatic endothelial cell (LEC) lineage, but little is known about the AS variations induced by KSHV. We analyzed KSHV-controlled AS using high-density microarrays capable of detecting all exons in the human genome. Splicing variants and altered exon-intron usage in infected LEC were found, and these correlated with protein domain modification. The different 3'-UTR used in new transcripts also help isoforms to escape microRNA-mediated surveillance. Exome-level analysis further revealed information that cannot be disclosed using classical gene-level profiling: a significant exon usage difference existed between LEC and CD34(+) precursor cells, and KSHV infection resulted in LEC-to-precursor, dedifferentiation-like exon level reprogramming. Our results demonstrate the application of exon arrays in systems biology research, and suggest the regulatory effects of AS in endothelial cells are far more complex than previously observed. This extra layer of molecular diversity helps to account for various aspects of endothelial biology, KSHV life cycle and disease pathogenesis that until now have been unexplored.

  1. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Silvia Dal Santo

    Full Text Available BACKGROUND: Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP comprises four distinct families: expansin A (EXPA, expansin B (EXPB, expansin-like A (EXLA and expansin-like B (EXLB. There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. METHODOLOGY/PRINCIPAL FINDINGS: We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon-intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa, compared to those from Arabidopsis thaliana and rice (Oryza sativa. We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. CONCLUSION: Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the

  2. NSD1 mutations generate a genome-wide DNA methylation signature.

    LENUS (Irish Health Repository)

    Choufani, S

    2015-12-22

    Sotos syndrome (SS) represents an important human model system for the study of epigenetic regulation; it is an overgrowth\\/intellectual disability syndrome caused by mutations in a histone methyltransferase, NSD1. As layered epigenetic modifications are often interdependent, we propose that pathogenic NSD1 mutations have a genome-wide impact on the most stable epigenetic mark, DNA methylation (DNAm). By interrogating DNAm in SS patients, we identify a genome-wide, highly significant NSD1(+\\/-)-specific signature that differentiates pathogenic NSD1 mutations from controls, benign NSD1 variants and the clinically overlapping Weaver syndrome. Validation studies of independent cohorts of SS and controls assigned 100% of these samples correctly. This highly specific and sensitive NSD1(+\\/-) signature encompasses genes that function in cellular morphogenesis and neuronal differentiation, reflecting cardinal features of the SS phenotype. The identification of SS-specific genome-wide DNAm alterations will facilitate both the elucidation of the molecular pathophysiology of SS and the development of improved diagnostic testing.

  3. Genome-Wide Association Study and Linkage Analysis of the Healthy Aging Index

    DEFF Research Database (Denmark)

    Minster, Ryan L; Sanders, Jason L; Singh, Jatinder

    2015-01-01

    BACKGROUND: The Healthy Aging Index (HAI) is a tool for measuring the extent of health and disease across multiple systems. METHODS: We conducted a genome-wide association study and a genome-wide linkage analysis to map quantitative trait loci associated with the HAI and a modified HAI weighted...

  4. Genome-wide association study using high-density single nucleotide polymorphism arrays and whole-genome sequences for clinical mastitis traits in dairy cattle.

    Science.gov (United States)

    Sahana, G; Guldbrandtsen, B; Thomsen, B; Holm, L-E; Panitz, F; Brøndum, R F; Bendixen, C; Lund, M S

    2014-11-01

    Mastitis is a mammary disease that frequently affects dairy cattle. Despite considerable research on the development of effective prevention and treatment strategies, mastitis continues to be a significant issue in bovine veterinary medicine. To identify major genes that affect mastitis in dairy cattle, 6 chromosomal regions on Bos taurus autosome (BTA) 6, 13, 16, 19, and 20 were selected from a genome scan for 9 mastitis phenotypes using imputed high-density single nucleotide polymorphism arrays. Association analyses using sequence-level variants for the 6 targeted regions were carried out to map causal variants using whole-genome sequence data from 3 breeds. The quantitative trait loci (QTL) discovery population comprised 4,992 progeny-tested Holstein bulls, and QTL were confirmed in 4,442 Nordic Red and 1,126 Jersey cattle. The targeted regions were imputed to the sequence level. The highest association signal for clinical mastitis was observed on BTA 6 at 88.97 Mb in Holstein cattle and was confirmed in Nordic Red cattle. The peak association region on BTA 6 contained 2 genes: vitamin D-binding protein precursor (GC) and neuropeptide FF receptor 2 (NPFFR2), which, based on known biological functions, are good candidates for affecting mastitis. However, strong linkage disequilibrium in this region prevented conclusive determination of the causal gene. A different QTL on BTA 6 located at 88.32 Mb in Holstein cattle affected mastitis. In addition, QTL on BTA 13 and 19 were confirmed to segregate in Nordic Red cattle and QTL on BTA 16 and 20 were confirmed in Jersey cattle. Although several candidate genes were identified in these targeted regions, it was not possible to identify a gene or polymorphism as the causal factor for any of these regions. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Evolution of the Exon-Intron Structure in Ciliate Genomes.

    Directory of Open Access Journals (Sweden)

    Vladyslav S Bondarenko

    Full Text Available A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively, but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33-35 bp, 47-51 bp, and 78-80 bp. In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short

  6. Genome-wide divergence, haplotype distribution and population demographic histories for Gossypium hirsutum and Gossypium barbadense as revealed by genome-anchored SNPs

    Science.gov (United States)

    Use of 10,129 singleton SNPs of known genomic location in tetraploid cotton provided unique opportunities to characterize genome-wide diversity among 440 Gossypium hirsutum and 219 G. barbadense cultivars and landrace accessions of widespread origin. Using the SNPs distributed genome-wide, we exami...

  7. Meta-analysis of 32 genome-wide linkage studies of schizophrenia

    Science.gov (United States)

    Ng, MYM; Levinson, DF; Faraone, SV; Suarez, BK; DeLisi, LE; Arinami, T; Riley, B; Paunio, T; Pulver, AE; Irmansyah; Holmans, PA; Escamilla, M; Wildenauer, DB; Williams, NM; Laurent, C; Mowry, BJ; Brzustowicz, LM; Maziade, M; Sklar, P; Garver, DL; Abecasis, GR; Lerer, B; Fallin, MD; Gurling, HMD; Gejman, PV; Lindholm, E; Moises, HW; Byerley, W; Wijsman, EM; Forabosco, P; Tsuang, MT; Hwu, H-G; Okazaki, Y; Kendler, KS; Wormley, B; Fanous, A; Walsh, D; O’Neill, FA; Peltonen, L; Nestadt, G; Lasseter, VK; Liang, KY; Papadimitriou, GM; Dikeos, DG; Schwab, SG; Owen, MJ; O’Donovan, MC; Norton, N; Hare, E; Raventos, H; Nicolini, H; Albus, M; Maier, W; Nimgaonkar, VL; Terenius, L; Mallet, J; Jay, M; Godard, S; Nertney, D; Alexander, M; Crowe, RR; Silverman, JM; Bassett, AS; Roy, M-A; Mérette, C; Pato, CN; Pato, MT; Roos, J Louw; Kohn, Y; Amann-Zalcenstein, D; Kalsi, G; McQuillin, A; Curtis, D; Brynjolfson, J; Sigmundsson, T; Petursson, H; Sanders, AR; Duan, J; Jazin, E; Myles-Worsley, M; Karayiorgou, M; Lewis, CM

    2009-01-01

    A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. PMID:19349958

  8. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart.

    Science.gov (United States)

    Angstadt, Andrea Y; Motsinger-Reif, Alison; Thomas, Rachael; Kisseberth, William C; Guillermo Couto, C; Duval, Dawn L; Nielsen, Dahlia M; Modiano, Jaime F; Breen, Matthew

    2011-11-01

    Osteosarcoma (OS) is the most commonly diagnosed malignant bone tumor in humans and dogs, characterized in both species by extremely complex karyotypes exhibiting high frequencies of genomic imbalance. Evaluation of genomic signatures in human OS using array comparative genomic hybridization (aCGH) has assisted in uncovering genetic mechanisms that result in disease phenotype. Previous low-resolution (10-20 Mb) aCGH analysis of canine OS identified a wide range of recurrent DNA copy number aberrations, indicating extensive genomic instability. In this study, we profiled 123 canine OS tumors by 1 Mb-resolution aCGH to generate a dataset for direct comparison with current data for human OS, concluding that several high frequency aberrations in canine and human OS are orthologous. To ensure complete coverage of gene annotation, we identified the human refseq genes that map to these orthologous aberrant dog regions and found several candidate genes warranting evaluation for OS involvement. Specifically, subsequenct FISH and qRT-PCR analysis of RUNX2, TUSC3, and PTEN indicated that expression levels correlated with genomic copy number status, showcasing RUNX2 as an OS associated gene and TUSC3 as a possible tumor suppressor candidate. Together these data demonstrate the ability of genomic comparative oncology to identify genetic abberations which may be important for OS progression. Large scale screening of genomic imbalance in canine OS further validates the use of the dog as a suitable model for human cancers, supporting the idea that dysregulation discovered in canine cancers will provide an avenue for complementary study in human counterparts. Copyright © 2011 Wiley-Liss, Inc.

  9. Punctuated evolution of prostate cancer genomes.

    Science.gov (United States)

    Baca, Sylvan C; Prandi, Davide; Lawrence, Michael S; Mosquera, Juan Miguel; Romanel, Alessandro; Drier, Yotam; Park, Kyung; Kitabayashi, Naoki; MacDonald, Theresa Y; Ghandi, Mahmoud; Van Allen, Eliezer; Kryukov, Gregory V; Sboner, Andrea; Theurillat, Jean-Philippe; Soong, T David; Nickerson, Elizabeth; Auclair, Daniel; Tewari, Ashutosh; Beltran, Himisha; Onofrio, Robert C; Boysen, Gunther; Guiducci, Candace; Barbieri, Christopher E; Cibulskis, Kristian; Sivachenko, Andrey; Carter, Scott L; Saksena, Gordon; Voet, Douglas; Ramos, Alex H; Winckler, Wendy; Cipicchio, Michelle; Ardlie, Kristin; Kantoff, Philip W; Berger, Michael F; Gabriel, Stacey B; Golub, Todd R; Meyerson, Matthew; Lander, Eric S; Elemento, Olivier; Getz, Gad; Demichelis, Francesca; Rubin, Mark A; Garraway, Levi A

    2013-04-25

    The analysis of exonic DNA from prostate cancers has identified recurrently mutated genes, but the spectrum of genome-wide alterations has not been profiled extensively in this disease. We sequenced the genomes of 57 prostate tumors and matched normal tissues to characterize somatic alterations and to study how they accumulate during oncogenesis and progression. By modeling the genesis of genomic rearrangements, we identified abundant DNA translocations and deletions that arise in a highly interdependent manner. This phenomenon, which we term "chromoplexy," frequently accounts for the dysregulation of prostate cancer genes and appears to disrupt multiple cancer genes coordinately. Our modeling suggests that chromoplexy may induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution. By characterizing the clonal hierarchy of genomic lesions in prostate tumors, we charted a path of oncogenic events along which chromoplexy may drive prostate carcinogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA

    Directory of Open Access Journals (Sweden)

    Chan Alan

    2006-06-01

    Full Text Available Abstract Background Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. Results In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A. Conclusion Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

  11. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA.

    Science.gov (United States)

    Gibbons, Brian; Datta, Parikkhit; Wu, Ying; Chan, Alan; Al Armour, John

    2006-06-30

    Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH) we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A). Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

  12. Genome-wide association study of Tourette Syndrome

    Science.gov (United States)

    Scharf, Jeremiah M.; Yu, Dongmei; Mathews, Carol A.; Neale, Benjamin M.; Stewart, S. Evelyn; Fagerness, Jesen A; Evans, Patrick; Gamazon, Eric; Edlund, Christopher K.; Service, Susan; Tikhomirov, Anna; Osiecki, Lisa; Illmann, Cornelia; Pluzhnikov, Anna; Konkashbaev, Anuar; Davis, Lea K; Han, Buhm; Crane, Jacquelyn; Moorjani, Priya; Crenshaw, Andrew T.; Parkin, Melissa A.; Reus, Victor I.; Lowe, Thomas L.; Rangel-Lugo, Martha; Chouinard, Sylvain; Dion, Yves; Girard, Simon; Cath, Danielle C; Smit, Jan H; King, Robert A.; Fernandez, Thomas; Leckman, James F.; Kidd, Kenneth K.; Kidd, Judith R.; Pakstis, Andrew J.; State, Matthew; Herrera, Luis Diego; Romero, Roxana; Fournier, Eduardo; Sandor, Paul; Barr, Cathy L; Phan, Nam; Gross-Tsur, Varda; Benarroch, Fortu; Pollak, Yehuda; Budman, Cathy L.; Bruun, Ruth D.; Erenberg, Gerald; Naarden, Allan L; Lee, Paul C; Weiss, Nicholas; Kremeyer, Barbara; Berrío, Gabriel Bedoya; Campbell, Desmond; Silgado, Julio C. Cardona; Ochoa, William Cornejo; Restrepo, Sandra C. Mesa; Muller, Heike; Duarte, Ana V. Valencia; Lyon, Gholson J; Leppert, Mark; Morgan, Jubel; Weiss, Robert; Grados, Marco A.; Anderson, Kelley; Davarya, Sarah; Singer, Harvey; Walkup, John; Jankovic, Joseph; Tischfield, Jay A.; Heiman, Gary A.; Gilbert, Donald L.; Hoekstra, Pieter J.; Robertson, Mary M.; Kurlan, Roger; Liu, Chunyu; Gibbs, J. Raphael; Singleton, Andrew; Hardy, John; Strengman, Eric; Ophoff, Roel; Wagner, Michael; Moessner, Rainald; Mirel, Daniel B.; Posthuma, Danielle; Sabatti, Chiara; Eskin, Eleazar; Conti, David V.; Knowles, James A.; Ruiz-Linares, Andres; Rouleau, Guy A.; Purcell, Shaun; Heutink, Peter; Oostra, Ben A.; McMahon, William; Freimer, Nelson; Cox, Nancy J.; Pauls, David L.

    2012-01-01

    Tourette Syndrome (TS) is a developmental disorder that has one of the highest familial recurrence rates among neuropsychiatric diseases with complex inheritance. However, the identification of definitive TS susceptibility genes remains elusive. Here, we report the first genome-wide association study (GWAS) of TS in 1285 cases and 4964 ancestry-matched controls of European ancestry, including two European-derived population isolates, Ashkenazi Jews from North America and Israel, and French Canadians from Quebec, Canada. In a primary meta-analysis of GWAS data from these European ancestry samples, no markers achieved a genome-wide threshold of significance (p<5 × 10−8); the top signal was found in rs7868992 on chromosome 9q32 within COL27A1 (p=1.85 × 10−6). A secondary analysis including an additional 211 cases and 285 controls from two closely-related Latin-American population isolates from the Central Valley of Costa Rica and Antioquia, Colombia also identified rs7868992 as the top signal (p=3.6 × 10−7 for the combined sample of 1496 cases and 5249 controls following imputation with 1000 Genomes data). This study lays the groundwork for the eventual identification of common TS susceptibility variants in larger cohorts and helps to provide a more complete understanding of the full genetic architecture of this disorder. PMID:22889924

  13. Genome-wide identification of the regulatory targets of a transcription factor using biochemical characterization and computational genomic analysis

    Directory of Open Access Journals (Sweden)

    Jolly Emmitt R

    2005-11-01

    Full Text Available Abstract Background A major challenge in computational genomics is the development of methodologies that allow accurate genome-wide prediction of the regulatory targets of a transcription factor. We present a method for target identification that combines experimental characterization of binding requirements with computational genomic analysis. Results Our method identified potential target genes of the transcription factor Ndt80, a key transcriptional regulator involved in yeast sporulation, using the combined information of binding affinity, positional distribution, and conservation of the binding sites across multiple species. We have also developed a mathematical approach to compute the false positive rate and the total number of targets in the genome based on the multiple selection criteria. Conclusion We have shown that combining biochemical characterization and computational genomic analysis leads to accurate identification of the genome-wide targets of a transcription factor. The method can be extended to other transcription factors and can complement other genomic approaches to transcriptional regulation.

  14. DELISHUS: an efficient and exact algorithm for genome-wide detection of deletion polymorphism in autism

    Science.gov (United States)

    Aguiar, Derek; Halldórsson, Bjarni V.; Morrow, Eric M.; Istrail, Sorin

    2012-01-01

    Motivation: The understanding of the genetic determinants of complex disease is undergoing a paradigm shift. Genetic heterogeneity of rare mutations with deleterious effects is more commonly being viewed as a major component of disease. Autism is an excellent example where research is active in identifying matches between the phenotypic and genomic heterogeneities. A considerable portion of autism appears to be correlated with copy number variation, which is not directly probed by single nucleotide polymorphism (SNP) array or sequencing technologies. Identifying the genetic heterogeneity of small deletions remains a major unresolved computational problem partly due to the inability of algorithms to detect them. Results: In this article, we present an algorithmic framework, which we term DELISHUS, that implements three exact algorithms for inferring regions of hemizygosity containing genomic deletions of all sizes and frequencies in SNP genotype data. We implement an efficient backtracking algorithm—that processes a 1 billion entry genome-wide association study SNP matrix in a few minutes—to compute all inherited deletions in a dataset. We further extend our model to give an efficient algorithm for detecting de novo deletions. Finally, given a set of called deletions, we also give a polynomial time algorithm for computing the critical regions of recurrent deletions. DELISHUS achieves significantly lower false-positive rates and higher power than previously published algorithms partly because it considers all individuals in the sample simultaneously. DELISHUS may be applied to SNP array or sequencing data to identify the deletion spectrum for family-based association studies. Availability: DELISHUS is available at http://www.brown.edu/Research/Istrail_Lab/. Contact: Eric_Morrow@brown.edu and Sorin_Istrail@brown.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22689755

  15. Clinical utility of an array comparative genomic hybridization analysis for Williams syndrome.

    Science.gov (United States)

    Yagihashi, Tatsuhiko; Torii, Chiharu; Takahashi, Reiko; Omori, Mikimasa; Kosaki, Rika; Yoshihashi, Hiroshi; Ihara, Masahiro; Minagawa-Kawai, Yasuyo; Yamamoto, Junichi; Takahashi, Takao; Kosaki, Kenjiro

    2014-11-01

    To reveal the relation between intellectual disability and the deleted intervals in Williams syndrome, we performed an array comparative genomic hybridization analysis and standardized developmental testing for 11 patients diagnosed as having Williams syndrome based on fluorescent in situ hybridization testing. One patient had a large 4.2-Mb deletion spanning distally beyond the common 1.5-Mb intervals observed in 10/11 patients. We formulated a linear equation describing the developmental age of the 10 patients with the common deletion; the developmental age of the patient with the 4.2-Mb deletion was significantly below the expectation (developmental age = 0.51 × chronological age). The large deletion may account for the severe intellectual disability; therefore, the use of array comparative genomic hybridization may provide practical information regarding individuals with Williams syndrome. © 2014 Japanese Teratology Society.

  16. A Genome-Wide Methylation Study of Severe Vitamin D Deficiency in African American Adolescents

    NARCIS (Netherlands)

    Zhu, Haidong; Wang, Xiaoling; Shi, Huidong; Su, Shaoyong; Harshfield, Gregory A.; Gutin, Bernard; Snieder, Harold; Dong, Yanbin

    Objectives To test the hypothesis that changes in DNA methylation are involved in vitamin D deficiency-related immune cell regulation using an unbiased genome-wide approach combined with a genomic and epigenomic integrative approach. Study design We performed a genome-wide methylation scan using the

  17. Genome-wide association study of the four-constitution medicine.

    Science.gov (United States)

    Yin, Chang Shik; Park, Hi Joon; Chung, Joo-Ho; Lee, Hye-Jung; Lee, Byung-Cheol

    2009-12-01

    Four-constitution medicine (FCM), also known as Sasang constitutional medicine, and the heritage of the long history of individualized acupuncture medicine tradition, is one of the holistic and traditional systems of constitution to appraise and categorize individual differences into four major types. This study first reports a genome-wide association study on FCM, to explore the genetic basis of FCM and facilitate the integration of FCM with conventional individual differences research. Healthy individuals of the Korean population were classified into the four constitutional types (FCTs). A total of 353,202 single nucleotide polymorphisms (SNPs) were typed using whole genome amplified samples, and six-way comparison of FCM types provided lists of significantly differential SNPs. In one-to-one FCT comparisons, 15,944 SNPs were significantly differential, and 5 SNPs were commonly significant in all of the three comparisons. In one-to-two FCT comparisons, 22,616 SNPs were significantly differential, and 20 SNPs were commonly significant in all of the three comparison groups. This study presents the association between genome-wide SNP profiles and the categorization of the FCM, and it could further provide a starting point of genome-based identification and research of the constitutions of FCM.

  18. Data analysis in the post-genome-wide association study era

    Directory of Open Access Journals (Sweden)

    Qiao-Ling Wang

    2016-12-01

    Full Text Available Since the first report of a genome-wide association study (GWAS on human age-related macular degeneration, GWAS has successfully been used to discover genetic variants for a variety of complex human diseases and/or traits, and thousands of associated loci have been identified. However, the underlying mechanisms for these loci remain largely unknown. To make these GWAS findings more useful, it is necessary to perform in-depth data mining. The data analysis in the post-GWAS era will include the following aspects: fine-mapping of susceptibility regions to identify susceptibility genes for elucidating the biological mechanism of action; joint analysis of susceptibility genes in different diseases; integration of GWAS, transcriptome, and epigenetic data to analyze expression and methylation quantitative trait loci at the whole-genome level, and find single-nucleotide polymorphisms that influence gene expression and DNA methylation; genome-wide association analysis of disease-related DNA copy number variations. Applying these strategies and methods will serve to strengthen GWAS data to enhance the utility and significance of GWAS in improving understanding of the genetics of complex diseases or traits and translate these findings for clinical applications. Keywords: Genome-wide association study, Data mining, Integrative data analysis, Polymorphism, Copy number variation

  19. Genomic Characterization of DArT Markers Based on High-Density Linkage Analysis and Physical Mapping to the Eucalyptus Genome

    Science.gov (United States)

    Petroli, César D.; Sansaloni, Carolina P.; Carling, Jason; Steane, Dorothy A.; Vaillancourt, René E.; Myburg, Alexander A.; da Silva, Orzenil Bonfim; Pappas, Georgios Joannis; Kilian, Andrzej; Grattapaglia, Dario

    2012-01-01

    Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference

  20. Genomic characterization of DArT markers based on high-density linkage analysis and physical mapping to the Eucalyptus genome.

    Directory of Open Access Journals (Sweden)

    César D Petroli

    Full Text Available Diversity Arrays Technology (DArT provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for

  1. Genome-wide identification of KANADI1 target genes.

    Directory of Open Access Journals (Sweden)

    Paz Merelo

    Full Text Available Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV. A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown.

  2. The Receiver System for the Ooty Wide Field Array

    Indian Academy of Sciences (India)

    The legacy Ooty Radio Telescope (ORT) is being reconfigured as a 264-element synthesis telescope, called the Ooty Wide Field Array (OWFA). Its antenna elements are the contiguous 1.92 m sections of the parabolic cylinder. It will operate in a 38-MHz frequency band centred at 326.5 MHz and will be equipped with a ...

  3. Chapter 10: Mining genome-wide genetic markers.

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    Full Text Available Genome-wide association study (GWAS aims to discover genetic factors underlying phenotypic traits. The large number of genetic factors poses both computational and statistical challenges. Various computational approaches have been developed for large scale GWAS. In this chapter, we will discuss several widely used computational approaches in GWAS. The following topics will be covered: (1 An introduction to the background of GWAS. (2 The existing computational approaches that are widely used in GWAS. This will cover single-locus, epistasis detection, and machine learning methods that have been recently developed in biology, statistic, and computer science communities. This part will be the main focus of this chapter. (3 The limitations of current approaches and future directions.

  4. Selection Signatures in the First Exon of Paralogous Receptor Kinase Genes from the Sym2 Region of the Pisum sativum L. Genome

    Directory of Open Access Journals (Sweden)

    Anton S. Sulima

    2017-11-01

    Full Text Available During the initial step of the symbiosis between legumes (Fabaceae and nitrogen-fixing bacteria (rhizobia, the bacterial signal molecule known as the Nod factor (nodulation factor is recognized by plant LysM motif-containing receptor-like kinases (LysM-RLKs. The fifth chromosome of barrel medic (Medicago truncatula Gaertn. contains a cluster of paralogous LysM-RLK genes, one of which is known to participate in symbiosis. In the syntenic region of the pea (Pisum sativum L. genome, three genes have been identified: PsK1 and PsSym37, two symbiosis-related LysM-RLK genes with known sequences, and the unsequenced PsSym2 gene which presumably encodes a LysM-RLK and is associated with increased selectivity to certain Nod factors. In this work, we identified a new gene encoding a LysM-RLK, designated as PsLykX, within the Sym2 genomic region. We sequenced the first exons (corresponding to the protein receptor domain of PsSym37, PsK1, and PsLykX from a large set of pea genotypes of diverse origin. The nucleotide diversity of these fragments was estimated and groups of haplotypes for each gene were revealed. Footprints of selection pressure were detected via comparative analyses of SNP distribution across the first exons of these genes and their homologs MtLYK2, MtLYK3, and MtLYK4 from M. truncatula retrieved from the Medicago Hapmap project. Despite the remarkable similarity among all the studied genes, they exhibited contrasting selection signatures, possibly pointing to diversification of their functions. Signatures of balancing selection were found in LysM1-encoding parts of PsSym37 and PsK1, suggesting that the diversity of these parts may be important for pea LysM-RLKs. The first exons of PsSym37 and PsK1 displayed signatures of purifying selection, as well as MtLYK2 of M. truncatula. Evidence of positive selection affecting primarily LysM domains was found in all three investigated M. truncatula genes, as well as in the pea gene PsLykX. The data

  5. Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine

    Science.gov (United States)

    2014-01-01

    Background The accessibility of high-throughput genotyping technologies has contributed greatly to the development of genomic resources in non-model organisms. High-density genotyping arrays have only recently been developed for some economically important species such as conifers. The potential for using genomic technologies in association mapping and breeding depends largely on the genome wide patterns of diversity and linkage disequilibrium in current breeding populations. This study aims to deepen our knowledge regarding these issues in maritime pine, the first species used for reforestation in south western Europe. Results Using a new map merging algorithm, we first established a 1,712 cM composite linkage map (comprising 1,838 SNP markers in 12 linkage groups) by bringing together three already available genetic maps. Using rigorous statistical testing based on kernel density estimation and resampling we identified cold and hot spots of recombination. In parallel, 186 unrelated trees of a mass-selected population were genotyped using a 12k-SNP array. A total of 2,600 informative SNPs allowed to describe historical recombination, genetic diversity and genetic structure of this recently domesticated breeding pool that forms the basis of much of the current and future breeding of this species. We observe very low levels of population genetic structure and find no evidence that artificial selection has caused a reduction in genetic diversity. By combining these two pieces of information, we provided the map position of 1,671 SNPs corresponding to 1,192 different loci. This made it possible to analyze the spatial pattern of genetic diversity (H e ) and long distance linkage disequilibrium (LD) along the chromosomes. We found no particular pattern in the empirical variogram of H e across the 12 linkage groups and, as expected for an outcrossing species with large effective population size, we observed an almost complete lack of long distance LD. Conclusions These

  6. Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase.

    Science.gov (United States)

    Ahmed, Wareed; Sala, Claudia; Hegde, Shubhada R; Jha, Rajiv Kumar; Cole, Stewart T; Nagaraja, Valakunja

    2017-05-01

    Movement of the transcription machinery along a template alters DNA topology resulting in the accumulation of supercoils in DNA. The positive supercoils generated ahead of transcribing RNA polymerase (RNAP) and the negative supercoils accumulating behind impose severe topological constraints impeding transcription process. Previous studies have implied the role of topoisomerases in the removal of torsional stress and the maintenance of template topology but the in vivo interaction of functionally distinct topoisomerases with heterogeneous chromosomal territories is not deciphered. Moreover, how the transcription-induced supercoils influence the genome-wide recruitment of DNA topoisomerases remains to be explored in bacteria. Using ChIP-Seq, we show the genome-wide occupancy profile of both topoisomerase I and DNA gyrase in conjunction with RNAP in Mycobacterium tuberculosis taking advantage of minimal topoisomerase representation in the organism. The study unveils the first in vivo genome-wide interaction of both the topoisomerases with the genomic regions and establishes that transcription-induced supercoils govern their recruitment at genomic sites. Distribution profiles revealed co-localization of RNAP and the two topoisomerases on the active transcriptional units (TUs). At a given locus, topoisomerase I and DNA gyrase were localized behind and ahead of RNAP, respectively, correlating with the twin-supercoiled domains generated. The recruitment of topoisomerases was higher at the genomic loci with higher transcriptional activity and/or at regions under high torsional stress compared to silent genomic loci. Importantly, the occupancy of DNA gyrase, sole type II topoisomerase in Mtb, near the Ter domain of the Mtb chromosome validates its function as a decatenase.

  7. Genome-wide association analyses of expression phenotypes.

    Science.gov (United States)

    Chen, Gary K; Zheng, Tian; Witte, John S; Goode, Ellen L; Gao, Lei; Hu, Pingzhao; Suh, Young Ju; Suktitipat, Bhoom; Szymczak, Silke; Woo, Jung Hoon; Zhang, Wei

    2007-01-01

    A number of issues arise when analyzing the large amount of data from high-throughput genotype and expression microarray experiments, including design and interpretation of genome-wide association studies of expression phenotypes. These issues were considered by contributions submitted to Group 1 of the Genetic Analysis Workshop 15 (GAW15), which focused on the association of quantitative expression data. These contributions evaluated diverse hypotheses, including those relevant to cancer and obesity research, and used various analytic techniques, many of which were derived from information theory. Several observations from these reports stand out. First, one needs to consider the genetic model of the trait of interest and carefully select which single nucleotide polymorphisms and individuals are included early in the design stage of a study. Second, by targeting specific pathways when analyzing genome-wide data, one can generate more interpretable results than agnostic approaches. Finally, for datasets with small sample sizes but a large number of features like the Genetic Analysis Workshop 15 dataset, machine learning approaches may be more practical than traditional parametric approaches. (c) 2007 Wiley-Liss, Inc.

  8. Genome-wide analysis of tandem repeats in plants and green algae

    Science.gov (United States)

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  9. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa

    Science.gov (United States)

    Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Adan, R A H; Alfredsson, L; Ando, T; Andreassen, O A; Aschauer, H; Baker, J H; Barrett, J C; Bencko, V; Bergen, A W; Berrettini, W H; Birgegard, A; Boni, C; Boraska Perica, V; Brandt, H; Breen, G; Bulik, C M; Carlberg, L; Cassina, M; Cichon, S; Clementi, M; Cohen-Woods, S; Coleman, J; Cone, R D; Courtet, P; Crawford, S; Crow, S; Crowley, J; Danner, U N; Davis, O S P; de Zwaan, M; Dedoussis, G; Degortes, D; DeSocio, J E; Dick, D M; Dikeos, D; Dina, C; Ding, B; Dmitrzak-Weglarz, M; Docampo, E; Duncan, L; Egberts, K; Ehrlich, S; Escaramís, G; Esko, T; Espeseth, T; Estivill, X; Favaro, A; Fernández-Aranda, F; Fichter, M M; Finan, C; Fischer, K; Floyd, J A B; Foretova, L; Forzan, M; Franklin, C S; Gallinger, S; Gambaro, G; Gaspar, H A; Giegling, I; Gonidakis, F; Gorwood, P; Gratacos, M; Guillaume, S; Guo, Y; Hakonarson, H; Halmi, K A; Hatzikotoulas, K; Hauser, J; Hebebrand, J; Helder, S; Herms, S; Herpertz-Dahlmann, B; Herzog, W; Hilliard, C E; Hinney, A; Hübel, C; Huckins, L M; Hudson, J I; Huemer, J; Inoko, H; Janout, V; Jiménez-Murcia, S; Johnson, C; Julià, A; Juréus, A; Kalsi, G; Kaminska, D; Kaplan, A S; Kaprio, J; Karhunen, L; Karwautz, A; Kas, M J H; Kaye, W; Kennedy, J L; Keski-Rahkonen, A; Kiezebrink, K; Klareskog, L; Klump, K L; Knudsen, G P S; Koeleman, B P C; Koubek, D; La Via, M C; Landén, M; Le Hellard, S; Levitan, R D; Li, D; Lichtenstein, P; Lilenfeld, L; Lissowska, J; Lundervold, A; Magistretti, P; Maj, M; Mannik, K; Marsal, S; Martin, N; Mattingsdal, M; McDevitt, S; McGuffin, P; Merl, E; Metspalu, A; Meulenbelt, I; Micali, N; Mitchell, J; Mitchell, K; Monteleone, P; Monteleone, A M; Mortensen, P; Munn-Chernoff, M A; Navratilova, M; Nilsson, I; Norring, C; Ntalla, I; Ophoff, R A; O'Toole, J K; Palotie, A; Pante, J; Papezova, H; Pinto, D; Rabionet, R; Raevuori, A; Rajewski, A; Ramoz, N; Rayner, N W; Reichborn-Kjennerud, T; Ripatti, S; Roberts, M; Rotondo, A; Rujescu, D; Rybakowski, F; Santonastaso, P; Scherag, A; Scherer, S W; Schmidt, U; Schork, N J; Schosser, A; Slachtova, L; Sladek, R; Slagboom, P E; Slof-Op 't Landt, M C T; Slopien, A; Soranzo, N; Southam, L; Steen, V M; Strengman, E; Strober, M; Sullivan, P F; Szatkiewicz, J P; Szeszenia-Dabrowska, N; Tachmazidou, I; Tenconi, E; Thornton, L M; Tortorella, A; Tozzi, F; Treasure, J; Tsitsika, A; Tziouvas, K; van Elburg, A A; van Furth, E F; Wagner, G; Walton, E; Watson, H; Wichmann, H-E; Widen, E; Woodside, D B; Yanovski, J; Yao, S; Yilmaz, Z; Zeggini, E; Zerwas, S; Zipfel, S; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E

    2018-01-01

    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10−6), and rs7700147, an intergenic variant (P=2.93 × 10−5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes. PMID:29155802

  10. Research on Wide-field Imaging Technologies for Low-frequency Radio Array

    Science.gov (United States)

    Lao, B. Q.; An, T.; Chen, X.; Wu, X. C.; Lu, Y.

    2017-09-01

    Wide-field imaging of low-frequency radio telescopes are subject to a number of difficult problems. One particularly pernicious problem is the non-coplanar baseline effect. It will lead to distortion of the final image when the phase of w direction called w-term is ignored. The image degradation effects are amplified for telescopes with the wide field of view. This paper summarizes and analyzes several w-term correction methods and their technical principles. Their advantages and disadvantages have been analyzed after comparing their computational cost and computational complexity. We conduct simulations with two of these methods, faceting and w-projection, based on the configuration of the first-phase Square Kilometre Array (SKA) low frequency array. The resulted images are also compared with the two-dimensional Fourier transform method. The results show that image quality and correctness derived from both faceting and w-projection are better than the two-dimensional Fourier transform method in wide-field imaging. The image quality and run time affected by the number of facets and w steps have been evaluated. The results indicate that the number of facets and w steps must be reasonable. Finally, we analyze the effect of data size on the run time of faceting and w-projection. The results show that faceting and w-projection need to be optimized before the massive amounts of data processing. The research of the present paper initiates the analysis of wide-field imaging techniques and their application in the existing and future low-frequency array, and fosters the application and promotion to much broader fields.

  11. Genome-Wide Association Mapping of Flowering and Ripening Periods in Apple

    Directory of Open Access Journals (Sweden)

    Jorge Urrestarazu

    2017-11-01

    Full Text Available Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM, which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16 which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe, and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated

  12. Generation of a genomic tiling array of the human Major Histocompatibility Complex (MHC and its application for DNA methylation analysis

    Directory of Open Access Journals (Sweden)

    Ottaviani Diego

    2008-05-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC is essential for human immunity and is highly associated with common diseases, including cancer. While the genetics of the MHC has been studied intensively for many decades, very little is known about the epigenetics of this most polymorphic and disease-associated region of the genome. Methods To facilitate comprehensive epigenetic analyses of this region, we have generated a genomic tiling array of 2 Kb resolution covering the entire 4 Mb MHC region. The array has been designed to be compatible with chromatin immunoprecipitation (ChIP, methylated DNA immunoprecipitation (MeDIP, array comparative genomic hybridization (aCGH and expression profiling, including of non-coding RNAs. The array comprises 7832 features, consisting of two replicates of both forward and reverse strands of MHC amplicons and appropriate controls. Results Using MeDIP, we demonstrate the application of the MHC array for DNA methylation profiling and the identification of tissue-specific differentially methylated regions (tDMRs. Based on the analysis of two tissues and two cell types, we identified 90 tDMRs within the MHC and describe their characterisation. Conclusion A tiling array covering the MHC region was developed and validated. Its successful application for DNA methylation profiling indicates that this array represents a useful tool for molecular analyses of the MHC in the context of medical genomics.

  13. AID/APOBEC cytosine deaminase induces genome-wide kataegis

    Directory of Open Access Journals (Sweden)

    Lada Artem G

    2012-12-01

    Full Text Available Abstract Clusters of localized hypermutation in human breast cancer genomes, named “kataegis” (from the Greek for thunderstorm, are hypothesized to result from multiple cytosine deaminations catalyzed by AID/APOBEC proteins. However, a direct link between APOBECs and kataegis is still lacking. We have sequenced the genomes of yeast mutants induced in diploids by expression of the gene for PmCDA1, a hypermutagenic deaminase from sea lamprey. Analysis of the distribution of 5,138 induced mutations revealed localized clusters very similar to those found in tumors. Our data provide evidence that unleashed cytosine deaminase activity is an evolutionary conserved, prominent source of genome-wide kataegis events. Reviewers This article was reviewed by: Professor Sandor Pongor, Professor Shamil R. Sunyaev, and Dr Vladimir Kuznetsov.

  14. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  15. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis

    Directory of Open Access Journals (Sweden)

    Khan Meraj A

    2012-09-01

    Full Text Available Abstract Background In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n = 18 suffering from moderate (stage 3; n = 8 or severe (stage 4; n = 10 ovarian endometriosis during proliferative (n = 13 and secretory (n = 5 phases of menstrual cycle was performed. Methods Individual pure RNA samples were subjected to Agilent’s Whole Human Genome 44K microarray experiments. Microarray data were validated (P  Results Higher clustering effect of pairing (cluster distance, cd = 0.1 in samples from same individuals on expressional arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd = 0.5 and phases of menstrual cycle (cd = 0.6. Post hoc analysis revealed anomaly in the expressional profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic potential in endometriotic tissue. Dys-regulation of three (CLOCK, ESR1, and MYC major transcription factors appeared to be significant causative factors in the pathogenesis of ovarian endometriosis. A novel cohort of twenty-eight (28 genes representing potential marker for ovarian endometriosis in fertile women was discovered. Conclusions Dysfunctional expression of immuno-neuro-endocrine behaviour in endometrium appeared critical to endometriosis. Although no overt oncogenic potential was evident, several genes associated with gynecological cancers were

  16. A genome-wide association study in American Indians implicates DNER as a susceptibility locus for type 2 diabetes.

    Science.gov (United States)

    Hanson, Robert L; Muller, Yunhua L; Kobes, Sayuko; Guo, Tingwei; Bian, Li; Ossowski, Victoria; Wiedrich, Kim; Sutherland, Jeffrey; Wiedrich, Christopher; Mahkee, Darin; Huang, Ke; Abdussamad, Maryam; Traurig, Michael; Weil, E Jennifer; Nelson, Robert G; Bennett, Peter H; Knowler, William C; Bogardus, Clifton; Baier, Leslie J

    2014-01-01

    Most genetic variants associated with type 2 diabetes mellitus (T2DM) have been identified through genome-wide association studies (GWASs) in Europeans. The current study reports a GWAS for young-onset T2DM in American Indians. Participants were selected from a longitudinal study conducted in Pima Indians and included 278 cases with diabetes with onset before 25 years of age, 295 nondiabetic controls ≥45 years of age, and 267 siblings of cases or controls. Individuals were genotyped on a ∼1M single nucleotide polymorphism (SNP) array, resulting in 453,654 SNPs with minor allele frequency >0.05. SNPs were analyzed for association in cases and controls, and a family-based association test was conducted. Tag SNPs (n = 311) were selected for 499 SNPs associated with diabetes (P associated with T2DM (odds ratio = 1.29 per copy of the T allele; P = 6.6 × 10(-8), which represents genome-wide significance accounting for the number of effectively independent SNPs analyzed). Transfection studies in murine pancreatic β-cells suggested that DNER regulates expression of notch signaling pathway genes. These studies implicate DNER as a susceptibility gene for T2DM in American Indians.

  17. Evidence for widespread exonic small RNAs in the glaucophyte alga Cyanophora paradoxa.

    Directory of Open Access Journals (Sweden)

    Jeferson Gross

    Full Text Available RNAi (RNA interference relies on the production of small RNAs (sRNAs from double-stranded RNA and comprises a major pathway in eukaryotes to restrict the propagation of selfish genetic elements. Amplification of the initial RNAi signal by generation of multiple secondary sRNAs from a targeted mRNA is catalyzed by RNA-dependent RNA polymerases (RdRPs. This phenomenon is known as transitivity and is particularly important in plants to limit the spread of viruses. Here we describe, using a genome-wide approach, the distribution of sRNAs in the glaucophyte alga Cyanophora paradoxa. C. paradoxa is a member of the supergroup Plantae (also known as Archaeplastida that includes red algae, green algae, and plants. The ancient (>1 billion years ago split of glaucophytes within Plantae suggests that C. paradoxa may be a useful model to learn about the early evolution of RNAi in the supergroup that ultimately gave rise to plants. Using next-generation sequencing and bioinformatic analyses we find that sRNAs in C. paradoxa are preferentially associated with mRNAs, including a large number of transcripts that encode proteins arising from different functional categories. This pattern of exonic sRNAs appears to be a general trend that affects a large fraction of mRNAs in the cell. In several cases we observe that sRNAs have a bias for a specific strand of the mRNA, including many instances of antisense predominance. The genome of C. paradoxa encodes four sequences that are homologous to RdRPs in Arabidopsis thaliana. We discuss the possibility that exonic sRNAs in the glaucophyte may be secondarily derived from mRNAs by the action of RdRPs. If this hypothesis is confirmed, then transitivity may have had an ancient origin in Plantae.

  18. High resolution array-based comparative genomic hybridisation of medulloblastomas and supra-tentorial primitive neuroectodermal tumours

    Science.gov (United States)

    McCabe, Martin Gerard; Ichimura, Koichi; Liu, Lu; Plant, Karen; Bäcklund, L Magnus; Pearson, Danita M; Collins, Vincent Peter

    2010-01-01

    Medulloblastomas and supratentorial primitive neuroectodermal tumours are aggressive childhood tumours. We report our findings using array comparative genomic hybridisation (CGH) on a whole-genome BAC/PAC/cosmid array with a median clone separation of 0.97Mb to study 34 medulloblastomas and 7 supratentorial primitive neuroectodermal tumours. Array CGH allowed identification and mapping of numerous novel small regions of copy number change to genomic sequence, in addition to the large regions already known from previous studies. Novel amplifications were identified, some encompassing oncogenes, MYCL1, PDGFRA, KIT and MYB, not previously reported to show amplification in these tumours. In addition, one supratentorial primitive neuroectodermal tumour had lost both copies of the tumour suppressor genes CDKN2A & CDKN2B. Ten medulloblastomas had findings suggestive of isochromosome 17q. In contrast to previous reports using conventional CGH, array CGH identified three distinct breakpoints in these cases: Ch 17: 17940393-19251679 (17p11.2, n=6), Ch 17: 20111990-23308272 (17p11.2-17q11.2, n=4) and Ch 17: 38425359-39091575 (17q21.31, n=1). Significant differences were found in the patterns of copy number change between medulloblastomas and supratentorial primitive neuroectodermal tumours, providing further evidence that these tumours are genetically distinct despite their morphological and behavioural similarities. PMID:16783165

  19. Citalopram and escitalopram plasma drug and metabolite concentrations: genome-wide associations.

    Science.gov (United States)

    Ji, Yuan; Schaid, Daniel J; Desta, Zeruesenay; Kubo, Michiaki; Batzler, Anthony J; Snyder, Karen; Mushiroda, Taisei; Kamatani, Naoyuki; Ogburn, Evan; Hall-Flavin, Daniel; Flockhart, David; Nakamura, Yusuke; Mrazek, David A; Weinshilboum, Richard M

    2014-08-01

    Citalopram (CT) and escitalopram (S-CT) are among the most widely prescribed selective serotonin reuptake inhibitors used to treat major depressive disorder (MDD). We applied a genome-wide association study to identify genetic factors that contribute to variation in plasma concentrations of CT or S-CT and their metabolites in MDD patients treated with CT or S-CT. Our genome-wide association study was performed using samples from 435 MDD patients. Linear mixed models were used to account for within-subject correlations of longitudinal measures of plasma drug/metabolite concentrations (4 and 8 weeks after the initiation of drug therapy), and single-nucleotide polymorphisms (SNPs) were modelled as additive allelic effects. Genome-wide significant associations were observed for S-CT concentration with SNPs in or near the CYP2C19 gene on chromosome 10 (rs1074145, P = 4.1 × 10(-9) ) and with S-didesmethylcitalopram concentration for SNPs near the CYP2D6 locus on chromosome 22 (rs1065852, P = 2.0 × 10(-16) ), supporting the important role of these cytochrome P450 (CYP) enzymes in biotransformation of citalopram. After adjustment for the effect of CYP2C19 functional alleles, the analyses also identified novel loci that will require future replication and functional validation. In vitro and in vivo studies have suggested that the biotransformation of CT to monodesmethylcitalopram and didesmethylcitalopram is mediated by CYP isozymes. The results of our genome-wide association study performed in MDD patients treated with CT or S-CT have confirmed those observations but also identified novel genomic loci that might play a role in variation in plasma levels of CT or its metabolites during the treatment of MDD patients with these selective serotonin reuptake inhibitors. © 2014 The British Pharmacological Society.

  20. From human monocytes to genome-wide binding sites--a protocol for small amounts of blood: monocyte isolation/ChIP-protocol/library amplification/genome wide computational data analysis.

    Directory of Open Access Journals (Sweden)

    Sebastian Weiterer

    Full Text Available Chromatin immunoprecipitation in combination with a genome-wide analysis via high-throughput sequencing is the state of the art method to gain genome-wide representation of histone modification or transcription factor binding profiles. However, chromatin immunoprecipitation analysis in the context of human experimental samples is limited, especially in the case of blood cells. The typically extremely low yields of precipitated DNA are usually not compatible with library amplification for next generation sequencing. We developed a highly reproducible protocol to present a guideline from the first step of isolating monocytes from a blood sample to analyse the distribution of histone modifications in a genome-wide manner.The protocol describes the whole work flow from isolating monocytes from human blood samples followed by a high-sensitivity and small-scale chromatin immunoprecipitation assay with guidance for generating libraries compatible with next generation sequencing from small amounts of immunoprecipitated DNA.

  1. Hyb-Seq: Combining Target Enrichment and Genome Skimming for Plant Phylogenomics

    Directory of Open Access Journals (Sweden)

    Kevin Weitemier

    2014-08-01

    Full Text Available Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. Methods and Results: Genome and transcriptome assemblies for milkweed (Asclepias syriaca were used to design enrichment probes for 3385 exons from 768 genes (>1.6 Mbp followed by Illumina sequencing of enriched libraries. Hyb-Seq of 12 individuals (10 Asclepias species and two related genera resulted in at least partial assembly of 92.6% of exons and 99.7% of genes and an average assembly length >2 Mbp. Importantly, complete plastomes and nuclear ribosomal DNA cistrons were assembled using off-target reads. Phylogenomic analyses demonstrated signal conflict between genomes. Conclusions: The Hyb-Seq approach enables targeted sequencing of thousands of low-copy nuclear exons and flanking regions, as well as genome skimming of high-copy repeats and organellar genomes, to efficiently produce genome-scale data sets for phylogenomics.

  2. Genomic profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization.

    Directory of Open Access Journals (Sweden)

    Shunichi Yoshioka

    Full Text Available We designed a study to investigate genetic relationships between primary tumors of oral squamous cell carcinoma (OSCC and their lymph node metastases, and to identify genomic copy number aberrations (CNAs related to lymph node metastasis. For this purpose, we collected a total of 42 tumor samples from 25 patients and analyzed their genomic profiles by array-based comparative genomic hybridization. We then compared the genetic profiles of metastatic primary tumors (MPTs with their paired lymph node metastases (LNMs, and also those of LNMs with non-metastatic primary tumors (NMPTs. Firstly, we found that although there were some distinctive differences in the patterns of genomic profiles between MPTs and their paired LNMs, the paired samples shared similar genomic aberration patterns in each case. Unsupervised hierarchical clustering analysis grouped together 12 of the 15 MPT-LNM pairs. Furthermore, similarity scores between paired samples were significantly higher than those between non-paired samples. These results suggested that MPTs and their paired LNMs are composed predominantly of genetically clonal tumor cells, while minor populations with different CNAs may also exist in metastatic OSCCs. Secondly, to identify CNAs related to lymph node metastasis, we compared CNAs between grouped samples of MPTs and LNMs, but were unable to find any CNAs that were more common in LNMs. Finally, we hypothesized that subpopulations carrying metastasis-related CNAs might be present in both the MPT and LNM. Accordingly, we compared CNAs between NMPTs and LNMs, and found that gains of 7p, 8q and 17q were more common in the latter than in the former, suggesting that these CNAs may be involved in lymph node metastasis of OSCC. In conclusion, our data suggest that in OSCCs showing metastasis, the primary and metastatic tumors share similar genomic profiles, and that cells in the primary tumor may tend to metastasize after acquiring metastasis-associated CNAs.

  3. Array comparative genomic hybridization and cytogenetic analysis in pediatric acute leukemias

    Science.gov (United States)

    Dawson, A.J.; Yanofsky, R.; Vallente, R.; Bal, S.; Schroedter, I.; Liang, L.; Mai, S.

    2011-01-01

    Most patients with acute lymphocytic leukemia (all) are reported to have acquired chromosomal abnormalities in their leukemic bone marrow cells. Many established chromosome rearrangements have been described, and their associations with specific clinical, biologic, and prognostic features are well defined. However, approximately 30% of pediatric and 50% of adult patients with all do not have cytogenetic abnormalities of clinical significance. Despite significant improvements in outcome for pediatric all, therapy fails in approximately 25% of patients, and these failures often occur unpredictably in patients with a favorable prognosis and “good” cytogenetics at diagnosis. It is well known that karyotype analysis in hematologic malignancies, although genome-wide, is limited because of altered cell kinetics (mitotic rate), a propensity of leukemic blasts to undergo apoptosis in culture, overgrowth by normal cells, and chromosomes of poor quality in the abnormal clone. Array comparative genomic hybridization (acgh—“microarray”) has a greatly increased genomic resolution over classical cytogenetics. Cytogenetic microarray, which uses genomic dna, is a powerful tool in the analysis of unbalanced chromosome rearrangements, such as copy number gains and losses, and it is the method of choice when the mitotic index is low and the quality of metaphases is suboptimal. The copy number profile obtained by microarray is often called a “molecular karyotype.” In the present study, microarray was applied to 9 retrospective cases of pediatric all either with initial high-risk features or with at least 1 relapse. The conventional karyotype was compared to the “molecular karyotype” to assess abnormalities as interpreted by classical cytogenetics. Not only were previously undetected chromosome losses and gains identified by microarray, but several karyotypes interpreted by classical cytogenetics were shown to be discordant with the microarray results. The

  4. StereoGene: rapid estimation of genome-wide correlation of continuous or interval feature data.

    Science.gov (United States)

    Stavrovskaya, Elena D; Niranjan, Tejasvi; Fertig, Elana J; Wheelan, Sarah J; Favorov, Alexander V; Mironov, Andrey A

    2017-10-15

    Genomics features with similar genome-wide distributions are generally hypothesized to be functionally related, for example, colocalization of histones and transcription start sites indicate chromatin regulation of transcription factor activity. Therefore, statistical algorithms to perform spatial, genome-wide correlation among genomic features are required. Here, we propose a method, StereoGene, that rapidly estimates genome-wide correlation among pairs of genomic features. These features may represent high-throughput data mapped to reference genome or sets of genomic annotations in that reference genome. StereoGene enables correlation of continuous data directly, avoiding the data binarization and subsequent data loss. Correlations are computed among neighboring genomic positions using kernel correlation. Representing the correlation as a function of the genome position, StereoGene outputs the local correlation track as part of the analysis. StereoGene also accounts for confounders such as input DNA by partial correlation. We apply our method to numerous comparisons of ChIP-Seq datasets from the Human Epigenome Atlas and FANTOM CAGE to demonstrate its wide applicability. We observe the changes in the correlation between epigenomic features across developmental trajectories of several tissue types consistent with known biology and find a novel spatial correlation of CAGE clusters with donor splice sites and with poly(A) sites. These analyses provide examples for the broad applicability of StereoGene for regulatory genomics. The StereoGene C ++ source code, program documentation, Galaxy integration scripts and examples are available from the project homepage http://stereogene.bioinf.fbb.msu.ru/. favorov@sensi.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  5. Functional importance of different patterns of correlation between adjacent cassette exons in human and mouse.

    Science.gov (United States)

    Peng, Tao; Xue, Chenghai; Bi, Jianning; Li, Tingting; Wang, Xiaowo; Zhang, Xuegong; Li, Yanda

    2008-04-26

    Alternative splicing expands transcriptome diversity and plays an important role in regulation of gene expression. Previous studies focus on the regulation of a single cassette exon, but recent experiments indicate that multiple cassette exons within a gene may interact with each other. This interaction can increase the potential to generate various transcripts and adds an extra layer of complexity to gene regulation. Several cases of exon interaction have been discovered. However, the extent to which the cassette exons coordinate with each other remains unknown. Based on EST data, we employed a metric of correlation coefficients to describe the interaction between two adjacent cassette exons and then categorized these exon pairs into three different groups by their interaction (correlation) patterns. Sequence analysis demonstrates that strongly-correlated groups are more conserved and contain a higher proportion of pairs with reading frame preservation in a combinatorial manner. Multiple genome comparison further indicates that different groups of correlated pairs have different evolutionary courses: (1) The vast majority of positively-correlated pairs are old, (2) most of the weakly-correlated pairs are relatively young, and (3) negatively-correlated pairs are a mixture of old and young events. We performed a large-scale analysis of interactions between adjacent cassette exons. Compared with weakly-correlated pairs, the strongly-correlated pairs, including both the positively and negatively correlated ones, show more evidence that they are under delicate splicing control and tend to be functionally important. Additionally, the positively-correlated pairs bear strong resemblance to constitutive exons, which suggests that they may evolve from ancient constitutive exons, while negatively and weakly correlated pairs are more likely to contain newly emerging exons.

  6. nGASP - the nematode genome annotation assessment project

    Energy Technology Data Exchange (ETDEWEB)

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C

  7. Genome-Wide Association Study for Autism Spectrum Disorder in Taiwanese Han Population.

    Directory of Open Access Journals (Sweden)

    Po-Hsiu Kuo

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder with strong genetic components. Several recent genome-wide association (GWA studies in Caucasian samples have reported a number of gene regions and loci correlated with the risk of ASD--albeit with very little consensus across studies.A two-stage GWA study was employed to identify common genetic variants for ASD in the Taiwanese Han population. The discovery stage included 315 patients with ASD and 1,115 healthy controls, using the Affymetrix SNP array 6.0 platform for genotyping. Several gene regions were then selected for fine-mapping and top markers were examined in extended samples. Single marker, haplotype, gene-based, and pathway analyses were conducted for associations.Seven SNPs had p-values ranging from 3.4~9.9*10-6, but none reached the genome-wide significant level. Five of them were mapped to three known genes (OR2M4, STYK1, and MNT with significant empirical gene-based p-values in OR2M4 (p = 3.4*10(-5 and MNT (p = 0.0008. Results of the fine-mapping study showed single-marker associations in the GLIS1 (rs12082358 and rs12080993 and NAALADL2 (rs3914502 and rs2222447 genes, and gene-based associations for the OR2M3-OR2T5 (olfactory receptor genes, p = 0.02, and GLIPR1/KRR1 gene regions (p = 0.015. Pathway analyses revealed important pathways for ASD, such as olfactory and G protein-coupled receptors signaling pathways.We reported Taiwanese Han specific susceptibility genes and variants for ASD. However, further replication in other Asian populations is warranted to validate our findings. Investigation in the biological functions of our reported genetic variants might also allow for better understanding on the underlying pathogenesis of autism.

  8. Genome-wide DNA polymorphisms in Kavuni, a traditional rice cultivar with nutritional and therapeutic properties.

    Science.gov (United States)

    Rathinasabapathi, Pasupathi; Purushothaman, Natarajan; Parani, Madasamy

    2016-05-01

    Although rice genome was sequenced in the year 2002, efforts in resequencing the large number of available accessions, landraces, traditional cultivars, and improved varieties of this important food crop are limited. We have initiated resequencing of the traditional cultivars from India. Kavuni is an important traditional rice cultivar from South India that attracts premium price for its nutritional and therapeutic properties. Whole-genome sequencing of Kavuni using Illumina platform and SNPs analysis using Nipponbare reference genome identified 1 150 711 SNPs of which 377 381 SNPs were located in the genic regions. Non-synonymous SNPs (62 708) were distributed in 19 251 genes, and their number varied between 1 and 115 per gene. Large-effect DNA polymorphisms (7769) were present in 3475 genes. Pathway mapping of these polymorphisms revealed the involvement of genes related to carbohydrate metabolism, translation, protein-folding, and cell death. Analysis of the starch biosynthesis related genes revealed that the granule-bound starch synthase I gene had T/G SNPs at the first intron/exon junction and a two-nucleotide combination, which were reported to favour high amylose content and low glycemic index. The present study provided a valuable genomics resource to study the rice varieties with nutritional and medicinal properties.

  9. Genome-wide search for gene-gene interactions in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Shuo Jiao

    Full Text Available Genome-wide association studies (GWAS have successfully identified a number of single-nucleotide polymorphisms (SNPs associated with colorectal cancer (CRC risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG is considered to be one source of the missing heritability. To address this, we performed a genome-wide search for pair-wise GxG associated with CRC risk using 8,380 cases and 10,558 controls in the discovery phase and 2,527 cases and 2,658 controls in the replication phase. We developed a simple, but powerful method for testing interaction, which we term the Average Risk Due to Interaction (ARDI. With this method, we conducted a genome-wide search to identify SNPs showing evidence for GxG with previously identified CRC susceptibility loci from 14 independent regions. We also conducted a genome-wide search for GxG using the marginal association screening and examining interaction among SNPs that pass the screening threshold (p<10(-4. For the known locus rs10795668 (10p14, we found an interacting SNP rs367615 (5q21 with replication p = 0.01 and combined p = 4.19×10(-8. Among the top marginal SNPs after LD pruning (n = 163, we identified an interaction between rs1571218 (20p12.3 and rs10879357 (12q21.1 (nominal combined p = 2.51×10(-6; Bonferroni adjusted p = 0.03. Our study represents the first comprehensive search for GxG in CRC, and our results may provide new insight into the genetic etiology of CRC.

  10. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    NARCIS (Netherlands)

    Lee, S.H.; Ripke, S.; Neale, B.; Faraone, S.V.; Purcell, S.M.; Perlis, R.H.; Mowry, B. J.; Thapar, A.; Goddard, M.E.; Witte, J.S.; Absher, D.; Agartz, I.; Akil, H.; Amin, F.; Andreassen, O.A.; Anjorin, A.; Anney, R.; Anttila, V.; Arking, D.E.; Asherson, P.; Azevedo, M.H.; Backlund, L.; Badner, J.A.; Bailey, A.J.; Banaschewski, T.; Barchas, J.D.; Barnes, M.R.; Barrett, T.B.; Bass, N.; Battaglia, A.; Bauer, M.; Bayés, M.; Bellivier, F.; Bergen, S.E.; Berrettini, W.; Betancur, C.; Bettecken, T.; Biederman, J; Binder, E.B.; Black, D.W.; Blackwood, D.H.; Bloss, C.S.; Boehnke, M.; Boomsma, D.I.; Breen, G.; Breuer, R.; Bruggeman, R.; Cormican, P.; Buccola, N.G.; Buitelaar, J.K.; Bunney, W.E.; Buxbaum, J.D.; Byerley, W. F.; Byrne, E.M.; Caesar, S.; Cahn, W.; Cantor, R.M.; Casas, M.; Chakravarti, A.; Chambert, K.; Choudhury, K.; Cichon, S.; Cloninger, C. R.; Collier, D.A.; Cook, E.H.; Coon, H.; Corman, B.; Corvin, A.; Coryell, W.H.; Craig, D.W.; Craig, I.W.; Crosbie, J.; Cuccaro, M.L.; Curtis, D.; Czamara, D.; Datta, S.; Dawson, G.; Day, R.; de Geus, E.J.C.; Degenhardt, F.; Djurovic, S.; Donohoe, G.; Doyle, A.E.; Duan, J.; Dudbridge, F.; Duketis, E.; Ebstein, R.P.; Edenberg, H.J.; Elia, J.; Ennis, S.; Etain, B.; Fanous, A.; Farmer, A.E.; Ferrier, I.N.; Flickinger, M.; Fombonne, E.; Foroud, T.; Frank, J.; Franke, B.; Fraser, C.; Freedman, R.; Freimer, N.B.; Freitag, C.; Friedl, M.; Frisén, L.; Gallagher, L.; Gejman, P.V.; Georgieva, L.; Gershon, E.S.; Geschwind, D.H.; Giegling, I.; Gill, M.; Gordon, S.D.; Gordon-Smith, K.; Green, E.K.; Greenwood, T.A.; Grice, D.E.; Gross, M.; Grozeva, D.; Guan, W.; Gurling, H.; de Haan, L.; Haines, J.L.; Hakonarson, H.; Hallmayer, J.; Hamilton, S.P.; Hamshere, M.L.; Hansen, T.F.; Hartmann, A.M.; Hautzinger, M.; Heath, A.C.; Henders, A.K.; Herms, S.; Hickie, I.B.; Hipolito, M.; Hoefels, S.; Holmans, P.A.; Holsboer, F.; Hoogendijk, W.J.G.; Hottenga, J.J.; Hultman, C. M.; Hus, V.; Ingason, A.; Ising, M.; Jamain, S.; Jones, E.G.; Jones, I.; Jones, L.; Tzeng, J.Y.; Kähler, A.K.; Kahn, R.S.; Kandaswamy, R.; Keller, M.C.; Kennedy, J.L.; Kenny, E.; Kent, L.; Kim, Y.; Kirov, G. K.; Klauck, S.M.; Klei, L.; Knowles, J.A.; Kohli, M.A.; Koller, D.L.; Konte, B.; Korszun, A.; Krabbendam, L.; Krasucki, R.; Kuntsi, J.; Kwan, P.; Landén, M.; Langstrom, N.; Lathrop, M.; Lawrence, J.; Lawson, W.B.; Leboyer, M.; Ledbetter, D.H.; Lee, P.H.; Lencz, T.; Lesch, K.P.; Levinson, D.F.; Lewis, C.M.; Li, J.; Lichtenstein, P.; Lieberman, J. A.; Lin, D.Y.; Linszen, D.H.; Liu, C.; Lohoff, F.W.; Loo, S.K.; Lord, C.; Lowe, J.K.; Lucae, S.; MacIntyre, D.J.; Madden, P.A.F.; Maestrini, E.; Magnusson, P.K.E.; Mahon, P.B.; Maier, W.; Malhotra, A.K.; Mane, S.M.; Martin, C.L.; Martin, N.G.; Mattheisen, M.; Matthews, K.; Mattingsdal, M.; McCarroll, S.A.; McGhee, K.A.; McGough, J.J.; McGrath, P.J.; McGuffin, P.; McInnis, M.G.; McIntosh, A.; McKinney, R.; McLean, A.W.; McMahon, F.J.; McMahon, W.M.; McQuillin, A.; Medeiros, H.; Medland, S.E.; Meier, S.; Melle, I.; Meng, F.; Meyer, J.; Middeldorp, C.M.; Middleton, L.; Milanova, V.; Miranda, A.; Monaco, A.P.; Montgomery, G.W.; Moran, J.L.; Moreno-De Luca, D.; Morken, G.; Morris, D.W.; Morrow, E.M.; Moskvina, V.; Muglia, P.; Mühleisen, T.W.; Muir, W.J.; Müller-Myhsok, B.; Murtha, M.; Myers, R.M.; Myin-Germeys, I.; Neale, M.C.; Nelson, S.F.; Nievergelt, C.M.; Nikolov, I.; Nimgaonkar, V.L.; Nolen, W.A.; Nöthen, M.M.; Nurnberger, J.I.; Nwulia, E.A.; Nyholt, DR; O'Dushlaine, C.; Oades, R.D.; Olincy, A.; Oliveira, G.; Olsen, L.; Ophoff, R.A.; Osby, U.; Owen, M.J.; Palotie, A.; Parr, J.R.; Paterson, A.D.; Pato, C.N.; Pato, M.T.; Penninx, B.W.J.H.; Pergadia, M.L.; Pericak-Vance, M.A.; Pickard, B.S.; Pimm, J.; Piven, J.; Posthuma, D.; Potash, J.B.; Poustka, F.; Propping, P.; Puri, V.; Quested, D.; Quinn, E.M.; Ramos-Quiroga, J.A.; Rasmussen, H.B.; Raychaudhuri, S.; Rehnström, K.; Reif, A.; Ribasés, M.; Rice, J.P.; Rietschel, M.; Roeder, K.; Roeyers, H.; Rossin, L.; Rothenberger, A.; Rouleau, G.; Ruderfer, D.; Rujescu, D.; Sanders, A.R.; Sanders, S.J.; Santangelo, S.; Sergeant, J.A.; Schachar, R.; Schalling, M.; Schatzberg, A.F.; Scheftner, W.A.; Schellenberg, G.D.; Scherer, S.W.; Schork, N.J.; Schulze, T.G.; Schumacher, J.; Schwarz, M.; Scolnick, E.; Scott, L.J.; Shi, J.; Shilling, P.D.; Shyn, S.I.; Silverman, J.M.; Slager, S.L.; Smalley, S.L.; Smit, J.H.; Smith, E.N.; Sonuga-Barke, E.J.; St Clair, D.; State, M.; Steffens, M; Steinhausen, H.C.; Strauss, J.; Strohmaier, J.; Stroup, T.S.; Sutcliffe, J.; Szatmari, P.; Szelinger, S.; Thirumalai, S.; Thompson, R.C.; Todorov, A.A.; Tozzi, F.; Treutlein, J.; Uhr, M.; van den Oord, E.J.C.G.; Grootheest, G.; van Os, J.; Vicente, A.; Vieland, V.; Vincent, J.B.; Visscher, P.M.; Walsh, C.A.; Wassink, T.H.; Watson, S.J.; Weissman, M.M.; Werge, T.; Wienker, T.F.; Wijsman, E.M.; Willemsen, G.; Williams, N.; Willsey, A.J.; Witt, S.H.; Xu, W.; Young, A.H.; Yu, T.W.; Zammit, S.; Zandi, P.P.; Zhang, P.; Zitman, F.G.; Zöllner, S.; Devlin, B.; Kelsoe, J.; Sklar, P.; Daly, M.J.; O'Donovan, M.C.; Craddock, N.; Sullivan, P.F.; Smoller, J.W.; Kendler, K.S.; Wray, N.R.

    2013-01-01

    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases

  11. A statistical method for predicting splice variants between two groups of samples using GeneChip® expression array data

    Directory of Open Access Journals (Sweden)

    Olson James M

    2006-04-01

    Full Text Available Abstract Background Alternative splicing of pre-messenger RNA results in RNA variants with combinations of selected exons. It is one of the essential biological functions and regulatory components in higher eukaryotic cells. Some of these variants are detectable with the Affymetrix GeneChip® that uses multiple oligonucleotide probes (i.e. probe set, since the target sequences for the multiple probes are adjacent within each gene. Hybridization intensity from a probe correlates with abundance of the corresponding transcript. Although the multiple-probe feature in the current GeneChip® was designed to assess expression values of individual genes, it also measures transcriptional abundance for a sub-region of a gene sequence. This additional capacity motivated us to develop a method to predict alternative splicing, taking advance of extensive repositories of GeneChip® gene expression array data. Results We developed a two-step approach to predict alternative splicing from GeneChip® data. First, we clustered the probes from a probe set into pseudo-exons based on similarity of probe intensities and physical adjacency. A pseudo-exon is defined as a sequence in the gene within which multiple probes have comparable probe intensity values. Second, for each pseudo-exon, we assessed the statistical significance of the difference in probe intensity between two groups of samples. Differentially expressed pseudo-exons are predicted to be alternatively spliced. We applied our method to empirical data generated from GeneChip® Hu6800 arrays, which include 7129 probe sets and twenty probes per probe set. The dataset consists of sixty-nine medulloblastoma (27 metastatic and 42 non-metastatic samples and four cerebellum samples as normal controls. We predicted that 577 genes would be alternatively spliced when we compared normal cerebellum samples to medulloblastomas, and predicted that thirteen genes would be alternatively spliced when we compared metastatic

  12. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing.

    Science.gov (United States)

    Hu, Jiazhi; Meyers, Robin M; Dong, Junchao; Panchakshari, Rohit A; Alt, Frederick W; Frock, Richard L

    2016-05-01

    Unbiased, high-throughput assays for detecting and quantifying DNA double-stranded breaks (DSBs) across the genome in mammalian cells will facilitate basic studies of the mechanisms that generate and repair endogenous DSBs. They will also enable more applied studies, such as those to evaluate the on- and off-target activities of engineered nucleases. Here we describe a linear amplification-mediated high-throughput genome-wide sequencing (LAM-HTGTS) method for the detection of genome-wide 'prey' DSBs via their translocation in cultured mammalian cells to a fixed 'bait' DSB. Bait-prey junctions are cloned directly from isolated genomic DNA using LAM-PCR and unidirectionally ligated to bridge adapters; subsequent PCR steps amplify the single-stranded DNA junction library in preparation for Illumina Miseq paired-end sequencing. A custom bioinformatics pipeline identifies prey sequences that contribute to junctions and maps them across the genome. LAM-HTGTS differs from related approaches because it detects a wide range of broken end structures with nucleotide-level resolution. Familiarity with nucleic acid methods and next-generation sequencing analysis is necessary for library generation and data interpretation. LAM-HTGTS assays are sensitive, reproducible, relatively inexpensive, scalable and straightforward to implement with a turnaround time of <1 week.

  13. Genome-wide association study identifies chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Brandon L Pierce

    Full Text Available Arsenic contamination of drinking water is a major public health issue in many countries, increasing risk for a wide array of diseases, including cancer. There is inter-individual variation in arsenic metabolism efficiency and susceptibility to arsenic toxicity; however, the basis of this variation is not well understood. Here, we have performed the first genome-wide association study (GWAS of arsenic-related metabolism and toxicity phenotypes to improve our understanding of the mechanisms by which arsenic affects health. Using data on urinary arsenic metabolite concentrations and approximately 300,000 genome-wide single nucleotide polymorphisms (SNPs for 1,313 arsenic-exposed Bangladeshi individuals, we identified genome-wide significant association signals (P<5×10(-8 for percentages of both monomethylarsonic acid (MMA and dimethylarsinic acid (DMA near the AS3MT gene (arsenite methyltransferase; 10q24.32, with five genetic variants showing independent associations. In a follow-up analysis of 1,085 individuals with arsenic-induced premalignant skin lesions (the classical sign of arsenic toxicity and 1,794 controls, we show that one of these five variants (rs9527 is also associated with skin lesion risk (P = 0.0005. Using a subset of individuals with prospectively measured arsenic (n = 769, we show that rs9527 interacts with arsenic to influence incident skin lesion risk (P = 0.01. Expression quantitative trait locus (eQTL analyses of genome-wide expression data from 950 individual's lymphocyte RNA suggest that several of our lead SNPs represent cis-eQTLs for AS3MT (P = 10(-12 and neighboring gene C10orf32 (P = 10(-44, which are involved in C10orf32-AS3MT read-through transcription. This is the largest and most comprehensive genomic investigation of arsenic metabolism and toxicity to date, the only GWAS of any arsenic-related trait, and the first study to implicate 10q24.32 variants in both arsenic metabolism and arsenical

  14. A Genome-wide Association Study of Myasthenia Gravis

    Science.gov (United States)

    Renton, Alan E.; Pliner, Hannah A.; Provenzano, Carlo; Evoli, Amelia; Ricciardi, Roberta; Nalls, Michael A.; Marangi, Giuseppe; Abramzon, Yevgeniya; Arepalli, Sampath; Chong, Sean; Hernandez, Dena G.; Johnson, Janel O.; Bartoccioni, Emanuela; Scuderi, Flavia; Maestri, Michelangelo; Raphael Gibbs, J.; Errichiello, Edoardo; Chiò, Adriano; Restagno, Gabriella; Sabatelli, Mario; Macek, Mark; Scholz, Sonja W.; Corse, Andrea; Chaudhry, Vinay; Benatar, Michael; Barohn, Richard J.; McVey, April; Pasnoor, Mamatha; Dimachkie, Mazen M.; Rowin, Julie; Kissel, John; Freimer, Miriam; Kaminski, Henry J.; Sanders, Donald B.; Lipscomb, Bernadette; Massey, Janice M.; Chopra, Manisha; Howard, James F.; Koopman, Wilma J.; Nicolle, Michael W.; Pascuzzi, Robert M.; Pestronk, Alan; Wulf, Charlie; Florence, Julaine; Blackmore, Derrick; Soloway, Aimee; Siddiqi, Zaeem; Muppidi, Srikanth; Wolfe, Gil; Richman, David; Mezei, Michelle M.; Jiwa, Theresa; Oger, Joel; Drachman, Daniel B.; Traynor, Bryan J.

    2016-01-01

    IMPORTANCE Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood. OBJECTIVE To identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study. DESIGN, SETTING, AND PARTICIPANTS DNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody–positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication. MAIN OUTCOMES AND MEASURES We calculated P values for association between 8114394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0 × 10−8 was set for genome-wide significance after Bonferroni correction for multiple testing. RESULTS In the over all case-control cohort, we identified association signals at CTLA4 (rs231770; P = 3.98 × 10−8; odds ratio, 1.37; 95% CI, 1.25–1.49), HLA-DQA1 (rs9271871; P = 1.08 × 10−8; odds ratio, 2.31; 95% CI, 2.02 – 2.60), and TNFRSF11A (rs4263037; P = 1.60 × 10−9; odds ratio, 1.41; 95% CI, 1.29–1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P = 1.32 × 10−12; odds ratio, 1.56; 95% CI, 1.44–1.68) and the other was detected

  15. Genome-Wide Transcriptome Analysis Reveals Extensive Alternative Splicing Events in the Protoscoleces of Echinococcus granulosus and Echinococcus multilocularis

    Science.gov (United States)

    Liu, Shuai; Zhou, Xiaosu; Hao, Lili; Piao, Xianyu; Hou, Nan; Chen, Qijun

    2017-01-01

    Alternative splicing (AS), as one of the most important topics in the post-genomic era, has been extensively studied in numerous organisms. However, little is known about the prevalence and characteristics of AS in Echinococcus species, which can cause significant health problems to humans and domestic animals. Based on high-throughput RNA-sequencing data, we performed a genome-wide survey of AS in two major pathogens of echinococcosis-Echinococcus granulosus and Echinococcus multilocularis. Our study revealed that the prevalence and characteristics of AS in protoscoleces of the two parasites were generally consistent with each other. A total of 6,826 AS events from 3,774 E. granulosus genes and 6,644 AS events from 3,611 E. multilocularis genes were identified in protoscolex transcriptomes, indicating that 33–36% of genes were subject to AS in the two parasites. Strikingly, intron retention instead of exon skipping was the predominant type of AS in Echinococcus species. Moreover, analysis of the Kyoto Encyclopedia of Genes and Genomes pathway indicated that genes that underwent AS events were significantly enriched in multiple pathways mainly related to metabolism (e.g., purine, fatty acid, galactose, and glycerolipid metabolism), signal transduction (e.g., Jak-STAT, VEGF, Notch, and GnRH signaling pathways), and genetic information processing (e.g., RNA transport and mRNA surveillance pathways). The landscape of AS obtained in this study will not only facilitate future investigations on transcriptome complexity and AS regulation during the life cycle of Echinococcus species, but also provide an invaluable resource for future functional and evolutionary studies of AS in platyhelminth parasites. PMID:28588571

  16. Genome-wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yamagata

    Full Text Available The objective of this study was to characterize the genome-wide DNA methylation profiles of isolated endometrial stromal cells obtained from eutopic endometria with (euESCa and without endometriosis (euESCb and ovarian endometrial cysts (choESC. Three samples were analyzed in each group. The infinium methylation array identified more hypermethylated and hypomethylated CpGs in choESC than in euESCa, and only a few genes were methylated differently in euESCa and euESCb. A functional analysis revealed that signal transduction, developmental processes, immunity, etc. were different in choESC and euESCa. A clustering analysis and a principal component analysis performed based on the methylation levels segregated choESC from euESC, while euESCa and euESCb were identical. A transcriptome analysis was then conducted and the results were compared with those of the DNA methylation analysis. Interestingly, the hierarchical clustering and principal component analyses showed that choESC were segregated from euESCa and euESCb in the DNA methylation analysis, while no segregation was recognized in the transcriptome analysis. The mRNA expression levels of the epigenetic modification enzymes, including DNA methyltransferases, obtained from the specimens were not significantly different between the groups. Some of the differentially methylated and/or expressed genes (NR5A1, STAR, STRA6 and HSD17B2, which are related with steroidogenesis, were validated by independent methods in a larger number of samples. Our findings indicate that different DNA methylation profiles exist in ectopic ESC, highlighting the benefits of genome wide DNA methylation analyses over transcriptome analyses in clarifying the development and characterization of endometriosis.

  17. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    Science.gov (United States)

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  18. Characterization of major histocompatibility complex (MHC DRB exon 2 and DRA exon 3 fragments in a primary terrestrial rabies vector (Procyon lotor.

    Directory of Open Access Journals (Sweden)

    Sarrah Castillo

    Full Text Available The major histocompatibility complex (MHC presents a unique system to explore links between genetic diversity and pathogens, as diversity within MHC is maintained in part by pathogen driven selection. While the majority of wildlife MHC studies have investigated species that are of conservation concern, here we characterize MHC variation in a common and broadly distributed species, the North American raccoon (Procyon lotor. Raccoons host an array of broadly distributed wildlife diseases (e.g., canine distemper, parvovirus and raccoon rabies virus and present important human health risks as they persist in high densities and in close proximity to humans and livestock. To further explore how genetic variation influences the spread and maintenance of disease in raccoons we characterized a fragment of MHC class II DRA exon 3 (250 bp and DRB exon 2 (228 bp. MHC DRA was found to be functionally monomorphic in the 32 individuals screened; whereas DRB exon 2 revealed 66 unique alleles among the 246 individuals screened. Between two and four alleles were observed in each individual suggesting we were amplifying a duplicated DRB locus. Nucleotide differences between DRB alleles ranged from 1 to 36 bp (0.4-15.8% divergence and translated into 1 to 21 (1.3-27.6% divergence amino acid differences. We detected a significant excess of nonsynonymous substitutions at the peptide binding region (P = 0.005, indicating that DRB exon 2 in raccoons has been influenced by positive selection. These data will form the basis of continued analyses into the spatial and temporal relationship of the raccoon rabies virus and the immunogenetic response in its primary host.

  19. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study

    DEFF Research Database (Denmark)

    de Vries, Paul S; Sabater-Lleal, Maria; Chasman, Daniel I

    2017-01-01

    An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In...

  20. Genome-wide comparison of medieval and modern Mycobacterium leprae

    DEFF Research Database (Denmark)

    Schuenemann, Verena J; Singh, Pushpendra; Mendum, Thomas A

    2013-01-01

    Leprosy was endemic in Europe until the Middle Ages. Using DNA array capture, we have obtained genome sequences of Mycobacterium leprae from skeletons of five medieval leprosy cases from the United Kingdom, Sweden, and Denmark. In one case, the DNA was so well preserved that full de novo assembly...... origin for leprosy in the Americas, and the presence of an M. leprae genotype in medieval Europe now commonly associated with the Middle East. The exceptional preservation of M. leprae biomarkers, both DNA and mycolic acids, in ancient skeletons has major implications for palaeomicrobiology and human...

  1. Integrative genome-wide expression profiling identifies three distinct molecular subgroups of renal cell carcinoma with different patient outcome

    Directory of Open Access Journals (Sweden)

    Beleut Manfred

    2012-07-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is characterized by a number of diverse molecular aberrations that differ among individuals. Recent approaches to molecularly classify RCC were based on clinical, pathological as well as on single molecular parameters. As a consequence, gene expression patterns reflecting the sum of genetic aberrations in individual tumors may not have been recognized. In an attempt to uncover such molecular features in RCC, we used a novel, unbiased and integrative approach. Methods We integrated gene expression data from 97 primary RCC of different pathologic parameters, 15 RCC metastases as well as 34 cancer cell lines for two-way nonsupervised hierarchical clustering using gene groups suggested by the PANTHER Classification System. We depicted the genomic landscape of the resulted tumor groups by means of Single Nuclear Polymorphism (SNP technology. Finally, the achieved results were immunohistochemically analyzed using a tissue microarray (TMA composed of 254 RCC. Results We found robust, genome wide expression signatures, which split RCC into three distinct molecular subgroups. These groups remained stable even if randomly selected gene sets were clustered. Notably, the pattern obtained from RCC cell lines was clearly distinguishable from that of primary tumors. SNP array analysis demonstrated differing frequencies of chromosomal copy number alterations among RCC subgroups. TMA analysis with group-specific markers showed a prognostic significance of the different groups. Conclusion We propose the existence of characteristic and histologically independent genome-wide expression outputs in RCC with potential biological and clinical relevance.

  2. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics1

    Science.gov (United States)

    Weitemier, Kevin; Straub, Shannon C. K.; Cronn, Richard C.; Fishbein, Mark; Schmickl, Roswitha; McDonnell, Angela; Liston, Aaron

    2014-01-01

    • Premise of the study: Hyb-Seq, the combination of target enrichment and genome skimming, allows simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. • Methods and Results: Genome and transcriptome assemblies for milkweed (Asclepias syriaca) were used to design enrichment probes for 3385 exons from 768 genes (>1.6 Mbp) followed by Illumina sequencing of enriched libraries. Hyb-Seq of 12 individuals (10 Asclepias species and two related genera) resulted in at least partial assembly of 92.6% of exons and 99.7% of genes and an average assembly length >2 Mbp. Importantly, complete plastomes and nuclear ribosomal DNA cistrons were assembled using off-target reads. Phylogenomic analyses demonstrated signal conflict between genomes. • Conclusions: The Hyb-Seq approach enables targeted sequencing of thousands of low-copy nuclear exons and flanking regions, as well as genome skimming of high-copy repeats and organellar genomes, to efficiently produce genome-scale data sets for phylogenomics. PMID:25225629

  3. Genome-Wide Association Study for Identifying Loci that Affect Fillet Yield, Carcass, and Body Weight Traits in Rainbow Trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Gonzalez-Pena, Dianelys; Gao, Guangtu; Baranski, Matthew; Moen, Thomas; Cleveland, Beth M; Kenney, P Brett; Vallejo, Roger L; Palti, Yniv; Leeds, Timothy D

    2016-01-01

    Fillet yield (FY, %) is an economically-important trait in rainbow trout aquaculture that affects production efficiency. Despite that, FY has received little attention in breeding programs because it is difficult to measure on a large number of fish and cannot be directly measured on breeding candidates. The recent development of a high-density SNP array for rainbow trout has provided the needed tool for studying the underlying genetic architecture of this trait. A genome-wide association study (GWAS) was conducted for FY, body weight at 10 (BW10) and 13 (BW13) months post-hatching, head-off carcass weight (CAR), and fillet weight (FW) in a pedigreed rainbow trout population selectively bred for improved growth performance. The GWAS analysis was performed using the weighted single-step GBLUP method (wssGWAS). Phenotypic records of 1447 fish (1.5 kg at harvest) from 299 full-sib families in three successive generations, of which 875 fish from 196 full-sib families were genotyped, were used in the GWAS analysis. A total of 38,107 polymorphic SNPs were analyzed in a univariate model with hatch year and harvest group as fixed effects, harvest weight as a continuous covariate, and animal and common environment as random effects. A new linkage map was developed to create windows of 20 adjacent SNPs for use in the GWAS. The two windows with largest effect for FY and FW were located on chromosome Omy9 and explained only 1.0-1.5% of genetic variance, thus suggesting a polygenic architecture affected by multiple loci with small effects in this population. One window on Omy5 explained 1.4 and 1.0% of the genetic variance for BW10 and BW13, respectively. Three windows located on Omy27, Omy17, and Omy9 (same window detected for FY) explained 1.7, 1.7, and 1.0%, respectively, of genetic variance for CAR. Among the detected 100 SNPs, 55% were located directly in genes (intron and exons). Nucleotide sequences of intragenic SNPs were blasted to the Mus musculus genome to create a

  4. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    Science.gov (United States)

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  5. Identification of Promising Mutants Associated with Egg Production Traits Revealed by Genome-Wide Association Study.

    Directory of Open Access Journals (Sweden)

    Jingwei Yuan

    Full Text Available Egg number (EN, egg laying rate (LR and age at first egg (AFE are important production traits related to egg production in poultry industry. To better understand the knowledge of genetic architecture of dynamic EN during the whole laying cycle and provide the precise positions of associated variants for EN, LR and AFE, laying records from 21 to 72 weeks of age were collected individually for 1,534 F2 hens produced by reciprocal crosses between White Leghorn and Dongxiang Blue-shelled chicken, and their genotypes were assayed by chicken 600 K Affymetrix high density genotyping arrays. Subsequently, pedigree and SNP-based genetic parameters were estimated and a genome-wide association study (GWAS was conducted on EN, LR and AFE. The heritability estimates were similar between pedigree and SNP-based estimates varying from 0.17 to 0.36. In the GWA analysis, we identified nine genome-wide significant loci associated with EN of the laying periods from 21 to 26 weeks, 27 to 36 weeks and 37 to 72 weeks. Analysis of GTF2A1 and CLSPN suggested that they influenced the function of ovary and uterus, and may be considered as relevant candidates. The identified SNP rs314448799 for accumulative EN from 21 to 40 weeks on chromosome 5 created phenotypic differences of 6.86 eggs between two homozygous genotypes, which could be potentially applied to the molecular breeding for EN selection. Moreover, our finding showed that LR was a moderate polygenic trait. The suggestive significant region on chromosome 16 for AFE suggested the relationship between sex maturity and immune in the current population. The present study comprehensively evaluates the role of genetic variants in the development of egg laying. The findings will be helpful to investigation of causative genes function and future marker-assisted selection and genomic selection in chickens.

  6. Genome-wide analysis of disease progression in age-related macular degeneration.

    Science.gov (United States)

    Yan, Qi; Ding, Ying; Liu, Yi; Sun, Tao; Fritsche, Lars G; Clemons, Traci; Ratnapriya, Rinki; Klein, Michael L; Cook, Richard J; Liu, Yu; Fan, Ruzong; Wei, Lai; Abecasis, Gonçalo R; Swaroop, Anand; Chew, Emily Y; Weeks, Daniel E; Chen, Wei

    2018-03-01

    Family- and population-based genetic studies have successfully identified multiple disease-susceptibility loci for Age-related macular degeneration (AMD), one of the first batch and most successful examples of genome-wide association study. However, most genetic studies to date have focused on case-control studies of late AMD (choroidal neovascularization or geographic atrophy). The genetic influences on disease progression are largely unexplored. We assembled unique resources to perform a genome-wide bivariate time-to-event analysis to test for association of time-to-late-AMD with ∼9 million variants on 2721 Caucasians from a large multi-center randomized clinical trial, the Age-Related Eye Disease Study. To our knowledge, this is the first genome-wide association study of disease progression (bivariate survival outcome) in AMD genetic studies, thus providing novel insights to AMD genetics. We used a robust Cox proportional hazards model to appropriately account for between-eye correlation when analyzing the progression time in the two eyes of each participant. We identified four previously reported susceptibility loci showing genome-wide significant association with AMD progression: ARMS2-HTRA1 (P = 8.1 × 10-43), CFH (P = 3.5 × 10-37), C2-CFB-SKIV2L (P = 8.1 × 10-10) and C3 (P = 1.2 × 10-9). Furthermore, we detected association of rs58978565 near TNR (P = 2.3 × 10-8), rs28368872 near ATF7IP2 (P = 2.9 × 10-8) and rs142450006 near MMP9 (P = 0.0006) with progression to choroidal neovascularization but not geographic atrophy. Secondary analysis limited to 34 reported risk variants revealed that LIPC and CTRB2-CTRB1 were also associated with AMD progression (P < 0.0015). Our genome-wide analysis thus expands the genetics in both development and progression of AMD and should assist in early identification of high risk individuals.

  7. Genome Microscale Heterogeneity among Wild Potatoes Revealed by Diversity Arrays Technology Marker Sequences

    Directory of Open Access Journals (Sweden)

    Alessandra Traini

    2013-01-01

    Full Text Available Tuber-bearing potato species possess several genes that can be exploited to improve the genetic background of the cultivated potato Solanum tuberosum. Among them, S. bulbocastanum and S. commersonii are well known for their strong resistance to environmental stresses. However, scant information is available for these species in terms of genome organization, gene function, and regulatory networks. Consequently, genomic tools to assist breeding are meager, and efficient exploitation of these species has been limited so far. In this paper, we employed the reference genome sequences from cultivated potato and tomato and a collection of sequences of 1,423 potato Diversity Arrays Technology (DArT markers that show polymorphic representation across the genomes of S. bulbocastanum and/or S. commersonii genotypes. Our results highlighted microscale genome sequence heterogeneity that may play a significant role in functional and structural divergence between related species. Our analytical approach provides knowledge of genome structural and sequence variability that could not be detected by transcriptome and proteome approaches.

  8. Genome Microscale Heterogeneity among Wild Potatoes Revealed by Diversity Arrays Technology Marker Sequences.

    Science.gov (United States)

    Traini, Alessandra; Iorizzo, Massimo; Mann, Harpartap; Bradeen, James M; Carputo, Domenico; Frusciante, Luigi; Chiusano, Maria Luisa

    2013-01-01

    Tuber-bearing potato species possess several genes that can be exploited to improve the genetic background of the cultivated potato Solanum tuberosum. Among them, S. bulbocastanum and S. commersonii are well known for their strong resistance to environmental stresses. However, scant information is available for these species in terms of genome organization, gene function, and regulatory networks. Consequently, genomic tools to assist breeding are meager, and efficient exploitation of these species has been limited so far. In this paper, we employed the reference genome sequences from cultivated potato and tomato and a collection of sequences of 1,423 potato Diversity Arrays Technology (DArT) markers that show polymorphic representation across the genomes of S. bulbocastanum and/or S. commersonii genotypes. Our results highlighted microscale genome sequence heterogeneity that may play a significant role in functional and structural divergence between related species. Our analytical approach provides knowledge of genome structural and sequence variability that could not be detected by transcriptome and proteome approaches.

  9. Genome-Wide Association Study of Short-Acting beta(2)-Agonists A Novel Genome-Wide Significant Locus on Chromosome 2 near ASB3

    NARCIS (Netherlands)

    Israel, Elliot; Lasky-Su, Jessica; Markezich, Amy; Damask, Amy; Szefler, Stanley J.; Schuemann, Brooke; Klanderman, Barbara; Sylvia, Jody; Kazani, Shamsah; Wu, Rongling; Martinez, Fernando; Boushey, Homer A.; Chinchilli, Vernon M.; Mauger, Dave; Weiss, Scott T.; Tantisira, Kelan G.; de Zeeuw, Dick; Navis, Gerjan J.

    2015-01-01

    Rationale: [beta(2)-Agonists are the most common form of treatment of asthma, but there is significant variability in response to these medications. A significant proportion of this responsiveness may be heritable. Objectives: To investigate whether a genome-wide association study (GWAS) could

  10. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta.

    Science.gov (United States)

    Poulter, James A; Murillo, Gina; Brookes, Steven J; Smith, Claire E L; Parry, David A; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-10-15

    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid. © The Author 2014. Published by Oxford University Press.

  11. Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome.

    Directory of Open Access Journals (Sweden)

    Maribel Forero-Castro

    Full Text Available Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL is still a challenge.To characterize the presence of additional DNA copy number alterations (CNAs in children and adults with ALL by whole-genome oligonucleotide array (aCGH analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults. The NimbleGen CGH 12x135K array (Roche was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q. CNAs were associated with age, phenotype, genetic subtype and overall survival (OS. In the whole cohort of children, the losses on 14q32.33 (p = 0.019 and 15q13.2 (p = 0.04 were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001 and Xp21.1 (p = 0.029, and the loss of 17p (p = 0.014 were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL.

  12. High resolution genome-wide analysis of chromosomal alterations in Burkitt's lymphoma.

    Directory of Open Access Journals (Sweden)

    Saloua Toujani

    Full Text Available Additional chromosomal abnormalities are currently detected in Burkitt's lymphoma. They play major roles in the progression of BL and in prognosis. The genes involved remain elusive. A whole-genome oligonucleotide array CGH analysis correlated with karyotype and FISH was performed in a set of 27 Burkitt's lymphoma-derived cell lines and primary tumors. More than half of the 145 CNAs2 Mb, gains were found in 1q (12/27, 13q (7/27, 7q (6/27, 8q(4/27, 2p (3/27, 11q (2/27 and 15q (2/27. Losses were found in 3p (5/27, 4p (4/27, 4q (4/27, 9p (4/27, 13q (4/27, 6p (3/27, 17p (3/27, 6q (2/27,11pterp13 (2/27 and 14q12q21.3 (2/27. Twenty one minimal critical regions (MCR, (range 0.04-71.36 Mb, were delineated in tumors and cell lines. Three MCRs were localized to 1q. The proximal one was mapped to 1q21.1q25.2 with a 6.3 Mb amplicon (1q21.1q21.3 harboring BCA2 and PIAS3. In the other 2 MCRs, 1q32.1 and 1q44, MDM4 and AKT3 appeared as possible drivers of these gains respectively. The 13q31.3q32.1 MCR contained an amplicon and ABCC4 might be the driver of this amplicon. The 40 Kb 2p16.1 MCR was the smallest gained MCR and specifically encompassed the REL oncogene which is already implicated in B cell lymphomas. The most frequently deleted MCR was 3p14.1 that removed the fifth exon of FHIT. Further investigations which combined gene expression and functional studies are essential to understand the lymphomagenesis mechanism and for the development of more effective, targeted therapeutic strategies.

  13. Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility

    NARCIS (Netherlands)

    Sud, A. (Amit); Thomsen, H. (Hauke); Law, P.J. (Philip J.); A. Försti (Asta); Filho, M.I.D.S. (Miguel Inacio Da Silva); Holroyd, A. (Amy); P. Broderick (Peter); Orlando, G. (Giulia); Lenive, O. (Oleg); Wright, L. (Lauren); R. Cooke (Rosie); D.F. Easton (Douglas); P.D.P. Pharoah (Paul); A.M. Dunning (Alison); J. Peto (Julian); F. Canzian (Federico); Eeles, R. (Rosalind); Z. Kote-Jarai; K.R. Muir (K.); Pashayan, N. (Nora); B.E. Henderson (Brian); C.A. Haiman (Christopher); S. Benlloch (Sara); F.R. Schumacher (Fredrick R); Olama, A.A.A. (Ali Amin Al); S.I. Berndt (Sonja); G. Conti (Giario); F. Wiklund (Fredrik); S.J. Chanock (Stephen); Stevens, V.L. (Victoria L.); C.M. Tangen (Catherine M.); Batra, J. (Jyotsna); Clements, J. (Judith); H. Grönberg (Henrik); Schleutker, J. (Johanna); D. Albanes (Demetrius); Weinstein, S. (Stephanie); K. Wolk (Kerstin); West, C. (Catharine); Mucci, L. (Lorelei); Cancel-Tassin, G. (Géraldine); Koutros, S. (Stella); Sorensen, K.D. (Karina Dalsgaard); L. Maehle; D. Neal (David); S.P.L. Travis (Simon); Hamilton, R.J. (Robert J.); S.A. Ingles (Sue); B.S. Rosenstein (Barry S.); Lu, Y.-J. (Yong-Jie); Giles, G.G. (Graham G.); A. Kibel (Adam); Vega, A. (Ana); M. Kogevinas (Manolis); Penney, K.L. (Kathryn L.); Park, J.Y. (Jong Y.); Stanford, J.L. (Janet L.); C. Cybulski (Cezary); B.G. Nordestgaard (Børge); Brenner, H. (Hermann); Maier, C. (Christiane); Kim, J. (Jeri); E.M. John (Esther); P.J. Teixeira; Neuhausen, S.L. (Susan L.); De Ruyck, K. (Kim); Razack, A. (Azad); Newcomb, L.F. (Lisa F.); Lessel, D. (Davor); Kaneva, R. (Radka); N. Usmani (Nawaid); F. Claessens; Townsend, P.A. (Paul A.); Dominguez, M.G. (Manuela Gago); Roobol, M.J. (Monique J.); F. Menegaux (Florence); P. Hoffmann (Per); M.M. Nöthen (Markus); K.-H. JöCkel (Karl-Heinz); Strandmann, E.P.V. (Elke Pogge Von); Lightfoot, T. (Tracy); Kane, E. (Eleanor); Roman, E. (Eve); Lake, A. (Annette); Montgomery, D. (Dorothy); Jarrett, R.F. (Ruth F.); A.J. Swerdlow (Anthony ); A. Engert (Andreas); N. Orr (Nick); K. Hemminki (Kari); Houlston, R.S. (Richard S.)

    2017-01-01

    textabstractSeveral susceptibility loci for classical Hodgkin lymphoma have been reported. However, much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies, a new genome-wide association study, and replication totalling 5,314 cases and

  14. Genome-wide identification of breed-informative single-nucleotide ...

    African Journals Online (AJOL)

    This is because the SNPs on BovineSNP50 and GGP-80K assays were ascertained as being common in European taurine breeds. Lower MAF and SNP informativeness observed in this study limits the application of these assays in breed assignment, and could have other implications for genome-wide studies in South ...

  15. Targeted Exon Skipping to Address “Leaky” Mutations in the Dystrophin Gene

    Directory of Open Access Journals (Sweden)

    Sue Fletcher

    2012-01-01

    Full Text Available Protein-truncating mutations in the dystrophin gene lead to the progressive muscle wasting disorder Duchenne muscular dystrophy, whereas in-frame deletions typically manifest as the milder allelic condition, Becker muscular dystrophy. Antisense oligomer-induced exon skipping can modify dystrophin gene expression so that a disease-associated dystrophin pre-mRNA is processed into a Becker muscular dystrophy-like mature transcript. Despite genomic deletions that may encompass hundreds of kilobases of the gene, some dystrophin mutations appear “leaky”, and low levels of high molecular weight, and presumably semi-functional, dystrophin are produced. A likely causative mechanism is endogenous exon skipping, and Duchenne individuals with higher baseline levels of dystrophin may respond more efficiently to the administration of splice-switching antisense oligomers. We optimized excision of exons 8 and 9 in normal human myoblasts, and evaluated several oligomers in cells from eight Duchenne muscular dystrophy patients with deletions in a known “leaky” region of the dystrophin gene. Inter-patient variation in response to antisense oligomer induced skipping in vitro appeared minimal. We describe oligomers targeting exon 8, that unequivocally increase dystrophin above baseline in vitro, and propose that patients with leaky mutations are ideally suited for participation in antisense oligomer mediated splice-switching clinical studies.

  16. Duchenne muscular dystrophy in a female with compound heterozygous contiguous exon deletions.

    Science.gov (United States)

    Takeshita, Eri; Minami, Narihiro; Minami, Kumiko; Suzuki, Mikiya; Awashima, Takeya; Ishiyama, Akihiko; Komaki, Hirofumi; Nishino, Ichizo; Sasaki, Masayuki

    2017-06-01

    Females with Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) mutations rarely exhibit clinical symptoms from childhood, although potential mechanisms for symptoms associated with DMD and BMD in females have been reported. We report the case of a female DMD patient with a clinical course indistinguishable from that of a male DMD patient, and who possessed compound heterozygous contiguous exon deletions in the dystrophin gene. She exhibited Gowers' sign, calf muscle hypertrophy, and a high serum creatine kinase level at 2 years. Her muscle pathology showed most of the fibers were negative for dystrophin immunohistochemical staining. She lost ambulation at 11 years. Multiplex ligation-dependent probe amplification analysis of this gene detected one copy of exons 48-53; she was found to be a BMD carrier with an in-frame deletion. Messenger RNA from her muscle demonstrated out-of-frame deletions of exons 48-50 and 51-53 occurring on separate alleles. Genomic DNA from her lymphocytes demonstrated the accurate deletion region on each allele. To our knowledge, this is the first report on a female patient possessing compound heterozygous contiguous exon deletions in the dystrophin gene, leading to DMD. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Genome-wide detection of selection and other evolutionary forces

    DEFF Research Database (Denmark)

    Xu, Zhuofei; Zhou, Rui

    2015-01-01

    As is well known, pathogenic microbes evolve rapidly to escape from the host immune system and antibiotics. Genetic variations among microbial populations occur frequently during the long-term pathogen–host evolutionary arms race, and individual mutation beneficial for the fitness can be fixed...... to scan genome-wide alignments for evidence of positive Darwinian selection, recombination, and other evolutionary forces operating on the coding regions. In this chapter, we describe an integrative analysis pipeline and its application to tracking featured evolutionary trajectories on the genome...

  18. Wide field and diffraction limited array camera for SIRTF

    International Nuclear Information System (INIS)

    Fazio, G.G.; Koch, D.G.; Melnick, G.J.

    1986-01-01

    The Infrared Array Camera for the Space Infrared Telescope Facility (SIRTF/IRAC) is capable of two-dimensional photometry in either a wide field or diffraction-limited mode over the wavelength interval from 2 to 30 microns. Three different two-dimensional direct readout (DRO) array detectors are being considered: Band 1-InSb or Si:In (2-5 microns) 128 x 128 pixels, Band 2-Si:Ga (5-18 microns) 64 x 64 pixels, and Band 3-Si:Sb (18-30 microns) 64 x 64 pixels. The hybrid DRO readout architecture has the advantages of low read noise, random pixel access with individual readout rates, and nondestructive readout. The scientific goals of IRAC are discussed, which are the basis for several important requirements and capabilities of the array camera: (1) diffraction-limited resolution from 2-30 microns, (2) use of the maximum unvignetted field of view of SIRTF, (3) simultaneous observations within the three infrared spectral bands, and (4) the capability for broad and narrow bandwidth spectral resolution. A strategy has been developed to minimize the total electronic and environmental noise sources to satisfy the scientific requirements. 7 references

  19. Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility

    DEFF Research Database (Denmark)

    Sud, Amit; Thomsen, Hauke; Law, Philip J.

    2017-01-01

    Several susceptibility loci for classical Hodgkin lymphoma have been reported. However, much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies, a new genome-wide association study, and replication totalling 5,314 cases and 16,749 co...

  20. Genome-wide population-based association study of extremely overweight young adults--the GOYA study

    DEFF Research Database (Denmark)

    Paternoster, Lavinia; Evans, David M; Nohr, Ellen Aagaard

    2011-01-01

    Thirty-two common variants associated with body mass index (BMI) have been identified in genome-wide association studies, explaining ∼1.45% of BMI variation in general population cohorts. We performed a genome-wide association study in a sample of young adults enriched for extremely overweight...

  1. HIV Genome-Wide Protein Associations: a Review of 30 Years of Research

    Science.gov (United States)

    2016-01-01

    SUMMARY The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle. PMID:27357278

  2. Exon organization of the mouse entactin gene corresponds to the structural domains of the polypeptide and has regional homology to the low-density lipoprotein receptor gene

    DEFF Research Database (Denmark)

    Durkin, M E; Wewer, U M; Chung, A E

    1995-01-01

    of the mouse entactin gene closely corresponds to the organization of the polypeptide into distinct structural and functional domains. The two amino-terminal globular domains are encoded by three exons each. Single exons encode the two protease-sensitive, O-glycosylated linking regions. The six EGF......Entactin is a widespread basement membrane protein of 150 kDa that binds to type IV collagen and laminin. The complete exon-intron structure of the mouse entactin gene has been determined from lambda genomic DNA clones. The gene spans at least 65 kb and contains 20 exons. The exon organization...

  3. Assessing Predictive Properties of Genome-Wide Selection in Soybeans

    Directory of Open Access Journals (Sweden)

    Alencar Xavier

    2016-08-01

    Full Text Available Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr. We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set.

  4. Assessing Predictive Properties of Genome-Wide Selection in Soybeans.

    Science.gov (United States)

    Xavier, Alencar; Muir, William M; Rainey, Katy Martin

    2016-08-09

    Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set. Copyright © 2016 Xavie et al.

  5. Genome-wide association study of prostate cancer-specific survival

    DEFF Research Database (Denmark)

    Szulkin, Robert; Karlsson, Robert; Whitington, Thomas

    2015-01-01

    BACKGROUND: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical. METHODS: We performed a genome-wide survival analysis of cause-specific death in 24,...

  6. A wideband (3 to 5 GHz) wide-scan connected array of dipoles with low cross polarization

    NARCIS (Netherlands)

    Cavallo, D.; Neto, A.; Gerini, G.

    2012-01-01

    A wideband, wide-scan prototype phased array of connected dipoles has been manufactured and tested from 3 to 5 GHz. The array comprises 7 × 7 elements, each fed by a loop-shaped transformer to avoid common-mode resonances. Such resonances typically affect this type of arrays, with consequent

  7. Hematopoietic transcriptional mechanisms: from locus-specific to genome-wide vantage points.

    Science.gov (United States)

    DeVilbiss, Andrew W; Sanalkumar, Rajendran; Johnson, Kirby D; Keles, Sunduz; Bresnick, Emery H

    2014-08-01

    Hematopoiesis is an exquisitely regulated process in which stem cells in the developing embryo and the adult generate progenitor cells that give rise to all blood lineages. Master regulatory transcription factors control hematopoiesis by integrating signals from the microenvironment and dynamically establishing and maintaining genetic networks. One of the most rudimentary aspects of cell type-specific transcription factor function, how they occupy a highly restricted cohort of cis-elements in chromatin, remains poorly understood. Transformative technologic advances involving the coupling of next-generation DNA sequencing technology with the chromatin immunoprecipitation assay (ChIP-seq) have enabled genome-wide mapping of factor occupancy patterns. However, formidable problems remain; notably, ChIP-seq analysis yields hundreds to thousands of chromatin sites occupied by a given transcription factor, and only a fraction of the sites appear to be endowed with critical, non-redundant function. It has become en vogue to map transcription factor occupancy patterns genome-wide, while using powerful statistical tools to establish correlations to inform biology and mechanisms. With the advent of revolutionary genome editing technologies, one can now reach beyond correlations to conduct definitive hypothesis testing. This review focuses on key discoveries that have emerged during the path from single loci to genome-wide analyses, specifically in the context of hematopoietic transcriptional mechanisms. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  8. DNA Breaks and End Resection Measured Genome-wide by End Sequencing.

    Science.gov (United States)

    Canela, Andres; Sridharan, Sriram; Sciascia, Nicholas; Tubbs, Anthony; Meltzer, Paul; Sleckman, Barry P; Nussenzweig, André

    2016-09-01

    DNA double-strand breaks (DSBs) arise during physiological transcription, DNA replication, and antigen receptor diversification. Mistargeting or misprocessing of DSBs can result in pathological structural variation and mutation. Here we describe a sensitive method (END-seq) to monitor DNA end resection and DSBs genome-wide at base-pair resolution in vivo. We utilized END-seq to determine the frequency and spectrum of restriction-enzyme-, zinc-finger-nuclease-, and RAG-induced DSBs. Beyond sequence preference, chromatin features dictate the repertoire of these genome-modifying enzymes. END-seq can detect at least one DSB per cell among 10,000 cells not harboring DSBs, and we estimate that up to one out of 60 cells contains off-target RAG cleavage. In addition to site-specific cleavage, we detect DSBs distributed over extended regions during immunoglobulin class-switch recombination. Thus, END-seq provides a snapshot of DNA ends genome-wide, which can be utilized for understanding genome-editing specificities and the influence of chromatin on DSB pathway choice. Published by Elsevier Inc.

  9. Origins and Impacts of New Mammalian Exons

    Directory of Open Access Journals (Sweden)

    Jason J. Merkin

    2015-03-01

    Full Text Available Mammalian genes are composed of exons, but the evolutionary origins and functions of new internal exons are poorly understood. Here, we analyzed patterns of exon gain using deep cDNA sequencing data from five mammals and one bird, identifying thousands of species- and lineage-specific exons. Most new exons derived from unique rather than repetitive intronic sequence. Unlike exons conserved across mammals, species-specific internal exons were mostly located in 5′ UTRs and alternatively spliced. They were associated with upstream intronic deletions, increased nucleosome occupancy, and RNA polymerase II pausing. Genes containing new internal exons had increased gene expression, but only in tissues in which the exon was included. Increased expression correlated with the level of exon inclusion, promoter proximity, and signatures of cotranscriptional splicing. Altogether, these findings suggest that increased splicing at the 5′ ends of genes enhances expression and that changes in 5′ end splicing alter gene expression between tissues and between species.

  10. Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa.

    Science.gov (United States)

    Zeng, Huawei; Yan, Lin; Cheng, Wen-Hsing; Uthus, Eric O

    2011-08-01

    The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. This study was to investigate whether selenium (Se) affects the methylation of globe genomic DNA and the exon-specific p53 gene. Three groups of rats (n = 6-7/group) were fed the AIN-93G basal diet supplemented with 0 [Se deficient (D)], 0.15 [Se adequate (A)], or 4 mg [Se supranutritional (S)] (Se as l-selenomethionine)/kg diet for 104 d, respectively. Rats fed the A or S diet had greater plasma and liver glutathione peroxidase activity, liver thioredoxin reductase activity, and plasma homocysteine concentration than those fed the D diet. However, compared with the A diet, rats fed the S diet did not further increase these Se-dependent enzyme activities or homocysteine concentration. In contrast, Se concentrations in kidney, liver, gastrocnemius muscle, and plasma were increased in a Se-dose-dependent manner. Interestingly, rats fed the S diet had significantly less global liver genomic DNA methylation than those fed the D diet. However, the S diet significantly increased the methylation of the p53 gene (exons 5-8) but not the β-actin gene (exons 2-3) DNA in liver and colon mucosa compared with those fed the D diet. Taken together, long-term Se consumption not only affects selenoprotein enzyme activities, homocysteine, tissue Se concentrations, and global genomic DNA methylation but also increases exon-specific DNA methylation of the p53 gene in a Se-dose-dependent manner in rat liver and colon mucosa.

  11. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.

    Science.gov (United States)

    Li, Yifeng; Shi, Wenqiang; Wasserman, Wyeth W

    2018-05-31

    In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.

  12. Genome-wide detection of copy number variations among diverse horse breeds by array CGH.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Recent studies have found that copy number variations (CNVs are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs. The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO, genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.

  13. Analysis of Chinese women with primary ovarian insufficiency by high resolution array-comparative genomic hybridization.

    Science.gov (United States)

    Liao, Can; Fu, Fang; Yang, Xin; Sun, Yi-Min; Li, Dong-Zhi

    2011-06-01

    Primary ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 years. The etiology of primary ovarian insufficiency in human female patients is still unclear. The purpose of this study is to investigate the potential genetic causes in primary amenorrhea patients by high resolution array based comparative genomic hybridization (array-CGH) analysis. Following the standard karyotyping analysis, genomic DNA from whole blood of 15 primary amenorrhea patients and 15 normal control women was hybridized with Affymetrix cytogenetic 2.7M arrays following the standard protocol. Copy number variations identified by array-CGH were confirmed by real time polymerase chain reaction. All the 30 samples were negative by conventional karyotyping analysis. Microdeletions on chromosome 17q21.31-q21.32 with approximately 1.3 Mb were identified in four patients by high resolution array-CGH analysis. This included the female reproductive secretory pathway related factor N-ethylmaleimide-sensitive factor (NSF) gene. The results of the present study suggest that there may be critical regions regulating primary ovarian insufficiency in women with a 17q21.31-q21.32 microdeletion. This effect might be due to the loss of function of the NSF gene/genes within the deleted region or to effects on contiguous genes.

  14. Genome-wide association studies on HIV susceptibility, pathogenesis and pharmacogenomics

    Directory of Open Access Journals (Sweden)

    van Manen Daniëlle

    2012-08-01

    Full Text Available Abstract Susceptibility to HIV-1 and the clinical course after infection show a substantial heterogeneity between individuals. Part of this variability can be attributed to host genetic variation. Initial candidate gene studies have revealed interesting host factors that influence HIV infection, replication and pathogenesis. Recently, genome-wide association studies (GWAS were utilized for unbiased searches at a genome-wide level to discover novel genetic factors and pathways involved in HIV-1 infection. This review gives an overview of findings from the GWAS performed on HIV infection, within different cohorts, with variable patient and phenotype selection. Furthermore, novel techniques and strategies in research that might contribute to the complete understanding of virus-host interactions and its role on the pathogenesis of HIV infection are discussed.

  15. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary.

    Science.gov (United States)

    Brynildsrud, Ola; Bohlin, Jon; Scheffer, Lonneke; Eldholm, Vegard

    2016-11-25

    Genome-wide association studies (GWAS) have become indispensable in human medicine and genomics, but very few have been carried out on bacteria. Here we introduce Scoary, an ultra-fast, easy-to-use, and widely applicable software tool that scores the components of the pan-genome for associations to observed phenotypic traits while accounting for population stratification, with minimal assumptions about evolutionary processes. We call our approach pan-GWAS to distinguish it from traditional, single nucleotide polymorphism (SNP)-based GWAS. Scoary is implemented in Python and is available under an open source GPLv3 license at https://github.com/AdmiralenOla/Scoary .

  16. Genome-wide identification of significant aberrations in cancer genome.

    Science.gov (United States)

    Yuan, Xiguo; Yu, Guoqiang; Hou, Xuchu; Shih, Ie-Ming; Clarke, Robert; Zhang, Junying; Hoffman, Eric P; Wang, Roger R; Zhang, Zhen; Wang, Yue

    2012-07-27

    Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is

  17. Ubiquitous polygenicity of human complex traits: genome-wide analysis of 49 traits in Koreans.

    Directory of Open Access Journals (Sweden)

    Jian Yang

    Full Text Available Recent studies in population of European ancestry have shown that 30% ~ 50% of heritability for human complex traits such as height and body mass index, and common diseases such as schizophrenia and rheumatoid arthritis, can be captured by common SNPs and that genetic variation attributed to chromosomes are in proportion to their length. Using genome-wide estimation and partitioning approaches, we analysed 49 human quantitative traits, many of which are relevant to human diseases, in 7,170 unrelated Korean individuals genotyped on 326,262 SNPs. For 43 of the 49 traits, we estimated a nominally significant (P<0.05 proportion of variance explained by all SNPs on the Affymetrix 5.0 genotyping array ([Formula: see text]. On average across 47 of the 49 traits for which the estimate of h(G(2 is non-zero, common SNPs explain approximately one-third (range of 7.8% to 76.8% of narrow sense heritability. The estimate of h(G(2 is highly correlated with the proportion of SNPs with association P<0.031 (r(2 = 0.92. Longer genomic segments tend to explain more phenotypic variation, with a correlation of 0.78 between the estimate of variance explained by individual chromosomes and their physical length, and 1% of the genome explains approximately 1% of the genetic variance. Despite the fact that there are a few SNPs with large effects for some traits, these results suggest that polygenicity is ubiquitous for most human complex traits and that a substantial proportion of the "missing heritability" is captured by common SNPs.

  18. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells.

    Directory of Open Access Journals (Sweden)

    Anand K Ganesan

    2008-12-01

    Full Text Available Melanin protects the skin and eyes from the harmful effects of UV irradiation, protects neural cells from toxic insults, and is required for sound conduction in the inner ear. Aberrant regulation of melanogenesis underlies skin disorders (melasma and vitiligo, neurologic disorders (Parkinson's disease, auditory disorders (Waardenburg's syndrome, and opthalmologic disorders (age related macular degeneration. Much of the core synthetic machinery driving melanin production has been identified; however, the spectrum of gene products participating in melanogenesis in different physiological niches is poorly understood. Functional genomics based on RNA-mediated interference (RNAi provides the opportunity to derive unbiased comprehensive collections of pharmaceutically tractable single gene targets supporting melanin production. In this study, we have combined a high-throughput, cell-based, one-well/one-gene screening platform with a genome-wide arrayed synthetic library of chemically synthesized, small interfering RNAs to identify novel biological pathways that govern melanin biogenesis in human melanocytes. Ninety-two novel genes that support pigment production were identified with a low false discovery rate. Secondary validation and preliminary mechanistic studies identified a large panel of targets that converge on tyrosinase expression and stability. Small molecule inhibition of a family of gene products in this class was sufficient to impair chronic tyrosinase expression in pigmented melanoma cells and UV-induced tyrosinase expression in primary melanocytes. Isolation of molecular machinery known to support autophagosome biosynthesis from this screen, together with in vitro and in vivo validation, exposed a close functional relationship between melanogenesis and autophagy. In summary, these studies illustrate the power of RNAi-based functional genomics to identify novel genes, pathways, and pharmacologic agents that impact a biological phenotype

  19. Identification of chromosome aberrations in sporadic microsatellite stable and unstable colorectal cancers using array comparative genomic hybridization

    DEFF Research Database (Denmark)

    Jensen, Thomas Dyrsø; Li, Jian; Wang, Kai

    2011-01-01

    cancers constitute approximately 85% of sporadic cases, whereas microsatellite unstable (MSI) cases constitute the remaining 15%. In this study, we used array comparative genomic hybridization (aCGH) to identify genomic hotspot regions that harbor recurrent copy number changes. The study material...

  20. LEMONS - A Tool for the Identification of Splice Junctions in Transcriptomes of Organisms Lacking Reference Genomes.

    Directory of Open Access Journals (Sweden)

    Liron Levin

    Full Text Available RNA-seq is becoming a preferred tool for genomics studies of model and non-model organisms. However, DNA-based analysis of organisms lacking sequenced genomes cannot rely on RNA-seq data alone to isolate most genes of interest, as DNA codes both exons and introns. With this in mind, we designed a novel tool, LEMONS, that exploits the evolutionary conservation of both exon/intron boundary positions and splice junction recognition signals to produce high throughput splice-junction predictions in the absence of a reference genome. When tested on multiple annotated vertebrate mRNA data, LEMONS accurately identified 87% (average of the splice-junctions. LEMONS was then applied to our updated Mediterranean chameleon transcriptome, which lacks a reference genome, and predicted a total of 90,820 exon-exon junctions. We experimentally verified these splice-junction predictions by amplifying and sequencing twenty randomly selected genes from chameleon DNA templates. Exons and introns were detected in 19 of 20 of the positions predicted by LEMONS. To the best of our knowledge, LEMONS is currently the only experimentally verified tool that can accurately predict splice-junctions in organisms that lack a reference genome.

  1. Genome-wide analysis of the human Alu Yb-lineage

    Directory of Open Access Journals (Sweden)

    Carter Anthony B

    2004-03-01

    Full Text Available Abstract The Alu Yb-lineage is a 'young' primarily human-specific group of short interspersed element (SINE subfamilies that have integrated throughout the human genome. In this study, we have computationally screened the draft sequence of the human genome for Alu Yb-lineage subfamily members present on autosomal chromosomes. A total of 1,733 Yb Alu subfamily members have integrated into human autosomes. The average ages of Yb-lineage subfamilies, Yb7, Yb8 and Yb9, are estimated as 4.81, 2.39 and 2.32 million years, respectively. In order to determine the contribution of the Alu Yb-lineage to human genomic diversity, 1,202 loci were analysed using polymerase chain reaction (PCR-based assays, which amplify the genomic regions containing individual Yb-lineage subfamily members. Approximately 20 per cent of the Yb-lineage Alu elements are polymorphic for insertion presence/absence in the human genome. Fewer than 0.5 per cent of the Yb loci also demonstrate insertions at orthologous positions in non-human primate genomes. Genomic sequencing of these unusual loci demonstrates that each of the orthologous loci from non-human primate genomes contains older Y, Sg and Sx Alu family members that have been altered, through various mechanisms, into Yb8 sequences. These data suggest that Alu Yb-lineage subfamily members are largely restricted to the human genome. The high copy number, level of insertion polymorphism and estimated age indicate that members of the Alu Yb elements will be useful in a wide range of genetic analyses.

  2. Controversy and debate on clinical genomics sequencing-paper 2: clinical genome-wide sequencing: don't throw out the baby with the bathwater!

    Science.gov (United States)

    Adam, Shelin; Friedman, Jan M

    2017-12-01

    Genome-wide (exome or whole genome) sequencing with appropriate genetic counseling should be considered for any patient with a suspected Mendelian disease that has not been identified by conventional testing. Clinical genome-wide sequencing provides a powerful and effective means of identifying specific genetic causes of serious disease and improving clinical care. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Genome-wide linkage scan for colorectal cancer susceptibility genes supports linkage to chromosome 3q

    Directory of Open Access Journals (Sweden)

    Velculescu Victor E

    2008-04-01

    Full Text Available Abstract Background Colorectal cancer is one of the most common causes of cancer-related mortality. The disease is clinically and genetically heterogeneous though a strong hereditary component has been identified. However, only a small proportion of the inherited susceptibility can be ascribed to dominant syndromes, such as Hereditary Non-Polyposis Colorectal Cancer (HNPCC or Familial Adenomatous Polyposis (FAP. In an attempt to identify novel colorectal cancer predisposing genes, we have performed a genome-wide linkage analysis in 30 Swedish non-FAP/non-HNPCC families with a strong family history of colorectal cancer. Methods Statistical analysis was performed using multipoint parametric and nonparametric linkage. Results Parametric analysis under the assumption of locus homogeneity excluded any common susceptibility regions harbouring a predisposing gene for colorectal cancer. However, several loci on chromosomes 2q, 3q, 6q, and 7q with suggestive linkage were detected in the parametric analysis under the assumption of locus heterogeneity as well as in the nonparametric analysis. Among these loci, the locus on chromosome 3q21.1-q26.2 was the most consistent finding providing positive results in both parametric and nonparametric analyses Heterogeneity LOD score (HLOD = 1.90, alpha = 0.45, Non-Parametric LOD score (NPL = 2.1. Conclusion The strongest evidence of linkage was seen for the region on chromosome 3. Interestingly, the same region has recently been reported as the most significant finding in a genome-wide analysis performed with SNP arrays; thus our results independently support the finding on chromosome 3q.

  4. MET gene exon 14 deletion created using the CRISPR/Cas9 system enhances cellular growth and sensitivity to a MET inhibitor.

    Science.gov (United States)

    Togashi, Yosuke; Mizuuchi, Hiroshi; Tomida, Shuta; Terashima, Masato; Hayashi, Hidetoshi; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-12-01

    MET splice site mutations resulting in an exon 14 deletion have been reported to be present in about 3% of all lung adenocarcinomas. Patients with lung adenocarcinoma and a MET splice site mutation who have responded to MET inhibitors have been reported. The CRISPR/Cas9 system is a recently developed genome-engineering tool that can easily and rapidly cause small insertions or deletions. We created an in vitro model for MET exon 14 deletion using the CRISPR/Cas9 system and the HEK293 cell line. The phenotype, which included MET inhibitor sensitivity, was then investigated in vitro. Additionally, MET splice site mutations were analyzed in several cancers included in The Cancer Genome Atlas (TCGA) dataset. An HEK293 cell line with a MET exon 14 deletion was easily and rapidly created; this cell line had a higher MET protein expression level, enhanced MET phosphorylation, and prolonged MET activation. In addition, a direct comparison of phenotypes using this system demonstrated enhanced cellular growth, colony formation, and MET inhibitor sensitivity. In the TCGA dataset, lung adenocarcinomas had the highest incidence of MET exon 14 deletions, while other cancers rarely carried such mutations. Approximately 10% of the lung adenocarcinoma samples without any of driver gene alterations carried the MET exon 14 deletion. These findings suggested that this system may be useful for experiments requiring the creation of specific mutations, and the present experimental findings encourage the development of MET-targeted therapy against lung cancer carrying the MET exon 14 deletion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat.

    Science.gov (United States)

    Elbasyoni, Ibrahim S; Lorenz, A J; Guttieri, M; Frels, K; Baenziger, P S; Poland, J; Akhunov, E

    2018-05-01

    The utilization of DNA molecular markers in plant breeding to maximize selection response via marker-assisted selection (MAS) and genomic selection (GS) has revolutionized plant breeding. A key factor affecting GS applicability is the choice of molecular marker platform. Genotyping-by-sequencing scored SNPs (GBS-scored SNPs) provides a large number of markers, albeit with high rates of missing data. Array scored SNPs are of high quality, but the cost per sample is substantially higher. The objectives of this study were 1) compare GBS-scored SNPs, and array scored SNPs for genomic selection applications, and 2) compare estimates of genomic kinship and population structure calculated using the two marker platforms. SNPs were compared in a diversity panel consisting of 299 hard winter wheat (Triticum aestivum L.) accessions that were part of a multi-year, multi-environments association mapping study. The panel was phenotyped in Ithaca, Nebraska for heading date, plant height, days to physiological maturity and grain yield in 2012 and 2013. The panel was genotyped using GBS-scored SNPs, and array scored SNPs. Results indicate that GBS-scored SNPs is comparable to or better than Array-scored SNPs for genomic prediction application. Both platforms identified the same genetic patterns in the panel where 90% of the lines were classified to common genetic groups. Overall, we concluded that GBS-scored SNPs have the potential to be the marker platform of choice for genetic diversity and genomic selection in winter wheat. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Genome-wide association mapping in dogs enables identification of the homeobox gene, NKX2-8, as a genetic component of neural tube defects in humans.

    Directory of Open Access Journals (Sweden)

    Noa Safra

    Full Text Available Neural tube defects (NTDs is a general term for central nervous system malformations secondary to a failure of closure or development of the neural tube. The resulting pathologies may involve the brain, spinal cord and/or vertebral column, in addition to associated structures such as soft tissue or skin. The condition is reported among the more common birth defects in humans, leading to significant infant morbidity and mortality. The etiology remains poorly understood but genetic, nutritional, environmental factors, or a combination of these, are known to play a role in the development of NTDs. The variable conditions associated with NTDs occur naturally in dogs, and have been previously reported in the Weimaraner breed. Taking advantage of the strong linkage-disequilibrium within dog breeds we performed genome-wide association analysis and mapped a genomic region for spinal dysraphism, a presumed NTD, using 4 affected and 96 unaffected Weimaraners. The associated region on canine chromosome 8 (pgenome  =3.0 × 10(-5, after 100,000 permutations, encodes 18 genes, including NKX2-8, a homeobox gene which is expressed in the developing neural tube. Sequencing NKX2-8 in affected Weimaraners revealed a G to AA frameshift mutation within exon 2 of the gene, resulting in a premature stop codon that is predicted to produce a truncated protein. The exons of NKX2-8 were sequenced in human patients with spina bifida and rare variants (rs61755040 and rs10135525 were found to be significantly over-represented (p=0.036. This is the first documentation of a potential role for NKX2-8 in the etiology of NTDs, made possible by investigating the molecular basis of naturally occurring mutations in dogs.

  7. Genome-wide identification and comparative analysis of squamosa-promoter binding proteins (sbp) transcription factor family in gossypium raimondii and arabidopsis thaliana

    International Nuclear Information System (INIS)

    Ali, M.A.; Alia, K.B.; Atif, R.M.; Rasulj, I.; Nadeem, H.U.; Shahid, A.; Azeem, F

    2017-01-01

    SQUAMOSA-Promoter Binding Proteins (SBP) are class of transcription factors that play vital role in regulation of plant tissue growth and development. The genes encoding these proteins have not yet been identified in diploid cotton. Thus here, a comprehensive genome wide analysis of SBP genes/proteins was carried out to identify the genes encoding SBP proteins in Gossypium raimondii and Arabidopsis thaliana. We identified 17 SBP genes from Arabidopsis thaliana genome and 30 SBP genes from Gossypium raimondii. Chromosome localization studies revealed the uneven distribution of SBP encoding genes both in the genomes of A. thaliana and G. raimondii. In cotton, five SBP genes were located on chromosome no. 2, while no gene was found on chromosome 9. In A. thaliana, maximum seven SBP genes were identified on chromosome 9, while chromosome 4 did not have any SBP gene. Thus, the SBP gene family might have expanded as a result of segmental as well as tandem duplications in these species. The comparative phylogenetic analysis of Arabidopsis and cotton SBPs revealed the presence of eight groups. The gene structure analysis of SBP encoding genes revealed the presence of one to eleven inrons in both Arabidopsis and G. raimondii. The proteins sharing the same phyletic group mostly demonstrated the similar intron-exon occurrence pattern; and share the common conserved domains. The SBP DNA-binding domain shared 24 absolutely conserved residues in Arabidopsis. The present study can serve as a base for the functional characterization of SBP gene family in Gossypium raimondii. (author)

  8. Pooled genome wide association detects association upstream of FCRL3 with Graves' disease.

    Science.gov (United States)

    Khong, Jwu Jin; Burdon, Kathryn P; Lu, Yi; Laurie, Kate; Leonardos, Lefta; Baird, Paul N; Sahebjada, Srujana; Walsh, John P; Gajdatsy, Adam; Ebeling, Peter R; Hamblin, Peter Shane; Wong, Rosemary; Forehan, Simon P; Fourlanos, Spiros; Roberts, Anthony P; Doogue, Matthew; Selva, Dinesh; Montgomery, Grant W; Macgregor, Stuart; Craig, Jamie E

    2016-11-18

    Graves' disease is an autoimmune thyroid disease of complex inheritance. Multiple genetic susceptibility loci are thought to be involved in Graves' disease and it is therefore likely that these can be identified by genome wide association studies. This study aimed to determine if a genome wide association study, using a pooling methodology, could detect genomic loci associated with Graves' disease. Nineteen of the top ranking single nucleotide polymorphisms including HLA-DQA1 and C6orf10, were clustered within the Major Histo-compatibility Complex region on chromosome 6p21, with rs1613056 reaching genome wide significance (p = 5 × 10 -8 ). Technical validation of top ranking non-Major Histo-compatablity complex single nucleotide polymorphisms with individual genotyping in the discovery cohort revealed four single nucleotide polymorphisms with p ≤ 10 -4 . Rs17676303 on chromosome 1q23.1, located upstream of FCRL3, showed evidence of association with Graves' disease across the discovery, replication and combined cohorts. A second single nucleotide polymorphism rs9644119 downstream of DPYSL2 showed some evidence of association supported by finding in the replication cohort that warrants further study. Pooled genome wide association study identified a genetic variant upstream of FCRL3 as a susceptibility locus for Graves' disease in addition to those identified in the Major Histo-compatibility Complex. A second locus downstream of DPYSL2 is potentially a novel genetic variant in Graves' disease that requires further confirmation.

  9. Meta-analysis of genome-wide association studies for personality

    NARCIS (Netherlands)

    M.H.M. de Moor; P.T. Costa Jr; A. Terracciano; R.F. Krueger; E.J.C. de Geus (Eco); T. Toshiko; B.W.J.H. Penninx (Brenda); T. Esko; P.A.F. Madden (Pamela); J. Derringer; N. Amin (Najaf); G.A.H.M. Willemsen (Gonneke); J.J. Hottenga (Jouke Jan); M.A. Distel (Marijn); M. Uda (Manuela); S. Sanna (Serena); P. Spinhoven; C.A. Hartman; P.F. Sullivan (Patrick); A. Realo; J. Allik; A.C. Heath; M.L. Pergadia; P. Lin; R. Grucza; T. Nutile; M. Ciullo; D. Rujescu (Dan); I. Giegling (Ina); B. Konte; E. Widen (Elisabeth); D.L. Cousminer (Diana); J.G. Eriksson; A. Palotie; L. Peltonen; M. Luciano (Michelle); A. Tenesa (Albert); G. Davies; L.M. Lopez; N.K. Hansell (Narelle); S.E. Medland (Sarah Elizabeth); L. Ferrucci; D. Schlessinger; G.W. Montgomery; M.J. Wright (Margaret); Y.S. Aulchenko (Yurii); A.C.J.W. Janssens (Cécile); B.A. Oostra (Ben); A. Metspalu (Andres); I.J. Deary; K. Räikkönen (Katri); L.J. Bierut (Laura); N.G. Martin; C.M. van Duijn (Cornelia); D.I. Boomsma (Dorret); G.R. Abecasis (Gonçalo); A. Agrawal (Arpana)

    2012-01-01

    textabstractPersonality can be thought of as a set of characteristics that influence people's thoughts, feelings and behavior across a variety of settings. Variation in personality is predictive of many outcomes in life, including mental health. Here we report on a meta-analysis of genome-wide

  10. Genome-wide association study of pre-harvest sprouting resistance in Chinese wheat founder parents

    Directory of Open Access Journals (Sweden)

    Yu Lin

    2017-07-01

    Full Text Available Abstract Pre-harvest sprouting (PHS is a major abiotic factor affecting grain weight and quality, and is caused by an early break in seed dormancy. Association mapping (AM is used to detect correlations between phenotypes and genotypes based on linkage disequilibrium (LD in wheat breeding programs. We evaluated seed dormancy in 80 Chinese wheat founder parents in five environments and performed a genome-wide association study using 6,057 markers, including 93 simple sequence repeat (SSR, 1,472 diversity array technology (DArT, and 4,492 single nucleotide polymorphism (SNP markers. The general linear model (GLM and the mixed linear model (MLM were used in this study, and two significant markers (tPt-7980 and wPt-6457 were identified. Both markers were located on Chromosome 1B, with wPt-6457 having been identified in a previously reported chromosomal position. The significantly associated loci contain essential information for cloning genes related to resistance to PHS and can be used in wheat breeding programs.

  11. Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus sinensis L. Osb.).

    Science.gov (United States)

    Martins, Cristina de Paula Santos; Pedrosa, Andresa Muniz; Du, Dongliang; Gonçalves, Luana Pereira; Yu, Qibin; Gmitter, Frederick G; Costa, Marcio Gilberto Cardoso

    2015-01-01

    The family of aquaporins (AQPs), or major intrinsic proteins (MIPs), includes integral membrane proteins that function as transmembrane channels for water and other small molecules of physiological significance. MIPs are classified into five subfamilies in higher plants, including plasma membrane (PIPs), tonoplast (TIPs), NOD26-like (NIPs), small basic (SIPs) and unclassified X (XIPs) intrinsic proteins. This study reports a genome-wide survey of MIP encoding genes in sweet orange (Citrus sinensis L. Osb.), the most widely cultivated Citrus spp. A total of 34 different genes encoding C. sinensis MIPs (CsMIPs) were identified and assigned into five subfamilies (CsPIPs, CsTIPs, CsNIPs, CsSIPs and CsXIPs) based on sequence analysis and also on their phylogenetic relationships with clearly classified MIPs of Arabidopsis thaliana. Analysis of key amino acid residues allowed the assessment of the substrate specificity of each CsMIP. Gene structure analysis revealed that the CsMIPs possess an exon-intron organization that is highly conserved within each subfamily. CsMIP loci were precisely mapped on every sweet orange chromosome, indicating a wide distribution of the gene family in the sweet orange genome. Investigation of their expression patterns in different tissues and upon drought and salt stress treatments, as well as with 'Candidatus Liberibacter asiaticus' infection, revealed a tissue-specific and coordinated regulation of the different CsMIP isoforms, consistent with the organization of the stress-responsive cis-acting regulatory elements observed in their promoter regions. A special role in regulating the flow of water and nutrients is proposed for CsTIPs and CsXIPs during drought stress, and for most CsMIPs during salt stress and the development of HLB disease. These results provide a valuable reference for further exploration of the CsMIPs functions and applications to the genetic improvement of both abiotic and biotic stress tolerance in citrus.

  12. Genome-Wide Characterization and Expression Analysis of Major Intrinsic Proteins during Abiotic and Biotic Stresses in Sweet Orange (Citrus sinensis L. Osb..

    Directory of Open Access Journals (Sweden)

    Cristina de Paula Santos Martins

    Full Text Available The family of aquaporins (AQPs, or major intrinsic proteins (MIPs, includes integral membrane proteins that function as transmembrane channels for water and other small molecules of physiological significance. MIPs are classified into five subfamilies in higher plants, including plasma membrane (PIPs, tonoplast (TIPs, NOD26-like (NIPs, small basic (SIPs and unclassified X (XIPs intrinsic proteins. This study reports a genome-wide survey of MIP encoding genes in sweet orange (Citrus sinensis L. Osb., the most widely cultivated Citrus spp. A total of 34 different genes encoding C. sinensis MIPs (CsMIPs were identified and assigned into five subfamilies (CsPIPs, CsTIPs, CsNIPs, CsSIPs and CsXIPs based on sequence analysis and also on their phylogenetic relationships with clearly classified MIPs of Arabidopsis thaliana. Analysis of key amino acid residues allowed the assessment of the substrate specificity of each CsMIP. Gene structure analysis revealed that the CsMIPs possess an exon-intron organization that is highly conserved within each subfamily. CsMIP loci were precisely mapped on every sweet orange chromosome, indicating a wide distribution of the gene family in the sweet orange genome. Investigation of their expression patterns in different tissues and upon drought and salt stress treatments, as well as with 'Candidatus Liberibacter asiaticus' infection, revealed a tissue-specific and coordinated regulation of the different CsMIP isoforms, consistent with the organization of the stress-responsive cis-acting regulatory elements observed in their promoter regions. A special role in regulating the flow of water and nutrients is proposed for CsTIPs and CsXIPs during drought stress, and for most CsMIPs during salt stress and the development of HLB disease. These results provide a valuable reference for further exploration of the CsMIPs functions and applications to the genetic improvement of both abiotic and biotic stress tolerance in citrus.

  13. A genome-wide investigation of SNPs and CNVs in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Anna C Need

    2009-02-01

    Full Text Available We report a genome-wide assessment of single nucleotide polymorphisms (SNPs and copy number variants (CNVs in schizophrenia. We investigated SNPs using 871 patients and 863 controls, following up the top hits in four independent cohorts comprising 1,460 patients and 12,995 controls, all of European origin. We found no genome-wide significant associations, nor could we provide support for any previously reported candidate gene or genome-wide associations. We went on to examine CNVs using a subset of 1,013 cases and 1,084 controls of European ancestry, and a further set of 60 cases and 64 controls of African ancestry. We found that eight cases and zero controls carried deletions greater than 2 Mb, of which two, at 8p22 and 16p13.11-p12.4, are newly reported here. A further evaluation of 1,378 controls identified no deletions greater than 2 Mb, suggesting a high prior probability of disease involvement when such deletions are observed in cases. We also provide further evidence for some smaller, previously reported, schizophrenia-associated CNVs, such as those in NRXN1 and APBA2. We could not provide strong support for the hypothesis that schizophrenia patients have a significantly greater "load" of large (>100 kb, rare CNVs, nor could we find common CNVs that associate with schizophrenia. Finally, we did not provide support for the suggestion that schizophrenia-associated CNVs may preferentially disrupt genes in neurodevelopmental pathways. Collectively, these analyses provide the first integrated study of SNPs and CNVs in schizophrenia and support the emerging view that rare deleterious variants may be more important in schizophrenia predisposition than common polymorphisms. While our analyses do not suggest that implicated CNVs impinge on particular key pathways, we do support the contribution of specific genomic regions in schizophrenia, presumably due to recurrent mutation. On balance, these data suggest that very few schizophrenia patients

  14. Genome-wide association studies of obesity and metabolic syndrome.

    Science.gov (United States)

    Fall, Tove; Ingelsson, Erik

    2014-01-25

    Until just a few years ago, the genetic determinants of obesity and metabolic syndrome were largely unknown, with the exception of a few forms of monogenic extreme obesity. Since genome-wide association studies (GWAS) became available, large advances have been made. The first single nucleotide polymorphism robustly associated with increased body mass index (BMI) was in 2007 mapped to a gene with for the time unknown function. This gene, now known as fat mass and obesity associated (FTO) has been repeatedly replicated in several ethnicities and is affecting obesity by regulating appetite. Since the first report from a GWAS of obesity, an increasing number of markers have been shown to be associated with BMI, other measures of obesity or fat distribution and metabolic syndrome. This systematic review of obesity GWAS will summarize genome-wide significant findings for obesity and metabolic syndrome and briefly give a few suggestions of what is to be expected in the next few years. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Microbial genome-wide association studies: lessons from human GWAS.

    Science.gov (United States)

    Power, Robert A; Parkhill, Julian; de Oliveira, Tulio

    2017-01-01

    The reduced costs of sequencing have led to whole-genome sequences for a large number of microorganisms, enabling the application of microbial genome-wide association studies (GWAS). Given the successes of human GWAS in understanding disease aetiology and identifying potential drug targets, microbial GWAS are likely to further advance our understanding of infectious diseases. These advances include insights into pressing global health problems, such as antibiotic resistance and disease transmission. In this Review, we outline the methodologies of GWAS, the current state of the field of microbial GWAS, and how lessons from human GWAS can direct the future of the field.

  16. A genome-wide association study of cognitive function in Chinese adult twins

    DEFF Research Database (Denmark)

    Xu, Chunsheng; Zhang, Dongfeng; Wu, Yili

    2017-01-01

    Multiple loci or genes have been identified using genome-wide association studies mainly in western countries but with inconsistent results. No similar studies have been conducted in the world's largest and rapidly aging Chinese population. The paper aimed to identify the specific genetic variants....... Gene-based analysis was performed on VEGAS2. The statistically significant genes were then subject to gene set enrichment analysis to further identify the specific biological pathways associated with cognitive function. No SNPs reached genome-wide significance although there were 13 SNPs of suggestive...

  17. Low frequency variants in the exons only encoding isoform A of HNF1A do not contribute to susceptibility to type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Bahram Jafar-Mohammadi

    2009-08-01

    Full Text Available There is considerable interest in the hypothesis that low frequency, intermediate penetrance variants contribute to the proportion of Type 2 Diabetes (T2D susceptibility not attributable to the common variants uncovered through genome-wide association approaches. Genes previously implicated in monogenic and multifactorial forms of diabetes are obvious candidates in this respect. In this study, we focussed on exons 8-10 of the HNF1A gene since rare, penetrant mutations in these exons (which are only transcribed in selected HNF1A isoforms are associated with a later age of diagnosis of Maturity onset diabetes of the young (MODY than mutations in exons 1-7. The age of diagnosis in the subgroup of HNF1A-MODY individuals with exon 8-10 mutations overlaps with that of early multifactorial T2D, and we set out to test the hypothesis that these exons might also harbour low-frequency coding variants of intermediate penetrance that contribute to risk of multifactorial T2D.We performed targeted capillary resequencing of HNF1A exons 8-10 in 591 European T2D subjects enriched for genetic aetiology on the basis of an early age of diagnosis ( or =1 affected sibling. PCR products were sequenced and compared to the published HNF1A sequence. We identified several variants (rs735396 [IVS9-24T>C], rs1169304 [IVS8+29T>C], c.1768+44C>T [IVS9+44C>T] and rs61953349 [c.1545G>A, p.T515T] but no novel non-synonymous coding variants were detected.We conclude that low frequency, nonsynonymous coding variants in the terminal exons of HNF1A are unlikely to contribute to T2D-susceptibility in European samples. Nevertheless, the rationale for seeking low-frequency causal variants in genes known to contain rare, penetrant mutations remains strong and should motivate efforts to screen other genes in a similar fashion.

  18. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans

    NARCIS (Netherlands)

    Scott, Robert A; Scott, Laura J; Mägi, Reedik; Marullo, Letizia; Gaulton, Kyle J; Kaakinen, Marika; Pervjakova, Natalia; Pers, Tune H; Johnson, Andrew D; Eicher, John D; Jackson, Anne U; Ferreira, Teresa; Lee, Yeji; Ma, Clement; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Van Zuydam, Natalie R; Mahajan, Anubha; Chen, Han; Almgren, Peter; Voight, Ben F; Grallert, Harald; Müller-Nurasyid, Martina; Ried, Janina S; Rayner, William N; Robertson, Neil; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Fuchsberger, Christian; Kwan, Phoenix; Teslovich, Tanya M; Chanda, Pritam; Li, Man; Lu, Yingchang; Dina, Christian; Thuillier, Dorothee; Yengo, Loic; Jiang, Longda; Sparso, Thomas; Kestler, Hans A; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Frånberg, Mattias; Strawbridge, Rona J; Benediktsson, Rafn; Hreidarsson, Astradur B; Kong, Augustine; Sigurðsson, Gunnar; Kerrison, Nicola D; Luan, Jian'an; Liang, Liming; Meitinger, Thomas; Roden, Michael; Thorand, Barbara; Esko, Tõnu; Mihailov, Evelin; Fox, Caroline; Liu, Ching-Ti; Rybin, Denis; Isomaa, Bo; Lyssenko, Valeriya; Tuomi, Tiinamaija; Couper, David J; Pankow, James S; Grarup, Niels; Have, Christian T; Jørgensen, Marit E; Jørgensen, Torben; Linneberg, Allan; Cornelis, Marilyn C; van Dam, Rob M; Hunter, David J; Kraft, Peter; Sun, Qi; Edkins, Sarah; Owen, Katharine R; Perry, John Rb; Wood, Andrew R; Zeggini, Eleftheria; Tajes-Fernandes, Juan; Abecasis, Goncalo R; Bonnycastle, Lori L; Chines, Peter S; Stringham, Heather M; Koistinen, Heikki A; Kinnunen, Leena; Sennblad, Bengt; Mühleisen, Thomas W; Nöthen, Markus M; Pechlivanis, Sonali; Baldassarre, Damiano; Gertow, Karl; Humphries, Steve E; Tremoli, Elena; Klopp, Norman; Meyer, Julia; Steinbach, Gerald; Wennauer, Roman; Eriksson, Johan G; Mӓnnistö, Satu; Peltonen, Leena; Tikkanen, Emmi; Charpentier, Guillaume; Eury, Elodie; Lobbens, Stéphane; Gigante, Bruna; Leander, Karin; McLeod, Olga; Bottinger, Erwin P; Gottesman, Omri; Ruderfer, Douglas; Blüher, Matthias; Kovacs, Peter; Tonjes, Anke; Maruthur, Nisa M; Scapoli, Chiara; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; de Faire, Ulf; Hamsten, Anders; Stumvoll, Michael; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; Ripatti, Samuli; Salomaa, Veikko; Pedersen, Nancy L; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Tuomilehto, Jaakko; Hansen, Torben; Pedersen, Oluf; Barroso, Inês; Lannfelt, Lars; Ingelsson, Erik; Lind, Lars; Lindgren, Cecilia M; Cauchi, Stephane; Froguel, Philippe; Loos, Ruth Jf; Balkau, Beverley; Boeing, Heiner; Franks, Paul W; Gurrea, Aurelio Barricarte; Palli, Domenico; van der Schouw, Yvonne T; Altshuler, David; Groop, Leif C; Langenberg, Claudia; Wareham, Nicholas J; Sijbrands, Eric; van Duijn, Cornelia M; Florez, Jose C; Meigs, James B; Boerwinkle, Eric; Gieger, Christian; Strauch, Konstantin; Metspalu, Andres; Morris, Andrew D; Palmer, Colin Na; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Dupuis, Josée; Morris, Andrew P; Boehnke, Michael; McCarthy, Mark I; Prokopenko, Inga

    2017-01-01

    To characterise type 2 diabetes (T2D) associated variation across the allele frequency spectrum, we conducted a meta-analysis of genome-wide association data from 26,676 T2D cases and 132,532 controls of European ancestry after imputation using the 1000 Genomes multi-ethnic reference panel.

  19. Genome-wide SNP association-based localization of a dwarfism gene in Friesian dwarf horses

    NARCIS (Netherlands)

    Orr, J.L.; Back, W.; Gu, J.; Leegwater, P.H.; Govindarajan, P.; Conroy, J.; Ducro, B.J.; Arendonk, van J.A.M.

    2010-01-01

    The recent completion of the horse genome and commercial availability of an equine SNP genotyping array has facilitated the mapping of disease genes. We report putative localization of the gene responsible for dwarfism, a trait in Friesian horses that is thought to have a recessive mode of

  20. A review of genome-wide approaches to study the genetic basis for spermatogenic defects.

    Science.gov (United States)

    Aston, Kenneth I; Conrad, Donald F

    2013-01-01

    Rapidly advancing tools for genetic analysis on a genome-wide scale have been instrumental in identifying the genetic bases for many complex diseases. About half of male infertility cases are of unknown etiology in spite of tremendous efforts to characterize the genetic basis for the disorder. Advancing our understanding of the genetic basis for male infertility will require the application of established and emerging genomic tools. This chapter introduces many of the tools available for genetic studies on a genome-wide scale along with principles of study design and data analysis.

  1. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas

    Directory of Open Access Journals (Sweden)

    Kevin C. Deitz

    2016-09-01

    Full Text Available Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression.

  2. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro.

    Directory of Open Access Journals (Sweden)

    Dessie Salilew-Wondim

    Full Text Available Early embryonic loss and altered gene expression in in vitro produced blastocysts are believed to be partly caused by aberrant DNA methylation. However, specific embryonic stage which is sensitive to in vitro culture conditions to alter the DNA methylation profile of the resulting blastocysts remained unclear. Therefore, the aim of this study was to investigate the stage specific effect of in vitro culture environment on the DNA methylation response of the resulting blastocysts. For this, embryos cultured in vitro until zygote (ZY, 4-cell (4C or 16-cell (16C were transferred to recipients and the blastocysts were recovery at day 7 of the estrous cycle. Another embryo group was cultured in vitro until blastocyst stage (IVP. Genome-wide DNA methylation profiles of ZY, 4C, 16C and IVP blastocyst groups were then determined with reference to blastocysts developed completely under in vivo condition (VO using EmbryoGENE DNA Methylation Array. To assess the contribution of methylation changes on gene expression patterns, the DNA methylation data was superimposed to the transcriptome profile data. The degree of DNA methylation dysregulation in the promoter and/or gene body regions of the resulting blastocysts was correlated with successive stages of development the embryos advanced under in vitro culture before transfer to the in vivo condition. Genomic enrichment analysis revealed that in 4C and 16C blastocyst groups, hypermethylated loci were outpacing the hypomethylated ones in intronic, exonic, promoter and proximal promoter regions, whereas the reverse was observed in ZY blastocyst group. However, in the IVP group, as much hypermethylated as hypomethylated probes were detected in gene body and promoter regions. In addition, gene ontology analysis indicated that differentially methylated regions were found to affected several biological functions including ATP binding in the ZY group, programmed cell death in the 4C, glycolysis in 16C and genetic

  3. Agronomic and seed quality traits dissected by genome-wide association mapping in Brassica napus

    Directory of Open Access Journals (Sweden)

    Niklas eKörber

    2016-03-01

    Full Text Available In Brassica napus breeding, traits related to commercial success are of highest importance for plant breeders. However, such traits can only be assessed in an advanced developmental stage. % as well as require high experimental effort due to their quantitative inheritance and the importance of genotype*environment interaction. Molecular markers genetically linked to such traits have the potential to accelerate the breeding process of B. napus by marker-assisted selection. Therefore, the objectives of this study were to identify (i genome regions associated with the examined agronomic and seed quality traits, (ii the interrelationship of population structure and the detected associations, and (iii candidate genes for the revealed associations. The diversity set used in this study consisted of 405 Brassica napus inbred lines which were genotyped using a 6K single nucleotide polymorphism (SNP array and phenotyped for agronomic and seed quality traits in field trials. In a genome-wide association study, we detected a total of 112 associations between SNPs and the seed quality traits as well as 46 SNP-trait associations for the agronomic traits with a P-value 100 and a sequence identity of > 70 % to A. thaliana or B. rapa could be found for the agronomic SNP-trait associations and 187 hits of potential candidate genes for the seed quality SNP-trait associations.

  4. Comparative Reannotation of 21 Aspergillus Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Salamov, Asaf; Riley, Robert; Kuo, Alan; Grigoriev, Igor

    2013-03-08

    We used comparative gene modeling to reannotate 21 Aspergillus genomes. Initial automatic annotation of individual genomes may contain some errors of different nature, e.g. missing genes, incorrect exon-intron structures, 'chimeras', which fuse 2 or more real genes or alternatively splitting some real genes into 2 or more models. The main premise behind the comparative modeling approach is that for closely related genomes most orthologous families have the same conserved gene structure. The algorithm maps all gene models predicted in each individual Aspergillus genome to the other genomes and, for each locus, selects from potentially many competing models, the one which most closely resembles the orthologous genes from other genomes. This procedure is iterated until no further change in gene models is observed. For Aspergillus genomes we predicted in total 4503 new gene models ( ~;;2percent per genome), supported by comparative analysis, additionally correcting ~;;18percent of old gene models. This resulted in a total of 4065 more genes with annotated PFAM domains (~;;3percent increase per genome). Analysis of a few genomes with EST/transcriptomics data shows that the new annotation sets also have a higher number of EST-supported splice sites at exon-intron boundaries.

  5. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

    Science.gov (United States)

    Michailidou, Kyriaki; Beesley, Jonathan; Lindstrom, Sara; Canisius, Sander; Dennis, Joe; Lush, Michael J; Maranian, Mel J; Bolla, Manjeet K; Wang, Qin; Shah, Mitul; Perkins, Barbara J; Czene, Kamila; Eriksson, Mikael; Darabi, Hatef; Brand, Judith S; Bojesen, Stig E; Nordestgaard, Børge G; Flyger, Henrik; Nielsen, Sune F; Rahman, Nazneen; Turnbull, Clare; Fletcher, Olivia; Peto, Julian; Gibson, Lorna; dos-Santos-Silva, Isabel; Chang-Claude, Jenny; Flesch-Janys, Dieter; Rudolph, Anja; Eilber, Ursula; Behrens, Sabine; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Khan, Sofia; Aaltonen, Kirsimari; Ahsan, Habibul; Kibriya, Muhammad G; Whittemore, Alice S; John, Esther M; Malone, Kathleen E; Gammon, Marilie D; Santella, Regina M; Ursin, Giske; Makalic, Enes; Schmidt, Daniel F; Casey, Graham; Hunter, David J; Gapstur, Susan M; Gaudet, Mia M; Diver, W Ryan; Haiman, Christopher A; Schumacher, Fredrick; Henderson, Brian E; Le Marchand, Loic; Berg, Christine D; Chanock, Stephen J; Figueroa, Jonine; Hoover, Robert N; Lambrechts, Diether; Neven, Patrick; Wildiers, Hans; van Limbergen, Erik; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Couch, Fergus J; Olson, Janet E; Hallberg, Emily; Vachon, Celine; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Kang, Daehee; Choi, Ji-Yeob; Park, Sue K; Yoo, Keun-Young; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Tajima, Kazuo; Guénel, Pascal; Truong, Thérèse; Mulot, Claire; Sanchez, Marie; Burwinkel, Barbara; Marme, Frederik; Surowy, Harald; Sohn, Christof; Wu, Anna H; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O; González-Neira, Anna; Benitez, Javier; Zamora, M Pilar; Perez, Jose Ignacio Arias; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Lindblom, Annika; Margolin, Sara; Teo, Soo Hwang; Yip, Cheng Har; Taib, Nur Aishah Mohd; Tan, Gie-Hooi; Hooning, Maartje J; Hollestelle, Antoinette; Martens, John W M; Collée, J Margriet; Blot, William; Signorello, Lisa B; Cai, Qiuyin; Hopper, John L; Southey, Melissa C; Tsimiklis, Helen; Apicella, Carmel; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Hou, Ming-Feng; Kristensen, Vessela N; Nord, Silje; Alnaes, Grethe I Grenaker; Giles, Graham G; Milne, Roger L; McLean, Catriona; Canzian, Federico; Trichopoulos, Dimitrios; Peeters, Petra; Lund, Eiliv; Sund, Malin; Khaw, Kay-Tee; Gunter, Marc J; Palli, Domenico; Mortensen, Lotte Maxild; Dossus, Laure; Huerta, Jose-Maria; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Hartman, Mikael; Miao, Hui; Chia, Kee Seng; Chan, Ching Wan; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Haeberle, Lothar; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Swerdlow, Anthony J; Brinton, Louise; Garcia-Closas, Montserrat; Zheng, Wei; Halverson, Sandra L; Shrubsole, Martha; Long, Jirong; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Brauch, Hiltrud; Hamann, Ute; Brüning, Thomas; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Bernard, Loris; Bogdanova, Natalia V; Dörk, Thilo; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; Van Asperen, Christi J; Jakubowska, Anna; Lubinski, Jan; Jaworska, Katarzyna; Huzarski, Tomasz; Sangrajrang, Suleeporn; Gaborieau, Valerie; Brennan, Paul; McKay, James; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Kabisch, Maria; Torres, Diana; Neuhausen, Susan L; Anton-Culver, Hoda; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Healey, Catherine S; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Pita, Guillermo; Alonso, M Rosario; Álvarez, Nuria; Herrero, Daniel; Simard, Jacques; Pharoah, Paul P D P; Kraft, Peter; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Easton, Douglas F

    2015-04-01

    Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.

  6. Genome-wide investigation reveals high evolutionary rates in annual model plants.

    Science.gov (United States)

    Yue, Jia-Xing; Li, Jinpeng; Wang, Dan; Araki, Hitoshi; Tian, Dacheng; Yang, Sihai

    2010-11-09

    Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those

  7. Genome-wide association study of antisocial personality disorder.

    Science.gov (United States)

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-09-06

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53-3.14), P=1.9 × 10(-5)). Two polymorphisms at 6p21.2 LINC00951-LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37-1.85), P=1.6 × 10(-9)) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder.

  8. Genome-wide association study of antisocial personality disorder

    Science.gov (United States)

    Rautiainen, M-R; Paunio, T; Repo-Tiihonen, E; Virkkunen, M; Ollila, H M; Sulkava, S; Jolanki, O; Palotie, A; Tiihonen, J

    2016-01-01

    The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53–3.14), P=1.9 × 10-5). Two polymorphisms at 6p21.2 LINC00951–LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37–1.85), P=1.6 × 10−9) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder. PMID:27598967

  9. Learning about human population history from ancient and modern genomes.

    Science.gov (United States)

    Stoneking, Mark; Krause, Johannes

    2011-08-18

    Genome-wide data, both from SNP arrays and from complete genome sequencing, are becoming increasingly abundant and are now even available from extinct hominins. These data are providing new insights into population history; in particular, when combined with model-based analytical approaches, genome-wide data allow direct testing of hypotheses about population history. For example, genome-wide data from both contemporary populations and extinct hominins strongly support a single dispersal of modern humans from Africa, followed by two archaic admixture events: one with Neanderthals somewhere outside Africa and a second with Denisovans that (so far) has only been detected in New Guinea. These new developments promise to reveal new stories about human population history, without having to resort to storytelling.

  10. Genome-wide association study identifies five new schizophrenia loci

    NARCIS (Netherlands)

    Ripke, S.; Sanders, A. R.; Kendler, K. S.; Levinson, D. F.; Sklar, P.; Holmans, P. A.; Lin, D. Y.; Duan, J.; Ophoff, R. A.; Andreassen, O. A.; Scolnick, E.; Cichon, S.; St Clair, D.; Corvin, A.; Gurling, H.; Werge, T.; Rujescu, D.; Blackwood, D. H.; Pato, C. N.; Malhotra, A. K.; Purcell, S.; Dudbridge, F.; Neale, B. M.; Rossin, L.; Visscher, P. M.; Posthuma, D.; Ruderfer, D. M.; Fanous, A.; Stefansson, H.; Steinberg, S.; Mowry, B. J.; Golimbet, V.; de Hert, M.; Jonsson, E. G.; Bitter, I.; Pietilainen, O. P.; Collier, D. A.; Tosato, S.; Agartz, I.; Albus, M.; Alexander, M.; Amdur, R. L.; Amin, F.; Bass, N.; Bergen, S. E.; Black, D. W.; Borglum, A. D.; Brown, M. A.; Bruggeman, R.; Buccola, N. G.; Byerley, W. F.; Cahn, W.; Cantor, R. M.; Carr, V. J.; Catts, S. V.; Choudhury, K.; Cloninger, C. R.; Cormican, P.; Craddock, N.; Danoy, P. A.; Datta, S.; de Haan, L.; Demontis, D.; Dikeos, D.; Djurovic, S.; Donnely, P.; Donohoe, G.; Duong, L.; Dwyer, S.; Fink-Jensen, A.; Freedman, R.; Freimer, N. B.; Friedl, M.; Georgieva, L.; Giegling, I.; Gill, M.; Glenthoj, B.; Godard, S.; Hamshere, M.; Hansen, M.; Hartmann, A. M.; Henskens, F. A.; Hougaard, D. M.; Hultman, C. M.; Ingason, A.; Jablensky, A. V.; Jakobsen, K. D.; Jay, M.; Jurgens, G.; Kahn, R. S.; Keller, M. C.; Kenis, G.; Kenny, E.; Kim, Y.; Kirov, G. K.; Konnerth, H.; Konte, B.; Krabbendam, L.; Krasucki, R.; Lasseter, V. K.; Laurent, C.; Lawrence, J.; Lencz, T.; Lerer, F. B.; Liang, K. Y.; Lichtenstein, P.; Lieberman, J. A.; Linszen, D. H.; Lonnqvist, J.; Loughland, C. M.; Maclean, A. W.; Maher, B. S.; Maier, W.; Mallet, J.; Malloy, P.; Mattheisen, M.; Mattingsdal, M.; McGhee, K. A.; McGrath, J. J.; McIntosh, A.; McLean, D. E.; McQuillin, A.; Melle, I.; Michie, P. T.; Milanova, V.; Morris, D. W.; Mors, O.; Mortensen, P. B.; Moskvina, V.; Muglia, P.; Myin-Germeys, I.; Nertney, D. A.; Nestadt, G.; Nielsen, J.; Nikolov, I.; Nordentoft, M.; Norton, N.; Nothen, M. M.; O'Dushlaine, C. T.; Olincy, A.; Olsen, L.; O'Neill, F. A.; Orntoft, T. F.; Owen, M. J.; Pantelis, C.; Papadimitriou, G.; Pato, M. T.; Peltonen, L.; Petursson, H.; Pickard, B.; Pimm, J.; Pulver, A. E.; Puri, V.; Quested, D.; Quinn, E. M.; Rasmussen, H. B.; Rethelyi, J. M.; Ribble, R.; Rietschel, M.; Riley, B. P.; Ruggeri, M.; Schall, U.; Schulze, T. G.; Schwab, S. G.; Scott, R. J.; Shi, J.; Sigurdsson, E.; Silvermann, J. M.; Spencer, C. C.; Stefansson, K.; Strange, A.; Strengman, E.; Stroup, T. S.; Suvisaari, J.; Terenius, L.; Thirumalai, S.; Thygesen, J. H.; Timm, S.; Toncheva, D.; van den Oord, E.; van Os, J.; van Winkel, R.; Veldink, J.; Walsh, D.; Wang, A. G.; Wiersma, D.; Wildenauer, D. B.; Williams, H. J.; Williams, N. M.; Wormley, B.; Zammit, S.; Sullivan, P. F.; O'Donovan, M. C.; Daly, M. J.; Gejman, P. V.

    2011-01-01

    We examined the role of common genetic variation in schizophrenia in a genome-wide association study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2 analysis yielded

  11. Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics

    Directory of Open Access Journals (Sweden)

    Yadetie Fekadu

    2012-02-01

    Full Text Available Abstract Background Animals have developed extensive mechanisms of response to xenobiotic chemical attacks. Although recent genome surveys have suggested a broad conservation of the chemical defensome across metazoans, global gene expression responses to xenobiotics have not been well investigated in most invertebrates. Here, we performed genome survey for key defensome genes in Oikopleura dioica genome, and explored genome-wide gene expression using high density tiling arrays with over 2 million probes, in response to two model xenobiotic chemicals - the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP the pharmaceutical compound Clofibrate (Clo. Results Oikopleura genome surveys for key genes of the chemical defensome suggested a reduced repertoire. Not more than 23 cytochrome P450 (CYP genes could be identified, and neither CYP1 family genes nor their transcriptional activator AhR was detected. These two genes were present in deuterostome ancestors. As in vertebrates, the genotoxic compound BaP induced xenobiotic biotransformation and oxidative stress responsive genes. Notable exceptions were genes of the aryl hydrocarbon receptor (AhR signaling pathway. Clo also affected the expression of many biotransformation genes and markedly repressed genes involved in energy metabolism and muscle contraction pathways. Conclusions Oikopleura has the smallest number of CYP genes among sequenced animal genomes and lacks the AhR signaling pathway. However it appears to have basic xenobiotic inducible biotransformation genes such as a conserved genotoxic stress response gene set. Our genome survey and expression study does not support a role of AhR signaling pathway in the chemical defense of metazoans prior to the emergence of vertebrates.

  12. SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate

    Science.gov (United States)

    Gretchen H. Roffler; Stephen J. Amish; Seth Smith; Ted Cosart; Marty Kardos; Michael K. Schwartz; Gordon Luikart

    2016-01-01

    Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding...

  13. Targeted exon sequencing in Usher syndrome type I.

    Science.gov (United States)

    Bujakowska, Kinga M; Consugar, Mark; Place, Emily; Harper, Shyana; Lena, Jaclyn; Taub, Daniel G; White, Joseph; Navarro-Gomez, Daniel; Weigel DiFranco, Carol; Farkas, Michael H; Gai, Xiaowu; Berson, Eliot L; Pierce, Eric A

    2014-12-02

    Patients with Usher syndrome type I (USH1) have retinitis pigmentosa, profound congenital hearing loss, and vestibular ataxia. This syndrome is currently thought to be associated with at least six genes, which are encoded by over 180 exons. Here, we present the use of state-of-the-art techniques in the molecular diagnosis of a cohort of 47 USH1 probands. The cohort was studied with selective exon capture and next-generation sequencing of currently known inherited retinal degeneration genes, comparative genomic hybridization, and Sanger sequencing of new USH1 exons identified by human retinal transcriptome analysis. With this approach, we were able to genetically solve 14 of the 47 probands by confirming the biallelic inheritance of mutations. We detected two likely pathogenic variants in an additional 19 patients, for whom family members were not available for cosegregation analysis to confirm biallelic inheritance. Ten patients, in addition to primary disease-causing mutations, carried rare likely pathogenic USH1 alleles or variants in other genes associated with deaf-blindness, which may influence disease phenotype. Twenty-one of the identified mutations were novel among the 33 definite or likely solved patients. Here, we also present a clinical description of the studied cohort at their initial visits. We found a remarkable genetic heterogeneity in the studied USH1 cohort with multiplicity of mutations, of which many were novel. No obvious influence of genotype on phenotype was found, possibly due to small sample sizes of the genotypes under study. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  14. Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological Genomics Approach

    Directory of Open Access Journals (Sweden)

    Claudia Bartoli

    2017-05-01

    Full Text Available The emergence and re-emergence of plant pathogenic microorganisms are processes that imply perturbations in both host and pathogen ecological niches. Global change is largely assumed to drive the emergence of new etiological agents by altering the equilibrium of the ecological habitats which in turn places hosts more in contact with pathogen reservoirs. In this context, the number of epidemics is expected to increase dramatically in the next coming decades both in wild and crop plants. Under these considerations, the identification of the genetic variants underlying natural variation of resistance is a pre-requisite to estimate the adaptive potential of wild plant populations and to develop new breeding resistant cultivars. On the other hand, the prediction of pathogen's genetic determinants underlying disease emergence can help to identify plant resistance alleles. In the genomic era, whole genome sequencing combined with the development of statistical methods led to the emergence of Genome Wide Association (GWA mapping, a powerful tool for detecting genomic regions associated with natural variation of disease resistance in both wild and cultivated plants. However, GWA mapping has been less employed for the detection of genetic variants associated with pathogenicity in microbes. Here, we reviewed GWA studies performed either in plants or in pathogenic microorganisms (bacteria, fungi and oomycetes. In addition, we highlighted the benefits and caveats of the emerging joint GWA mapping approach that allows for the simultaneous identification of genes interacting between genomes of both partners. Finally, based on co-evolutionary processes in wild populations, we highlighted a phenotyping-free joint GWA mapping approach as a promising tool for describing the molecular landscape underlying plant - microbe interactions.

  15. Genome-wide identification of significant aberrations in cancer genome

    Directory of Open Access Journals (Sweden)

    Yuan Xiguo

    2012-07-01

    Full Text Available Abstract Background Somatic Copy Number Alterations (CNAs in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC, a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1 exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2 performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3 iteratively detecting Significant Copy Number Aberrations (SCAs and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma. When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC or tumor suppressor genes (e.g., CDKN2A/B. Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes

  16. Large meta-analysis of genome-wide association studies identifies five loci for lean body mass

    DEFF Research Database (Denmark)

    Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang

    2017-01-01

    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorpt...... a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.......-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p 

  17. Splicing of phenylalanine hydroxylase (PAH) exon 11 is vulnerable - Molecular pathology of mutations in PAH exon 11

    DEFF Research Database (Denmark)

    Heintz, Caroline; Dobrowolski, Steven F.; Andersen, Henriette Skovgaard

    2012-01-01

    as a vulnerable exon and used patient derived lymphoblast cell lines and PAH minigenes to study the molecular defect that impacted pre-mRNA processing. We showed that the c.1144T>C and c.1066-3C>T mutations cause exon 11 skipping, while the c.1139C>T mutation is neutral or slightly beneficial. The c.1144T......In about 20-30% of phenylketonuria (PKU) patients, phenylalanine (Phe) levels can be controlled by cofactor 6R-tetrahydrobiopterin (BH(4)) administration. The phenylalanine hydroxylase (PAH) genotype has a predictive value concerning BH(4)-response and therefore a correct assessment of the mutation...... molecular pathology is important. Mutations that disturb the splicing of exons (e.g. interplay between splice site strength and regulatory sequences like exon splicing enhancers (ESEs)/exon splicing silencers (ESSs)) may cause different severity of PKU. In this study, we identified PAH exon 11...

  18. Array comparative genomic hybridisation analysis of boys with X linked hypopituitarism identifies a 3.9 Mb duplicated critical region at Xq27 containing SOX3.

    NARCIS (Netherlands)

    Solomon, N.M.; Ross, S.; Morgan, T.; Belsky, J.L.; Hol, F.A.; Karnes, P.; Hopwood, N.J.; Myers, S.E.; Tan, A.; Warne, G.L.; Forrest, S.M.; Thomas, P.Q.

    2004-01-01

    INTRODUCTION: Array comparative genomic hybridisation (array CGH) is a powerful method that detects alteration of gene copy number with greater resolution and efficiency than traditional methods. However, its ability to detect disease causing duplications in constitutional genomic DNA has not been

  19. Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat.

    Science.gov (United States)

    Dong, Yan; Liu, Jindong; Zhang, Yan; Geng, Hongwei; Rasheed, Awais; Xiao, Yonggui; Cao, Shuanghe; Fu, Luping; Yan, Jun; Wen, Weie; Zhang, Yong; Jing, Ruilian; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Water soluble carbohydrates (WSC) in stems play an important role in buffering grain yield in wheat against biotic and abiotic stresses; however, knowledge of genes controlling WSC is very limited. We conducted a genome-wide association study (GWAS) using a high-density 90K SNP array to better understand the genetic basis underlying WSC, and to explore marker-based breeding approaches. WSC was evaluated in an association panel comprising 166 Chinese bread wheat cultivars planted in four environments. Fifty two marker-trait associations (MTAs) distributed across 23 loci were identified for phenotypic best linear unbiased estimates (BLUEs), and 11 MTAs were identified in two or more environments. Liner regression showed a clear dependence of WSC BLUE scores on numbers of favorable (increasing WSC content) and unfavorable alleles (decreasing WSC), indicating that genotypes with higher numbers of favorable or lower numbers of unfavorable alleles had higher WSC content. In silico analysis of flanking sequences of trait-associated SNPs revealed eight candidate genes related to WSC content grouped into two categories based on the type of encoding proteins, namely, defense response proteins and proteins triggered by environmental stresses. The identified SNPs and candidate genes related to WSC provide opportunities for breeding higher WSC wheat cultivars.

  20. Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups.

  1. Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat.

    Directory of Open Access Journals (Sweden)

    Yan Dong

    Full Text Available Water soluble carbohydrates (WSC in stems play an important role in buffering grain yield in wheat against biotic and abiotic stresses; however, knowledge of genes controlling WSC is very limited. We conducted a genome-wide association study (GWAS using a high-density 90K SNP array to better understand the genetic basis underlying WSC, and to explore marker-based breeding approaches. WSC was evaluated in an association panel comprising 166 Chinese bread wheat cultivars planted in four environments. Fifty two marker-trait associations (MTAs distributed across 23 loci were identified for phenotypic best linear unbiased estimates (BLUEs, and 11 MTAs were identified in two or more environments. Liner regression showed a clear dependence of WSC BLUE scores on numbers of favorable (increasing WSC content and unfavorable alleles (decreasing WSC, indicating that genotypes with higher numbers of favorable or lower numbers of unfavorable alleles had higher WSC content. In silico analysis of flanking sequences of trait-associated SNPs revealed eight candidate genes related to WSC content grouped into two categories based on the type of encoding proteins, namely, defense response proteins and proteins triggered by environmental stresses. The identified SNPs and candidate genes related to WSC provide opportunities for breeding higher WSC wheat cultivars.

  2. Genomic consequences of selection and genome-wide association mapping in soybean.

    Science.gov (United States)

    Wen, Zixiang; Boyse, John F; Song, Qijian; Cregan, Perry B; Wang, Dechun

    2015-09-03

    Crop improvement always involves selection of specific alleles at genes controlling traits of agronomic importance, likely resulting in detectable signatures of selection within the genome of modern soybean (Glycine max L. Merr.). The identification of these signatures of selection is meaningful from the perspective of evolutionary biology and for uncovering the genetic architecture of agronomic traits. To this end, two populations of soybean, consisting of 342 landraces and 1062 improved lines, were genotyped with the SoySNP50K Illumina BeadChip containing 52,041 single nucleotide polymorphisms (SNPs), and systematically phenotyped for 9 agronomic traits. A cross-population composite likelihood ratio (XP-CLR) method was used to screen the signals of selective sweeps. A total of 125 candidate selection regions were identified, many of which harbored genes potentially involved in crop improvement. To further investigate whether these candidate regions were in fact enriched for genes affected by selection, genome-wide association studies (GWAS) were conducted on 7 selection traits targeted in soybean breeding (grain yield, plant height, lodging, maturity date, seed coat color, seed protein and oil content) and 2 non-selection traits (pubescence and flower color). Major genomic regions associated with selection traits overlapped with candidate selection regions, whereas no overlap of this kind occurred for the non-selection traits, suggesting that the selection sweeps identified are associated with traits of agronomic importance. Multiple novel loci and refined map locations of known loci related to these traits were also identified. These findings illustrate that comparative genomic analyses, especially when combined with GWAS, are a promising approach to dissect the genetic architecture of complex traits.

  3. Diamagneto-Dielectric Anisotropic Wide Angle Impedance Matching Layers for Active Phased Arrays

    NARCIS (Netherlands)

    Silvestri, F.; Cifola, L.; Gerini, G.

    2016-01-01

    In this paper, we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in

  4. Diamagneto-dielectric anisotropic wide angle impedance matching layers for active phased arrays

    NARCIS (Netherlands)

    Silvestri, F.; Cifola, L.; Gerini, G.

    2016-01-01

    In this paper we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in

  5. Genome-wide identification of direct HBx genomic targets

    KAUST Repository

    Guerrieri, Francesca

    2017-02-17

    Background The Hepatitis B Virus (HBV) HBx regulatory protein is required for HBV replication and involved in HBV-related carcinogenesis. HBx interacts with chromatin modifying enzymes and transcription factors to modulate histone post-translational modifications and to regulate viral cccDNA transcription and cellular gene expression. Aiming to identify genes and non-coding RNAs (ncRNAs) directly targeted by HBx, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) to analyse HBV recruitment on host cell chromatin in cells replicating HBV. Results ChIP-Seq high throughput sequencing of HBx-bound fragments was used to obtain a high-resolution, unbiased, mapping of HBx binding sites across the genome in HBV replicating cells. Protein-coding genes and ncRNAs involved in cell metabolism, chromatin dynamics and cancer were enriched among HBx targets together with genes/ncRNAs known to modulate HBV replication. The direct transcriptional activation of genes/miRNAs that potentiate endocytosis (Ras-related in brain (RAB) GTPase family) and autophagy (autophagy related (ATG) genes, beclin-1, miR-33a) and the transcriptional repression of microRNAs (miR-138, miR-224, miR-576, miR-596) that directly target the HBV pgRNA and would inhibit HBV replication, contribute to HBx-mediated increase of HBV replication. Conclusions Our ChIP-Seq analysis of HBx genome wide chromatin recruitment defined the repertoire of genes and ncRNAs directly targeted by HBx and led to the identification of new mechanisms by which HBx positively regulates cccDNA transcription and HBV replication.

  6. Genome-wide alterations of the DNA replication program during tumor progression

    Science.gov (United States)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  7. Genome-to-genome analysis highlights the impact of the human innate and adaptive immune systems on the hepatitis C virus

    Science.gov (United States)

    Ip, Camilla; Magri, Andrea; Von Delft, Annette; Bonsall, David; Chaturvedi, Nimisha; Bartha, Istvan; Smith, David; Nicholson, George; McVean, Gilean; Trebes, Amy; Piazza, Paolo; Fellay, Jacques; Cooke, Graham; Foster, Graham R; Hudson, Emma; McLauchlan, John; Simmonds, Peter; Bowden, Rory; Klenerman, Paul; Barnes, Eleanor; Spencer, Chris C. A.

    2018-01-01

    Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. We use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals chronically infected with HCV, predominately genotype 3. We show that both HLA alleles and interferon lambda innate immune system genes drive viral genome polymorphism, and that IFNL4 genotypes determine HCV viral load through a mechanism that is dependent on a specific polymorphism in the HCV polyprotein. We highlight the interplay between innate immune responses and the viral genome in HCV control. PMID:28394351

  8. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke

    NARCIS (Netherlands)

    Traylor, M.; Zhang, C.R.; Adib-Samii, P.; Devan, W.J.; Parsons, O.E.; Lanfranconi, S.; Gregory, S.; Cloonan, L.; Falcone, G.J.; Radmanesh, F.; Fitzpatrick, K.; Kanakis, A.; Barrick, T.R.; Moynihan, B.; Lewis, C.M.; Boncoraglio, G.B.; Lemmens, R.; Thijs, V.; Sudlow, C.; Wardlaw, J.; Rothwell, P.M.; Meschia, J.F.; Worrall, B.B.; Levi, C.; Bevan, S.; Furie, K.L.; Dichgans, M.; Rosand, J.; Markus, H.S.; Rost, N.; Klijn, C.J.M.; et al.,

    2016-01-01

    OBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms.

  9. Genome-wide association study of serum selenium concentrations

    DEFF Research Database (Denmark)

    Gong, Jian; Hsu, Li; Harrison, Tabitha

    2013-01-01

    Selenium is an essential trace element and circulating selenium concentrations have been associated with a wide range of diseases. Candidate gene studies suggest that circulating selenium concentrations may be impacted by genetic variation; however, no study has comprehensively investigated...... this hypothesis. Therefore, we conducted a two-stage genome-wide association study to identify genetic variants associated with serum selenium concentrations in 1203 European descents from two cohorts: the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening and the Women’s Health Initiative (WHI). We...... tested association between 2,474,333 single nucleotide polymorphisms (SNPs) and serum selenium concentrations using linear regression models. In the first stage (PLCO) 41 SNPs clustered in 15 regions had p

  10. Genome-wide analysis identifies 12 loci influencing human reproductive behavior

    Science.gov (United States)

    Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.

    2017-01-01

    The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627

  11. Genetics of Obesity Traits: A Bivariate Genome-Wide Association Analysis

    DEFF Research Database (Denmark)

    Wu, Yili; Duan, Haiping; Tian, Xiaocao

    2018-01-01

    Previous genome-wide association studies on anthropometric measurements have identified more than 100 related loci, but only a small portion of heritability in obesity was explained. Here we present a bivariate twin study to look for the genetic variants associated with body mass index and waist......-hip ratio, and to explore the obesity-related pathways in Northern Han Chinese. Cholesky decompositionmodel for 242monozygotic and 140 dizygotic twin pairs indicated a moderate genetic correlation (r = 0.53, 95%CI: 0.42–0.64) between body mass index and waist-hip ratio. Bivariate genome-wide association.......05. Expression quantitative trait loci analysis identified rs2242044 as a significant cis-eQTL in both the normal adipose-subcutaneous (P = 1.7 × 10−9) and adipose-visceral (P = 4.4 × 10−15) tissue. These findings may provide an important entry point to unravel genetic pleiotropy in obesity traits....

  12. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.

    Science.gov (United States)

    Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei

    2015-02-01

    WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species.

  13. Revisiting the Zingiberales: using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage

    Directory of Open Access Journals (Sweden)

    Chodon Sass

    2016-01-01

    Full Text Available The Zingiberales are an iconic order of monocotyledonous plants comprising eight families with distinctive and diverse floral morphologies and representing an important ecological element of tropical and subtropical forests. While the eight families are demonstrated to be monophyletic, phylogenetic relationships among these families remain unresolved. Neither combined morphological and molecular studies nor recent attempts to resolve family relationships using sequence data from whole plastomes has resulted in a well-supported, family-level phylogenetic hypothesis of relationships. Here we approach this challenge by leveraging the complete genome of one member of the order, Musa acuminata, together with transcriptome information from each of the other seven families to design a set of nuclear loci that can be enriched from highly divergent taxa with a single array-based capture of indexed genomic DNA. A total of 494 exons from 418 nuclear genes were captured for 53 ingroup taxa. The entire plastid genome was also captured for the same 53 taxa. Of the total genes captured, 308 nuclear and 68 plastid genes were used for phylogenetic estimation. The concatenated plastid and nuclear dataset supports the position of Musaceae as sister to the remaining seven families. Moreover, the combined dataset recovers known intra- and inter-family phylogenetic relationships with generally high bootstrap support. This is a flexible and cost effective method that gives the broader plant biology community a tool for generating phylogenomic scale sequence data in non-model systems at varying evolutionary depths.

  14. Identification of neural outgrowth genes using genome-wide RNAi.

    Directory of Open Access Journals (Sweden)

    Katharine J Sepp

    2008-07-01

    Full Text Available While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new

  15. Genetically contextual effects of smoking on genome wide DNA methylation.

    Science.gov (United States)

    Dogan, Meeshanthini V; Beach, Steven R H; Philibert, Robert A

    2017-09-01

    Smoking is the leading cause of death in the United States. It exerts its effects by increasing susceptibility to a variety of complex disorders among those who smoke, and if pregnant, to their unborn children. In prior efforts to understand the epigenetic mechanisms through which this increased vulnerability is conveyed, a number of investigators have conducted genome wide methylation analyses. Unfortunately, secondary to methodological limitations, these studies were unable to examine methylation in gene regions with significant amounts of genetic variation. Using genome wide genetic and epigenetic data from the Framingham Heart Study, we re-examined the relationship of smoking status to genome wide methylation status. When only methylation status is considered, smoking was significantly associated with differential methylation in 310 genes that map to a variety of biological process and cellular differentiation pathways. However, when SNP effects on the magnitude of smoking associated methylation changes are also considered, cis and trans-interaction effects were noted at a total of 266 and 4353 genes with no marked enrichment for any biological pathways. Furthermore, the SNP variation participating in the significant interaction effects is enriched for loci previously associated with complex medical illnesses. The enlarged scope of the methylome shown to be affected by smoking may better explicate the mediational pathways linking smoking with a myriad of smoking related complex syndromes. Additionally, these results strongly suggest that combined epigenetic and genetic data analyses may be critical for a more complete understanding of the relationship between environmental variables, such as smoking, and pathophysiological outcomes. © 2017 Wiley Periodicals, Inc.

  16. Genome-wide association scan for variants associated with early-onset prostate cancer.

    Directory of Open Access Journals (Sweden)

    Ethan M Lange

    Full Text Available Prostate cancer is the most common non-skin cancer and the second leading cause of cancer related mortality for men in the United States. There is strong empirical and epidemiological evidence supporting a stronger role of genetics in early-onset prostate cancer. We performed a genome-wide association scan for early-onset prostate cancer. Novel aspects of this study include the focus on early-onset disease (defined as men with prostate cancer diagnosed before age 56 years and use of publically available control genotype data from previous genome-wide association studies. We found genome-wide significant (p<5×10(-8 evidence for variants at 8q24 and 11p15 and strong supportive evidence for a number of previously reported loci. We found little evidence for individual or systematic inflated association findings resulting from using public controls, demonstrating the utility of using public control data in large-scale genetic association studies of common variants. Taken together, these results demonstrate the importance of established common genetic variants for early-onset prostate cancer and the power of including early-onset prostate cancer cases in genetic association studies.

  17. SIGMA: A System for Integrative Genomic Microarray Analysis of Cancer Genomes

    Directory of Open Access Journals (Sweden)

    Davies Jonathan J

    2006-12-01

    Full Text Available Abstract Background The prevalence of high resolution profiling of genomes has created a need for the integrative analysis of information generated from multiple methodologies and platforms. Although the majority of data in the public domain are gene expression profiles, and expression analysis software are available, the increase of array CGH studies has enabled integration of high throughput genomic and gene expression datasets. However, tools for direct mining and analysis of array CGH data are limited. Hence, there is a great need for analytical and display software tailored to cross platform integrative analysis of cancer genomes. Results We have created a user-friendly java application to facilitate sophisticated visualization and analysis such as cross-tumor and cross-platform comparisons. To demonstrate the utility of this software, we assembled array CGH data representing Affymetrix SNP chip, Stanford cDNA arrays and whole genome tiling path array platforms for cross comparison. This cancer genome database contains 267 profiles from commonly used cancer cell lines representing 14 different tissue types. Conclusion In this study we have developed an application for the visualization and analysis of data from high resolution array CGH platforms that can be adapted for analysis of multiple types of high throughput genomic datasets. Furthermore, we invite researchers using array CGH technology to deposit both their raw and processed data, as this will be a continually expanding database of cancer genomes. This publicly available resource, the System for Integrative Genomic Microarray Analysis (SIGMA of cancer genomes, can be accessed at http://sigma.bccrc.ca.

  18. DNA replication timing is maintained genome-wide in primary human myoblasts independent of D4Z4 contraction in FSH muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Benjamin D Pope

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is linked to contraction of an array of tandem 3.3-kb repeats (D4Z4 at 4q35.2 from 11-100 copies to 1-10 copies. The extent to which D4Z4 contraction at 4q35.2 affects overall 4q35.2 chromatin organization remains unclear. Because DNA replication timing is highly predictive of long-range chromatin interactions, we generated genome-wide replication-timing profiles for FSHD and control myogenic precursor cells. We compared non-immortalized myoblasts from four FSHD patients and three control individuals to each other and to a variety of other human cell types. This study also represents the first genome-wide comparison of replication timing profiles in non-immortalized human cell cultures. Myoblasts from both control and FSHD individuals all shared a myoblast-specific replication profile. In contrast, male and female individuals were readily distinguished by monoallelic differences in replication timing at DXZ4 and other regions across the X chromosome affected by X inactivation. We conclude that replication timing is a robust cell-type specific feature that is unaffected by FSHD-related D4Z4 contraction.

  19. Genome-wide identification and characterization of R2R3MYB family in Rosaceae.

    Science.gov (United States)

    González, Máximo; Carrasco, Basilio; Salazar, Erika

    2016-09-01

    Transcription factors R2R3MYB family have been associated with the control of secondary metabolites, development of structures, cold tolerance and response to biotic and abiotic stress, among others. In recent years, genomes of Rosaceae botanical family are available. Although this information has been used to study the karyotype evolution of these species from an ancestral genome, there are no studies that treat the evolution and diversity of gene families present in these species or in the botanical family. Here we present the first comparative study of the R2R3MYB subfamily of transcription factors in three species of Rosaceae family (Malus domestica, Prunus persica and Fragaria vesca). We described 186, 98 and 86 non-redundant gene models for apple, peach and strawberry, respectively. In this research, we analyzed the intron-exon structure and genomic distribution of R2R3MYB families mentioned above. The phylogenetic comparisons revealed putative functions of some R2R3MYB transcription factors. This analysis found 44 functional subgroups, seven of which were unique for Rosaceae. In addition, our results showed a highly collinearity among some genes revealing the existence of conserved gene models between the three species studied. Although some gene models in these species have been validated under several approaches, more research in the Rosaceae family is necessary to determine gene expression patterns in specific tissues and development stages to facilitate understanding of the regulatory and biochemical mechanism in this botanical family.

  20. Investigation of Maternal Genotype Effects in Autism by Genome-Wide Association

    Science.gov (United States)

    Yuan, Han; Dougherty, Joseph D.

    2014-01-01

    Lay Abstract Autism spectrum disorders (ASDs) are pervasive developmental disorders which have both a genetic and environmental component. One source of the environmental component is the in utero (prenatal) environment. The maternal genome can potentially contribute to the risk of autism in children by altering this prenatal environment. In this study, the possibility of maternal genotype effects was explored by looking for common variants (single nucleotide polymorphisms, or SNPs) in the maternal genome associated with increased risk of autism in children. We performed a case/control genome-wide association study (GWAS) using mothers of probands as cases and either fathers of probands or normal females as controls, using two collections of families with autism. We did not identify any SNP that reached significance and thus a common variant of large effect is unlikely. However, there was evidence for the possibility of a large number of alleles each carrying a small effect. This suggested that if there is a contribution to autism risk through common-variant maternal genetic effects, it may be the result of multiple loci of small effects. We did not investigate rare variants in this study. Scientific Abstract Like most psychiatric disorders, autism spectrum disorders have both a genetic and an environmental component. While previous studies have clearly demonstrated the contribution of in utero (prenatal) environment on autism risk, most of them focused on transient environmental factors. Based on a recent sibling study, we hypothesized that environmental factors could also come from the maternal genome, which would result in persistent effects across siblings. In this study, the possibility of maternal genotype effects was examined by looking for common variants (single nucleotide polymorphisms, or SNPs) in the maternal genome associated with increased risk of autism in children. A case/control genome-wide association study (GWAS) was performed using mothers of

  1. Genome-wide selection signatures in Pinzgau cattle

    Directory of Open Access Journals (Sweden)

    Radovan Kasarda

    2015-08-01

    Full Text Available The aim of this study was to identify the evidence of recent selection based on estimation of the integrated Haplotype Score (iHS, population differentiation index (FST and characterize affected regions near QTL associated with traits under strong selection in Pinzgau cattle. In total 21 Austrian and 19 Slovak purebreed bulls genotyped with Illumina bovineHD and  bovineSNP50 BeadChip were used to identify genomic regions under selection. Only autosomal loci with call rate higher than 90%, minor allele frequency higher than 0.01 and Hardy-Weinberg equlibrium limit of 0.001 were included in the subsequent analyses of selection sweeps presence. The final dataset was consisted from 30538 SNPs with 81.86 kb average adjacent SNPs spacing. The iHS score were averaged into non-overlapping 500 kb segments across the genome. The FST values were also plotted against genome position based on sliding windows approach and averaged over 8 consecutive SNPs. Based on integrated Haplotype Score evaluation only 7 regions with iHS score higher than 1.7 was found. The average iHS score observed for each adjacent syntenic regions indicated slight effect of recent selection in analysed group of Pinzgau bulls. The level of genetic differentiation between Austrian and Slovak bulls estimated based on FST index was low. Only 24% of FST values calculated for each SNP was greather than 0.01. By using sliding windows approach was found that 5% of analysed windows had higher value than 0.01. Our results indicated use of similar selection scheme in breeding programs of Slovak and Austrian Pinzgau bulls. The evidence for genome-wide association between signatures of selection and regions affecting complex traits such as milk production was insignificant, because the loci in segments identified as affected by selection were very distant from each other. Identification of genomic regions that may be under pressure of selection for phenotypic traits to better understanding of the

  2. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis

    OpenAIRE

    Khan, Meraj A; Sengupta, Jayasree; Mittal, Suneeta; Ghosh, Debabrata

    2012-01-01

    Abstract Background In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eu...

  3. Fabrication of multi-focal microlens array on curved surface for wide-angle camera module

    Science.gov (United States)

    Pan, Jun-Gu; Su, Guo-Dung J.

    2017-08-01

    In this paper, we present a wide-angle and compact camera module that consists of microlens array with different focal lengths on curved surface. The design integrates the principle of an insect's compound eye and the human eye. It contains a curved hexagonal microlens array and a spherical lens. Compared with normal mobile phone cameras which usually need no less than four lenses, but our proposed system only uses one lens. Furthermore, the thickness of our proposed system is only 2.08 mm and diagonal full field of view is about 100 degrees. In order to make the critical microlens array, we used the inkjet printing to control the surface shape of each microlens for achieving different focal lengths and use replication method to form curved hexagonal microlens array.

  4. Efficient genome-wide association in biobanks using topic modeling identifies multiple novel disease loci.

    Science.gov (United States)

    McCoy, Thomas H; Castro, Victor M; Snapper, Leslie A; Hart, Kamber L; Perlis, Roy H

    2017-08-31

    Biobanks and national registries represent a powerful tool for genomic discovery, but rely on diagnostic codes that may be unreliable and fail to capture the relationship between related diagnoses. We developed an efficient means of conducting genome-wide association studies using combinations of diagnostic codes from electronic health records (EHR) for 10845 participants in a biobanking program at two large academic medical centers. Specifically, we applied latent Dirichilet allocation to fit 50 disease topics based on diagnostic codes, then conducted genome-wide common-variant association for each topic. In sensitivity analysis, these results were contrasted with those obtained from traditional single-diagnosis phenome-wide association analysis, as well as those in which only a subset of diagnostic codes are included per topic. In meta-analysis across three biobank cohorts, we identified 23 disease-associated loci with p<1e-15, including previously associated autoimmune disease loci. In all cases, observed significant associations were of greater magnitude than for single phenome-wide diagnostic codes, and incorporation of less strongly-loading diagnostic codes enhanced association. This strategy provides a more efficient means of phenome-wide association in biobanks with coded clinical data.

  5. On the analysis of genome-wide association studies in family-based designs: a universal, robust analysis approach and an application to four genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Sungho Won

    2009-11-01

    Full Text Available For genome-wide association studies in family-based designs, we propose a new, universally applicable approach. The new test statistic exploits all available information about the association, while, by virtue of its design, it maintains the same robustness against population admixture as traditional family-based approaches that are based exclusively on the within-family information. The approach is suitable for the analysis of almost any trait type, e.g. binary, continuous, time-to-onset, multivariate, etc., and combinations of those. We use simulation studies to verify all theoretically derived properties of the approach, estimate its power, and compare it with other standard approaches. We illustrate the practical implications of the new analysis method by an application to a lung-function phenotype, forced expiratory volume in one second (FEV1 in 4 genome-wide association studies.

  6. The exon-3 deleted growth hormone receptor polymorphism predisposes to long-term complications of acromegaly

    NARCIS (Netherlands)

    Wassenaar, M. J. E.; Biermasz, N. R.; Pereira, A. M.; van der Klaauw, A. A.; Smit, J. W. A.; Roelfsema, F.; van der Straaten, T.; Cazemier, M.; Hommes, D. W.; Kroon, H. M.; Kloppenburg, M.; Guchelaar, H.-J.; Romijn, J. A.

    2009-01-01

    The aim of the study was to evaluate the impact of the genomic deletion of exon 3 of the GH receptor (d3GHR) on long-term clinical outcome of acromegaly in a well-characterized cohort of patients with long-term remission of acromegaly. We conducted a cross-sectional study. The presence of the d3GHR

  7. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    NARCIS (Netherlands)

    Anttila, Verneri; Winsvold, Bendik S.; Gormley, Padhraig; Kurth, Tobias; Bettella, Francesco; McMahon, George; Kallela, Mikko; Malik, Rainer; de Vries, Boukje; Terwindt, Gisela; Medland, Sarah E.; Todt, Unda; McArdle, Wendy L.; Quaye, Lydia; Koiranen, Markku; Ikram, M. Arfan; Lehtimaki, Terho; Stam, Anine H.; Ligthart, Lannie; Wedenoja, Juho; Dunham, Ian; Neale, Benjamin M.; Palta, Priit; Hamalainen, Eija; Schuerks, Markus; Rose, Lynda M.; Buring, Julie E.; Ridker, Paul M.; Steinberg, Stacy; Stefansson, Hreinn; Jakobsson, Finnbogi; Lawlor, Debbie A.; Evans, David M.; Ring, Susan M.; Farkkila, Markus; Artto, Ville; Kaunisto, Mari A.; Freilinger, Tobias; Schoenen, Jean; Frants, Rune R.; Pelzer, Nadine; Weller, Claudia M.; Zielman, Ronald; Heath, Andrew C.; Madden, Pamela A. F.; Montgomery, Grant W.; Martin, Nicholas G.; Borck, Guntram; Goebel, Hartmut; Heinze, Axel

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and

  8. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    NARCIS (Netherlands)

    Anttila, V.; Winsvold, B.S.; Gormley, P.; Kurth, T.; Bettella, F.; McMahon, G.; Kallela, M.; Malik, R.; de Vries, B.; Terwindt, G.; Medland, S.E.; Todt, U.; McArdle, W.L.; Quaye, L.; Koiranen, M.; Ikram, M.A.; Lehtimäki, T.; Stam, A.H.; Ligthart, R.S.L.; Wedenoja, J.; Dunham, I.; Neale, B. M.; Palta, P.; Hamalainen, E.; Schürks, M.; Rose, L.M.; Buring, J.E.; Ridker, P.M.; Steinberg, S.; Stefansson, H.; Jakobsson, F.; Lawlor, D.A.; Evans, D.M.; Ring, S.M.; Färkkilä, M.; Artto, V.; Kaunisto, M.A.; Freilinger, T.; Schoenen, J.; Frants, R.R.; Pelzer, N.; Weller, C.M.; Zielman, R.; Heath, A.C.; Madden, P.A.F.; Montgomery, G.W.; Martin, N.G.; Borck, G.; Göbel, H.; Heinze, A.; Heinze-Kuhn, K.; Williams, F.M.; Hartikainen, A.-L.; Pouta, A.; van den Ende, J..; Uitterlinden, A.G.; Hofman, A.; Amin, N.; Hottenga, J.J.; Vink, J.M.; Heikkilä, K.; Alexander, M.; Muller-Myhsok, B.; Schreiber, S; Meitinger, T.; Wichmann, H. E.; Aromaa, A.; Eriksson, J.G.; Traynor, B.J.; Trabzuni, D.; Rossin, E.; Lage, K.; Jacobs, S.B.; Gibbs, J.R.; Birney, E.; Kaprio, J.; Penninx, B.W.J.H.; Boomsma, D.I.; van Duijn, C.M.; Raitakari, O.; Jarvelin, M.-R.; Zwart, J.A.; Cherkas, L.; Strachan, D.P.; Kubisch, C.; Ferrari, M.D.; van den Maagdenberg, A.M.J.M.; Dichgans, M.; Wessman, M.; Smith, G.D.; Stefansson, K.; Daly, M.J.; Nyholt, DR; Chasman, D.I.; Palotie, A.

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and

  9. Genome-wide meta-analysis identifies new susceptibility loci for migraine

    DEFF Research Database (Denmark)

    Anttila, Verneri; Winsvold, Bendik S; Gormley, Padhraig

    2013-01-01

    Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) an...

  10. Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis (Rhodophyta) based on next-generation sequencing.

    Science.gov (United States)

    Zhou, Wei; Hu, Yiyi; Sui, Zhenghong; Fu, Feng; Wang, Jinguo; Chang, Lianpeng; Guo, Weihua; Li, Binbin

    2013-01-01

    Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon.

  11. Genome Survey Sequencing and Genetic Background Characterization of Gracilariopsis lemaneiformis (Rhodophyta) Based on Next-Generation Sequencing

    Science.gov (United States)

    Sui, Zhenghong; Fu, Feng; Wang, Jinguo; Chang, Lianpeng; Guo, Weihua; Li, Binbin

    2013-01-01

    Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon. PMID:23875008

  12. Genome wide single cell analysis of chemotherapy resistant metastatic cells in a case of gastroesophageal adenocarcinoma

    International Nuclear Information System (INIS)

    Hjortland, Geir Olav; Fodstad, Oystein; Smeland, Sigbjorn; Hovig, Eivind; Meza-Zepeda, Leonardo A; Beiske, Klaus; Ree, Anne H; Tveito, Siri; Hoifodt, Hanne; Bohler, Per J; Hole, Knut H; Myklebost, Ola

    2011-01-01

    Metastatic progression due to development or enrichment of therapy-resistant tumor cells is eventually lethal. Molecular characterization of such chemotherapy resistant tumor cell clones may identify markers responsible for malignant progression and potential targets for new treatment. Here, in a case of stage IV adenocarcinoma of the gastroesophageal junction, we report the successful genome wide analysis using array comparative genomic hybridization (CGH) of DNA from only fourteen tumor cells using a bead-based single cell selection method from a bone metastasis progressing during chemotherapy. In a case of metastatic adenocarcinoma of the gastroesophageal junction, the progression of bone metastasis was observed during a chemotherapy regimen of epirubicin, oxaliplatin and capecitabine, whereas lung-, liver and lymph node metastases as well as the primary tumor were regressing. A bone marrow aspirate sampled at the site of progressing metastasis in the right iliac bone was performed, and single cell molecular analysis using array-CGH of Epithelial Specific Antigen (ESA)-positive metastatic cells, and revealed two distinct regions of amplification, 12p12.1 and 17q12-q21.2 amplicons, containing the KRAS (12p) and ERBB2 (HER2/NEU) (17q) oncogenes. Further intrapatient tumor heterogeneity of these highlighted gene copy number changes was analyzed by fluorescence in situ hybridization (FISH) in all available primary and metastatic tumor biopsies, and ErbB2 protein expression was investigated by immunohistochemistry. ERBB2 was heterogeneously amplified by FISH analysis in the primary tumor, as well as liver and bone metastasis, but homogenously amplified in biopsy specimens from a progressing bone metastasis after three initial cycles of chemotherapy, indicating a possible enrichment of erbB2 positive tumor cells in the progressing bone marrow metastasis during chemotherapy. A similar amplification profile was detected for wild-type KRAS, although more heterogeneously

  13. Genome-wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar type.

    Science.gov (United States)

    Green, Elaine K; Di Florio, Arianna; Forty, Liz; Gordon-Smith, Katherine; Grozeva, Detelina; Fraser, Christine; Richards, Alexander L; Moran, Jennifer L; Purcell, Shaun; Sklar, Pamela; Kirov, George; Owen, Michael J; O'Donovan, Michael C; Craddock, Nick; Jones, Lisa; Jones, Ian R

    2017-12-01

    Studies have suggested that Research Diagnostic Criteria for Schizoaffective Disorder Bipolar type (RDC-SABP) might identify a more genetically homogenous subgroup of bipolar disorder. Aiming to identify loci associated with RDC-SABP, we have performed a replication study using independent RDC-SABP cases (n = 144) and controls (n = 6,559), focusing on the 10 loci that reached a p-value bipolar disorder sample. Combining the WTCCC and replication datasets by meta-analysis (combined RDC-SABP, n = 423, controls, n = 9,494), we observed genome-wide significant association at one SNP, rs2352974, located within the intron of the gene TRAIP on chromosome 3p21.31 (p-value, 4.37 × 10 -8 ). This locus did not reach genome-wide significance in bipolar disorder or schizophrenia large Psychiatric Genomic Consortium datasets, suggesting that it may represent a relatively specific genetic risk for the bipolar subtype of schizoaffective disorder. © 2017 Wiley Periodicals, Inc.

  14. Genome-Wide Analysis of Simple Sequence Repeats and Efficient Development of Polymorphic SSR Markers Based on Whole Genome Re-Sequencing of Multiple Isolates of the Wheat Stripe Rust Fungus.

    Directory of Open Access Journals (Sweden)

    Huaiyong Luo

    Full Text Available The biotrophic parasitic fungus Puccinia striiformis f. sp. tritici (Pst causes stripe rust, a devastating disease of wheat, endangering global food security. Because the Pst population is highly dynamic, it is difficult to develop wheat cultivars with durable and highly effective resistance. Simple sequence repeats (SSRs are widely used as molecular markers in genetic studies to determine population structure in many organisms. However, only a small number of SSR markers have been developed for Pst. In this study, a total of 4,792 SSR loci were identified using the whole genome sequences of six isolates from different regions of the world, with a marker density of one SSR per 22.95 kb. The majority of the SSRs were di- and tri-nucleotide repeats. A database containing 1,113 SSR markers were established. Through in silico comparison, the previously reported SSR markers were found mainly in exons, whereas the SSR markers in the database were mostly in intergenic regions. Furthermore, 105 polymorphic SSR markers were confirmed in silico by their identical positions and nucleotide variations with INDELs identified among the six isolates. When 104 in silico polymorphic SSR markers were used to genotype 21 Pst isolates, 84 produced the target bands, and 82 of them were polymorphic and revealed the genetic relationships among the isolates. The results show that whole genome re-sequencing of multiple isolates provides an ideal resource for developing SSR markers, and the newly developed SSR markers are useful for genetic and population studies of the wheat stripe rust fungus.

  15. Genome-Wide Analysis of Simple Sequence Repeats and Efficient Development of Polymorphic SSR Markers Based on Whole Genome Re-Sequencing of Multiple Isolates of the Wheat Stripe Rust Fungus.

    Science.gov (United States)

    Luo, Huaiyong; Wang, Xiaojie; Zhan, Gangming; Wei, Guorong; Zhou, Xinli; Zhao, Jing; Huang, Lili; Kang, Zhensheng

    2015-01-01

    The biotrophic parasitic fungus Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, a devastating disease of wheat, endangering global food security. Because the Pst population is highly dynamic, it is difficult to develop wheat cultivars with durable and highly effective resistance. Simple sequence repeats (SSRs) are widely used as molecular markers in genetic studies to determine population structure in many organisms. However, only a small number of SSR markers have been developed for Pst. In this study, a total of 4,792 SSR loci were identified using the whole genome sequences of six isolates from different regions of the world, with a marker density of one SSR per 22.95 kb. The majority of the SSRs were di- and tri-nucleotide repeats. A database containing 1,113 SSR markers were established. Through in silico comparison, the previously reported SSR markers were found mainly in exons, whereas the SSR markers in the database were mostly in intergenic regions. Furthermore, 105 polymorphic SSR markers were confirmed in silico by their identical positions and nucleotide variations with INDELs identified among the six isolates. When 104 in silico polymorphic SSR markers were used to genotype 21 Pst isolates, 84 produced the target bands, and 82 of them were polymorphic and revealed the genetic relationships among the isolates. The results show that whole genome re-sequencing of multiple isolates provides an ideal resource for developing SSR markers, and the newly developed SSR markers are useful for genetic and population studies of the wheat stripe rust fungus.

  16. Large exon size does not limit splicing in vivo.

    Science.gov (United States)

    Chen, I T; Chasin, L A

    1994-03-01

    Exon sizes in vertebrate genes are, with a few exceptions, limited to less than 300 bases. It has been proposed that this limitation may derive from the exon definition model of splice site recognition. In this model, a downstream donor site enhances splicing at the upstream acceptor site of the same exon. This enhancement may require contact between factors bound to each end of the exon; an exon size limitation would promote such contact. To test the idea that proximity was required for exon definition, we inserted random DNA fragments from Escherichia coli into a central exon in a three-exon dihydrofolate reductase minigene and tested whether the expanded exons were efficiently spliced. DNA from a plasmid library of expanded minigenes was used to transfect a CHO cell deletion mutant lacking the dhfr locus. PCR analysis of DNA isolated from the pooled stable cotransfectant populations displayed a range of DNA insert sizes from 50 to 1,500 nucleotides. A parallel analysis of the RNA from this population by reverse transcription followed by PCR showed a similar size distribution. Central exons as large as 1,400 bases could be spliced into mRNA. We also tested individual plasmid clones containing exon inserts of defined sizes. The largest exon included in mRNA was 1,200 bases in length, well above the 300-base limit implied by the survey of naturally occurring exons. We conclude that a limitation in exon size is not part of the exon definition mechanism.

  17. An Enhancer Near ISL1 and an Ultraconserved Exon of PCBP2 areDerived from a Retroposon

    Energy Technology Data Exchange (ETDEWEB)

    Bejerano, Gill; Lowe, Craig; Ahituv, Nadav; King, Bryan; Siepel,Adam; Salama, Sofie; Rubin, Edward M.; Kent, W. James; Haussler, David

    2005-11-27

    Hundreds of highly conserved distal cis-regulatory elementshave been characterized to date in vertebrate genomes1. Many thousandsmore are predicted based on comparative genomics2,3. Yet, in starkcontrast to the genes they regulate, virtually none of these regions canbe traced using sequence similarity in invertebrates, leaving theirevolutionary origin obscure. Here we show that a class of conserved,primarily non-coding regions in tetrapods originated from a novel shortinterspersed repetitive element (SINE) retroposon family that was activein Sarcopterygii (lobe-finned fishes and terrestrial vertebrates) in theSilurian at least 410 Mya4, and, remarkably, appears to be recentlyactive in the "living fossil" Indonesian coelacanth, Latimeriamenadoensis. We show that one copy is a distal enhancer, located 500kbfrom the neuro-developmental gene ISL1. Several others represent new,possibly regulatory, alternatively spliced exons in the middle ofpre-existing Sarcopterygian genes. One of these is the>200bpultraconserved region5, 100 percent identical in mammals, and 80 percentidentical to the coelacanth SINE, that contains a 31aa alternativelyspliced exon of the mRNA processing gene PCBP26. These add to a growinglist of examples7 in which relics of transposable elements have acquireda function that serves their host, a process termed "exaptation"8, andprovide an origin for at least some of the highly-conservedvertebrate-specific genomic sequences recently discovered usingcomparative genomics.

  18. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis

    KAUST Repository

    Coll, Francesc; Phelan, Jody; Hill-Cawthorne, Grant A.; Nair, Mridul; Mallard, Kim; Ali, Shahjahan; Abdallah, Abdallah; Alghamdi, Saad; Alsomali, Mona; Ahmed, Abdallah O.; Portelli, Stephanie; Oppong, Yaa; Alves, Adriana; Bessa, Theolis Barbosa; Campino, Susana; Caws, Maxine; Chatterjee, Anirvan; Crampin, Amelia C.; Dheda, Keertan; Furnham, Nicholas; Glynn, Judith R.; Grandjean, Louis; Minh Ha, Dang; Hasan, Rumina; Hasan, Zahra; Hibberd, Martin L.; Joloba, Moses; Jones-Ló pez, Edward C.; Matsumoto, Tomoshige; Miranda, Anabela; Moore, David J.; Mocillo, Nora; Panaiotov, Stefan; Parkhill, Julian; Penha, Carlos; Perdigã o, Joã o; Portugal, Isabel; Rchiad, ‍ Zineb; Robledo, Jaime; Sheen, Patricia; Shesha, Nashwa Talaat; Sirgel, Frik A.; Sola, Christophe; Oliveira Sousa, Erivelton; Streicher, Elizabeth M.; Helden, Paul Van; Viveiros, Miguel; Warren, Robert M.; McNerney, Ruth; Pain, Arnab; Clark, Taane G.

    2018-01-01

    To characterize the genetic determinants of resistance to antituberculosis drugs, we performed a genome-wide association study (GWAS) of 6,465 Mycobacterium tuberculosis clinical isolates from more than 30 countries. A GWAS approach within a mixed

  19. A genome-wide copy number variant study of suicidal behavior.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Gross

    Full Text Available Suicide and suicide attempts are complex behaviors that result from the interaction of different factors, including genetic variants that increase the predisposition to suicidal behaviors. Copy number variations (CNVs are deletions or duplications of a segment of DNA usually larger than one kilobase. These structural genetic changes, although quite rare, have been associated with genetic liability to mental disorders, such as autism, schizophrenia, and bipolar disorder. No genome-wide level studies have been published investigating the potential role of CNVs in suicidal behaviors. Based on single-nucleotide polymorphism array data, we followed the Penn-CNV standards to detect CNVs in 1,608 subjects, comprising 475 suicide and suicide attempt cases and 1,133 controls. Although the initial algorithms determined the presence of CNVs on chromosomes 6 and 12 in seven and eight cases, respectively, compared with none of the controls, visual inspection of the raw data did not support this finding. Furthermore we were unable to validate these findings by CNV-specific real-time polymerase chain reaction. Additionally, rare CNV burden analysis did not find an association between the frequency or length of rare CNVs and suicidal behavior in our sample population. Although our findings suggest CNVs do not play an important role in the etiology of suicidal behaviors, they are not inconsistent with the strong evidence from the literature suggesting that other genetic variants account for a portion of the total phenotypic variability in suicidal behavior.

  20. Genomics for public health improvement: relevant international ethical and policy issues around genome-wide association studies and biobanks.

    Science.gov (United States)

    Pang, T

    2013-01-01

    Genome-wide association studies and biobanks are at the forefront of genomics research and possess unprecedented potential to improve public health. However, for public health genomics to ultimately fulfill its potential, technological and scientific advances alone are insufficient. Scientists, ethicists, policy makers, and regulators must work closely together with research participants and communities in order to craft an equitable and just ethical framework, and a sustainable environment for effective policies. Such a framework should be a 'hybrid' form which balances equity and solidarity with entrepreneurship and scientific advances. A good balance between research and policy on one hand, and privacy, protection and trust on the other is the key for public health improvement based on advances in genomics science. Copyright © 2013 S. Karger AG, Basel.

  1. Genome-wide association study identifies new prostate cancer susceptibility loci

    DEFF Research Database (Denmark)

    Schumacher, Fredrick R.; Berndt, Sonja I.; Siddiq, Afshan

    2011-01-01

    Prostate cancer (PrCa) is the most common non-skin cancer diagnosed among males in developed countries and the second leading cause of cancer mortality, yet little is known regarding its etiology and factors that influence clinical outcome. Genome-wide association studies (GWAS) of PrCa have iden...

  2. Connecting the dots, genome-wide association studies in substance use

    NARCIS (Netherlands)

    Nivard, M.G.; Verweij, K.J.H.; Minica, C.C.; Treur, J.L.; Vink, J.M.; Boomsma, D.I.

    2016-01-01

    The recent genome-wide association (GWA) meta-analysis of lifetime cannabis use by the International Cannabis Consortium marks a milestone in the study of the genetics of cannabis use. Similar milestones for the genetics of substance use were the GWA meta-analyses of four smoking related traits, of

  3. Genome-wide methylation analysis identifies a core set of hypermethylated genes in CIMP-H colorectal cancer.

    Science.gov (United States)

    McInnes, Tyler; Zou, Donghui; Rao, Dasari S; Munro, Francesca M; Phillips, Vicky L; McCall, John L; Black, Michael A; Reeve, Anthony E; Guilford, Parry J

    2017-03-28

    Aberrant DNA methylation profiles are a characteristic of all known cancer types, epitomized by the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). Hypermethylation has been observed at CpG islands throughout the genome, but it is unclear which factors determine whether an individual island becomes methylated in cancer. DNA methylation in CRC was analysed using the Illumina HumanMethylation450K array. Differentially methylated loci were identified using Significance Analysis of Microarrays (SAM) and the Wilcoxon Signed Rank (WSR) test. Unsupervised hierarchical clustering was used to identify methylation subtypes in CRC. In this study we characterized the DNA methylation profiles of 94 CRC tissues and their matched normal counterparts. Consistent with previous studies, unsupervized hierarchical clustering of genome-wide methylation data identified three subtypes within the tumour samples, designated CIMP-H, CIMP-L and CIMP-N, that showed high, low and very low methylation levels, respectively. Differential methylation between normal and tumour samples was analysed at the individual CpG level, and at the gene level. The distribution of hypermethylation in CIMP-N tumours showed high inter-tumour variability and appeared to be highly stochastic in nature, whereas CIMP-H tumours exhibited consistent hypermethylation at a subset of genes, in addition to a highly variable background of hypermethylated genes. EYA4, TFPI2 and TLX1 were hypermethylated in more than 90% of all tumours examined. One-hundred thirty-two genes were hypermethylated in 100% of CIMP-H tumours studied and these were highly enriched for functions relating to skeletal system development (Bonferroni adjusted p value =2.88E-15), segment specification (adjusted p value =9.62E-11), embryonic development (adjusted p value =1.52E-04), mesoderm development (adjusted p value =1.14E-20), and ectoderm development (adjusted p value =7.94E-16). Our genome-wide characterization of DNA

  4. Genome-wide identification of SAUR genes in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Zhang, Na; Huang, Xing; Bao, Yaning; Wang, Bo; Zeng, Hongxia; Cheng, Weishun; Tang, Mi; Li, Yuhua; Ren, Jian; Sun, Yuhong

    2017-07-01

    The early auxin responsive SAUR family is an important gene family in auxin signal transduction. We here present the first report of a genome-wide identification of SAUR genes in watermelon genome. We successfully identified 65 ClaSAURs and provide a genomic framework for future study on these genes. Phylogenetic result revealed a Cucurbitaceae-specific SAUR subfamily and contribute to understanding of the evolutionary pattern of SAUR genes in plants. Quantitative RT-PCR analysis demonstrates the existed expression of 11 randomly selected SAUR genes in watermelon tissues. ClaSAUR36 was highly expressed in fruit, for which further study might bring a new prospective for watermelon fruit development. Moreover, correlation analysis revealed the similar expression profiles of SAUR genes between watermelon and Arabidopsis during shoot organogenesis. This work gives us a new support for the conserved auxin machinery in plants.

  5. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus.

    Science.gov (United States)

    Müller, Bárbara S F; Neves, Leandro G; de Almeida Filho, Janeo E; Resende, Márcio F R; Muñoz, Patricio R; Dos Santos, Paulo E T; Filho, Estefano Paludzyszyn; Kirst, Matias; Grattapaglia, Dario

    2017-07-11

    The advent of high-throughput genotyping technologies coupled to genomic prediction methods established a new paradigm to integrate genomics and breeding. We carried out whole-genome prediction and contrasted it to a genome-wide association study (GWAS) for growth traits in breeding populations of Eucalyptus benthamii (n =505) and Eucalyptus pellita (n =732). Both species are of increasing commercial interest for the development of germplasm adapted to environmental stresses. Predictive ability reached 0.16 in E. benthamii and 0.44 in E. pellita for diameter growth. Predictive abilities using either Genomic BLUP or different Bayesian methods were similar, suggesting that growth adequately fits the infinitesimal model. Genomic prediction models using ~5000-10,000 SNPs provided predictive abilities equivalent to using all 13,787 and 19,506 SNPs genotyped in the E. benthamii and E. pellita populations, respectively. No difference was detected in predictive ability when different sets of SNPs were utilized, based on position (equidistantly genome-wide, inside genes, linkage disequilibrium pruned or on single chromosomes), as long as the total number of SNPs used was above ~5000. Predictive abilities obtained by removing relatedness between training and validation sets fell near zero for E. benthamii and were halved for E. pellita. These results corroborate the current view that relatedness is the main driver of genomic prediction, although some short-range historical linkage disequilibrium (LD) was likely captured for E. pellita. A GWAS identified only one significant association for volume growth in E. pellita, illustrating the fact that while genome-wide regression is able to account for large proportions of the heritability, very little or none of it is captured into significant associations using GWAS in breeding populations of the size evaluated in this study. This study provides further experimental data supporting positive prospects of using genome-wide data to

  6. Impacts of Genome-Wide Analyses on Our Understanding of Human Herpesvirus Diversity and Evolution.

    Science.gov (United States)

    Renner, Daniel W; Szpara, Moriah L

    2018-01-01

    Until fairly recently, genome-wide evolutionary dynamics and within-host diversity were more commonly examined in the context of small viruses than in the context of large double-stranded DNA viruses such as herpesviruses. The high mutation rates and more compact genomes of RNA viruses have inspired the investigation of population dynamics for these species, and recent data now suggest that herpesviruses might also be considered candidates for population modeling. High-throughput sequencing (HTS) and bioinformatics have expanded our understanding of herpesviruses through genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures. Here we discuss recent data on the mechanisms that generate herpesvirus genomic diversity and underlie the evolution of these virus families. We focus on human herpesviruses, with key insights drawn from veterinary herpesviruses and other large DNA virus families. We consider the impacts of cell culture on herpesvirus genomes and how to accurately describe the viral populations under study. The need for a strong foundation of high-quality genomes is also discussed, since it underlies all secondary genomic analyses such as RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling. Areas where we foresee future progress, such as the linking of viral genetic differences to phenotypic or clinical outcomes, are highlighted as well. Copyright © 2017 Renner and Szpara.

  7. Impacts of Genome-Wide Analyses on Our Understanding of Human Herpesvirus Diversity and Evolution

    Science.gov (United States)

    Renner, Daniel W.

    2017-01-01

    ABSTRACT Until fairly recently, genome-wide evolutionary dynamics and within-host diversity were more commonly examined in the context of small viruses than in the context of large double-stranded DNA viruses such as herpesviruses. The high mutation rates and more compact genomes of RNA viruses have inspired the investigation of population dynamics for these species, and recent data now suggest that herpesviruses might also be considered candidates for population modeling. High-throughput sequencing (HTS) and bioinformatics have expanded our understanding of herpesviruses through genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures. Here we discuss recent data on the mechanisms that generate herpesvirus genomic diversity and underlie the evolution of these virus families. We focus on human herpesviruses, with key insights drawn from veterinary herpesviruses and other large DNA virus families. We consider the impacts of cell culture on herpesvirus genomes and how to accurately describe the viral populations under study. The need for a strong foundation of high-quality genomes is also discussed, since it underlies all secondary genomic analyses such as RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling. Areas where we foresee future progress, such as the linking of viral genetic differences to phenotypic or clinical outcomes, are highlighted as well. PMID:29046445

  8. Genome-Wide Mapping of 5mC and 5hmC Identified Differentially Modified Genomic Regions in Late-Onset Severe Preeclampsia: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Lisha Zhu

    Full Text Available Preeclampsia (PE is a leading cause of perinatal morbidity and mortality. However, as a common form of PE, the etiology of late-onset PE is elusive. We analyzed 5-methylcytosine (5mC and 5-hydroxymethylcytosine (5hmC levels in the placentas of late-onset severe PE patients (n = 4 and normal controls (n = 4 using a (hydroxymethylated DNA immunoprecipitation approach combined with deep sequencing ([h]MeDIP-seq, and the results were verified by (hMeDIP-qPCR. The most significant differentially methylated regions (DMRs were verified by MassARRAY EppiTYPER in an enlarged sample size (n = 20. Bioinformatics analysis identified 714 peaks of 5mC that were associated with 403 genes and 119 peaks of 5hmC that were associated with 61 genes, thus showing significant differences between the PE patients and the controls (>2-fold, p<0.05. Further, only one gene, PTPRN2, had both 5mC and 5hmC changes in patients. The ErbB signaling pathway was enriched in those 403 genes that had significantly different 5mC level between the groups. This genome-wide mapping of 5mC and 5hmC in late-onset severe PE and normal controls demonstrates that both 5mC and 5hmC play epigenetic roles in the regulation of the disease, but work independently. We reveal the genome-wide mapping of DNA methylation and DNA hydroxymethylation in late-onset PE placentas for the first time, and the identified ErbB signaling pathway and the gene PTPRN2 may be relevant to the epigenetic pathogenesis of late-onset PE.

  9. Genome-wide association studies identify four ER negative-specific breast cancer risk loci.

    Science.gov (United States)

    Garcia-Closas, Montserrat; Couch, Fergus J; Lindstrom, Sara; Michailidou, Kyriaki; Schmidt, Marjanka K; Brook, Mark N; Orr, Nick; Rhie, Suhn Kyong; Riboli, Elio; Feigelson, Heather S; Le Marchand, Loic; Buring, Julie E; Eccles, Diana; Miron, Penelope; Fasching, Peter A; Brauch, Hiltrud; Chang-Claude, Jenny; Carpenter, Jane; Godwin, Andrew K; Nevanlinna, Heli; Giles, Graham G; Cox, Angela; Hopper, John L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dicks, Ed; Howat, Will J; Schoof, Nils; Bojesen, Stig E; Lambrechts, Diether; Broeks, Annegien; Andrulis, Irene L; Guénel, Pascal; Burwinkel, Barbara; Sawyer, Elinor J; Hollestelle, Antoinette; Fletcher, Olivia; Winqvist, Robert; Brenner, Hermann; Mannermaa, Arto; Hamann, Ute; Meindl, Alfons; Lindblom, Annika; Zheng, Wei; Devillee, Peter; Goldberg, Mark S; Lubinski, Jan; Kristensen, Vessela; Swerdlow, Anthony; Anton-Culver, Hoda; Dörk, Thilo; Muir, Kenneth; Matsuo, Keitaro; Wu, Anna H; Radice, Paolo; Teo, Soo Hwang; Shu, Xiao-Ou; Blot, William; Kang, Daehee; Hartman, Mikael; Sangrajrang, Suleeporn; Shen, Chen-Yang; Southey, Melissa C; Park, Daniel J; Hammet, Fleur; Stone, Jennifer; Veer, Laura J Van't; Rutgers, Emiel J; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Peto, Julian; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Dos Santos Silva, Isabel; Johnson, Nichola; Warren, Helen; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Marme, Federick; Schneeweiss, Andreas; Sohn, Christof; Truong, Therese; Laurent-Puig, Pierre; Kerbrat, Pierre; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Milne, Roger L; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Lichtner, Peter; Lochmann, Magdalena; Justenhoven, Christina; Ko, Yon-Dschun; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Greco, Dario; Heikkinen, Tuomas; Ito, Hidemi; Iwata, Hiroji; Yatabe, Yasushi; Antonenkova, Natalia N; Margolin, Sara; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Balleine, Rosemary; Tseng, Chiu-Chen; Berg, David Van Den; Stram, Daniel O; Neven, Patrick; Dieudonné, Anne-Sophie; Leunen, Karin; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Peterlongo, Paolo; Peissel, Bernard; Bernard, Loris; Olson, Janet E; Wang, Xianshu; Stevens, Kristen; Severi, Gianluca; Baglietto, Laura; McLean, Catriona; Coetzee, Gerhard A; Feng, Ye; Henderson, Brian E; Schumacher, Fredrick; Bogdanova, Natalia V; Labrèche, France; Dumont, Martine; Yip, Cheng Har; Taib, Nur Aishah Mohd; Cheng, Ching-Yu; Shrubsole, Martha; Long, Jirong; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Kauppila, Saila; Knight, Julia A; Glendon, Gord; Mulligan, Anna Marie; Tollenaar, Robertus A E M; Seynaeve, Caroline M; Kriege, Mieke; Hooning, Maartje J; van den Ouweland, Ans M W; van Deurzen, Carolien H M; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Balasubramanian, Sabapathy P; Cross, Simon S; Reed, Malcolm W R; Signorello, Lisa; Cai, Qiuyin; Shah, Mitul; Miao, Hui; Chan, Ching Wan; Chia, Kee Seng; Jakubowska, Anna; Jaworska, Katarzyna; Durda, Katarzyna; Hsiung, Chia-Ni; Wu, Pei-Ei; Yu, Jyh-Cherng; Ashworth, Alan; Jones, Michael; Tessier, Daniel C; González-Neira, Anna; Pita, Guillermo; Alonso, M Rosario; Vincent, Daniel; Bacot, Francois; Ambrosone, Christine B; Bandera, Elisa V; John, Esther M; Chen, Gary K; Hu, Jennifer J; Rodriguez-Gil, Jorge L; Bernstein, Leslie; Press, Michael F; Ziegler, Regina G; Millikan, Robert M; Deming-Halverson, Sandra L; Nyante, Sarah; Ingles, Sue A; Waisfisz, Quinten; Tsimiklis, Helen; Makalic, Enes; Schmidt, Daniel; Bui, Minh; Gibson, Lorna; Müller-Myhsok, Bertram; Schmutzler, Rita K; Hein, Rebecca; Dahmen, Norbert; Beckmann, Lars; Aaltonen, Kirsimari; Czene, Kamila; Irwanto, Astrid; Liu, Jianjun; Turnbull, Clare; Rahman, Nazneen; Meijers-Heijboer, Hanne; Uitterlinden, Andre G; Rivadeneira, Fernando; Olswold, Curtis; Slager, Susan; Pilarski, Robert; Ademuyiwa, Foluso; Konstantopoulou, Irene; Martin, Nicholas G; Montgomery, Grant W; Slamon, Dennis J; Rauh, Claudia; Lux, Michael P; Jud, Sebastian M; Bruning, Thomas; Weaver, Joellen; Sharma, Priyanka; Pathak, Harsh; Tapper, Will; Gerty, Sue; Durcan, Lorraine; Trichopoulos, Dimitrios; Tumino, Rosario; Peeters, Petra H; Kaaks, Rudolf; Campa, Daniele; Canzian, Federico; Weiderpass, Elisabete; Johansson, Mattias; Khaw, Kay-Tee; Travis, Ruth; Clavel-Chapelon, Françoise; Kolonel, Laurence N; Chen, Constance; Beck, Andy; Hankinson, Susan E; Berg, Christine D; Hoover, Robert N; Lissowska, Jolanta; Figueroa, Jonine D; Chasman, Daniel I; Gaudet, Mia M; Diver, W Ryan; Willett, Walter C; Hunter, David J; Simard, Jacques; Benitez, Javier; Dunning, Alison M; Sherman, Mark E; Chenevix-Trench, Georgia; Chanock, Stephen J; Hall, Per; Pharoah, Paul D P; Vachon, Celine; Easton, Douglas F; Haiman, Christopher A; Kraft, Peter

    2013-04-01

    Estrogen receptor (ER)-negative tumors represent 20-30% of all breast cancers, with a higher proportion occurring in younger women and women of African ancestry. The etiology and clinical behavior of ER-negative tumors are different from those of tumors expressing ER (ER positive), including differences in genetic predisposition. To identify susceptibility loci specific to ER-negative disease, we combined in a meta-analysis 3 genome-wide association studies of 4,193 ER-negative breast cancer cases and 35,194 controls with a series of 40 follow-up studies (6,514 cases and 41,455 controls), genotyped using a custom Illumina array, iCOGS, developed by the Collaborative Oncological Gene-environment Study (COGS). SNPs at four loci, 1q32.1 (MDM4, P = 2.1 × 10(-12) and LGR6, P = 1.4 × 10(-8)), 2p24.1 (P = 4.6 × 10(-8)) and 16q12.2 (FTO, P = 4.0 × 10(-8)), were associated with ER-negative but not ER-positive breast cancer (P > 0.05). These findings provide further evidence for distinct etiological pathways associated with invasive ER-positive and ER-negative breast cancers.

  10. Genome-wide mapping of autonomous promoter activity in human cells.

    Science.gov (United States)

    van Arensbergen, Joris; FitzPatrick, Vincent D; de Haas, Marcel; Pagie, Ludo; Sluimer, Jasper; Bussemaker, Harmen J; van Steensel, Bas

    2017-02-01

    Previous methods to systematically characterize sequence-intrinsic activity of promoters have been limited by relatively low throughput and the length of the sequences that could be tested. Here we present 'survey of regulatory elements' (SuRE), a method that assays more than 10 8 DNA fragments, each 0.2-2 kb in size, for their ability to drive transcription autonomously. In SuRE, a plasmid library of random genomic fragments upstream of a 20-bp barcode is constructed, and decoded by paired-end sequencing. This library is used to transfect cells, and barcodes in transcribed RNA are quantified by high-throughput sequencing. When applied to the human genome, we achieve 55-fold genome coverage, allowing us to map autonomous promoter activity genome-wide in K562 cells. By computational modeling we delineate subregions within promoters that are relevant for their activity. We show that antisense promoter transcription is generally dependent on the sense core promoter sequences, and that most enhancers and several families of repetitive elements act as autonomous transcription initiation sites.

  11. Genome-wide association study identifies 74 loci associated with educational attainment

    Science.gov (United States)

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark A.; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; Mangino, Massimo; Marten, Jonathan; Mihailov, Evelin; Miller, Michael B.; van der Most, Peter J.; Oldmeadow, Christopher; Payton, Antony; Pervjakova, Natalia; Peyrot, Wouter J.; Qian, Yong; Raitakari, Olli; Rueedi, Rico; Salvi, Erika; Schmidt, Börge; Schraut, Katharina E.; Shi, Jianxin; Smith, Albert V.; Poot, Raymond A.; Pourcain, Beate; Teumer, Alexander; Thorleifsson, Gudmar; Verweij, Niek; Vuckovic, Dragana; Wellmann, Juergen; Westra, Harm-Jan; Yang, Jingyun; Zhao, Wei; Zhu, Zhihong; Alizadeh, Behrooz Z.; Amin, Najaf; Bakshi, Andrew; Baumeister, Sebastian E.; Biino, Ginevra; Bønnelykke, Klaus; Boyle, Patricia A.; Campbell, Harry; Cappuccio, Francesco P.; Davies, Gail; De Neve, Jan-Emmanuel; Deloukas, Panos; Demuth, Ilja; Ding, Jun; Eibich, Peter; Eisele, Lewin; Eklund, Niina; Evans68, David M.; Faul, Jessica D.; Feitosa, Mary F.; Forstner, Andreas J.; Gandin, Ilaria; Gunnarsson, Bjarni; Halldórsson, Bjarni V.; Harris, Tamara B.; Heath, Andrew C.; Hocking, Lynne J.; Holliday, Elizabeth G.; Homuth, Georg; Horan, Michael A.; Hottenga, Jouke-Jan; de Jager, Philip L.; Joshi, Peter K.; Jugessur, Astanand; Kaakinen, Marika A.; Kähönen, Mika; Kanoni, Stavroula; Keltigangas-Järvinen, Liisa; Kiemeney, Lambertus A.L.M.; Kolcic, Ivana; Koskinen, Seppo; Kraja, Aldi T.; Kroh, Martin; Kutalik, Zoltan; Latvala, Antti; Launer, Lenore J.; Lebreton, Maël P.; Levinson, Douglas F.; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C.M.; Loukola, Anu; Madden, Pamela A.; Mägi, Reedik; Mäki-Opas, Tomi; Marioni, Riccardo E.; Marques-Vidal, Pedro; Meddens, Gerardus A.; McMahon, George; Meisinger, Christa; Meitinger, Thomas; Milaneschi, Yusplitri; Milani, Lili; Montgomery, Grant W.; Myhre, Ronny; Nelson, Christopher P.; Nyholt, Dale R.; Ollier, William E.R.; Palotie, Aarno; Paternoster, Lavinia; Pedersen, Nancy L.; Petrovic, Katja E.; Porteous, David J.; Räikkönen, Katri; Ring, Susan M.; Robino, Antonietta; Rostapshova, Olga; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sanders, Alan R.; Sarin, Antti-Pekka; Schmidt, Helena; Scott, Rodney J.; Smith, Blair H.; Smith, Jennifer A.; Staessen, Jan A.; Steinhagen-Thiessen, Elisabeth; Strauch, Konstantin; Terracciano, Antonio; Tobin, Martin D.; Ulivi, Sheila; Vaccargiu, Simona; Quaye, Lydia; van Rooij, Frank J.A.; Venturini, Cristina; Vinkhuyzen, Anna A.E.; Völker, Uwe; Völzke, Henry; Vonk, Judith M.; Vozzi, Diego; Waage, Johannes; Ware, Erin B.; Willemsen, Gonneke; Attia, John R.; Bennett, David A.; Berger, Klaus; Bertram, Lars; Bisgaard, Hans; Boomsma, Dorret I.; Borecki, Ingrid B.; Bultmann, Ute; Chabris, Christopher F.; Cucca, Francesco; Cusi, Daniele; Deary, Ian J.; Dedoussis, George V.; van Duijn, Cornelia M.; Eriksson, Johan G.; Franke, Barbara; Franke, Lude; Gasparini, Paolo; Gejman, Pablo V.; Gieger, Christian; Grabe, Hans-Jörgen; Gratten, Jacob; Groenen, Patrick J.F.; Gudnason, Vilmundur; van der Harst, Pim; Hayward, Caroline; Hinds, David A.; Hoffmann, Wolfgang; Hyppönen, Elina; Iacono, William G.; Jacobsson, Bo; Järvelin, Marjo-Riitta; Jöckel, Karl-Heinz; Kaprio, Jaakko; Kardia, Sharon L.R.; Lehtimäki, Terho; Lehrer, Steven F.; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; Metspalu, Andres; Pendleton, Neil; Penninx, Brenda W.J.H.; Perola, Markus; Pirastu, Nicola; Pirastu, Mario; Polasek, Ozren; Posthuma, Danielle; Power, Christine; Province, Michael A.; Samani, Nilesh J.; Schlessinger, David; Schmidt, Reinhold; Sørensen, Thorkild I.A.; Spector, Tim D.; Stefansson, Kari; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tiemeier, Henning; Tung, Joyce Y.; Uitterlinden, André G.; Vitart, Veronique; Vollenweider, Peter; Weir, David R.; Wilson, James F.; Wright, Alan F.; Conley, Dalton C.; Krueger, Robert F.; Smith, George Davey; Hofman, Albert; Laibson, David I.; Medland, Sarah E.; Meyer, Michelle N.; Yang, Jian; Johannesson, Magnus; Visscher, Peter M.; Esko, Tõnu; Koellinger, Philipp D.; Cesarini, David; Benjamin, Daniel J.

    2016-01-01

    Summary Educational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease. PMID:27225129

  12. Genome-wide expression profiling during protection from colitis by regulatory T cells

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Olsen, Jørgen; Gad, Monika

    2008-01-01

    BACKGROUND: In the adoptive transfer model of colitis it has been shown that regulatory T cells (Treg) can hinder disease development and cure already existing mild colitis. The mechanisms underlying this regulatory effect of CD4(+)CD25(+) Tregs are not well understood. METHODS: To identify......Chip Mouse Genome 430 2.0 Array), which enabled an analysis of a complete set of RNA transcript levels in each sample. Array results were confirmed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR). RESULTS: Data were analyzed using combined projections to latent structures and functional...... annotation analysis. The colitic samples were clearly distinguishable from samples from normal mice by a vast number of inflammation- and growth factor-related transcripts. In contrast, the Treg-protected animals could not be distinguished from either the normal BALB/c mice or the normal SCID mice. mRNA...

  13. Generation of meiomaps of genome-wide recombination and chromosome segregation in human oocytes

    DEFF Research Database (Denmark)

    Ottolini, Christian S; Capalbo, Antonio; Newnham, Louise

    2016-01-01

    We have developed a protocol for the generation of genome-wide maps (meiomaps) of recombination and chromosome segregation for the three products of human female meiosis: the first and second polar bodies (PB1 and PB2) and the corresponding oocyte. PB1 is biopsied and the oocyte is artificially......-nucleotide polymorphisms (SNPs) genome-wide by microarray. Informative maternal heterozygous SNPs are phased using a haploid PB2 or oocyte as a reference. A simple algorithm is then used to identify the maternal haplotypes for each chromosome, in all of the products of meiosis for each oocyte. This allows mapping...

  14. Genetic link between family socioeconomic status and children's educational achievement estimated from genome-wide SNPs.

    Science.gov (United States)

    Krapohl, E; Plomin, R

    2016-03-01

    One of the best predictors of children's educational achievement is their family's socioeconomic status (SES), but the degree to which this association is genetically mediated remains unclear. For 3000 UK-representative unrelated children we found that genome-wide single-nucleotide polymorphisms could explain a third of the variance of scores on an age-16 UK national examination of educational achievement and half of the correlation between their scores and family SES. Moreover, genome-wide polygenic scores based on a previously published genome-wide association meta-analysis of total number of years in education accounted for ~3.0% variance in educational achievement and ~2.5% in family SES. This study provides the first molecular evidence for substantial genetic influence on differences in children's educational achievement and its association with family SES.

  15. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  16. Affymetrix SNP array data for wild Dutch great tits (Parus major)

    NARCIS (Netherlands)

    Silva, Da Vinicius; Laine, Veronika N.; Bosse, M.; Oers, C.H.J.; Dibbits, B.W.; Visser, M.E.; Crooijmans, R.P.M.A.; Groenen, M.

    2018-01-01

    The great tit is a widely studied passerine bird species in ecology that, in the past decades, has provided important insights into speciation, phenology, behavior and microevolution. After completion of the great tit genome sequence, a customized high density 650k SNP array was developed enabling

  17. Structural genomic variation in ischemic stroke

    Science.gov (United States)

    Matarin, Mar; Simon-Sanchez, Javier; Fung, Hon-Chung; Scholz, Sonja; Gibbs, J. Raphael; Hernandez, Dena G.; Crews, Cynthia; Britton, Angela; Wavrant De Vrieze, Fabienne; Brott, Thomas G.; Brown, Robert D.; Worrall, Bradford B.; Silliman, Scott; Case, L. Douglas; Hardy, John A.; Rich, Stephen S.; Meschia, James F.; Singleton, Andrew B.

    2008-01-01

    Technological advances in molecular genetics allow rapid and sensitive identification of genomic copy number variants (CNVs). This, in turn, has sparked interest in the function such variation may play in disease. While a role for copy number mutations as a cause of Mendelian disorders is well established, it is unclear whether CNVs may affect risk for common complex disorders. We sought to investigate whether CNVs may modulate risk for ischemic stroke (IS) and to provide a catalog of CNVs in patients with this disorder by analyzing copy number metrics produced as a part of our previous genome-wide single-nucleotide polymorphism (SNP)-based association study of ischemic stroke in a North American white population. We examined CNVs in 263 patients with ischemic stroke (IS). Each identified CNV was compared with changes identified in 275 neurologically normal controls. Our analysis identified 247 CNVs, corresponding to 187 insertions (76%; 135 heterozygous; 25 homozygous duplications or triplications; 2 heterosomic) and 60 deletions (24%; 40 heterozygous deletions;3 homozygous deletions; 14 heterosomic deletions). Most alterations (81%) were the same as, or overlapped with, previously reported CNVs. We report here the first genome-wide analysis of CNVs in IS patients. In summary, our study did not detect any common genomic structural variation unequivocally linked to IS, although we cannot exclude that smaller CNVs or CNVs in genomic regions poorly covered by this methodology may confer risk for IS. The application of genome-wide SNP arrays now facilitates the evaluation of structural changes through the entire genome as part of a genome-wide genetic association study. PMID:18288507

  18. A genome-wide approach to children's aggressive behavior: The EAGLE consortium

    NARCIS (Netherlands)

    Pappa, I.; St Pourcain, B.; Benke, K.S.; Cavadino, A.; Hakulinen, C.; Nivard, M.G.; Nolte, I.M.; Tiesler, C.M.T.; Bakermans-Kranenburg, M.J.; Davies, G.E.; Evans, D.M.; Geoffroy, M.C.; Grallert, H.; Blokhuis, M.M.; Hudziak, J.J.; Kemp, J.P.; Keltikangas-Järvinen, L.; McMahon, G.; Mileva-Seitz, V.R.; Motazedi, E.; Power, C.; Raitakari, O.T.; Ring, S.M.; Rivadeneira, F.; Rodriguez, A.; Scheet, P.; Seppälä, I.; Snieder, H.; Standl, M.; Thiering, E.; Timpson, N.J.; Veenstra, R.; Velders, F.P.; Whitehouse, A.J.O.; Davey Smith, G.; Heinrich, J.; Hypponen, E.; Lehtimäki, T.; Middeldorp, C.M.; Oldehinkel, A.J.; Pennell, C.E.; Boomsma, D.I.; Tiemeier, H.

    2016-01-01

    Individual differences in aggressive behavior emerge in early childhood and predict persisting behavioral problems and disorders. Studies of antisocial and severe aggression in adulthood indicate substantial underlying biology. However, little attention has been given to genome-wide approaches of

  19. Genome-wide deficiency screen for the genomic regions responsible for heat resistance in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Teramura Kouhei

    2011-06-01

    Full Text Available Abstract Background Temperature adaptation is one of the most important determinants of distribution and population size of organisms in nature. Recently, quantitative trait loci (QTL mapping and gene expression profiling approaches have been used for detecting candidate genes for heat resistance. However, the resolution of QTL mapping is not high enough to examine the individual effects of various genes in each QTL. Heat stress-responsive genes, characterized by gene expression profiling studies, are not necessarily responsible for heat resistance. Some of these genes may be regulated in association with the heat stress response of other genes. Results To evaluate which heat-responsive genes are potential candidates for heat resistance with higher resolution than previous QTL mapping studies, we performed genome-wide deficiency screen for QTL for heat resistance. We screened 439 isogenic deficiency strains from the DrosDel project, covering 65.6% of the Drosophila melanogaster genome in order to map QTL for thermal resistance. As a result, we found 19 QTL for heat resistance, including 3 novel QTL outside the QTL found in previous studies. Conclusion The QTL found in this study encompassed 19 heat-responsive genes found in the previous gene expression profiling studies, suggesting that they were strong candidates for heat resistance. This result provides new insights into the genetic architecture of heat resistance. It also emphasizes the advantages of genome-wide deficiency screen using isogenic deficiency libraries.

  20. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    M. Cornelis (Marilyn); E.M. Byrne; T. Esko (Tõnu); M.A. Nalls (Michael); A. Ganna (Andrea); N.P. Paynter (Nina); K.L. Monda (Keri); N. Amin (Najaf); K. Fischer (Krista); F. Renström (Frida); J.S. Ngwa; V. Huikari (Ville); A. Cavadino (Alana); I.M. Nolte (Ilja M.); A. Teumer (Alexander); K. Yu; P. Marques-Vidal; R. Rawal; A. Manichaikul (Ani); M.K. Wojczynski (Mary ); J.M. Vink; J.H. Zhao (Jing Hua); G. Burlutsky (George); J. Lahti (Jari); V. Mikkilä (Vera); R.N. Lemaitre (Rozenn ); J. Eriksson; S. Musani (Solomon); T. Tanaka; F. Geller (Frank); J. Luan; J. Hui; R. Mägi (Reedik); M. Dimitriou (Maria); M. Garcia (Melissa); W.-K. Ho; M.J. Wright (Margaret); L.M. Rose (Lynda M.); P.K.E. Magnusson (Patrik K. E.); N.L. Pedersen (Nancy L.); D.J. Couper (David); B.A. Oostra (Ben); A. Hofman (Albert); M.A. Ikram (Arfan); H.W. Tiemeier (Henning); A.G. Uitterlinden (André); F.J.A. van Rooij (Frank); I. Barroso; I. Johansson (Ingegerd); L. Xue (Luting); M. Kaakinen (Marika); L. Milani (Lili); C. Power (Christine); H. Snieder (Harold); R.P. Stolk; S.E. Baumeister (Sebastian); R. Biffar; F. Gu; F. Bastardot (Francois); Z. Kutalik; D.R. Jacobs (David); N.G. Forouhi (Nita G.); E. Mihailov (Evelin); L. Lind (Lars); C. Lindgren; K. Michaëlsson; A.P. Morris (Andrew); M.K. Jensen (Majken K.); K.T. Khaw; R.N. Luben (Robert); J.J. Wang; S. Männistö (Satu); M.-M. Perälä; M. Kähönen (Mika); T. Lehtimäki (Terho); J. Viikari (Jorma); D. Mozaffarian; K. Mukamal (Kenneth); B.M. Psaty (Bruce); A. Döring; A.C. Heath (Andrew C.); G.W. Montgomery (Grant W.); N. Dahmen (N.); T. Carithers; K.L. Tucker; L. Ferrucci (Luigi); H.A. Boyd; M. Melbye (Mads); J.L. Treur; D. Mellström (Dan); J.J. Hottenga (Jouke Jan); I. Prokopenko (Inga); A. Tönjes (Anke); P. Deloukas (Panagiotis); S. Kanoni (Stavroula); M. Lorentzon (Mattias); D.K. Houston; Y. Liu; J. Danesh (John); A. Rasheed; M.A. Mason; A.B. Zonderman; L. Franke (Lude); B.S. Kristal; J. Karjalainen (Juha); D.R. Reed; H.-J. Westra; M.K. Evans; D. Saleheen; T.B. Harris (Tamara); G.V. Dedoussis (George V.); G.C. Curhan (Gary); M. Stumvoll (Michael); J. Beilby (John); L.R. Pasquale; B. Feenstra; S. Bandinelli; J.M. Ordovas; A.T. Chan; U. Peters (Ulrike); C. Ohlsson (Claes); C. Gieger (Christian); N.G. Martin (Nicholas); M. Waldenberger (Melanie); D.S. Siscovick (David); O. Raitakari (Olli); J.G. Eriksson (Johan G.); P. Mitchell (Paul); D. Hunter (David); P. Kraft (Peter); E.B. Rimm (Eric B.); D.I. Boomsma (Dorret); I.B. Borecki (Ingrid); R.J.F. Loos (Ruth); N.J. Wareham (Nick); P.K. Vollenweider (Peter K.); N. Caporaso; H.J. Grabe (Hans Jörgen); M.L. Neuhouser (Marian L.); B.H.R. Wolffenbuttel (Bruce H. R.); F.B. Hu (Frank); E. Hypponen (Elina); M.-R. Jarvelin (Marjo-Riitta); L.A. Cupples (Adrienne); P.W. Franks; P.M. Ridker (Paul); C.M. van Duijn (Cornelia); G. Heiss (Gerardo); A. Metspalu (Andres); K.E. North (Kari); E. Ingelsson (Erik); J.A. Nettleton; R.M. van Dam (Rob); D.I. Chasman (Daniel)

    2015-01-01

    textabstractCoffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day)

  1. Genome-wide association study in discordant sibships identifies multiple inherited susceptibility alleles linked to lung cancer.

    Science.gov (United States)

    Galvan, Antonella; Falvella, Felicia S; Frullanti, Elisa; Spinola, Monica; Incarbone, Matteo; Nosotti, Mario; Santambrogio, Luigi; Conti, Barbara; Pastorino, Ugo; Gonzalez-Neira, Anna; Dragani, Tommaso A

    2010-03-01

    We analyzed a series of young (median age = 52 years) non-smoker lung cancer patients and their unaffected siblings as controls, using a genome-wide 620 901 single-nucleotide polymorphism (SNP) array analysis and a case-control DNA pooling approach. We identified 82 putatively associated SNPs that were retested by individual genotyping followed by use of the sib transmission disequilibrium test, pointing to 36 SNPs associated with lung cancer risk in the discordant sibs series. Analysis of these 36 SNPs in a polygenic model characterized by additive and interchangeable effects of rare alleles revealed a highly statistically significant dosage-dependent association between risk allele carrier status and proportion of cancer cases. Replication of the same 36 SNPs in a population-based series confirmed the association with lung cancer for three SNPs, suggesting that phenocopies and genetic heterogeneity can play a major role in the complex genetics of lung cancer risk in the general population.

  2. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array.

    Science.gov (United States)

    Antanaviciute, Laima; Fernández-Fernández, Felicidad; Jansen, Johannes; Banchi, Elisa; Evans, Katherine M; Viola, Roberto; Velasco, Riccardo; Dunwell, Jim M; Troggio, Michela; Sargent, Daniel J

    2012-05-25

    A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNP-based linkage map of an apple rootstock progeny. Of the 7,867 Malus SNP markers on the array, 1,823 (23.2%) were heterozygous in one of the two parents of the progeny, 1,007 (12.8%) were heterozygous in both parental genotypes, whilst just 2.8% of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the 'Golden Delicious' genome sequence. A total of 311 markers (13.7% of all mapped markers) mapped to positions that conflicted with their predicted positions on the 'Golden Delicious' pseudo-chromosomes, indicating the presence of paralogous genomic regions or mis-assignments of genome sequence contigs during the assembly and anchoring of the genome sequence. We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and the identification of SNPs that have been

  3. Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy

    DEFF Research Database (Denmark)

    Luca, Gianina; Haba-Rubio, José; Dauvilliers, Yves

    2013-01-01

    diagnosed according to International Classification of Sleep Disorders-2. Demographic and clinical characteristics, polysomnography and multiple sleep latency test data, hypocretin-1 levels, and genome-wide genotypes were available. We found a significantly lower age at sleepiness onset (men versus women...

  4. Case-control genome-wide association study of attention-deficit/hyperactivity disorder.

    NARCIS (Netherlands)

    Neale, B.M.; Medland, S.; Ripke, S.; Anney, R.J.; Asherson, P.; Buitelaar, J.K.; Franke, B.; Gill, M.; Kent, L.; Holmans, P.; Middleton, F.; Thapar, A.; Lesch, K.P.; Faraone, S.V.; Daly, M.; Nguyen, T.T.; Schafer, H.; Steinhausen, H.C.; Reif, A.; Renner, T.J.; Romanos, M.; Romanos, J.; Warnke, A.; Walitza, S.; Freitag, C.; Meyer, J.; Palmason, H.; Rothenberger, A.; Hawi, Z.; Sergeant, J.A.; Roeyers, H.; Mick, E.; Biederman, J.

    2010-01-01

    OBJECTIVE: Although twin and family studies have shown attention-deficit/hyperactivity disorder (ADHD) to be highly heritable, genetic variants influencing the trait at a genome-wide significant level have yet to be identified. Thus additional genomewide association studies (GWAS) are needed.

  5. Dynamic DNA binding, junction recognition and G4 melting activity underlie the telomeric and genome-wide roles of human CST.

    Science.gov (United States)

    Bhattacharjee, Anukana; Wang, Yongyao; Diao, Jiajie; Price, Carolyn M

    2017-12-01

    Human CST (CTC1-STN1-TEN1) is a ssDNA-binding complex that helps resolve replication problems both at telomeres and genome-wide. CST resembles Replication Protein A (RPA) in that the two complexes harbor comparable arrays of OB-folds and have structurally similar small subunits. However, the overall architecture and functions of CST and RPA are distinct. Currently, the mechanism underlying CST action at diverse replication issues remains unclear. To clarify CST mechanism, we examined the capacity of CST to bind and resolve DNA structures found at sites of CST activity. We show that CST binds preferentially to ss-dsDNA junctions, an activity that can explain the incremental nature of telomeric C-strand synthesis following telomerase action. We also show that CST unfolds G-quadruplex structures, thus providing a mechanism for CST to facilitate replication through telomeres and other GC-rich regions. Finally, smFRET analysis indicates that CST binding to ssDNA is dynamic with CST complexes undergoing concentration-dependent self-displacement. These findings support an RPA-based model where dissociation and re-association of individual OB-folds allow CST to mediate loading and unloading of partner proteins to facilitate various aspects of telomere replication and genome-wide resolution of replication stress. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Genome-wide identification and characterization of WRKY gene family in peanut

    Directory of Open Access Journals (Sweden)

    Hui eSong

    2016-04-01

    Full Text Available WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA and jasmonic acid (JA treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

  7. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut.

    Science.gov (United States)

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

  8. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  9. Human Ro60 (SSA2) genomic organization and sequence alterations, examined in cutaneous lupus erythematosus.

    Science.gov (United States)

    Millard, T P; Ashton, G H S; Kondeatis, E; Vaughan, R W; Hughes, G R V; Khamashta, M A; Hawk, J L M; McGregor, J M; McGrath, J A

    2002-02-01

    The Ro 60 kDa protein (Ro60 or SSA2) is the major component of the Ro ribonucleoprotein (Ro RNP) complex, to which an immune response is a specific feature of several autoimmune diseases. The genomic organization and any sequence variation within the DNA encoding Ro60 are unknown. To characterize the Ro60 gene structure and to assess whether any sequence alterations might be associated with serum anti-Ro antibody in subacute cutaneous lupus erythematosus (SCLE), thus potentially providing new insight into disease pathogenesis. The cDNA sequence for Ro60 was obtained from the NCBI database and used for a BLAST search for a clone containing the entire genomic sequence. The intron-exon borders were confirmed by designing intronic primer pairs to flank each exon, which were then used to amplify genomic DNA for automated sequencing from 36 caucasian patients with SCLE (anti-Ro positive) and 49 with discoid LE (DLE, anti-Ro negative), in addition to 36 healthy caucasian controls. Heteroduplex analysis of polymerase chain reaction (PCR) products from patients and controls spanning all Ro60 exons (1-8) revealed a common bandshift in the PCR products spanning exon 7. Sequencing of the corresponding PCR products demonstrated an A > G substitution at nucleotide position 1318-7, within the consensus acceptor splice site of exon 7 (GenBank XM001901). The allele frequencies were major allele A (0.71) and minor allele G (0.29) in 72 control chromosomes, with no significant differences found between SCLE patients, DLE patients and controls. The genomic organization of the DNA encoding the Ro60 protein is described, including a common polymorphism within the consensus acceptor splice site of exon 7. Our delineation of a strategy for the genomic amplification of Ro60 forms a basis for further examination of the pathological functions of the Ro RNP in autoimmune disease.

  10. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate.

    Directory of Open Access Journals (Sweden)

    Benjamin Georgi

    2014-03-01

    Full Text Available Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders.

  11. Genomic View of Bipolar Disorder Revealed by Whole Genome Sequencing in a Genetic Isolate

    Science.gov (United States)

    Georgi, Benjamin; Craig, David; Kember, Rachel L.; Liu, Wencheng; Lindquist, Ingrid; Nasser, Sara; Brown, Christopher; Egeland, Janice A.; Paul, Steven M.; Bućan, Maja

    2014-01-01

    Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders. PMID:24625924

  12. Usability of human Infinium MethylationEPIC BeadChip for mouse DNA methylation studies.

    Science.gov (United States)

    Needhamsen, Maria; Ewing, Ewoud; Lund, Harald; Gomez-Cabrero, David; Harris, Robert Adam; Kular, Lara; Jagodic, Maja

    2017-11-15

    The advent of array-based genome-wide DNA methylation methods has enabled quantitative measurement of single CpG methylation status at relatively low cost and sample input. Whereas the use of Infinium Human Methylation BeadChips has shown great utility in clinical studies, no equivalent tool is available for rodent animal samples. We examined the feasibility of using the new Infinium MethylationEPIC BeadChip for studying DNA methylation in mouse. In silico, we identified 19,420 EPIC probes (referred as mEPIC probes), which align with a unique best alignment score to the bisulfite converted reference mouse genome mm10. Further annotation revealed that 85% of mEPIC probes overlapped with mm10.refSeq genes at different genomic features including promoters (TSS1500 and TSS200), 1st exons, 5'UTRs, 3'UTRs, CpG islands, shores, shelves, open seas and FANTOM5 enhancers. Hybridization of mouse samples to Infinium Human MethylationEPIC BeadChips showed successful measurement of mEPIC probes and reproducibility between inter-array biological replicates. Finally, we demonstrated the utility of mEPIC probes for data exploration such as hierarchical clustering. Given the absence of cost and labor convenient genome-wide technologies in the murine system, our findings show that the Infinium MethylationEPIC BeadChip platform is suitable for investigation of the mouse methylome. Furthermore, we provide the "mEPICmanifest" with genomic features, available to users of Infinium Human MethylationEPIC arrays for mouse samples.

  13. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    Cornelis, M. C.; Byrne, E. M.; Esko, T.; Nalls, M. A.; Ganna, A.; Paynter, N.; Monda, K. L.; Amin, N.; Fischer, K.; Renstrom, F.; Ngwa, J. S.; Huikari, V.; Cavadino, A.; Nolte, I. M.; Teumer, A.; Yu, K.; Marques-Vidal, P.; Rawal, R.; Manichaikul, A.; Wojczynski, M. K.; Vink, J. M.; Zhao, J. H.; Burlutsky, G.; Lahti, J.; Mikkila, V.; Lemaitre, R. N.; Eriksson, J.; Musani, S. K.; Tanaka, T.; Geller, F.; Luan, J.; Hui, J.; Maegi, R.; Dimitriou, M.; Garcia, M. E.; Ho, W-K; Wright, M. J.; Rose, L. M.; Magnusson, P. K. E.; Pedersen, N. L.; Couper, D.; Oostra, B. A.; Hofman, A.; Ikram, M. A.; Tiemeier, H. W.; Uitterlinden, A. G.; van Rooij, F. J. A.; Barroso, I.; Johansson, I.; Xue, L.; Kaakinen, M.; Milani, L.; Power, C.; Snieder, H.; Stolk, R. P.; Baumeister, S. E.; Biffar, R.; Gu, F.; Bastardot, F.; Kutalik, Z.; Jacobs, D. R.; Forouhi, N. G.; Mihailov, E.; Lind, L.; Lindgren, C.; Michaelsson, K.; Morris, A.; Jensen, M.; Khaw, K-T; Luben, R. N.; Wang, J. J.; Mannisto, S.; Perala, M-M; Kahonen, M.; Lehtimaki, T.; Viikari, J.; Mozaffarian, D.; Mukamal, K.; Psaty, B. M.; Doering, A.; Heath, A. C.; Montgomery, G. W.; Dahmen, N.; Carithers, T.; Tucker, K. L.; Ferrucci, L.; Boyd, H. A.; Melbye, M.; Treur, J. L.; Mellstrom, D.; Hottenga, J. J.; Prokopenko, I.; Toenjes, A.; Deloukas, P.; Kanoni, S.; Lorentzon, M.; Houston, D. K.; Liu, Y.; Danesh, J.; Rasheed, A.; Mason, M. A.; Zonderman, A. B.; Franke, L.; Kristal, B. S.; Karjalainen, J.; Reed, D. R.; Westra, H-J; Evans, M. K.; Saleheen, D.; Harris, T. B.; Dedoussis, G.; Curhan, G.; Stumvoll, M.; Beilby, J.; Pasquale, L. R.; Feenstra, B.; Bandinelli, S.; Ordovas, J. M.; Chan, A. T.; Peters, U.; Ohlsson, C.; Gieger, C.; Martin, N. G.; Waldenberger, M.; Siscovick, D. S.; Raitakari, O.; Eriksson, J. G.; Mitchell, P.; Hunter, D. J.; Kraft, P.; Rimm, E. B.; Boomsma, D. I.; Borecki, I. B.; Loos, R. J. F.; Wareham, N. J.; Vollenweider, P.; Caporaso, N.; Grabe, H. J.; Neuhouser, M. L.; Wolffenbuttel, B. H. R.; Hu, F. B.; Hyppoenen, E.; Jarvelin, M-R; Cupples, L. A.; Franks, P. W.; Ridker, P. M.; van Duijn, C. M.; Heiss, G.; Metspalu, A.; North, K. E.; Ingelsson, E.; Nettleton, J. A.; van Dam, R. M.; Chasman, D. I.

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to

  14. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption

    NARCIS (Netherlands)

    Cornelis, M. C.; Byrne, E. M.; Esko, T.; Nalls, M. A.; Ganna, A.; Paynter, N.; Monda, K. L.; Amin, N.; Fischer, K.; Renstrom, F.; Ngwa, J. S.; Huikari, V.; Cavadino, A.; Nolte, I. M.; Teumer, A.; Yu, K.; Marques-Vidal, P.; Rawal, R.; Manichaikul, A.; Wojczynski, M. K.; Vink, J. M.; Zhao, J. H.; Burlutsky, G.; Lahti, J.; Mikkilä, V.; Lemaitre, R. N.; Eriksson, J.; Musani, S. K.; Tanaka, T.; Geller, F.; Luan, J.; Hui, J.; Mägi, R.; Dimitriou, M.; Garcia, M. E.; Ho, W.-K.; Wright, M. J.; Rose, L. M.; Magnusson, P. K. E.; Pedersen, N. L.; Couper, D.; Oostra, B. A.; Hofman, A.; Ikram, M. A.; Tiemeier, H. W.; Uitterlinden, A. G.; van Rooij, F. J. A.; Barroso, I.; Johansson, I.; Xue, L.; Kaakinen, M.; Milani, L.; Power, C.; Snieder, H.; Stolk, R. P.; Baumeister, S. E.; Biffar, R.; Gu, F.; Bastardot, F.; Kutalik, Z.; Jacobs, D. R.; Forouhi, N. G.; Mihailov, E.; Lind, L.; Lindgren, C.; Michaëlsson, K.; Morris, A.; Jensen, M.; Khaw, K.-T.; Luben, R. N.; Wang, J. J.; Männistö, S.; Perälä, M.-M.; Kähönen, M.; Lehtimäki, T.; Viikari, J.; Mozaffarian, D.; Mukamal, K.; Psaty, B. M.; Döring, A.; Heath, A. C.; Montgomery, G. W.; Dahmen, N.; Carithers, T.; Tucker, K. L.; Ferrucci, L.; Boyd, H. A.; Melbye, M.; Treur, J. L.; Mellström, D.; Hottenga, J. J.; Prokopenko, I.; Tönjes, A.; Deloukas, P.; Kanoni, S.; Lorentzon, M.; Houston, D. K.; Liu, Y.; Danesh, J.; Rasheed, A.; Mason, M. A.; Zonderman, A. B.; Franke, L.; Kristal, B. S.; Karjalainen, J.; Reed, D. R.; Westra, H.-J.; Evans, M. K.; Saleheen, D.; Harris, T. B.; Dedoussis, G.; Curhan, G.; Stumvoll, M.; Beilby, J.; Pasquale, L. R.; Feenstra, B.; Bandinelli, S.; Ordovas, J. M.; Chan, A. T.; Peters, U.; Ohlsson, C.; Gieger, C.; Martin, N. G.; Waldenberger, M.; Siscovick, D. S.; Raitakari, O.; Eriksson, J. G.; Mitchell, P.; Hunter, D. J.; Kraft, P.; Rimm, E. B.; Boomsma, D. I.; Borecki, I. B.; Loos, R. J. F.; Wareham, N. J.; Vollenweider, P.; Caporaso, N.; Grabe, H. J.; Neuhouser, M. L.; Wolffenbuttel, B. H. R.; Hu, F. B.; Hyppönen, E.; Järvelin, M.-R.; Cupples, L. A.; Franks, P. W.; Ridker, P. M.; van Duijn, C. M.; Heiss, G.; Metspalu, A.; North, K. E.; Ingelsson, E.; Nettleton, J. A.; van Dam, R. M.; Chasman, D. I.; Nalls, Michael A.; Plagnol, Vincent; Hernandez, Dena G.; Sharma, Manu; Sheerin, Una-Marie; Saad, Mohamad; Simón-Sánchez, Javier; Schulte, Claudia; Lesage, Suzanne; Sveinbjörnsdóttir, Sigurlaug; Arepalli, Sampath; Barker, Roger; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M. A.; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Bras, M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, J. Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Dürr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Dong, Jing; Gardner, Michelle; Gibbs, J. Raphael; Goate, Alison; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Hershey, Milton S.; Wurster, Isabel; Mätzler, Walter; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; München, Helmholtz Zentrum; Jónsson, Pálmi V.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw R.; Morrison, Karen E.; O' Sullivan, Sean S.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Pollak, Pierre; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Sidransky, Ellen; Smith, Colin; Spencer, Chris C. A.; Stefánsson, Hreinn; Bettella, Francesco; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Stefánsson, Kári; Martinez, Maria; Sabatier, Paul; Wood, Nicholas W.; Hardy, John; Heutink, Peter; Brice, Alexis; Gasser, Thomas; Singleton, Andrew B.; Singleton, Andrew; Cookson, Mark; Hernandez, Dena; Nalls, Michael; Zonderman, Alan; Ferrucci, Luigi; Johnson, Robert; Longo, Dan; O'Brien, Richard; Traynor, Bryan; Troncoso, Juan; van der Brug, Marcel; Zielke, Ronald; Weale, Michael; Ramasamy, Adaikalavan; Box, P. O.

    2015-01-01

    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to

  15. A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling

    NARCIS (Netherlands)

    Li, Dong; Chang, Xiao; Connolly, John J.; Tian, Lifeng; Liu, Yichuan; Bhoj, Elizabeth J.; Robinson, Nora; Abrams, Debra; Li, Yun R.; Bradfield, Jonathan P.; Kim, Cecilia E.; Li, Jin; Wang, Fengxiang; Snyder, James; Lemma, Maria; Hou, Cuiping; Wei, Zhi; Guo, Yiran; Qiu, Haijun; Mentch, Frank D.; Thomas, Kelly A.; Chiavacci, Rosetta M.; Cone, Roger; Li, Bingshan; Sleiman, Patrick A.; Hakonarson, Hakon; Perica, Vesna Boraska; Franklin, Christopher S.; Floyd, James A.B.; Thornton, Laura M.; Huckins, Laura M.; Southam, Lorraine; Rayner, William N; Tachmazidou, Ioanna; Schmidt, Ulrike; Tozzi, Federica; Kiezebrink, Kirsty; Hebebrand, Johannes; Gorwood, Philip; Adan, Roger A.H.; Kas, Martien J.H.; Favaro, Angela; Santonastaso, Paolo; Fernánde-Aranda, Fernando; Gratacos, Monica; Rybakowski, Filip; Dmitrzak-Weglarz, Monika; Kaprio, Jaakko; Keski-Rahkonen, Anna; Raevuori-Helkamaa, Anu; Furth, Eric F.Van; Slof-Opt Landt, Margarita C.T.; Hudson, James I.; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy S.; Monteleone, Palmiero; Karwautz, Andreas; Berrettini, Wade H.; Schork, Nicholas J.; Ando, Tetsuya; Inoko, Hidetoshi; Esko, Toñu; Fischer, Krista; Männik, Katrin; Metspalu, Andres; Baker, Jessica H.; DeSocio, Janiece E.; Hilliard, Christopher E.; O'Toole, Julie K.; Pantel, Jacques; Szatkiewicz, Jin P.; Zerwas, Stephanie; Davis, Oliver S P; Helder, Sietske; Bühren, Katharina; Burghardt, Roland; De Zwaan, Martina; Egberts, Karin; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Herzog, Wolfgang; Imgart, Hartmut; Scherag, André; Zipfel, Stephan; Boni, Claudette; Ramoz, Nicolas; Versini, Audrey; Danner, Unna N.; Hendriks, Judith; Koeleman, Bobby P.C.; Ophoff, Roel A.; Strengman, Eric; van Elburg, Annemarie A.; Bruson, Alice; Clementi, Maurizio; Degortes, Daniela; Forzan, Monica; Tenconi, Elena; Docampo, Elisa; Escaramís, Geòrgia; Jiménez-Murcia, Susana; Lissowska, Jolanta; Rajewski, Andrzej; Szeszenia-Dabrowska, Neonila; Slopien, Agnieszka; Hauser, Joanna; Karhunen, Leila; Meulenbelt, Ingrid; Slagboom, P. Eline; Tortorella, Alfonso; Maj, Mario; Dedoussis, George; DIkeos, DImitris; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Tsitsika, Artemis; Papezova, Hana; Slachtova, Lenka; Martaskova, Debora; Kennedy, James L.; Levitan, Robert D.; Yilmaz, Zeynep; Huemer, Julia; Koubek, Doris; Merl, Elisabeth; Wagner, Gudrun; Lichtenstein, Paul; Breen, Gerome; Cohen-Woods, Sarah; Farmer, Anne; McGuffin, Peter; Cichon, Sven; Giegling, Ina; Herms, Stefan; Rujescu, Dan; Schreiber, Stefan; Wichmann, H-Erich; Dina, Christian; Sladek, Rob; Gambaro, Giovanni; Soranzo, Nicole; Julia, Antonio; Marsal, Sara; Rabionet, Raquel; Gaborieau, Valerie; DIck, Danielle M.; Palotie, Aarno; Ripatti, Samuli; Widén, Elisabeth; Andreassen, Ole A.; Espeseth, Thomas; Lundervold, Astri J; Reinvang, Ivar; Steen, Vidar M.; Le Hellard, Stephanie; Mattingsdal, Morten; Ntalla, Ioanna; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Navratilova, Marie; Gallinger, Steven; Pinto, Dalila; Scherer, Stephen W.; Aschauer, Harald; Carlberg, Laura; Schosser, Alexandra; Alfredsson, Lars; Ding, Bo; Klareskog, Lars; Padyukov, Leonid; Finan, Chris; Kalsi, Gursharan; Roberts, Marion; Barrett, Jeff C.; Estivill, Xavier; Hinney, Anke; Sullivan, Patrick F; Zeggini, Eleftheria; Bulik, Cynthia M.; Brandt, Harry; Crawford, Steve; Crow, Scott; Fichter, Manfred M.; Halmi, Katherine A.; Johnson, Craig; Kaplan, Allan S.; La Via, Maria C.; Mitchell, James R.; Strober, Michael; Rotondo, Alessandro; Treasure, Janet; Woodside, D. Blake; Keel, Pamela K.; Klump, Kelly L.; Lilenfeld, Lisa; Bergen, Andrew W.; Kaye, Walter; Magistretti, Pierre

    2017-01-01

    We conducted a genome-wide association study (GWAS) of anorexia nervosa (AN) using a stringently defined phenotype. Analysis of phenotypic variability led to the identification of a specific genetic risk factor that approached genome-wide significance (rs929626 in EBF1 (Early B-Cell Factor 1); P =

  16. An evaluation of the genetic-matched pair study design using genome-wide SNP data from the European population

    DEFF Research Database (Denmark)

    Lu, Timothy Tehua; Lao, Oscar; Nothnagel, Michael

    2009-01-01

    of cases (76.0%), the BOM of a given individual, based on the complete marker set, came from a different recruitment site than the individual itself. A second marker set, specifically selected for ancestry sensitivity using singular value decomposition, performed even more poorly and was no more capable......Genetic matching potentially provides a means to alleviate the effects of incomplete Mendelian randomization in population-based gene-disease association studies. We therefore evaluated the genetic-matched pair study design on the basis of genome-wide SNP data (309,790 markers; Affymetrix Gene......Chip Human Mapping 500K Array) from 2457 individuals, sampled at 23 different recruitment sites across Europe. Using pair-wise identity-by-state (IBS) as a matching criterion, we tried to derive a subset of markers that would allow identification of the best overall matching (BOM) partner for a given...

  17. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies.

    Directory of Open Access Journals (Sweden)

    Clive J Hoggart

    2008-07-01

    Full Text Available Testing one SNP at a time does not fully realise the potential of genome-wide association studies to identify multiple causal variants, which is a plausible scenario for many complex diseases. We show that simultaneous analysis of the entire set of SNPs from a genome-wide study to identify the subset that best predicts disease outcome is now feasible, thanks to developments in stochastic search methods. We used a Bayesian-inspired penalised maximum likelihood approach in which every SNP can be considered for additive, dominant, and recessive contributions to disease risk. Posterior mode estimates were obtained for regression coefficients that were each assigned a prior with a sharp mode at zero. A non-zero coefficient estimate was interpreted as corresponding to a significant SNP. We investigated two prior distributions and show that the normal-exponential-gamma prior leads to improved SNP selection in comparison with single-SNP tests. We also derived an explicit approximation for type-I error that avoids the need to use permutation procedures. As well as genome-wide analyses, our method is well-suited to fine mapping with very dense SNP sets obtained from re-sequencing and/or imputation. It can accommodate quantitative as well as case-control phenotypes, covariate adjustment, and can be extended to search for interactions. Here, we demonstrate the power and empirical type-I error of our approach using simulated case-control data sets of up to 500 K SNPs, a real genome-wide data set of 300 K SNPs, and a sequence-based dataset, each of which can be analysed in a few hours on a desktop workstation.

  18. Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies

    Directory of Open Access Journals (Sweden)

    McElwee Joshua

    2009-06-01

    Full Text Available Abstract Background Although high-throughput genotyping arrays have made whole-genome association studies (WGAS feasible, only a small proportion of SNPs in the human genome are actually surveyed in such studies. In addition, various SNP arrays assay different sets of SNPs, which leads to challenges in comparing results and merging data for meta-analyses. Genome-wide imputation of untyped markers allows us to address these issues in a direct fashion. Methods 384 Caucasian American liver donors were genotyped using Illumina 650Y (Ilmn650Y arrays, from which we also derived genotypes from the Ilmn317K array. On these data, we compared two imputation methods: MACH and BEAGLE. We imputed 2.5 million HapMap Release22 SNPs, and conducted GWAS on ~40,000 liver mRNA expression traits (eQTL analysis. In addition, 200 Caucasian American and 200 African American subjects were genotyped using the Affymetrix 500 K array plus a custom 164 K fill-in chip. We then imputed the HapMap SNPs and quantified the accuracy by randomly masking observed SNPs. Results MACH and BEAGLE perform similarly with respect to imputation accuracy. The Ilmn650Y results in excellent imputation performance, and it outperforms Affx500K or Ilmn317K sets. For Caucasian Americans, 90% of the HapMap SNPs were imputed at 98% accuracy. As expected, imputation of poorly tagged SNPs (untyped SNPs in weak LD with typed markers was not as successful. It was more challenging to impute genotypes in the African American population, given (1 shorter LD blocks and (2 admixture with Caucasian populations in this population. To address issue (2, we pooled HapMap CEU and YRI data as an imputation reference set, which greatly improved overall performance. The approximate 40,000 phenotypes scored in these populations provide a path to determine empirically how the power to detect associations is affected by the imputation procedures. That is, at a fixed false discovery rate, the number of cis

  19. Unraveling the genetic etiology of adult antisocial behavior: a genome-wide association study.

    Directory of Open Access Journals (Sweden)

    Jorim J Tielbeek

    Full Text Available Crime poses a major burden for society. The heterogeneous nature of criminal behavior makes it difficult to unravel its causes. Relatively little research has been conducted on the genetic influences of criminal behavior. The few twin and adoption studies that have been undertaken suggest that about half of the variance in antisocial behavior can be explained by genetic factors. In order to identify the specific common genetic variants underlying this behavior, we conduct the first genome-wide association study (GWAS on adult antisocial behavior. Our sample comprised a community sample of 4816 individuals who had completed a self-report questionnaire. No genetic polymorphisms reached genome-wide significance for association with adult antisocial behavior. In addition, none of the traditional candidate genes can be confirmed in our study. While not genome-wide significant, the gene with the strongest association (p-value = 8.7×10(-5 was DYRK1A, a gene previously related to abnormal brain development and mental retardation. Future studies should use larger, more homogeneous samples to disentangle the etiology of antisocial behavior. Biosocial criminological research allows a more empirically grounded understanding of criminal behavior, which could ultimately inform and improve current treatment strategies.

  20. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.

    Science.gov (United States)

    Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin

    2017-10-01

    Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Quantification and genome-wide mapping of DNA double-strand breaks.

    Science.gov (United States)

    Grégoire, Marie-Chantal; Massonneau, Julien; Leduc, Frédéric; Arguin, Mélina; Brazeau, Marc-André; Boissonneault, Guylain

    2016-12-01

    DNA double-strand breaks (DSBs) represent a major threat to the genetic integrity of the cell. Knowing both their genome-wide distribution and number is important for a better assessment of genotoxicity at a molecular level. Available methods may have underestimated the extent of DSBs as they are based on markers specific to those undergoing active repair or may not be adapted for the large diversity of naturally occurring DNA ends. We have established conditions for an efficient first step of DNA nick and gap repair (NGR) allowing specific determination of DSBs by end labeling with terminal transferase. We used DNA extracted from HeLa cells harboring an I-SceI cassette to induce a targeted nick or DSB and demonstrated by immunocapture of 3'-OH that a prior step of NGR allows specific determination of loci-specific or genome wide DSBs. This method can be applied to the global determination of DSBs using radioactive end labeling and can find several applications aimed at understanding the distribution and kinetics of DSBs formation and repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A genome-wide survey of transgenerational genetic effects in autism.

    Directory of Open Access Journals (Sweden)

    Kathryn M Tsang

    Full Text Available Effects of parental genotype or parent-offspring genetic interaction are well established in model organisms for a variety of traits. However, these transgenerational genetic models are rarely studied in humans. We have utilized an autism case-control study with 735 mother-child pairs to perform genome-wide screening for maternal genetic effects and maternal-offspring genetic interaction. We used simple models of single locus parent-child interaction and identified suggestive results (P<10(-4 that cannot be explained by main effects, but no genome-wide significant signals. Some of these maternal and maternal-child associations were in or adjacent to autism candidate genes including: PCDH9, FOXP1, GABRB3, NRXN1, RELN, MACROD2, FHIT, RORA, CNTN4, CNTNAP2, FAM135B, LAMA1, NFIA, NLGN4X, RAPGEF4, and SDK1. We attempted validation of potential autism association under maternal-specific models using maternal-paternal comparison in family-based GWAS datasets. Our results suggest that further study of parental genetic effects and parent-child interaction in autism is warranted.

  3. Genome-wide association studies in asthma: progress and pitfalls

    Directory of Open Access Journals (Sweden)

    March ME

    2015-01-01

    Full Text Available Michael E March,1 Patrick MA Sleiman,1,2 Hakon Hakonarson1,2 1Center for Applied Genomics, Children's Hospital of Philadelphia Research Institute, 2Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Abstract: Genetic studies of asthma have revealed that there is considerable heritability to the phenotype. An extensive history of candidate-gene studies has identified a long list of genes associated with immune function that are potentially involved in asthma pathogenesis. However, many of the results of candidate-gene studies have failed to be replicated, leaving in question the true impact of the implicated biological pathways on asthma. With the advent of genome-wide association studies, geneticists are able to examine the association of hundreds of thousands of genetic markers with a phenotype, allowing the hypothesis-free identification of variants associated with disease. Many such studies examining asthma or related phenotypes have been published, and several themes have begun to emerge regarding the biological pathways underpinning asthma. The results of many genome-wide association studies have currently not been replicated, and the large sample sizes required for this experimental strategy invoke difficulties with sample stratification and phenotypic heterogeneity. Recently, large collaborative groups of researchers have formed consortia focused on asthma, with the goals of sharing material and data and standardizing diagnosis and experimental methods. Additionally, research has begun to focus on genetic variants that affect the response to asthma medications and on the biology that generates the heterogeneity in the asthma phenotype. As this work progresses, it will move asthma patients closer to more specific, personalized medicine. Keywords: asthma, genetics, GWAS, pharmacogenetics, biomarkers

  4. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  5. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  6. Two genetic determinants acquired late in Mus evolution regulate the inclusion of exon 5, which alters mouse APOBEC3 translation efficiency.

    Directory of Open Access Journals (Sweden)

    Jun Li

    2012-01-01

    Full Text Available Mouse apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like editing complex 3 (mA3, an intracellular antiviral factor, has 2 allelic variations that are linked with different susceptibilities to beta- and gammaretrovirus infections among various mouse strains. In virus-resistant C57BL/6 (B6 mice, mA3 transcripts are more abundant than those in susceptible BALB/c mice both in the spleen and bone marrow. These strains of mice also express mA3 transcripts with different splicing patterns: B6 mice preferentially express exon 5-deficient (Δ5 mA3 mRNA, while BALB/c mice produce exon 5-containing full-length mA3 mRNA as the major transcript. Although the protein product of the Δ5 mRNA exerts stronger antiretroviral activities than the full-length protein, how exon 5 affects mA3 antiviral activity, as well as the genetic mechanisms regulating exon 5 inclusion into the mA3 transcripts, remains largely uncharacterized. Here we show that mA3 exon 5 is indeed a functional element that influences protein synthesis at a post-transcriptional level. We further employed in vitro splicing assays using genomic DNA clones to identify two critical polymorphisms affecting the inclusion of exon 5 into mA3 transcripts: the number of TCCT repeats upstream of exon 5 and the single nucleotide polymorphism within exon 5 located 12 bases upstream of the exon 5/intron 5 boundary. Distribution of the above polymorphisms among different Mus species indicates that the inclusion of exon 5 into mA3 mRNA is a relatively recent event in the evolution of mice. The widespread geographic distribution of this exon 5-including genetic variant suggests that in some Mus populations the cost of maintaining an effective but mutagenic enzyme may outweigh its antiviral function.

  7. Gene-wide analysis detects two new susceptibility genes for Alzheimer's disease.

    Science.gov (United States)

    Escott-Price, Valentina; Bellenguez, Céline; Wang, Li-San; Choi, Seung-Hoan; Harold, Denise; Jones, Lesley; Holmans, Peter; Gerrish, Amy; Vedernikov, Alexey; Richards, Alexander; DeStefano, Anita L; Lambert, Jean-Charles; Ibrahim-Verbaas, Carla A; Naj, Adam C; Sims, Rebecca; Jun, Gyungah; Bis, Joshua C; Beecham, Gary W; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A; Denning, Nicola; Smith, Albert V; Chouraki, Vincent; Thomas, Charlene; Ikram, M Arfan; Zelenika, Diana; Vardarajan, Badri N; Kamatani, Yoichiro; Lin, Chiao-Feng; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L; Vronskaya, Maria; Johnson, Andrew D; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Hanon, Olivier; Fitzpatrick, Annette L; Buxbaum, Joseph D; Campion, Dominique; Crane, Paul K; Baldwin, Clinton; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L; De Jager, Philip L; Deramecourt, Vincent; Johnston, Janet A; Evans, Denis; Lovestone, Simon; Letenneur, Luc; Hernández, Isabel; Rubinsztein, David C; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M; Fiévet, Nathalie; Huentelman, Matthew J; Gill, Michael; Brown, Kristelle; Kamboh, M Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B; Myers, Amanda J; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Rogaeva, Ekaterina; Gallacher, John; George-Hyslop, Peter St; Clarimon, Jordi; Lleo, Alberto; Bayer, Anthony; Tsuang, Debby W; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petra; Collinge, John; Sorbi, Sandro; Garcia, Florentino Sanchez; Fox, Nick C; Hardy, John; Naranjo, Maria Candida Deniz; Bosco, Paolo; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Scarpini, Elio; Bonuccelli, Ubaldo; Mancuso, Michelangelo; Siciliano, Gabriele; Moebus, Susanne; Mecocci, Patrizia; Zompo, Maria Del; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Frank-García, Ana; Panza, Francesco; Solfrizzi, Vincenzo; Caffarra, Paolo; Nacmias, Benedetta; Perry, William; Mayhaus, Manuel; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M; Ingelsson, Martin; Beekly, Duane; Alvarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G; Coto, Eliecer; Hamilton-Nelson, Kara L; Gu, Wei; Razquin, Cristina; Pastor, Pau; Mateo, Ignacio; Owen, Michael J; Faber, Kelley M; Jonsson, Palmi V; Combarros, Onofre; O'Donovan, Michael C; Cantwell, Laura B; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H; Bennett, David A; Harris, Tamara B; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee F A G; Passmore, Peter; Montine, Thomas J; Bettens, Karolien; Rotter, Jerome I; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M; Kukull, Walter A; Hannequin, Didier; Powell, John F; Nalls, Michael A; Ritchie, Karen; Lunetta, Kathryn L; Kauwe, John S K; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R; Schmidt, Reinhold; Rujescu, Dan; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M; Graff, Caroline; Psaty, Bruce M; Haines, Jonathan L; Lathrop, Mark; Pericak-Vance, Margaret A; Launer, Lenore J; Van Broeckhoven, Christine; Farrer, Lindsay A; van Duijn, Cornelia M; Ramirez, Alfredo; Seshadri, Sudha; Schellenberg, Gerard D; Amouyel, Philippe; Williams, Julie

    2014-01-01

    Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10-6) and 14 (IGHV1-67 p = 7.9×10-8) which indexed novel susceptibility loci. The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.

  8. Gene-wide analysis detects two new susceptibility genes for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Valentina Escott-Price

    Full Text Available Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls.In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4×10-6 and 14 (IGHV1-67 p = 7.9×10-8 which indexed novel susceptibility loci.The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease.

  9. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease

    NARCIS (Netherlands)

    Nalls, Mike A.; Pankratz, Nathan; Lill, Christina M.; Do, Chuong B.; Hernandez, Dena G.; Saad, Mohamad; DeStefano, Anita L.; Kara, Eleanna; Bras, Jose; Sharma, Manu; Schulte, Claudia; Keller, Margaux F.; Arepalli, Sampath; Letson, Christopher; Edsall, Connor; Stefansson, Hreinn; Liu, Xinmin; Pliner, Hannah; Lee, Joseph H.; Cheng, Rong; Ikram, M. Arfan; Ioannidis, John P. A.; Hadjigeorgiou, Georgios M.; Bis, Joshua C.; Martinez, Maria; Perlmutter, Joel S.; Goate, Alison; Marder, Karen; Fiske, Brian; Sutherland, Margaret; Xiromerisiou, Georgia; Myers, Richard H.; Clark, Lorraine N.; Stefansson, Kari; Hardy, John A.; Heutink, Peter; Chen, Honglei; Wood, Nicholas W.; Houlden, Henry; Payami, Haydeh; Brice, Alexis; Scott, William K.; Gasser, Thomas; Bertram, Lars; Eriksson, Nicholas; Foroud, Tatiana; Singleton, Andrew B.; Plagnol, Vincent; Sheerin, Una-Marie; Simón-Sánchez, Javier; Lesage, Suzanne; Sveinbjörnsdóttir, Sigurlaug; Barker, Roger; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M. A.; Biffi, Alessandro; Bloem, Bas; Bochdanovits, Zoltan; Bonin, Michael; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, J. Mark; Corvol, Jean Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Dürr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Dong, Jing; Gardner, Michelle; Gibbs, J. Raphael; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holton, Janice; Hu, Michele; Huang, Xuemei; Wurster, Isabel; Mätzler, Walter; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Jónsson, Pálmi V.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw R.; Morrison, Karen E.; Mudanohwo, Ese; O'Sullivan, Sean S.; Pearson, Justin; Pétursson, Hjörvar; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Shaw, Karen; Shoulson, Ira; Sidransky, Ellen; Smith, Colin; Spencer, Chris C. A.; Stefánsson, Hreinn; Bettella, Francesco; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Stefánsson, Kári; Hardy, John; Factor, S.; Higgins, D.; Evans, S.; Shill, H.; Stacy, M.; Danielson, J.; Marlor, L.; Williamson, K.; Jankovic, J.; Hunter, C.; Simon, D.; Ryan, P.; Scollins, L.; Saunders-Pullman, R.; Boyar, K.; Costan-Toth, C.; Ohmann, E.; Sudarsky, L.; Joubert, C.; Friedman, J.; Chou, K.; Fernandez, H.; Lannon, M.; Galvez-Jimenez, N.; Podichetty, A.; Thompson, K.; Lewitt, P.; Deangelis, M.; O'Brien, C.; Seeberger, L.; Dingmann, C.; Judd, D.; Marder, K.; Fraser, J.; Harris, J.; Bertoni, J.; Peterson, C.; Rezak, M.; Medalle, G.; Chouinard, S.; Panisset, M.; Hall, J.; Poiffaut, H.; Calabrese, V.; Roberge, P.; Wojcieszek, J.; Belden, J.; Jennings, D.; Marek, K.; Mendick, S.; Reich, S.; Dunlop, B.; Jog, M.; Horn, C.; Uitti, R.; Turk, M.; Ajax, T.; Mannetter, J.; Sethi, K.; Carpenter, J.; Dill, B.; Hatch, L.; Ligon, K.; Narayan, S.; Blindauer, K.; Abou-Samra, K.; Petit, J.; Elmer, L.; Aiken, E.; Davis, K.; Schell, C.; Wilson, S.; Velickovic, M.; Koller, W.; Phipps, S.; Feigin, A.; Gordon, M.; Hamann, J.; Licari, E.; Marotta-Kollarus, M.; Shannon, B.; Winnick, R.; Simuni, T.; Videnovic, A.; Kaczmarek, A.; Williams, K.; Wolff, M.; Rao, J.; Cook, M.; Fernandez, M.; Kostyk, S.; Hubble, J.; Campbell, A.; Reider, C.; Seward, A.; Camicioli, R.; Carter, J.; Nutt, J.; Andrews, P.; Morehouse, S.; Stone, C.; Mendis, T.; Grimes, D.; Alcorn-Costa, C.; Gray, P.; Haas, K.; Vendette, J.; Sutton, J.; Hutchinson, B.; Young, J.; Rajput, A.; Klassen, L.; Shirley, T.; Manyam, B.; Simpson, P.; Whetteckey, J.; Wulbrecht, B.; Truong, D.; Pathak, M.; Frei, K.; Luong, N.; Tra, T.; Tran, A.; Vo, J.; Lang, A.; Kleiner- Fisman, G.; Nieves, A.; Johnston, L.; So, J.; Podskalny, G.; Giffin, L.; Atchison, P.; Allen, C.; Martin, W.; Wieler, M.; Suchowersky, O.; Furtado, S.; Klimek, M.; Hermanowicz, N.; Niswonger, S.; Shults, C.; Fontaine, D.; Aminoff, M.; Christine, C.; Diminno, M.; Hevezi, J.; Dalvi, A.; Kang, U.; Richman, J.; Uy, S.; Sahay, A.; Gartner, M.; Schwieterman, D.; Hall, D.; Leehey, M.; Culver, S.; Derian, T.; Demarcaida, T.; Thurlow, S.; Rodnitzky, R.; Dobson, J.; Lyons, K.; Pahwa, R.; Gales, T.; Thomas, S.; Shulman, L.; Weiner, W.; Dustin, K.; Singer, C.; Zelaya, L.; Tuite, P.; Hagen, V.; Rolandelli, S.; Schacherer, R.; Kosowicz, J.; Gordon, P.; Werner, J.; Serrano, C.; Roque, S.; Kurlan, R.; Berry, D.; Gardiner, I.; Hauser, R.; Sanchez-Ramos, J.; Zesiewicz, T.; Delgado, H.; Price, K.; Rodriguez, P.; Wolfrath, S.; Pfeiffer, R.; Davis, L.; Pfeiffer, B.; Dewey, R.; Hayward, B.; Johnson, A.; Meacham, M.; Estes, B.; Walker, F.; Hunt, V.; O'Neill, C.; Racette, B.; Swisher, L.; Dijamco, Cheri; Conley, Emily Drabant; Dorfman, Elizabeth; Tung, Joyce Y.; Hinds, David A.; Mountain, Joanna L.; Wojcicki, Anne; Lew, M.; Klein, C.; Golbe, L.; Growdon, J.; Wooten, G. F.; Watts, R.; Guttman, M.; Goldwurm, S.; Saint-Hilaire, M. H.; Baker, K.; Litvan, I.; Nicholson, G.; Nance, M.; Drasby, E.; Isaacson, S.; Burn, D.; Pramstaller, P.; Al-hinti, J.; Moller, A.; Sherman, S.; Roxburgh, R.; Slevin, J.; Perlmutter, J.; Mark, M. H.; Huggins, N.; Pezzoli, G.; Massood, T.; Itin, I.; Corbett, A.; Chinnery, P.; Ostergaard, K.; Snow, B.; Cambi, F.; Kay, D.; Samii, A.; Agarwal, P.; Roberts, J. W.; Higgins, D. S.; Molho, Eric; Rosen, Ami; Montimurro, J.; Martinez, E.; Griffith, A.; Kusel, V.; Yearout, D.; Zabetian, C.; Clark, L. N.; Liu, X.; Lee, J. H.; Taub, R. Cheng; Louis, E. D.; Cote, L. J.; Waters, C.; Ford, B.; Fahn, S.; Vance, Jeffery M.; Beecham, Gary W.; Martin, Eden R.; Nuytemans, Karen; Pericak-Vance, Margaret A.; Haines, Jonathan L.; DeStefano, Anita; Seshadri, Sudha; Choi, Seung Hoan; Frank, Samuel; Psaty, Bruce M.; Rice, Kenneth; Longstreth, W. T.; Ton, Thanh G. N.; Jain, Samay; van Duijn, Cornelia M.; Verlinden, Vincent J.; Koudstaal, Peter J.; Singleton, Andrew; Cookson, Mark; Hernandez, Dena; Nalls, Michael; Zonderman, Alan; Ferrucci, Luigi; Johnson, Robert; Longo, Dan; O'Brien, Richard; Traynor, Bryan; Troncoso, Juan; van der Brug, Marcel; Zielke, Ronald; Weale, Michael; Ramasamy, Adaikalavan; Dardiotis, Efthimios; Tsimourtou, Vana; Spanaki, Cleanthe; Plaitakis, Andreas; Bozi, Maria; Stefanis, Leonidas; Vassilatis, Dimitris; Koutsis, Georgios; Panas, Marios; Lunnon, Katie; Lupton, Michelle; Powell, John; Parkkinen, Laura; Ansorge, Olaf

    2014-01-01

    We conducted a meta-analysis of Parkinson's disease genome-wide association studies using a common set of 7,893,274 variants across 13,708 cases and 95,282 controls. Twenty-six loci were identified as having genome-wide significant association; these and 6 additional previously reported loci were

  10. High prevalence of exon 8 G533C mutation in apparently sporadic medullary thyroid carcinoma in Greece.

    Science.gov (United States)

    Sarika, H L; Papathoma, A; Garofalaki, M; Vasileiou, V; Vlassopoulou, B; Anastasiou, E; Alevizaki, M

    2012-12-01

    Genetic screening for ret mutation has become routine practice in the evaluation of medullary thyroid carcinoma (MTC). Approximately 25% of these tumours are familial, and they occur as components of the multiple endocrine neoplasia type 2 syndromes (MEN 2A and 2B) or familial MTC. In familial cases, the majority of mutations are found in exons 10, 11, 13, 14 or 15 of the ret gene. A rare mutation involving exon 8 (G533C) has recently been reported in familial cases of MTC in Brazil and Greece; some of these cases were originally thought to be sporadic. The aim of this study was to re-evaluate a series of sporadic cases of MTC, with negative family history, and screen them for germline mutations in exon 8. Genomic DNA was extracted from peripheral lymphocytes in 129 unrelated individuals who had previously been characterized as 'sporadic' based on the negative family history and negative screening for ret gene mutations. Samples were analysed in Applied Biosystems 7500 real-time PCR and confirmed by sequencing. The G533C exon 8 mutation was identified in 10 of 129 patients with sporadic MTC. Asymptomatic gene carriers were subsequently identified in other family members. In our study, we found that 7·75% patients with apparently sporadic MTC do carry G533C mutation involving exon 8 of ret. We feel that there is now a need to include exon 8 mutation screening in all patients diagnosed as sporadic MTC, in Greece. © 2012 Blackwell Publishing Ltd.

  11. Genome-wide DNA methylation in 1-year-old infants of mothers with major depressive disorder.

    Science.gov (United States)

    Cicchetti, Dante; Hetzel, Susan; Rogosch, Fred A; Handley, Elizabeth D; Toth, Sheree L

    2016-11-01

    A genome-wide methylation study was conducted among a sample of 114 infants (M age = 13.2 months, SD = 1.08) of low-income urban women with (n = 73) and without (n = 41) major depressive disorder. The Illumina HumanMethylation450 BeadChip array with a GenomeStudio Methylation Module and Illumina Custom model were used to conduct differential methylation analyses. Using the 5.0 × 10-7 p value, 2,119 loci were found to be significantly different between infants of depressed and nondepressed mothers. Infants of depressed mothers had greater methylation at low methylation sites (0%-29%) compared to infants of nondepressed mothers. At high levels of methylation (70%-100%), the infants of depressed mothers were predominantly hypomethylated. The mean difference in methylation between the infants of depressed and infants of nondepressed mothers was 5.23%. Disease by biomarker analyses were also conducted using GeneGo MetaCore Software. The results indicated significant cancer-related differences in biomarker networks such as prostatic neoplasms, ovarian and breast neoplasms, and colonic neoplasms. The results of a process networks analysis indicated significant differences in process networks associated with neuronal development and central nervous system functioning, as well as cardiac development between infants of depressed and nondepressed mothers. These findings indicate that early in development, infants of mothers with major depressive disorder evince epigenetic differences relative to infants of well mothers that suggest risk for later adverse health outcomes.

  12. Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti.

    Science.gov (United States)

    Rašić, Gordana; Filipović, Igor; Weeks, Andrew R; Hoffmann, Ary A

    2014-04-11

    Genetic markers are widely used to understand the biology and population dynamics of disease vectors, but often markers are limited in the resolution they provide. In particular, the delineation of population structure, fine scale movement and patterns of relatedness are often obscured unless numerous markers are available. To address this issue in the major arbovirus vector, the yellow fever mosquito (Aedes aegypti), we used double digest Restriction-site Associated DNA (ddRAD) sequencing for the discovery of genome-wide single nucleotide polymorphisms (SNPs). We aimed to characterize the new SNP set and to test the resolution against previously described microsatellite markers in detecting broad and fine-scale genetic patterns in Ae. aegypti. We developed bioinformatics tools that support the customization of restriction enzyme-based protocols for SNP discovery. We showed that our approach for RAD library construction achieves unbiased genome representation that reflects true evolutionary processes. In Ae. aegypti samples from three continents we identified more than 18,000 putative SNPs. They were widely distributed across the three Ae. aegypti chromosomes, with 47.9% found in intergenic regions and 17.8% in exons of over 2,300 genes. Pattern of their imputed effects in ORFs and UTRs were consistent with those found in a recent transcriptome study. We demonstrated that individual mosquitoes from Indonesia, Australia, Vietnam and Brazil can be assigned with a very high degree of confidence to their region of origin using a large SNP panel. We also showed that familial relatedness of samples from a 0.4 km2 area could be confidently established with a subset of SNPs. Using a cost-effective customized RAD sequencing approach supported by our bioinformatics tools, we characterized over 18,000 SNPs in field samples of the dengue fever mosquito Ae. aegypti. The variants were annotated and positioned onto the three Ae. aegypti chromosomes. The new SNP set provided much

  13. Genome-wide signatures of 'rearrangement hotspots' within segmental duplications in humans.

    Directory of Open Access Journals (Sweden)

    Mohammed Uddin

    Full Text Available The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp of 'rearrangement hotspots' which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a 'seed and extend' approach, we have exhaustively searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the NA18507 human genome (18× coverage, including the previously identified novel 4.8 Mb sequence from de novo assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes and display an enrichment of duplicated gene nucleotide variants (DNVs. These regions are correlated with increased non-allelic homologous recombination (NAHR event frequency which presumably represents the origin of copy number variations (CNVs and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for 24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of 'rearrangement hotspots', which likely serve as templates for NAHR, may provide a powerful approach towards understanding the underlying mutational mechanism(s for development of constitutional and acquired diseases.

  14. Sandwich corrected standard errors in family-based genome-wide association studies

    NARCIS (Netherlands)

    Minica, C.C.; Dolan, C.V.; Kampert, M.M.D.; Boomsma, D.I.; Vink, J.M.

    2015-01-01

    Given the availability of genotype and phenotype data collected in family members, the question arises which estimator ensures the most optimal use of such data in genome-wide scans. Using simulations, we compared the Unweighted Least Squares (ULS) and Maximum Likelihood (ML) procedures. The former

  15. Genome-wide association analysis identifies three new breast cancer susceptibility loci

    DEFF Research Database (Denmark)

    Ghoussaini, Maya; Fletcher, Olivia; Michailidou, Kyriaki

    2012-01-01

    Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for ∼8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS...

  16. Genome-wide association study identifies 74 loci associated with educational attainment

    NARCIS (Netherlands)

    A. Okbay (Aysu); J.P. Beauchamp (Jonathan); Fontana, M.A. (Mark Alan); J.J. Lee (James J.); T.H. Pers (Tune); Rietveld, C.A. (Cornelius A.); P. Turley (Patrick); Chen, G.-B. (Guo-Bo); V. Emilsson (Valur); Meddens, S.F.W. (S. Fleur W.); Oskarsson, S. (Sven); Pickrell, J.K. (Joseph K.); Thom, K. (Kevin); Timshel, P. (Pascal); R. de Vlaming (Ronald); A. Abdellaoui (Abdel); T.S. Ahluwalia (Tarunveer Singh); J. Bacelis (Jonas); C. Baumbach (Clemens); Bjornsdottir, G. (Gyda); J.H. Brandsma (Johan); Pina Concas, M. (Maria); J. Derringer; Furlotte, N.A. (Nicholas A.); T.E. Galesloot (Tessel); S. Girotto; Gupta, R. (Richa); L.M. Hall (Leanne M.); S.E. Harris (Sarah); E. Hofer; Horikoshi, M. (Momoko); J.E. Huffman (Jennifer E.); Kaasik, K. (Kadri); I.-P. Kalafati (Ioanna-Panagiota); R. Karlsson (Robert); A. Kong (Augustine); J. Lahti (Jari); S.J. van der Lee (Sven); Deleeuw, C. (Christiaan); P.A. Lind (Penelope); Lindgren, K.-O. (Karl-Oskar); Liu, T. (Tian); M. Mangino (Massimo); J. Marten (Jonathan); E. Mihailov (Evelin); M. Miller (Mike); P.J. van der Most (Peter); C. Oldmeadow (Christopher); A. Payton (Antony); N. Pervjakova (Natalia); W.J. Peyrot (Wouter ); Qian, Y. (Yong); O. Raitakari (Olli); Rueedi, R. (Rico); Salvi, E. (Erika); Schmidt, B. (Börge); Schraut, K.E. (Katharina E.); Shi, J. (Jianxin); A.V. Smith (Albert Vernon); R.A. Poot (Raymond); B. St Pourcain (Beate); A. Teumer (Alexander); G. Thorleifsson (Gudmar); N. Verweij (Niek); D. Vuckovic (Dragana); Wellmann, J. (Juergen); H.J. Westra (Harm-Jan); Yang, J. (Jingyun); Zhao, W. (Wei); Zhu, Z. (Zhihong); B.Z. Alizadeh (Behrooz); N. Amin (Najaf); Bakshi, A. (Andrew); S.E. Baumeister (Sebastian); G. Biino (Ginevra); K. Bønnelykke (Klaus); P.A. Boyle (Patricia); H. Campbell (Harry); Cappuccio, F.P. (Francesco P.); G. Davies (Gail); J.E. de Neve (Jan-Emmanuel); P. Deloukas (Panagiotis); I. Demuth (Ilja); Ding, J. (Jun); Eibich, P. (Peter); Eisele, L. (Lewin); N. Eklund (Niina); D.M. Evans (David); J.D. Faul (Jessica D.); M.F. Feitosa (Mary Furlan); A.J. Forstner (Andreas); I. Gandin (Ilaria); Gunnarsson, B. (Bjarni); B.V. Halldorsson (Bjarni); T.B. Harris (Tamara); E.G. Holliday (Elizabeth); A.C. Heath (Andrew C.); L.J. Hocking; G. Homuth (Georg); M. Horan (Mike); J.J. Hottenga (Jouke Jan); P.L. de Jager (Philip); P.K. Joshi (Peter); A. Juqessur (Astanand); M. Kaakinen (Marika); M. Kähönen (Mika); S. Kanoni (Stavroula); Keltigangas-Järvinen, L. (Liisa); L.A.L.M. Kiemeney (Bart); I. Kolcic (Ivana); Koskinen, S. (Seppo); A. Kraja (Aldi); Kroh, M. (Martin); Z. Kutalik (Zoltán); A. Latvala (Antti); L.J. Launer (Lenore); Lebreton, M.P. (Maël P.); D.F. Levinson (Douglas F.); P. Lichtenstein (Paul); P. Lichtner (Peter); D.C. Liewald (David C.); A. Loukola (Anu); P.A. Madden (Pamela); R. Mägi (Reedik); Mäki-Opas, T. (Tomi); R.E. Marioni (Riccardo); P. Marques-Vidal; Meddens, G.A. (Gerardus A.); G. Mcmahon (George); C. Meisinger (Christa); T. Meitinger (Thomas); Milaneschi, Y. (Yusplitri); L. Milani (Lili); G.W. Montgomery (Grant); R. Myhre (Ronny); C.P. Nelson (Christopher P.); D.R. Nyholt (Dale); W.E.R. Ollier (William); A. Palotie (Aarno); L. Paternoster (Lavinia); N.L. Pedersen (Nancy); K. Petrovic (Katja); D.J. Porteous (David J.); K. Räikkönen (Katri); Ring, S.M. (Susan M.); A. Robino (Antonietta); O. Rostapshova (Olga); I. Rudan (Igor); A. Rustichini (Aldo); V. Salomaa (Veikko); Sanders, A.R. (Alan R.); A.-P. Sarin; R. Schmidt (Reinhold); R.J. Scott (Rodney); B.H. Smith (Blair); J.A. Smith (Jennifer A); J.A. Staessen (Jan); E. Steinhagen-Thiessen (Elisabeth); K. Strauch (Konstantin); A. Terracciano; M.D. Tobin (Martin); S. Ulivi (Shelia); S. Vaccargiu (Simona); L. Quaye (Lydia); F.J.A. van Rooij (Frank); C. Venturini (Cristina); A.A.E. Vinkhuyzen (Anna A.); U. Völker (Uwe); Völzke, H. (Henry); J.M. Vonk (Judith); D. Vozzi (Diego); J. Waage (Johannes); E.B. Ware (Erin B.); G.A.H.M. Willemsen (Gonneke); J. Attia (John); D.A. Bennett (David A.); Berger, K. (Klaus); L. Bertram (Lars); H. Bisgaard (Hans); D.I. Boomsma (Dorret); I.B. Borecki (Ingrid); U. Bültmann (Ute); C.F. Chabris (Christopher F.); F. Cucca (Francesco); D. Cusi (Daniele); I.J. Deary (Ian J.); G.V. Dedoussis (George); C.M. van Duijn (Cornelia); K. Hagen (Knut); B. Franke (Barbara); L. Franke (Lude); P. Gasparini (Paolo); P.V. Gejman (Pablo); C. Gieger (Christian); H.J. Grabe (Hans Jörgen); J. Gratten (Jacob); P.J.F. Groenen (Patrick); V. Gudnason (Vilmundur); P. van der Harst (Pim); C. Hayward (Caroline); D.A. Hinds (David A.); W. Hoffmann (Wolfgang); E. Hypponen (Elina); W.G. Iacono (William); B. Jacobsson (Bo); M.-R. Jarvelin (Marjo-Riitta); K.-H. JöCkel (Karl-Heinz); J. Kaprio (Jaakko); S.L.R. Kardia (Sharon); T. Lehtimäki (Terho); Lehrer, S.F. (Steven F.); P.K. Magnusson (Patrik); N.G. Martin (Nicholas); M. McGue (Matt); A. Metspalu (Andres); N. Pendleton (Neil); B.W.J.H. Penninx (Brenda); M. Perola (Markus); N. Pirastu (Nicola); M. Pirastu (Mario); O. Polasek (Ozren); D. Posthuma (Danielle); C. Power (Christopher); M.A. Province (Mike); N.J. Samani (Nilesh); Schlessinger, D. (David); R. Schmidt (Reinhold); T.I.A. Sørensen (Thorkild); T.D. Spector (Timothy); J-A. Zwart (John-Anker); U. Thorsteinsdottir (Unnur); A.R. Thurik (Roy); Timpson, N.J. (Nicholas J.); H.W. Tiemeier (Henning); J.Y. Tung (Joyce Y.); A.G. Uitterlinden (André); Vitart, V. (Veronique); P. Vollenweider (Peter); D.R. Weir (David); J.F. Wilson (James F.); A.F. Wright (Alan); Conley, D.C. (Dalton C.); R.F. Krueger; G.D. Smith; Hofman, A. (Albert); D. Laibson (David); S.E. Medland (Sarah Elizabeth); M.N. Meyer (Michelle N.); J. Yang (Joanna); M. Johannesson (Magnus); P.M. Visscher (Peter); T. Esko (Tõnu); Ph.D. Koellinger (Philipp); D. Cesarini (David); D.J. Benjamin (Daniel J.)

    2016-01-01

    textabstractEducational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that

  17. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding...

  18. Genome-wide association study identifies 74 loci associated with educational attainment

    NARCIS (Netherlands)

    Okbay, A.; Beauchamp, J.; Fontana, M.A.; Lee, J.J.; Pers, T.H.; Rietveld, C.A.; Turley, P.; Chen, G.B.; Emilsson, V.; Meddens, S.F.W.; de Vlaming, R.; Abdellaoui, A.; Peyrot, W.; Vinkhuyzen, A.A.E.; Hottenga, J.J.; Willemsen, G.; Boomsma, D.I.; Penninx, B.W.J.H.; Laibson, D.; Medland, S.E.; Meyer, M.N.; Yang, J.; Johannesson, M.; Visscher, P.M.; Esko, T.; Koellinger, P.D.; Cesarini, D.; Benjamin, D.J.

    2016-01-01

    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our

  19. Genome-wide association study identifies 74 loci associated with educational attainment

    NARCIS (Netherlands)

    Okbay, Aysu; Beauchamp, Jonathan P.; Fontana, Mark Alan; Lee, James J.; Pers, Tune H.; Rietveld, Cornelius A.; Turley, Patrick; Chen, Guo-Bo; Emilsson, Valur; Meddens, S. Fleur W.; Oskarsson, Sven; Pickrell, Joseph K.; Thom, Kevin; Timshel, Pascal; de Vlaming, Ronald; Abdellaoui, Abdel; Ahluwalia, Tarunveer S.; Bacelis, Jonas; Baumbach, Clemens; Bjornsdottir, Gyda; Brandsma, Johannes H.; Concas, Maria Pina; Derringer, Jaime; Furlotte, Nicholas A.; Galesloot, Tessel E.; Girotto, Giorgia; Gupta, Richa; Hall, Leanne M.; Harris, Sarah E.; Hofer, Edith; Horikoshi, Momoko; Huffman, Jennifer E.; Kaasik, Kadri; Kalafati, Ioanna P.; Karlsson, Robert; Kong, Augustine; Lahti, Jari; van der Lee, Sven J.; de Leeuw, Christiaan; Lind, Penelope A.; Lindgren, Karl-Oskar; Liu, Tian; van der Most, Peter J.; Verweij, Niek; Alizadeh, Behrooz Z.; Vonk, Judith M.; Bultmann, Ute; Franke, Lude; van der Harst, Pim; Penninx, Brenda W. J. H.

    2016-01-01

    Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals(1). Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends

  20. Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    van Ommen Gert-Jan B

    2007-07-01

    Full Text Available Abstract Background Antisense-mediated exon skipping is currently one of the most promising therapeutic approaches for Duchenne muscular dystrophy (DMD. Using antisense oligonucleotides (AONs targeting specific exons the DMD reading frame is restored and partially functional dystrophins are produced. Following proof of concept in cultured muscle cells from patients with various deletions and point mutations, we now focus on single and multiple exon duplications. These mutations are in principle ideal targets for this approach since the specific skipping of duplicated exons would generate original, full-length transcripts. Methods Cultured muscle cells from DMD patients carrying duplications were transfected with AONs targeting the duplicated exons, and the dystrophin RNA and protein were analyzed. Results For two brothers with an exon 44 duplication, skipping was, even at suboptimal transfection conditions, so efficient that both exons 44 were skipped, thus generating, once more, an out-of-frame transcript. In such cases, one may resort to multi-exon skipping to restore the reading frame, as is shown here by inducing skipping of exon 43 and both exons 44. By contrast, in cells from a patient with an exon 45 duplication we were able to induce single exon 45 skipping, which allowed restoration of wild type dystrophin. The correction of a larger duplication (involving exons 52 to 62, by combinations of AONs targeting the outer exons, appeared problematic due to inefficient skipping and mistargeting of original instead of duplicated exons. Conclusion The correction of DMD duplications by exon skipping depends on the specific exons targeted. Its options vary from the ideal one, restoring for the first time the true, wild type dystrophin, to requiring more 'classical' skipping strategies, while the correction of multi-exon deletions may need the design of tailored approaches.

  1. A one base pair deletion in the canine ATP13A2 gene causes exon skipping and late-onset neuronal ceroid lipofuscinosis in the Tibetan terrier.

    Directory of Open Access Journals (Sweden)

    Anne Wöhlke

    2011-10-01

    Full Text Available Neuronal ceroid lipofuscinosis (NCL is a progressive neurodegenerative disease characterized by brain and retinal atrophy and the intracellular accumulation of autofluorescent lysosomal storage bodies resembling lipofuscin in neurons and other cells. Tibetan terriers show a late-onset lethal form of NCL manifesting first visible signs at 5-7 years of age. Genome-wide association analyses for 12 Tibetan-terrier-NCL-cases and 7 Tibetan-terrier controls using the 127K canine Affymetrix SNP chip and mixed model analysis mapped NCL to dog chromosome (CFA 2 at 83.71-84.72 Mb. Multipoint linkage and association analyses in 376 Tibetan terriers confirmed this genomic region on CFA2. A mutation analysis for 14 positional candidate genes in two NCL-cases and one control revealed a strongly associated single nucleotide polymorphism (SNP in the MAPK PM20/PM21 gene and a perfectly with NCL associated single base pair deletion (c.1620delG within exon 16 of the ATP13A2 gene. The c.1620delG mutation in ATP13A2 causes skipping of exon 16 presumably due to a broken exonic splicing enhancer motif. As a result of this mutation, ATP13A2 lacks 69 amino acids. All known 24 NCL cases were homozygous for this deletion and all obligate 35 NCL-carriers were heterozygous. In a sample of 144 dogs from eleven other breeds, the c.1620delG mutation could not be found. Knowledge of the causative mutation for late-onset NCL in Tibetan terrier allows genetic testing of these dogs to avoid matings of carrier animals. ATP13A2 mutations have been described in familial Parkinson syndrome (PARK9. Tibetan terriers with these mutations provide a valuable model for a PARK9-linked disease and possibly for manganese toxicity in synucleinopathies.

  2. Genome-wide association study implicates testis-sperm specific FKBP6 as a susceptibility locus for impaired acrosome reaction in stallions.

    Directory of Open Access Journals (Sweden)

    Terje Raudsepp

    Full Text Available Impaired acrosomal reaction (IAR of sperm causes male subfertility in humans and animals. Despite compelling evidence about the genetic control over acrosome biogenesis and function, the genomics of IAR is as yet poorly understood, providing no molecular tools for diagnostics. Here we conducted Equine SNP50 Beadchip genotyping and GWAS using 7 IAR-affected and 37 control Thoroughbred stallions. A significant (PA and g.11040379C>A (p.166H>N in exon 4 that were significantly associated with the IAR phenotype both in the GWAS cohort (n = 44 and in a large multi-breed cohort of 265 horses. All IAR stallions were homozygous for the A-alleles, while this genotype was found only in 2% of controls. The equine FKBP6 was exclusively expressed in testis and sperm and had 5 different transcripts, of which 4 were novel. The expression of this gene in AC/AG heterozygous controls was monoallelic, and we observed a tendency for FKBP6 up-regulation in IAR stallions compared to controls. Because exon 4 SNPs had no effect on the protein structure, it is likely that FKBP6 relates to the IAR phenotype via regulatory or modifying functions. In conclusion, FKBP6 was considered a susceptibility gene of incomplete penetrance for IAR in stallions and a candidate gene for male subfertility in mammals. FKBP6 genotyping is recommended for the detection of IAR-susceptible individuals among potential breeding stallions. Successful use of sperm as a source of DNA and RNA propagates non-invasive sample procurement for fertility genomics in animals and humans.

  3. Comparative genomic characterization of three Streptococcus parauberis strains in fish pathogen, as assessed by wide-genome analyses.

    Directory of Open Access Journals (Sweden)

    Seong-Won Nho

    Full Text Available Streptococcus parauberis, which is the main causative agent of streptococcosis among olive flounder (Paralichthys olivaceus in northeast Asia, can be distinctly divided into two groups (type I and type II by an agglutination test. Here, the whole genome sequences of two Japanese strains (KRS-02083 and KRS-02109 were determined and compared with the previously determined genome of a Korean strain (KCTC 11537. The genomes of S. parauberis are intermediate in size and have lower GC contents than those of other streptococci. We annotated 2,236 and 2,048 genes in KRS-02083 and KRS-02109, respectively. Our results revealed that the three S. parauberis strains contain different genomic insertions and deletions. In particular, the genomes of Korean and Japanese strains encode different factors for sugar utilization; the former encodes the phosphotransferase system (PTS for sorbose, whereas the latter encodes proteins for lactose hydrolysis, respectively. And the KRS-02109 strain, specifically, was the type II strain found to be able to resist phage infection through the clustered regularly interspaced short palindromic repeats (CRISPR/Cas system and which might contribute valuably to serologically distribution. Thus, our genome-wide association study shows that polymorphisms can affect pathogen responses, providing insight into biological/biochemical pathways and phylogenetic diversity.

  4. A mega-analysis of genome-wide association studies for major depressive disorder.

    Science.gov (United States)

    Ripke, Stephan; Wray, Naomi R; Lewis, Cathryn M; Hamilton, Steven P; Weissman, Myrna M; Breen, Gerome; Byrne, Enda M; Blackwood, Douglas H R; Boomsma, Dorret I; Cichon, Sven; Heath, Andrew C; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A F; Martin, Nicholas G; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M; Penninx, Brenda P; Pergadia, Michele L; Potash, James B; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H; Preisig, Martin; Smoller, Jordan W; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R; Bettecken, Thomas; Binder, Elisabeth B; Breuer, René; Castro, Victor M; Churchill, Susanne E; Coryell, William H; Craddock, Nick; Craig, Ian W; Czamara, Darina; De Geus, Eco J; Degenhardt, Franziska; Farmer, Anne E; Fava, Maurizio; Frank, Josef; Gainer, Vivian S; Gallagher, Patience J; Gordon, Scott D; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K; Herms, Stefan; Hickie, Ian B; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A; Kohane, Isaac S; Kohli, Martin A; Korszun, Ania; Landen, Mikael; Lawson, William B; Lewis, Glyn; Macintyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M; Middleton, Lefkos; Montgomery, Grant M; Murphy, Shawn N; Nauck, Matthias; Nolen, Willem A; Nyholt, Dale R; O'Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A; Schulz, Andrea; Schulze, Thomas G; Shyn, Stanley I; Sigurdsson, Engilbert; Slager, Susan L; Smit, Johannes H; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J C G; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B; Willemsen, Gonneke; Zitman, Frans G; Neale, Benjamin; Daly, Mark; Levinson, Douglas F; Sullivan, Patrick F

    2013-04-01

    Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 × 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 × 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.

  5. An Open Access Database of Genome-wide Association Results

    Directory of Open Access Journals (Sweden)

    Johnson Andrew D

    2009-01-01

    Full Text Available Abstract Background The number of genome-wide association studies (GWAS is growing rapidly leading to the discovery and replication of many new disease loci. Combining results from multiple GWAS datasets may potentially strengthen previous conclusions and suggest new disease loci, pathways or pleiotropic genes. However, no database or centralized resource currently exists that contains anywhere near the full scope of GWAS results. Methods We collected available results from 118 GWAS articles into a database of 56,411 significant SNP-phenotype associations and accompanying information, making this database freely available here. In doing so, we met and describe here a number of challenges to creating an open access database of GWAS results. Through preliminary analyses and characterization of available GWAS, we demonstrate the potential to gain new insights by querying a database across GWAS. Results Using a genomic bin-based density analysis to search for highly associated regions of the genome, positive control loci (e.g., MHC loci were detected with high sensitivity. Likewise, an analysis of highly repeated SNPs across GWAS identified replicated loci (e.g., APOE, LPL. At the same time we identified novel, highly suggestive loci for a variety of traits that did not meet genome-wide significant thresholds in prior analyses, in some cases with strong support from the primary medical genetics literature (SLC16A7, CSMD1, OAS1, suggesting these genes merit further study. Additional adjustment for linkage disequilibrium within most regions with a high density of GWAS associations did not materially alter our findings. Having a centralized database with standardized gene annotation also allowed us to examine the representation of functional gene categories (gene ontologies containing one or more associations among top GWAS results. Genes relating to cell adhesion functions were highly over-represented among significant associations (p -14, a finding

  6. Virtual Genome Walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence.

    Science.gov (United States)

    Evans, Teri; Johnson, Andrew D; Loose, Matthew

    2018-01-12

    Large repeat rich genomes present challenges for assembly using short read technologies. The 32 Gb axolotl genome is estimated to contain ~19 Gb of repetitive DNA making an assembly from short reads alone effectively impossible. Indeed, this model species has been sequenced to 20× coverage but the reads could not be conventionally assembled. Using an alternative strategy, we have assembled subsets of these reads into scaffolds describing over 19,000 gene models. We call this method Virtual Genome Walking as it locally assembles whole genome reads based on a reference transcriptome, identifying exons and iteratively extending them into surrounding genomic sequence. These assemblies are then linked and refined to generate gene models including upstream and downstream genomic, and intronic, sequence. Our assemblies are validated by comparison with previously published axolotl bacterial artificial chromosome (BAC) sequences. Our analyses of axolotl intron length, intron-exon structure, repeat content and synteny provide novel insights into the genic structure of this model species. This resource will enable new experimental approaches in axolotl, such as ChIP-Seq and CRISPR and aid in future whole genome sequencing efforts. The assembled sequences and annotations presented here are freely available for download from https://tinyurl.com/y8gydc6n . The software pipeline is available from https://github.com/LooseLab/iterassemble .

  7. Exploring relationships between host genome and microbiome: new insights from genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Muslihudeen Abdul-Razaq Abdul-Aziz

    2016-10-01

    Full Text Available As our understanding of the human microbiome expands, impacts on health and disease continue to be revealed. Alterations in the microbiome can result in dysbiosis, which has now been linked to subsequent autoimmune and metabolic diseases, highlighting the need to identify factors that shape the microbiome. Research has identified that the composition and functions of the human microbiome can be influenced by diet, age, gender, and environment. More recently, studies have explored how human genetic variation may also influence the microbiome. Here, we review several recent analytical advances in this new research area, including those that use genome-wide association studies to examine host genome-microbiome interactions, while controlling for the influence of other factors. We find that current research is limited by small sample sizes, lack of cohort replication, and insufficient confirmatory mechanistic studies. In addition, we discuss the importance of understanding long-term interactions between the host genome and microbiome, as well as the potential impacts of disrupting this relationship, and explore new research avenues that may provide information about the co-evolutionary history of humans and their microorganisms.

  8. Detection and validation of single feature polymorphisms in cowpea (Vigna unguiculata L. Walp using a soybean genome array

    Directory of Open Access Journals (Sweden)

    Wanamaker Steve

    2008-02-01

    Full Text Available Abstract Background Cowpea (Vigna unguiculata L. Walp is an important food and fodder legume of the semiarid tropics and subtropics worldwide, especially in sub-Saharan Africa. High density genetic linkage maps are needed for marker assisted breeding but are not available for cowpea. A single feature polymorphism (SFP is a microarray-based marker which can be used for high throughput genotyping and high density mapping. Results Here we report detection and validation of SFPs in cowpea using a readily available soybean (Glycine max genome array. Robustified projection pursuit (RPP was used for statistical analysis using RNA as a surrogate for DNA. Using a 15% outlying score cut-off, 1058 potential SFPs were enumerated between two parents of a recombinant inbred line (RIL population segregating for several important traits including drought tolerance, Fusarium and brown blotch resistance, grain size and photoperiod sensitivity. Sequencing of 25 putative polymorphism-containing amplicons yielded a SFP probe set validation rate of 68%. Conclusion We conclude that the Affymetrix soybean genome array is a satisfactory platform for identification of some 1000's of SFPs for cowpea. This study provides an example of extension of genomic resources from a well supported species to an orphan crop. Presumably, other legume systems are similarly tractable to SFP marker development using existing legume array resources.

  9. Genome-wide DNA Methylation Profiling of Cell-Free Serum DNA in Esophageal Adenocarcinoma and Barrett Esophagus

    Directory of Open Access Journals (Sweden)

    Rihong Zhai

    2012-01-01

    Full Text Available Aberrant DNA methylation (DNAm is a feature of most types of cancers. Genome-wide DNAm profiling has been performed successfully on tumor tissue DNA samples. However, the invasive procedure limits the utility of tumor tissue for epidemiological studies. While recent data indicate that cell-free circulating DNAm (cfDNAm profiles reflect DNAm status in corresponding tumor tissues, no studies have examined the association of cfDNAm with cancer or precursors on a genome-wide scale. The objective of this pilot study was to evaluate the putative significance of genome-wide cfDNAm profiles in esophageal adenocarcinoma (EA and Barrett esophagus (BE, EA precursor. We performed genome-wide DNAm profiling in EA tissue DNA (n = 8 and matched serum DNA (n = 8, in serum DNA of BE (n = 10, and in healthy controls (n = 10 using the Infinium HumanMethylation27 BeadChip that covers 27,578 CpG loci in 14,495 genes. We found that cfDNAm profiles were highly correlated to DNAm profiles in matched tumor tissue DNA (r = 0.92 in patients with EA. We selected the most differentially methylated loci to perform hierarchical clustering analysis. We found that 911 loci can discriminate perfectly between EA and control samples, 554 loci can separate EA from BE samples, and 46 loci can distinguish BE from control samples. These results suggest that genome-wide cfDNAm profiles are highly consistent with DNAm profiles detected in corresponding tumor tissues. Differential cfDNAm profiling may be a useful approach for the noninvasive screening of EA and EA premalignant lesions.

  10. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis.

    Science.gov (United States)

    Khan, Meraj A; Sengupta, Jayasree; Mittal, Suneeta; Ghosh, Debabrata

    2012-09-24

    In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n=18) suffering from moderate (stage 3; n=8) or severe (stage 4; n=10) ovarian endometriosis during proliferative (n=13) and secretory (n=5) phases of menstrual cycle was performed. Individual pure RNA samples were subjected to Agilent's Whole Human Genome 44K microarray experiments. Microarray data were validated (Pcopy numbers by performing real time RT-PCR of seven (7) arbitrarily selected genes in all samples. The data obtained were subjected to differential expression (DE) and differential co-expression (DC) analyses followed by networks and enrichment analysis, and gene set enrichment analysis (GSEA). The reproducibility of prediction based on GSEA implementation of DC results was assessed by examining the relative expressions of twenty eight (28) selected genes in RNA samples obtained from fresh pool of eutopic and ectopic samples from confirmed ovarian endometriosis patients with stages 3 and 4 (n=4/each) during proliferative and secretory (n=4/each) phases. Higher clustering effect of pairing (cluster distance, cd=0.1) in samples from same individuals on expressional arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd=0.5) and phases of menstrual cycle (cd=0.6). Post hoc analysis revealed anomaly in the expressional profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic

  11. Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa

    NARCIS (Netherlands)

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond K.; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura M.; Hinney, Anke; Daly, Mark J.; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M.; Adan, RAH

    2017-01-01

    Objective: The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Method: Following uniformquality control and imputation procedures using the 1000 Genomes Project (phase 3) in

  12. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa

    NARCIS (Netherlands)

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M; Kas, Martinus J.H.

    2017-01-01

    OBJECTIVE: The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. METHOD: Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3)

  13. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    to protein: through epigenetic modifications, transcription regulators or post-transcriptional controls. The following papers concern several layers of gene regulation with questions answered by different HTS approaches. Genome-wide screening of epigenetic changes by ChIP-seq allowed us to study both spatial...... and temporal alterations of histone modifications (Papers I and II). Coupling the data with machine learning approaches, we established a prediction framework to assess the most informative histone marks as well as their most influential nucleosome positions in predicting the promoter usages. (Papers I...... they regulated or if the sites had global elevated usage rates by multiple TFs. Using RNA-seq, 5’end-seq in combination with depletion of 5’exonuclease as well as nonsensemediated decay (NMD) factors, we systematically analyzed NMD substrates as well as their degradation intermediates in human cells (Paper V...

  14. Genome-Wide DNA Methylation Profiles of Phlegm-Dampness Constitution

    Directory of Open Access Journals (Sweden)

    Haiqiang Yao

    2018-03-01

    Full Text Available Background/Aims: Metabolic diseases are leading health concerns in today’s global society. In traditional Chinese medicine (TCM, one body type studied is the phlegm-dampness constitution (PC, which predisposes individuals to complex metabolic disorders. Genomic studies have revealed the potential metabolic disorders and the molecular features of PC. The role of epigenetics in the regulation of PC, however, is unknown. Methods: We analyzed a genome-wide DNA methylation in 12 volunteers using Illumina Infinium Human Methylation450 BeadChip on peripheral blood mononuclear cells (PBMCs. Eight volunteers had PC and 4 had balanced constitutions. Results: Methylation data indicated a genome-scale hyper-methylation pattern in PC. We located 288 differentially methylated probes (DMPs. A total of 256 genes were mapped, and some of these were metabolic-related. SQSTM1, DLGAP2 and DAB1 indicated diabetes mellitus; HOXC4 and SMPD3, obesity; and GRWD1 and ATP10A, insulin resistance. According to Ingenuity Pathway Analysis (IPA, differentially methylated genes were abundant in multiple metabolic pathways. Conclusion: Our results suggest the potential risk for metabolic disorders in individuals with PC. We also explain the clinical characteristics of PC with DNA methylation features.

  15. Genome-wide association analysis identifies 13 new risk loci for schizophrenia

    NARCIS (Netherlands)

    Ripke, S.; O'Dushlaine, C.; Chambert, K.; Moran, J.L.; Kähler, A.K.; Akterin, S.; Bergen, S.E.; Collins, A.L.; Crowley, J.J.; Fromer, M.; Kim, Y.; Lee, S.H.; Magnusson, P.K.; Sanchez, N.; Stahl, E.A.; Williams, S.; Wray, N.R.; Xia, K.; Bettella, F.; Borglum, A. D.; Bulik-Sullivan, B.K.; Cormican, P.; Craddock, N.; de Leeuw, C.A.; Durmishi, N.; Gill, M.; Golimbet, V.; Hamshere, M.L.; Holmans, P.; Hougaard, D. M.; Kendler, K.S.; Lin, K.; Morris, D. W.; Mors, O.; Mortensen, P.B.; Neale, B. M.; O'Neill, F. A.; Owen, M.J.; Milovancevic, M.P.; Posthuma, D.; Powell, J.; Richards, A.L.; Riley, B.P.; Ruderfer, D.; Rujescu, D.; Sigurdsson, E.; Silagadze, T.; Smit, A.B.; Stefansson, H.; Steinberg, S.; Suvisaari, J.; Tosato, S.; Verhage, M.; Walters, T.J.; Levinson, D.F.; Gejman, P.V.; Laurent, C.; Mowry, B. J.; O'Donovan, M.C.; Pulver, A. E.; Schwab, S.G.; Wildenauer, D. B.; Dudbridge, F.; Shi, J.; Albus, M.; Alexander, M.; Campion, D.; Cohen, D.; Dikeos, D.; Duan, J.; Eichhammer, P.; Godard, S.; Hansen, M.; Lerer, F.B.; Liang, K.Y.; Maier, W.; Mallet, J.; Nertney, D. A.; Nestadt, G.; Norton, N.; O'Neill, F.A.; Papadimitriou, G.N.; Ribble, R.; Sanders, A.R.; Silverman, J.M.; Wormley, B.; Arranz, M.J.; Bakker, S.; Bender, S.; Bramon, E.; Collier, D.; Crespo-Facorro, B.; Hall, J.; Iyegbe, C.; Jablensky, A.; Kahn, R.S.; Kalaydjieva, L.; Lawrie, S.M.; Lewis, C.M.; Linszen, D.H.; Mata, I.; McIntosh, A.; Murray, R.M.; Ophoff, R.A.; van Os, J.; Walshe, M.; Weisbrod, M.; Wiersma, D.; Donnely, P.; Barasso, I.; Blackwell, J.M.; Brown, M.A.; Casas, J.P.; Corvin, A.P.; Deloukas, P.; Duncanson, A.; Jankowski, J.; Markus, H.S.; Mathew, C.G.; Palmer, C.N.; Plomin, R.; Rautanen, A.; Sawcer, S.J.; Trembath, R.C.; Viswanathan, A.C.; Wood, N.W.; Spencer, C. C.; Band, G.; Bellenguez, C.; Freeman, C.; Hellenthal, G.; Giannoulatou, E.; Pirinen, M.; Pearson, R.D.; Strange, A.; Su, Z.; Vukcevic, D.; Langford, C.; Hunt, S.E.; Edkins, S.; Gwilliam, R.; Blackburn, H.; Bumpstead, S.; Dronov, S.; Gillman, M.; Gray, E.; Hammond, N.; Jayakumar, A.; McCann, O.T.; Liddle, J.; Potter, S.C.; Ravindrarajah, R.; Ricketts, M.; Tashakkori-Ghanbaria, A.; Waller, M.J.; Weston, P.; Widaa, S.; Whittaker, P.; Barrroso, I.; McCarthy, M.I.; Spencer, C.C.; Stefansson, K.; Scolnick, E.; Purcell, S.; McCarroll, S.A.; Sklar, P.; Hultman, C. M.; Sullivan, P.F.

    2013-01-01

    Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-Analysis with

  16. Genome-wide association study identifies multiple susceptibility loci for multiple myeloma

    DEFF Research Database (Denmark)

    Mitchell, Jonathan S; Li, Ni; Weinhold, Niels

    2016-01-01

    Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a ...

  17. Genome-wide association analysis identifies 13 new risk loci for schizophrenia

    NARCIS (Netherlands)

    Ripke, Stephan; O'Dushlaine, Colm; Chambert, Kimberly; Moran, Jennifer L.; Kähler, Anna K.; Akterin, Susanne; Bergen, Sarah E.; Collins, Ann L.; Crowley, James J.; Fromer, Menachem; Kim, Yunjung; Lee, Sang Hong; Magnusson, Patrik K. E.; Sanchez, Nick; Stahl, Eli A.; Williams, Stephanie; Wray, Naomi R.; Xia, Kai; Bettella, Francesco; Borglum, Anders D.; Bulik-Sullivan, Brendan K.; Cormican, Paul; Craddock, Nick; de Leeuw, Christiaan; Durmishi, Naser; Gill, Michael; Golimbet, Vera; Hamshere, Marian L.; Holmans, Peter; Hougaard, David M.; Kendler, Kenneth S.; Lin, Kuang; Morris, Derek W.; Mors, Ole; Mortensen, Preben B.; Neale, Benjamin M.; O'Neill, Francis A.; Owen, Michael J.; Milovancevic, Milica Pejovic; Posthuma, Danielle; Powell, John; Richards, Alexander L.; Riley, Brien P.; Ruderfer, Douglas; Rujescu, Dan; Sigurdsson, Engilbert; Silagadze, Teimuraz; Smit, August B.; Stefansson, Hreinn; Steinberg, Stacy; Suvisaari, Jaana; Tosato, Sarah; Verhage, Matthijs; Walters, James T.; Levinson, Douglas F.; Gejman, Pablo V.; Laurent, Claudine; Mowry, Bryan J.; O'Donovan, Michael C.; Pulver, Ann E.; Schwab, Sibylle G.; Wildenauer, Dieter B.; Dudbridge, Frank; Shi, Jianxin; Albus, Margot; Alexander, Madeline; Campion, Dominique; Cohen, David; Dikeos, Dimitris; Duan, Jubao; Eichhammer, Peter; Godard, Stephanie; Hansen, Mark; Lerer, F. Bernard; Liang, Kung-Yee; Maier, Wolfgang; Mallet, Jacques; Nertney, Deborah A.; Nestadt, Gerald; Norton, Nadine; Papadimitriou, George N.; Ribble, Robert; Sanders, Alan R.; Silverman, Jeremy M.; Walsh, Dermot; Williams, Nigel M.; Wormley, Brandon; Arranz, Maria J.; Bakker, Steven; Bender, Stephan; Bramon, Elvira; Collier, David; Crespo-Facorro, Benedicto; Hall, Jeremy; Iyegbe, Conrad; Jablensky, Assen; Kahn, Rene S.; Kalaydjieva, Luba; Lawrie, Stephen; Lewis, Cathryn M.; Linszen, Don H.; Mata, Ignacio; McIntosh, Andrew; Murray, Robin M.; Ophoff, Roel A.; van Os, Jim; Walshe, Muriel; Weisbrod, Matthias; Wiersma, Durk; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden P.; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N. A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C. A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard D.; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Tashakkori-Ghanbaria, Avazeh; Waller, Matthew J.; Weston, Paul; Widaa, Sara; Whittaker, Pamela; McCarthy, Mark I.; Stefansson, Kari; Scolnick, Edward; Purcell, Shaun; McCarroll, Steven A.; Sklar, Pamela; Hultman, Christina M.; Sullivan, Patrick F.

    2013-01-01

    Schizophrenia is an idiopathic mental disorder with a heritable component and a substantial public health impact. We conducted a multi-stage genome-wide association study (GWAS) for schizophrenia beginning with a Swedish national sample (5,001 cases and 6,243 controls) followed by meta-analysis with

  18. Genome-wide association analysis of symbiotic nitrogen fixation in common bean

    Science.gov (United States)

    A genome-wide association study (GWAS) was conducted to explore the genetic basis of variation for symbiotic nitrogen fixation (SNF) and related traits in the Andean diversity panel (ADP) comprised of 259 common bean (Phaseolus vulgaris) genotypes. The ADP was evaluated for SNF and related traits in...

  19. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.

    Science.gov (United States)

    Ding, Yiliang; Tang, Yin; Kwok, Chun Kit; Zhang, Yu; Bevilacqua, Philip C; Assmann, Sarah M

    2014-01-30

    RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure probing method, structure-seq, in which dimethyl sulphate methylation of unprotected adenines and cytosines is identified by next-generation sequencing. Application of this method to Arabidopsis thaliana seedlings yielded the first in vivo genome-wide RNA structure map at nucleotide resolution for any organism, with quantitative structural information across more than 10,000 transcripts. Our analysis reveals a three-nucleotide periodic repeat pattern in the structure of coding regions, as well as a less-structured region immediately upstream of the start codon, and shows that these features are strongly correlated with translation efficiency. We also find patterns of strong and weak secondary structure at sites of alternative polyadenylation, as well as strong secondary structure at 5' splice sites that correlates with unspliced events. Notably, in vivo structures of messenger RNAs annotated for stress responses are poorly predicted in silico, whereas mRNA structures of genes related to cell function maintenance are well predicted. Global comparison of several structural features between these two categories shows that the mRNAs associated with stress responses tend to have more single-strandedness, longer maximal loop length and higher free energy per nucleotide, features that may allow these RNAs to undergo conformational changes in response to environmental conditions. Structure-seq allows the RNA structurome and its biological roles to be interrogated on a genome-wide scale and should be applicable to any organism.

  20. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology.

    Science.gov (United States)

    Levy, Daniel; Neuhausen, Susan L; Hunt, Steven C; Kimura, Masayuki; Hwang, Shih-Jen; Chen, Wei; Bis, Joshua C; Fitzpatrick, Annette L; Smith, Erin; Johnson, Andrew D; Gardner, Jeffrey P; Srinivasan, Sathanur R; Schork, Nicholas; Rotter, Jerome I; Herbig, Utz; Psaty, Bruce M; Sastrasinh, Malinee; Murray, Sarah S; Vasan, Ramachandran S; Province, Michael A; Glazer, Nicole L; Lu, Xiaobin; Cao, Xiaojian; Kronmal, Richard; Mangino, Massimo; Soranzo, Nicole; Spector, Tim D; Berenson, Gerald S; Aviv, Abraham

    2010-05-18

    Telomeres are engaged in a host of cellular functions, and their length is regulated by multiple genes. Telomere shortening, in the course of somatic cell replication, ultimately leads to replicative senescence. In humans, rare mutations in genes that regulate telomere length have been identified in monogenic diseases such as dyskeratosis congenita and idiopathic pulmonary fibrosis, which are associated with shortened leukocyte telomere length (LTL) and increased risk for aplastic anemia. Shortened LTL is observed in a host of aging-related complex genetic diseases and is associated with diminished survival in the elderly. We report results of a genome-wide association study of LTL in a consortium of four observational studies (n = 3,417 participants with LTL and genome-wide genotyping). SNPs in the regions of the oligonucleotide/oligosaccharide-binding folds containing one gene (OBFC1; rs4387287; P = 3.9 x 10(-9)) and chemokine (C-X-C motif) receptor 4 gene (CXCR4; rs4452212; P = 2.9 x 10(-8)) were associated with LTL at a genome-wide significance level (P a gene associated with LTL (P = 1.1 x 10(-5)). The identification of OBFC1 through genome-wide association as a locus for interindividual variation in LTL in the general population advances the understanding of telomere biology in humans and may provide insights into aging-related disorders linked to altered LTL dynamics.