WorldWideScience

Sample records for genome protein sequences

  1. MIPS: a database for genomes and protein sequences.

    Science.gov (United States)

    Mewes, H W; Frishman, D; Güldener, U; Mannhaupt, G; Mayer, K; Mokrejs, M; Morgenstern, B; Münsterkötter, M; Rudd, S; Weil, B

    2002-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz-Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91-93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155-158; Barker et al. (2001) Nucleic Acids Res., 29, 29-32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de).

  2. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    Science.gov (United States)

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  3. Determining and comparing protein function in Bacterial genome sequences

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla

    annotation of genes – the descriptions assigned to genes that describe the likely function of the encoded proteins. This process is limited by several factors, including the definition of a function which can be more or less specific as well as how many genes can actually be assigned a function based...... of this class have very little homology to other known genomes making functional annotation based on sequence similarity very difficult. Inspired in part by this analysis, an approach for comparative functional annotation was created based public sequenced genomes, CMGfunc. Functionally related groups...

  4. Data structures of genome and protein sequences indexing

    Directory of Open Access Journals (Sweden)

    Adeleh asadi

    2016-03-01

    Full Text Available Data structure is a tool for storage and retrieval of information which is named logic and mathematic way of specific data organization. various sequences of genes and proteins in various creatures increases the amount of data in genome databases, and finding appropriate data structure and indexing are subject for many studies. String data structures are general data structure for genome indexing, and this article would review the many used three types of string data structure, suffix tree, suffix array, and Directed Acyclic Word Graphs. This paper is a review of the literature related to three types of data, including genome databases indexing field, tree, postfix, postfix and graphs spiral array directly introduces the word. Findings of this research show that suffix tree and Directed Acyclic Word Graph (DAWG structures need much space however suffix array need less space. Against the Directed Acyclic Word Graph, suffix array can be stored on Memory Stick. Suffix tree and Directed Acyclic Word Graph are a dynamic structures but as suffix array is a Sorted out structure, it could hardly be changed.

  5. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  6. Analysis on n-gram statistics and linguistic features of whole genome protein sequences

    Institute of Scientific and Technical Information of China (English)

    DONG Qi-wen; WANG Xiao-long; LIN Lei

    2008-01-01

    To obtain the statistical sequence analysis on a large number of genomic and proteomie sequences available for different organisms,the n-grams of whole genome protein sequences from 20 organisms were extracted.Their linguistic features were analyzed by two tests:Zipf power law and Shannon entropy,developed for analysis of natural languages and symbolic sequences.The natural genome proteins and the artificial genome proteins were compared with each other and some statistical features of n-grams were discovered.The results show that:the n-grams of whole genome protein sequences approximately follow the Zipf law when n is larger than 4;the Shannon n-gram entropy of natural genome proteins is lower than that of artificial proteins;a simple unigram model can distinguish different organisms;there exist organism-specific usages of "phrases" in protein sequences.It is suggested that further detailed analysis on n-gram of whole genome protein sequences will result in a powerful model for mapping the relationship of protein sequence,structure and function.

  7. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences.

    Science.gov (United States)

    Meinicke, Peter

    2009-09-02

    Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  8. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins.

    Science.gov (United States)

    Pruitt, Kim D; Tatusova, Tatiana; Maglott, Donna R

    2005-01-01

    The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) provides a non-redundant collection of sequences representing genomic data, transcripts and proteins. Although the goal is to provide a comprehensive dataset representing the complete sequence information for any given species, the database pragmatically includes sequence data that are currently publicly available in the archival databases. The database incorporates data from over 2400 organisms and includes over one million proteins representing significant taxonomic diversity spanning prokaryotes, eukaryotes and viruses. Nucleotide and protein sequences are explicitly linked, and the sequences are linked to other resources including the NCBI Map Viewer and Gene. Sequences are annotated to include coding regions, conserved domains, variation, references, names, database cross-references, and other features using a combined approach of collaboration and other input from the scientific community, automated annotation, propagation from GenBank and curation by NCBI staff.

  9. Sequence analysis corresponding to the PPE and PE proteins in Mycobacterium tuberculosis and other genomes

    Indian Academy of Sciences (India)

    Swathi Adindla; Lalitha Guruprasad

    2003-03-01

    Amino acid sequence analysis corresponding to the PPE proteins in H37Rv and CDC1551 strains of the Mycobacterium tuberculosis genomes resulted in the identification of a previously uncharacterized 225 amino acidresidue common region in 22 proteins. The pairwise sequence identities were as low as 18%. Conservation of amino acid residues was observed at fifteen positions that were distributed over the whole length of the region. The secondary structure corresponding to this region is predicted to be a mixture of -helices and -strands. Although the function is not known, proteins with this region specific to mycobacterial species may be associated with a common function. We further observed another group of 20 PPE proteins corresponding to the conserved C-terminal region comprising 44 amino acid residues with GFxGT and PxxPxxW sequence motifs. This region is preceded by a hydrophobic region, comprising 40–100 amino acid residues, that is flanked by charged amino acid residues. Identification of conserved regions described above may be useful to detect related proteins from other genomes and assist the design of suitable experiments to test their corresponding functions. Amino acid sequence analysis corresponding to the PE proteins resulted in the identification of tandem repeats comprising 41–43 amino acid residues in the C-terminal variable regions in two PE proteins (Rv0978 and Rv0980). These correspond to the AB repeats that were first identified in some proteins of the Methanosarcina mazei genome, and were demonstrated as surface antigens. We observed the AB repeats also in several other proteins of hitherto uncharacterized function in Archaea and Bacteria genomes. Some of these proteins are also associated with another repeat called the C-repeat or the PKD-domain comprising 85 amino acid residues. The secondary structure corresponding to the AB repeat is predicted mainly as 4 -strands. We suggest that proteins with AB repeats in Mycobacterium tuberculosis and

  10. OCPAT: an online codon-preserved alignment tool for evolutionary genomic analysis of protein coding sequences

    Directory of Open Access Journals (Sweden)

    Grossman Lawrence I

    2007-09-01

    Full Text Available Abstract Background Rapidly accumulating genome sequence data from multiple species offer powerful opportunities for the detection of DNA sequence evolution. Phylogenetic tree construction and codon-based tests for natural selection are the prevailing tools used to detect functionally important evolutionary change in protein coding sequences. These analyses often require multiple DNA sequence alignments that maintain the correct reading frame for each collection of putative orthologous sequences. Since this feature is not available in most alignment tools, codon reading frames often must be checked manually before evolutionary analyses can commence. Results Here we report an online codon-preserved alignment tool (OCPAT that generates multiple sequence alignments automatically from the coding sequences of any list of human gene IDs and their putative orthologs from genomes of other vertebrate tetrapods. OCPAT is programmed to extract putative orthologous genes from genomes and to align the orthologs with the reading frame maintained in all species. OCPAT also optimizes the alignment by trimming the most variable alignment regions at the 5' and 3' ends of each gene. The resulting output of alignments is returned in several formats, which facilitates further molecular evolutionary analyses by appropriate available software. Alignments are generally robust and reliable, retaining the correct reading frame. The tool can serve as the first step for comparative genomic analyses of protein-coding gene sequences including phylogenetic tree reconstruction and detection of natural selection. We aligned 20,658 human RefSeq mRNAs using OCPAT. Most alignments are missing sequence(s from at least one species; however, functional annotation clustering of the ~1700 transcripts that were alignable to all species shows that genes involved in multi-subunit protein complexes are highly conserved. Conclusion The OCPAT program facilitates large-scale evolutionary and

  11. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences

    Directory of Open Access Journals (Sweden)

    Meinicke Peter

    2009-09-01

    Full Text Available Abstract Background Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Description Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. Conclusion For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  12. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins.

    Science.gov (United States)

    Pruitt, Kim D; Tatusova, Tatiana; Maglott, Donna R

    2007-01-01

    NCBI's reference sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) is a curated non-redundant collection of sequences representing genomes, transcripts and proteins. The database includes 3774 organisms spanning prokaryotes, eukaryotes and viruses, and has records for 2,879,860 proteins (RefSeq release 19). RefSeq records integrate information from multiple sources, when additional data are available from those sources and therefore represent a current description of the sequence and its features. Annotations include coding regions, conserved domains, tRNAs, sequence tagged sites (STS), variation, references, gene and protein product names, and database cross-references. Sequence is reviewed and features are added using a combined approach of collaboration and other input from the scientific community, prediction, propagation from GenBank and curation by NCBI staff. The format of all RefSeq records is validated, and an increasing number of tests are being applied to evaluate the quality of sequence and annotation, especially in the context of complete genomic sequence.

  13. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.

    Science.gov (United States)

    Afek, Ariel; Cohen, Hila; Barber-Zucker, Shiran; Gordân, Raluca; Lukatsky, David B

    2015-08-01

    Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using

  14. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.

    Directory of Open Access Journals (Sweden)

    Ariel Afek

    2015-08-01

    Full Text Available Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large

  15. Complete genome sequence of the anaerobic, protein-degrading hyperthermophilic crenarchaeon Desulfurococcus kamchatkensis.

    Science.gov (United States)

    Ravin, Nikolai V; Mardanov, Andrey V; Beletsky, Alexey V; Kublanov, Ilya V; Kolganova, Tatiana V; Lebedinsky, Alexander V; Chernyh, Nikolai A; Bonch-Osmolovskaya, Elizaveta A; Skryabin, Konstantin G

    2009-04-01

    Desulfurococcus kamchatkensis is an anaerobic organotrophic hyperthermophilic crenarchaeon isolated from a terrestrial hot spring. Its genome consists of a single circular chromosome of 1,365,223 bp with no extrachromosomal elements. A total of 1,474 protein-encoding genes were annotated, among which 205 are exclusive for D. kamchatkensis. The search for a replication origin site revealed a single region coinciding with a global extreme of the nucleotide composition disparity curve and containing a set of crenarchaeon-type origin recognition boxes. Unlike in most archaea, two genes encoding homologs of the eukaryotic initiator proteins Orc1 and Cdc6 are located distantly from this site. A number of mobile elements are present in the genome, including seven transposons representing IS607 and IS200/IS605 families and multiple copies of miniature inverted repeat transposable elements. Two large clusters of regularly interspaced repeats are present; none of the spacer sequences matches known archaeal extrachromosomal elements, except one spacer matches the sequence of a resident gene of D. kamchatkensis. Many of the predicted metabolic enzymes are associated with the fermentation of peptides and sugars, including more than 30 peptidases with diverse specificities, a number of polysaccharide degradation enzymes, and many transporters. Consistently, the genome encodes both enzymes of the modified Embden-Meyerhof pathway of glucose oxidation and a set of enzymes needed for gluconeogenesis. The genome structure and content reflect the organism's nutritionally diverse, competitive natural environment, which is periodically invaded by viruses and other mobile elements.

  16. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast

    DEFF Research Database (Denmark)

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L.

    2015-01-01

    interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV...... to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could...

  17. Optimization of Mutation Pressure in Relation to Properties of Protein-Coding Sequences in Bacterial Genomes.

    Science.gov (United States)

    Błażej, Paweł; Miasojedow, Błażej; Grabińska, Małgorzata; Mackiewicz, Paweł

    2015-01-01

    Most mutations are deleterious and require energetically costly repairs. Therefore, it seems that any minimization of mutation rate is beneficial. On the other hand, mutations generate genetic diversity indispensable for evolution and adaptation of organisms to changing environmental conditions. Thus, it is expected that a spontaneous mutational pressure should be an optimal compromise between these two extremes. In order to study the optimization of the pressure, we compared mutational transition probability matrices from bacterial genomes with artificial matrices fulfilling the same general features as the real ones, e.g., the stationary distribution and the speed of convergence to the stationarity. The artificial matrices were optimized on real protein-coding sequences based on Evolutionary Strategies approach to minimize or maximize the probability of non-synonymous substitutions and costs of amino acid replacements depending on their physicochemical properties. The results show that the empirical matrices have a tendency to minimize the effects of mutations rather than maximize their costs on the amino acid level. They were also similar to the optimized artificial matrices in the nucleotide substitution pattern, especially the high transitions/transversions ratio. We observed no substantial differences between the effects of mutational matrices on protein-coding sequences in genomes under study in respect of differently replicated DNA strands, mutational cost types and properties of the referenced artificial matrices. The findings indicate that the empirical mutational matrices are rather adapted to minimize mutational costs in the studied organisms in comparison to other matrices with similar mathematical constraints.

  18. Optimization of Mutation Pressure in Relation to Properties of Protein-Coding Sequences in Bacterial Genomes.

    Directory of Open Access Journals (Sweden)

    Paweł Błażej

    Full Text Available Most mutations are deleterious and require energetically costly repairs. Therefore, it seems that any minimization of mutation rate is beneficial. On the other hand, mutations generate genetic diversity indispensable for evolution and adaptation of organisms to changing environmental conditions. Thus, it is expected that a spontaneous mutational pressure should be an optimal compromise between these two extremes. In order to study the optimization of the pressure, we compared mutational transition probability matrices from bacterial genomes with artificial matrices fulfilling the same general features as the real ones, e.g., the stationary distribution and the speed of convergence to the stationarity. The artificial matrices were optimized on real protein-coding sequences based on Evolutionary Strategies approach to minimize or maximize the probability of non-synonymous substitutions and costs of amino acid replacements depending on their physicochemical properties. The results show that the empirical matrices have a tendency to minimize the effects of mutations rather than maximize their costs on the amino acid level. They were also similar to the optimized artificial matrices in the nucleotide substitution pattern, especially the high transitions/transversions ratio. We observed no substantial differences between the effects of mutational matrices on protein-coding sequences in genomes under study in respect of differently replicated DNA strands, mutational cost types and properties of the referenced artificial matrices. The findings indicate that the empirical mutational matrices are rather adapted to minimize mutational costs in the studied organisms in comparison to other matrices with similar mathematical constraints.

  19. Functional and Structural Overview of G-Protein-Coupled Receptors Comprehensively Obtained from Genome Sequences

    Directory of Open Access Journals (Sweden)

    Makiko Suwa

    2011-04-01

    Full Text Available An understanding of the functional mechanisms of G-protein-coupled receptors (GPCRs is very important for GPCR-related drug design. We have developed an integrated GPCR database (SEVENS http://sevens.cbrc.jp/ that includes 64,090 reliable GPCR genes comprehensively identified from 56 eukaryote genome sequences, and overviewed the sequences and structure spaces of the GPCRs. In vertebrates, the number of receptors for biological amines, peptides, etc. is conserved in most species, whereas the number of chemosensory receptors for odorant, pheromone, etc. significantly differs among species. The latter receptors tend to be single exon type or a few exon type and show a high ratio in the numbers of GPCRs, whereas some families, such as Class B and Class C receptors, have long lengths due to the presence of many exons. Statistical analyses of amino acid residues reveal that most of the conserved residues in Class A GPCRs are found in the cytoplasmic half regions of transmembrane (TM helices, while residues characteristic to each subfamily found on the extracellular half regions. The 69 of Protein Data Bank (PDB entries of complete or fragmentary structures could be mapped on the TM/loop regions of Class A GPCRs covering 14 subfamilies.

  20. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  1. Whole-exome/genome sequencing and genomics.

    Science.gov (United States)

    Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne

    2013-12-01

    As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.

  2. Comparative genomic analysis of a neurotoxigenic Clostridium species using partial genome sequence: Phylogenetic analysis of a few conserved proteins involved in cellular processes and metabolism.

    Science.gov (United States)

    Alam, Syed Imteyaz; Dixit, Aparna; Tomar, Arvind; Singh, Lokendra

    2010-04-01

    Clostridial organisms produce neurotoxins, which are generally regarded as the most potent toxic substances of biological origin and potential biological warfare agents. Clostridium tetani produces tetanus neurotoxin and is responsible for the fatal tetanus disease. In spite of the extensive immunization regimen, the disease is an important cause of death especially among neonates. Strains of C. tetani have not been genetically characterized except the complete genome sequencing of strain E88. The present study reports the genetic makeup and phylogenetic affiliations of an environmental strain of this bacterium with respect to C. tetani E88 and other clostridia. A shot gun library was constructed from the genomic DNA of C. tetani drde, isolated from decaying fish sample. Unique clones were sequenced and sequences compared with its closest relative C. tetani E88. A total of 275 clones were obtained and 32,457 bases of non-redundant sequence were generated. A total of 150 base changes were observed over the entire length of sequence obtained, including, additions, deletions and base substitutions. Of the total 120 ORFs detected, 48 exhibited closest similarity to E88 proteins of which three are hypothetical proteins. Eight of the ORFs exhibited similarity with hypothetical proteins from other organisms and 10 aligned with other proteins from unrelated organisms. There is an overall conservation of protein sequences among the two strains of C. tetani and. Selected ORFs involved in cellular processes and metabolism were subjected to phylogenetic analysis.

  3. Isolation of a Gastrodia Antifungal Protein Gene from a Genomic Library of G. elata and Its Sequence Analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new genomic DNA encoding a member of Gastrodia antifungal protein family is isolated and sequenced.This gene contains a 510 bp open reading frame and 531 bp promoter region without introns.Sequence analysis indicates that a 28 amino acids signal peptide exists at the N-terminal.It shows high sequence homology with the mannose-binding lectinsfrom Epipactis hellebo-rine, Listera ovata and Cymbidium hybrid.A putative TATA box and transcription start site is dete cted in the promoter region.

  4. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a "horned" bacteriophage of marine synechococcus.

    Science.gov (United States)

    Pope, Welkin H; Weigele, Peter R; Chang, Juan; Pedulla, Marisa L; Ford, Michael E; Houtz, Jennifer M; Jiang, Wen; Chiu, Wah; Hatfull, Graham F; Hendrix, Roger W; King, Jonathan

    2007-05-11

    Marine Synechococcus spp and marine Prochlorococcus spp are numerically dominant photoautotrophs in the open oceans and contributors to the global carbon cycle. Syn5 is a short-tailed cyanophage isolated from the Sargasso Sea on Synechococcus strain WH8109. Syn5 has been grown in WH8109 to high titer in the laboratory and purified and concentrated retaining infectivity. Genome sequencing and annotation of Syn5 revealed that the linear genome is 46,214 bp with a 237 bp terminal direct repeat. Sixty-one open reading frames (ORFs) were identified. Based on genomic organization and sequence similarity to known protein sequences within GenBank, Syn5 shares features with T7-like phages. The presence of a putative integrase suggests access to a temperate life cycle. Assignment of 11 ORFs to structural proteins found within the phage virion was confirmed by mass-spectrometry and N-terminal sequencing. Eight of these identified structural proteins exhibited amino acid sequence similarity to enteric phage proteins. The remaining three virion proteins did not resemble any known phage sequences in GenBank as of August 2006. Cryo-electron micrographs of purified Syn5 virions revealed that the capsid has a single "horn", a novel fibrous structure protruding from the opposing end of the capsid from the tail of the virion. The tail appendage displayed an apparent 3-fold rather than 6-fold symmetry. An 18 A resolution icosahedral reconstruction of the capsid revealed a T=7 lattice, but with an unusual pattern of surface knobs. This phage/host system should allow detailed investigation of the physiology and biochemistry of phage propagation in marine photosynthetic bacteria.

  5. Malaria Genome Sequencing Project

    Science.gov (United States)

    2004-01-01

    million cases and up to 2.7 million A whole chromosome shotgun sequencing strategy was used to deaths from malaria each year. The mortality levels are...deaths from malaria each year. The mortality levels are greatest in determine the genome sequence of P. falciparum clone 3D7. This sub-Saharan Africa...aminolevulinic acid dehydratase. Cura . Genet. 40, 391-398 (2002). 15. Lasonder, E. et al Analysis of the Plasmodium falciparum proteome by high-accuracy mass

  6. Genome sequencing conference II

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Genome Sequencing Conference 2 was held September 30 to October 30, 1990. 26 speaker abstracts and 33 poster presentations were included in the program report. New and improved methods for DNA sequencing and genetic mapping were presented. Many of the papers were concerned with accuracy and speed of acquisition of data with computers and automation playing an increasing role. Individual papers have been processed separately for inclusion on the database.

  7. Sequencing the maize genome.

    Science.gov (United States)

    Martienssen, Robert A; Rabinowicz, Pablo D; O'Shaughnessy, Andrew; McCombie, W Richard

    2004-04-01

    Sequencing of complex genomes can be accomplished by enriching shotgun libraries for genes. In maize, gene-enrichment by copy-number normalization (high C(0)t) and methylation filtration (MF) have been used to generate up to two-fold coverage of the gene-space with less than 1 million sequencing reads. Simulations using sequenced bacterial artificial chromosome (BAC) clones predict that 5x coverage of gene-rich regions, accompanied by less than 1x coverage of subclones from BAC contigs, will generate high-quality mapped sequence that meets the needs of geneticists while accommodating unusually high levels of structural polymorphism. By sequencing several inbred strains, we propose a strategy for capturing this polymorphism to investigate hybrid vigor or heterosis.

  8. Genome Sequence of Mycobacteriophage Momo.

    Science.gov (United States)

    Pope, Welkin H; Bina, Elizabeth A; Brahme, Indraneel S; Hill, Amy B; Himmelstein, Philip H; Hunsicker, Sara M; Ish, Amanda R; Le, Tinh S; Martin, Mary M; Moscinski, Catherine N; Shetty, Sameer A; Swierzewski, Tomasz; Iyengar, Varun B; Kim, Hannah; Schafer, Claire E; Grubb, Sarah R; Warner, Marcie H; Bowman, Charles A; Russell, Daniel A; Hatfull, Graham F

    2015-06-18

    Momo is a newly discovered phage of Mycobacterium smegmatis mc(2)155. Momo has a double-stranded DNA genome 154,553 bp in length, with 233 predicted protein-encoding genes, 34 tRNA genes, and one transfer-messenger RNA (tmRNA) gene. Momo has a myoviral morphology and shares extensive nucleotide sequence similarity with subcluster C1 mycobacteriophages. Copyright © 2015 Pope et al.

  9. Classifying Genomic Sequences by Sequence Feature Analysis

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Liu; Dian Jiao; Xiao Sun

    2005-01-01

    Traditional sequence analysis depends on sequence alignment. In this study, we analyzed various functional regions of the human genome based on sequence features, including word frequency, dinucleotide relative abundance, and base-base correlation. We analyzed the human chromosome 22 and classified the upstream,exon, intron, downstream, and intergenic regions by principal component analysis and discriminant analysis of these features. The results show that we could classify the functional regions of genome based on sequence feature and discriminant analysis.

  10. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  11. cDNA, genomic sequence cloning and overexpression of ribosomal protein S25 gene (RPS25) from the Giant Panda.

    Science.gov (United States)

    Hao, Yan-Zhe; Hou, Wan-Ru; Hou, Yi-Ling; Du, Yu-Jie; Zhang, Tian; Peng, Zheng-Song

    2009-11-01

    RPS25 is a component of the 40S small ribosomal subunit encoded by RPS25 gene, which is specific to eukaryotes. Studies in reference to RPS25 gene from animals were handful. The Giant Panda (Ailuropoda melanoleuca), known as a "living fossil", are increasingly concerned by the world community. Studies on RPS25 of the Giant Panda could provide scientific data for inquiring into the hereditary traits of the gene and formulating the protective strategy for the Giant Panda. The cDNA of the RPS25 cloned from Giant Panda is 436 bp in size, containing an open reading frame of 378 bp encoding 125 amino acids. The length of the genomic sequence is 1,992 bp, which was found to possess four exons and three introns. Alignment analysis indicated that the nucleotide sequence of the coding sequence shows a high homology to those of Homo sapiens, Bos taurus, Mus musculus and Rattus norvegicus as determined by Blast analysis, 92.6, 94.4, 89.2 and 91.5%, respectively. Primary structure analysis revealed that the molecular weight of the putative RPS25 protein is 13.7421 kDa with a theoretical pI 10.12. Topology prediction showed there is one N-glycosylation site, one cAMP and cGMP-dependent protein kinase phosphorylation site, two Protein kinase C phosphorylation sites and one Tyrosine kinase phosphorylation site in the RPS25 protein of the Giant Panda. The RPS25 gene was overexpressed in E. coli BL21 and Western Blotting of the RPS25 protein was also done. The results indicated that the RPS25 gene can be really expressed in E. coli and the RPS25 protein fusioned with the N-terminally his-tagged form gave rise to the accumulation of an expected 17.4 kDa polypeptide. The cDNA and the genomic sequence of RPS25 were cloned successfully for the first time from the Giant Panda using RT-PCR technology and Touchdown-PCR, respectively, which were both sequenced and analyzed preliminarily; then the cDNA of the RPS25 gene was overexpressed in E. coli BL21 and immunoblotted, which is the first

  12. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  13. Analysis of the Complete Mycoplasma hominis LBD-4 Genome Sequence Reveals Strain-Variable Prophage Insertion and Distinctive Repeat-Containing Surface Protein Arrangements

    OpenAIRE

    2015-01-01

    The complete genome sequence of Mycoplasma hominis LBD-4 has been determined and the gene content ascribed. The 715,165-bp chromosome contains 620 genes, including 14 carried by a strain-variable prophage genome related to Mycoplasma fermentans MFV-1 and Mycoplasma arthritidis MAV-1. Comparative analysis with the genome of M. hominis PG21T reveals distinctive arrangements of repeat-containing surface proteins.

  14. Analysis of the Complete Mycoplasma hominis LBD-4 Genome Sequence Reveals Strain-Variable Prophage Insertion and Distinctive Repeat-Containing Surface Protein Arrangements.

    Science.gov (United States)

    Calcutt, Michael J; Foecking, Mark F

    2015-02-26

    The complete genome sequence of Mycoplasma hominis LBD-4 has been determined and the gene content ascribed. The 715,165-bp chromosome contains 620 genes, including 14 carried by a strain-variable prophage genome related to Mycoplasma fermentans MFV-1 and Mycoplasma arthritidis MAV-1. Comparative analysis with the genome of M. hominis PG21(T) reveals distinctive arrangements of repeat-containing surface proteins.

  15. The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community.

    Science.gov (United States)

    Arnaud, Martha B; Chibucos, Marcus C; Costanzo, Maria C; Crabtree, Jonathan; Inglis, Diane O; Lotia, Adil; Orvis, Joshua; Shah, Prachi; Skrzypek, Marek S; Binkley, Gail; Miyasato, Stuart R; Wortman, Jennifer R; Sherlock, Gavin

    2010-01-01

    The Aspergillus Genome Database (AspGD) is an online genomics resource for researchers studying the genetics and molecular biology of the Aspergilli. AspGD combines high-quality manual curation of the experimental scientific literature examining the genetics and molecular biology of Aspergilli, cutting-edge comparative genomics approaches to iteratively refine and improve structural gene annotations across multiple Aspergillus species, and web-based research tools for accessing and exploring the data. All of these data are freely available at http://www.aspgd.org. We welcome feedback from users and the research community at aspergillus-curator@genome.stanford.edu.

  16. The characterization of twenty sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Kimberly Pelak

    2010-09-01

    Full Text Available We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

  17. Complete genome sequence of arracacha mottle virus.

    Science.gov (United States)

    Orílio, Anelise F; Lucinda, Natalia; Dusi, André N; Nagata, Tatsuya; Inoue-Nagata, Alice K

    2013-01-01

    Arracacha mottle virus (AMoV) is the only potyvirus reported to infect arracacha (Arracacia xanthorrhiza) in Brazil. Here, the complete genome sequence of an isolate of AMoV was determined to be 9,630 nucleotides in length, excluding the 3' poly-A tail, and encoding a polyprotein of 3,135 amino acids and a putative P3N-PIPO protein. Its genomic organization is typical of a member of the genus Potyvirus, containing all conserved motifs. Its full genome sequence shared 56.2 % nucleotide identity with sunflower chlorotic mottle virus and verbena virus Y, the most closely related viruses.

  18. Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Bejerman, Nicolás, E-mail: n.bejerman@uq.edu.au [Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria INTA, Camino a 60 Cuadras k 5,5, Córdoba X5020ICA (Argentina); Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072 (Australia); Giolitti, Fabián; Breuil, Soledad de; Trucco, Verónica; Nome, Claudia; Lenardon, Sergio [Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria INTA, Camino a 60 Cuadras k 5,5, Córdoba X5020ICA (Argentina); Dietzgen, Ralf G. [Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072 (Australia)

    2015-09-15

    Summary: We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses. - Highlights: • The complete genome of alfalfa dwarf virus is obtained. • An integrated localization and interaction map for ADV is determined. • ADV has a genome sequence similarity and evolutionary links with cytorhabdoviruses. • ADV protein localization and interaction data show an association with the nucleus. • ADV combines properties of both cytoplasmic and nuclear plant rhabdoviruses.

  19. Molecular cloning, sequence analysis and expression of genome segment 7 (S7) of Antheraea mylitta cypovirus (AmCPV) that encodes a viral structural protein.

    Science.gov (United States)

    Chavali, Venkata Ramana Murthy; Ghosh, Ananta K

    2007-10-01

    The Genome segment 7 (S7) of the 11 double stranded RNA genomes from Antheraea mylitta cypovirus (AmCPV) was converted to cDNA, cloned and sequenced. The nucleotide sequence showed that segment 7 consisted of 1789 nucleotides with an ORF of 530 amino acids and could encode a protein of approximately 61 kDa, termed P61. The 5' terminal sequence, AGTAAT and the 3' terminal sequence, AGAGC of the plus strand was found to be the same as genome segment 10 of AmCPV encoding polyhedrin. No sequence similarity was found by searching nucleic acid and protein sequence databases using BLAST. The secondary structure prediction showed the presence of 17 alpha-helices, 18 extended beta-sheets along the entire length of P61. The ORF of segment 7 was expressed in E. coli as His-tagged fusion protein, purified through Ni-NTA chromatography, and polyclonal antibody was raised in rabbit indicating that P61 is immunogenic. Immunoblot analysis using this antibody on viral infected cells as well as purified polyhedra showed that P61 is a viral structural protein. Motif scan search showed some similarity of P61 with Inosine monophosphate dehydrogenase (IMPDH) cystathionine-beta-synthase (CBS) domain at the C-terminus and it was hypothesized that by binding to single stranded viral RNA through its CBS domain P61 may help in virus replication or transcription.

  20. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    Science.gov (United States)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  1. Genome-Wide Prediction of Intrinsic Disorder; Sequence Alignment of Intrinsically Disordered Proteins

    Science.gov (United States)

    Midic, Uros

    2012-01-01

    Intrinsic disorder (ID) is defined as a lack of stable tertiary and/or secondary structure under physiological conditions in vitro. Intrinsically disordered proteins (IDPs) are highly abundant in nature. IDPs possess a number of crucial biological functions, being involved in regulation, recognition, signaling and control, e.g. their functional…

  2. Genome-Wide Prediction of Intrinsic Disorder; Sequence Alignment of Intrinsically Disordered Proteins

    Science.gov (United States)

    Midic, Uros

    2012-01-01

    Intrinsic disorder (ID) is defined as a lack of stable tertiary and/or secondary structure under physiological conditions in vitro. Intrinsically disordered proteins (IDPs) are highly abundant in nature. IDPs possess a number of crucial biological functions, being involved in regulation, recognition, signaling and control, e.g. their functional…

  3. Genome Sequence of the Palaeopolyploid soybean

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Cannon, Steven B.; Schlueter, Jessica; Ma, Jianxin; Mitros, Therese; Nelson, William; Hyten, David L.; Song, Qijian; Thelen, Jay J.; Cheng, Jianlin; Xu, Dong; Hellsten, Uffe; May, Gregory D.; Yu, Yeisoo; Sakura, Tetsuya; Umezawa, Taishi; Bhattacharyya, Madan K.; Sandhu, Devinder; Valliyodan, Babu; Lindquist, Erika; Peto, Myron; Grant, David; Shu, Shengqiang; Goodstein, David; Barry, Kerrie; Futrell-Griggs, Montona; Abernathy, Brian; Du, Jianchang; Tian, Zhixi; Zhu, Liucun; Gill, Navdeep; Joshi, Trupti; Libault, Marc; Sethuraman, Anand; Zhang, Xue-Cheng; Shinozaki, Kazuo; Nguyen, Henry T.; Wing, Rod A.; Cregan, Perry; Specht, James; Grimwood, Jane; Rokhsar, Dan; Stacey, Gary; Shoemaker, Randy C.; Jackson, Scott A.

    2009-08-03

    Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70percent more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78percent of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75percent of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.

  4. Sequencing and Analysis of a Genomic Fragment Provide an Insight into the Dunaliella viridis Genomic Sequence

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ming SUN; Yuan-Ping TANG; Xiang-Zong MENG; Wen-Wen ZHANG; Shan LI; Zhi-Rui DENG; Zheng-Kai XU; Ren-Tao SONG

    2006-01-01

    Dunaliella is a genus of wall-less unicellular eukaryotic green alga. Its exceptional resistances to salt and various other stresses have made it an ideal model for stress tolerance study. However, very little is known about its genome and genomic sequences. In this study, we sequenced and analyzed a 29,268 bp genomic fragment from Dunaliella viridis. The fragment showed low sequence homology to the GenBank database. At the nucleotide level, only a segment with significant sequence homology to 18S rRNA was found. The fragment contained six putative genes, but only one gene showed significant homology at the protein level to GenBank database. The average GC content of this sequence was 51.1%, which was much lower than that of close related green algae Chlamydomonas (65.7%). Significant segmental duplications were found within this fragment. The duplicated sequences accounted for about 35.7% of the entire region. Large amounts of simple sequence repeats (microsatellites) were found, with strong bias towards (AC)n type (76%). Analysis of other Dunaliella genomic sequences in the GenBank database (total 25,749 bp) was in agreement with these findings. These sequence features made it difficult to sequence Dunaliella genomic sequences. Further investigation should be made to reveal the biological significance of these unique sequence features.

  5. Complete genome sequence of Bacillus thuringiensis CTC-A typical strain with high production of S-layer proteins.

    Science.gov (United States)

    Dong, Zhaoxia; Li, Junhua; Zheng, Jinshui; Geng, Ce; Peng, Donghai; Sun, Ming

    2016-02-20

    Bacillus thuringiensis CTC, which is identified as serotype H2, serovar. finitimus, is high production of S-layer protein. Due to the property of forming isoporous lattices on the whole cell surface, S-layer protein has been widely used in (nano) biotechnology, biomimetics, biomedicine, especially been employed for displaying many important active proteins. Here, we report the complete genome of strain CTC, which contains one circular chromosome and one linear plasmid.

  6. Genome sequence variation in the constricta strain dramatically alters the protein interaction and localization map of Potato yellow dwarf virus

    Science.gov (United States)

    The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12,792 nucleotides long and organized into seven open reading frames with the gene order 3’-N-X-P-Y-M-G-L-5’, which encodes the nucleocapsid, phosphoprotein, movement, matrix, glycoprotein and RNA-d...

  7. Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum.

    Science.gov (United States)

    Marienhagen, Jan; Kennerknecht, Nicole; Sahm, Hermann; Eggeling, Lothar

    2005-11-01

    Twenty putative aminotransferase (AT) proteins of Corynebacterium glutamicum, or rather pyridoxal-5'-phosphate (PLP)-dependent enzymes, were isolated and assayed among others with L-glutamate, L-aspartate, and L-alanine as amino donors and a number of 2-oxo-acids as amino acceptors. One outstanding AT identified is AlaT, which has a broad amino donor specificity utilizing (in the order of preference) L-glutamate > 2-aminobutyrate > L-aspartate with pyruvate as acceptor. Another AT is AvtA, which utilizes L-alanine to aminate 2-oxo-isovalerate, the L-valine precursor, and 2-oxo-butyrate. A second AT active with the L-valine precursor and that of the other two branched-chain amino acids, too, is IlvE, and both enzyme activities overlap partially in vivo, as demonstrated by the analysis of deletion mutants. Also identified was AroT, the aromatic AT, and this and IlvE were shown to have comparable activities with phenylpyruvate, thus demonstrating the relevance of both ATs for L-phenylalanine synthesis. We also assessed the activity of two PLP-containing cysteine desulfurases, supplying a persulfide intermediate. One of them is SufS, which assists in the sulfur transfer pathway for the Fe-S cluster assembly. Together with the identification of further ATs and the additional analysis of deletion mutants, this results in an overview of the ATs within an organism that may not have been achieved thus far.

  8. Genome sequence and analysis of the tuber crop potato

    DEFF Research Database (Denmark)

    Xu, X.; Pan, S.; Cheng, S.

    2011-01-01

    and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade...

  9. Pig genome sequence - analysis and publication strategy

    NARCIS (Netherlands)

    Archibald, A.L.; Bolund, L.; Churcher, C.; Fredholm, M.; Groenen, M.A.M.; Harlizius, B.

    2010-01-01

    Background - The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing. Results - Assemblies of the B

  10. Involvement of two latex-clearing proteins during rubber degradation and insights into the subsequent degradation pathway revealed by the genome sequence of Gordonia polyisoprenivorans strain VH2.

    Science.gov (United States)

    Hiessl, Sebastian; Schuldes, Jörg; Thürmer, Andrea; Halbsguth, Tobias; Bröker, Daniel; Angelov, Angel; Liebl, Wolfgang; Daniel, Rolf; Steinbüchel, Alexander

    2012-04-01

    The increasing production of synthetic and natural poly(cis-1,4-isoprene) rubber leads to huge challenges in waste management. Only a few bacteria are known to degrade rubber, and little is known about the mechanism of microbial rubber degradation. The genome of Gordonia polyisoprenivorans strain VH2, which is one of the most effective rubber-degrading bacteria, was sequenced and annotated to elucidate the degradation pathway and other features of this actinomycete. The genome consists of a circular chromosome of 5,669,805 bp and a circular plasmid of 174,494 bp with average GC contents of 67.0% and 65.7%, respectively. It contains 5,110 putative protein-coding sequences, including many candidate genes responsible for rubber degradation and other biotechnically relevant pathways. Furthermore, we detected two homologues of a latex-clearing protein, which is supposed to be a key enzyme in rubber degradation. The deletion of these two genes for the first time revealed clear evidence that latex-clearing protein is essential for the microbial utilization of rubber. Based on the genome sequence, we predict a pathway for the microbial degradation of rubber which is supported by previous and current data on transposon mutagenesis, deletion mutants, applied comparative genomics, and literature search.

  11. Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein

    Directory of Open Access Journals (Sweden)

    Xu Wanhong

    2008-12-01

    Full Text Available Abstract Background The orthoreoviruses are infectious agents that possess a genome comprised of 10 double-stranded RNA segments encased in two concentric protein capsids. Like virtually all RNA viruses, an RNA-dependent RNA polymerase (RdRp enzyme is required for viral propagation. RdRp sequences have been determined for the prototype mammalian orthoreoviruses and for several other closely-related reoviruses, including aquareoviruses, but have not yet been reported for any avian orthoreoviruses. Results We determined the L2 genome segment nucleotide sequences, which encode the RdRp proteins, of two different avian reoviruses, strains ARV138 and ARV176 in order to define conserved and variable regions within reovirus RdRp proteins and to better delineate structure/function of this important enzyme. The ARV138 L2 genome segment was 3829 base pairs long, whereas the ARV176 L2 segment was 3830 nucleotides long. Both segments were predicted to encode λB RdRp proteins 1259 amino acids in length. Alignments of these newly-determined ARV genome segments, and their corresponding proteins, were performed with all currently available homologous mammalian reovirus (MRV and aquareovirus (AqRV genome segment and protein sequences. There was ~55% amino acid identity between ARV λB and MRV λ3 proteins, making the RdRp protein the most highly conserved of currently known orthoreovirus proteins, and there was ~28% identity between ARV λB and homologous MRV and AqRV RdRp proteins. Predictive structure/function mapping of identical and conserved residues within the known MRV λ3 atomic structure indicated most identical amino acids and conservative substitutions were located near and within predicted catalytic domains and lining RdRp channels, whereas non-identical amino acids were generally located on the molecule's surfaces. Conclusion The ARV λB and MRV λ3 proteins showed the highest ARV:MRV identity values (~55% amongst all currently known ARV and MRV

  12. Genomic Sequence Comparisons, 1987-2003 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    George M. Church

    2004-07-29

    This project was to develop new DNA sequencing and RNA and protein quantitation methods and related genome annotation tools. The project began in 1987 with the development of multiplex sequencing (published in Science in 1988), and one of the first automated sequencing methods. This lead to the first commercial genome sequence in 1994 and to the establishment of the main commercial participants (GTC then Agencourt) in the public DOE/NIH genome project. In collaboration with GTC we contributed to one of the first complete DOE genome sequences, in 1997, that of Methanobacterium thermoautotropicum, a species of great relevance to energy-rich gas production.

  13. Pig genome sequence - analysis and publication strategy

    DEFF Research Database (Denmark)

    Archibald, Alan L.; Bolund, Lars; Churcher, Carol;

    2010-01-01

    BACKGROUND: The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing. RESULTS: Assemblies......) is under construction and will incorporate whole genome shotgun sequence (WGS) data providing > 30x genome coverage. The WGS sequence, most of which comprise short Illumina/Solexa reads, were generated from DNA from the same single Duroc sow as the source of the BAC library from which clones were...

  14. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel

  15. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  16. Genome Sequences of Eight Morphologically Diverse Alphaproteobacteria▿

    OpenAIRE

    Brown, Pamela J.B.; Kysela, David T.; Buechlein, Aaron; Hemmerich, Chris; Brun, Yves V

    2011-01-01

    The Alphaproteobacteriacomprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium.

  17. Genome sequences of eight morphologically diverse Alphaproteobacteria.

    Science.gov (United States)

    Brown, Pamela J B; Kysela, David T; Buechlein, Aaron; Hemmerich, Chris; Brun, Yves V

    2011-09-01

    The Alphaproteobacteria comprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium.

  18. Genome Sequences of Eight Morphologically Diverse Alphaproteobacteria▿

    Science.gov (United States)

    Brown, Pamela J. B.; Kysela, David T.; Buechlein, Aaron; Hemmerich, Chris; Brun, Yves V.

    2011-01-01

    The Alphaproteobacteriacomprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium. PMID:21705585

  19. Complete genome sequence of Enterobacter aerogenes KCTC 2190.

    Science.gov (United States)

    Shin, Sang Heum; Kim, Sewhan; Kim, Jae Young; Lee, Soojin; Um, Youngsoon; Oh, Min-Kyu; Kim, Young-Rok; Lee, Jinwon; Yang, Kap-Seok

    2012-05-01

    This is the first complete genome sequence of the Enterobacter aerogenes species. Here we present the genome sequence of E. aerogenes KCTC 2190, which contains 5,280,350 bp with a G + C content of 54.8 mol%, 4,912 protein-coding genes, and 109 structural RNAs.

  20. Draft Genome Sequence of Enterococcus mundtii CRL1656

    OpenAIRE

    2012-01-01

    We report the draft genome sequence of Enterococcus mundtii CRL1656, which was isolated from the stripping milk of a clinically healthy adult Holstein dairy cow from a dairy farm of the northwestern region of Tucumán (Argentina). The 3.10-Mb genome sequence consists of 450 large contigs and contains 2,741 predicted protein-coding genes.

  1. Genome sequence of the Chlamydophila abortus variant strain LLG.

    Science.gov (United States)

    Sait, Michelle; Clark, Ewan M; Wheelhouse, Nick; Livingstone, Morag; Spalding, Lucy; Siarkou, Victoria I; Vretou, Evangelia; Smith, David G E; Lainson, F Alex; Longbottom, David

    2011-08-01

    Chlamydophila abortus is a common cause of ruminant abortion. Here we report the genome sequence of strain LLG, which differs genotypically and phenotypically from the wild-type strain S26/3. Genome sequencing revealed differences between LLG and S26/3 to occur in pseudogene content, in transmembrane head/inc family proteins, and in biotin biosynthesis genes.

  2. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance.

    Science.gov (United States)

    Villa, Laura; Feudi, Claudia; Fortini, Daniela; García-Fernández, Aurora; Carattoli, Alessandra

    2014-01-01

    Full genome sequences were determined for five Klebsiella pneumoniae strains belonging to the sequence type 512 (ST512) clone, producing KPC-3. Three strains were resistant to tigecycline, one showed an intermediate phenotype, and one was susceptible. Comparative analysis performed using the genome of the susceptible strain as a reference sequence identified genetic differences possibly associated with resistance to tigecycline. Results demonstrated that mutations in the ramR gene occurred in two of the three sequenced strains. Mutations in RamR were previously demonstrated to cause overexpression of the AcrAB-TolC efflux system and were implicated in tigecycline resistance in K. pneumoniae. The third strain showed a mutation located at the vertex of a very well conserved loop in the S10 ribosomal protein, which is located in close proximity to the tigecycline target site in the 30S ribosomal subunit. This mutation was previously shown to be associated with tetracycline resistance in Neisseria gonorrhoeae. A PCR-based approach was devised to amplify the potential resistance mechanisms identified by genomics and applied to two additional ST512 strains showing resistance to tigecycline, allowing us to identify mutations in the ramR gene.

  3. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    Science.gov (United States)

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  4. Identifying driver mutations in sequenced cancer genomes

    DEFF Research Database (Denmark)

    Raphael, Benjamin J; Dobson, Jason R; Oesper, Layla

    2014-01-01

    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise......, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high-throughput DNA...... sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on protein...

  5. Translational genomics for plant breeding with the genome sequence explosion.

    Science.gov (United States)

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.

  6. Improved genome sequencing using an engineered transposase.

    Science.gov (United States)

    Kia, Amirali; Gloeckner, Christian; Osothprarop, Trina; Gormley, Niall; Bomati, Erin; Stephenson, Michelle; Goryshin, Igor; He, Molly Min

    2017-01-17

    Next-generation sequencing (NGS) has transformed genomic research by reducing turnaround time and cost. However, no major breakthrough has been made in the upstream library preparation methods until the transposase-based Nextera method was invented. Nextera combines DNA fragmentation and barcoding in a single tube reaction and therefore enables a very fast workflow to sequencing-ready DNA libraries within a couple of hours. When compared to the traditional ligation-based methods, transposed-based Nextera has a slight insertion bias. Here we present the discovery of a mutant transposase (Tn5-059) with a lowered GC insertion bias through protein engineering. We demonstrate Tn5-059 reduces AT dropout and increases uniformity of genome coverage in both bacterial genomes and human genome. We also observe higher library diversity generated by Tn5-059 when compared to Nextera v2 for human exomes, which leads to less sequencing and lower cost per genome. In addition, when used for human exomes, Tn5-059 delivers consistent library insert size over a range of input DNA, allowing up to a tenfold variance from the 50 ng input recommendation. Enhanced DNA input tolerance of Tn5-059 can translate to flexibility and robustness of workflow. DNA input tolerance together with superior uniformity of coverage and lower AT dropouts extend the applications of transposase based library preps. We discuss possible mechanisms of improvements in Tn5-059, and potential advantages of using the new mutant in varieties of applications including microbiome sequencing and chromatin profiling.

  7. Sequencing intractable DNA to close microbial genomes.

    Science.gov (United States)

    Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  8. Sequencing intractable DNA to close microbial genomes.

    Directory of Open Access Journals (Sweden)

    Richard A Hurt

    Full Text Available Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps and the Desulfovibrio africanus genome (1 intractable gap. The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  9. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  10. Value of a newly sequenced bacterial genome

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Aburjaile, Flavia F; Ramos, Rommel Tj

    2014-01-01

    and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses...

  11. A survey of HK, HPt, and RR domains and their organization in two-component systems and phosphorelay proteins of organisms with fully sequenced genomes

    Science.gov (United States)

    Salvado, Baldiri; Vilaprinyo, Ester; Sorribas, Albert

    2015-01-01

    Two Component Systems and Phosphorelays (TCS/PR) are environmental signal transduction cascades in prokaryotes and, less frequently, in eukaryotes. The internal domain organization of proteins and the topology of TCS/PR cascades play an important role in shaping the responses of the circuits. It is thus important to maintain updated censuses of TCS/PR proteins in order to identify the various topologies used by nature and enable a systematic study of the dynamics associated with those topologies. To create such a census, we analyzed the proteomes of 7,609 organisms from all domains of life with fully sequenced and annotated genomes. To begin, we survey each proteome searching for proteins containing domains that are associated with internal signal transmission within TCS/PR: Histidine Kinase (HK), Response Regulator (RR) and Histidine Phosphotranfer (HPt) domains, and analyze how these domains are arranged in the individual proteins. Then, we find all types of operon organization and calculate how much more likely are proteins that contain TCS/PR domains to be coded by neighboring genes than one would expect from the genome background of each organism. Finally, we analyze if the fusion of domains into single TCS/PR proteins is more frequently observed than one might expect from the background of each proteome. We find 50 alternative ways in which the HK, HPt, and RR domains are observed to organize into single proteins. In prokaryotes, TCS/PR coding genes tend to be clustered in operons. 90% of all proteins identified in this study contain just one of the three domains, while 8% of the remaining proteins combine one copy of an HK, a RR, and/or an HPt domain. In eukaryotes, 25% of all TCS/PR proteins have more than one domain. These results might have implications for how signals are internally transmitted within TCS/PR cascades. These implications could explain the selection of the various designs in alternative circumstances. PMID:26339559

  12. A survey of HK, HPt, and RR domains and their organization in two-component systems and phosphorelay proteins of organisms with fully sequenced genomes

    Directory of Open Access Journals (Sweden)

    Baldiri Salvado

    2015-08-01

    Full Text Available Two Component Systems and Phosphorelays (TCS/PR are environmental signal transduction cascades in prokaryotes and, less frequently, in eukaryotes. The internal domain organization of proteins and the topology of TCS/PR cascades play an important role in shaping the responses of the circuits. It is thus important to maintain updated censuses of TCS/PR proteins in order to identify the various topologies used by nature and enable a systematic study of the dynamics associated with those topologies. To create such a census, we analyzed the proteomes of 7,609 organisms from all domains of life with fully sequenced and annotated genomes. To begin, we survey each proteome searching for proteins containing domains that are associated with internal signal transmission within TCS/PR: Histidine Kinase (HK, Response Regulator (RR and Histidine Phosphotranfer (HPt domains, and analyze how these domains are arranged in the individual proteins. Then, we find all types of operon organization and calculate how much more likely are proteins that contain TCS/PR domains to be coded by neighboring genes than one would expect from the genome background of each organism. Finally, we analyze if the fusion of domains into single TCS/PR proteins is more frequently observed than one might expect from the background of each proteome. We find 50 alternative ways in which the HK, HPt, and RR domains are observed to organize into single proteins. In prokaryotes, TCS/PR coding genes tend to be clustered in operons. 90% of all proteins identified in this study contain just one of the three domains, while 8% of the remaining proteins combine one copy of an HK, a RR, and/or an HPt domain. In eukaryotes, 25% of all TCS/PR proteins have more than one domain. These results might have implications for how signals are internally transmitted within TCS/PR cascades. These implications could explain the selection of the various designs in alternative circumstances.

  13. Draft Genome Sequence of Lactobacillus rhamnosus 2166.

    OpenAIRE

    Karlyshev, Andrey V.; Melnikov, Vyacheslav G.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2014-01-01

    In this report, we present a draft sequence of the genome of Lactobacillus rhamnosus strain 2166, a potential novel probiotic. Genome annotation and read mapping onto a reference genome of L. rhamnosus strain GG allowed for the identification of the differences and similarities in the genomic contents and gene arrangements of these strains.

  14. Draft Genome Sequence of Lactobacillus rhamnosus 2166.

    OpenAIRE

    Karlyshev, Andrey V.; Melnikov, Vyacheslav G.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2014-01-01

    In this report, we present a draft sequence of the genome of Lactobacillus rhamnosus strain 2166, a potential novel probiotic. Genome annotation and read mapping onto a reference genome of L. rhamnosus strain GG allowed for the identification of the differences and similarities in the genomic contents and gene arrangements of these strains.

  15. Sequence and expression analyses of KIX domain proteins suggest their importance in seed development and determination of seed size in rice, and genome stability in Arabidopsis.

    Science.gov (United States)

    Thakur, Jitendra Kumar; Agarwal, Pinky; Parida, Swarup; Bajaj, Deepak; Pasrija, Richa

    2013-08-01

    The KIX domain, which mediates protein-protein interactions, was first discovered as a motif in the large multidomain transcriptional activator histone acetyltransferase p300/CBP. Later, the domain was also found in Mediator subunit MED15, where it interacts with many transcription factors. In both proteins, the KIX domain is a target of activation domains of diverse transcription activators. It was found to be an essential component of several specific gene-activation pathways in fungi and metazoans. Not much is known about KIX domain proteins in plants. This study aims to characterize all the KIX domain proteins encoded by the genomes of Arabidopsis and rice. All identified KIX domain proteins are presented, together with their chromosomal locations, phylogenetic analysis, expression and SNP analyses. KIX domains were found not only in p300/CBP- and MED15-like plant proteins, but also in F-box proteins in rice and DNA helicase in Arabidopsis, suggesting roles of KIX domains in ubiquitin-mediated proteasomal degradation and genome stability. Expression analysis revealed overlapping expression of OsKIX_3, OsKIX_5 and OsKIX_7 in different stages of rice seeds development. Moreover, an association analysis of 136 in silico mined SNP loci in 23 different rice genotypes with grain-length information identified three non-synonymous SNP loci in these three rice genes showing strong association with long- and short-grain differentiation. Interestingly, these SNPs were located within KIX domain encoding sequences. Overall, this study lays a foundation for functional analysis of KIX domain proteins in plants.

  16. Value of a newly sequenced bacterial genome

    Institute of Scientific and Technical Information of China (English)

    Eudes; GV; Barbosa; Flavia; F; Aburjaile; Rommel; TJ; Ramos; Adriana; R; Carneiro; Yves; Le; Loir; Jan; Baumbach; Anderson; Miyoshi; Artur; Silva; Vasco; Azevedo

    2014-01-01

    Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.

  17. Enhanced Dynamic Algorithm of Genome Sequence Alignments

    Directory of Open Access Journals (Sweden)

    Arabi E. keshk

    2014-05-01

    Full Text Available The merging of biology and computer science has created a new field called computational biology that explore the capacities of computers to gain knowledge from biological data, bioinformatics. Computational biology is rooted in life sciences as well as computers, information sciences, and technologies. The main problem in computational biology is sequence alignment that is a way of arranging the sequences of DNA, RNA or protein to identify the region of similarity and relationship between sequences. This paper introduces an enhancement of dynamic algorithm of genome sequence alignment, which called EDAGSA. It is filling the three main diagonals without filling the entire matrix by the unused data. It gets the optimal solution with decreasing the execution time and therefore the performance is increased. To illustrate the effectiveness of optimizing the performance of the proposed algorithm, it is compared with the traditional methods such as Needleman-Wunsch, Smith-Waterman and longest common subsequence algorithms. Also, database is implemented for using the algorithm in multi-sequence alignments for searching the optimal sequence that matches the given sequence.

  18. Genome sequence of vanilla distortion mosaic virus infecting Coriandrum sativum.

    Science.gov (United States)

    Adams, I P; Rai, S; Deka, M; Harju, V; Hodges, T; Hayward, G; Skelton, A; Fox, A; Boonham, N

    2014-12-01

    The 9573-nucleotide genome of a potyvirus was sequenced from a Coriandrum sativum plant from India with viral symptoms. On analysis, this virus was shown to have greater than 85 % nucleotide sequence identity to vanilla distortion mosaic virus (VDMV). Analysis of the putative coat protein sequence confirmed that this virus was in fact VDMV, with greater than 91 % amino acid sequence identity. The genome appears to encode a 3083-amino-acid polyprotein potentially cleaved into the 10 mature proteins expected in potyviruses. Phylogenetic analysis confirmed that VDMV is a distinct but ungrouped member of the genus Potyvirus.

  19. Microbial genomics: from sequence to function.

    OpenAIRE

    Schwartz, I

    2000-01-01

    The era of genomics (the study of genes and their function) began a scant dozen years ago with a suggestion by James Watson that the complete DNA sequence of the human genome be determined. Since that time, the human genome project has attracted a great deal of attention in the scientific world and the general media; the scope of the sequencing effort, and the extraordinary value that it will provide, has served to mask the enormous progress in sequencing other genomes. Microbial genome seque...

  20. Complete genome sequence of Sulfurospirillum deleyianum type strain (5175T)

    Energy Technology Data Exchange (ETDEWEB)

    Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Lang, Elke [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Sulfurospirillum deleyianum Schumacher et al. 1993 is the type species of the genus Sulfurospirillum. S. deleyianum is a model organism for studying sulfur reduction and dissimilatory nitrate reduction as energy source for growth. Also, it is a prominent model organism for studying the structural and functional characteristics of the cytochrome c nitrite reductase. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the genus Sulfurospirillum. The 2,306,351 bp long genome with its 2291 protein-coding and 52 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  1. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    Energy Technology Data Exchange (ETDEWEB)

    Clum, Alicia; Nolan, Matt; Lang, Elke; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Goker, Markus; Spring, Stefan; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  2. Complete genome sequence of Gordonia bronchialis type strain (3410T)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Jando, Marlen [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J C [U.S. Department of Energy, Joint Genome Institute; Brettin, Thomas S [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2010-01-01

    Gordonia bronchialis Tsukamura 1971 is the type species of the genus. G. bronchialis is a human-pathogenic organism that has been isolated from a large variety of human tissues. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Gordoniaceae. The 5,290,012 bp long genome with its 4,944 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  3. Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains.

    Directory of Open Access Journals (Sweden)

    Didier Menard

    2013-11-01

    Full Text Available BACKGROUND: Plasmodium vivax is the most prevalent human malaria parasite, causing serious public health problems in malaria-endemic countries. Until recently the Duffy-negative blood group phenotype was considered to confer resistance to vivax malaria for most African ethnicities. We and others have reported that P. vivax strains in African countries from Madagascar to Mauritania display capacity to cause clinical vivax malaria in Duffy-negative people. New insights must now explain Duffy-independent P. vivax invasion of human erythrocytes. METHODS/PRINCIPAL FINDINGS: Through recent whole genome sequencing we obtained ≥ 70× coverage of the P. vivax genome from five field-isolates, resulting in ≥ 93% of the Sal I reference sequenced at coverage greater than 20×. Combined with sequences from one additional Malagasy field isolate and from five monkey-adapted strains, we describe here identification of DNA sequence rearrangements in the P. vivax genome, including discovery of a duplication of the P. vivax Duffy binding protein (PvDBP gene. A survey of Malagasy patients infected with P. vivax showed that the PvDBP duplication was present in numerous locations in Madagascar and found in over 50% of infected patients evaluated. Extended geographic surveys showed that the PvDBP duplication was detected frequently in vivax patients living in East Africa and in some residents of non-African P. vivax-endemic countries. Additionally, the PvDBP duplication was observed in travelers seeking treatment of vivax malaria upon returning home. PvDBP duplication prevalence was highest in west-central Madagascar sites where the highest frequencies of P. vivax-infected, Duffy-negative people were reported. CONCLUSIONS/SIGNIFICANCE: The highly conserved nature of the sequence involved in the PvDBP duplication suggests that it has occurred in a recent evolutionary time frame. These data suggest that PvDBP, a merozoite surface protein involved in red cell adhesion

  4. Open access to sequence: Browsing the Pichia pastoris genome

    Directory of Open Access Journals (Sweden)

    Graf Alexandra

    2009-10-01

    Full Text Available Abstract The first genome sequences of the important yeast protein production host Pichia pastoris have been released into the public domain this spring. In order to provide the scientific community easy and versatile access to the sequence, two web-sites have been installed as a resource for genomic sequence, gene and protein information for P. pastoris: A GBrowse based genome browser was set up at http://www.pichiagenome.org and a genome portal with gene annotation and browsing functionality at http://bioinformatics.psb.ugent.be/webtools/bogas. Both websites are offering information on gene annotation and function, regulation and structure. In addition, a WiKi based platform allows all users to create additional information on genes, proteins, physiology and other items of P. pastoris research, so that the Pichia community can benefit from exchange of knowledge, data and materials.

  5. Detecting long tandem duplications in genomic sequences

    Directory of Open Access Journals (Sweden)

    Audemard Eric

    2012-05-01

    Full Text Available Abstract Background Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. Results In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,a we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS  Conclusions ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations.

  6. Genome Sequence of Lactobacillus rhamnosus ATCC 8530

    OpenAIRE

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R.; Ziola, Barry

    2012-01-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences.

  7. The R Protein of SARS-CoV: Analyses of Structure and Function Based on Four Complete Genome Sequences of Isolates BJ01-BJ04

    Institute of Scientific and Technical Information of China (English)

    Zuyuan Xu; Zizhang Zhang; Jing Xu; Wei Wei; Jingui Zhu; Haiyan Sun; Xiaowei Zhang; Jun Zhou; Songgang Li; Jun Wang; Jian Wang; Haiqing Zhang; Shengli Bi; Huanming Yang; Xiangjun Tian; Jia Ji; Wei Li; Yan Li; Wei Tian; Yujun Han; Lili Wang

    2003-01-01

    The R (replicase) protein is the uniquely defined non-structural protein (NSP)responsible for RNA replication, mutation rate or fidelity, regulation of transcrip-tion in coronaviruses and many other ssRNA viruses. Based on our completegenome sequences of four isolates (BJ01-BJ04) of SARS-CoV from Beijing, China,we analyzed the structure and predicted functions of the R protein in comparisonwith 13 other isolates of SARS-CoV and 6 other coronaviruses. The entire ORF(open-reading frame) encodes for two major enzyme activities, RNA-dependentRNA polymerase (RdRp) and proteinase activities. The R polyprotein under-goes a complex proteolytic process to produce 15 function-related peptides. Ahydrophobic domain (HOD) and a hydrophilic domain (HID) are newly identifiedwithin NSP1. The substitution rate of the R protein is close to the average ofthe SARS-CoV genome. The functional domains in all NSPs of the R proteingive different phylogenetic results that suggest their different mutation rate underselective pressure. Eleven highly conserved regions in RdRp and twelve cleavagesites by 3CLP (chymotrypsin-like protein) have been identified as potential drugtargets. Findings suggest that it is possible to obtain information about the phy-logeny of SARS-CoV, as well as potential tools for drug design, genotyping anddiagnostics of SARS.

  8. Maize genome sequencing by methylation filtration.

    Science.gov (United States)

    Palmer, Lance E; Rabinowicz, Pablo D; O'Shaughnessy, Andrew L; Balija, Vivekanand S; Nascimento, Lidia U; Dike, Sujit; de la Bastide, Melissa; Martienssen, Robert A; McCombie, W Richard

    2003-12-19

    Gene enrichment strategies offer an alternative to sequencing large and repetitive genomes such as that of maize. We report the generation and analysis of nearly 100,000 undermethylated (or methylation filtration) maize sequences. Comparison with the rice genome reveals that methylation filtration results in a more comprehensive representation of maize genes than those that result from expressed sequence tags or transposon insertion sites sequences. About 7% of the repetitive DNA is unmethylated and thus selected in our libraries, but potentially active transposons and unmethylated organelle genomes can be identified. Reverse transcription polymerase chain reaction can be used to finish the maize transcriptome.

  9. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  10. The genome sequence of parrot bornavirus 5.

    Science.gov (United States)

    Guo, Jianhua; Tizard, Ian

    2015-12-01

    Although several new avian bornaviruses have recently been described, information on their evolution, virulence, and sequence are often limited. Here we report the complete genome sequence of parrot bornavirus 5 (PaBV-5) isolated from a case of proventricular dilatation disease in a Palm cockatoo (Probosciger aterrimus). The complete genome consists of 8842 nucleotides with distinct 5' and 3' end sequences. This virus shares nucleotide sequence identities of 69-74 % with other bornaviruses in the genomic regions excluding the 5' and 3' terminal sequences. Phylogenetic analysis based on the genomic regions demonstrated this new isolate is an isolated branch within the clade that includes the aquatic bird bornaviruses and the passerine bornaviruses. Based on phylogenetic analyses and its low nucleotide sequence identities with other bornavirus, we support the proposal that PaBV-5 be assigned to a new bornavirus species:- Psittaciform 2 bornavirus.

  11. Genomic sequencing of Pleistocene cave bears

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, James P.; Hofreiter, Michael; Smith, Doug; Priest, JamesR.; Rohland, Nadin; Rabeder, Gernot; Krause, Johannes; Detter, J. Chris; Paabo, Svante; Rubin, Edward M.

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome, the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.

  12. Genome-scale validation of deep-sequencing libraries.

    Directory of Open Access Journals (Sweden)

    Dominic Schmidt

    Full Text Available Chromatin immunoprecipitation followed by high-throughput (HTP sequencing (ChIP-seq is a powerful tool to establish protein-DNA interactions genome-wide. The primary limitation of its broad application at present is the often-limited access to sequencers. Here we report a protocol, Mab-seq, that generates genome-scale quality evaluations for nucleic acid libraries intended for deep-sequencing. We show how commercially available genomic microarrays can be used to maximize the efficiency of library creation and quickly generate reliable preliminary data on a chromosomal scale in advance of deep sequencing. We also exploit this technique to compare enriched regions identified using microarrays with those identified by sequencing, demonstrating that they agree on a core set of clearly identified enriched regions, while characterizing the additional enriched regions identifiable using HTP sequencing.

  13. Genome sequence of the plant growth-promoting rhizobacterium Pseudomonas putida S11.

    Science.gov (United States)

    Ponraj, Paramasivan; Shankar, Manoharan; Ilakkiam, Devaraj; Rajendhran, Jeyaprakash; Gunasekaran, Paramasamy

    2012-11-01

    Here we report the genome sequence of a plant growth-promoting rhizobacterium, Pseudomonas putida S11. The length of the draft genome sequence is approximately 5,970,799 bp, with a G+C content of 62.4%. The genome contains 6,076 protein-coding sequences.

  14. Draft genome sequence of the silver pomfret fish, Pampus argenteus.

    Science.gov (United States)

    AlMomin, Sabah; Kumar, Vinod; Al-Amad, Sami; Al-Hussaini, Mohsen; Dashti, Talal; Al-Enezi, Khaznah; Akbar, Abrar

    2016-01-01

    Silver pomfret, Pampus argenteus, is a fish species from coastal waters. Despite its high commercial value, this edible fish has not been sequenced. Hence, its genetic and genomic studies have been limited. We report the first draft genome sequence of the silver pomfret obtained using a Next Generation Sequencing (NGS) technology. We assembled 38.7 Gb of nucleotides into scaffolds of 350 Mb with N50 of about 1.5 kb, using high quality paired end reads. These scaffolds represent 63.7% of the estimated silver pomfret genome length. The newly sequenced and assembled genome has 11.06% repetitive DNA regions, and this percentage is comparable to that of the tilapia genome. The genome analysis predicted 16 322 genes. About 91% of these genes showed homology with known proteins. Many gene clusters were annotated to protein and fatty-acid metabolism pathways that may be important in the context of the meat texture and immune system developmental processes. The reference genome can pave the way for the identification of many other genomic features that could improve breeding and population-management strategies, and it can also help characterize the genetic diversity of P. argenteus.

  15. Complete genome sequence of Cellulomonas flavigena type strain (134T)

    Energy Technology Data Exchange (ETDEWEB)

    Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Foster, Brian [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Clum, Alicia [U.S. Department of Energy, Joint Genome Institute; Sun, Hui [U.S. Department of Energy, Joint Genome Institute; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. Strategies for complete plastid genome sequencing.

    Science.gov (United States)

    Twyford, Alex D; Ness, Rob W

    2016-10-28

    Plastid sequencing is an essential tool in the study of plant evolution. This high-copy organelle is one of the most technically accessible regions of the genome, and its sequence conservation makes it a valuable region for comparative genome evolution, phylogenetic analysis and population studies. Here, we discuss recent innovations and approaches for de novo plastid assembly that harness genomic tools. We focus on technical developments including low-cost sequence library preparation approaches for genome skimming, enrichment via hybrid baits and methylation-sensitive capture, sequence platforms with higher read outputs and longer read lengths, and automated tools for assembly. These developments allow for a much more streamlined assembly than via conventional short-range PCR. Although newer methods make complete plastid sequencing possible for any land plant or green alga, there are still challenges for producing finished plastomes particularly from herbarium material or from structurally divergent plastids such as those of parasitic plants.

  17. Characterization of the complete genome sequence of pike fry rhabdovirus.

    Science.gov (United States)

    Chen, Hong-Lian; Liu, Hong; Liu, Zong-Xiao; He, Jun-Qiang; Gao, Long-Ying; Shi, Xiu-Jie; Jiang, Yu-Lin

    2009-01-01

    The complete genome sequence of pike fry rhabdovirus (PFRV), consisting of 11,097 nucleotides, was determined. The genome contains five genes, encoding the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and RNA-dependent RNA polymerase (L) protein in the order 3'-N-P-M-G-L-5'. 3' leader- and 5' trailer-sequences in the PFRV genome show inverse complementarity. The PFRV proteins share the highest homology to the proteins of spring viremia of carp virus (SVCV), ranging from 55.3 to 91.4%. Phylogenetic analysis of the five proteins showed that PFRV clusters with SVCV and is closely related to the mammalian vesiculoviruses, 903/87, STRV and SCRV.

  18. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  19. Composition and organization of active centromere sequences in complex genomes

    Directory of Open Access Journals (Sweden)

    Hayden Karen E

    2012-07-01

    Full Text Available Abstract Background Centromeres are sites of chromosomal spindle attachment during mitosis and meiosis. While the sequence basis for centromere identity remains a subject of considerable debate, one approach is to examine the genomic organization at these active sites that are correlated with epigenetic marks of centromere function. Results We have developed an approach to characterize both satellite and non-satellite centromeric sequences that are missing from current assemblies in complex genomes, using the dog genome as an example. Combining this genomic reference with an epigenetic dataset corresponding to sequences associated with the histone H3 variant centromere protein A (CENP-A, we identify active satellite sequence domains that appear to be both functionally and spatially distinct within the overall definition of satellite families. Conclusions These findings establish a genomic and epigenetic foundation for exploring the functional role of centromeric sequences in the previously sequenced dog genome and provide a model for similar studies within the context of less-characterized genomes.

  20. Complete genome sequence of Ferroglobus placidus AEDII12DO

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Risso, Carla [University of Massachusetts, Amherst; Holmes, Dawn [University of Massachusetts, Amherst; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lovley, Derek [University of Massachusetts, Amherst; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Ferroglobus placidus belongs to the order Archaeoglobales within the archaeal phylum Euryar- chaeota. Strain AEDII12DO is the type strain of the species and was isolated from a shallow marine hydrothermal system at Vulcano, Italy. It is a hyperthermophilic, anaerobic chemoli- thoautotroph, but it can also use a variety of aromatic compounds as electron donors. Here we describe the features of this organism together with the complete genome sequence and anno- tation. The 2,196,266 bp genome with its 2,567 protein-coding and 55 RNA genes was se- quenced as part of a DOE Joint Genome Institute Laboratory Sequencing Program (LSP) project.

  1. Complete genome sequence of Serratia plymuthica strain AS12

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Finlay, Roger D. [Uppsala University, Uppsala, Sweden; Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Hogberg, Nils [Uppsala University, Uppsala, Sweden

    2012-01-01

    A plant associated member of the family Enterobacteriaceae, Serratia plymuthica strain AS12 was isolated from rapeseed roots. It is of scientific interest due to its plant growth promoting and plant pathogen inhibiting ability. The genome of S. plymuthica AS12 comprises a 5,443,009 bp long circular chromosome, which consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced within the 2010 DOE-JGI Community Sequencing Program (CSP2010) as part of the project entitled 'Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens'.

  2. Microbial species delineation using whole genome sequences

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Mukherjee, Supratim; Ivanova, Natalia; Mavrommatics, Kostas; Pati, Amrita; Konstantinidis, Konstantinos

    2014-10-20

    Species assignments in prokaryotes use a manual, poly-phasic approach utilizing both phenotypic traits and sequence information of phylogenetic marker genes. With thousands of genomes being sequenced every year, an automated, uniform and scalable approach exploiting the rich genomic information in whole genome sequences is desired, at least for the initial assignment of species to an organism. We have evaluated pairwise genome-wide Average Nucleotide Identity (gANI) values and alignment fractions (AFs) for nearly 13,000 genomes using our fast implementation of the computation, identifying robust and widely applicable hard cut-offs for species assignments based on AF and gANI. Using these cutoffs, we generated stable species-level clusters of organisms, which enabled the identification of several species mis-assignments and facilitated the assignment of species for organisms without species definitions.

  3. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project

    DEFF Research Database (Denmark)

    Hayes, Benjamin J; MacLeod, Iona M; Daetwyler, Hans D

    Advantages of using whole genome sequence data to predict genomic estimated breeding values (GEBV) include better persistence of accuracy of GEBV across generations and more accurate GEBV across breeds. The 1000 Bull Genomes Project provides a database of whole genome sequenced key ancestor bulls...

  4. Genomic prediction using QTL derived from whole genome sequence data

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Janss, Luc

    This study investigated the gain in accuracy of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k SNP data. Analyses were performed for Nordic Holstein and Danish Jersey animals, using eithe...

  5. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria

    DEFF Research Database (Denmark)

    Larsen, Mette Voldby; Cosentino, Salvatore; Rasmussen, Simon

    2012-01-01

    Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the "gold standard" of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS...... the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56...... MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types...

  6. Identification of probable genomic packaging signal sequence from SARS—CoV genome by bioinformatics analysis

    Institute of Scientific and Technical Information of China (English)

    QINLei; XIONGBin; LUOCheng; GUOZong-Ming; HAOPei; SUJiong; NANPeng; FENGYing; SHIYi-Xiang; YUXiao-Jing; LUOXiao-Min; CHENKai-Xian; SHENXu; SHENJian-Hua; ZOUJian-Ping; ZHAOGuo-Ping; SHITie-Liu; HEWei-Zhong; ZHONGYang; JIANGHua-Liang; LIYi-Xue

    2003-01-01

    AIM:To predict the probable genomic packaging signal of SARS-CoV by bioinformatics analysis. The derived packaging signal may be used to design antisense RNA and RNA interfere (RANi) drugs treating SARS. methods: Based on the studies about the genomic packaging signals of MHV and BCoV, especially the information about primary and secondary structures, the putative genomic packaging signal of SARS_CoV were analyzed by using bioinformatic tools. Multi-alignment for the genomic sequences was performed among SARS-CoV,MHV,BCoV, PEDV and HCoV 229E. Secondary structures of RNA sequences were also predicted for the identification fo the possible genomic packaging signals. Meanwhile, the N and M proteins of all five viruses were analyzed to study the evolutionary relationship with genomic packaging signals. RESULTS: The putative genomic packaging signal of SARS-CoV locates at the 3′ end of ORF1b near that of MHV and BCoV, where is the most variable region of this gene. The RNA secondary structure of SARS-CoV genomic packaging signal is very similar to that of MHV and BCoV. The same result was also obtained in studying the genomic packaging signals of PEDV and HCoV 229E. Further more, the genomic sequence multi-alignment indicated that the locations of packaging signals of SARS-CoV, PEDV, and HCoV overlaped each other. It seems that the mutation rate of packaging signal sequences is much higher than the N protein, while only subtle variations for the M protein. CONCLUSIONS: The probable genomic packaging signal of SARS-CoV is analogous to that of MHV and BCoV, with the corresponding secondary RNA structure locating at the similar region of ORF1b. The positions where genomic packaging signals exist have suffered rounds of mutations, which may influence the primary structures of the N and M proteins consequently.

  7. Human cellular protein patterns and their link to genome DNA sequence data: usefulness of two-dimensional gel electrophoresis and microsequencing

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Leffers, H

    1991-01-01

    Analysis of cellular protein patterns by computer-aided 2-dimensional gel electrophoresis together with recent advances in protein sequence analysis have made possible the establishment of comprehensive 2-dimensional gel protein databases that may link protein and DNA information and that offer...... a global approach to the study of the cell. Using the integrated approach offered by 2-dimensional gel protein databases it is now possible to reveal phenotype specific protein (or proteins), to microsequence them, to search for homology with previously identified proteins, to clone the cDNAs, to assign...... partial protein sequence to genes for which the full DNA sequence and the chromosome location is known, and to study the regulatory properties and function of groups of proteins that are coordinately expressed in a given biological process. Human 2-dimensional gel protein databases are becoming...

  8. Genome sequence and analysis of Lactobacillus helveticus

    Directory of Open Access Journals (Sweden)

    Paola eCremonesi

    2013-01-01

    Full Text Available The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of L. helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract.As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones.

  9. The complete chloroplast genome sequence of Abies nephrolepis (Pinaceae: Abietoideae

    Directory of Open Access Journals (Sweden)

    Dong-Keun Yi

    2016-06-01

    Full Text Available The plant chloroplast (cp genome has maintained a relatively conserved structure and gene content throughout evolution. Cp genome sequences have been used widely for resolving evolutionary and phylogenetic issues at various taxonomic levels of plants. Here, we report the complete cp genome of Abies nephrolepis. The A. nephrolepis cp genome is 121,336 base pairs (bp in length including a pair of short inverted repeat regions (IRa and IRb of 139 bp each separated by a small single copy (SSC region of 54,323 bp (SSC and a large single copy region of 66,735 bp (LSC. It contains 114 genes, 68 of which are protein coding genes, 35 tRNA and four rRNA genes, six open reading frames, and one pseudogene. Seventeen repeat units and 64 simple sequence repeats (SSR have been detected in A. nephrolepis cp genome. Large IR sequences locate in 42-kb inversion points (1186 bp. The A. nephrolepis cp genome is identical to Abies koreana’s which is closely related to taxa. Pairwise comparison between two cp genomes revealed 140 polymorphic sites in each. Complete cp genome sequence of A. nephrolepis has a significant potential to provide information on the evolutionary pattern of Abietoideae and valuable data for development of DNA markers for easy identification and classification.

  10. Sequencing and comparing whole mitochondrial genomes ofanimals

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  11. Specialized microbial databases for inductive exploration of microbial genome sequences

    Directory of Open Access Journals (Sweden)

    Cabau Cédric

    2005-02-01

    Full Text Available Abstract Background The enormous amount of genome sequence data asks for user-oriented databases to manage sequences and annotations. Queries must include search tools permitting function identification through exploration of related objects. Methods The GenoList package for collecting and mining microbial genome databases has been rewritten using MySQL as the database management system. Functions that were not available in MySQL, such as nested subquery, have been implemented. Results Inductive reasoning in the study of genomes starts from "islands of knowledge", centered around genes with some known background. With this concept of "neighborhood" in mind, a modified version of the GenoList structure has been used for organizing sequence data from prokaryotic genomes of particular interest in China. GenoChore http://bioinfo.hku.hk/genochore.html, a set of 17 specialized end-user-oriented microbial databases (including one instance of Microsporidia, Encephalitozoon cuniculi, a member of Eukarya has been made publicly available. These databases allow the user to browse genome sequence and annotation data using standard queries. In addition they provide a weekly update of searches against the world-wide protein sequences data libraries, allowing one to monitor annotation updates on genes of interest. Finally, they allow users to search for patterns in DNA or protein sequences, taking into account a clustering of genes into formal operons, as well as providing extra facilities to query sequences using predefined sequence patterns. Conclusion This growing set of specialized microbial databases organize data created by the first Chinese bacterial genome programs (ThermaList, Thermoanaerobacter tencongensis, LeptoList, with two different genomes of Leptospira interrogans and SepiList, Staphylococcus epidermidis associated to related organisms for comparison.

  12. Monitoring Genomic Sequences during SELEX Using High-Throughput Sequencing: Neutral SELEX

    Science.gov (United States)

    Chen, Doris; Lorenz, Christina; Schroeder, Renée

    2010-01-01

    Background SELEX is a well established in vitro selection tool to analyze the structure of ligand-binding nucleic acid sequences called aptamers. Genomic SELEX transforms SELEX into a tool to discover novel, genomically encoded RNA or DNA sequences binding a ligand of interest, called genomic aptamers. Concerns have been raised regarding requirements imposed on RNA sequences undergoing SELEX selection. Methodology/Principal Findings To evaluate SELEX and assess the extent of these effects, we designed and performed a Neutral SELEX experiment omitting the selection step, such that the sequences are under the sole selective pressure of SELEX's amplification steps. Using high-throughput sequencing, we obtained thousands of full-length sequences from the initial genomic library and the pools after each of the 10 rounds of Neutral SELEX. We compared these to sequences obtained from a Genomic SELEX experiment deriving from the same initial library, but screening for RNAs binding with high affinity to the E. coli regulator protein Hfq. With each round of Neutral SELEX, sequences became less stable and changed in nucleotide content, but no sequences were enriched. In contrast, we detected substantial enrichment in the Hfq-selected set with enriched sequences having structural stability similar to the neutral sequences but with significantly different nucleotide selection. Conclusions/Significance Our data indicate that positive selection in SELEX acts independently of the neutral selective requirements imposed on the sequences. We conclude that Genomic SELEX, when combined with high-throughput sequencing of positively and neutrally selected pools, as well as the gnomic library, is a powerful method to identify genomic aptamers. PMID:20161784

  13. Monitoring genomic sequences during SELEX using high-throughput sequencing: neutral SELEX.

    Directory of Open Access Journals (Sweden)

    Bob Zimmermann

    Full Text Available BACKGROUND: SELEX is a well established in vitro selection tool to analyze the structure of ligand-binding nucleic acid sequences called aptamers. Genomic SELEX transforms SELEX into a tool to discover novel, genomically encoded RNA or DNA sequences binding a ligand of interest, called genomic aptamers. Concerns have been raised regarding requirements imposed on RNA sequences undergoing SELEX selection. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate SELEX and assess the extent of these effects, we designed and performed a Neutral SELEX experiment omitting the selection step, such that the sequences are under the sole selective pressure of SELEX's amplification steps. Using high-throughput sequencing, we obtained thousands of full-length sequences from the initial genomic library and the pools after each of the 10 rounds of Neutral SELEX. We compared these to sequences obtained from a Genomic SELEX experiment deriving from the same initial library, but screening for RNAs binding with high affinity to the E. coli regulator protein Hfq. With each round of Neutral SELEX, sequences became less stable and changed in nucleotide content, but no sequences were enriched. In contrast, we detected substantial enrichment in the Hfq-selected set with enriched sequences having structural stability similar to the neutral sequences but with significantly different nucleotide selection. CONCLUSIONS/SIGNIFICANCE: Our data indicate that positive selection in SELEX acts independently of the neutral selective requirements imposed on the sequences. We conclude that Genomic SELEX, when combined with high-throughput sequencing of positively and neutrally selected pools, as well as the gnomic library, is a powerful method to identify genomic aptamers.

  14. Simple sequence repeats in mycobacterial genomes

    Indian Academy of Sciences (India)

    Vattipally B Sreenu; Pankaj Kumar; Javaregowda Nagaraju; Hampapathalu A Nagarajaram

    2007-01-01

    Simple sequence repeats (SSRs) or microsatellites are the repetitive nucleotide sequences of motifs of length 1–6 bp. They are scattered throughout the genomes of all the known organisms ranging from viruses to eukaryotes. Microsatellites undergo mutations in the form of insertions and deletions (INDELS) of their repeat units with some bias towards insertions that lead to microsatellite tract expansion. Although prokaryotic genomes derive some plasticity due to microsatellite mutations they have in-built mechanisms to arrest undue expansions of microsatellites and one such mechanism is constituted by post-replicative DNA repair enzymes MutL, MutH and MutS. The mycobacterial genomes lack these enzymes and as a null hypothesis one could expect these genomes to harbour many long tracts. It is therefore interesting to analyse the mycobacterial genomes for distribution and abundance of microsatellites tracts and to look for potentially polymorphic microsatellites. Available mycobacterial genomes, Mycobacterium avium, M. leprae, M. bovis and the two strains of M. tuberculosis (CDC1551 and H37Rv) were analysed for frequencies and abundance of SSRs. Our analysis revealed that the SSRs are distributed throughout the mycobacterial genomes at an average of 220–230 SSR tracts per kb. All the mycobacterial genomes contain few regions that are conspicuously denser or poorer in microsatellites compared to their expected genome averages. The genomes distinctly show scarcity of long microsatellites despite the absence of a post-replicative DNA repair system. Such severe scarcity of long microsatellites could arise as a result of strong selection pressures operating against long and unstable sequences although influence of GC-content and role of point mutations in arresting microsatellite expansions can not be ruled out. Nonetheless, the long tracts occasionally found in coding as well as non-coding regions may account for limited genome plasticity in these genomes.

  15. Mass spectrometry allows direct identification of proteins in large genomes

    DEFF Research Database (Denmark)

    Küster, B; Mortensen, Peter V.; Andersen, Jens S.

    2001-01-01

    Proteome projects seek to provide systematic functional analysis of the genes uncovered by genome sequencing initiatives. Mass spectrometric protein identification is a key requirement in these studies but to date, database searching tools rely on the availability of protein sequences derived fro...... genome and allows identification, mapping, cloning and assistance in gene prediction of any protein for which minimal mass spectrometric information can be obtained. Several novel proteins from Arabidopsis thaliana and human have been discovered in this way....

  16. Human cellular protein patterns and their link to genome DNA sequence data: usefulness of two-dimensional gel electrophoresis and microsequencing

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Leffers, H;

    1991-01-01

    Analysis of cellular protein patterns by computer-aided 2-dimensional gel electrophoresis together with recent advances in protein sequence analysis have made possible the establishment of comprehensive 2-dimensional gel protein databases that may link protein and DNA information and that offer a...

  17. Complete coding sequences of the rabbitpox virus genome.

    Science.gov (United States)

    Li, G; Chen, N; Roper, R L; Feng, Z; Hunter, A; Danila, M; Lefkowitz, E J; Buller, R M L; Upton, C

    2005-11-01

    Rabbitpox virus (RPXV) is highly virulent for rabbits and it has long been suspected to be a close relative of vaccinia virus. To explore these questions, the complete coding region of the rabbitpox virus genome was sequenced to permit comparison with sequenced strains of vaccinia virus and other orthopoxviruses. The genome of RPXV strain Utrecht (RPXV-UTR) is 197 731 nucleotides long, excluding the terminal hairpin structures at each end of the genome. The RPXV-UTR genome has 66.5 % A + T content, 184 putative functional genes and 12 fragmented ORF regions that are intact in other orthopoxviruses. The sequence of the RPXV-UTR genome reveals that two RPXV-UTR genes have orthologues in variola virus (VARV; the causative agent of smallpox), but not in vaccinia virus (VACV) strains. These genes are a zinc RING finger protein gene (RPXV-UTR-008) and an ankyrin repeat family protein gene (RPXV-UTR-180). A third gene, encoding a chemokine-binding protein (RPXV-UTR-001/184), is complete in VARV but functional only in some VACV strains. Examination of the evolutionary relationship between RPXV and other orthopoxviruses was carried out using the central 143 kb DNA sequence conserved among all completely sequenced orthopoxviruses and also the protein sequences of 49 gene products present in all completely sequenced chordopoxviruses. The results of these analyses both confirm that RPXV-UTR is most closely related to VACV and suggest that RPXV has not evolved directly from any of the sequenced VACV strains, since RPXV contains a 719 bp region not previously identified in any VACV.

  18. The complete mitochondrial genome sequence of the Daweishan Mini chicken.

    Science.gov (United States)

    Yan, Ming-Li; Ding, Su-Ping; Ye, Shao-Hui; Wang, Chun-Guang; He, Bao-Li; Yuan, Zhi-Dong; Liu, Li-Li

    2016-01-01

    Daweishan Mini chicken is a valuable chicken breed in China. In this study, the complete mitochondrial genome sequence of Daweishan Mini chicken using PCR amplification, sequencing and assembling has been obtained for the first time. The total length of the mitochondrial genome was 16,785 bp, with the base composition of 30.26% A, 23.73% T, 32.51% C, 13.51% G. It contained 37 genes (2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes) and a major non-coding control region (D-loop region). The protein start codons are ATG, except for COX1 that begins with GTG. The complete mitochondrial genome sequence of Daweishan Mini chicken provides an important data set for further investigation on the phylogenetic relationships within Gallus gallus.

  19. Sequencing the Cotton Genomes-Gossypium spp.

    Institute of Scientific and Technical Information of China (English)

    PATERSON Andrew H

    2008-01-01

    @@ The genomes of most major crops,including cotton,will be fully sequenced in the next fewyears.Cotton is unusual,although not unique,in that we will need to sequence not only cultivated(tetraploid) genotypes but their diploid progenitors,to understand how elite cottons have surpassedthe productivity and quality of their progenitors.

  20. Complete Genome Sequence of Klebsiella pneumoniae YH43

    Science.gov (United States)

    Ogura, Yoshitoshi; Hayashi, Tetsuya; Mizunoe, Yoshimitsu

    2016-01-01

    We report here the complete genome sequence of Klebsiella pneumoniae strain YH43, isolated from sweet potato. The genome consists of a single circular chromosome of 5,520,319 bp in length. It carries 8 copies of rRNA operons, 86 tRNA genes, 5,154 protein-coding genes, and the nif gene cluster for nitrogen fixation. PMID:27081127

  1. Whole-genome sequencing for comparative genomics and de novo genome assembly.

    Science.gov (United States)

    Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C

    2015-01-01

    Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).

  2. Features of Two New Proteins with OmpA-Like Domains Identified in the Genome Sequences of Leptospira interrogans

    Science.gov (United States)

    Teixeira, Aline F.; de Morais, Zenaide M.; Kirchgatter, Karin; Romero, Eliete C.; Vasconcellos, Silvio A.; Nascimento, Ana Lucia T. O.

    2015-01-01

    Leptospirosis is an acute febrile disease caused by pathogenic spirochetes of the genus Leptospira. It is considered an important re-emerging infectious disease that affects humans worldwide. The knowledge about the mechanisms by which pathogenic leptospires invade and colonize the host remains limited since very few virulence factors contributing to the pathogenesis of the disease have been identified. Here, we report the identification and characterization of two new leptospiral proteins with OmpA-like domains. The recombinant proteins, which exhibit extracellular matrix-binding properties, are called Lsa46 - LIC13479 and Lsa77 - LIC10050 (Leptospiral surface adhesins of 46 and 77 kDa, respectively). Attachment of Lsa46 and Lsa77 to laminin was specific, dose dependent and saturable, with KD values of 24.3 ± 17.0 and 53.0 ± 17.5 nM, respectively. Lsa46 and Lsa77 also bind plasma fibronectin, and both adhesins are plasminogen (PLG)-interacting proteins, capable of generating plasmin (PLA) and as such, increase the proteolytic ability of leptospires. The proteins corresponding to Lsa46 and Lsa77 are present in virulent L. interrogans L1-130 and in saprophyte L. biflexa Patoc 1 strains, as detected by immunofluorescence. The adhesins are recognized by human leptospirosis serum samples at the onset and convalescent phases of the disease, suggesting that they are expressed during infection. Taken together, our data could offer valuable information to the understanding of leptospiral pathogenesis. PMID:25849456

  3. Features of two new proteins with OmpA-like domains identified in the genome sequences of Leptospira interrogans.

    Directory of Open Access Journals (Sweden)

    Aline F Teixeira

    Full Text Available Leptospirosis is an acute febrile disease caused by pathogenic spirochetes of the genus Leptospira. It is considered an important re-emerging infectious disease that affects humans worldwide. The knowledge about the mechanisms by which pathogenic leptospires invade and colonize the host remains limited since very few virulence factors contributing to the pathogenesis of the disease have been identified. Here, we report the identification and characterization of two new leptospiral proteins with OmpA-like domains. The recombinant proteins, which exhibit extracellular matrix-binding properties, are called Lsa46 - LIC13479 and Lsa77 - LIC10050 (Leptospiral surface adhesins of 46 and 77 kDa, respectively. Attachment of Lsa46 and Lsa77 to laminin was specific, dose dependent and saturable, with KD values of 24.3 ± 17.0 and 53.0 ± 17.5 nM, respectively. Lsa46 and Lsa77 also bind plasma fibronectin, and both adhesins are plasminogen (PLG-interacting proteins, capable of generating plasmin (PLA and as such, increase the proteolytic ability of leptospires. The proteins corresponding to Lsa46 and Lsa77 are present in virulent L. interrogans L1-130 and in saprophyte L. biflexa Patoc 1 strains, as detected by immunofluorescence. The adhesins are recognized by human leptospirosis serum samples at the onset and convalescent phases of the disease, suggesting that they are expressed during infection. Taken together, our data could offer valuable information to the understanding of leptospiral pathogenesis.

  4. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Brett M.; Tripathy, Sucheta; Zhang, Xuemin; Dehal, Paramvir; Jiang, Rays H. Y.; Aerts, Andrea; Arredondo, Felipe D.; Baxter, Laura; Bensasson, Douda; Beynon, JIm L.; Chapman, Jarrod; Damasceno, Cynthia M. B.; Dorrance, Anne E.; Dou, Daolong; Dickerman, Allan W.; Dubchak, Inna L.; Garbelotto, Matteo; Gijzen, Mark; Gordon, Stuart G.; Govers, Francine; Grunwald, NIklaus J.; Huang, Wayne; Ivors, Kelly L.; Jones, Richard W.; Kamoun, Sophien; Krampis, Konstantinos; Lamour, Kurt H.; Lee, Mi-Kyung; McDonald, W. Hayes; Medina, Monica; Meijer, Harold J. G.; Nordberg, Erik K.; Maclean, Donald J.; Ospina-Giraldo, Manuel D.; Morris, Paul F.; Phuntumart, Vipaporn; Putnam, Nicholas J.; Rash, Sam; Rose, Jocelyn K. C.; Sakihama, Yasuko; Salamov, Asaf A.; Savidor, Alon; Scheuring, Chantel F.; Smith, Brian M.; Sobral, Bruno W. S.; Terry, Astrid; Torto-Alalibo, Trudy A.; Win, Joe; Xu, Zhanyou; Zhang, Hongbin; Grigoriev, Igor V.; Rokhsar, Daniel S.; Boore, Jeffrey L.

    2006-04-17

    Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oömycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oömycete avirulence genes.

  5. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lamour, Kurt H [ORNL; McDonald, W Hayes [ORNL; Savidor, Alon [ORNL

    2006-01-01

    Genome sequences of the soybean pathogen, Phytophthora sojae, and the sudden oak death pathogen, Phytophthora ramorum, suggest a photosynthetic past and reveal recent massive expansion and diversification of potential pathogenicity gene families. Abstract: Draft genome sequences of the soybean pathogen, Phytophthora sojae, and the sudden oak death pathogen, Phytophthora ramorum, have been determined. O mycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms and the presence of many Phytophthora genes of probable phototroph origin support a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors and, in particular, a superfamily of 700 proteins with similarity to known o mycete avirulence genes.

  6. An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences

    Energy Technology Data Exchange (ETDEWEB)

    Turse, Joshua E.; Marshall, Matthew J.; Fredrickson, Jim K.; Lipton, Mary S.; Callister, Stephen J.

    2010-11-12

    Current methods in proteomics are dependent on the availability of sequenced genomes to identify proteins. However, genomic sequences are not always available for bacteria or microbial communities, even with high throughput sequencing technology becoming more readily available. Nevertheless, the homology that exists between related bacteria makes possible the extraction of meaningful biological information from an organism’s, or community’s proteome using the genomic sequence of a near neighbor. Here, a cross-organism search strategy was used to look at the amount of proteomics information obtainable with relative genetic distance from a near neighbor organism and to identify proteins in the proteome of minimally characterized environmental isolates. We conclude that closely related organisms with sequenced genomes, can be used to characterize proteomes of organisms with unsequenced genomes. In general, a cross-organism search strategy demonstrates the first step to use of sequences genomes to evaluate the proteomes of environmental bacteria and microbial communities that have no sequenced genome

  7. The Proteins API: accessing key integrated protein and genome information.

    Science.gov (United States)

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-04-05

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc).

  8. Functional annotation from the genome sequence of the giant panda.

    Science.gov (United States)

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-08-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided into two groups: 20,179 proteins whose functions can be predicted by GeneScan formed the known-function group, whereas 822 proteins whose functions cannot be predicted by GeneScan comprised the unknown-function group. For the known-function group, we further classified the proteins by molecular function, biological process, cellular component, and tissue specificity. For the unknown-function group, we developed a strategy in which the proteins were filtered by cross-Blast to identify panda-specific proteins under the assumption that proteins related to the panda-specific traits in the unknown-function group exist. After this filtering procedure, we identified 32 proteins (2 of which are membrane proteins) specific to the giant panda genome as compared against the dog and horse genomes. Based on their amino acid sequences, these 32 proteins were further analyzed by functional classification using SVM-Prot, motif prediction using MyHits, and interacting protein prediction using the Database of Interacting Proteins. Nineteen proteins were predicted to be zinc-binding proteins, thus affecting the activities of nucleic acids. The 32 panda-specific proteins will be further investigated by structural and functional analysis.

  9. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease

    NARCIS (Netherlands)

    El-Sayed, NM; Myler, PJ; Bartholomeu, DC; Nilsson, D; Aggarwal, G; Tran, AN; Ghedin, E; Worthey, EA; Delcher, AL; Blandin, G; Westenberger, SJ; Caler, E; Cerqueira, GC; Branche, C; Haas, B; Anupama, A; Arner, E; Aslund, L; Attipoe, P; Bontempi, E; Bringaud, F; Burton, P; Cadag, E; Campbell, DA; Carrington, M; Crabtree, J; Darban, H; da Silveira, JF; de Jong, P; Edwards, K; Englund, PT; Fazelina, G; Feldblyum, T; Ferella, M; Frasch, AC; Gull, K; Horn, D; Hou, LH; Huang, YT; Kindlund, E; Ktingbeil, M; Kluge, S; Koo, H; Lacerda, D; Levin, MJ; Lorenzi, H; Louie, T; Machado, CR; McCulloch, R; McKenna, A; Mizuno, Y; Mottram, JC; Nelson, S; Ochaya, S; Osoegawa, K; Pai, G; Parsons, M; Pentony, M; Pettersson, U; Pop, M; Ramirez, JL; Rinta, J; Robertson, L; Salzberg, SL; Sanchez, DO; Seyler, A; Sharma, R; Shetty, J; Simpson, AJ; Sisk, E; Tammi, MT; Tarteton, R; Teixeira, S; Van Aken, S; Vogt, C; Ward, PN; Wickstead, B; Wortman, J; White, O; Fraser, CM; Stuart, KD; Andersson, B

    2005-01-01

    Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large, fa

  10. Draft Genome Sequence of Kluyveromyces marxianus Strain DMB1, Isolated from Sugarcane Bagasse Hydrolysate.

    Science.gov (United States)

    Suzuki, Toshihiro; Hoshino, Tamotsu; Matsushika, Akinori

    2014-07-24

    We determined the genome sequence of a thermotolerant yeast, Kluyveromyces marxianus strain DMB1, isolated from sugarcane bagasse hydrolysate, and the sequence provides further insights into the genomic differences between this strain and other reported K. marxianus strains. The genome described here is composed of 11,165,408 bases and has 4,943 protein-coding genes.

  11. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease

    NARCIS (Netherlands)

    El-Sayed, NM; Myler, PJ; Bartholomeu, DC; Nilsson, D; Aggarwal, G; Tran, AN; Ghedin, E; Worthey, EA; Delcher, AL; Blandin, G; Westenberger, SJ; Caler, E; Cerqueira, GC; Branche, C; Haas, B; Anupama, A; Arner, E; Aslund, L; Attipoe, P; Bontempi, E; Bringaud, F; Burton, P; Cadag, E; Campbell, DA; Carrington, M; Crabtree, J; Darban, H; da Silveira, JF; de Jong, P; Edwards, K; Englund, PT; Fazelina, G; Feldblyum, T; Ferella, M; Frasch, AC; Gull, K; Horn, D; Hou, LH; Huang, YT; Kindlund, E; Ktingbeil, M; Kluge, S; Koo, H; Lacerda, D; Levin, MJ; Lorenzi, H; Louie, T; Machado, CR; McCulloch, R; McKenna, A; Mizuno, Y; Mottram, JC; Nelson, S; Ochaya, S; Osoegawa, K; Pai, G; Parsons, M; Pentony, M; Pettersson, U; Pop, M; Ramirez, JL; Rinta, J; Robertson, L; Salzberg, SL; Sanchez, DO; Seyler, A; Sharma, R; Shetty, J; Simpson, AJ; Sisk, E; Tammi, MT; Tarteton, R; Teixeira, S; Van Aken, S; Vogt, C; Ward, PN; Wickstead, B; Wortman, J; White, O; Fraser, CM; Stuart, KD; Andersson, B

    2005-01-01

    Whole-genome sequencing of the protozoan pathogen Trypanosoma cruzi revealed that the diploid genome contains a predicted 22,570 proteins encoded by genes, of which 12,570 represent allelic pairs. Over 50% of the genome consists of repeated sequences, such as retrotransposons and genes for large, fa

  12. Viral genome sequencing by random priming methods

    Directory of Open Access Journals (Sweden)

    Zhang Xinsheng

    2008-01-01

    Full Text Available Abstract Background Most emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are RNA viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is a better understanding of global viral diversity to enable better surveillance and prediction of pandemic threats; this will require rapid and flexible methods for complete viral genome sequencing. Results We have adapted the SISPA methodology 123 to genome sequencing of RNA and DNA viruses. We have demonstrated the utility of the method on various types and sources of viruses, obtaining near complete genome sequence of viruses ranging in size from 3,000–15,000 kb with a median depth of coverage of 14.33. We used this technique to generate full viral genome sequence in the presence of host contaminants, using viral preparations from cell culture supernatant, allantoic fluid and fecal matter. Conclusion The method described is of great utility in generating whole genome assemblies for viruses with little or no available sequence information, viruses from greatly divergent families, previously uncharacterized viruses, or to more fully describe mixed viral infections.

  13. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Science.gov (United States)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  14. Complete Genome Sequence of Anaplasma marginale subsp. centrale

    Science.gov (United States)

    Anaplasma marginale subsp. centrale is a naturally attenuated subtype that has been used as a vaccine for a century. We sequenced the genome of this organism and compared it to those of virulent senso stricto A. marginale strains. The comparison markedly narrows the number of outer membrane protein ...

  15. Complete Genome Sequence of Bacillus megaterium Myophage Mater

    OpenAIRE

    Lancaster, Jacob C.; Hodde, Mary K.; Hernandez, Adriana C.; Kuty Everett, Gabriel F.

    2015-01-01

    Bacillus megaterium is a ubiquitous, soil inhabiting Gram-positive bacterium that is a common model organism and is used in industrial applications for protein production. The following reports the complete sequencing and annotation of the genome of B. megaterium myophage Mater and describes the major features identified.

  16. The complete mitochondrial genome sequence of Diaphorina citri (Hemiptera: Psyllidae)

    Science.gov (United States)

    The first complete mitochondrial genome (mitogenome) sequence of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), from Guangzhou, China is presented. The circular mitogenome is 14,996 bp in length with an A+T content of 74.5%, and contains 13 protein-coding genes (PCGs), 22 tRNA genes ...

  17. Sequence analysis of the genome of carnation (Dianthus caryophyllus L.).

    Science.gov (United States)

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-06-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568,887,315 bp, consisting of 45,088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16,644 bp and 60,737 bp, respectively, and the longest scaffold was 1,287,144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼ 98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp.

  18. The genome sequence of Schizosaccharomyces pombe.

    Science.gov (United States)

    Wood, V; Gwilliam, R; Rajandream, M-A; Lyne, M; Lyne, R; Stewart, A; Sgouros, J; Peat, N; Hayles, J; Baker, S; Basham, D; Bowman, S; Brooks, K; Brown, D; Brown, S; Chillingworth, T; Churcher, C; Collins, M; Connor, R; Cronin, A; Davis, P; Feltwell, T; Fraser, A; Gentles, S; Goble, A; Hamlin, N; Harris, D; Hidalgo, J; Hodgson, G; Holroyd, S; Hornsby, T; Howarth, S; Huckle, E J; Hunt, S; Jagels, K; James, K; Jones, L; Jones, M; Leather, S; McDonald, S; McLean, J; Mooney, P; Moule, S; Mungall, K; Murphy, L; Niblett, D; Odell, C; Oliver, K; O'Neil, S; Pearson, D; Quail, M A; Rabbinowitsch, E; Rutherford, K; Rutter, S; Saunders, D; Seeger, K; Sharp, S; Skelton, J; Simmonds, M; Squares, R; Squares, S; Stevens, K; Taylor, K; Taylor, R G; Tivey, A; Walsh, S; Warren, T; Whitehead, S; Woodward, J; Volckaert, G; Aert, R; Robben, J; Grymonprez, B; Weltjens, I; Vanstreels, E; Rieger, M; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Düsterhöft, A; Fritzc, C; Holzer, E; Moestl, D; Hilbert, H; Borzym, K; Langer, I; Beck, A; Lehrach, H; Reinhardt, R; Pohl, T M; Eger, P; Zimmermann, W; Wedler, H; Wambutt, R; Purnelle, B; Goffeau, A; Cadieu, E; Dréano, S; Gloux, S; Lelaure, V; Mottier, S; Galibert, F; Aves, S J; Xiang, Z; Hunt, C; Moore, K; Hurst, S M; Lucas, M; Rochet, M; Gaillardin, C; Tallada, V A; Garzon, A; Thode, G; Daga, R R; Cruzado, L; Jimenez, J; Sánchez, M; del Rey, F; Benito, J; Domínguez, A; Revuelta, J L; Moreno, S; Armstrong, J; Forsburg, S L; Cerutti, L; Lowe, T; McCombie, W R; Paulsen, I; Potashkin, J; Shpakovski, G V; Ussery, D; Barrell, B G; Nurse, P; Cerrutti, L

    2002-02-21

    We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.

  19. Sequencing and comparative analysis of the gorilla MHC genomic sequence.

    Science.gov (United States)

    Wilming, Laurens G; Hart, Elizabeth A; Coggill, Penny C; Horton, Roger; Gilbert, James G R; Clee, Chris; Jones, Matt; Lloyd, Christine; Palmer, Sophie; Sims, Sarah; Whitehead, Siobhan; Wiley, David; Beck, Stephan; Harrow, Jennifer L

    2013-01-01

    Major histocompatibility complex (MHC) genes play a critical role in vertebrate immune response and because the MHC is linked to a significant number of auto-immune and other diseases it is of great medical interest. Here we describe the clone-based sequencing and subsequent annotation of the MHC region of the gorilla genome. Because the MHC is subject to extensive variation, both structural and sequence-wise, it is not readily amenable to study in whole genome shotgun sequence such as the recently published gorilla genome. The variation of the MHC also makes it of evolutionary interest and therefore we analyse the sequence in the context of human and chimpanzee. In our comparisons with human and re-annotated chimpanzee MHC sequence we find that gorilla has a trimodular RCCX cluster, versus the reference human bimodular cluster, and additional copies of Class I (pseudo)genes between Gogo-K and Gogo-A (the orthologues of HLA-K and -A). We also find that Gogo-H (and Patr-H) is coding versus the HLA-H pseudogene and, conversely, there is a Gogo-DQB2 pseudogene versus the HLA-DQB2 coding gene. Our analysis, which is freely available through the VEGA genome browser, provides the research community with a comprehensive dataset for comparative and evolutionary research of the MHC.

  20. The complete mitochondrial genome sequence of Emperor Penguins (Aptenodytes forsteri).

    Science.gov (United States)

    Xu, Qiwu; Xia, Yan; Dang, Xiao; Chen, Xiaoli

    2016-09-01

    The emperor penguin (Aptenodytes forsteri) is the largest living species of penguin. Herein, we first reported the complete mitochondrial genome of emperor penguin. The mitochondrial genome is a circular molecule of 17 301 bp in length, consisting of 13 protein-coding genes, 22 tRNA genes, two rRNA, and one control region. To verify the accuracy and the utility of new determined mitogenome sequences, we constructed the species phylogenetic tree of emperor penguin together with 10 other closely species. This is the second complete mitochondrial genome of penguin, and this is going to be an important data to study mitochondrial evolution of birds.

  1. Genomic Sequence Variation Markup Language (GSVML).

    Science.gov (United States)

    Nakaya, Jun; Kimura, Michio; Hiroi, Kaei; Ido, Keisuke; Yang, Woosung; Tanaka, Hiroshi

    2010-02-01

    With the aim of making good use of internationally accumulated genomic sequence variation data, which is increasing rapidly due to the explosive amount of genomic research at present, the development of an interoperable data exchange format and its international standardization are necessary. Genomic Sequence Variation Markup Language (GSVML) will focus on genomic sequence variation data and human health applications, such as gene based medicine or pharmacogenomics. We developed GSVML through eight steps, based on case analysis and domain investigations. By focusing on the design scope to human health applications and genomic sequence variation, we attempted to eliminate ambiguity and to ensure practicability. We intended to satisfy the requirements derived from the use case analysis of human-based clinical genomic applications. Based on database investigations, we attempted to minimize the redundancy of the data format, while maximizing the data covering range. We also attempted to ensure communication and interface ability with other Markup Languages, for exchange of omics data among various omics researchers or facilities. The interface ability with developing clinical standards, such as the Health Level Seven Genotype Information model, was analyzed. We developed the human health-oriented GSVML comprising variation data, direct annotation, and indirect annotation categories; the variation data category is required, while the direct and indirect annotation categories are optional. The annotation categories contain omics and clinical information, and have internal relationships. For designing, we examined 6 cases for three criteria as human health application and 15 data elements for three criteria as data formats for genomic sequence variation data exchange. The data format of five international SNP databases and six Markup Languages and the interface ability to the Health Level Seven Genotype Model in terms of 317 items were investigated. GSVML was developed as

  2. Sorghum genome sequencing by methylation filtration.

    Directory of Open Access Journals (Sweden)

    Joseph A Bedell

    2005-01-01

    Full Text Available Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis.

  3. Sorghum genome sequencing by methylation filtration.

    Science.gov (United States)

    Bedell, Joseph A; Budiman, Muhammad A; Nunberg, Andrew; Citek, Robert W; Robbins, Dan; Jones, Joshua; Flick, Elizabeth; Rholfing, Theresa; Fries, Jason; Bradford, Kourtney; McMenamy, Jennifer; Smith, Michael; Holeman, Heather; Roe, Bruce A; Wiley, Graham; Korf, Ian F; Rabinowicz, Pablo D; Lakey, Nathan; McCombie, W Richard; Jeddeloh, Jeffrey A; Martienssen, Robert A

    2005-01-01

    Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF) technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis.

  4. Complete genome sequence of Nakamurella multipartita type strain (Y-104).

    Science.gov (United States)

    Tice, Hope; Mayilraj, Shanmugam; Sims, David; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Glavina Del Rio, Tijana; Copeland, Alex; Cheng, Jan-Fang; Meincke, Linda; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavromatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Detter, John C; Brettin, Thomas; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Chen, Feng

    2010-03-30

    Nakamurella multipartita (Yoshimi et al. 1996) Tao et al. 2004 is the type species of the monospecific genus Nakamurella in the actinobacterial suborder Frankineae. The nonmotile, coccus-shaped strain was isolated from activated sludge acclimated with sugar-containing synthetic wastewater, and is capable of accumulating large amounts of polysaccharides in its cells. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Nakamurellaceae. The 6,060,298 bp long single replicon genome with its 5415 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  5. Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575T)

    Energy Technology Data Exchange (ETDEWEB)

    Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Schroder, Maren [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Gleim, Dorothea [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sims, David [Los Alamos National Laboratory (LANL); Meincke, Linda [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Brettin, Tom [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Han, Cliff [Los Alamos National Laboratory (LANL)

    2009-01-01

    Desulfotomaculum acetoxidans Widdel and Pfennig 1977 was one of the first sulfate-reducing bacteria known to grow with acetate as sole energy and carbon source. It is able to oxidize substrates completely to carbon dioxide with sulfate as the electron acceptor, which is reduced to hydrogen sulfide. All available data about this species are based on strain 5575T, isolated from piggery waste in Germany. Here we describe the features of this organ-ism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a Desulfotomaculum species with validly published name. The 4,545,624 bp long single replicon genome with its 4370 protein-coding and 100 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  6. Complete genome sequence of Arcobacter nitrofigilis type strain (CIT)

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2010-01-01

    Arcobacter nitrofigilis (McClung et al. 1983) Vandamme et al. 1991 is the type species of the genus Arcobacter in the epsilonproteobacterial family Campylobacteraceae. The species was first described in 1983 as Campylobacter nitrofigilis [1] after its detection as a free-living, nitrogen-fixing Campylobacter species associated with Spartina alterniflora Loisel. roots [2]. It is of phylogenetic interest because of its lifestyle as a symbiotic organism in a marine environment in contrast to many other Arcobacter species which are associated with warm-blooded animals and tend to be pathogenic. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a type stain of the genus Arcobacter. The 3,192,235 bp genome with its 3,154 protein-coding and 70 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  7. Complete genome sequence of Tsukamurella paurometabola type strain (no. 33).

    Science.gov (United States)

    Munk, A Christine; Lapidus, Alla; Lucas, Susan; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Del Rio, Tijana Glavina; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Huntemann, Marcel; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Tapia, Roxanne; Han, Cliff; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Brettin, Thomas; Yasawong, Montri; Brambilla, Evelyne-Marie; Rohde, Manfred; Sikorski, Johannes; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2011-07-01

    Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The species is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung infection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Complete genome sequence of Halorhabdus utahensis type strain (AX-2).

    Science.gov (United States)

    Anderson, Iain; Tindall, Brian J; Pomrenke, Helga; Göker, Markus; Lapidus, Alla; Nolan, Matt; Copeland, Alex; Glavina Del Rio, Tijana; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chertkov, Olga; Bruce, David; Brettin, Thomas; Detter, John C; Han, Cliff; Goodwin, Lynne; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Pitluck, Sam; Pati, Amrita; Mavromatis, Konstantinos; Ivanova, Natalia; Ovchinnikova, Galina; Chen, Amy; Palaniappan, Krishna; Chain, Patrick; Rohde, Manfred; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2009-11-22

    Halorhabdus utahensis Wainø et al. 2000 is the type species of the genus, which is of phylogenetic interest because of its location on one of the deepest branches within the very extensive euryarchaeal family Halobacteriaceae. H. utahensis is a free-living, motile, rod shaped to pleomorphic, Gram-negative archaeon, which was originally isolated from a sediment sample collected from the southern arm of Great Salt Lake, Utah, USA. When grown on appropriate media, H. utahensis can form polyhydroxybutyrate (PHB). Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the a member of halobacterial genus Halorhabdus, and the 3,116,795 bp long single replicon genome with its 3027 protein-coding and 48 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  9. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    Energy Technology Data Exchange (ETDEWEB)

    Clum, Alicia [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lang, Elke [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2009-01-01

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the ge-nus, which until recently was the only genus within the actinobacterial family Acidimicrobia-ceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome se-quence, and annotation. This is the first complete genome sequence of the order Acidomi-crobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  10. Complete Genome Sequence of Mayaro Virus (Togaviridae, Alphavirus) Strain BeAr 20290 from Brazil.

    Science.gov (United States)

    Espósito, Danillo Lucas Alves; da Fonseca, Benedito Antônio Lopes

    2015-12-17

    We report here the complete genome sequence of Mayaro virus strain BeAr 20290 isolated from Haemagogus mosquitoes in 1960. The sequence presented here includes all nonstructural and structural proteins and the 5'- and 3'-untranslated (UTR) regions.

  11. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp in size; it contains a large single-copy (LSC, 76,598 bp and a small single-copy region (SSC, 42,977 bp, separated by two inverted repeats (IRa and IRb: 5,404 bp. The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.

  12. Whole genome sequencing of Chinese clearhead icefish, Protosalanx hyalocranius.

    Science.gov (United States)

    Liu, Kai; Xu, Dongpo; Li, Jia; Bian, Chao; Duan, Jinrong; Zhou, Yanfeng; Zhang, Minying; You, Xinxin; You, Yang; Chen, Jieming; Yu, Hui; Xu, Gangchun; Fang, Di-An; Qiang, Jun; Jiang, Shulun; He, Jie; Xu, Junmin; Shi, Qiong; Zhang, Zhiyong; Xu, Pao

    2017-04-01

    Chinese clearhead icefish, Protosalanx hyalocranius , is a representative icefish species with economic importance and special appearance. Due to its great economic value in China, the fish was introduced into Lake Dianchi and several other lakes from the Lake Taihu half a century ago. Similar to the Sinocyclocheilus cavefish, the clearhead icefish has certain cavefish-like traits, such as transparent body and nearly scaleless skin. Here, we provide the whole genome sequence of this surface-dwelling fish and generated a draft genome assembly, aiming at exploring molecular mechanisms for the biological interests. A total of 252.1 Gb of raw reads were sequenced. Subsequently, a novel draft genome assembly was generated, with the scaffold N50 reaching 1.163 Mb. The genome completeness was estimated to be 98.39 % by using the CEGMA evaluation. Finally, we annotated 19 884 protein-coding genes and observed that repeat sequences account for 24.43 % of the genome assembly. We report the first draft genome of the Chinese clearhead icefish. The genome assembly will provide a solid foundation for further molecular breeding and germplasm resource protection in Chinese clearhead icefish, as well as other icefishes. It is also a valuable genetic resource for revealing the molecular mechanisms for the cavefish-like characters.

  13. Determining protein function and interaction from genome analysis

    Science.gov (United States)

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  14. Characterizing the citrus cultivar Carrizo genome through 454 shotgun sequencing.

    Science.gov (United States)

    Belknap, William R; Wang, Yi; Huo, Naxin; Wu, Jiajie; Rockhold, David R; Gu, Yong Q; Stover, Ed

    2011-12-01

    The citrus cultivar Carrizo is the single most important rootstock to the US citrus industry and has resistance or tolerance to a number of major citrus diseases, including citrus tristeza virus, foot rot, and Huanglongbing (HLB, citrus greening). A Carrizo genomic sequence database providing approximately 3.5×genome coverage (haploid genome size approximately 367 Mb) was populated through 454 GS FLX shotgun sequencing. Analysis of the repetitive DNA fraction indicated a total interspersed repeat fraction of 36.5%. Assembly and characterization of abundant citrus Ty3/gypsy elements revealed a novel type of element containing open reading frames encoding a viral RNA-silencing suppressor protein (RNA binding protein, rbp) and a plant cytokinin riboside 5′-monophosphate phosphoribohydrolase-related protein (LONELY GUY, log). Similar gypsy elements were identified in the Populus trichocarpa genome. Gene-coding region analysis indicated that 24.4% of the nonrepetitive reads contained genic regions. The depth of genome coverage was sufficient to allow accurate assembly of constituent genes, including a putative phloem-expressed gene. The development of the Carrizo database (http://citrus.pw.usda.gov/) will contribute to characterization of agronomically significant loci and provide a publicly available genomic resource to the citrus research community.

  15. Genome sequence and genetic diversity of European ash trees

    DEFF Research Database (Denmark)

    Sollars, Elizabeth S A; Harper, Andrea L; Kelly, Laura J;

    2016-01-01

    Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low......-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re......-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British...

  16. Low-pass sequencing for microbial comparative genomics

    Directory of Open Access Journals (Sweden)

    Kennedy Sean

    2004-01-01

    Full Text Available Abstract Background We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1 the metabolically versatile Haloarcula marismortui; (2 the non-pigmented Natrialba asiatica; (3 the psychrophile Halorubrum lacusprofundi and (4 the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe. Results As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI for their predicted proteins. Multiple insertion sequence (IS elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP and transcription factor IIB (TFB homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi. Conclusion Despite the diverse habitats of these species, all five halophiles share (1 high GC content and (2 low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the

  17. Plasmodium knowlesi genome sequences from clinical isolates reveal extensive genomic dimorphism.

    Directory of Open Access Journals (Sweden)

    Miguel M Pinheiro

    Full Text Available Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and

  18. Cactus: Algorithms for genome multiple sequence alignment

    OpenAIRE

    Paten, Benedict; Earl, Dent; Nguyen, Ngan; Diekhans, Mark; Zerbino, Daniel; Haussler, David

    2011-01-01

    Much attention has been given to the problem of creating reliable multiple sequence alignments in a model incorporating substitutions, insertions, and deletions. Far less attention has been paid to the problem of optimizing alignments in the presence of more general rearrangement and copy number variation. Using Cactus graphs, recently introduced for representing sequence alignments, we describe two complementary algorithms for creating genomic alignments. We have implemented these algorithms...

  19. Sequence analysis reveals mosaic genome of Aichi virus

    Directory of Open Access Journals (Sweden)

    Han Xiaohong

    2011-08-01

    Full Text Available Abstract Aichi virus is a positive-sense and single-stranded RNA virus, which demonstrated to be related to diarrhea of Children. In the present study, phylogenetic and recombination analysis based on the Aichi virus complete genomes available in GenBank reveal a mosaic genome sequence [GenBank: FJ890523], of which the nt 261-852 region (the nt position was based on the aligned sequence file shows close relationship with AB010145/Japan with 97.9% sequence identity, while the other genomic regions show close relationship with AY747174/German with 90.1% sequence identity. Our results will provide valuable hints for future research on Aichi virus diversity. Aichi virus is a member of the Kobuvirus genus of the Picornaviridae family 12 and belongs to a positive-sense and single-stranded RNA virus. Its presence in fecal specimens of children suffering from diarrhea has been demonstrated in several Asian countries 3456, in Brazil and German 7, in France 8 and in Tunisia 9. Some reports showed the high level of seroprevalence in adults 710, suggesting the widespread exposure to Aichi virus during childhood. The genome of Aichi virus contains 8,280 nucleotides and a poly(A tail. The single large open reading frame (nt 713-8014 according to the strain AB010145 encodes a polyprotein of 2,432 amino acids that is cleaved into the typical picornavirus structural proteins VP0, VP3, VP1, and nonstructural proteins 2A, 2B, 2C, 3A, 3B, 3C and 3D 211. Based on the phylogenetic analysis of 519-bp sequences at the 3C-3D (3CD junction, Aichi viruses can be divided into two genotypes A and B with approximately 90% sequence homology 12. Although only six complete genomes of Aichi virus were deposited in GenBank at present, mosaic genomes can be found in strains from different countries.

  20. Complete genome sequence of Haliscomenobacter hydrossis type strain (OT)

    Energy Technology Data Exchange (ETDEWEB)

    Daligault, Hajnalka E. [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Verbarg, Susanne [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Haliscomenobacter hydrossis van Veen et al. 1973 is the type species of the genus Halisco- menobacter, which belongs to order 'Sphingobacteriales'. The species is of interest because of its isolated phylogenetic location in the tree of life, especially the so far genomically un- charted part of it, and because the organism grows in a thin, hardly visible hyaline sheath. Members of the species were isolated from fresh water of lakes and from ditch water. The genome of H. hydrossis is the first completed genome sequence reported from a member of the family 'Saprospiraceae'. The 8,771,651 bp long genome with its three plasmids of 92 kbp, 144 kbp and 164 kbp length contains 6,848 protein-coding and 60 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  1. Establishing a framework for comparative analysis of genome sequences

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, A.K.

    1995-06-01

    This paper describes a framework and a high-level language toolkit for comparative analysis of genome sequence alignment The framework integrates the information derived from multiple sequence alignment and phylogenetic tree (hypothetical tree of evolution) to derive new properties about sequences. Multiple sequence alignments are treated as an abstract data type. Abstract operations have been described to manipulate a multiple sequence alignment and to derive mutation related information from a phylogenetic tree by superimposing parsimonious analysis. The framework has been applied on protein alignments to derive constrained columns (in a multiple sequence alignment) that exhibit evolutionary pressure to preserve a common property in a column despite mutation. A Prolog toolkit based on the framework has been implemented and demonstrated on alignments containing 3000 sequences and 3904 columns.

  2. Genomic organization and sequence analysis of the vomeronasal receptor V2R genes in mouse genome

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; Zhang YaPing

    2007-01-01

    Two multigene superfamilies, named V1R and V2R, encoding seven-transmembrane-domain G-protein coupled receptors (GPCRs) have been identified as pheromone receptors in mammals. Three V2R gene families have been described in mouse and rat. Here we screened the updated mouse genome sequence database and finally retrieved 63 putative functional V2R genes including three newly identified genes which formed a new additional family. We described the genomic organization of these genes and also characterized the conservation of mouse V2R protein sequences. These genomic and sequence information we described are useful as part of the evidence to speculate the functional domain of V2Rs and should give aid to the functionality study in the future.

  3. Mapping and Sequencing the Human Genome

    Science.gov (United States)

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  4. Complete genome sequence of arracacha virus B: a novel cheravirus.

    Science.gov (United States)

    Adams, I P; Glover, R; Souza-Richards, R; Bennett, S; Hany, U; Boonham, N

    2013-04-01

    The complete genome sequences of RNA1 and RNA2 of the oca strain of the potato virus arracacha virus B were determined using next-generation sequencing. The RNA1 molecule is predicted to encode a 259-kDa polyprotein with homology to proteins of the cheraviruses apple latent spherical virus (ALSV) and cherry rasp leaf virus (CRLV). The RNA2 molecule is predicted to encode a 102-kDa polyprotein which also has homology to the corresponding protein of ALSV and, to a lesser degree, CRLV (30 % for RNA1, 24 % for RNA2). Detailed analysis of the genome sequence confirms that AVB is a distinct member of the genus Cheravirus.

  5. Genome sequence of Kocuria varians G6 ssolated from a slaughterhouse in Denmark

    DEFF Research Database (Denmark)

    Raghupathi, Prem Krishnan; Herschend, Jakob; Røder, Henriette Lyng;

    2016-01-01

    We report here the first draft genome sequence ofKocuria variansG6, which was isolated from a meat chopper at a small slaughterhouse in Denmark. The 2.90-Mb genome sequence consists of 95 contigs and contains 2,518 predicted protein-coding genes.......We report here the first draft genome sequence ofKocuria variansG6, which was isolated from a meat chopper at a small slaughterhouse in Denmark. The 2.90-Mb genome sequence consists of 95 contigs and contains 2,518 predicted protein-coding genes....

  6. [Mapping and human genome sequence program].

    Science.gov (United States)

    Weissenbach, J

    1997-03-01

    Until recently, human genome programs focused primarily on establishing maps that would provide signposts to researchers seeking to identify genes responsible for inherited diseases, as well as a basis for genome sequencing studies. Preestablished gene mapping goals have been reached. The over 7,000 microsatellite markers identified to date provide a map of sufficient density to allow localization of the gene of a monogenic disease with a precision of 1 to 2 million base pairs. The physical map, based on systematically arranged overlapping sets of artificial yeast chromosomes (YACs), has also made considerable headway during the last few years. The most recently published map covers more than 90% of the genome. However, currently available physical maps cannot be used for sequencing studies because multiple rearrangements occur in YACs. The recently developed sets of radioinduced hybrids are extremely useful for incorporating genes into existing maps. A network of American and European laboratories has successfully used these radioinduced hybrids to map 15,000 gene tags from large-scale cDNA library sequencing programs. There are increasingly pressing reasons for initiating large scale human genome sequencing studies.

  7. Genome sequence of Lactobacillus farciminis KCTC 3681.

    Science.gov (United States)

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-04-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds.

  8. The diploid genome sequence of an Asian individual

    DEFF Research Database (Denmark)

    Wang, Jun; Wang, Wei; Li, Ruiqiang

    2008-01-01

    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we...

  9. Complete genome sequence of Thauera aminoaromatica strain MZ1T

    Science.gov (United States)

    Jiang, Ke; Sanseverino, John; Chauhan, Archana; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Del Rio, Tijana Glavina; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Chang, Y.J.; Larimer, Frank; Land, Miriam; Hauser, Loren; Kyrpides, Nikos C.; Mikhailova, Natalia; Moser, Scott; Jegier, Patricia; Close, Dan; DeBruyn, Jennifer M.; Wang, Ying; Layton, Alice C.; Allen, Michael S.; Sayler, Gary S.

    2012-01-01

    Thauera aminoaromatica strain MZ1T, an isolate belonging to genus Thauera, of the family Rhodocyclaceae and the class the Betaproteobacteria, has been characterized for its ability to produce abundant exopolysaccharide and degrade various aromatic compounds with nitrate as an electron acceptor. These properties, if fully understood at the genome-sequence level, can aid in environmental processing of organic matter in anaerobic cycles by short-circuiting a central anaerobic metabolite, acetate, from microbiological conversion to methane, a critical greenhouse gas. Strain MZ1T is the first strain from the genus Thauera with a completely sequenced genome. The 4,496,212 bp chromosome and 78,374 bp plasmid contain 4,071 protein-coding and 71 RNA genes, and were sequenced as part of the DOE Community Sequencing Program CSP_776774. PMID:23407619

  10. Complete genome sequence of Thauera aminoaromatica strain MZ1T

    Energy Technology Data Exchange (ETDEWEB)

    Sanseverino, John [ORNL; Chauhan, Archana [University of Tennessee, Knoxville (UTK); Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Sims, David [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chang, Yun-Juan [ORNL; Larimer, Frank W [ORNL; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Moser, Scott [University of Tennessee, Knoxville (UTK); Jegier, Patricia [University of Tennessee, Knoxville (UTK); Close, Dan [University of Tennessee, Knoxville (UTK); Wang, Ying [University of Tennessee, Knoxville (UTK); Layton, Alice [University of Tennessee, Knoxville (UTK); Allen, Michael S. [University of Tennessee, Knoxville (UTK); Sayler, Gary [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Thauera aminoaromatica strain MZ1T, an isolate belonging to genus Thauera, of the family Rhodocyclaceae and the class the Betaproteobacteria, has been characterized for its ability to produce abundant exopolysaccharide and degrade various aromatic compounds with nitrate as an electron acceptor. These properties, if fully understood at the genome-sequence level, can aid in environmental processing of organic matter in anaerobic cycles by short-circuiting a central anaerobic metabolite, acetate, from microbiological conversion to methane, a criti-cal greenhouse gas. Strain MZ1T is the first strain from the genus Thauera with a completely sequenced genome. The 4,496,212 bp chromosome and 78,374 bp plasmid contain 4,071 protein-coding and 71 RNA genes, and were sequenced as part of the DOE Community Se-quencing Program CSP{_}776774.

  11. A Draft Sequence of the Neandertal Genome

    Science.gov (United States)

    Green, Richard E.; Li, Heng; Zhai, Weiwei; Fritz, Markus Hsi-Yang; Hansen, Nancy F.; Durand, Eric Y.; Malaspinas, Anna-Sapfo; Jensen, Jeffrey D.; Marques-Bonet, Tomas; Alkan, Can; Prüfer, Kay; Meyer, Matthias; Burbano, Hernán A.; Good, Jeffrey M.; Schultz, Rigo; Aximu-Petri, Ayinuer; Butthof, Anne; Höber, Barbara; Höffner, Barbara; Siegemund, Madlen; Weihmann, Antje; Nusbaum, Chad; Lander, Eric S.; Russ, Carsten; Novod, Nathaniel; Affourtit, Jason; Egholm, Michael; Verna, Christine; Rudan, Pavao; Brajkovic, Dejana; Kucan, Željko; Gušic, Ivan; Doronichev, Vladimir B.; Golovanova, Liubov V.; Lalueza-Fox, Carles; de la Rasilla, Marco; Fortea, Javier; Rosas, Antonio; Schmitz, Ralf W.; Johnson, Philip L. F.; Eichler, Evan E.; Falush, Daniel; Birney, Ewan; Mullikin, James C.; Slatkin, Montgomery; Nielsen, Rasmus; Kelso, Janet; Lachmann, Michael; Reich, David; Pääbo, Svante

    2016-01-01

    Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other. PMID:20448178

  12. Mitochondrial genome sequences and comparative genomics ofPhytophthora ramorum and P. sojae

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Frank N.; Douda, Bensasson; Tyler, Brett M.; Boore,Jeffrey L.

    2007-01-01

    The complete sequences of the mitochondrial genomes of theoomycetes of Phytophthora ramorum and P. sojae were determined during thecourse of their complete nuclear genome sequencing (Tyler, et al. 2006).Both are circular, with sizes of 39,314 bp for P. ramorum and 42,975 bpfor P. sojae. Each contains a total of 37 identifiable protein-encodinggenes, 25 or 26 tRNAs (P. sojae and P. ramorum, respectively)specifying19 amino acids, and a variable number of ORFs (7 for P. ramorum and 12for P. sojae) which are potentially additional functional genes.Non-coding regions comprise approximately 11.5 percent and 18.4 percentof the genomes of P. ramorum and P. sojae, respectively. Relative to P.sojae, there is an inverted repeat of 1,150 bp in P. ramorum thatincludes an unassigned unique ORF, a tRNA gene, and adjacent non-codingsequences, but otherwise the gene order in both species is identical.Comparisons of these genomes with published sequences of the P. infestansmitochondrial genome reveals a number of similarities, but the gene orderin P. infestans differs in two adjacent locations due to inversions.Sequence alignments of the three genomes indicated sequence conservationranging from 75 to 85 percent and that specific regions were morevariable than others.

  13. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite

    Science.gov (United States)

    2011-01-01

    Background Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease. Results Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system. Conclusions This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions. PMID:21439036

  14. MIPS: analysis and annotation of proteins from whole genomes.

    Science.gov (United States)

    Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A

    2004-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  15. Castor bean organelle genome sequencing and worldwide genetic diversity analysis.

    Directory of Open Access Journals (Sweden)

    Maximo Rivarola

    Full Text Available Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.

  16. Castor bean organelle genome sequencing and worldwide genetic diversity analysis.

    Science.gov (United States)

    Rivarola, Maximo; Foster, Jeffrey T; Chan, Agnes P; Williams, Amber L; Rice, Danny W; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M J; Khouri, Hoda M; Beckstrom-Sternberg, Stephen M; Allan, Gerard J; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.

  17. Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis

    Science.gov (United States)

    Chan, Agnes P.; Williams, Amber L.; Rice, Danny W.; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M. J.; Khouri, Hoda M.; Beckstrom-Sternberg, Stephen M.; Allan, Gerard J.; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D.

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade. PMID:21750729

  18. Complete genome sequence of Pyrolobus fumarii type strain (1AT)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Huber, Harald [Universitat Regensburg, Regensburg, Germany; Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Pyrolobus fumarii Bl chl et al. 1997 is the type species of the genus Pyrolobus, which be- longs to the crenarchaeal family Pyrodictiaceae. The species is a facultatively microaerophilic non-motile crenarchaeon. It is of interest because of its isolated phylogenetic location in the tree of life and because it is a hyperthermophilic chemolithoautotroph known as the primary producer of organic matter at deep-sea hydrothermal vents. P. fumarii exhibits currently the highest optimal growth temperature of all life forms on earth (106 C). This is the first com- pleted genome sequence of a member of the genus Pyrolobus to be published and only the second genome sequence from a member of the family Pyrodictiaceae. Although Diversa Corporation announced the completion of sequencing of the P. fumarii genome on Septem- ber 25, 2001, this sequence was never released to the public. The 1,843,267 bp long genome with its 1,986 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  19. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    Directory of Open Access Journals (Sweden)

    Iorizzo Massimo

    2012-05-01

    Full Text Available Abstract Background Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Results Sequencing data from a carrot 454 whole genome library were used to develop a de novo assembly of the mitochondrial genome. Development of a new bioinformatic tool allowed visualizing contig connections and elucidation of the de novo assembly. Southern hybridization demonstrated recombination across two large repeats. Genome annotation allowed identification of 44 protein coding genes, three rRNA and 17 tRNA. Identification of the plastid genome sequence allowed organelle genome comparison. Mitochondrial intergenic sequence analysis allowed detection of a fragment of DNA specific to the carrot plastid genome. PCR amplification and sequence analysis across different Apiaceae species revealed consistent conservation of this fragment in the mitochondrial genomes and an insertion in Daucus plastid genomes, giving evidence of a mitochondrial to plastid transfer of DNA. Sequence similarity with a retrotransposon element suggests a possibility that a transposon-like event transferred this sequence into the plastid genome. Conclusions This study confirmed that whole genome sequencing is a practical approach for de novo assembly of higher plant mitochondrial genomes. In addition, a new aspect of intercompartmental genome interaction was reported providing the first evidence for DNA transfer into an angiosperm plastid genome. The approach used here could be used more broadly to sequence and assemble mitochondrial genomes of diverse species. This information will allow us to better understand intercompartmental interactions and cell evolution.

  20. Human cellular protein patterns and their link to genome DNA mapping and sequencing data: towards an integrated approach to the study of gene expression

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Leffers, H

    1993-01-01

    two-dimensional gel protein databases will provide an integrated picture of the expression levels and properties of the thousands of protein components of organelles, pathways, and cytoskeletal systems, both under physiological and abnormal conditions, and are expected to lead to the identification...... mapping and sequence information and that offer an integrated approach to the study of gene expression. With the integrated approach offered by two-dimensional gel protein databases it is now possible to reveal phenotype-specific protein(s), to microsequence them, to search for homology with previous...... of new regulatory networks. So far, about 20% (600 out of 2,980) of the total number of proteins recorded in the human keratinocyte protein database have been identified and we are actively gathering qualitative and quantitative biological data on all resolved proteins. Given the current improvements...

  1. Protein sequence comparison and protein evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Biochemistry

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  2. BSMAP: whole genome bisulfite sequence MAPping program

    Directory of Open Access Journals (Sweden)

    Li Wei

    2009-07-01

    Full Text Available Abstract Background Bisulfite sequencing is a powerful technique to study DNA cytosine methylation. Bisulfite treatment followed by PCR amplification specifically converts unmethylated cytosines to thymine. Coupled with next generation sequencing technology, it is able to detect the methylation status of every cytosine in the genome. However, mapping high-throughput bisulfite reads to the reference genome remains a great challenge due to the increased searching space, reduced complexity of bisulfite sequence, asymmetric cytosine to thymine alignments, and multiple CpG heterogeneous methylation. Results We developed an efficient bisulfite reads mapping algorithm BSMAP to address the above issues. BSMAP combines genome hashing and bitwise masking to achieve fast and accurate bisulfite mapping. Compared with existing bisulfite mapping approaches, BSMAP is faster, more sensitive and more flexible. Conclusion BSMAP is the first general-purpose bisulfite mapping software. It is able to map high-throughput bisulfite reads at whole genome level with feasible memory and CPU usage. It is freely available under GPL v3 license at http://code.google.com/p/bsmap/.

  3. Agaricus bisporus genome sequence: a commentary.

    Science.gov (United States)

    Kerrigan, Richard W; Challen, Michael P; Burton, Kerry S

    2013-06-01

    The genomes of two isolates of Agaricus bisporus have been sequenced recently. This soil-inhabiting fungus has a wide geographical distribution in nature and it is also cultivated in an industrialized indoor process ($4.7bn annual worldwide value) to produce edible mushrooms. Previously this lignocellulosic fungus has resisted precise econutritional classification, i.e. into white- or brown-rot decomposers. The generation of the genome sequence and transcriptomic analyses has revealed a new classification, 'humicolous', for species adapted to grow in humic-rich, partially decomposed leaf material. The Agaricus biporus genomes contain a collection of polysaccharide and lignin-degrading genes and more interestingly an expanded number of genes (relative to other lignocellulosic fungi) that enhance degradation of lignin derivatives, i.e. heme-thiolate peroxidases and β-etherases. A motif that is hypothesized to be a promoter element in the humicolous adaptation suite is present in a large number of genes specifically up-regulated when the mycelium is grown on humic-rich substrate. The genome sequence of A. bisporus offers a platform to explore fungal biology in carbon-rich soil environments and terrestrial cycling of carbon, nitrogen, phosphorus and potassium.

  4. Structural Genomics of Protein Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  5. Synaptotagmin gene content of the sequenced genomes

    Directory of Open Access Journals (Sweden)

    Craxton Molly

    2004-07-01

    Full Text Available Abstract Background Synaptotagmins exist as a large gene family in mammals. There is much interest in the function of certain family members which act crucially in the regulated synaptic vesicle exocytosis required for efficient neurotransmission. Knowledge of the functions of other family members is relatively poor and the presence of Synaptotagmin genes in plants indicates a role for the family as a whole which is wider than neurotransmission. Identification of the Synaptotagmin genes within completely sequenced genomes can provide the entire Synaptotagmin gene complement of each sequenced organism. Defining the detailed structures of all the Synaptotagmin genes and their encoded products can provide a useful resource for functional studies and a deeper understanding of the evolution of the gene family. The current rapid increase in the number of sequenced genomes from different branches of the tree of life, together with the public deposition of evolutionarily diverse transcript sequences make such studies worthwhile. Results I have compiled a detailed list of the Synaptotagmin genes of Caenorhabditis, Anopheles, Drosophila, Ciona, Danio, Fugu, Mus, Homo, Arabidopsis and Oryza by examining genomic and transcript sequences from public sequence databases together with some transcript sequences obtained by cDNA library screening and RT-PCR. I have compared all of the genes and investigated the relationship between plant Synaptotagmins and their non-Synaptotagmin counterparts. Conclusions I have identified and compared 98 Synaptotagmin genes from 10 sequenced genomes. Detailed comparison of transcript sequences reveals abundant and complex variation in Synaptotagmin gene expression and indicates the presence of Synaptotagmin genes in all animals and land plants. Amino acid sequence comparisons indicate patterns of conservation and diversity in function. Phylogenetic analysis shows the origin of Synaptotagmins in multicellular eukaryotes and their

  6. Implications of the plastid genome sequence of typha (typhaceae, poales) for understanding genome evolution in poaceae.

    Science.gov (United States)

    Guisinger, Mary M; Chumley, Timothy W; Kuehl, Jennifer V; Boore, Jeffrey L; Jansen, Robert K

    2010-02-01

    Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.

  7. The master two-dimensional gel database of human AMA cell proteins: towards linking protein and genome sequence and mapping information (update 1991)

    DEFF Research Database (Denmark)

    Celis, J E; Leffers, H; Rasmussen, H H;

    1991-01-01

    The master two-dimensional gel database of human AMA cells currently lists 3801 cellular and secreted proteins, of which 371 cellular polypeptides (306 IEF; 65 NEPHGE) were added to the master images during the last 10 months. These include: (i) very basic and acidic proteins that do not focus un...

  8. Near-complete genome sequencing of swine vesicular disease virus using the Roche GS FLX sequencing platform

    DEFF Research Database (Denmark)

    Nielsen, Sandra Cathrine Abel; Bruhn, Christian Anders Wathne; Samaniego Castruita, Jose Alfredo;

    2014-01-01

    that is suitable for sequencing the complete protein-encoding sequences of SVDV isolates in which the RNA is relatively intact. The approach couples a single PCR amplification reaction, using only a single PCR primer set to amplify the near-complete SVDV genome, with deep-sequencing using a small fraction...

  9. Whole genome sequence analysis of Mycobacterium suricattae

    KAUST Repository

    Dippenaar, Anzaan

    2015-10-21

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  10. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    Directory of Open Access Journals (Sweden)

    Jianmin Fu

    Full Text Available Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  11. Complete genome sequence of Streptobacillus moniliformis type strain (9901T)

    Science.gov (United States)

    Nolan, Matt; Gronow, Sabine; Lapidus, Alla; Ivanova, Natalia; Copeland, Alex; Lucas, Susan; Del Rio, Tijana Glavina; Chen, Feng; Tice, Hope; Pitluck, Sam; Cheng, Jan-Fang; Sims, David; Meincke, Linda; Bruce, David; Goodwin, Lynne; Brettin, Thomas; Han, Cliff; Detter, John C.; Ovchinikova, Galina; Pati, Amrita; Mavromatis, Konstantinos; Mikhailova, Natalia; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Rohde, Manfred; Spröer, Cathrin; Göker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Chain, Patrick

    2009-01-01

    Streptobacillus moniliformis Levaditi et al. 1925 is the type and sole species of the genus Streptobacillus, and is of phylogenetic interest because of its isolated location in the sparsely populated and neither taxonomically nor genomically much accessed family 'Leptotrichiaceae' within the phylum Fusobacteria. The 'Leptotrichiaceae' have not been well characterized, genomically or taxonomically. S. moniliformis,is a Gram-negative, non-motile, pleomorphic bacterium and is the etiologic agent of rat bite fever and Haverhill fever. Strain 9901T, the type strain of the species, was isolated from a patient with rat bite fever. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is only the second completed genome sequence of the order Fusobacteriales and no more than the third sequence from the phylum Fusobacteria. The 1,662,578 bp long chromosome and the 10,702 bp plasmid with a total of 1511 protein-coding and 55 RNA genes are part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304670

  12. Draft Genome Sequence of Rubrivivax gelatinosus CBS

    Energy Technology Data Exchange (ETDEWEB)

    Hu, P. S.; Lang, J.; Wawrousek, K.; Yu, J. P.; Maness, P. C.; Chen, J.

    2012-06-01

    Rubrivivax gelatinosus CBS, a purple nonsulfur photosynthetic bacterium, can grow photosynthetically using CO and N{sub 2} as the sole carbon and nitrogen nutrients, respectively. R. gelatinosus CBS is of particular interest due to its ability to metabolize CO and yield H{sub 2}. We present the 5-Mb draft genome sequence of R. gelatinosus CBS with the goal of providing genetic insight into the metabolic properties of this bacterium.

  13. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα-encoding (GNAS genomic imprinting domain are associated with performance traits

    Directory of Open Access Journals (Sweden)

    Mullen Michael P

    2011-01-01

    Full Text Available Abstract Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486 were located upstream of the GNAS gene, while one SNP (rs41694646 was located in the second intron of the GNAS gene. The final SNP (rs41694656 was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646 is associated (P ≤ 0.05 with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf and gestation length. Association (P ≤ 0.01 with direct calving difficulty (i.e. due to calf size and maternal calving difficulty (i.e. due to the maternal pelvic width size was also observed at the rs

  14. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits

    Science.gov (United States)

    2011-01-01

    Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following

  15. Genome sequence of Psychrobacter cibarius strain W1

    DEFF Research Database (Denmark)

    Raghupathi, Prem Krishnan; Herschend, Jakob; Røder, Henriette Lyng

    2016-01-01

    Here, we report the draft genome sequence of Psychrobacter cibarius strain W1, which was isolated at a slaughterhouse in Denmark. The 3.63-Mb genome sequence was assembled into 241 contigs.......Here, we report the draft genome sequence of Psychrobacter cibarius strain W1, which was isolated at a slaughterhouse in Denmark. The 3.63-Mb genome sequence was assembled into 241 contigs....

  16. Draft genome sequence of an aflatoxigenic Aspergillus species, A. bombycis

    Science.gov (United States)

    The genome of the A. bombycis Type strain was sequenced using a Personal Genome Machine, followed by annotation of its predicted genes. The genome size for A. bombycis was found to be approximately 37 Mb and contained 12,266 genes. This announcement introduces a sequenced genome for an aflatoxigenic...

  17. What Will We Do with a Cotton Genome Sequence?

    Institute of Scientific and Technical Information of China (English)

    BRUBAKER Curt

    2008-01-01

    @@ With the publication of "Toward Sequencing Cotton (Gossypium) Genomes" [Chen et al.PlantPhysiology,2007,145:1303-1310-] a clear consensus emerged from the cotton genomics community not only that cotton genome sequences were a critical resource for research and commercial innovationin cotton genomics,but that there was a logical means of achieving this goal.

  18. Sequencing of a Cultivated Diploid Cotton Genome-Gossypium arboreum

    Institute of Scientific and Technical Information of China (English)

    WILKINS; Thea; A

    2008-01-01

    Sequencing the genomes of crop species and model systems contributes significantly to our understanding of the organization,structure and function of plant genomes.In a `white paper' published in 2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated upland cotton that initially targets less complex diploid genomes.This strategy banks on the high degree

  19. Templated sequence insertion polymorphisms in the human genome

    Science.gov (United States)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  20. Identification of ancient remains through genomic sequencing

    Science.gov (United States)

    Blow, Matthew J.; Zhang, Tao; Woyke, Tanja; Speller, Camilla F.; Krivoshapkin, Andrei; Yang, Dongya Y.; Derevianko, Anatoly; Rubin, Edward M.

    2008-01-01

    Studies of ancient DNA have been hindered by the preciousness of remains, the small quantities of undamaged DNA accessible, and the limitations associated with conventional PCR amplification. In these studies, we developed and applied a genomewide adapter-mediated emulsion PCR amplification protocol for ancient mammalian samples estimated to be between 45,000 and 69,000 yr old. Using 454 Life Sciences (Roche) and Illumina sequencing (formerly Solexa sequencing) technologies, we examined over 100 megabases of DNA from amplified extracts, revealing unbiased sequence coverage with substantial amounts of nonredundant nuclear sequences from the sample sources and negligible levels of human contamination. We consistently recorded over 500-fold increases, such that nanogram quantities of starting material could be amplified to microgram quantities. Application of our protocol to a 50,000-yr-old uncharacterized bone sample that was unsuccessful in mitochondrial PCR provided sufficient nuclear sequences for comparison with extant mammals and subsequent phylogenetic classification of the remains. The combined use of emulsion PCR amplification and high-throughput sequencing allows for the generation of large quantities of DNA sequence data from ancient remains. Using such techniques, even small amounts of ancient remains with low levels of endogenous DNA preservation may yield substantial quantities of nuclear DNA, enabling novel applications of ancient DNA genomics to the investigation of extinct phyla. PMID:18426903

  1. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes).

    Science.gov (United States)

    Thiel, Vera; Hamilton, Trinity L; Tomsho, Lynn P; Burhans, Richard; Gay, Scott E; Ramaley, Robert F; Schuster, Stephan C; Steinke, Laurey; Bryant, Donald A

    2014-08-28

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.

  2. Brucella microti: the genome sequence of an emerging pathogen

    Directory of Open Access Journals (Sweden)

    Scholz Holger C

    2009-08-01

    Full Text Available Abstract Background Using a combination of pyrosequencing and conventional Sanger sequencing, the complete genome sequence of the recently described novel Brucella species, Brucella microti, was determined. B. microti is a member of the genus Brucella within the Alphaproteobacteria, which consists of medically important highly pathogenic facultative intracellular bacteria. In contrast to all other Brucella species, B. microti is a fast growing and biochemically very active microorganism with a phenotype more similar to that of Ochrobactrum, a facultative human pathogen. The atypical phenotype of B. microti prompted us to look for genomic differences compared to other Brucella species and to look for similarities with Ochrobactrum. Results The genome is composed of two circular chromosomes of 2,117,050 and 1,220,319 base pairs. Unexpectedly, we found that the genome sequence of B. microti is almost identical to that of Brucella suis 1330 with an overall sequence identity of 99.84% in aligned regions. The most significant structural difference between the two genomes is a bacteriophage-related 11,742 base pairs insert only present in B. microti. However, this insert is unlikely to have any phenotypical consequence. Only four protein coding genes are shared between B. microti and Ochrobactrum anthropi but impaired in other sequenced Brucella. The most noticeable difference between B. microti and other Brucella species was found in the sequence of the 23S ribosomal RNA gene. This unusual variation could have pleiotropic effects and explain the fast growth of B. microti. Conclusion Contrary to expectations from the phenotypic analysis, the genome sequence of B. microti is highly similar to that of known Brucella species, and is remotely related to the one of O. anthropi. How the few differences in gene content between B. microti and B. suis 1330 could result in vastly different phenotypes remains to be elucidated. This unexpected finding will

  3. Transforming clinical microbiology with bacterial genome sequencing.

    Science.gov (United States)

    Didelot, Xavier; Bowden, Rory; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W

    2012-09-01

    Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.

  4. Draft Genome Sequence of Bacillus mycoides M2E15, a Strain Isolated from the Endosphere of Potato

    NARCIS (Netherlands)

    Yi, Yanglei; de Jong, Anne; Spoelder, Jan; Elzenga, J Theo M; van Elsas, Jan Dirk; Kuipers, Oscar P

    2016-01-01

    We present the draft genome sequence of Bacillus mycoides M2E15, a bacterium isolated from potato endosphere. Analysis of the 6.08-Mbp draft genome sequence identified 6,386 protein-encoding sequences, including potential plant growth promoting genes. Specifically, genes for proteins involved in pho

  5. Construction of an integrated database to support genomic sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.; Overbeek, R.

    1994-11-01

    The central goal of this project is to develop an integrated database to support comparative analysis of genomes including DNA sequence data, protein sequence data, gene expression data and metabolism data. In developing the logic-based system GenoBase, a broader integration of available data was achieved due to assistance from collaborators. Current goals are to easily include new forms of data as they become available and to easily navigate through the ensemble of objects described within the database. This report comments on progress made in these areas.

  6. Early insights into the genome sequence of Uromyces fabae

    Directory of Open Access Journals (Sweden)

    Tobias eLink

    2014-10-01

    Full Text Available Uromyces fabae is a major pathogen of broad bean, Vicia faba. U. fabae has served as a model among rust fungi to elucidate the development of infection structures, expression and secretion of cell wall degrading enzymes and gene expression. Using U. fabae, enormous progress was made regarding nutrient uptake and metabolism and in the search for secreted proteins and effectors. Here, we present results from a genome survey of U. fabae. Paired end Illumina sequencing provided 53 Gb of data. An assembly gave 59,735 scaffolds with a total length of 216 Mb. K-mer analysis estimated the genome size to be 329 Mb. Of a representative set of 23,153 predicted proteins we could annotate 10,209, and predict 599 secreted proteins. Clustering of the protein set indicates families of highly likely effectors. We also found new homologs of RTP1p, a prototype rust effector. The U. fabae genome will be an important resource for comparative analyses with U. appendiculatus and P. pachyrhizi and provide information regarding the phylogenetic relationship of the genus Uromyces with respect to other rust fungi already sequenced, namely Puccinia graminis f. sp. tritici, P. striiformis f. sp. tritici, Melampsora lini, and Melampsora larici-populina.

  7. Detecting overlapping coding sequences in virus genomes

    Directory of Open Access Journals (Sweden)

    Brown Chris M

    2006-02-01

    Full Text Available Abstract Background Detecting new coding sequences (CDSs in viral genomes can be difficult for several reasons. The typically compact genomes often contain a number of overlapping coding and non-coding functional elements, which can result in unusual patterns of codon usage; conservation between related sequences can be difficult to interpret – especially within overlapping genes; and viruses often employ non-canonical translational mechanisms – e.g. frameshifting, stop codon read-through, leaky-scanning and internal ribosome entry sites – which can conceal potentially coding open reading frames (ORFs. Results In a previous paper we introduced a new statistic – MLOGD (Maximum Likelihood Overlapping Gene Detector – for detecting and analysing overlapping CDSs. Here we present (a an improved MLOGD statistic, (b a greatly extended suite of software using MLOGD, (c a database of results for 640 virus sequence alignments, and (d a web-interface to the software and database. Tests show that, from an alignment with just 20 mutations, MLOGD can discriminate non-overlapping CDSs from non-coding ORFs with a typical accuracy of up to 98%, and can detect CDSs overlapping known CDSs with a typical accuracy of 90%. In addition, the software produces a variety of statistics and graphics, useful for analysing an input multiple sequence alignment. Conclusion MLOGD is an easy-to-use tool for virus genome annotation, detecting new CDSs – in particular overlapping or short CDSs – and for analysing overlapping CDSs following frameshift sites. The software, web-server, database and supplementary material are available at http://guinevere.otago.ac.nz/mlogd.html.

  8. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences

    Directory of Open Access Journals (Sweden)

    Yandell Mark

    2010-07-01

    Full Text Available Abstract Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24. The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity elsewhere in the genome, but only 23% have identical copies (99% identity. The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is

  9. Complete genome sequence of a novel calicivirus from a goose.

    Science.gov (United States)

    Liao, Qinfeng; Wang, Xiaoyan; Wang, Dan; Zhang, Dabing

    2014-09-01

    A novel goose calicivirus (GoCV) was sequenced. The 8013-nt-long genome was organized into two open reading frames that were in the same frame and separated by 3 nucleotides. This feature is similar to what has been observed in turkey calicivirus (TuCV). Comparison of GoCV with other caliciviruses showed that it shared the highest amino acid sequence identities of 62, 38, and 52% in the nonstructural protein, VP1, and VP2, respectively, with TuCV. Phylogenetic analysis based on the amino acid sequences of nonstructural protein and VP1 demonstrated that GoCV was most closely related to but distinct from TuCV. Thus, GoCV was identified as a novel member in the proposed genus Nacovirus.

  10. An evaluation of Comparative Genome Sequencing (CGS by comparing two previously-sequenced bacterial genomes

    Directory of Open Access Journals (Sweden)

    Herring Christopher D

    2007-08-01

    Full Text Available Abstract Background With the development of new technology, it has recently become practical to resequence the genome of a bacterium after experimental manipulation. It is critical though to know the accuracy of the technique used, and to establish confidence that all of the mutations were detected. Results In order to evaluate the accuracy of genome resequencing using the microarray-based Comparative Genome Sequencing service provided by Nimblegen Systems Inc., we resequenced the E. coli strain W3110 Kohara using MG1655 as a reference, both of which have been completely sequenced using traditional sequencing methods. CGS detected 7 of 8 small sequence differences, one large deletion, and 9 of 12 IS element insertions present in W3110, but did not detect a large chromosomal inversion. In addition, we confirmed that CGS also detected 2 SNPs, one deletion and 7 IS element insertions that are not present in the genome sequence, which we attribute to changes that occurred after the creation of the W3110 lambda clone library. The false positive rate for SNPs was one per 244 Kb of genome sequence. Conclusion CGS is an effective way to detect multiple mutations present in one bacterium relative to another, and while highly cost-effective, is prone to certain errors. Mutations occurring in repeated sequences or in sequences with a high degree of secondary structure may go undetected. It is also critical to follow up on regions of interest in which SNPs were not called because they often indicate deletions or IS element insertions.

  11. [Genome sequencing and analysis of a peste des petits ruminants virus isolate, China/Tib/07].

    Science.gov (United States)

    Liu, Wen-Hua; Bao, Jing-Yue; Wu, Xiao-Dong; Wang, Zhi-Liang

    2010-07-01

    Peste des petits ruminants virus is a member of Morbillivirus Paramyxoviridae. The complete genome of a Peste des petits ruminants virus (PPRV) isolate, China/Tib/07 was sequenced and molecular characteristics was analyzed. The internal sequences of the virus genome were amplified by RT-PCR with primers designed according to the published data in GenBank, while the sequences of the 3' and 5' ends of the genome were determined by RACE. Amplification products were directly sequenced,assembled and analyzed with DNAStar4.0. Results showed that China/Tib/07 genome consisted of 15 948 nucleotides in length, encoding six structural proteins and two non-structural proteins just like other known PPRV genomes. Phylogenetically, the virus genome shared homology of 91.6%-98.1% with Southwest Asian isolates among PPRV strains and the highest homology of 64.3% with rinderpest virus among morbillivirus members.

  12. Why Assembling Plant Genome Sequences Is So Challenging

    Directory of Open Access Journals (Sweden)

    Pedro Seoane

    2012-09-01

    Full Text Available In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed.

  13. Why Assembling Plant Genome Sequences Is So Challenging

    Science.gov (United States)

    Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé

    2012-01-01

    In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233

  14. Complete genome sequence Methanothermus fervidus type strain (V24ST)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Djao, Olivier Duplex [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Misra, Monica [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Eichinger, Konrad [Universitat Regensburg, Regensburg, Germany; Huber, Harald [Universitat Regensburg, Regensburg, Germany; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Methanothermus fervidus Stetter 1982 is the type strain of the genus Methanothermus. This hyperthermophilic genus is of a thought to be endemic in Icelandic hot springs. M. fervidus was not only the first characterized organism with a maximal growth temperature (97 C) close to the boiling point of water, but also the first archaeon in which a detailed functional analysis of its histone protein was reported and the first one in which the function of 2,3-cyclodiphosphoglycerate in thermoadaptation was characterized. Strain V24ST is of interest because of its very low substrate ranges, it grows only on H2 + CO2. This is the first completed genome sequence of the family Methanothermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,243,342 bp long genome with its 1,311 protein-coding and 50 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  15. Structure and sequence of the saimiriine herpesvirus 1 genome.

    Science.gov (United States)

    Tyler, Shaun; Severini, Alberto; Black, Darla; Walker, Matthew; Eberle, R

    2011-02-05

    We report here the complete genome sequence of the squirrel monkey α-herpesvirus saimiriine herpesvirus 1 (HVS1). Unlike the simplexviruses of other primate species, only the unique short region of the HVS1 genome is bounded by inverted repeats. While all Old World simian simplexviruses characterized to date lack the herpes simplex virus RL1 (γ34.5) gene, HVS1 has an RL1 gene. HVS1 lacks several genes that are present in other primate simplexviruses (US8.5, US10-12, UL43/43.5 and UL49A). Although the overall genome structure appears more like that of varicelloviruses, the encoded HVS1 proteins are most closely related to homologous proteins of the primate simplexviruses. Phylogenetic analyses confirm that HVS1 is a simplexvirus. Limited comparison of two HVS1 strains revealed a very low degree of sequence variation more typical of varicelloviruses. HVS1 is thus unique among the primate α-herpesviruses in that its genome has properties of both simplexviruses and varicelloviruses.

  16. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics.

    Directory of Open Access Journals (Sweden)

    Lincoln D Stein

    2003-11-01

    Full Text Available The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp and C. elegans (100.3 Mbp genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C

  17. Complete genome sequence of Streptobacillus moniliformis type strain (9901T)

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Sims, David [Los Alamos National Laboratory (LANL); Meincke, Linda [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Sproer, Cathrin [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL)

    2009-01-01

    Streptobacillus moniliformis Levaditi et al. 1925 is the sole and type species of the genus, and is of phylogenetic interest because of its isolated location in the sparsely populated and neither taxonomically nor genomically much accessed family 'Leptotrichiaceae' within the phylum 'Fusobacteria'. S. moniliformis, a Gram-negative, non-motile and pleomorphic bacterium, is the etiologic agent of rat bite fever and Haverhill fever. Strain 9901T, the type strain of the species, was isolated from a patient with rat bite fever. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is only the second completed genome sequence of the order 'Fusobacteriales' and no more than the third sequence from the phylum 'Fusobacteria'. The 1,662,578 bp long chromosome and the 10,702 bp plasmid with a total of 1511 protein-coding and 55 RNA genes are part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Complete genome sequence of Actinosynnema mirum type strain (101T)

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Mayilraj, Shanmugam [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Bruce, David [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2009-01-01

    Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO2 atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  19. Complete genome sequence of Actinosynnema mirum type strain (101T)

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam; Lapidus, Alla; Mayilraj, Shanmugam; Chen, Feng; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Chertkov, Olga; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Rohde, Manfred; Goker, Markus; Pati, Amrita; Ivanova, Natalia; Mavrommatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia; Brettin, Thomas; Detter, John C.; Han, Cliff; Chain, Patrick; Tindall, Brian; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Actinosynnema mirum Hasegawa et al. 1978 is the type species of the genus, and is of phylogenetic interest because of its central phylogenetic location in the Actino-synnemataceae, a rapidly growing family within the actinobacterial suborder Pseudo-nocardineae. A. mirum is characterized by its motile spores borne on synnemata and as a producer of nocardicin antibiotics. It is capable of growing aerobically and under a moderate CO2 atmosphere. The strain is a Gram-positive, aerial and substrate mycelium producing bacterium, originally isolated from a grass blade collected from the Raritan River, New Jersey. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of a member of the family Actinosynnemataceae, and only the second sequence from the actinobacterial suborder Pseudonocardineae. The 8,248,144 bp long single replicon genome with its 7100 protein-coding and 77 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  20. The complete mitochondrial genome sequence of Eimeria magna (Apicomplexa: Coccidia).

    Science.gov (United States)

    Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Liu, Guo-Hua; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-01-01

    In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Eimeria magna from rabbits for the first time, and compared its gene contents and genome organizations with that of seven Eimeria spp. from domestic chickens. The size of the complete mt genome sequence of E. magna is 6249 bp, which consists of 3 protein-coding genes (cytb, cox1 and cox3), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, without transfer RNA genes, in accordance with that of Eimeria spp. from chickens. The putative direction of translation for three genes (cytb, cox1 and cox3) was the same as those of Eimeria species from domestic chickens. The content of A + T is 65.16% for E. magna mt genome (29.73% A, 35.43% T, 17.09 G and 17.75% C). The E. magna mt genome sequence provides novel mtDNA markers for studying the molecular epidemiology and population genetics of Eimeria spp. and has implications for the molecular diagnosis and control of rabbit coccidiosis.

  1. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuan Tong

    2010-01-01

    Full Text Available Abstract Background Transmembrane receptor kinases play critical roles in both animal and plant signaling pathways regulating growth, development, differentiation, cell death, and pathogenic defense responses. In Arabidopsis thaliana, there are at least 223 Leucine-rich repeat receptor-like kinases (LRR-RLKs, representing one of the largest protein families. Although functional roles for a handful of LRR-RLKs have been revealed, the functions of the majority of members in this protein family have not been elucidated. Results As a resource for the in-depth analysis of this important protein family, the complementary DNA sequences (cDNAs of 194 LRR-RLKs were cloned into the GatewayR donor vector pDONR/ZeoR and analyzed by DNA sequencing. Among them, 157 clones showed sequences identical to the predictions in the Arabidopsis sequence resource, TAIR8. The other 37 cDNAs showed gene structures distinct from the predictions of TAIR8, which was mainly caused by alternative splicing of pre-mRNA. Most of the genes have been further cloned into GatewayR destination vectors with GFP or FLAG epitope tags and have been transformed into Arabidopsis for in planta functional analysis. All clones from this study have been submitted to the Arabidopsis Biological Resource Center (ABRC at Ohio State University for full accessibility by the Arabidopsis research community. Conclusions Most of the Arabidopsis LRR-RLK genes have been isolated and the sequence analysis showed a number of alternatively spliced variants. The generated resources, including cDNA entry clones, expression constructs and transgenic plants, will facilitate further functional analysis of the members of this important gene family.

  2. What’s in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence

    Science.gov (United States)

    Mannhaupt, Gertrud; Montrone, Corinna; Haase, Dirk; Mewes, H. Werner; Aign, Verena; Hoheisel, Jörg D.; Fartmann, Berthold; Nyakatura, Gerald; Kempken, Frank; Maier, Josef; Schulte, Ulrich

    2003-01-01

    The German Neurospora Genome Project has assembled sequences from ordered cosmid and BAC clones of linkage groups II and V of the genome of Neurospora crassa in 13 and 12 contigs, respectively. Including additional sequences located on other linkage groups a total of 12 Mb were subjected to a manual gene extraction and annotation process. The genome comprises a small number of repetitive elements, a low degree of segmental duplications and very few paralogous genes. The analysis of the 3218 identified open reading frames provides a first overview of the protein equipment of a filamentous fungus. Significantly, N.crassa possesses a large variety of metabolic enzymes including a substantial number of enzymes involved in the degradation of complex substrates as well as secondary metabolism. While several of these enzymes are specific for filamentous fungi many are shared exclusively with prokaryotes. PMID:12655011

  3. The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes

    Science.gov (United States)

    Gil, Rosario; Silva, Francisco J.; Zientz, Evelyn; Delmotte, François; González-Candelas, Fernando; Latorre, Amparo; Rausell, Carolina; Kamerbeek, Judith; Gadau, Jürgen; Hölldobler, Bert; van Ham, Roeland C. H. J.; Gross, Roy; Moya, Andrés

    2003-01-01

    Bacterial symbioses are widespread among insects, probably being one of the key factors of their evolutionary success. We present the complete genome sequence of Blochmannia floridanus, the primary endosymbiont of carpenter ants. Although these ants feed on a complex diet, this symbiosis very likely has a nutritional basis: Blochmannia is able to supply nitrogen and sulfur compounds to the host while it takes advantage of the host metabolic machinery. Remarkably, these bacteria lack all known genes involved in replication initiation (dnaA, priA, and recA). The phylogenetic analysis of a set of conserved protein-coding genes shows that Bl. floridanus is phylogenetically related to Buchnera aphidicola and Wigglesworthia glossinidia, the other endosymbiotic bacteria whose complete genomes have been sequenced so far. Comparative analysis of the five known genomes from insect endosymbiotic bacteria reveals they share only 313 genes, a number that may be close to the minimum gene set necessary to sustain endosymbiotic life. PMID:12886019

  4. Draft genome sequence of the oilseed species Ricinus communis.

    Science.gov (United States)

    Chan, Agnes P; Crabtree, Jonathan; Zhao, Qi; Lorenzi, Hernan; Orvis, Joshua; Puiu, Daniela; Melake-Berhan, Admasu; Jones, Kristine M; Redman, Julia; Chen, Grace; Cahoon, Edgar B; Gedil, Melaku; Stanke, Mario; Haas, Brian J; Wortman, Jennifer R; Fraser-Liggett, Claire M; Ravel, Jacques; Rabinowicz, Pablo D

    2010-09-01

    Castor bean (Ricinus communis) is an oilseed crop that belongs to the spurge (Euphorbiaceae) family, which comprises approximately 6,300 species that include cassava (Manihot esculenta), rubber tree (Hevea brasiliensis) and physic nut (Jatropha curcas). It is primarily of economic interest as a source of castor oil, used for the production of high-quality lubricants because of its high proportion of the unusual fatty acid ricinoleic acid. However, castor bean genomics is also relevant to biosecurity as the seeds contain high levels of ricin, a highly toxic, ribosome-inactivating protein. Here we report the draft genome sequence of castor bean (4.6-fold coverage), the first for a member of the Euphorbiaceae. Whereas most of the key genes involved in oil synthesis and turnover are single copy, the number of members of the ricin gene family is larger than previously thought. Comparative genomics analysis suggests the presence of an ancient hexaploidization event that is conserved across the dicotyledonous lineage.

  5. Genome sequence and description of Anaerosalibacter massiliensis sp. nov.

    Directory of Open Access Journals (Sweden)

    N. Dione

    2016-03-01

    Full Text Available Anaerosalibacter massiliensis sp. nov. strain ND1T (= CSUR P762 = DSM 27308 is the type strain of A. massiliensis sp. nov., a new species within the genus Anaerosalibacter. This strain, the genome of which is described here, was isolated from the faecal flora of a 49-year-old healthy Brazilian man. Anaerosalibacter massiliensis is a Gram-positive, obligate anaerobic rod and member of the family Clostridiaceae. With the complete genome sequence and annotation, we describe here the features of this organism. The 3 197 911 bp long genome (one chromosome but no plasmid contains 3271 protein-coding and 62 RNA genes, including six rRNA genes.

  6. The complete chloroplast genome sequence of Dendrobium nobile.

    Science.gov (United States)

    Yan, Wenjin; Niu, Zhitao; Zhu, Shuying; Ye, Meirong; Ding, Xiaoyu

    2016-11-01

    The complete chloroplast (cp) genome sequence of Dendrobium nobile, an endangered and traditional Chinese medicine with important economic value, is presented in this article. The total genome size is 150,793 bp, containing a large single copy (LSC) region (84,939 bp) and a small single copy region (SSC) (13,310 bp) which were separated by two inverted repeat (IRs) regions (26,272 bp). The overall GC contents of the plastid genome were 38.8%. In total, 130 unique genes were annotated and they were consisted of 76 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Fourteen genes contained one or two introns.

  7. Evolutionary insights from suffix array-based genome sequence analysis

    Indian Academy of Sciences (India)

    Anindya Poddar; Nagasuma Chandra; Madhavi Ganapathiraju; K Sekar; Judith Klein-Seetharaman; Raj Reddy; N Balakrishnan

    2007-08-01

    Gene and protein sequence analyses, central components of studies in modern biology are easily amenable to string matching and pattern recognition algorithms. The growing need of analysing whole genome sequences more efficiently and thoroughly, has led to the emergence of new computational methods. Suffix trees and suffix arrays are data structures, well known in many other areas and are highly suited for sequence analysis too. Here we report an improvement to the design of construction of suffix arrays. Enhancement in versatility and scalability, enabled by this approach, is demonstrated through the use of real-life examples. The scalability of the algorithm to whole genomes renders it suitable to address many biologically interesting problems. One example is the evolutionary insight gained by analysing unigrams, bi-grams and higher n-grams, indicating that the genetic code has a direct influence on the overall composition of the genome. Further, different proteomes have been analysed for the coverage of the possible peptide space, which indicate that as much as a quarter of the total space at the tetra-peptide level is left un-sampled in prokaryotic organisms, although almost all tri-peptides can be seen in one protein or another in a proteome. Besides, distinct patterns begin to emerge for the counts of particular tetra and higher peptides, indicative of a ‘meaning’ for tetra and higher n-grams. The toolkit has also been used to demonstrate the usefulness of identifying repeats in whole proteomes efficiently. As an example, 16 members of one COG, coded by the genome of Mycobacterium tuberculosis H37Rv have been found to contain a repeating sequence of 300 amino acids.

  8. Complete genome sequences and comparative genome analysis of Lactobacillus plantarum strain 5-2 isolated from fermented soybean.

    Science.gov (United States)

    Liu, Chen-Jian; Wang, Rui; Gong, Fu-Ming; Liu, Xiao-Feng; Zheng, Hua-Jun; Luo, Yi-Yong; Li, Xiao-Ran

    2015-12-01

    Lactobacillus plantarum is an important probiotic and is mostly isolated from fermented foods. We sequenced the genome of L. plantarum strain 5-2, which was derived from fermented soybean isolated from Yunnan province, China. The strain was determined to contain 3114 genes. Fourteen complete insertion sequence (IS) elements were found in 5-2 chromosome. There were 24 DNA replication proteins and 76 DNA repair proteins in the 5-2 genome. Consistent with the classification of L. plantarum as a facultative heterofermentative lactobacillus, the 5-2 genome encodes key enzymes required for the EMP (Embden-Meyerhof-Parnas) and phosphoketolase (PK) pathways. Several components of the secretion machinery are found in the 5-2 genome, which was compared with L. plantarum ST-III, JDM1 and WCFS1. Most of the specific proteins in the four genomes appeared to be related to their prophage elements.

  9. Building the sequence map of the human pan-genome

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Zheng, Hancheng

    2010-01-01

    Here we integrate the de novo assembly of an Asian and an African genome with the NCBI reference human genome, as a step toward constructing the human pan-genome. We identified approximately 5 Mb of novel sequences not present in the reference genome in each of these assemblies. Most novel...... analysis of predicted genes indicated that the novel sequences contain potentially functional coding regions. We estimate that a complete human pan-genome would contain approximately 19-40 Mb of novel sequence not present in the extant reference genome. The extensive amount of novel sequence contributing...... to the genetic variation of the pan-genome indicates the importance of using complete genome sequencing and de novo assembly....

  10. Complete genome sequence of Paenibacillus sp. strain JDR-2

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Virginia [University of Florida; Nong, Guang [University of Florida; St. John, Franz J. [US Forest Service, Forest Products Laboratory, Madison, Wisconsin, USA; Dickstein, Ellen [University of Florida; Chertkov, Olga [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Brettin, Thomas S [ORNL; Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Martin, Joel [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Jones, Jeffrey B. [University of Florida; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida; Preston, James F. [University of Florida

    2012-01-01

    Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of -1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.

  11. Draft Genome Sequence of Wickerhamomyces ciferrii NRRL Y-1031 F-60-10

    OpenAIRE

    Schneider, Jessica; Andrea, Heiko; Blom, Jochen; Jaenicke, Sebastian; Rückert, Christian; Schorsch, Christoph; Szczepanowski, Rafael; Farwick,Mike; Goesmann, Alexander; Pühler, Alfred; Schaffer, Steffen; Tauch, Andreas; Köhler, Tim; Brinkrolf, Karina

    2012-01-01

    Wickerhamomyces ciferrii is a microorganism characterized by the production and secretion of large amounts of acetylated sphingoid bases, in particular tetraacetyl phytosphingosine. Here, we present the 15.90-Mbp draft genome sequence of W. ciferrii NRRL Y-1031 F-60-10 generated by pyrosequencing and de novo assembly. The draft genome sequence comprising 364 contigs in 150 scaffolds was annotated and covered 6,702 protein-coding sequences. This information will contribute to the metabolic eng...

  12. Rapid whole genome sequencing and precision neonatology.

    Science.gov (United States)

    Petrikin, Joshua E; Willig, Laurel K; Smith, Laurie D; Kingsmore, Stephen F

    2015-12-01

    Traditionally, genetic testing has been too slow or perceived to be impractical to initial management of the critically ill neonate. Technological advances have led to the ability to sequence and interpret the entire genome of a neonate in as little as 26 h. As the cost and speed of testing decreases, the utility of whole genome sequencing (WGS) of neonates for acute and latent genetic illness increases. Analyzing the entire genome allows for concomitant evaluation of the currently identified 5588 single gene diseases. When applied to a select population of ill infants in a level IV neonatal intensive care unit, WGS yielded a diagnosis of a causative genetic disease in 57% of patients. These diagnoses may lead to clinical management changes ranging from transition to palliative care for uniformly lethal conditions for alteration or initiation of medical or surgical therapy to improve outcomes in others. Thus, institution of 2-day WGS at time of acute presentation opens the possibility of early implementation of precision medicine. This implementation may create opportunities for early interventional, frequently novel or off-label therapies that may alter disease trajectory in infants with what would otherwise be fatal disease. Widespread deployment of rapid WGS and precision medicine will raise ethical issues pertaining to interpretation of variants of unknown significance, discovery of incidental findings related to adult onset conditions and carrier status, and implementation of medical therapies for which little is known in terms of risks and benefits. Despite these challenges, precision neonatology has significant potential both to decrease infant mortality related to genetic diseases with onset in newborns and to facilitate parental decision making regarding transition to palliative care.

  13. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.

    Science.gov (United States)

    Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias

    2014-08-01

    Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications.

  14. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans.

    Science.gov (United States)

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-07-20

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures.

  15. Genome Sequence of Desulfosporosinus sp. OT, an Acidophilic Sulfate-Reducing Bacterium from Copper Mining Waste in Norilsk, Northern Siberia

    OpenAIRE

    Abicht, Helge K.; Mancini, Stefano; Karnachuk, Olga V.; Solioz, Marc

    2011-01-01

    We have sequenced the genome of Desulfosporosinus sp. OT, a Gram-positive, acidophilic sulfate-reducing Firmicute isolated from copper tailing sediment in the Norilsk mining-smelting area in Northern Siberia, Russia. This represents the first sequenced genome of a Desulfosporosinus species. The genome has a size of 5.7 Mb and encodes 6,222 putative proteins.

  16. Genome sequence of Desulfosporosinus sp. OT, an acidophilic sulfate-reducing bacterium from copper mining waste in Norilsk, Northern Siberia.

    Science.gov (United States)

    Abicht, Helge K; Mancini, Stefano; Karnachuk, Olga V; Solioz, Marc

    2011-11-01

    We have sequenced the genome of Desulfosporosinus sp. OT, a Gram-positive, acidophilic sulfate-reducing Firmicute isolated from copper tailing sediment in the Norilsk mining-smelting area in Northern Siberia, Russia. This represents the first sequenced genome of a Desulfosporosinus species. The genome has a size of 5.7 Mb and encodes 6,222 putative proteins.

  17. Accelerated evolution of fetuin family proteins in Protobothrops flavoviridis (habu snake) serum and the discovery of an L1-like genomic element in the intronic sequence of a fetuin-encoding gene.

    Science.gov (United States)

    Tanaka, Yasuyoshi; Oyama, Sachiko; Hori, Shin-ichi; Ushio, Koya; Shioi, Narumi; Terada, Shigeyuki; Deshimaru, Masanobu

    2013-01-01

    Habu serum factor (HSF) and HSF-like protein (HLP) are fetuin family proteins isolated from Protobothrops flavoviridis (habu snake) serum with different physiological activities. A comparison of their cDNAs and intronic sequences revealed that nucleotide substitutions were primarily in protein-coding regions, and the substitution patterns indicated accelerated evolution of these proteins. Genomic DNA fragment analysis, including intron 1, revealed a 6.6-kb insertion homologous to the full-length mammalian LINE1 (L1) retrotransposable element (PfL1) only in the HLP gene. This segment retains an open reading frame (ORF) that encodes a reverse transcriptase (RT)-like protein (PfRT). We further found that a large number of homologous segments have dispersed in the habu snake genome, although we could not determine the enzymatic activities of their products. Moreover, an analysis of habu snake liver RNA indicated active transcription of the PfRT genes, suggesting that high levels of RT activity in this snake have driven the evolution of unique phenotypes of venom enzymes and serum inhibitors of them.

  18. Complete genome sequence of Desulfomicrobium baculatum type strain (XT)

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, A [U.S. Department of Energy, Joint Genome Institute; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Schneider, Susan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Bruce, David [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Meincke, Linda [Los Alamos National Laboratory (LANL); Sims, David [Los Alamos National Laboratory (LANL); Brettin, Tom [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2009-01-01

    Desulfomicrobium baculatum is the type species of the genus Desulfomicrobium, which is the type genus of the family Desulfomicrobiaceae. It is of phylogenetic interest because of the isolated location of the family Desulfomicrobiaceae within the order Desulfovibrionales. D. baculatum strain XT is a Gram-negative, motile, sulfate-reducing bacterium isolated from wa-ter-saturated manganese carbonate ore. It is strictly anaerobic and does not require NaCl for growth, although NaCl concentrations up to 6% (w/v) are tolerated. The metabolism is respi-ratory or fermentative. In the presence of sulfate, pyruvate and lactate are incompletely oxi-dized to acetate and CO2. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the deltaproteobacterial family Desulfomicrobiaceae, and this 3,942,657 bp long single replicon genome with its 3494 protein-coding and 72 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  19. Complete genome sequence of Desulfomicrobium baculatum type strain (XT)

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Alex; Spring, Stefan; Goker, Markus; Schneider, Susanne; Lapidus, Alla; Glavina Del Rio, Tijana; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C; Meincke, Linda; Sims, David; Brettin, Thomas; Detter, John C; Han, Cliff; Chain, Patrick; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C; Lucas, Susan

    2009-05-20

    Desulfomicrobium baculatum is the type species of the genus Desulfomicrobium, which is the type genus of the family Desulfomicrobiaceae. It is of phylogenetic interest because of the isolated location of the family Desulfomicrobiaceae within the order Desulfovibrionales. D. baculatum strain XT is a Gram-negative, motile, sulfate-reducing bacterium isolated from water-saturated manganese carbonate ore. It is strictly anaerobic and does not require NaCl for growth, although NaCl concentrations up to 6percent (w/v) are tolerated. The metabolism is respiratory or fermentative. In the presence of sulfate, pyruvate and lactate are incompletely oxidized to acetate and CO2. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the deltaproteobacterial family Desulfomicrobiaceae, and this 3,942,657 bp long single replicon genome with its 3494 protein-coding and 72 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  20. Complete genome sequence of Halanaerobium praevalens type strain (GSLT)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Chertkov, Olga [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kannan, K. Palani [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Halanaerobium praevalens Zeikus et al. 1984 is the type species of the genus Halanaero- bium, which in turn is the type genus of the family Halanaerobiaceae. The species is of inter- est because it is able to reduce a variety of nitro-substituted aromatic compounds at a high rate, and because of its ability to degrade organic pollutants. The strain is also of interest be- cause it functions as a hydrolytic bacterium, fermenting complex organic matter and produc- ing intermediary metabolites for other trophic groups such as sulfate-reducing and methano- genic bacteria. It is further reported as being involved in carbon removal in the Great Salt Lake, its source of isolation. This is the first completed genome sequence of a representative of the genus Halanaerobium and the second genome sequence from a type strain of the fami- ly Halanaerobiaceae. The 2,309,262 bp long genome with its 2,110 protein-coding and 70 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  1. Complete genome sequence of Rhodospirillum rubrum type strain (S1).

    Science.gov (United States)

    Munk, A Christine; Copeland, Alex; Lucas, Susan; Lapidus, Alla; Del Rio, Tijana Glavina; Barry, Kerrie; Detter, John C; Hammon, Nancy; Israni, Sanjay; Pitluck, Sam; Brettin, Thomas; Bruce, David; Han, Cliff; Tapia, Roxanne; Gilna, Paul; Schmutz, Jeremy; Larimer, Frank; Land, Miriam; Kyrpides, Nikos C; Mavromatis, Konstantinos; Richardson, Paul; Rohde, Manfred; Göker, Markus; Klenk, Hans-Peter; Zhang, Yaoping; Roberts, Gary P; Reslewic, Susan; Schwartz, David C

    2011-07-01

    Rhodospirillum rubrum (Esmarch 1887) Molisch 1907 is the type species of the genus Rhodospirillum, which is the type genus of the family Rhodospirillaceae in the class Alphaproteobacteria. The species is of special interest because it is an anoxygenic phototroph that produces extracellular elemental sulfur (instead of oxygen) while harvesting light. It contains one of the most simple photosynthetic systems currently known, lacking light harvesting complex 2. Strain S1(T) can grow on carbon monoxide as sole energy source. With currently over 1,750 PubMed entries, R. rubrum is one of the most intensively studied microbial species, in particular for physiological and genetic studies. Next to R. centenum strain SW, the genome sequence of strain S1(T) is only the second genome of a member of the genus Rhodospirillum to be published, but the first type strain genome from the genus. The 4,352,825 bp long chromosome and 53,732 bp plasmid with a total of 3,850 protein-coding and 83 RNA genes were sequenced as part of the DOE Joint Genome Institute Program DOEM 2002.

  2. Complete Genomic Sequence of Bacteriophage Felix O1

    Directory of Open Access Journals (Sweden)

    Andrew M. Kropinski

    2010-03-01

    Full Text Available Bacteriophage O1 is a Myoviridae A1 group member used historically for identifying Salmonella. Sequencing revealed a single, linear, 86,155-base-pair genome with 39% average G+C content, 131 open reading frames, and 22 tRNAs. Closest protein homologs occur in Erwinia amylovora phage φEa21-4 and Escherichia coli phage wV8. Proteomic analysis indentified structural proteins: Gp23, Gp36 (major tail protein, Gp49, Gp53, Gp54, Gp55, Gp57, Gp58 (major capsid protein, Gp59, Gp63, Gp64, Gp67, Gp68, Gp69, Gp73, Gp74 and Gp77 (tail fiber. Based on phage-host codon differences, 7 tRNAs could affect translation rate during infection. Introns, holin-lysin cassettes, bacterial toxin homologs and host RNA polymerase-modifying genes were absent.

  3. Genome sequence of the brown Norway rat yields insights into mammalian evolution

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Richard A.; Weinstock, George M.; Metzker, Michael L.; Muzny, Donna M.; Sodergren, Erica J.; Scherer, Steven; Scott, Graham; Steffen, David; Worley, Kim C.; Burch, Paula E.; Okwuonu, Geoffrey; Hines, Sandra; Lewis, Lora; DeRamo, Christine; Delgado, Oliver; Dugan-Rocha, Shannon; Miner, George; Morgan, Margaret; Hawes, Alicia; Gill, Rachel; Holt, Robert A.; Adams, Mark D.; Amanatides, Peter G.; Baden-Tillson, Holly; Barnstead, Mary; Chin, Soo; Evans, Cheryl A.; Ferriera, Steven; Fosler, Carl; Glodek, Anna; Gu, Zhiping; Jennings, Don; Kraft, Cheryl L.; Nguyen, Trixie; Pfannkoch, Cynthia M.; Sitter, Cynthia; Sutton, Granger G.; Venter, J. Craig; Woodage, Trevor; Smith, Douglas; Lee, Hong-Maei; Gustafson, Erik; Cahill, Patrick; Kana, Arnold; Doucette-Stamm, Lynn; Weinstock, Keith; Fechtel, Kim; Weiss, Robert B.; Dunn, Diane M.; Green, Eric D.; Blakesley, Robert W.; Bouffard, Gerard G.; de Jong, Pieter J.; Osoegawa, Kazutoyo; Zhu, Baoli; Marra, Marco; Schein, Jacqueline; Bosdet, Ian; Fjell, Chris; Jones, Steven; Krzywinski, Martin; Mathewson, Carrie; Siddiqui, Asim; Wye, Natasja; McPherson, John; Zhao, Shaying; Fraser, Claire M.; Shetty, Jyoti; Shatsman, Sofiya; Geer, Keita; Chen, Yixin; Abramzon, Sofyia; Nierman, William C.; Havlak, Paul H.; Chen, Rui; Durbin, K. James; Egan, Amy; Ren, Yanru; Song, Xing-Zhi; Li, Bingshan; Liu, Yue; Qin, Xiang; Cawley, Simon; Cooney, A.J.; D' Souza, Lisa M.; Martin, Kirt; Wu, Jia Qian; Gonzalez-Garay, Manuel L.; Jackson, Andrew R.; Kalafus, Kenneth J.; McLeod, Michael P.; Milosavljevic, Aleksandar; Virk, Davinder; Volkov, Andrei; Wheeler, David A.; Zhang, Zhengdong; Bailey, Jeffrey A.; Eichler, Evan E.; Tuzun, Eray; Birney, Ewan; Mongin, Emmanuel; Ureta-Vidal, Abel; Woodwark, Cara; Zdobnov, Evgeny; Bork, Peer; Suyama, Mikita; Torrents, David; Alexandersson, Marina; Trask, Barbara J.; Young, Janet M.; et al.

    2004-02-02

    The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90 percent of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.

  4. Two genome sequences of the same bacterial strain, Gluconacetobacter diazotrophicus PAl 5, suggest a new standard in genome sequence submission.

    Science.gov (United States)

    Giongo, Adriana; Tyler, Heather L; Zipperer, Ursula N; Triplett, Eric W

    2010-06-15

    Gluconacetobacter diazotrophicus PAl 5 is of agricultural significance due to its ability to provide fixed nitrogen to plants. Consequently, its genome sequence has been eagerly anticipated to enhance understanding of endophytic nitrogen fixation. Two groups have sequenced the PAl 5 genome from the same source (ATCC 49037), though the resulting sequences contain a surprisingly high number of differences. Therefore, an optical map of PAl 5 was constructed in order to determine which genome assembly more closely resembles the chromosomal DNA by aligning each sequence against a physical map of the genome. While one sequence aligned very well, over 98% of the second sequence contained numerous rearrangements. The many differences observed between these two genome sequences could be owing to either assembly errors or rapid evolutionary divergence. The extent of the differences derived from sequence assembly errors could be assessed if the raw sequencing reads were provided by both genome centers at the time of genome sequence submission. Hence, a new genome sequence standard is proposed whereby the investigator supplies the raw reads along with the closed sequence so that the community can make more accurate judgments on whether differences observed in a single stain may be of biological origin or are simply caused by differences in genome assembly procedures.

  5. Genome Sequence of Stachybotrys chartarum Strain 51-11

    OpenAIRE

    Betancourt, Doris A.; Dean, Timothy R.; Kim, Jean; Levy, Josh

    2015-01-01

    The Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina HiSeq 2000 and PacBio technologies. Since S. chartarum has been implicated as having health impacts within water-damaged buildings, any information extracted from the genomic sequence data relating to toxins or the metabolism of the fungus might be useful.

  6. Complete Genome Sequence of Rift Valley Fever Virus Strain Lunyo.

    Science.gov (United States)

    Lumley, Sarah; Horton, Daniel L; Marston, Denise A; Johnson, Nicholas; Ellis, Richard J; Fooks, Anthony R; Hewson, Roger

    2016-04-14

    Using next-generation sequencing technologies, the first complete genome sequence of Rift Valley fever virus strain Lunyo is reported here. Originally reported as an attenuated antigenic variant strain from Uganda, genomic sequence analysis shows that Lunyo clusters together with other Ugandan isolates.

  7. Genome sequence and genetic diversity of European ash trees.

    Science.gov (United States)

    Sollars, Elizabeth S A; Harper, Andrea L; Kelly, Laura J; Sambles, Christine M; Ramirez-Gonzalez, Ricardo H; Swarbreck, David; Kaithakottil, Gemy; Cooper, Endymion D; Uauy, Cristobal; Havlickova, Lenka; Worswick, Gemma; Studholme, David J; Zohren, Jasmin; Salmon, Deborah L; Clavijo, Bernardo J; Li, Yi; He, Zhesi; Fellgett, Alison; McKinney, Lea Vig; Nielsen, Lene Rostgaard; Douglas, Gerry C; Kjær, Erik Dahl; Downie, J Allan; Boshier, David; Lee, Steve; Clark, Jo; Grant, Murray; Bancroft, Ian; Caccamo, Mario; Buggs, Richard J A

    2017-01-12

    Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British populations suggest that reduced susceptibility to ash dieback may be more widespread in Great Britain than in Denmark. We also present evidence that susceptibility of trees to H. fraxineus is associated with their iridoid glycoside levels. This rapid, integrated, multidisciplinary research response to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic.

  8. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome.

    Science.gov (United States)

    Ley, Timothy J; Mardis, Elaine R; Ding, Li; Fulton, Bob; McLellan, Michael D; Chen, Ken; Dooling, David; Dunford-Shore, Brian H; McGrath, Sean; Hickenbotham, Matthew; Cook, Lisa; Abbott, Rachel; Larson, David E; Koboldt, Dan C; Pohl, Craig; Smith, Scott; Hawkins, Amy; Abbott, Scott; Locke, Devin; Hillier, Ladeana W; Miner, Tracie; Fulton, Lucinda; Magrini, Vincent; Wylie, Todd; Glasscock, Jarret; Conyers, Joshua; Sander, Nathan; Shi, Xiaoqi; Osborne, John R; Minx, Patrick; Gordon, David; Chinwalla, Asif; Zhao, Yu; Ries, Rhonda E; Payton, Jacqueline E; Westervelt, Peter; Tomasson, Michael H; Watson, Mark; Baty, Jack; Ivanovich, Jennifer; Heath, Sharon; Shannon, William D; Nagarajan, Rakesh; Walter, Matthew J; Link, Daniel C; Graubert, Timothy A; DiPersio, John F; Wilson, Richard K

    2008-11-06

    Acute myeloid leukaemia is a highly malignant haematopoietic tumour that affects about 13,000 adults in the United States each year. The treatment of this disease has changed little in the past two decades, because most of the genetic events that initiate the disease remain undiscovered. Whole-genome sequencing is now possible at a reasonable cost and timeframe to use this approach for the unbiased discovery of tumour-specific somatic mutations that alter the protein-coding genes. Here we present the results obtained from sequencing a typical acute myeloid leukaemia genome, and its matched normal counterpart obtained from the same patient's skin. We discovered ten genes with acquired mutations; two were previously described mutations that are thought to contribute to tumour progression, and eight were new mutations present in virtually all tumour cells at presentation and relapse, the function of which is not yet known. Our study establishes whole-genome sequencing as an unbiased method for discovering cancer-initiating mutations in previously unidentified genes that may respond to targeted therapies.

  9. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis

    DEFF Research Database (Denmark)

    Carlton, Jane M.; Hirt, Robert P.; Silva, Joana C.

    2007-01-01

    We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion...

  10. Simple sequence proteins in prokaryotic proteomes

    Directory of Open Access Journals (Sweden)

    Ramachandran Srinivasan

    2006-06-01

    Full Text Available Abstract Background The structural and functional features associated with Simple Sequence Proteins (SSPs are non-globularity, disease states, signaling and post-translational modification. SSPs are also an important source of genetic and possibly phenotypic variation. Analysis of 249 prokaryotic proteomes offers a new opportunity to examine the genomic properties of SSPs. Results SSPs are a minority but they grow with proteome size. This relationship is exhibited across species varying in genomic GC, mutational bias, life style, and pathogenicity. Their proportion in each proteome is strongly influenced by genomic base compositional bias. In most species simple duplications is favoured, but in a few cases such as Mycobacteria, large families of duplications occur. Amino acid preference in SSPs exhibits a trend towards low cost of biosynthesis. In SSPs and in non-SSPs, Alanine, Glycine, Leucine, and Valine are abundant in species widely varying in genomic GC whereas Isoleucine and Lysine are rich only in organisms with low genomic GC. Arginine is abundant in SSPs of two species and in the non-SSPs of Xanthomonas oryzae. Asparagine is abundant only in SSPs of low GC species. Aspartic acid is abundant only in the non-SSPs of Halobacterium sp NRC1. The abundance of Serine in SSPs of 62 species extends over a broader range compared to that of non-SSPs. Threonine(T is abundant only in SSPs of a couple of species. SSPs exhibit preferential association with Cell surface, Cell membrane and Transport functions and a negative association with Metabolism. Mesophiles and Thermophiles display similar ranges in the content of SSPs. Conclusion Although SSPs are a minority, the genomic forces of base compositional bias and duplications influence their growth and pattern in each species. The preferences and abundance of amino acids are governed by low biosynthetic cost, evolutionary age and base composition of codons. Abundance of charged amino acids Arginine

  11. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.

    Science.gov (United States)

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M; Murphy, Robert W; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-03-17

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies.

  12. Coevolution between simple sequence repeats (SSRs and virus genome size

    Directory of Open Access Journals (Sweden)

    Zhao Xiangyan

    2012-08-01

    Full Text Available Abstract Background Relationship between the level of repetitiveness in genomic sequence and genome size has been investigated by making use of complete prokaryotic and eukaryotic genomes, but relevant studies have been rarely made in virus genomes. Results In this study, a total of 257 viruses were examined, which cover 90% of genera. The results showed that simple sequence repeats (SSRs is strongly, positively and significantly correlated with genome size. Certain repeat class is distributed in a certain range of genome sequence length. Mono-, di- and tri- repeats are widely distributed in all virus genomes, tetra- SSRs as a common component consist in genomes which more than 100 kb in size; in the range of genome  Conclusions We conducted this research standing on the height of the whole virus. We concluded that genome size is an important factor in affecting the occurrence of SSRs; hosts are also responsible for the variances of SSRs content to a certain degree.

  13. Draft Genome Sequences of Klebsiella variicola Plant Isolates.

    Science.gov (United States)

    Martínez-Romero, Esperanza; Silva-Sanchez, Jesús; Barrios, Humberto; Rodríguez-Medina, Nadia; Martínez-Barnetche, Jesús; Téllez-Sosa, Juan; Gómez-Barreto, Rosa Elena; Garza-Ramos, Ulises

    2015-09-10

    Three endophytic Klebsiella variicola isolates-T29A, 3, and 6A2, obtained from sugar cane stem, maize shoots, and banana leaves, respectively-were used for whole-genome sequencing. Here, we report the draft genome sequences of circular chromosomes and plasmids. The genomes contain plant colonization and cellulases genes. This study will help toward understanding the genomic basis of K. variicola interaction with plant hosts.

  14. Next-generation sequencing strategies for characterizing the turkey genome.

    Science.gov (United States)

    Dalloul, Rami A; Zimin, Aleksey V; Settlage, Robert E; Kim, Sungwon; Reed, Kent M

    2014-02-01

    The turkey genome sequencing project was initiated in 2008 and has relied primarily on next-generation sequencing (NGS) technologies. Our first efforts used a synergistic combination of 2 NGS platforms (Roche/454 and Illumina GAII), detailed bacterial artificial chromosome (BAC) maps, and unique assembly tools to sequence and assemble the genome of the domesticated turkey, Meleagris gallopavo. Since the first release in 2010, efforts to improve the genome assembly, gene annotation, and genomic analyses continue. The initial assembly build (2.01) represented about 89% of the genome sequence with 17X coverage depth (931 Mb). Sequence contigs were assigned to 30 of the 40 chromosomes with approximately 10% of the assembled sequence corresponding to unassigned chromosomes (ChrUn). The sequence has been refined through both genome-wide and area-focused sequencing, including shotgun and paired-end sequencing, and targeted sequencing of chromosomal regions with low or incomplete coverage. These additional efforts have improved the sequence assembly resulting in 2 subsequent genome builds of higher genome coverage (25X/Build3.0 and 30X/Build4.0) with a current sequence totaling 1,010 Mb. Further, BAC with end sequences assigned to the Z/W and MG18 (MHC) chromosomes, ChrUn, or not placed in the previous build were isolated, deeply sequenced (Hi-Seq), and incorporated into the latest build (5.0). To aid in the annotation and to generate a gene expression atlas of major tissues, a comprehensive set of RNA samples was collected at various developmental stages of female and male turkeys. Transcriptome sequencing data (using Illumina Hi-Seq) will provide information to enhance the final assembly and ultimately improve sequence annotation. The most current sequence covers more than 95% of the turkey genome and should yield a much improved gene level of annotation, making it a valuable resource for studying genetic variations underlying economically important traits in poultry.

  15. Reconstructing cancer genomes from paired-end sequencing data

    Directory of Open Access Journals (Sweden)

    Oesper Layla

    2012-04-01

    Full Text Available Abstract Background A cancer genome is derived from the germline genome through a series of somatic mutations. Somatic structural variants - including duplications, deletions, inversions, translocations, and other rearrangements - result in a cancer genome that is a scrambling of intervals, or "blocks" of the germline genome sequence. We present an efficient algorithm for reconstructing the block organization of a cancer genome from paired-end DNA sequencing data. Results By aligning paired reads from a cancer genome - and a matched germline genome, if available - to the human reference genome, we derive: (i a partition of the reference genome into intervals; (ii adjacencies between these intervals in the cancer genome; (iii an estimated copy number for each interval. We formulate the Copy Number and Adjacency Genome Reconstruction Problem of determining the cancer genome as a sequence of the derived intervals that is consistent with the measured adjacencies and copy numbers. We design an efficient algorithm, called Paired-end Reconstruction of Genome Organization (PREGO, to solve this problem by reducing it to an optimization problem on an interval-adjacency graph constructed from the data. The solution to the optimization problem results in an Eulerian graph, containing an alternating Eulerian tour that corresponds to a cancer genome that is consistent with the sequencing data. We apply our algorithm to five ovarian cancer genomes that were sequenced as part of The Cancer Genome Atlas. We identify numerous rearrangements, or structural variants, in these genomes, analyze reciprocal vs. non-reciprocal rearrangements, and identify rearrangements consistent with known mechanisms of duplication such as tandem duplications and breakage/fusion/bridge (B/F/B cycles. Conclusions We demonstrate that PREGO efficiently identifies complex and biologically relevant rearrangements in cancer genome sequencing data. An implementation of the PREGO algorithm is

  16. An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences.

    Directory of Open Access Journals (Sweden)

    Joshua E Turse

    Full Text Available Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300-500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella.

  17. An Empirical Strategy for Characterizing Bacterial Proteomes across Species in the Absence of Genomic Sequences

    Science.gov (United States)

    Turse, Joshua E.; Marshall, Matthew J.; Fredrickson, James K.; Lipton, Mary S.; Callister, Stephen J.

    2010-01-01

    Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300–500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella. PMID:21103051

  18. Next-generation sequencing and large genome assemblies

    OpenAIRE

    Henson, Joseph; Tischler, German; Ning, Zemin

    2012-01-01

    The next-generation sequencing (NGS) revolution has drastically reduced time and cost requirements for sequencing of large genomes, and also qualitatively changed the problem of assembly. This article reviews the state of the art in de novo genome assembly, paying particular attention to mammalian-sized genomes. The strengths and weaknesses of the main sequencing platforms are highlighted, leading to a discussion of assembly and the new challenges associated with NGS data. Current approaches ...

  19. Genome sequencing and annotation of Morganella sp. SA36

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Morganella sp. Strain SA36, isolated from water spring in Aljouf region, Saudi Arabia. The draft genome size is 2,564,439 bp with a G + C content of 51.1% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDNQ00000000.

  20. Genome sequencing and annotation of Stenotrophomonas sp. SAM8

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Stenotrophomonas sp. strain SAM8, isolated from environmental water. The draft genome size is 3,665,538 bp with a G + C content of 67.2% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDAV00000000.

  1. Genome sequencing and annotation of Proteus sp. SAS71

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Proteus sp. strain SAS71, isolated from water spring in Aljouf region, Saudi Arabia. The draft genome size is 3,037,704 bp with a G + C content of 39.3% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDIU00000000.

  2. Complete Genome Sequence of Corynebacterium pseudotuberculosis Viscerotropic Strain N1

    Science.gov (United States)

    Portela, Ricardo W.; Sousa, Thiago J.; Rocha, Flávia; Pereira, Felipe L.; Dorella, Fernanda A.; Carvalho, Alex F.; Menezes, Nildo; Macedo, Eduardo S.; Moura-Costa, Lilia F.; Meyer, Roberto; Leal, Carlos A. G.; Figueiredo, Henrique C.; Azevedo, Vasco

    2016-01-01

    We present the complete genome sequence of Corynebacterium pseudotuberculosis strain N1. The sequencing was performed with the Ion Torrent Personal Genome Machine system. The genome is a circular chromosome with 2,337,845 bp, a G+C content of 52.85%, and a total of 2,045 coding sequences, 12 rRNAs, 49 tRNAs, and 58 pseudogenes. PMID:26823597

  3. Insights from 20 years of bacterial genome sequencing

    DEFF Research Database (Denmark)

    Land, Miriam; Hauser, Loren; Jun, Se-Ran

    2015-01-01

    the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative...... (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident...

  4. Annotation of the protein coding regions of the equine genome

    DEFF Research Database (Denmark)

    Hestand, Matthew S.; Kalbfleisch, Theodore S.; Coleman, Stephen J.

    2015-01-01

    Current gene annotation of the horse genome is largely derived from in silico predictions and cross-species alignments. Only a small number of genes are annotated based on equine EST and mRNA sequences. To expand the number of equine genes annotated from equine experimental evidence, we sequenced m...... and appear to be small errors in the equine reference genome, since they are also identified as homozygous variants by genomic DNA resequencing of the reference horse. Taken together, we provide a resource of equine mRNA structures and protein coding variants that will enhance equine and cross...

  5. The complete genome sequence of shope (rabbit) fibroma virus.

    Science.gov (United States)

    Willer, D O; McFadden, G; Evans, D H

    1999-11-25

    We have determined the complete DNA sequence of the Leporipoxvirus Shope fibroma virus (SFV). The SFV genome spans 159.8 kb and encodes 165 putative genes of which 13 are duplicated in the 12.4-kb terminal inverted repeats. Although most SFV genes have homologs encoded by other Chordopoxvirinae, the SFV genome lacks a key gene required for the production of extracellular enveloped virus. SFV also encodes only the smaller ribonucleotide reductase subunit and has a limited nucleotide biosynthetic capacity. SFV preserves the Chordopoxvirinae gene order from S012L near the left end of the chromosome through to S142R (homologs of vaccinia F2L and B1R, respectively). The unique right end of SFV appears to be genetically unstable because when the sequence is compared with that of myxoma virus, five myxoma homologs have been deleted (C. Cameron, S. Hota-Mitchell, L. Chen, J. Barrett, J.-X. Cao, C. Macaulay, D. Willer, D. Evans, and G. McFadden, 1999, Virology 264, 298-318). Most other differences between these two Leporipoxviruses are located in the telomeres. Leporipoxviruses encode several genes not found in other poxviruses including four small hydrophobic proteins of unknown function (S023R, S119L, S125R, and S132L), an alpha 2, 3-sialyltransferase (S143R), a protein belonging to the Ig-like protein superfamily (S141R), and a protein resembling the DNA-binding domain of proteins belonging to the HIN-200 protein family S013L). SFV also encodes a type II DNA photolyase (S127L). Melanoplus sanguinipes entomopoxvirus encodes a similar protein, but SFV is the first mammalian virus potentially capable of photoreactivating ultraviolet DNA damage.

  6. The zebrafish reference genome sequence and its relationship to the human genome.

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  7. The zebrafish reference genome sequence and its relationship to the human genome

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  8. Repetitive genomic sequences as a substrate for homologous integration in the Rhizopus oryzae genome.

    Science.gov (United States)

    Yuzbashev, Tigran V; Larina, Anna S; Vybornaya, Tatiana V; Yuzbasheva, Evgeniya Y; Gvilava, Ilia T; Sineoky, Sergey P

    2015-06-01

    The vast number of repetitive genomic elements was identified in the genome of Rhizopus oryzae. Such genomic repeats can be used as homologous regions for integration of plasmids. Here, we evaluated the use of two different repeats: the short (575 bp) rptZ, widely distributed (about 34 copies per genome) and the long (2053 bp) rptH, less prevalent (about 15 copies). The plasmid carrying rptZ integrated, but did so through a 2256-bp region of homology to the pyrG locus, a unique genomic sequence. Thus, the length of rptZ was below the minimal requirements for homologous strand exchange in this fungus. In contrast, rptH was used efficiently for homologous integration. The plasmid bearing this repeat integrated in multicopy fashion, with up to 25 copies arranged in tandem. The latter vector, pPyrG-H, could be a valuable tool for integration at homologous sequences, for such purposes as high-level expression of proteins. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Deciphering the biology of Mycobacterium tuberculosis from thecomplete genome sequence

    DEFF Research Database (Denmark)

    Cole, S.T.; Krogh, Anders Stærmose

    1998-01-01

    Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding....... tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation....

  10. [The Mycobacterium leprae genome: from sequence analysis to therapeutic implications].

    Science.gov (United States)

    Honore, N

    2002-01-01

    The genome of Mycobacterium leprae, the causative agent of leprosy, was analyzed by rapid sequencing of cosmids and plasmids prepared from DNA isolated from one patient's strain. Results showed that the bacillus possesses a single circular chromosome that differs from other known mycobacterium chromosomes with regard to size (3.2 Mb) and G + C content (57.8%). Computer analysis demonstrated that only half of the sequence contains protein-coding genes. The other half contains pseudogenes and non-coding sequences. These findings indicate that M. leprae has undergone a major reductive evolution leaving a minimal set of functional genes for survival. Study of the coding region of the sequence provides evidence accounting for the particular pathogenic properties of M. leprae which is an obligate intracellular parasite. Disappearance of numerous enzymatic pathways in comparison with M. tuberculosis, an intracellular pathogen comparable to M. leprae, could explain the differences observed between the two organisms. Genomic analysis of the leprosy bacillus also provided insight into the molecular basis for resistance to various antibiotics and allowed identification of several potential targets for new drug treatments.

  11. Genome Sequence of the Thermotolerant Foodborne Pathogen Salmonella enterica Serovar Senftenberg ATCC 43845 and Phylogenetic Analysis of Loci Encoding Increased Protein Quality Control Mechanisms

    Science.gov (United States)

    Nguyen, Scott V.; Harhay, Gregory P.; Bono, James L.; Smith, Timothy P. L.

    2017-01-01

    ABSTRACT Salmonella enterica subsp. enterica bacteria are important foodborne pathogens with major economic impact. Some isolates exhibit increased heat tolerance, a concern for food safety. Analysis of a finished-quality genome sequence of an isolate commonly used in heat resistance studies, S. enterica subsp. enterica serovar Senftenberg 775W (ATCC 43845), demonstrated an interesting observation that this strain contains not just one, but two horizontally acquired thermotolerance locus homologs. These two loci reside on a large 341.3-kbp plasmid that is similar to the well-studied IncHI2 R478 plasmid but lacks any antibiotic resistance genes found on R478 or other IncHI2 plasmids. As this historical Salmonella isolate has been in use since 1941, comparative analysis of the plasmid and of the thermotolerance loci contained on the plasmid will provide insight into the evolution of heat resistance loci as well as acquisition of resistance determinants in IncHI2 plasmids. IMPORTANCE Thermal interventions are commonly used in the food industry as a means of mitigating pathogen contamination in food products. Concern over heat-resistant food contaminants has recently increased, with the identification of a conserved locus shown to confer heat resistance in disparate lineages of Gram-negative bacteria. Complete sequence analysis of a historical isolate of Salmonella enterica serovar Senftenberg, used in numerous studies because of its novel heat resistance, revealed that this important strain possesses two distinct copies of this conserved thermotolerance locus, residing on a multireplicon IncHI2/IncHI2A plasmid. Phylogenetic analysis of these loci in comparison with homologs identified in various bacterial genera provides an opportunity to examine the evolution and distribution of loci conferring resistance to environmental stressors, such as heat and desiccation. PMID:28293682

  12. The nucleotide sequence and genome organization of Plasmopara halstedii virus

    Directory of Open Access Journals (Sweden)

    Göpfert Jens C

    2011-03-01

    Full Text Available Abstract Background Only very few viruses of Oomycetes have been studied in detail. Isometric virions were found in different isolates of the oomycete Plasmopara halstedii, the downy mildew pathogen of sunflower. However, complete nucleotide sequences and data on the genome organization were lacking. Methods Viral RNA of different P. halstedii isolates was subjected to nucleotide sequencing and analysis of the viral genome. The N-terminal sequence of the viral coat protein was determined using Top-Down MALDI-TOF analysis. Results The complete nucleotide sequences of both single-stranded RNA segments (RNA1 and RNA2 were established. RNA1 consisted of 2793 nucleotides (nt exclusive its 3' poly(A tract and a single open-reading frame (ORF1 of 2745 nt. ORF1 was framed by a 5' untranslated region (5' UTR of 18 nt and a 3' untranslated region (3' UTR of 30 nt. ORF1 contained motifs of RNA-dependent RNA polymerases (RdRp and showed similarities to RdRp of Scleropthora macrospora virus A (SmV A and viruses within the Nodaviridae family. RNA2 consisted of 1526 nt exclusive its 3' poly(A tract and a second ORF (ORF2 of 1128 nt. ORF2 coded for the single viral coat protein (CP and was framed by a 5' UTR of 164 nt and a 3' UTR of 234 nt. The deduced amino acid sequence of ORF2 was verified by nano-LC-ESI-MS/MS experiments. Top-Down MALDI-TOF analysis revealed the N-terminal sequence of the CP. The N-terminal sequence represented a region within ORF2 suggesting a proteolytic processing of the CP in vivo. The CP showed similarities to CP of SmV A and viruses within the Tombusviridae family. Fragments of RNA1 (ca. 1.9 kb and RNA2 (ca. 1.4 kb were used to analyze the nucleotide sequence variation of virions in different P. halstedii isolates. Viral sequence variation was 0.3% or less regardless of their host's pathotypes, the geographical origin and the sensitivity towards the fungicide metalaxyl. Conclusions The results showed the presence of a single and new

  13. The nucleotide sequence and genome organization of Plasmopara halstedii virus

    Science.gov (United States)

    2011-01-01

    Background Only very few viruses of Oomycetes have been studied in detail. Isometric virions were found in different isolates of the oomycete Plasmopara halstedii, the downy mildew pathogen of sunflower. However, complete nucleotide sequences and data on the genome organization were lacking. Methods Viral RNA of different P. halstedii isolates was subjected to nucleotide sequencing and analysis of the viral genome. The N-terminal sequence of the viral coat protein was determined using Top-Down MALDI-TOF analysis. Results The complete nucleotide sequences of both single-stranded RNA segments (RNA1 and RNA2) were established. RNA1 consisted of 2793 nucleotides (nt) exclusive its 3' poly(A) tract and a single open-reading frame (ORF1) of 2745 nt. ORF1 was framed by a 5' untranslated region (5' UTR) of 18 nt and a 3' untranslated region (3' UTR) of 30 nt. ORF1 contained motifs of RNA-dependent RNA polymerases (RdRp) and showed similarities to RdRp of Scleropthora macrospora virus A (SmV A) and viruses within the Nodaviridae family. RNA2 consisted of 1526 nt exclusive its 3' poly(A) tract and a second ORF (ORF2) of 1128 nt. ORF2 coded for the single viral coat protein (CP) and was framed by a 5' UTR of 164 nt and a 3' UTR of 234 nt. The deduced amino acid sequence of ORF2 was verified by nano-LC-ESI-MS/MS experiments. Top-Down MALDI-TOF analysis revealed the N-terminal sequence of the CP. The N-terminal sequence represented a region within ORF2 suggesting a proteolytic processing of the CP in vivo. The CP showed similarities to CP of SmV A and viruses within the Tombusviridae family. Fragments of RNA1 (ca. 1.9 kb) and RNA2 (ca. 1.4 kb) were used to analyze the nucleotide sequence variation of virions in different P. halstedii isolates. Viral sequence variation was 0.3% or less regardless of their host's pathotypes, the geographical origin and the sensitivity towards the fungicide metalaxyl. Conclusions The results showed the presence of a single and new virus type in

  14. A taste of pineapple evolution through genome sequencing.

    Science.gov (United States)

    Xu, Qing; Liu, Zhong-Jian

    2015-12-01

    The genome sequence assembly of the highly heterozygous Ananas comosus and its varieties is an impressive technical achievement. The sequence opens the door to a greater understanding of pineapple morphology and evolution.

  15. Improving accuracy of protein-protein interaction prediction by considering the converse problem for sequence representation

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2011-10-01

    Full Text Available Abstract Background With the development of genome-sequencing technologies, protein sequences are readily obtained by translating the measured mRNAs. Therefore predicting protein-protein interactions from the sequences is of great demand. The reason lies in the fact that identifying protein-protein interactions is becoming a bottleneck for eventually understanding the functions of proteins, especially for those organisms barely characterized. Although a few methods have been proposed, the converse problem, if the features used extract sufficient and unbiased information from protein sequences, is almost untouched. Results In this study, we interrogate this problem theoretically by an optimization scheme. Motivated by the theoretical investigation, we find novel encoding methods for both protein sequences and protein pairs. Our new methods exploit sufficiently the information of protein sequences and reduce artificial bias and computational cost. Thus, it significantly outperforms the available methods regarding sensitivity, specificity, precision, and recall with cross-validation evaluation and reaches ~80% and ~90% accuracy in Escherichia coli and Saccharomyces cerevisiae respectively. Our findings here hold important implication for other sequence-based prediction tasks because representation of biological sequence is always the first step in computational biology. Conclusions By considering the converse problem, we propose new representation methods for both protein sequences and protein pairs. The results show that our method significantly improves the accuracy of protein-protein interaction predictions.

  16. A Snapshot of the Emerging Tomato Genome Sequence

    Directory of Open Access Journals (Sweden)

    Lukas A. Mueller

    2009-03-01

    Full Text Available The genome of tomato ( L. is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy, and the United States as part of the larger “International Solanaceae Genome Project (SOL: Systems Approach to Diversity and Adaptation” initiative. The tomato genome sequencing project uses an ordered bacterial artificial chromosome (BAC approach to generate a high-quality tomato euchromatic genome sequence for use as a reference genome for the Solanaceae and euasterids. Sequence is deposited at GenBank and at the SOL Genomics Network (SGN. Currently, there are around 1000 BACs finished or in progress, representing more than a third of the projected euchromatic portion of the genome. An annotation effort is also underway by the International Tomato Annotation Group. The expected number of genes in the euchromatin is ∼40,000, based on an estimate from a preliminary annotation of 11% of finished sequence. Here, we present this first snapshot of the emerging tomato genome and its annotation, a short comparison with potato ( L. sequence data, and the tools available for the researchers to exploit this new resource are also presented. In the future, whole-genome shotgun techniques will be combined with the BAC-by-BAC approach to cover the entire tomato genome. The high-quality reference euchromatic tomato sequence is expected to be near completion by 2010.

  17. Whole-Genome Sequence Assembly for Mammalian Genomes: Arachne 2

    OpenAIRE

    Jaffe, David B.; Butler, Jonathan; Gnerre, Sante; Mauceli, Evan; Lindblad-Toh, Kerstin; Jill P. Mesirov; Michael C Zody; Lander, Eric S.

    2003-01-01

    We previously described the whole-genome assembly program Arachne, presenting assemblies of simulated data for small to mid-sized genomes. Here we describe algorithmic adaptations to the program, allowing for assembly of mammalian-size genomes, and also improving the assembly of smaller genomes. Three principal changes were simultaneously made and applied to the assembly of the mouse genome, during a six-month period of development: (1) Supercontigs (scaffolds) were iteratively broken and rej...

  18. Draft Genome Sequence of Streptomyces specialis Type Strain GW41-1564 (DSM 41924)

    Science.gov (United States)

    Loucif, Lotfi; Michelle, Caroline; Terras, Jérôme; Rolain, Jean-Marc; Raoult, Didier

    2017-01-01

    ABSTRACT Here, we report the draft genome sequence of Streptomyces specialis type strain GW41-1564, which was isolated from soil. This 5.87-Mb genome exhibits a high G+C content of 72.72% and contains 5,486 protein-coding genes. PMID:28360168

  19. Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium

    KAUST Repository

    Katuri, Krishna

    2017-03-03

    Here, we report the draft genome sequence of Desulfuromonas acetexigens strain 2873, which was originally isolated from digester sludge from a sewage treatment plant in Germany. This bacterium is capable of anode respiration with high electrochemical activity in microbial electrochemical systems. The draft genome contains 3,376 predicted protein-coding genes and putative multiheme c-type cytochromes.

  20. Genome Sequence of the Mycorrhiza Helper Bacterium Streptomyces sp. Strain AcH 505.

    Science.gov (United States)

    Tarkka, M T; Feldhahn, L; Buscot, F; Wubet, T

    2015-04-02

    A draft genome sequence of Streptomyces sp. strain AcH 505 is presented here. The genome encodes 22 secondary metabolite gene clusters and a large arsenal of secreted proteins, and their comparative and functional analyses will help to advance our knowledge of symbiotic interactions and fungal and plant biomass degradation.

  1. Complete Genome Sequence of Bacillus thuringiensis Serovar Tolworthi Strain Pasteur Institute Standard

    Science.gov (United States)

    Kanda, Kohzo; Nakashima, Kaede

    2015-01-01

    The genome sequence of Bacillus thuringiensis serovar tolworthi strain Pasteur Institute Standard was determined. The genome consists of a 5.9-Mb chromosome and eight plasmids, one of which is linear. The second largest plasmid (293 kb) carries the genes encoding insecticidal proteins. PMID:26139717

  2. Bayesian prediction of bacterial growth temperature range based on genome sequences

    DEFF Research Database (Denmark)

    Jensen, Dan Børge; Vesth, Tammi Camilla; Hallin, Peter Fischer

    2012-01-01

    on a genomic sequence, would thus allow for an efficient and targeted search for production organisms, reducing the need for culturing experiments. Results: This study found a total of 40 protein families useful for distinction between three thermophilicity classes (thermophiles, mesophiles and psychrophiles...... and psychrophilic adapted bacterial genomes....

  3. Insights from twenty years of bacterial genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jun, Se Ran [ORNL; Nookaew, Intawat [ORNL; Leuze, Michael Rex [ORNL; Ahn, Tae-Hyuk [ORNL; Karpinets, Tatiana V [ORNL; Lund, Ole [Technical University of Denmark; Kora, Guruprasad H [ORNL; Wassenaar, Trudy [Molecular Microbiology & Genomics Consultants, Zotzenheim, Germany; Poudel, Suresh [ORNL; Ussery, David W [ORNL

    2015-01-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome

  4. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.

    Science.gov (United States)

    Qian, Jun; Song, Jingyuan; Gao, Huanhuan; Zhu, Yingjie; Xu, Jiang; Pang, Xiaohui; Yao, Hui; Sun, Chao; Li, Xian'en; Li, Chuyuan; Liu, Juyan; Xu, Haibin; Chen, Shilin

    2013-01-01

    Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.

  5. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.

    Directory of Open Access Journals (Sweden)

    Jun Qian

    Full Text Available Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp and small (SSC, 17,555 bp single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp. It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.

  6. Genome-Wide Association Study of HIV Whole Genome Sequences Validated using Drug Resistance

    Science.gov (United States)

    Power, Robert A.; Davaniah, Siva; Derache, Anne; Wilkinson, Eduan; Tanser, Frank; Pillay, Deenan; de Oliveira, Tulio

    2016-01-01

    Background Genome-wide association studies (GWAS) have considerably advanced our understanding of human traits and diseases. With the increasing availability of whole genome sequences (WGS) for pathogens, it is important to establish whether GWAS of viral genomes could reveal important biological insights. Here we perform the first proof of concept viral GWAS examining drug resistance (DR), a phenotype with well understood genetics. Method We performed a GWAS of DR in a sample of 343 HIV subtype C patients failing 1st line antiretroviral treatment in rural KwaZulu-Natal, South Africa. The majority and minority variants within each sequence were called using PILON, and GWAS was performed within PLINK. HIV WGS from patients failing on different antiretroviral treatments were compared to sequences derived from individuals naïve to the respective treatment. Results GWAS methodology was validated by identifying five associations on a genetic level that led to amino acid changes known to cause DR. Further, we highlighted the ability of GWAS to identify epistatic effects, identifying two replicable variants within amino acid 68 of the reverse transcriptase protein previously described as potential fitness compensatory mutations. A possible additional DR variant within amino acid 91 of the matrix region of the Gag protein was associated with tenofovir failure, highlighting GWAS’s ability to identify variants outside classical candidate genes. Our results also suggest a polygenic component to DR. Conclusions These results validate the applicability of GWAS to HIV WGS data even in relative small samples, and emphasise how high throughput sequencing can provide novel and clinically relevant insights. Further they suggested that for viruses like HIV, population structure was only minor concern compared to that seen in bacteria or parasite GWAS. Given the small genome length and reduced burden for multiple testing, this makes HIV an ideal candidate for GWAS. PMID:27677172

  7. Complete genome sequence of Archaeoglobus profundus type strain (AV18T)

    Energy Technology Data Exchange (ETDEWEB)

    von Jan, Mathias [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Eichinger, Konrad [Universitat Regensburg, Regensburg, Germany; Huber, Harald [Universitat Regensburg, Regensburg, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Wirth, Reinhard [Universitat Regensburg, Regensburg, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Archaeoglobus profundus (Burggraf et al. 1990) is a hyperthermophilic archaeon in the euryarchaeal class Archaeoglobi, which is currently represented by six validly named species and two taxonomically challenged 'Geoglobus' strains, all belonging to the same family Archaeoglobaceae. All members were isolated from marine hydrothermal habitats and are obligate anaerobes. Here we describe the features of the organism, together with the complete genome sequence and annotation. This is the second completed genome sequence of a member of the class Archaeoglobi. The 1,563,423 bp genome with its 1,858 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  8. Complete genome sequence of Sanguibacter keddieii type strain (ST-74T)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Natalia; Sikorski, Johannes; Sims, David; Brettin, Thomas; Detter, John C.; Han, Cliff; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Pati, Amrita; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; D' haeseleer, Patrik; Chain, Patrick; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Goker, Markus; Pukall, Rudiger; Klenk, Hans-Peter; Kyrpides, Nikos

    2009-05-20

    Sanguibacter keddieii is the type species of the genus Sanguibacter, the only described genus within the family of Sanguibacteraceae. Phylogenetically, this family is located in the neighbourhood of the genus Oerskovia and the family Cellulomonadaceae within the actinobacterial suborder Micrococcineae. The strain described in this report was isolated from blood of apparently healthy cows. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the family Sanguibacteraceae, and the 4,253,413 bp long single replicon genome with its 3735 protein-coding and 70 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  9. Chaos game representation walk model for the protein sequences

    Institute of Scientific and Technical Information of China (English)

    Gao Jie; Jiang Li-Li; Xu Zhen-Yuan

    2009-01-01

    A new chaos game representation of protein sequences based on the detailed hydrophobic-hydrophilic(HP)model has been proposed by Yu et al(Physica A 337(2004)171). A CGR-walk model is proposed based on the new CGR coordinates for the protein sequences from complete genomes in the present paper. The new CGR coordinates based on the detailed HP model are converted into a time series, and a long-memory ARFIMA(p, d, q)model is introduced into the protein sequence analysis. This model is applied to simulating real CGR-walk sequence data of twelve protein sequences. Remarkably long-range correlations are uncovered in the data and the results obtained from these models are reasonably coneistent with those available from the ARFIMA(p, d, q)model.

  10. Complete sequence of the mitochondrial genome of Odontamblyopus rubicundus (Perciformes: Gobiidae): genome characterization and phylogenetic analysis

    Indian Academy of Sciences (India)

    Tianxing Liu; Xiaoxiao Jin; Rixin Wang; Tianjun Xu

    2013-12-01

    Odontamblyopus rubicundus is a species of gobiid fishes, inhabits muddy-bottomed coastal waters. In this paper, the first complete mitochondrial genome sequence of O. rubicundus is reported. The complete mitochondrial genome sequence is 17119 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a control region and an L-strand origin as in other teleosts. Most mitochondrial genes are encoded on H-strand except for ND6 and seven tRNA genes. Some overlaps occur in protein-coding genes and tRNAs ranging from 1 to 7 bp. The possibly nonfunctional L-strand origin folded into a typical stem-loop secondary structure and a conserved motif (5′-GCCGG-3′) was found at the base of the stem within the $tRNA^{Cys}$ gene. The TAS, CSB-2 and CSB-3 could be detected in the control region. However, in contrast to most of other fishes, the central conserved sequence block domain and the CSB-1 could not be recognized in O. rubicundus, which is consistent with Acanthogobius hasta (Gobiidae). In addition, phylogenetic analyses based on different sequences of species of Gobiidae and different methods showed that the classification of O. rubicundus into Odontamblyopus due to morphology is debatable.

  11. Complete sequence of the mitochondrial genome of Odontamblyopus rubicundus (Perciformes: Gobiidae): genome characterization and phylogenetic analysis.

    Science.gov (United States)

    Liu, Tianxing; Jin, Xiaoxiao; Wang, Rixin; Xu, Tianjun

    2013-12-01

    Odontamblyopus rubicundus is a species of gobiid fishes, inhabits muddy-bottomed coastal waters. In this paper, the first complete mitochondrial genome sequence of O. rubicundus is reported. The complete mitochondrial genome sequence is 17119 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a control region and an L-strand origin as in other teleosts. Most mitochondrial genes are encoded on H-strand except for ND6 and seven tRNA genes. Some overlaps occur in protein-coding genes and tRNAs ranging from 1 to 7 bp. The possibly nonfunctional L-strand origin folded into a typical stem-loop secondary structure and a conserved motif (5'-GCCGG-3') was found at the base of the stem within the tRNACys gene. The TAS, CSB-2 and CSB-3 could be detected in the control region. However, in contrast to most of other fishes, the central conserved sequence block domain and the CSB-1 could not be recognized in O. rubicundus, which is consistent with Acanthogobius hasta (Gobiidae). In addition, phylogenetic analyses based on different sequences of species of Gobiidae and different methods showed that the classification of O. rubicundus into Odontamblyopus due to morphology is debatable.

  12. Second generation sequencing of the mesothelioma tumor genome.

    Directory of Open Access Journals (Sweden)

    Raphael Bueno

    Full Text Available The current paradigm for elucidating the molecular etiology of cancers relies on the interrogation of small numbers of genes, which limits the scope of investigation. Emerging second-generation massively parallel DNA sequencing technologies have enabled more precise definition of the cancer genome on a global scale. We examined the genome of a human primary malignant pleural mesothelioma (MPM tumor and matched normal tissue by using a combination of sequencing-by-synthesis and pyrosequencing methodologies to a 9.6X depth of coverage. Read density analysis uncovered significant aneuploidy and numerous rearrangements. Method-dependent informatics rules, which combined the results of different sequencing platforms, were developed to identify and validate candidate mutations of multiple types. Many more tumor-specific rearrangements than point mutations were uncovered at this depth of sequencing, resulting in novel, large-scale, inter- and intra-chromosomal deletions, inversions, and translocations. Nearly all candidate point mutations appeared to be previously unknown SNPs. Thirty tumor-specific fusions/translocations were independently validated with PCR and Sanger sequencing. Of these, 15 represented disrupted gene-encoding regions, including kinases, transcription factors, and growth factors. One large deletion in DPP10 resulted in altered transcription and expression of DPP10 transcripts in a set of 53 additional MPM tumors correlated with survival. Additionally, three point mutations were observed in the coding regions of NKX6-2, a transcription regulator, and NFRKB, a DNA-binding protein involved in modulating NFKB1. Several regions containing genes such as PCBD2 and DHFR, which are involved in growth factor signaling and nucleotide synthesis, respectively, were selectively amplified in the tumor. Second-generation sequencing uncovered all types of mutations in this MPM tumor, with DNA rearrangements representing the dominant type.

  13. Genome Project Standards in a New Era of Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    GSC Consortia; HMP Jumpstart Consortia; Chain, P. S. G.; Grafham, D. V.; Fulton, R. S.; FitzGerald, M. G.; Hostetler, J.; Muzny, D.; Detter, J. C.; Ali, J.; Birren, B.; Bruce, D. C.; Buhay, C.; Cole, J. R.; Ding, Y.; Dugan, S.; Field, D.; Garrity, G. M.; Gibbs, R.; Graves, T.; Han, C. S.; Harrison, S. H.; Highlander, S.; Hugenholtz, P.; Khouri, H. M.; Kodira, C. D.; Kolker, E.; Kyrpides, N. C.; Lang, D.; Lapidus, A.; Malfatti, S. A.; Markowitz, V.; Metha, T.; Nelson, K. E.; Parkhill, J.; Pitluck, S.; Qin, X.; Read, T. D.; Schmutz, J.; Sozhamannan, S.; Strausberg, R.; Sutton, G.; Thomson, N. R.; Tiedje, J. M.; Weinstock, G.; Wollam, A.

    2009-06-01

    For over a decade, genome 43 sequences have adhered to only two standards that are relied on for purposes of sequence analysis by interested third parties (1, 2). However, ongoing developments in revolutionary sequencing technologies have resulted in a redefinition of traditional whole genome sequencing that requires a careful reevaluation of such standards. With commercially available 454 pyrosequencing (followed by Illumina, SOLiD, and now Helicos), there has been an explosion of genomes sequenced under the moniker 'draft', however these can be very poor quality genomes (due to inherent errors in the sequencing technologies, and the inability of assembly programs to fully address these errors). Further, one can only infer that such draft genomes may be of poor quality by navigating through the databases to find the number and type of reads deposited in sequence trace repositories (and not all genomes have this available), or to identify the number of contigs or genome fragments deposited to the database. The difficulty in assessing the quality of such deposited genomes has created some havoc for genome analysis pipelines and contributed to many wasted hours of (mis)interpretation. These same novel sequencing technologies have also brought an exponential leap in raw sequencing capability, and at greatly reduced prices that have further skewed the time- and cost-ratios of draft data generation versus the painstaking process of improving and finishing a genome. The resulting effect is an ever-widening gap between drafted and finished genomes that only promises to continue (Figure 1), hence there is an urgent need to distinguish good and poor datasets. The sequencing institutes in the authorship, along with the NIH's Human Microbiome Project Jumpstart Consortium (3), strongly believe that a new set of standards is required for genome sequences. The following represents a set of six community-defined categories of genome sequence standards that better

  14. Complete genome sequence of mitochondrial DNA (mtDNA) of Chlorella sorokiniana.

    Science.gov (United States)

    Orsini, Massimiliano; Costelli, Cristina; Malavasi, Veronica; Cusano, Roberto; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete sequence of mitochondrial genome of the Chlorella sorokiniana strain (SAG 111-8 k) is presented in this work. Within the Chlorella genus, it represents the second species with a complete sequenced and annotated mitochondrial genome (GenBank accession no. KM241869). The genome consists of circular chromosomes of 52,528 bp and encodes a total of 31 protein coding genes, 3 rRNAs and 26 tRNAs. The overall AT contents of the C. sorokiniana mtDNA is 70.89%, while the coding sequence is of 97.4%.

  15. Complete genome sequence of Anaerococcus prevotii type strain (PC1T)

    Energy Technology Data Exchange (ETDEWEB)

    LaButti, Kurt [U.S. Department of Energy, Joint Genome Institute; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Steenblock, Katja [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Brettin, Tom [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2009-01-01

    Anaerococcus prevotii (Foubert and Douglas 1948) Ezaki et al. 2001 is the type species of the genus, and is of phylogenetic interest because of its arguable assignment to the provisionally arranged family Peptostreptococcaceae . A. prevotii is an obligate anaerobic coccus, usually arranged in clumps or tetrads. The strain, whose genome is described here, was originally isolated from human plasma; other strains of the species were also isolated from clinical specimen. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the genus. Next to Finegoldia magna, A. prevotii is only the second species from the family Peptostreptococcaceae for which a complete genome sequence is described. The 1,998,633 bp long genome (chromosome and one plasmid) with its 1852 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. Evaluating the protein coding potential of exonized transposable element sequences

    Directory of Open Access Journals (Sweden)

    Borodovsky Mark

    2007-11-01

    Full Text Available Abstract Background Transposable element (TE sequences, once thought to be merely selfish or parasitic members of the genomic community, have been shown to contribute a wide variety of functional sequences to their host genomes. Analysis of complete genome sequences have turned up numerous cases where TE sequences have been incorporated as exons into mRNAs, and it is widely assumed that such 'exonized' TEs encode protein sequences. However, the extent to which TE-derived sequences actually encode proteins is unknown and a matter of some controversy. We have tried to address this outstanding issue from two perspectives: i-by evaluating ascertainment biases related to the search methods used to uncover TE-derived protein coding sequences (CDS and ii-through a probabilistic codon-frequency based analysis of the protein coding potential of TE-derived exons. Results We compared the ability of three classes of sequence similarity search methods to detect TE-derived sequences among data sets of experimentally characterized proteins: 1-a profile-based hidden Markov model (HMM approach, 2-BLAST methods and 3-RepeatMasker. Profile based methods are more sensitive and more selective than the other methods evaluated. However, the application of profile-based search methods to the detection of TE-derived sequences among well-curated experimentally characterized protein data sets did not turn up many more cases than had been previously detected and nowhere near as many cases as recent genome-wide searches have. We observed that the different search methods used were complementary in the sense that they yielded largely non-overlapping sets of hits and differed in their ability to recover known cases of TE-derived CDS. The probabilistic analysis of TE-derived exon sequences indicates that these sequences have low protein coding potential on average. In particular, non-autonomous TEs that do not encode protein sequences, such as Alu elements, are frequently

  17. Whole genome sequence analysis of the TALLYHO/Jng mouse.

    Science.gov (United States)

    Denvir, James; Boskovic, Goran; Fan, Jun; Primerano, Donald A; Parkman, Jacaline K; Kim, Jung Han

    2016-11-11

    The TALLYHO/Jng (TH) mouse is a polygenic model for obesity and type 2 diabetes first described in the literature in 2001. The origin of the TH strain is an outbred colony of the Theiler Original strain and mice derived from this source were selectively bred for male hyperglycemia establishing an inbred strain at The Jackson Laboratory. TH mice manifest many of the disease phenotypes observed in human obesity and type 2 diabetes. We sequenced the whole genome of TH mice maintained at Marshall University to a depth of approximately 64.8X coverage using data from three next generation sequencing runs. Genome-wide, we found approximately 4.31 million homozygous single nucleotide polymorphisms (SNPs) and 1.10 million homozygous small insertions and deletions (indels) of which 98,899 SNPs and 163,720 indels were unique to the TH strain compared to 28 previously sequenced inbred mouse strains. In order to identify potentially clinically-relevant genes, we intersected our list of SNP and indel variants with human orthologous genes in which variants were associated in GWAS studies with obesity, diabetes, and metabolic syndrome, and with genes previously shown to confer a monogenic obesity phenotype in humans, and found several candidate variants that could be functionally tested using TH mice. Further, we filtered our list of variants to those occurring in an obesity quantitative trait locus, tabw2, identified in TH mice and found a missense polymorphism in the Cidec gene and characterized this variant's effect on protein function. We generated a complete catalog of variants in TH mice using the data from whole genome sequencing. Our findings will facilitate the identification of causal variants that underlie metabolic diseases in TH mice and will enable identification of candidate susceptibility genes for complex human obesity and type 2 diabetes.

  18. Using multilocus sequence typing to study bacterial variation: prospects in the genomic era.

    Science.gov (United States)

    Jolley, Keith A; Maiden, Martin C J

    2014-01-01

    Multilocus sequence typing (MLST) indexes the sequence variation present in a small number (usually seven) of housekeeping gene fragments located around the bacterial genome. Unique alleles at these loci are assigned arbitrary integer identifiers, which effectively summarizes the variation present in several thousand base pairs of genome sequence information as a series of numbers. Comparing bacterial isolates using allele-based methods efficiently corrects for the effects of lateral gene transfer present in many bacterial populations and is computationally efficient. This 'gene-by-gene' approach can be applied to larger collections of loci, such as the ribosomal protein genes used in ribosomal MLST (rMLST), up to and including the complete set of coding sequences present in a genome, whole-genome MLST (wgMLST), providing scalable, efficient and readily interpreted genome analysis.

  19. Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey

    Directory of Open Access Journals (Sweden)

    Varala Kranthi

    2007-05-01

    Full Text Available Abstract Background Extensive computational and database tools are available to mine genomic and genetic databases for model organisms, but little genomic data is available for many species of ecological or agricultural significance, especially those with large genomes. Genome surveys using conventional sequencing techniques are powerful, particularly for detecting sequences present in many copies per genome. However these methods are time-consuming and have potential drawbacks. High throughput 454 sequencing provides an alternative method by which much information can be gained quickly and cheaply from high-coverage surveys of genomic DNA. Results We sequenced 78 million base-pairs of randomly sheared soybean DNA which passed our quality criteria. Computational analysis of the survey sequences provided global information on the abundant repetitive sequences in soybean. The sequence was used to determine the copy number across regions of large genomic clones or contigs and discover higher-order structures within satellite repeats. We have created an annotated, online database of sequences present in multiple copies in the soybean genome. The low bias of pyrosequencing against repeat sequences is demonstrated by the overall composition of the survey data, which matches well with past estimates of repetitive DNA content obtained by DNA re-association kinetics (Cot analysis. Conclusion This approach provides a potential aid to conventional or shotgun genome assembly, by allowing rapid assessment of copy number in any clone or clone-end sequence. In addition, we show that partial sequencing can provide access to partial protein-coding sequences.

  20. Exploration of sequence space as the basis of viral RNA genome segmentation.

    Science.gov (United States)

    Moreno, Elena; Ojosnegros, Samuel; García-Arriaza, Juan; Escarmís, Cristina; Domingo, Esteban; Perales, Celia

    2014-05-06

    The mechanisms of viral RNA genome segmentation are unknown. On extensive passage of foot-and-mouth disease virus in baby hamster kidney-21 cells, the virus accumulated multiple point mutations and underwent a transition akin to genome segmentation. The standard single RNA genome molecule was replaced by genomes harboring internal in-frame deletions affecting the L- or capsid-coding region. These genomes were infectious and killed cells by complementation. Here we show that the point mutations in the nonstructural protein-coding region (P2, P3) that accumulated in the standard genome before segmentation increased the relative fitness of the segmented version relative to the standard genome. Fitness increase was documented by intracellular expression of virus-coded proteins and infectious progeny production by RNAs with the internal deletions placed in the sequence context of the parental and evolved genome. The complementation activity involved several viral proteins, one of them being the leader proteinase L. Thus, a history of genetic drift with accumulation of point mutations was needed to allow a major variation in the structure of a viral genome. Thus, exploration of sequence space by a viral genome (in this case an unsegmented RNA) can reach a point of the space in which a totally different genome structure (in this case, a segmented RNA) is favored over the form that performed the exploration.

  1. Draft Genome Sequence of a Diarrheagenic Morganella morganii Isolate.

    Science.gov (United States)

    Singh, Pallavi; Mosci, Rebekah; Rudrik, James T; Manning, Shannon D

    2015-10-08

    This is a report of the whole-genome draft sequence of a diarrheagenic Morganella morganii isolate from a patient in Michigan, USA. This genome represents an important addition to the limited number of pathogenic M. morganii genomes available.

  2. Complete genome sequence of ‘Candidatus Liberibacter africanus’

    Science.gov (United States)

    The complete genome sequence of ‘Candidatus Liberibacter africanus’ (Laf), strain ptsapsy, was obtained by an Illumina HiSeq 2000. The Laf genome comprises 1,192,232 nucleotides, 34.5% GC content, 1,141 predicted coding sequences, 44 tRNAs, 3 complete copies of ribosomal RNA genes (16S, 23S and 5S) ...

  3. Genome sequencing and annotation of Cellulomonas sp. HZM

    Directory of Open Access Journals (Sweden)

    Patric Chua

    2015-09-01

    Full Text Available We report the draft genome sequence of Cellulomonas sp. HZM, isolated from a tropical peat swamp forest. The draft genome size is 3,559,280 bp with a G + C content of 73% and contains 3 rRNA sequences (single copies of 5S, 16S and 23S rRNA.

  4. Whole-Genome Sequences of 26 Vibrio cholerae Isolates

    Science.gov (United States)

    Watve, Samit S.; Chande, Aroon T.; Rishishwar, Lavanya; Jordan, I. King

    2016-01-01

    The human pathogen Vibrio cholerae employs several adaptive mechanisms for environmental persistence, including natural transformation and type VI secretion, creating a reservoir for the spread of disease. Here, we report whole-genome sequences of 26 diverse V. cholerae isolates, significantly increasing the sequence diversity of publicly available V. cholerae genomes. PMID:28007852

  5. Complete Genome Sequence of Staphylococcus pseudintermedius Type Strain LMG 22219

    Science.gov (United States)

    Abouelkhair, Mohamed A.; Riley, Matthew C.; Bemis, David A.

    2017-01-01

    ABSTRACT We report the first complete genome sequence of LMG 22219 (=ON 86T = CCUG 49543T), the Staphylococcus pseudintermedius type strain isolated from feline lung tissue. This sequence information will facilitate phylogenetic comparisons of staphylococcal species and other bacteria at the genome level. PMID:28209834

  6. Genome sequence of Kocuria palustris strain W4

    DEFF Research Database (Denmark)

    Herschend, Jakob; Raghupathi, Prem Krishnan; Røder, Henriette Lyng;

    2016-01-01

    We report the 3.09 Mb draft genome sequence ofKocuria palustrisW4, isolated from a slaughterhouse in Denmark.......We report the 3.09 Mb draft genome sequence ofKocuria palustrisW4, isolated from a slaughterhouse in Denmark....

  7. Genome sequence of Kocuria palustris strain W4

    DEFF Research Database (Denmark)

    Herschend, Jakob; Raghupathi, Prem Krishnan; Røder, Henriette Lyng

    2016-01-01

    We report the 3.09 Mb draft genome sequence ofKocuria palustrisW4, isolated from a slaughterhouse in Denmark.......We report the 3.09 Mb draft genome sequence ofKocuria palustrisW4, isolated from a slaughterhouse in Denmark....

  8. Nearly Complete Genome Sequence of Lactobacillus plantarum Strain NIZO2877

    NARCIS (Netherlands)

    Martino, M.E.; Bayjanov, J.R.; Joncour, P.; Hughes, S.; Gillet, B.; Kleerebezem, M; Siezen, R.; Hijum, S.A.F.T. van; Leulier, F.

    2015-01-01

    Lactobacillus plantarum is a versatile bacterial species that is isolated mostly from foods. Here, we present the first genome sequence of L. plantarum strain NIZO2877 isolated from a hot dog in Vietnam. Its two contigs represent a nearly complete genome sequence.

  9. Investigation of genome sequences within the family Pasteurellaceae

    DEFF Research Database (Denmark)

    Angen, Øystein; Ussery, David

    . The homology between genomes ranged from 47.2% to 94.1%. The number of genes found increased steadily for each sequence added to the analysis and the pan-genome of all 20 sequences consisted of around 8500 genes. On the other hand, the number of genes found in all strains steadily decreased when adding...

  10. Full Genome Sequence of Giant Panda Rotavirus Strain CH-1

    Science.gov (United States)

    Guo, Ling; Yang, Shaolin; Wang, Chengdong; Chen, Shijie; Yang, Xiaonong; Hou, Rong; Quan, Zifang; Hao, Zhongxiang

    2013-01-01

    We report here the complete genomic sequence of the giant panda rotavirus strain CH-1. This work is the first to document the complete genomic sequence (segments 1 to 11) of the CH-1 strain, which offers an effective platform for providing authentic research experiences to novice scientists. PMID:23469354

  11. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J;

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host-...

  12. Initial sequencing and analysis of the human genome.

    Science.gov (United States)

    Lander, E S; Linton, L M; Birren, B; Nusbaum, C; Zody, M C; Baldwin, J; Devon, K; Dewar, K; Doyle, M; FitzHugh, W; Funke, R; Gage, D; Harris, K; Heaford, A; Howland, J; Kann, L; Lehoczky, J; LeVine, R; McEwan, P; McKernan, K; Meldrim, J; Mesirov, J P; Miranda, C; Morris, W; Naylor, J; Raymond, C; Rosetti, M; Santos, R; Sheridan, A; Sougnez, C; Stange-Thomann, Y; Stojanovic, N; Subramanian, A; Wyman, D; Rogers, J; Sulston, J; Ainscough, R; Beck, S; Bentley, D; Burton, J; Clee, C; Carter, N; Coulson, A; Deadman, R; Deloukas, P; Dunham, A; Dunham, I; Durbin, R; French, L; Grafham, D; Gregory, S; Hubbard, T; Humphray, S; Hunt, A; Jones, M; Lloyd, C; McMurray, A; Matthews, L; Mercer, S; Milne, S; Mullikin, J C; Mungall, A; Plumb, R; Ross, M; Shownkeen, R; Sims, S; Waterston, R H; Wilson, R K; Hillier, L W; McPherson, J D; Marra, M A; Mardis, E R; Fulton, L A; Chinwalla, A T; Pepin, K H; Gish, W R; Chissoe, S L; Wendl, M C; Delehaunty, K D; Miner, T L; Delehaunty, A; Kramer, J B; Cook, L L; Fulton, R S; Johnson, D L; Minx, P J; Clifton, S W; Hawkins, T; Branscomb, E; Predki, P; Richardson, P; Wenning, S; Slezak, T; Doggett, N; Cheng, J F; Olsen, A; Lucas, S; Elkin, C; Uberbacher, E; Frazier, M; Gibbs, R A; Muzny, D M; Scherer, S E; Bouck, J B; Sodergren, E J; Worley, K C; Rives, C M; Gorrell, J H; Metzker, M L; Naylor, S L; Kucherlapati, R S; Nelson, D L; Weinstock, G M; Sakaki, Y; Fujiyama, A; Hattori, M; Yada, T; Toyoda, A; Itoh, T; Kawagoe, C; Watanabe, H; Totoki, Y; Taylor, T; Weissenbach, J; Heilig, R; Saurin, W; Artiguenave, F; Brottier, P; Bruls, T; Pelletier, E; Robert, C; Wincker, P; Smith, D R; Doucette-Stamm, L; Rubenfield, M; Weinstock, K; Lee, H M; Dubois, J; Rosenthal, A; Platzer, M; Nyakatura, G; Taudien, S; Rump, A; Yang, H; Yu, J; Wang, J; Huang, G; Gu, J; Hood, L; Rowen, L; Madan, A; Qin, S; Davis, R W; Federspiel, N A; Abola, A P; Proctor, M J; Myers, R M; Schmutz, J; Dickson, M; Grimwood, J; Cox, D R; Olson, M V; Kaul, R; Raymond, C; Shimizu, N; Kawasaki, K; Minoshima, S; Evans, G A; Athanasiou, M; Schultz, R; Roe, B A; Chen, F; Pan, H; Ramser, J; Lehrach, H; Reinhardt, R; McCombie, W R; de la Bastide, M; Dedhia, N; Blöcker, H; Hornischer, K; Nordsiek, G; Agarwala, R; Aravind, L; Bailey, J A; Bateman, A; Batzoglou, S; Birney, E; Bork, P; Brown, D G; Burge, C B; Cerutti, L; Chen, H C; Church, D; Clamp, M; Copley, R R; Doerks, T; Eddy, S R; Eichler, E E; Furey, T S; Galagan, J; Gilbert, J G; Harmon, C; Hayashizaki, Y; Haussler, D; Hermjakob, H; Hokamp, K; Jang, W; Johnson, L S; Jones, T A; Kasif, S; Kaspryzk, A; Kennedy, S; Kent, W J; Kitts, P; Koonin, E V; Korf, I; Kulp, D; Lancet, D; Lowe, T M; McLysaght, A; Mikkelsen, T; Moran, J V; Mulder, N; Pollara, V J; Ponting, C P; Schuler, G; Schultz, J; Slater, G; Smit, A F; Stupka, E; Szustakowki, J; Thierry-Mieg, D; Thierry-Mieg, J; Wagner, L; Wallis, J; Wheeler, R; Williams, A; Wolf, Y I; Wolfe, K H; Yang, S P; Yeh, R F; Collins, F; Guyer, M S; Peterson, J; Felsenfeld, A; Wetterstrand, K A; Patrinos, A; Morgan, M J; de Jong, P; Catanese, J J; Osoegawa, K; Shizuya, H; Choi, S; Chen, Y J; Szustakowki, J

    2001-02-15

    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

  13. A gapless genome sequence of the fungus Botrytis cinerea

    NARCIS (Netherlands)

    Kan, Van Jan A.L.; Stassen, Joost H.M.; Mosbach, Andreas; Lee, Van Der Theo A.J.; Faino, Luigi; Farmer, Andrew D.; Papasotiriou, Dimitrios G.; Zhou, Shiguo; Seidl, Michael F.; Cottam, Eleanor; Edel, Dominique; Hahn, Matthias; Schwartz, David C.; Dietrich, Robert A.; Widdison, Stephanie; Scalliet, Gabriel

    2016-01-01

    Following earlier incomplete and fragmented versions of a genome sequence for the grey mould Botrytis cinerea, a gapless, near-finished genome sequence for B. cinerea strain B05.10 is reported. The assembly comprised 18 chromosomes and was confirmed by an optical map and a genetic map based on ap

  14. Draft Genome Sequence of Raoultella planticola, Isolated from River Water.

    Science.gov (United States)

    Jothikumar, Narayanan; Kahler, Amy; Strockbine, Nancy; Gladney, Lori; Hill, Vincent R

    2014-10-16

    We isolated Raoultella planticola from a river water sample, which was phenotypically indistinguishable from Escherichia coli on MI agar. The genome sequence of R. planticola was determined to gain information about its metabolic functions contributing to its false positive appearance of E. coli on MI agar. We report the first whole genome sequence of Raoultella planticola.

  15. Draft Genome Sequence of Tannerella forsythia Type Strain ATCC 43037.

    Science.gov (United States)

    Friedrich, Valentin; Pabinger, Stephan; Chen, Tsute; Messner, Paul; Dewhirst, Floyd E; Schäffer, Christina

    2015-06-11

    Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.1) was discovered to be derived from a different strain, FDC 92A2 (= ATCC BAA-2717).

  16. Draft Genome Sequence of Tannerella forsythia Type Strain ATCC 43037

    OpenAIRE

    Friedrich, Valentin; Pabinger, Stephan; Chen, Tsute; Messner, Paul; Dewhirst, Floyd E.; Schäffer, Christina

    2015-01-01

    Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.1) was discovered to be derived from a different strain, FDC 92A2 (= ATCC BAA-2717).

  17. Nearly Complete Genome Sequence of Lactobacillus plantarum Strain NIZO2877

    NARCIS (Netherlands)

    Martino, M.E.; Bayjanov, J.R.; Joncour, P.; Hughes, S.; Gillet, B.; Kleerebezem, M; Siezen, R.; Hijum, S.A.F.T. van; Leulier, F.

    2015-01-01

    Lactobacillus plantarum is a versatile bacterial species that is isolated mostly from foods. Here, we present the first genome sequence of L. plantarum strain NIZO2877 isolated from a hot dog in Vietnam. Its two contigs represent a nearly complete genome sequence.

  18. Complete Genome Sequence of Lactobacillus plantarum CGMCC 8198

    Science.gov (United States)

    Dong, Qing-Qing; Hu, Hai-Jie; Wang, Qiu-Tong; Gu, Xiang-Chao; Zhou, Hao; Zhou, Wen-Juan; Ni, Xiao-Meng

    2017-01-01

    ABSTRACT We report the complete genome sequence of Lactobacillus plantarum CGMCC 8198, a novel probiotic strain isolated from fermented herbage. We have determined the complete genome sequence of strain L. plantarum CGMCC 8198, which consists of genes that are likely to be involved in dairy fermentation and that have probiotic qualities. PMID:28183756

  19. Sequencing of a Cultivated Diploid CottonGenome-Gossypium arboreum

    Institute of Scientific and Technical Information of China (English)

    WILKINS Thea A

    2008-01-01

    @@ Sequencing the genomes of crop species and model systems contributes significantly to our under-standing of the organization,structure and function of plant genomes.In a "white paper" published in2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated up-land cotton that initially targets less complex diploid genomes.This strategy banks on the high degreeof conservation between diploid progenitors and AD species that will allow information derived fromdiploid genomes to be directly applied to the tetraploids.

  20. The Complete Chloroplast Genome Sequences of Six Rehmannia Species

    Directory of Open Access Journals (Sweden)

    Shuyun Zeng

    2017-03-01

    Full Text Available Rehmannia is a non-parasitic genus in Orobanchaceae including six species mainly distributed in central and north China. Its phylogenetic position and infrageneric relationships remain uncertain due to potential hybridization and polyploidization. In this study, we sequenced and compared the complete chloroplast genomes of six Rehmannia species using Illumina sequencing technology to elucidate the interspecific variations. Rehmannia plastomes exhibited typical quadripartite and circular structures with good synteny of gene order. The complete genomes ranged from 153,622 bp to 154,055 bp in length, including 133 genes encoding 88 proteins, 37 tRNAs, and 8 rRNAs. Three genes (rpoA, rpoC2, accD have potentially experienced positive selection. Plastome size variation of Rehmannia was mainly ascribed to the expansion and contraction of the border regions between the inverted repeat (IR region and the single-copy (SC regions. Despite of the conserved structure in Rehmannia plastomes, sequence variations provide useful phylogenetic information. Phylogenetic trees of 23 Lamiales species reconstructed with the complete plastomes suggested that Rehmannia was monophyletic and sister to the clade of Lindenbergia and the parasitic taxa in Orobanchaceae. The interspecific relationships within Rehmannia were completely different with the previous studies. In future, population phylogenomic works based on plastomes are urgently needed to clarify the evolutionary history of Rehmannia.

  1. Bacillus anthracis genome organization in light of whole transcriptome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Zhu, Wenhan; Passalacqua, Karla D.; Bergman, Nicholas; Borodovsky, Mark

    2010-03-22

    Emerging knowledge of whole prokaryotic transcriptomes could validate a number of theoretical concepts introduced in the early days of genomics. What are the rules connecting gene expression levels with sequence determinants such as quantitative scores of promoters and terminators? Are translation efficiency measures, e.g. codon adaptation index and RBS score related to gene expression? We used the whole transcriptome shotgun sequencing of a bacterial pathogen Bacillus anthracis to assess correlation of gene expression level with promoter, terminator and RBS scores, codon adaptation index, as well as with a new measure of gene translational efficiency, average translation speed. We compared computational predictions of operon topologies with the transcript borders inferred from RNA-Seq reads. Transcriptome mapping may also improve existing gene annotation. Upon assessment of accuracy of current annotation of protein-coding genes in the B. anthracis genome we have shown that the transcriptome data indicate existence of more than a hundred genes missing in the annotation though predicted by an ab initio gene finder. Interestingly, we observed that many pseudogenes possess not only a sequence with detectable coding potential but also promoters that maintain transcriptional activity.

  2. Draft Genome Sequence of the Immunobiotic Strain Lactobacillus jensenii TL2937

    Science.gov (United States)

    Masumizu, Yuki; Iida, Hikaru; Ikeda-Ohtsubo, Wakako; Albarracin, Leonardo; Makino, Seiya; Ohkawara, Sou; Kimura, Katsunori; Saavedra, Lucila

    2017-01-01

    ABSTRACT The genome of the immunomodulatory strain Lactobacillus jensenii TL2937 is described here. The draft genome has a total length of 1,678,416 bp, a G+C content of 34.3%, and 1,470 predicted protein-coding sequences. The genome information will be useful for gaining insight into the immunomodulatory properties of the TL2937 strain in the porcine host. PMID:28254966

  3. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis

    Science.gov (United States)

    Zhang, Shuang; Yu, Xiao-Yue; Ren, Ya-Chao; Yang, Min-Sheng; Wang, Jin-Mao

    2017-01-01

    Elm (Ulmus) has a long history of use as a high-quality heavy hardwood famous for its resistance to drought, cold, and salt. It grows in temperate, warm temperate, and subtropical regions. This is the first report of Ulmaceae chloroplast genomes by de novo sequencing. The Ulmus chloroplast genomes exhibited a typical quadripartite structure with two single-copy regions (long single copy [LSC] and short single copy [SSC] sections) separated by a pair of inverted repeats (IRs). The lengths of the chloroplast genomes from five Ulmus ranged from 158,953 to 159,453 bp, with the largest observed in Ulmus davidiana and the smallest in Ulmus laciniata. The genomes contained 137–145 protein-coding genes, of which Ulmus davidiana var. japonica and U. davidiana had the most and U. pumila had the fewest. The five Ulmus species exhibited different evolutionary routes, as some genes had been lost. In total, 18 genes contained introns, 13 of which (trnL-TAA+, trnL-TAA−, rpoC1-, rpl2-, ndhA-, ycf1, rps12-, rps12+, trnA-TGC+, trnA-TGC-, trnV-TAC-, trnI-GAT+, and trnI-GAT) were shared among all five species. The intron of ycf1 was the longest (5,675bp) while that of trnF-AAA was the smallest (53bp). All Ulmus species except U. davidiana exhibited the same degree of amplification in the IR region. To determine the phylogenetic positions of the Ulmus species, we performed phylogenetic analyses using common protein-coding genes in chloroplast sequences of 42 other species published in NCBI. The cluster results showed the closest plants to Ulmaceae were Moraceae and Cannabaceae, followed by Rosaceae. Ulmaceae and Moraceae both belonged to Urticales, and the chloroplast genome clustering results were consistent with their traditional taxonomy. The results strongly supported the position of Ulmaceae as a member of the order Urticales. In addition, we found a potential error in the traditional taxonomies of U. davidiana and U. davidiana var. japonica, which should be confirmed with a

  4. Comparison of 61 Sequenced Escherichia coli Genomes

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Wassenaar, T. M.; Ussery, David

    2010-01-01

    MLST was performed, many of the various strains appear jumbled and less well resolved. The predicted pan-genome comprises 15,741 gene families, and only 993 (6%) of the families are represented in every genome, comprising the core genome. The variable or 'accessory' genes thus make up more than 90......% of the pan-genome and about 80% of a typical genome; some of these variable genes tend to be co-localized on genomic islands. The diversity within the species E. coli, and the overlap in gene content between this and related species, suggests a continuum rather than sharp species borders in this group...

  5. Haplotype-resolved genome sequencing of a Gujarati Indian individual.

    Science.gov (United States)

    Kitzman, Jacob O; Mackenzie, Alexandra P; Adey, Andrew; Hiatt, Joseph B; Patwardhan, Rupali P; Sudmant, Peter H; Ng, Sarah B; Alkan, Can; Qiu, Ruolan; Eichler, Evan E; Shendure, Jay

    2011-01-01

    Haplotype information is essential to the complete description and interpretation of genomes, genetic diversity and genetic ancestry. Although individual human genome sequencing is increasingly routine, nearly all such genomes are unresolved with respect to haplotype. Here we combine the throughput of massively parallel sequencing with the contiguity information provided by large-insert cloning to experimentally determine the haplotype-resolved genome of a South Asian individual. A single fosmid library was split into a modest number of pools, each providing ∼3% physical coverage of the diploid genome. Sequencing of each pool yielded reads overwhelmingly derived from only one homologous chromosome at any given location. These data were combined with whole-genome shotgun sequence to directly phase 94% of ascertained heterozygous single nucleotide polymorphisms (SNPs) into long haplotype blocks (N50 of 386 kilobases (kbp)). This method also facilitates the analysis of structural variation, for example, to anchor novel insertions to specific locations and haplotypes.

  6. Unexpected cross-species contamination in genome sequencing projects

    Directory of Open Access Journals (Sweden)

    Samier Merchant

    2014-11-01

    Full Text Available The raw data from a genome sequencing project sometimes contains DNA from contaminating organisms, which may be introduced during sample collection or sequence preparation. In some instances, these contaminants remain in the sequence even after assembly and deposition of the genome into public databases. As a result, searches of these databases may yield erroneous and confusing results. We used efficient microbiome analysis software to scan the draft assembly of domestic cow, Bos taurus, and identify 173 small contigs that appeared to derive from microbial contaminants. In the course of verifying these findings, we discovered that one genome, Neisseria gonorrhoeae TCDC-NG08107, although putatively a complete genome, contained multiple sequences that actually derived from the cow and sheep genomes. Our findings illustrate the need to carefully validate findings of anomalous DNA that rely on comparisons to either draft or finished genomes.

  7. Draft Genome Sequence of Corynebacterium amycolatum Strain ICIS 53 Isolated from a Female Urogenital Tract.

    Science.gov (United States)

    Gladysheva, Irina V; Cherkasov, Sergey V; Khlopko, Yuriy A; Plotnikov, Andrey O; Gogoleva, Natalya E

    2016-11-10

    This report describes the draft genome sequence of Corynebacterium amycolatum strain ICIS 53, isolated from the reproductive tract of a healthy woman. The size of the genome was 2,460,257 bp (58.98% G+C content). Annotation revealed 2,173 coding sequences, including 2,076 proteins, 7 rRNA genes, and 53 tRNA genes.

  8. Draft Genome Sequence of the Type Species of the Genus Citrobacter, Citrobacter freundii MTCC 1658

    OpenAIRE

    Kumar, Shailesh; Kaur, Chandandeep; Kimura, Kazuyuki; Takeo, Masahiro; Raghava, Gajendra Pal Singh; Mayilraj, Shanmugam

    2013-01-01

    We report the 5.0-Mb genome sequence of the type species of the genus Citrobacter, Citrobacter freundii strain MTCC 1658, isolated from canal water. This draft genome sequence of C. freundii strain MTCC 1658T consists of 5,001,265 bp with a G+C content of 51.61%, 4,691 protein-coding genes, 70 tRNAs, and 10 rRNAs.

  9. Draft sequences of the radish (Raphanus sativus L.) genome.

    Science.gov (United States)

    Kitashiba, Hiroyasu; Li, Feng; Hirakawa, Hideki; Kawanabe, Takahiro; Zou, Zhongwei; Hasegawa, Yoichi; Tonosaki, Kaoru; Shirasawa, Sachiko; Fukushima, Aki; Yokoi, Shuji; Takahata, Yoshihito; Kakizaki, Tomohiro; Ishida, Masahiko; Okamoto, Shunsuke; Sakamoto, Koji; Shirasawa, Kenta; Tabata, Satoshi; Nishio, Takeshi

    2014-10-01

    Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ≥ 300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified.

  10. Ancient Human Genome Sequence of an Extinct Palaeo-Eskimo

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Li, Yingrui; Lindgreen, Stinus;

    2010-01-01

    We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome, an...... for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit....

  11. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication.

    Science.gov (United States)

    Amores, Angel; Catchen, Julian; Ferrara, Allyse; Fontenot, Quenton; Postlethwait, John H

    2011-08-01

    Genomic resources for hundreds of species of evolutionary, agricultural, economic, and medical importance are unavailable due to the expense of well-assembled genome sequences and difficulties with multigenerational studies. Teleost fish provide many models for human disease but possess anciently duplicated genomes that sometimes obfuscate connectivity. Genomic information representing a fish lineage that diverged before the teleost genome duplication (TGD) would provide an outgroup for exploring the mechanisms of evolution after whole-genome duplication. We exploited massively parallel DNA sequencing to develop meiotic maps with thrift and speed by genotyping F(1) offspring of a single female and a single male spotted gar (Lepisosteus oculatus) collected directly from nature utilizing only polymorphisms existing in these two wild individuals. Using Stacks, software that automates the calling of genotypes from polymorphisms assayed by Illumina sequencing, we constructed a map containing 8406 markers. RNA-seq on two map-cross larvae provided a reference transcriptome that identified nearly 1000 mapped protein-coding markers and allowed genome-wide analysis of conserved synteny. Results showed that the gar lineage diverged from teleosts before the TGD and its genome is organized more similarly to that of humans than teleosts. Thus, spotted gar provides a critical link between medical models in teleost fish, to which gar is biologically similar, and humans, to which gar is genomically similar. Application of our F(1) dense mapping strategy to species with no prior genome information promises to facilitate comparative genomics and provide a scaffold for ordering the numerous contigs arising from next generation genome sequencing.

  12. Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi

    Energy Technology Data Exchange (ETDEWEB)

    Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.; Casjens, S. R.; Qiu, W.-G.; Mongodin, E. F.; Luft, B. J.

    2011-02-01

    Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

  13. Scrutinizing virus genome termini by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Shasha Li

    Full Text Available Analysis of genomic terminal sequences has been a major step in studies on viral DNA replication and packaging mechanisms. However, traditional methods to study genome termini are challenging due to the time-consuming protocols and their inefficiency where critical details are lost easily. Recent advances in next generation sequencing (NGS have enabled it to be a powerful tool to study genome termini. In this study, using NGS we sequenced one iridovirus genome and twenty phage genomes and confirmed for the first time that the high frequency sequences (HFSs found in the NGS reads are indeed the terminal sequences of viral genomes. Further, we established a criterion to distinguish the type of termini and the viral packaging mode. We also obtained additional terminal details such as terminal repeats, multi-termini, asymmetric termini. With this approach, we were able to simultaneously detect details of the genome termini as well as obtain the complete sequence of bacteriophage genomes. Theoretically, this application can be further extended to analyze larger and more complicated genomes of plant and animal viruses. This study proposed a novel and efficient method for research on viral replication, packaging, terminase activity, transcription regulation, and metabolism of the host cell.

  14. Generation of Physical Map Contig-Specific Sequences Useful for Whole Genome Sequence Scaffolding

    Science.gov (United States)

    Jiang, Yanliang; Ninwichian, Parichart; Liu, Shikai; Zhang, Jiaren; Kucuktas, Huseyin; Sun, Fanyue; Kaltenboeck, Ludmilla; Sun, Luyang; Bao, Lisui; Liu, Zhanjiang

    2013-01-01

    Along with the rapid advances of the nextgen sequencing technologies, more and more species are added to the list of organisms whose whole genomes are sequenced. However, the assembled draft genome of many organisms consists of numerous small contigs, due to the short length of the reads generated by nextgen sequencing platforms. In order to improve the assembly and bring the genome contigs together, more genome resources are needed. In this study, we developed a strategy to generate a valuable genome resource, physical map contig-specific sequences, which are randomly distributed genome sequences in each physical contig. Two-dimensional tagging method was used to create specific tags for 1,824 physical contigs, in which the cost was dramatically reduced. A total of 94,111,841 100-bp reads and 315,277 assembled contigs are identified containing physical map contig-specific tags. The physical map contig-specific sequences along with the currently available BAC end sequences were then used to anchor the catfish draft genome contigs. A total of 156,457 genome contigs (~79% of whole genome sequencing assembly) were anchored and grouped into 1,824 pools, in which 16,680 unique genes were annotated. The physical map contig-specific sequences are valuable resources to link physical map, genetic linkage map and draft whole genome sequences, consequently have the capability to improve the whole genome sequences assembly and scaffolding, and improve the genome-wide comparative analysis as well. The strategy developed in this study could also be adopted in other species whose whole genome assembly is still facing a challenge. PMID:24205335

  15. Generation of physical map contig-specific sequences useful for whole genome sequence scaffolding.

    Directory of Open Access Journals (Sweden)

    Yanliang Jiang

    Full Text Available Along with the rapid advances of the nextgen sequencing technologies, more and more species are added to the list of organisms whose whole genomes are sequenced. However, the assembled draft genome of many organisms consists of numerous small contigs, due to the short length of the reads generated by nextgen sequencing platforms. In order to improve the assembly and bring the genome contigs together, more genome resources are needed. In this study, we developed a strategy to generate a valuable genome resource, physical map contig-specific sequences, which are randomly distributed genome sequences in each physical contig. Two-dimensional tagging method was used to create specific tags for 1,824 physical contigs, in which the cost was dramatically reduced. A total of 94,111,841 100-bp reads and 315,277 assembled contigs are identified containing physical map contig-specific tags. The physical map contig-specific sequences along with the currently available BAC end sequences were then used to anchor the catfish draft genome contigs. A total of 156,457 genome contigs (~79% of whole genome sequencing assembly were anchored and grouped into 1,824 pools, in which 16,680 unique genes were annotated. The physical map contig-specific sequences are valuable resources to link physical map, genetic linkage map and draft whole genome sequences, consequently have the capability to improve the whole genome sequences assembly and scaffolding, and improve the genome-wide comparative analysis as well. The strategy developed in this study could also be adopted in other species whose whole genome assembly is still facing a challenge.

  16. Complete Genome Sequence of Mayaro Virus (Togaviridae, Alphavirus) Strain BeAr 20290 from Brazil

    OpenAIRE

    Espósito, Danillo Lucas Alves; da Fonseca, Benedito Antônio Lopes

    2015-01-01

    We report here the complete genome sequence of Mayaro virus strain BeAr 20290 isolated from Haemagogus mosquitoes in 1960. The sequence presented here includes all nonstructural and structural proteins and the 5′- and 3′-untranslated (UTR) regions.

  17. Draft Genome Sequence of the Phenazine-Producing Pseudomonas fluorescens Strain 2-79.

    Science.gov (United States)

    Nesemann, Kai; Braus-Stromeyer, Susanna A; Thuermer, Andrea; Daniel, Rolf; Mavrodi, Dmitri V; Thomashow, Linda S; Weller, David M; Braus, Gerhard H

    2015-03-26

    Pseudomonas fluorescens strain 2-79, a natural isolate of the rhizosphere of wheat (Triticum aestivum L.), possesses antagonistic potential toward several fungal pathogens. We report the draft genome sequence of strain 2-79, which comprises 5,674 protein-coding sequences.

  18. The minimum information about a genome sequence (MIGS) specification

    DEFF Research Database (Denmark)

    Field, D; Garrity, G; Gray, T;

    2008-01-01

    the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources...... that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases....

  19. Genomic sequence around butterfly wing development genes: annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Inês C Conceição

    Full Text Available BACKGROUND: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes. CONCLUSIONS: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1 the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2 the high

  20. Genomic libraries: II. Subcloning, sequencing, and assembling large-insert genomic DNA clones.

    Science.gov (United States)

    Quail, Mike A; Matthews, Lucy; Sims, Sarah; Lloyd, Christine; Beasley, Helen; Baxter, Simon W

    2011-01-01

    Sequencing large insert clones to completion is useful for characterizing specific genomic regions, identifying haplotypes, and closing gaps in whole genome sequencing projects. Despite being a standard technique in molecular laboratories, DNA sequencing using the Sanger method can be highly problematic when complex secondary structures or sequence repeats are encountered in genomic clones. Here, we describe methods to isolate DNA from a large insert clone (fosmid or BAC), subclone the sample, and sequence the region to the highest industry standard. Troubleshooting solutions for sequencing difficult templates are discussed.

  1. A sequence-based survey of the complex structural organization of tumor genomes

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav; Yu, Peng; Wu, Chunxiao; Huang, Guiqing; Linardopoulou, Elena V.; Trask, Barbara J.; Waldman, Frederic; Costello, Joseph; Pienta, Kenneth J.; Mills, Gordon B.; Bajsarowicz, Krystyna; Kobayashi, Yasuko; Sridharan, Shivaranjani; Paris, Pamela; Tao, Quanzhou; Aerni, Sarah J.; Brown, Raymond P.; Bashir, Ali; Gray, Joe W.; Cheng, Jan-Fang; de Jong, Pieter; Nefedov, Mikhail; Ried, Thomas; Padilla-Nash, Hesed M.; Collins, Colin C.

    2008-04-03

    The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison of the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.

  2. Multiple roles of genome-attached bacteriophage terminal proteins

    Energy Technology Data Exchange (ETDEWEB)

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.

  3. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    Energy Technology Data Exchange (ETDEWEB)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

  4. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum.

    Science.gov (United States)

    Rao, Soumya; Nandineni, Madhusudan R

    2017-01-01

    Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.

  5. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    Science.gov (United States)

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  6. A Probabilistic Genome-Wide Gene Reading Frame Sequence Model

    DEFF Research Database (Denmark)

    Have, Christian Theil; Mørk, Søren

    We introduce a new type of probabilistic sequence model, that model the sequential composition of reading frames of genes in a genome. Our approach extends gene finders with a model of the sequential composition of genes at the genome-level -- effectively producing a sequential genome annotation...... and are evaluated by the effect on prediction performance. Since bacterial gene finding to a large extent is a solved problem it forms an ideal proving ground for evaluating the explicit modeling of larger scale gene sequence composition of genomes. We conclude that the sequential composition of gene reading frames...... as output. The model can be used to obtain the most probable genome annotation based on a combination of i: a gene finder score of each gene candidate and ii: the sequence of the reading frames of gene candidates through a genome. The model --- as well as a higher order variant --- is developed and tested...

  7. Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Anderson, Iain; Rodriguez, Jason; Susanti, Dwi; Porat, Iris; Reich, Claudia; Ulrich, Luke E.; Elkins, James G.; Mavromatis, Kostas; Lykidis, Athanasios; Kim, Edwin; Thompson, Linda S.; Nolan, Matt; Land, Miriam; Copeland, Alex; Lapidus, Alla; Lucas, Susan; Detter, Chris; Zhulin, Igor B.; Olsen, Gary J.; Whitman, William; Mukhopadhyay, Biswarup; Bristow, James; Kyrpides, Nikos

    2008-01-01

    We report the complete genome of Thermofilum pendens, a deep-branching, hyperthermophilic member of the order Thermoproteales within the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features common among obligate parasites and thus does not appear to be in the process of becoming a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known to utilize peptides as an energy source, but the genome reveals substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may gain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogenlyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time this enzyme has been found outside of Methanosarcinales, and a presenilin-related protein. Predicted highly expressed proteins do not include housekeeping genes, and instead include ABC transporters for carbohydrates and peptides, and CRISPR-associated proteins.

  8. Molecular cloning and organization of two leghaemoglobin genomic sequences of soybean

    Science.gov (United States)

    Sullivan, D.; Brisson, N.; Goodchild, B.; Verma, D. P. S.

    1981-02-01

    The leghaemoglobins (Lb) are myoglobin-like proteins found in all nitrogen-fixing root nodules of legumes1-3. They are encoded by plant nuclear genes4 which are specifically induced and form the predominant protein in nodules developed in symbiosis with the appropriate species of Rhizobium. The Lb is located in the host-cell cytoplasm of the infected cell5 and is thought to facilitate oxygen diffusion6,7. Amino acid sequencing of the soybean Lbs has revealed at least four primary structures differing only in a few amino acids8-10. We have previously estimated about 40 copies of Lb sequences in the soybean (Glycine max L.) genome by cDNA hybridization4. To investigate Lb gene organization and function, we prepared and characterized a Lb cDNA recombinant molecule, pLb1, and used it to isolate two genomic Lb sequences from a library constructed in Charon 4. We report here that the organization of the two genomic Lb sequences is quite distinct and one of them seems to have an intervening sequence(s). Hybridization of pLb1 with genomic DNA from various tissues showed that Lb sequences are dispersed through more than 30 kilobases of genomic DNA and that there is no apparent sequence rearrangement or methylation changes following induction of Lb genes.

  9. Marsupial Genome Sequences: Providing Insight into Evolution and Disease

    Directory of Open Access Journals (Sweden)

    Janine E. Deakin

    2012-01-01

    Full Text Available Marsupials (metatherians, with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil, with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences.

  10. Novel algorithms for protein sequence analysis

    NARCIS (Netherlands)

    Ye, Kai

    2008-01-01

    Each protein is characterized by its unique sequential order of amino acids, the so-called protein sequence. Biology”s paradigm is that this order of amino acids determines the protein”s architecture and function. In this thesis, we introduce novel algorithms to analyze protein sequences. Chapter 1

  11. Complete genome sequence of Menghai flavivirus, a novel insect-specific flavivirus from China.

    Science.gov (United States)

    Zhang, Xianglilan; Guo, Xiaofang; Fan, Hang; Zhao, Qiumin; Zuo, Shuqing; Sun, Qiang; Pei, Guangqian; Cheng, Shi; An, Xiaoping; Wang, Yunfei; Mi, Zhiqiang; Huang, Yong; Zhang, Zhiyi; Tong, Yigang; Zhou, Hongning; Zhang, Jiusong

    2017-05-01

    Menghai flavivirus (MFV) was isolated from Aedes albopictus in Menghai county of Yunnan Province, China, during an arboviruses screening program in August 2010. Whole genome sequencing of MFV was performed using an Ion PGM™ Sequencer. The complete genome of MFV was 10897 nucleotides in length and encoded a polyprotein and fairly interesting flavivirus orf (FIFO). The polyprotein contained three flavivirus structural proteins (C, prM/M and E) and seven nonstructural proteins. Nucleotide BLAST analysis revealed that the MFV genome showed highest similarity to Xishuangbanna Aedes flavivirus, a novel insect-specific flavivirus recently isolated from the same area. These species shared a query cover of 99%, but only 71% identity, while FIFO showed no similarity with any of the published sequences. Genomic and phylogenetic analyses suggested that MFV was a novel species of the genus Flavivirus. Our findings enrich our understanding of the genetics and prevalence of the family Flaviviridae.

  12. Comparison and correlation of Simple Sequence Repeats distribution in genomes of Brucella species

    Science.gov (United States)

    Kiran, Jangampalli Adi Pradeep; Chakravarthi, Veeraraghavulu Praveen; Kumar, Yellapu Nanda; Rekha, Somesula Swapna; Kruti, Srinivasan Shanthi; Bhaskar, Matcha

    2011-01-01

    Computational genomics is one of the important tools to understand the distribution of closely related genomes including simple sequence repeats (SSRs) in an organism, which gives valuable information regarding genetic variations. The central objective of the present study was to screen the SSRs distributed in coding and non-coding regions among different human Brucella species which are involved in a range of pathological disorders. Computational analysis of the SSRs in the Brucella indicates few deviations from expected random models. Statistical analysis also reveals that tri-nucleotide SSRs are overrepresented and tetranucleotide SSRs underrepresented in Brucella genomes. From the data, it can be suggested that over expressed tri-nucleotide SSRs in genomic and coding regions might be responsible in the generation of functional variation of proteins expressed which in turn may lead to different pathogenicity, virulence determinants, stress response genes, transcription regulators and host adaptation proteins of Brucella genomes. Abbreviations SSRs - Simple Sequence Repeats, ORFs - Open Reading Frames. PMID:21738309

  13. Complete genome sequence of Brachyspira murdochii type strain (56-150T)

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Munk, Christine [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2010-01-01

    Brachyspira murdochii Stanton et al. 1992 is a non-pathogenic but host-associated spirochete of the family Brachyspiraceae. Initially isolated from the intestinal content of a healthy swine, the group B spirochaetes were first described under the basonym Serpulina murdochii. Members of the family Brachyspiraceae are of great phylogenetic interest because of the extremely isolated location of this family within the phylum Spirochaetes . Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a type strain of a member of the family Brachyspiraceaeand only the second genome sequence from a member of the genus Brachyspira. The 3,241,804 bp long genome with its 2,893 protein-coding and 40 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  14. Complete genome sequence of Brachyspira murdochii type strain (56-150T)

    Science.gov (United States)

    Pati, Amrita; Sikorski, Johannes; Gronow, Sabine; Munk, Christine; Lapidus, Alla; Copeland, Alex; Glavina Del Tio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Detter, John C.; Bruce, David; Tapia, Roxanne; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Spring, Stefan; Rohde, Manfred; Göker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2010-01-01

    Brachyspira murdochii Stanton et al. 1992 is a non-pathogenic, host-associated spirochete of the family Brachyspiraceae. Initially isolated from the intestinal content of a healthy swine, the ‘group B spirochaetes’ were first described as Serpulina murdochii. Members of the family Brachyspiraceae are of great phylogenetic interest because of the extremely isolated location of this family within the phylum ‘Spirochaetes’. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a type strain of a member of the family Brachyspiraceae and only the second genome sequence from a member of the genus Brachyspira. The 3,241,804 bp long genome with its 2,893 protein-coding and 40 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304710

  15. Complete genome sequence of Leptotrichia buccalis type strain (C-1013-bT)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Bruce, David [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Rohde, Christine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2009-01-01

    Leptotrichia buccalis (Robin 1853) Trevisan 1879 is the type species of the genus, and is of phylogenetic interest because of its isolated location in the sparsely populated and neither taxonomically nor genomically adequately accessed family 'Leptotrichiaceae' within the phylum 'Fusobacteria'. Species of Leptotrichia are large, fusiform, non-motile, non-sporulating rods, which often populate the human oral flora. L. buccalis is anaerobic to aerotolerant, and saccharolytic. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the order 'Fusobacteriales' and no more than the second sequence from the phylum 'Fusobacteria'. The 2,465,610 bp long single replicon genome with its 2306 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. Complete genome sequence of Leptotrichia buccalis type strain (C-1013-bT)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, Natalia; Gronow, Sabine; Lapidus, Alla; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Lucas, Susan; Chen, Feng; Tice, Hope; Cheng, Jan-Fang; Saunders, Liz; Bruce, David; Goodwin, Lynne; Brettin, Thomas; Detter, John C.; Han, Cliff; Pitluck, Sam; Mikhailova, Natalia; Pati, Amrita; Mavromatis, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Rohde, Christine; Goker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2009-05-20

    Leptotrichia buccalis (Robin 1853) Trevisan 1879 is the type species of the genus, and is of phylogenetic interest because of its isolated location in the sparsely populated and neither taxonomically nor genomically adequately accessed family 'Leptotrichiaceae' within the phylum 'Fusobacteria'. Species of Leptotrichia are large fusiform non-motile, non-sporulating rods, which often populate the human oral flora. L. buccalis is anaerobic to aerotolerant, and saccharolytic. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first complete genome sequence of the order 'Fusobacteriales' and no more than the second sequence from the phylum 'Fusobacteria'. The 2,465,610 bp long single replicon genome with its 2306 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. Complete genome sequence of Klebsiella pneumoniae phage JD001.

    Science.gov (United States)

    Cui, Zelin; Shen, Wenbin; Wang, Zheng; Zhang, Haotian; Me, Rao; Wang, Yanchun; Zeng, Lingbin; Zhu, Yongzhang; Qin, Jinhong; He, Ping; Guo, Xiaokui

    2012-12-01

    Klebsiella pneumoniae is a member of the family Enterobacteriaceae, opportunistic pathogens that are among the eight most prevalent infectious agents in hospitals. The emergence of multidrug-resistant strains of K. pneumoniae has became a public health problem globally. To develop an effective antimicrobial agent, we isolated a bacteriophage, named JD001, from seawater and sequenced its genome. Comparative genome analysis of phage JD001 with other K. pneumoniae bacteriophages revealed that phage JD001 has little similarity to previously published K. pneumoniae phages KP15, KP32, KP34, and phiKO2. Here we announce the complete genome sequence of JD001 and report major findings from the genomic analysis.

  18. A genomic region of lactococcal temperate bacteriophage TP901-1 encoding major virion proteins

    DEFF Research Database (Denmark)

    Johnsen, Mads G.; Appel, Karen Fuglede; Madsen, Hans Peter Lynge;

    1996-01-01

    Two major structural proteins, MHP (major head protein) and MTP (major tail protein), from the lactococcal temperate phage TP901-1 were sequenced at their amino acid termini, and derived degenerate oligonucleotides were used to locate the corresponding genes in the phage genome. This genomic regi...

  19. The complete chloroplast genome sequence of Dendropanax morbifera (Léveillé).

    Science.gov (United States)

    Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin

    2016-07-01

    The complete chloroplast genome sequence of Dendropanax morbifera, an economically and medicinally important endemic tree species in Korea, was obtained by de novo assembly with whole-genome sequence data and manual correction. A circular 156 366-bp chloroplast genome showed typical chloroplast genome structure comprising a large single copy region of 86 475 bp, a small single copy region of 18 125 bp, and a pair of inverted repeats of 25 883 bp. The chloroplast genome harbored 87 protein-coding genes. Phylogenetic analysis with the chloroplast genome revealed that D. morbifera is most closely related to Dendropanax dentiger, an evergreen tree species in China and Southeastern Asia.

  20. Oxford Nanopore MinION Sequencing and Genome Assembly

    Institute of Scientific and Technical Information of China (English)

    Hengyun Lu; Francesca Giordano; Zemin Ning

    2016-01-01

    The revolution of genome sequencing is continuing after the successful second-generation sequencing (SGS) technology. The third-generation sequencing (TGS) technology, led by Pacific Biosciences (PacBio), is progressing rapidly, moving from a technology once only capable of providing data for small genome analysis, or for performing targeted screening, to one that pro-mises high quality de novo assembly and structural variation detection for human-sized genomes. In 2014, the MinION, the first commercial sequencer using nanopore technology, was released by Oxford Nanopore Technologies (ONT). MinION identifies DNA bases by measuring the changes in electrical conductivity generated as DNA strands pass through a biological pore. Its portability, affordability, and speed in data production makes it suitable for real-time applications, the release of the long read sequencer MinION has thus generated much excitement and interest in the geno-mics community. While de novo genome assemblies can be cheaply produced from SGS data, assem-bly continuity is often relatively poor, due to the limited ability of short reads to handle long repeats. Assembly quality can be greatly improved by using TGS long reads, since repetitive regions can be easily expanded into using longer sequencing lengths, despite having higher error rates at the base level. The potential of nanopore sequencing has been demonstrated by various studies in gen-ome surveillance at locations where rapid and reliable sequencing is needed, but where resources are limited.

  1. A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora.

    Directory of Open Access Journals (Sweden)

    Xiaodong Bai

    Full Text Available Heterorhabditis bacteriophora are entomopathogenic nematodes that have evolved a mutualism with Photorhabdus luminescens bacteria to function as highly virulent insect pathogens. The nematode provides a safe harbor for intestinal symbionts in soil and delivers the symbiotic bacteria into the insect blood. The symbiont provides virulence and toxins, metabolites essential for nematode reproduction, and antibiotic preservation of the insect cadaver. Approximately half of the 21,250 putative protein coding genes identified in the 77 Mbp high quality draft H. bacteriophora genome sequence were novel proteins of unknown function lacking homologs in Caenorhabditis elegans or any other sequenced organisms. Similarly, 317 of the 603 predicted secreted proteins are novel with unknown function in addition to 19 putative peptidases, 9 peptidase inhibitors and 7 C-type lectins that may function in interactions with insect hosts or bacterial symbionts. The 134 proteins contained mariner transposase domains, of which there are none in C. elegans, suggesting an invasion and expansion of mariner transposons in H. bacteriophora. Fewer Kyoto Encyclopedia of Genes and Genomes Orthologies in almost all metabolic categories were detected in the genome compared with 9 other sequenced nematode genomes, which may reflect dependence on the symbiont or insect host for these functions. The H. bacteriophora genome sequence will greatly facilitate genetics, genomics and evolutionary studies to gain fundamental knowledge of nematode parasitism and mutualism. It also elevates the utility of H. bacteriophora as a bridge species between vertebrate parasitic nematodes and the C. elegans model.

  2. Trichomonas vaginalis surface proteins: a view from the genome

    DEFF Research Database (Denmark)

    Hirt, R. P.; Noel, C. J.; Sicheritz-Pontén, Thomas

    2007-01-01

    Surface proteins of mucosal microbial pathogens play multiple and essential roles in initiating and sustaining the colonization of the heavily defended mucosa. The protist Trichomonas vaginalis is one of the most common human sexually transmitted pathogens that colonize the urogenital mucosa....... However, little is known about its surface proteins. The recently completed draft genome sequence of T. vaginalis provides an invaluable resource to guide molecular and cellular characterization of surface proteins and to investigate their role in pathogenicity. Here, we review the existing data on T....... vaginalis surface proteins and summarize some of the main findings from the recent in silico characterization of its candidate surface proteins....

  3. The full mitochondrial genome sequence of Raillietina tetragona from chicken (Cestoda: Davaineidae).

    Science.gov (United States)

    Liang, Jian-Ying; Lin, Rui-Qing

    2016-11-01

    In the present study, the complete mitochondrial DNA (mtDNA) sequence of Raillietina tetragona was sequenced and its gene contents and genome organizations was compared with that of other tapeworm. The complete mt genome sequence of R. tetragona is 14,444 bp in length. It contains 12 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and two non-coding region. All genes are transcribed in the same direction and have a nucleotide composition high in A and T. The contents of A + T of the complete mt genome are 71.4% for R. tetragona. The R. tetragona mt genome sequence provides novel mtDNA marker for studying the molecular epidemiology and population genetics of Raillietina and has implications for the molecular diagnosis of chicken cestodosis caused by Raillietina.

  4. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads

    DEFF Research Database (Denmark)

    Wang, Zhiwen; Hobson, Neil; Galindo, Leonardo

    2012-01-01

    to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep-coverage (approximately 94× raw, approximately 69× filtered) short-sequence reads (44-100 bp), produced a set of scaffolds with N(50) =694 kb, including contigs with N(50)=20.1 kb. The contig....... A total of 43384 protein-coding genes were predicted in the whole-genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (K...... these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species....

  5. Genome sequencing and annotation of Aeromonas sp. HZM

    Directory of Open Access Journals (Sweden)

    Patric Chua

    2015-09-01

    Full Text Available We report the draft genome sequence of Aeromonas sp. strain HZM, isolated from tropical peat swamp forest soil. The draft genome size is 4,451,364 bp with a G + C content of 61.7% and contains 10 rRNA sequences (eight copies of 5S rRNA genes, single copy of 16S and 23S rRNA each. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JEMQ00000000.

  6. Complete Genome Sequence of Phytopathogenic Pectobacterium atrosepticum Bacteriophage Peat1.

    Science.gov (United States)

    Kalischuk, Melanie; Hachey, John; Kawchuk, Lawrence

    2015-08-13

    Pectobacterium atrosepticum is a common phytopathogen causing significant economic losses worldwide. To develop a biocontrol strategy for this blackleg pathogen of solanaceous plants, P. atrosepticum bacteriophage Peat1 was isolated and its genome completely sequenced. Interestingly, morphological and sequence analyses of the 45,633-bp genome revealed that phage Peat1 is a member of the family Podoviridae and most closely resembles the Klebsiella pneumoniae bacteriophage KP34. This is the first published complete genome sequence of a phytopathogenic P. atrosepticum bacteriophage, and details provide important information for the development of biocontrol by advancing our understanding of phage-phytopathogen interactions.

  7. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

    Science.gov (United States)

    Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi

    2017-07-01

    PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.

  8. Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts

    LENUS (Irish Health Repository)

    2011-08-30

    Abstract Background The genus Lactobacillus is characterized by an extraordinary degree of phenotypic and genotypic diversity, which recent genomic analyses have further highlighted. However, the choice of species for sequencing has been non-random and unequal in distribution, with only a single representative genome from the L. salivarius clade available to date. Furthermore, there is no data to facilitate a functional genomic analysis of motility in the lactobacilli, a trait that is restricted to the L. salivarius clade. Results The 2.06 Mb genome of the bovine isolate Lactobacillus ruminis ATCC 27782 comprises a single circular chromosome, and has a G+C content of 44.4%. In silico analysis identified 1901 coding sequences, including genes for a pediocin-like bacteriocin, a single large exopolysaccharide-related cluster, two sortase enzymes, two CRISPR loci and numerous IS elements and pseudogenes. A cluster of genes related to a putative pilin was identified, and shown to be transcribed in vitro. A high quality draft assembly of the genome of a second L. ruminis strain, ATCC 25644 isolated from humans, suggested a slightly larger genome of 2.138 Mb, that exhibited a high degree of synteny with the ATCC 27782 genome. In contrast, comparative analysis of L. ruminis and L. salivarius identified a lack of long-range synteny between these closely related species. Comparison of the L. salivarius clade core proteins with those of nine other Lactobacillus species distributed across 4 major phylogenetic groups identified the set of shared proteins, and proteins unique to each group. Conclusions The genome of L. ruminis provides a comparative tool for directing functional analyses of other members of the L. salivarius clade, and it increases understanding of the divergence of this distinct Lactobacillus lineage from other commensal lactobacilli. The genome sequence provides a definitive resource to facilitate investigation of the genetics, biochemistry and host

  9. Genomic sequence of 'Candidatus Liberibacter solanacearum' haplotype C and its comparison with haplotype A and B genomes

    Science.gov (United States)

    Haapalainen, Minna; Schott, Thomas; Thompson, Sarah M.; Smith, Grant R.; Nissinen, Anne I.; Pirhonen, Minna

    2017-01-01

    Haplotypes A and B of ‘Candidatus Liberibacter solanacearum’ (CLso) are associated with diseases of solanaceous plants, especially Zebra chip disease of potato, and haplotypes C, D and E are associated with symptoms on apiaceous plants. To date, one complete genome of haplotype B and two high quality draft genomes of haplotype A have been obtained for these unculturable bacteria using metagenomics from the psyllid vector Bactericera cockerelli. Here, we present the first genomic sequences obtained for the carrot-associated CLso. These two genomic sequences of haplotype C, FIN114 (1.24 Mbp) and FIN111 (1.20 Mbp), were obtained from carrot psyllids (Trioza apicalis) harboring CLso. Genomic comparisons between the haplotypes A, B and C revealed that the genome organization differs between these haplotypes, due to large inversions and other recombinations. Comparison of protein-coding genes indicated that the core genome of CLso consists of 885 ortholog groups, with the pan-genome consisting of 1327 ortholog groups. Twenty-seven ortholog groups are unique to CLso haplotype C, whilst 11 ortholog groups shared by the haplotypes A and B, are not found in the haplotype C. Some of these ortholog groups that are not part of the core genome may encode functions related to interactions with the different host plant and psyllid species. PMID:28158295

  10. BG7: A New Approach for Bacterial Genome Annotation Designed for Next Generation Sequencing Data

    Science.gov (United States)

    Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Pareja, Eduardo; Tobes, Raquel

    2012-01-01

    BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version – which is developed in Java, takes advantage of Amazon Web Services (AWS) cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future. PMID:23185310

  11. The Genomic Scrapheap Challenge; Extracting Relevant Data from Unmapped Whole Genome Sequencing Reads, Including Strain Specific Genomic Segments, in Rats.

    Science.gov (United States)

    van der Weide, Robin H; Simonis, Marieke; Hermsen, Roel; Toonen, Pim; Cuppen, Edwin; de Ligt, Joep

    2016-01-01

    Unmapped next-generation sequencing reads are typically ignored while they contain biologically relevant information. We systematically analyzed unmapped reads from whole genome sequencing of 33 inbred rat strains. High quality reads were selected and enriched for biologically relevant sequences; similarity-based analysis revealed clustering similar to previously reported phylogenetic trees. Our results demonstrate that on average 20% of all unmapped reads harbor sequences that can be used to improve reference genomes and generate hypotheses on potential genotype-phenotype relationships. Analysis pipelines would benefit from incorporating the described methods and reference genomes would benefit from inclusion of the genomic segments obtained through these efforts.

  12. Genome sequence of the tsetse fly (Glossina morsitans ): Vector of African trypanosomiasis

    KAUST Repository

    Watanabe, Junichi

    2014-04-24

    Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.

  13. Genome sequence of Kocuria varians G6 ssolated from a slaughterhouse in Denmark

    DEFF Research Database (Denmark)

    Raghupathi, Prem Krishnan; Herschend, Jakob; Røder, Henriette Lyng;

    2016-01-01

    We report here the first draft genome sequence ofKocuria variansG6, which was isolated from a meat chopper at a small slaughterhouse in Denmark. The 2.90-Mb genome sequence consists of 95 contigs and contains 2,518 predicted protein-coding genes....

  14. Complete nucleotide sequence and genomic organization of Periplaneta fuliginosa densonucleosis virus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We have cloned the replicative form of the Periplaneta fuliginosa densonucleosis virus (Pf DNV) genome and determined its complete sequence.The sequence has 5454 nucleotides (nt),the genome consists of an internal unique sequence flanked by inverted terminal repeats (201 nt).The first 122 nt at the 5' end and the terminal 122 nt at the 3'end of both plus and minus strands can fold into a typical hairpin structure.The genome contains seven major open reading frames (ORFs).The plus strand has 4 ORFs occupying the 5' half of the plus strand,whereas the others span the 5' half of the minus strand.Two potential promoters were found at map units (m.u.) 3 and 97.Computer analysis of sequence homologies with other parvoviruses suggests that the plus strand of Pf DNV encodes very likely the nonstructural proteins and the minus strand probably encodes the structural proteins.

  15. Pitfalls of mapping high throughput sequencing data to repetitive sequences: Piwi’s genomic targets still not identified

    Science.gov (United States)

    Marinov, Georgi K.; Wang, Jie; Handler, Dominik; Wold, Barbara J.; Weng, Zhiping; Hannon, Gregory J.; Aravin, Alexei A.; Zamore, Phillip D.; Brennecke, Julius; Toth, Katalin Fejes

    2015-01-01

    Huang et al. (2013) recently reported that chromatin immuno-precipitation followed by sequencing (ChIP-seq) reveals the genome-wide sites of occupancy by Piwi - a piRNA-guided Argonaute protein central to transposon silencing in Drosophila. Their study also reported that loss of Piwi causes widespread rewiring of transcriptional patterns as evidenced by changes in RNA polymerase II occupancy across the genome. Here we reanalyze their underlying deep sequencing data and report that the data do not support the author’s central conclusions. PMID:25805138

  16. Complete genome sequence of Paludibacter propionicigenes type strain (WB4T)

    Science.gov (United States)

    Gronow, Sabine; Munk, Christine; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxane; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Brambilla, Evelyne; Rohde, Manfred; Göker, Markus; Detter, John C.; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2011-01-01

    Paludibacter propionicigenes Ueki et al. 2006 is the type species of the genus Paludibacter, which belongs to the family Porphyromonadaceae. The species is of interest because of the position it occupies in the tree of life where it can be found in close proximity to members of the genus Dysgonomonas. This is the first completed genome sequence of a member of the genus Paludibacter and the third sequence from the family Porphyromonadaceae. The 3,685,504 bp long genome with its 3,054 protein-coding and 64 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21475585

  17. Complete genome sequence of Odoribacter splanchnicus type strain (1651/6T)

    Energy Technology Data Exchange (ETDEWEB)

    Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Zeytun, Ahmet [Los Alamos National Laboratory (LANL); Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Hammon, Nancy [Joint Genome Institute, Walnut Creek, California; Deshpande, Shweta [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Pagani, Ioanna [Joint Genome Institute, Walnut Creek, California; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Christine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2011-01-01

    Odoribacter splanchnicus (Werner et al. 1975) Hardham et al. 2008 is the type species of the genus Odoribacter, which belongs to the family Porphyromonadaceae in the order Bacteroidales . The species is of interest because members of the Odoribacter form an isolated cluster within the Porphyromonadaceae. This is the first completed genome sequence of a member of the genus Odoribacter and the fourth sequence from the family Porphyromonadaceae. The 4,392,288 bp long genome with its 3,672 protein-coding and 74 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Complete genome sequence of Paludibacter propionicigenes type strain (WB4T)

    Energy Technology Data Exchange (ETDEWEB)

    Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Munk, Christine [Joint Genome Institute, Walnut Creek, California; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Hammon, Nancy [Joint Genome Institute, Walnut Creek, California; Deshpande, Shweta [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2011-01-01

    Paludibacter propionicigenes Ueki et al. 2006 is the type species of the genus Paludibacter, which belongs to the family Porphyromonadaceae. The species is of interest because of the position it occupies in the tree of life where it can be found in close proximity to members of the genus Dysgonomonas. This is the first completed genome sequence of a member of the genus Paludibacter and the third sequence from the family Porphyromonadaceae. The 3,685,504 bp long genome with its 3,054 protein-coding and 64 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  19. Complete genome sequence of the plant-associated Serratia plymuthica strain AS13

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Finlay, Roger D. [Uppsala University, Uppsala, Sweden; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Han, James [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Held, Brittany [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J C [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Hogberg, Nils [Uppsala University, Uppsala, Sweden

    2012-01-01

    Serratia plymuthica AS13 is a plant-associated Gammaproteobacteria, isolated from rapeseed roots. It is of special interest because of its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The complete genome of S. plymuthica AS13 consists of a 5,442,549 bp circular chromosome. The chromosome contains 4,951 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced as part of the project enti- tled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens within the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  20. ICDS database: interrupted CoDing sequences in prokaryotic genomes.

    Science.gov (United States)

    Perrodou, Emmanuel; Deshayes, Caroline; Muller, Jean; Schaeffer, Christine; Van Dorsselaer, Alain; Ripp, Raymond; Poch, Olivier; Reyrat, Jean-Marc; Lecompte, Odile

    2006-01-01

    Unrecognized frameshifts, in-frame stop codons and sequencing errors lead to Interrupted CoDing Sequence (ICDS) that can seriously affect all subsequent steps of functional characterization, from in silico analysis to high-throughput proteomic projects. Here, we describe the Interrupted CoDing Sequence database containing ICDS detected by a similarity-based approach in 80 complete prokaryotic genomes. ICDS can be retrieved by species browsing or similarity searches via a web interface (http://www-bio3d-igbmc.u-strasbg.fr/ICDS/). The definition of each interrupted gene is provided as well as the ICDS genomic localization with the surrounding sequence. Furthermore, to facilitate the experimental characterization of ICDS, we propose optimized primers for re-sequencing purposes. The database will be regularly updated with additional data from ongoing sequenced genomes. Our strategy has been validated by three independent tests: (i) ICDS prediction on a benchmark of artificially created frameshifts, (ii) comparison of predicted ICDS and results obtained from the comparison of the two genomic sequences of Bacillus licheniformis strain ATCC 14580 and (iii) re-sequencing of 25 predicted ICDS of the recently sequenced genome of Mycobacterium smegmatis. This allows us to estimate the specificity and sensitivity (95 and 82%, respectively) of our program and the efficiency of primer determination.

  1. Complete Chloroplast Genome Sequence of Aquilaria sinensis (Lour. Gilg and the Evolution Analysis within the Malvalesorder

    Directory of Open Access Journals (Sweden)

    Ying eWang

    2016-03-01

    Full Text Available Aquilaria sinensis (Lour. Gilg is an important medicinal woody plant producing agarwood, which is widely used in traditional Chinese medicine. High-throughput sequencing of chloroplast (cp genomes enhanced the understanding about evolutionary relationships within plant families. In this study, we determined the complete cp genome sequences for A. sinensis. The size of the A.sinensis cp genome was 159,565 bp. This genome included a large single-copy region of 87,482 bp, a small single-copy region of 19,857 bp, and a pair of inverted repeats (IRa and IRb of 26,113 bp each. The GC content of the genome was 37.11%. The A.sinensis cp genome encoded 113 functional genes, including 82 protein-coding genes, 27 tRNA genes, and 4 rRNA genes. Seven genes were duplicated in the protein-coding genes, whereas 11 genes were duplicated in the RNA genes. A total of 45 polymorphic simple-sequence repeat loci and 60 pairs of large repeats were identified. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited high A/T content. Moreover, 33 pairs of large repeat sequences were located in the protein-coding genes, whereas 27 pairs were located in the intergenic regions. Aquilaria sinensis cp genome bias ended with A/T on the basis of codon usage. The distribution of codon usage in A.sinensis cp genome was most similar to that in the Gonystylus bancanus cp genome. Comparative results of 82 protein-coding genes from 29 species of cp genomes demonstrated that A.sinensis was a sister species to G. bancanus within the Malvales order. Aquilaria sinensis cp genome presented the highest sequence similarity of >90% with the G. bancanus cp genome by using CGView Comparison Tool. This finding strongly supports the placement of A.sinensis as a sister to G. bancanus within the Malvales order. The complete A.sinensis cp genome information will be highly beneficial for further studies on this traditional

  2. Draft Genome Sequence of Photorhabdus luminescens Strain DSPV002N Isolated from Santa Fe, Argentina.

    Science.gov (United States)

    Palma, Leopoldo; Del Valle, Eleodoro E; Frizzo, Laureano; Berry, Colin; Caballero, Primitivo

    2016-07-28

    Here, we report the draft genome sequence of Photorhabdus luminescens strain DSPV002N, which consists of 177 contig sequences accounting for 5,518,143 bp, with a G+C content of 42.3% and 4,701 predicted protein-coding genes (CDSs). From these, 27 CDSs exhibited significant similarity with insecticidal toxin proteins from Photorhabdus luminescens subsp. laumondii TT01.

  3. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    Directory of Open Access Journals (Sweden)

    Martijn Staats

    Full Text Available Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes, but at least generating vital comparative genomic data for testing (phylogenetic, demographic and genetic hypotheses, that become increasingly more

  4. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    Science.gov (United States)

    Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal

  5. Real-time, portable genome sequencing for Ebola surveillance

    Science.gov (United States)

    Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan HJ; Becker-Ziaja, Beate; Boettcher, Jan-Peter; Cabeza-Cabrerizo, Mar; Camino-Sanchez, Alvaro; Carter, Lisa L.; Doerrbecker, Juiliane; Enkirch, Theresa; Dorival, Isabel Graciela García; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigail; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallash, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Yasmin; Sachse, Andrea; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Trina, Racine; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N’Faly; Williams, Cecelia V.; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Franck; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, Jamie; Rachwal, Philip; Turner, Daniel; Pollakis, Georgios; Hiscox, Julian A.; Matthews, David A.; O’Shea, Matthew K.; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Woelfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A.; Koivogui, Lamine; Diallo, Boubacar; Keita, Sakoba; Rambaut, Andrew; Formenty, Pierre; Gunther, Stephan; Carroll, Miles W.

    2016-01-01

    The Ebola virus disease (EVD) epidemic in West Africa is the largest on record, responsible for >28,599 cases and >11,299 deaths 1. Genome sequencing in viral outbreaks is desirable in order to characterize the infectious agent to determine its evolutionary rate, signatures of host adaptation, identification and monitoring of diagnostic targets and responses to vaccines and treatments. The Ebola virus genome (EBOV) substitution rate in the Makona strain has been estimated at between 0.87 × 10−3 to 1.42 × 10−3 mutations per site per year. This is equivalent to 16 to 27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic 2-7. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought-after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions 8. Genomic surveillance during the epidemic has been sporadic due to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities 9. In order to address this problem, we devised a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. Here we present sequence data and analysis of 142 Ebola virus (EBOV) samples collected during the period March to October 2015. We were able to generate results in less than 24 hours after receiving an Ebola positive sample, with the sequencing process taking as little as 15-60 minutes. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks. PMID:26840485

  6. Sequencing of chloroplast genome using whole cellular DNA and Solexa sequencing technology

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2012-11-01

    Full Text Available Sequencing of the chloroplast genome using traditional sequencing methods has been difficult because of its size (>120 kb and the complicated procedures required to prepare templates. To explore the feasibility of sequencing the chloroplast genome using DNA extracted from whole cells and Solexa sequencing technology, we sequenced whole cellular DNA isolated from leaves of three Brassica rapa accessions with one lane per accession. In total, 246 Mb, 362Mb, 361 Mb sequence data were generated for the three accessions Chiifu-401-42, Z16 and FT, respectively. Microreads were assembled by reference-guided assembly using the cpDNA sequences of B. rapa, Arabidopsis thaliana, and Nicotiana tabacum. We achieved coverage of more than 99.96% of the cp genome in the three tested accessions using the B. rapa sequence as the reference. When A. thaliana or N. tabacum sequences were used as references, 99.7–99.8% or 95.5–99.7% of the B. rapa chloroplast genome was covered, respectively. These results demonstrated that sequencing of whole cellular DNA isolated from young leaves using the Illumina Genome Analyzer is an efficient method for high-throughput sequencing of chloroplast genome.

  7. The Release 6 reference sequence of the Drosophila melanogaster genome

    Science.gov (United States)

    Carlson, Joseph W.; Wan, Kenneth H.; Park, Soo; Mendez, Ivonne; Galle, Samuel E.; Booth, Benjamin W.; Pfeiffer, Barret D.; George, Reed A.; Svirskas, Robert; Krzywinski, Martin; Schein, Jacqueline; Accardo, Maria Carmela; Damia, Elisabetta; Messina, Giovanni; Méndez-Lago, María; de Pablos, Beatriz; Demakova, Olga V.; Andreyeva, Evgeniya N.; Boldyreva, Lidiya V.; Marra, Marco; Carvalho, A. Bernardo; Dimitri, Patrizio; Villasante, Alfredo; Zhimulev, Igor F.; Rubin, Gerald M.; Karpen, Gary H.

    2015-01-01

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads. PMID:25589440

  8. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  9. Comparative genomics beyond sequence-based alignments

    DEFF Research Database (Denmark)

    Þórarinsson, Elfar; Yao, Zizhen; Wiklund, Eric D.;

    2008-01-01

    Recent computational scans for non-coding RNAs (ncRNAs) in multiple organisms have relied on existing multiple sequence alignments. However, as sequence similarity drops, a key signal of RNA structure--frequent compensating base changes--is increasingly likely to cause sequence-based alignment me...

  10. Complete genome sequence of the facultatively anaerobic, appendaged bacterium Muricauda ruestringensis type strain (B1T)

    Energy Technology Data Exchange (ETDEWEB)

    Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Pan, Chongle [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

    2012-01-01

    Muricauda ruestringensis Bruns et al. 2001 is the type species of the genus Muricauda, which belongs to the family Flavobacteriaceae in the phylum Bacteroidetes. The species is of interest because of its isolated position in the genomically unexplored genus Muricauda, which is located in a part of the tree of life containing not many organisms with sequenced genomes. The genome, which consists of a circular chromosome of 3,842,422 bp length with a total of 3,478 protein-coding and 47 RNA genes, is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  11. Complete genome sequence of the facultatively anaerobic, appendaged bacterium Muricauda ruestringensis type strain (B1(T)).

    Science.gov (United States)

    Huntemann, Marcel; Teshima, Hazuki; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Pan, Chongle; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Göker, Markus; Detter, John C; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Woyke, Tanja

    2012-05-25

    Muricauda ruestringensis Bruns et al. 2001 is the type species of the genus Muricauda, which belongs to the family Flavobacteriaceae in the phylum Bacteroidetes. The species is of interest because of its isolated position in the genomically unexplored genus Muricauda, which is located in a part of the tree of life containing not many organisms with sequenced genomes. The genome, which consists of a circular chromosome of 3,842,422 bp length with a total of 3,478 protein-coding and 47 RNA genes, is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  12. Sequencing and computational analysis of complete genome sequences of Citrus yellow mosaic badna virus from acid lime and pummelo.

    Science.gov (United States)

    Borah, Basanta K; Johnson, A M Anthony; Sai Gopal, D V R; Dasgupta, Indranil

    2009-08-01

    Citrus yellow mosaic badna virus (CMBV), a member of the Family Caulimoviridae, Genus Badnavirus, is the causative agent of Citrus mosaic disease in India. Although the virus has been detected in several citrus species, only two full-length genomes, one each from Sweet orange and Rangpur lime, are available in publicly accessible databases. In order to obtain a better understanding of the genetic variability of the virus in other citrus mosaic-affected citrus species, we performed the cloning and sequence analysis of complete genomes of CMBV from two additional citrus species, Acid lime and Pummelo. We show that CMBV genomes from the two hosts share high homology with previously reported CMBV sequences and hence conclude that the new isolates represent variants of the virus present in these species. Based on in silico sequence analysis, we predict the possible function of the protein encoded by one of the five ORFs.

  13. Analysis of Simple Sequence Repeats in Genomes of Rhizobia

    Institute of Scientific and Technical Information of China (English)

    GAO Ya-mei; HAN Yi-qiang; TANG Hui; SUN Dong-mei; WANG Yan-jie; WANG Wei-dong

    2008-01-01

    Simple sequence repeats (SSRs) or microsatellites, as genetic markers, are ubiquitous in genomes of various organisms. The analysis of SSR in rhizobia genome provides useful information for a variety of applications in population genetics of rhizobia. We analyzed the occurrences, relative abundance, and relative density of SSRs, the most common in Bradyrhizobium japonicum, Mesorhizobium loti, and Sinorhizobium meliloti genomes se-quenced in the microorganisms tandem repeats database, and SSRs in the three species genomes were compared with each other. The result showed that there were 1 410, 859, and 638 SSRs in B. japonicum, M. loti, and 5. meliloti genomes, respectively. In the genomes of B. japonicum, M. loti, and 5. meliloti, tetranucleotide, pentanucleotide, and hexanucleotide repeats were more abundant and indicated higher mutation rates in these species. The least abundance was mononucleotide repeat. The SSRs type and distribution were similar among these species.

  14. Perspectives of Integrative Cancer Genomics in Next Generation Sequencing Era

    Directory of Open Access Journals (Sweden)

    So Mee Kwon

    2012-06-01

    Full Text Available The explosive development of genomics technologies including microarrays and next generation sequencing (NGS has provided comprehensive maps of cancer genomes, including the expression of mRNAs and microRNAs, DNA copy numbers, sequence variations, and epigenetic changes. These genome-wide profiles of the genetic aberrations could reveal the candidates for diagnostic and/or prognostic biomarkers as well as mechanistic insights into tumor development and progression. Recent efforts to establish the huge cancer genome compendium and integrative omics analyses, so-called "integromics", have extended our understanding on the cancer genome, showing its daunting complexity and heterogeneity. However, the challenges of the structured integration, sharing, and interpretation of the big omics data still remain to be resolved. Here, we review several issues raised in cancer omics data analysis, including NGS, focusing particularly on the study design and analysis strategies. This might be helpful to understand the current trends and strategies of the rapidly evolving cancer genomics research.

  15. CLONING AND ANALYSIS OF THE GENOMIC DNA SEQUENCE OF AUGMENTER OF LIVER REGENERATION FROM RAT

    Institute of Scientific and Technical Information of China (English)

    董菁; 成军; 王勤环; 施双双; 王刚; 斯崇文

    2002-01-01

    Objective.To search for genomic DNA sequence of the augmenter of liver regeneration (ALR) of rat.Methods.Polymerase chain reaction (PCR) with specific primers was used to amplify the sequence from the rat genome.Results.A piece of genomic DNA sequence and a piece of pseudogene of rat ALR were identified.The lengths of the gene and pseudogene are 1508 bp and 442 bp,respectively.The ALR gene of rat includes 3 exons and 2 introns.The 442 bp DNA sequence may represent a pseudogene or a ALR related peptide.Predicted amino acid sequence analysis showed that there were 14 different amino acid residues between the gene and pseudogene.ALR related peptide is 84 amino acid residues in length and relates closely to ALR protein.Conclusion.There might be a multigene family of ALR in rat.

  16. Correction for Measurement Error from Genotyping-by-Sequencing in Genomic Variance and Genomic Prediction Models

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Janss, Luc; Jensen, Just

    Genotyping-by-sequencing (GBSeq) is becoming a cost-effective genotyping platform for species without available SNP arrays. GBSeq considers to sequence short reads from restriction sites covering a limited part of the genome (e.g., 5-10%) with low sequencing depth per individual (e.g., 5-10X per....... In the current work we show how the correction for measurement error in GBSeq can also be applied in whole genome genomic variance and genomic prediction models. Bayesian whole-genome random regression models are proposed to allow implementation of large-scale SNP-based models with a per-SNP correction...... for measurement error. We show correct retrieval of genomic explained variance, and improved genomic prediction when accounting for the measurement error in GBSeq data...

  17. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.; Cao, Jun; Cheng, Jan-Fang; Clark, Richard M.; Fahlgren, Noah; Fawcett, Jeffrey A.; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hollister, Jesse D.; Ossowski, Stephan; Ottilar, Robert P.; Salamov, Asaf A.; Schneeberger, Korbinian; Spannagl, Manuel; Wang, Xi; Yang, Liang; Nasrallah, Mikhail E.; Bergelson, Joy; Carrington, James C.; Gaut, Brandon S.; Schmutz, Jeremy; Mayer, Klaus F. X.; Van de Peer, Yves; Grigoriev, Igor V.; Nordborg, Magnus; Weigel, Detlef; Guo, Ya-Long

    2011-04-29

    In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspect centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.

  18. REVISITING MOLECULAR CLONING TO SOLVE GENOME SEQUENCING PROJECT CONFLICTS

    National Research Council Canada - National Science Library

    Hugo A Barrera-Saldaña; Aarón Daniel Ramírez-Sánchez; Tiffany Editth Palacios-Tovar; Dionicio Aguirre-Treviño; Saúl Felipe Karr-de-León

    2017-01-01

    .... Molecular cloning was chosen as the most straight-forward strategy to solve the dilemma. The initial characterization of recombinant plasmids by restriction enzyme digestion confirmed the presence of two genomic sequences...

  19. Complete Genome Sequence of Mycobacterium phlei Type Strain RIVM601174

    KAUST Repository

    Abdallah, A. M.

    2012-05-24

    Mycobacterium phlei is a rapidly growing nontuberculous Mycobacterium species that is typically nonpathogenic, with few reported cases of human disease. Here we report the whole genome sequence of M. phlei type strain RIVM601174.

  20. Draft Genome Sequence of Coprobacter fastidiosus NSB1T

    Science.gov (United States)

    Chaplin, A. V.; Efimov, B. A.; Khokhlova, E. V.; Kafarskaia, L. I.; Tupikin, A. E.; Kabilov, M. R.

    2014-01-01

    Coprobacter fastidiosus is a Gram-negative obligate anaerobic bacterium belonging to the phylum Bacteroidetes. In this work, we report the draft genome sequence of C. fastidiosus strain NSB1T isolated from human infant feces. PMID:24604645

  1. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lijin [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); Goedegebuure, Peter [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Mardis, Elaine R. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); The Genome Institute at Washington University School of Medicine, St. Louis, MO 63108 (United States); Ellis, Matthew J.C. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 (United States); Zhang, Xiuli; Herndon, John M. [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); Fleming, Timothy P. [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Carreno, Beatriz M. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 (United States); Hansen, Ted H. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Gillanders, William E., E-mail: gillandersw@wudosis.wustl.edu [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States)

    2011-11-25

    New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.

  2. Draft Genome Sequences of Nine Cyanobacterial Strains from Diverse Habitats

    Science.gov (United States)

    Zhu, Tao; Hou, Shengwei

    2017-01-01

    ABSTRACT Here, we report the annotated draft genome sequences of nine different cyanobacteria, which were originally collected from different habitats, including hot springs, terrestrial, freshwater, and marine environments, and cover four of the five morphological subsections of cyanobacteria. PMID:28254973

  3. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    William E. Gillanders

    2011-11-01

    Full Text Available New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.

  4. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-12-01

    Full Text Available Abstract Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas.

  5. Comparative analysis of whole-genome sequences of Streptococcus suis

    Institute of Scientific and Technical Information of China (English)

    LI Pengli; WEI Wu; LI Yixue; MA Yuanyuan; DING Guohui; LI Xiaoping; WANG Xiaojing; ZHANG Liwen; SUN Jingchun; WANG Yong; TU Kang; WANG Ningning; HAO Pei; WANG Chuan; CAO Zhiwei; SHI Tieliu

    2006-01-01

    The outbreak of Streptococcus suis recently in some districts of Sichuan Province in China has caused over 30 deaths and over 200 infections in human beings. In order to study the pathogenicity mechanism and to prevent the bacteria from spreading and infecting human beings and swine, we have annotated and analyzed the genomes of two strains, Streptococcus suis P1/7 and 89-1591 respectively. The whole length of P1/7 is 2.007 Mb,and has 1969 ORFs. In contrast, the partial genome sequence of 89-1591 is 1.98 Mb in length and exists in 177 contigs with 1918 ORFs. Analysis shows that the average lengths of CDSs in two genomes are very close, and the numbers of the homolog ORFs are 1306 between those two strains. Most of the toxicity factors of the two strains are homologeous, but there are still some significant differences between those two strains. For example, among the 11 genes (cps2A-cps2K) encoding for the capsules in P1/7, 4(cps2A, 2B, 2I, 2J) are not detected in strain 89-1591.At the same time, the genes encoding EF and Haemolysin in P1/7 are also not found in strain 89-1591. Besides, the genes related to DNA replication, repair and recombination differ from each other significantly and there also exist certain differences among the surface proteins. Those characteristics indicate that those two strains have evolved their own specific functions to adapt to the different environments and that the pathogenesis of the two strains is different. We have accumulated comprehensive genomics information for future systematic studies of S.sui. Our results are helpful for disease prevention,vaccine development, as well as drug design for S.suis.

  6. Complete genome sequence of Desulfurispirillum indicum strain S5(T).

    Science.gov (United States)

    Bini, Elisabetta; Rauschenbach, Ines; Narasingarao, Priya; Starovoytov, Valentin; Hauser, Lauren; Jeffries, Cynthia D; Land, Miriam; Bruce, David; Detter, Chris; Goodwin, Lynne; Han, Shunsheng; Held, Brittany; Tapia, Roxanne; Copeland, Alex; Ivanova, Natalia; Mikhailova, Natalia; Nolan, Matt; Pati, Amrita; Pennacchio, Len; Pitluck, Sam; Woyke, Tanja; Häggblom, Max

    2011-12-31

    Desulfurispirillum indicum strain S5(T) is a strictly anaerobic bacterium isolated from river sediment in Chennai, India. D. indicum belongs to the deep branching phylum of Chrysiogenetes, which currently only includes three other cultured species. Strain S5(T) is the type strain of the species and it is capable of growth using selenate, selenite, arsenate, nitrate or nitrite as terminal electron acceptors. The 2,928,377 bp genome encodes 2,619 proteins and 49 RNA genes, and the information gained from its sequence will be relevant to the elucidation of microbially-mediated transformations of arsenic and selenium, in addition to deepening our knowledge of the underrepresented phylum of Chrysiogenetes.

  7. The complete chloroplast genome sequence of Dianthus superbus var. longicalycinus.

    Science.gov (United States)

    Gurusamy, Raman; Lee, Do-Hyung; Park, SeonJoo

    2016-05-01

    The complete chloroplast genome (cpDNA) sequence of Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicine was reported and characterized. The cpDNA of Dianthus superbus var. longicalycinus is 149,539 bp, with 36.3% GC content. A pair of inverted repeats (IRs) of 24,803 bp is separated by a large single-copy region (LSC, 82,805 bp) and a small single-copy region (SSC, 17,128 bp). It encodes 85 protein-coding genes, 36 tRNA genes and 8 rRNA genes. Of 129 individual genes, 13 genes encoded one intron and three genes have two introns.

  8. Complete Genome Sequence of Treponema paraluiscuniculi, Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay

    Science.gov (United States)

    Šmajs, David; Zobaníková, Marie; Strouhal, Michal; Čejková, Darina; Dugan-Rocha, Shannon; Pospíšilová, Petra; Norris, Steven J.; Albert, Tom; Qin, Xiang; Hallsworth-Pepin, Kym; Buhay, Christian; Muzny, Donna M.; Chen, Lei; Gibbs, Richard A.; Weinstock, George M.

    2011-01-01

    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies. PMID:21655244

  9. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay.

    Directory of Open Access Journals (Sweden)

    David Šmajs

    Full Text Available Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp, arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51. In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84 affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9% of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies.

  10. Intra-species sequence comparisons for annotating genomes

    Energy Technology Data Exchange (ETDEWEB)

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  11. Genome Sequence of Mycobacterium Phage Waterfoul

    Science.gov (United States)

    Jackson, Paige N.; Embry, Ella K.; Johnson, Christa O.; Watson, Tiara L.; Weast, Sayre K.; DeGraw, Caroline J.; Douglas, Jessica R.; Sellers, J. Michael; D’Angelo, William A.

    2016-01-01

    Waterfoul is a newly isolated temperate siphovirus of Mycobacterium smegmatis mc2155. It was identified as a member of the K5 cluster of Mycobacterium phages and has a 61,248-bp genome with 95 predicted genes. PMID:27856585

  12. Genome sequencing and characterization analysis of a Beijing isolate of chicken corona virus infectious bronchitis virus

    Institute of Scientific and Technical Information of China (English)

    JIN Weiwu; YU Jialin; LI Ning; GONG Yuanshi; SUN Qixin; CHEN Zhangliang; CHEN Chen; ZHANG Ying; ZHAO Yiqiang; FENG Jidong; CHEN Fuyong; WU Qingming; YANG Hanchun; WANG Ming

    2004-01-01

    Avian infectious bronchitis virus (AIBV) is lassified as a member of the genus coronavirus in the family coronaviridae. The enveloped virus has a positive-sense, single-stranded RNA genome of approximately 28 kilo-bases,which has a 5′ cap structure and 3′ polyadenylation tract.The complete genome sequence of infectious bronchitis virus (IBV), Beijing isolate, was determined by cloning sequencing and primer walking. The whole genome is 27733 nucleotides in length, has ten open reading frames: 5′-orfla-orflab-s-3a-3b-e-m- 6a-6b-n-3′. Alignments of the genome sequence of IBV Beijing isolate with those of two AIBV strains and one SARS coronavirus were performed respectively. The genome sequence of IBV Beijing isolate compared with that of the IBV strain LX4 (uncompleted, 19440 bp in size) was 91.2%similarity. However, the full-length genome sequence of IBV Beijing isolate was 85.2% identity to that of IBV Strain Beaudette, and was only 50.8% homology to that of SARS coronavirus. The results showed that the genome of IBV has remarkable variation. And IBV Beijing isolate is not closely related to SARS coronavirus. Phylogenetic analyses based on the whole genome sequence, S protein, M protein and N protein, also showed that AIBV Beijing isolate is lone virus in group Ⅲ and is distant from SARS coronavirus. In conclusion, this study will contribute to the studies of diagnosis and diseases control on IBV in China.

  13. Draft genome sequence of the Tibetan antelope

    OpenAIRE

    Ge, Ri-Li; Cai, Qingle; Shen, Yong-Yi; San, A.; Ma, Lan; Zhang, Yong; Yi, Xin; Chen, Yan; Yang, Lingfeng; Huang, Ying; He, Rongjun; Hui, Yuanyuan; Hao, Meirong; Li, Yue; Wang, Bo

    2013-01-01

    The Tibetan antelope (Pantholops hodgsonii) is endemic to the extremely inhospitable high-altitude environment of the Qinghai-Tibetan Plateau, a region that has a low partial pressure of oxygen and high ultraviolet radiation. Here we generate a draft genome of this artiodactyl and use it to detect the potential genetic bases of highland adaptation. Compared with other plain-dwelling mammals, the genome of the Tibetan antelope shows signals of adaptive evolution and gene-family expansion in ge...

  14. Gene discovery in the hamster: a comparative genomics approach for gene annotation by sequencing of hamster testis cDNAs

    Directory of Open Access Journals (Sweden)

    Khan Shafiq A

    2003-06-01

    Full Text Available Abstract Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells.

  15. Whole genome and transcriptome sequencing of a B3 thymoma.

    Directory of Open Access Journals (Sweden)

    Iacopo Petrini

    Full Text Available Molecular pathology of thymomas is poorly understood. Genomic aberrations are frequently identified in tumors but no extensive sequencing has been reported in thymomas. Here we present the first comprehensive view of a B3 thymoma at whole genome and transcriptome levels. A 55-year-old Caucasian female underwent complete resection of a stage IVA B3 thymoma. RNA and DNA were extracted from a snap frozen tumor sample with a fraction of cancer cells over 80%. We performed array comparative genomic hybridization using Agilent platform, transcriptome sequencing using HiSeq 2000 (Illumina and whole genome sequencing using Complete Genomics Inc platform. Whole genome sequencing determined, in tumor and normal, the sequence of both alleles in more than 95% of the reference genome (NCBI Build 37. Copy number (CN aberrations were comparable with those previously described for B3 thymomas, with CN gain of chromosome 1q, 5, 7 and X and CN loss of 3p, 6, 11q42.2-qter and q13. One translocation t(11;X was identified by whole genome sequencing and confirmed by PCR and Sanger sequencing. Ten single nucleotide variations (SNVs and 2 insertion/deletions (INDELs were identified; these mutations resulted in non-synonymous amino acid changes or affected splicing sites. The lack of common cancer-associated mutations in this patient suggests that thymomas may evolve through mechanisms distinctive from other tumor types, and supports the rationale for additional high-throughput sequencing screens to better understand the somatic genetic architecture of thymoma.

  16. Draft genome sequence of Therminicola potens strain JR

    Energy Technology Data Exchange (ETDEWEB)

    Byrne-Bailey, K.G.; Wrighton, K.C.; Melnyk, R.A.; Agbo, P.; Hazen, T.C.; Coates, J.D.

    2010-07-01

    'Thermincola potens' strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR.

  17. Complete Genome Sequence of Phytopathogenic Pectobacterium atrosepticum Bacteriophage Peat1

    OpenAIRE

    Kalischuk, Melanie; Hachey, John; Kawchuk, Lawrence

    2015-01-01

    Pectobacterium atrosepticum is a common phytopathogen causing significant economic losses worldwide. To develop a biocontrol strategy for this blackleg pathogen of solanaceous plants, P. atrosepticum bacteriophage Peat1 was isolated and its genome completely sequenced. Interestingly, morphological and sequence analyses of the 45,633-bp genome revealed that phage Peat1 is a member of the family Podoviridae and most closely resembles the Klebsiella pneumoniae bacteriophage KP34. This is the fir...

  18. Triplex-forming oligonucleotide target sequences in the human genome

    OpenAIRE

    Goñi, J Ramon; de la Cruz, Xavier; Orozco, Modesto

    2004-01-01

    The existence of sequences in the human genome which can be a target for triplex formation, and accordingly are candidates for anti-gene therapies, has been studied by using bioinformatics tools. It was found that the population of triplex-forming oligonucleotide target sequences (TTS) is much more abundant than that expected from simple random models. The population of TTS is large in all the genome, without major differences between chromosomes. A wide analysis along annotated regions of th...

  19. Draft Genome Sequence of Bacillus tequilensis Strain FJAT-14262a

    OpenAIRE

    Chen, Qian-Qian; Liu, Bo; Liu, Guo-hong; Wang, Jie-ping; Che, Jian-Mei

    2015-01-01

    Bacillus tequilensis FJAT-14262a is a Gram-positive rod-shaped bacterium. Here, we report the 4,038,551-bp genome sequence of B. tequilensis FJAT-14262a, which will provide useful information for genomic taxonomy and phylogenomics of Bacillus.

  20. Draft Genome Sequence of Bacillus tequilensis Strain FJAT-14262a.

    Science.gov (United States)

    Chen, Qian-Qian; Liu, Bo; Liu, Guo-Hong; Wang, Jie-Ping; Che, Jian-Mei

    2015-11-12

    Bacillus tequilensis FJAT-14262a is a Gram-positive rod-shaped bacterium. Here, we report the 4,038,551-bp genome sequence of B. tequilensis FJAT-14262a, which will provide useful information for genomic taxonomy and phylogenomics of Bacillus.

  1. Finished Genome Sequence of Collimonas arenae Cal35

    NARCIS (Netherlands)

    Wu, Je-Jia; de Jager, Victor; Deng, Wen-ling; Leveau, Johan

    2015-01-01

    We announce the finished genome sequence of soil forest isolate Collimonas arenae Cal35, which comprises a 5.6-Mbp chromosome and 41-kb plasmid. The Cal35 genome is the second one published for the bacterial genus Collimonas and represents the first opportunity for high-resolution comparison of geno

  2. Whole-Genome Sequences of Three Symbiotic Endozoicomonas Bacteria

    KAUST Repository

    Neave, Matthew J.

    2014-08-14

    Members of the genus Endozoicomonas associate with a wide range of marine organisms. Here, we report on the whole-genome sequencing, assembly, and annotation of three Endozoicomonas type strains. These data will assist in exploring interactions between Endozoicomonas organisms and their hosts, and it will aid in the assembly of genomes from uncultivated Endozoicomonas spp.

  3. Finished Genome Sequence of Collimonas arenae Cal35

    NARCIS (Netherlands)

    Wu, Je-Jia; de Jager, Victor; Deng, Wen-ling; Leveau, Johan

    2015-01-01

    We announce the finished genome sequence of soil forest isolate Collimonas arenae Cal35, which comprises a 5.6-Mbp chromosome and 41-kb plasmid. The Cal35 genome is the second one published for the bacterial genus Collimonas and represents the first opportunity for high-resolution comparison of geno

  4. Complete Genome Sequence of Bacillus thuringiensis Bacteriophage Smudge.

    Science.gov (United States)

    Cornell, Jessica L; Breslin, Eileen; Schuhmacher, Zachary; Himelright, Madison; Berluti, Cassandra; Boyd, Charles; Carson, Rachel; Del Gallo, Elle; Giessler, Caris; Gilliam, Benjamin; Heatherly, Catherine; Nevin, Julius; Nguyen, Bryan; Nguyen, Justin; Parada, Jocelyn; Sutterfield, Blake; Tukruni, Muruj; Temple, Louise

    2016-08-18

    Smudge, a bacteriophage enriched from soil using Bacillus thuringiensis DSM-350 as the host, had its complete genome sequenced. Smudge is a myovirus with a genome consisting of 292 genes and was identified as belonging to the C1 cluster of Bacillus phages.

  5. Complete Genome Sequence of Bacillus thuringiensis Strain 407 Cry-

    OpenAIRE

    Poehlein, Anja; Liesegang, Heiko

    2013-01-01

    Bacillus thuringiensis is an insect pathogen that has been used widely as a biopesticide. Here, we report the genome sequence of strain 407 Cry-, which is used to study the genetic determinants of pathogenicity. The genome consists of a 5.5-Mb chromosome and nine plasmids, including a novel 502-kb megaplasmid.

  6. Genome sequences of Listeria monocytogenes strains with resistance to arsenic

    Science.gov (United States)

    Listeria monocytogenes frequently exhibits resistance to arsenic. We report here the draft genome sequences of eight genetically diverse arsenic-resistant L. monocytogenes strains from human listeriosis and food-associated environments. Availability of these genomes would help to elucidate the role ...

  7. Complete genome sequence of Bifidobacterium bifidum S17.

    NARCIS (Netherlands)

    Zhurina, D.; Zomer, A.L.; Gleinser, M.; Brancaccio, V.F.; Auchter, M.; Waidmann, M.S.; Westermann, C.; Sinderen, D. van; Riedel, C.U.

    2011-01-01

    Here, we report on the first completely annotated genome sequence of a Bifidobacterium bifidum strain. B. bifidum S17, isolated from feces of a breast-fed infant, was shown to strongly adhere to intestinal epithelial cells and has potent anti-inflammatory activity in vitro and in vivo. The genome se

  8. Draft genome sequences of 10 strains of the genus exiguobacterium.

    Science.gov (United States)

    Vishnivetskaya, Tatiana A; Chauhan, Archana; Layton, Alice C; Pfiffner, Susan M; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos C; Markowitz, Victor M; Palaniappan, Krishna; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan W; Pati, Amrita; Stamatis, Dimitrios; Reddy, T B K; Shapiro, Nicole; Nordberg, Henrik P; Cantor, Michael N; Hua, X Susan; Woyke, Tanja

    2014-10-16

    High-quality draft genome sequences were determined for 10 Exiguobacterium strains in order to provide insight into their evolutionary strategies for speciation and environmental adaptation. The selected genomes include psychrotrophic and thermophilic species from a range of habitats, which will allow for a comparison of metabolic pathways and stress response genes.

  9. Complete genome sequence of Aeromonas hydrophila AL06-06

    Science.gov (United States)

    Aeromonas hydrophila occurs in freshwater environments and infects fish and mammals. In this work, we report the complete genome sequence of Aeromonas hydrophila AL06-06, which was isolated from diseased goldfish and is being used for comparative genomic studies with A. hydrophila strains causing ba...

  10. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis

    NARCIS (Netherlands)

    Carlton, Jane M.; Hirt, Robert P.; Silva, Joana C.; Delcher, Arthur L.; Schatz, Michael; Zhao, Qi; Wortman, Jennifer R.; Bidwell, Shelby L.; Alsmark, U. Cecilia M.; Besteiro, Sebastien; Sicheritz-Ponten, Thomas; Noel, Christophe J.; Dacks, Joel B.; Foster, Peter G.; Simillion, Cedric; Van de Peer, Yves; Miranda-Saavedra, Diego; Barton, Geoffrey J.; Westrop, Gareth D.; Mueller, Sylke; Dessi, Daniele; Fiori, Pier Luigi; Ren, Qinghu; Paulsen, Ian; Zhang, Hanbang; Bastida-Corcuera, Felix D.; Simoes-Barbosa, Augusto; Brown, Mark T.; Hayes, Richard D.; Mukherjee, Mandira; Okumura, Cheryl Y.; Schneider, Rachel; Smith, Alias J.; Vanacova, Stepanka; Villalvazo, Maria; Haas, Brian J.; Pertea, Mihaela; Feldblyum, Tamara V.; Utterback, Terry R.; Shu, Chung-Li; Osoegawa, Kazutoyo; de Jong, Pieter J.; Hrdy, Ivan; Horvathova, Lenka; Zubacova, Zuzana; Dolezal, Pavel; Malik, Shehre-Banoo; Logsdon, John M.; Henze, Katrin; Gupta, Arti; Wang, Ching C.; Dunne, Rebecca L.; Upcroft, Jacqueline A.; Upcroft, Peter; White, Owen; Salzberg, Steven L.; Tang, Petrus; Chiu, Cheng-Hsun; Lee, Ying-Shiung; Embley, T. Martin; Coombs, Graham H.; Mottram, Jeremy C.; Tachezy, Jan; Fraser-Liggett, Claire M.; Johnson, Patricia J.

    2007-01-01

    We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the similar to 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction wi

  11. Whole-genome sequence-based analysis of thyroid function

    DEFF Research Database (Denmark)

    Taylor, Peter N.; Porcu, Eleonora; Chew, Shelby

    2015-01-01

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome seque...

  12. Complete Genome Sequence of Pediococcus pentosaceus Strain SL4

    DEFF Research Database (Denmark)

    Dantoft, Shruti Harnal; Bielak, Eliza Maria; Seo, Jae-Gu;

    2013-01-01

    Pediococcus pentosaceus SL4 was isolated from a Korean fermented vegetable product, kimchi. We report here the whole-genome sequence (WGS) of P. pentosaceus SL4. The genome consists of a 1.79-Mb circular chromosome (G+C content of 37.3%) and seven distinct plasmids ranging in size from 4 kb to 50...

  13. Coelacanth genome sequence reveals the evolutionary history of vertebrate genes.

    Science.gov (United States)

    Noonan, James P; Grimwood, Jane; Danke, Joshua; Schmutz, Jeremy; Dickson, Mark; Amemiya, Chris T; Myers, Richard M

    2004-12-01

    The coelacanth is one of the nearest living relatives of tetrapods. However, a teleost species such as zebrafish or Fugu is typically used as the outgroup in current tetrapod comparative sequence analyses. Such studies are complicated by the fact that teleost genomes have undergone a whole-genome duplication event, as well as individual gene-duplication events. Here, we demonstrate the value of coelacanth genome sequence by complete sequencing and analysis of the protocadherin gene cluster of the Indonesian coelacanth, Latimeria menadoensis. We found that coelacanth has 49 protocadherin cluster genes organized in the same three ordered subclusters, alpha, beta, and gamma, as the 54 protocadherin cluster genes in human. In contrast, whole-genome and tandem duplications have generated two zebrafish protocadherin clusters comprised of at least 97 genes. Additionally, zebrafish protocadherins are far more prone to homogenizing gene conversion events than coelacanth protocadherins, suggesting that recombination- and duplication-driven plasticity may be a feature of teleost genomes. Our results indicate that coelacanth provides the ideal outgroup sequence against which tetrapod genomes can be measured. We therefore present L. menadoensis as a candidate for whole-genome sequencing.

  14. Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids

    Science.gov (United States)

    Xu, Qin; Xiong, Guanjun; Li, Pengbo; He, Fei; Huang, Yi; Wang, Kunbo; Li, Zhaohu; Hua, Jinping

    2012-01-01

    Background Cotton (Gossypium spp.) is a model system for the analysis of polyploidization. Although ascertaining the donor species of allotetraploid cotton has been intensively studied, sequence comparison of Gossypium chloroplast genomes is still of interest to understand the mechanisms underlining the evolution of Gossypium allotetraploids, while it is generally accepted that the parents were A- and D-genome containing species. Here we performed a comparative analysis of 13 Gossypium chloroplast genomes, twelve of which are presented here for the first time. Methodology/Principal Findings The size of 12 chloroplast genomes under study varied from 159,959 bp to 160,433 bp. The chromosomes were highly similar having >98% sequence identity. They encoded the same set of 112 unique genes which occurred in a uniform order with only slightly different boundary junctions. Divergence due to indels as well as substitutions was examined separately for genome, coding and noncoding sequences. The genome divergence was estimated as 0.374% to 0.583% between allotetraploid species and A-genome, and 0.159% to 0.454% within allotetraploids. Forty protein-coding genes were completely identical at the protein level, and 20 intergenic sequences were completely conserved. The 9 allotetraploids shared 5 insertions and 9 deletions in whole genome, and 7-bp substitutions in protein-coding genes. The phylogenetic tree confirmed a close relationship between allotetraploids and the ancestor of A-genome, and the allotetraploids were divided into four separate groups. Progenitor allotetraploid cotton originated 0.43–0.68 million years ago (MYA). Conclusion Despite high degree of conservation between the Gossypium chloroplast genomes, sequence variations among species could still be detected. Gossypium chloroplast genomes preferred for 5-bp indels and 1–3-bp indels are mainly attributed to the SSR polymorphisms. This study supports that the common ancestor of diploid A-genome species in

  15. JiffyNet: a web-based instant protein network modeler for newly sequenced species.

    Science.gov (United States)

    Kim, Eiru; Kim, Hanhae; Lee, Insuk

    2013-07-01

    Revolutionary DNA sequencing technology has enabled affordable genome sequencing for numerous species. Thousands of species already have completely decoded genomes, and tens of thousands more are in progress. Naturally, parallel expansion of the functional parts list library is anticipated, yet genome-level understanding of function also requires maps of functional relationships, such as functional protein networks. Such networks have been constructed for many sequenced species including common model organisms. Nevertheless, the majority of species with sequenced genomes still have no protein network models available. Moreover, biologists might want to obtain protein networks for their species of interest on completion of the genome projects. Therefore, there is high demand for accessible means to automatically construct genome-scale protein networks based on sequence information from genome projects only. Here, we present a public web server, JiffyNet, specifically designed to instantly construct genome-scale protein networks based on associalogs (functional associations transferred from a template network by orthology) for a query species with only protein sequences provided. Assessment of the networks by JiffyNet demonstrated generally high predictive ability for pathway annotations. Furthermore, JiffyNet provides network visualization and analysis pages for wide variety of molecular concepts to facilitate network-guided hypothesis generation. JiffyNet is freely accessible at http://www.jiffynet.org.

  16. The first complete sequence and genome structure of daphne virus Y.

    Science.gov (United States)

    Igori, Davaajargal; Hwang, Un Sun; Lim, Seungmo; Zhao, Fumei; Kwon, Suk-Yoon; Moon, Jae Sun

    2016-10-01

    From Daphne odora Thunb., an ornamental shrub in the Republic of Korea, a potyvirus was identified that has an RNA genome of 9,448 nucleotides (excluding the 3'-terminal poly(A) tail) encoding a polyprotein of 3,065 amino acids, with nine putative protease cleavage sites producing ten proteins. Since this potyvirus shared the highest nucleotide sequence identity (91 %; query coverage 5 %) with the available partial sequence of daphne virus Y (DVY) from New Zealand (EU179854), it was considered a Korean isolate of DVY. This is the first molecular characterization of the complete genome sequence of a DVY isolate.

  17. Draft genome sequence of Wickerhamomyces ciferrii NRRL Y-1031 F-60-10.

    Science.gov (United States)

    Schneider, Jessica; Andrea, Heiko; Blom, Jochen; Jaenicke, Sebastian; Rückert, Christian; Schorsch, Christoph; Szczepanowski, Rafael; Farwick, Mike; Goesmann, Alexander; Pühler, Alfred; Schaffer, Steffen; Tauch, Andreas; Köhler, Tim; Brinkrolf, Karina

    2012-12-01

    Wickerhamomyces ciferrii is a microorganism characterized by the production and secretion of large amounts of acetylated sphingoid bases, in particular tetraacetyl phytosphingosine. Here, we present the 15.90-Mbp draft genome sequence of W. ciferrii NRRL Y-1031 F-60-10 generated by pyrosequencing and de novo assembly. The draft genome sequence comprising 364 contigs in 150 scaffolds was annotated and covered 6,702 protein-coding sequences. This information will contribute to the metabolic engineering of this yeast to improve the yield and spectrum of acetylated sphingoid bases in biotechnological production.

  18. Draft genome sequence of the docosahexaenoic acid producing thraustochytrid Aurantiochytrium sp. T66

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2016-06-01

    Full Text Available Thraustochytrids are unicellular, marine protists, and there is a growing industrial interest in these organisms, particularly because some species, including strains belonging to the genus Aurantiochytrium, accumulate high levels of docosahexaenoic acid (DHA. Here, we report the draft genome sequence of Aurantiochytrium sp. T66 (ATCC PRA-276, with a size of 43 Mbp, and 11,683 predicted protein-coding sequences. The data has been deposited at DDBJ/EMBL/Genbank under the accession LNGJ00000000. The genome sequence will contribute new insight into DHA biosynthesis and regulation, providing a basis for metabolic engineering of thraustochytrids.

  19. Chloroplast Genome Sequence of pigeonpea (Cajanus cajan (L. Millspaugh and Cajanus scarabaeoides: Genome organization and Comparison with other legumes

    Directory of Open Access Journals (Sweden)

    Tanvi Kaila

    2016-12-01

    Full Text Available Pigeonpea (Cajanus cajan (L. Millspaugh, a diploid (2n = 22 legume crop with a genome size of 852 Mbp, serves as an important source of human dietary protein especially in South East Asian and African regions. In this study, the draft chloroplast genomes of Cajanus cajan and Cajanus scarabaeoides were sequenced. Cajanus scarabaeoides is an important species of the Cajanus gene pool and has also been used for developing promising CMS system by different groups. A male sterile genotype harbouring the Cajanus scarabaeoides cytoplasm was used for sequencing the plastid genome. The cp genome of Cajanus cajan is 152,242bp long, having a quadripartite structure with LSC of 83,455 bp and SSC of 17,871 bp separated by IRs of 25,398 bp. Similarly, the cp genome of Cajanus scarabaeoides is 152,201bp long, having a quadripartite structure in which IRs of 25,402 bp length separates 83,423 bp of LSC and 17,854 bp of SSC. The pigeonpea cp genome contains 116 unique genes, including 30 tRNA, 4 rRNA, 78 predicted protein coding genes and 5 pseudogenes. A 50kb inversion was observed in the LSC region of pigeonpea cp genome, consistent with other legumes. Comparison of cp genome with other legumes revealed the contraction of IR boundaries due to the absence of rps19 gene in the IR region. Chloroplast SSRs were mined and a total of 280 and 292 cpSSRs were identified in Cajanus scarabaeoides and Cajanus cajan respectively. RNA editing was observed at 37 sites in both Cajanus scarabaeoides and Cajanus cajan, with maximum occurrence in the ndh genes. The pigeonpea cp genome sequence would be beneficial in providing informative molecular markers which can be utilized for genetic diversity analysis and aid in understanding the plant systematics studies among major grain legumes.

  20. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    Energy Technology Data Exchange (ETDEWEB)

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin

  1. Full-genome sequence of a novel myovirus, GF-2, infecting Edwardsiella tarda: comparison with other Edwardsiella myoviral genomes.

    Science.gov (United States)

    Yasuike, Motoshige; Nishiki, Issei; Iwasaki, Yuki; Nakamura, Yoji; Fujiwara, Atushi; Sugaya, Emi; Kawato, Yasuhiko; Nagai, Satoshi; Kobayashi, Takanori; Ototake, Mitsuru; Nakai, Toshihiro

    2015-08-01

    Edwardsiellosis, which is caused by Edwardsiella tarda, a Gram-negative bacterium, is one of the most serious infectious diseases in both marine and freshwater fish farms worldwide. Previously, we reported the complete genome sequences of three E. tarda-lytic bacteriophages (two podoviruses and a myovirus), which were isolated from fish tissues and fish-rearing seawater. Further genomic information regarding E. tarda phages is important for understanding phage-host interactions as well as for applications of the phages for the control of disease. Here, we report the complete genome sequence of a novel E. tarda phage (GF-2) of myovirus morphology (family Myoviridae), isolated from tissue homogenates of a cultured Japanese flounder (Paralichthys olivaceus) that succumbed to edwardsiellosis in Japan. The size of the entire genome was 43,129 bp, with a GC content of 51.3 % and containing 82 open reading frames (ORFs). The GF-2 genome possesses lysogeny-related genes that have not been found in the reported Edwardsiella phage genomes. Comparative genomics of Edwardsiella myophages suggest that the C-terminal domains of the tail fiber proteins have relevance to their host specificity. Thus, GF-2 genome information provides a novel resource for our understanding of the molecular mechanisms involved in their host specificity and for detection of E. tarda in aquaculture environments.

  2. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species.

    Science.gov (United States)

    Hirakawa, Hideki; Shirasawa, Kenta; Kosugi, Shunichi; Tashiro, Kosuke; Nakayama, Shinobu; Yamada, Manabu; Kohara, Mistuyo; Watanabe, Akiko; Kishida, Yoshie; Fujishiro, Tsunakazu; Tsuruoka, Hisano; Minami, Chiharu; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Komaki, Akiko; Yanagi, Tomohiro; Guoxin, Qin; Maeda, Fumi; Ishikawa, Masami; Kuhara, Satoru; Sato, Shusei; Tabata, Satoshi; Isobe, Sachiko N

    2014-01-01

    Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species.

  3. Near-complete genome sequencing of swine vesicular disease virus using the Roche GS FLX sequencing platform.

    Directory of Open Access Journals (Sweden)

    Sandra C Abel Nielsen

    Full Text Available Swine vesicular disease virus (SVDV is an enterovirus that is both genetically and antigenically closely related to human coxsackievirus B5 within the Picornaviridae family. SVDV is the causative agent of a highly contagious (though rarely fatal vesicular disease in pigs. We report a rapid method that is suitable for sequencing the complete protein-encoding sequences of SVDV isolates in which the RNA is relatively intact. The approach couples a single PCR amplification reaction, using only a single PCR primer set to amplify the near-complete SVDV genome, with deep-sequencing using a small fraction of the capacity of a Roche GS FLX sequencing platform. Sequences were initially verified through one of two criteria; either a match between a de novo assembly and a reference mapping, or a match between all of five different reference mappings performed against a fixed set of starting reference genomes with significant genetic distances within the same species of viruses. All reference mappings used an iterative method to avoid bias. Further verification was achieved through phylogenetic analysis against published SVDV genomes and additional Enterovirus B sequences. This approach allows high confidence in the obtained consensus sequences, as well as provides sufficiently high and evenly dispersed sequence coverage to allow future studies of intra-host variation.

  4. First fungal genome sequence from Africa: A preliminary analysis

    Directory of Open Access Journals (Sweden)

    Rene Sutherland

    2012-01-01

    Full Text Available Some of the most significant breakthroughs in the biological sciences this century will emerge from the development of next generation sequencing technologies. The ease of availability of DNA sequence made possible through these new technologies has given researchers opportunities to study organisms in a manner that was not possible with Sanger sequencing. Scientists will, therefore, need to embrace genomics, as well as develop and nurture the human capacity to sequence genomes and utilise the ’tsunami‘ of data that emerge from genome sequencing. In response to these challenges, we sequenced the genome of Fusarium circinatum, a fungal pathogen of pine that causes pitch canker, a disease of great concern to the South African forestry industry. The sequencing work was conducted in South Africa, making F. circinatum the first eukaryotic organism for which the complete genome has been sequenced locally. Here we report on the process that was followed to sequence, assemble and perform a preliminary characterisation of the genome. Furthermore, details of the computer annotation and manual curation of this genome are presented. The F. circinatum genome was found to be nearly 44 million bases in size, which is similar to that of four other Fusarium genomes that have been sequenced elsewhere. The genome contains just over 15 000 open reading frames, which is less than that of the related species, Fusarium oxysporum, but more than that for Fusarium verticillioides. Amongst the various putative gene clusters identified in F. circinatum, those encoding the secondary metabolites fumosin and fusarin appeared to harbour evidence of gene translocation. It is anticipated that similar comparisons of other loci will provide insights into the genetic basis for pathogenicity of the pitch canker pathogen. Perhaps more importantly, this project has engaged a relatively large group of scientists

  5. Protein 3D structure computed from evolutionary sequence variation.

    Directory of Open Access Journals (Sweden)

    Debora S Marks

    Full Text Available The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org. This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of

  6. Protein 3D structure computed from evolutionary sequence variation.

    Science.gov (United States)

    Marks, Debora S; Colwell, Lucy J; Sheridan, Robert; Hopf, Thomas A; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α)-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures

  7. Complete mitochondrial genomes of two flat-backed millipedes by next-generation sequencing (Diplopoda, Polydesmida

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2016-11-01

    Full Text Available A lack of mitochondrial genome data from myriapods is hampering progress across genetic, systematic, phylogenetic and evolutionary studies. Here, the complete mitochondrial genomes of two millipedes, Asiomorpha coarctata Saussure, 1860 (Diplopoda: Polydesmida: Paradoxosomatidae and Xystodesmus sp. (Diplopoda: Polydesmida: Xystodesmidae were assembled with high coverage using Illumina sequencing data. The mitochondrial genomes of the two newly sequenced species are circular molecules of 15,644 bp and 15,791 bp, within which the typical mitochondrial genome complement of 13 protein-coding genes, 22 tRNAs and two ribosomal RNA genes could be identified. The mitochondrial genome of A. coarctata is the first complete sequence in the family Paradoxosomatidae (Diplopoda: Polydesmida and the gene order of the two flat-backed millipedes is novel among known myriapod mitochondrial genomes. Unique translocations have occurred, including inversion of one half of the two genomes with respect to other millipede genomes. Inversion of the entire side of a genome (trnF-nad5-trnH-nad4-nad4L, trnP, nad1-trnL2-trnL1-rrnL-trnV-rrnS, trnQ, trnC and trnY could constitute a common event in the order Polydesmida. Last, our phylogenetic analyses recovered the monophyletic Progoneata, subphylum Myriapoda and four internal classes.

  8. Complete mitochondrial genomes of two flat-backed millipedes by next-generation sequencing (Diplopoda, Polydesmida)

    Science.gov (United States)

    Dong, Yan; Zhu, Lixin; Bai, Yu; Ou, Yongyue; Wang, Changbao

    2016-01-01

    Abstract A lack of mitochondrial genome data from myriapods is hampering progress across genetic, systematic, phylogenetic and evolutionary studies. Here, the complete mitochondrial genomes of two millipedes, Asiomorpha coarctata Saussure, 1860 (Diplopoda: Polydesmida: Paradoxosomatidae) and Xystodesmus sp. (Diplopoda: Polydesmida: Xystodesmidae) were assembled with high coverage using Illumina sequencing data. The mitochondrial genomes of the two newly sequenced species are circular molecules of 15,644 bp and 15,791 bp, within which the typical mitochondrial genome complement of 13 protein-coding genes, 22 tRNAs and two ribosomal RNA genes could be identified. The mitochondrial genome of Asiomorpha coarctata is the first complete sequence in the family Paradoxosomatidae (Diplopoda: Polydesmida) and the gene order of the two flat-backed millipedes is novel among known myriapod mitochondrial genomes. Unique translocations have occurred, including inversion of one half of the two genomes with respect to other millipede genomes. Inversion of the entire side of a genome (trnF-nad5-trnH-nad4-nad4L, trnP, nad1-trnL2-trnL1-rrnL-trnV-rrnS, trnQ, trnC and trnY) could constitute a common event in the order Polydesmida. Last, our phylogenetic analyses recovered the monophyletic Progoneata, subphylum Myriapoda and four internal classes. PMID:28138271

  9. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.

    Science.gov (United States)

    Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi

    2015-11-20

    The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.

  10. The complete chloroplast genome sequence of the Bambusa multiplex (Poaceae: Bambusoideae).

    Science.gov (United States)

    Gao, Ju; Li, Kui; Gao, Li-zhi

    2016-01-01

    The complete nucleotide sequence of the Bambusa multiplex chloroplast genome (cpDNA) was determined in this study. The cpDNA was 139,394 bp in length, containing a pair of 21,798 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 12,875 and 82,923 bp, respectively. The B. multiplex cp genome encodes 129 predicted functional genes; 110 are unique (77 protein-coding genes, 29 tRNA genes, 4 rRNA), 19 are duplicated in the IR regions and one gene extended into the IR region in the junctions between IR and SSC. 43.20% of the genome sequence encodes proteins. The B. multiplex cp genome is AT-rich (61.08%). In these genes, fourteen genes contained one intron, while one gene had two introns.

  11. The complete chloroplast genome sequence of the Phyllostachys sulphurea (Poaceae: Bambusoideae).

    Science.gov (United States)

    Gao, Ju; Gao, Li-zhi

    2016-01-01

    The complete nucleotide sequence of the Phyllostachys sulphurea chloroplast genome (cpDNA) was determined in this study. The cpDNA was 139,731 bp in length, containing a pair of 21,798 bp inverted repeat regions (IR), which were separated by small and large single copy regions (SSC and LSC) of 12,879 and 83,256 bp, respectively. The P. sulphurea cp genome encodes 129 predicted functional genes; 110 are unique (77 protein-coding genes, 29 tRNA genes, 4 rRNA), 19 are duplicated in the IR regions and one gene extended into the IR region in the junctions between IR and SSC. 43.06% of the genome sequence encodes proteins. The P. sulphurea cp genome is AT-rich (61.11%). In these genes, fourteen genes contained one intron, while one gene had two introns.

  12. Complete genome sequence of Cellulophaga lytica type strain (LIM-21T)

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Nolan, Matt [Joint Genome Institute, Walnut Creek, California; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Lucas, Susan [Joint Genome Institute, Walnut Creek, California; Hammon, Nancy [Joint Genome Institute, Walnut Creek, California; Deshpande, Shweta [Joint Genome Institute, Walnut Creek, California; Cheng, Jan-Fang [Joint Genome Institute, Walnut Creek, California; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Liolios, Konstantinos [Joint Genome Institute, Walnut Creek, California; Pagani, Ioanna [Joint Genome Institute, Walnut Creek, California; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [Joint Genome Institute, Walnut Creek, California; Palaniappan, Krishna [Joint Genome Institute, Walnut Creek, California; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Detter, J. Chris [Joint Genome Institute, Walnut Creek, California; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kannan, K. Palani [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [Joint Genome Institute, Walnut Creek, California; Bristow, James [Joint Genome Institute, Walnut Creek, California; Eisen, Jonathan [Joint Genome Institute, Walnut Creek, California; Markowitz, Victor [Joint Genome Institute, Walnut Creek, California; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [Joint Genome Institute, Walnut Creek, California; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Ivanova, N [U.S. Department of Energy, Joint Genome Institute

    2011-01-01

    Cellulophaga lytica (Lewin 1969) Johansen et al. 1999 is the type species of the genus Cellulophaga, which belongs to the family Flavobacteriaceae within the phylum 'Bacteroidetes' and was isolated from marine beach mud in Limon, Costa Rica. The species is of biotechnological interest because its members produce a wide range of extracellular enzymes capable of degrading proteins and polysaccharides. After the genome sequence of Cellulophaga algicola this is the second completed genome sequence of a member of the genus Cellulophaga. The 3,765,936 bp long genome with its 3,303 protein-coding and 55 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  13. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

    DEFF Research Database (Denmark)

    Xu, Xun; Pan, Shengkai; Liu, Xin;

    2011-01-01

    Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most...... of the assembled scaffolds with 21 chromosomes isolated by microfluidics to identify chromosomal locations of genes. Furthermore, we investigate genes involved in glycosylation, which affect therapeutic protein quality, and viral susceptibility genes, which are relevant to cell engineering and regulatory concerns....... Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance...

  14. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

    DEFF Research Database (Denmark)

    Xu, Xun; Pan, Shengkai; Liu, Xin

    2011-01-01

    Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most...... of the assembled scaffolds with 21 chromosomes isolated by microfluidics to identify chromosomal locations of genes. Furthermore, we investigate genes involved in glycosylation, which affect therapeutic protein quality, and viral susceptibility genes, which are relevant to cell engineering and regulatory concerns....... Homologs of most human glycosylation-associated genes are present in the CHO-K1 genome, although 141 of these homologs are not expressed under exponential growth conditions. Many important viral entry genes are also present in the genome but not expressed, which may explain the unusual viral resistance...

  15. Genome size evolution in pufferfish: an insight from BAC clone-based Diodon holocanthus genome sequencing

    Directory of Open Access Journals (Sweden)

    Gan Xiaoni

    2010-06-01

    Full Text Available Abstract Background Variations in genome size within and between species have been observed since the 1950 s in diverse taxonomic groups. Serving as model organisms, smooth pufferfish possess the smallest vertebrate genomes. Interestingly, spiny pufferfish from its sister family have genome twice as large as smooth pufferfish. Therefore, comparative genomic analysis between smooth pufferfish and spiny pufferfish is useful for our understanding of genome size evolution in pufferfish. Results Ten BAC clones of a spiny pufferfish Diodon holocanthus were randomly selected and shotgun sequenced. In total, 776 kb of non-redundant sequences without gap representing 0.1% of the D. holocanthus genome were identified, and 77 distinct genes were predicted. In the sequenced D. holocanthus genome, 364 kb is homologous with 265 kb of the Takifugu rubripes genome, and 223 kb is homologous with 148 kb of the Tetraodon nigroviridis genome. The repetitive DNA accounts for 8% of the sequenced D. holocanthus genome, which is higher than that in the T. rubripes genome (6.89% and that in the Te. nigroviridis genome (4.66%. In the repetitive DNA, 76% is retroelements which account for 6% of the sequenced D. holocanthus genome and belong to known families of transposable elements. More than half of retroelements were distributed within genes. In the non-homologous regions, repeat element proportion in D. holocanthus genome increased to 10.6% compared with T. rubripes and increased to 9.19% compared with Te. nigroviridis. A comparison of 10 well-defined orthologous genes showed that the average intron size (566 bp in D. holocanthus genome is significantly longer than that in the smooth pufferfish genome (435 bp. Conclusion Compared with the smooth pufferfish, D. holocanthus has a low gene density and repeat elements rich genome. Genome size variation between D. holocanthus and the smooth pufferfish exhibits as length variation between homologous region and different

  16. Complete genomic sequence and an infectious BAC clone of feline herpesvirus-1 (FHV-1).

    Science.gov (United States)

    Tai, S H Sheldon; Niikura, Masahiro; Cheng, Hans H; Kruger, John M; Wise, Annabel G; Maes, Roger K

    2010-06-05

    Infection with feline herpesvirus-1 (FHV-1) is a major cause of upper respiratory and ocular diseases in Felidae. We report the first complete genomic sequence of FHV-1, as well as the construction and characterization of a bacterial artificial chromosome (BAC) clone of FHV-1, which contains the entire FHV-1 genome and has the BAC vector inserted at the left end of U(L). Complete genomic sequences were derived from both the FHV-1 BAC clone and purified virion DNA. The FHV-1 genome is 135,797bp in size with an overall G+C content of 45%. A total of 78 open reading frames were predicted, encoding 74 distinct proteins. The gene arrangement is collinear with that of most sequenced varicelloviruses. The virus regenerated from the BAC was very similar to the parental C-27 strain in vitro in terms of plaque morphology and growth characteristics and highly virulent in cats in a preliminary in vivo study.

  17. Complete genome sequence of Rhodothermus marinus type strain (R-10T)

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Gronow, Sabine [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Sims, David [Los Alamos National Laboratory (LANL); Meincke, Linda [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Sproer, Cathrin [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL)

    2009-01-01

    Rhodothermus marinus Alfredsson et al. 1995 is the type species of the genus and is of phylogenetic interest because the Rhodothermaceae represent the deepest lineage in the phylum Bacteroidetes. R. marinus R-10T is a Gram-negative, non-motile, non-spore-forming bacterium isolated from marine hot springs off the coast of Iceland. Strain R-10T is strictly aerobic and requires slightly halophilic conditions for growth. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the genus Rhodothermus, and only the second sequence from members of the family Rhodothermaceae. The 3,386,737 bp genome (including a 125 kb plasmid) with its 2914 protein-coding and 48 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  18. Genome sequence of the Lebeckia ambigua-nodulating "Burkholderia sprentiae" strain WSM5005(T.).

    Science.gov (United States)

    Reeve, Wayne; De Meyer, Sofie; Terpolilli, Jason; Melino, Vanessa; Ardley, Julie; Rui, Tian; Tiwari, Ravi; Howieson, John; Yates, Ron; O'Hara, Graham; Lu, Megan; Bruce, David; Detter, Chris; Tapia, Roxanne; Han, Cliff; Wei, Chia-Lin; Huntemann, Marcel; Han, James; Chen, I-Min; Mavromatis, Konstantinos; Markowitz, Victor; Szeto, Ernest; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Goodwin, Lynne; Peters, Lin; Pitluck, Sam; Woyke, Tanja; Kyrpides, Nikos

    2013-12-20

    "Burkholderia sprentiae" strain WSM5005(T) is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated in Australia from an effective N2-fixing root nodule of Lebeckia ambigua collected in Klawer, Western Cape of South Africa, in October 2007. Here we describe the features of "Burkholderia sprentiae" strain WSM5005(T), together with the genome sequence and its annotation. The 7,761,063 bp high-quality-draft genome is arranged in 8 scaffolds of 236 contigs, contains 7,147 protein-coding genes and 76 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.

  19. Genome sequence of the Lebeckia ambigua-nodulating “Burkholderia sprentiae” strain WSM5005T

    Science.gov (United States)

    Reeve, Wayne; De Meyer, Sofie; Terpolilli, Jason; Melino, Vanessa; Ardley, Julie; Rui, Tian; Tiwari, Ravi; Howieson, John; Yates, Ron; O’Hara, Graham; Lu, Megan; Bruce, David; Detter, Chris; Tapia, Roxanne; Han, Cliff; Wei, Chia-Lin; Huntemann, Marcel; Han, James; Chen, I-Min; Mavromatis, Konstantinos; Markowitz, Victor; Szeto, Ernest; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Goodwin, Lynne; Peters, Lin; Pitluck, Sam; Woyke, Tanja; Kyrpides, Nikos

    2013-01-01

    “Burkholderia sprentiae” strain WSM5005T is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated in Australia from an effective N2-fixing root nodule of Lebeckia ambigua collected in Klawer, Western Cape of South Africa, in October 2007. Here we describe the features of “Burkholderia sprentiae” strain WSM5005T, together with the genome sequence and its annotation. The 7,761,063 bp high-quality-draft genome is arranged in 8 scaffolds of 236 contigs, contains 7,147 protein-coding genes and 76 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program. PMID:24976894

  20. Genome sequence of the Ornithopus/Lupinus-nodulating Bradyrhizobium sp. strain WSM471.

    Science.gov (United States)

    Reeve, Wayne; De Meyer, Sofie; Terpolilli, Jason; Melino, Vanessa; Ardley, Julie; Tian, Rui; Tiwari, Ravi; Howieson, John; Yates, Ronald; O'Hara, Graham; Ninawi, Mohamed; Lu, Megan; Bruce, David; Detter, Chris; Tapia, Roxanne; Han, Cliff; Wei, Chia-Lin; Huntemann, Marcel; Han, James; Chen, I-Min; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Pagani, Ioanna; Pati, Amrita; Goodwin, Lynne; Woyke, Tanja; Kyrpides, Nikos

    2013-12-20

    Bradyrhizobium sp. strain WSM471 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen- (N2) fixing root nodule formed on the annual legume Ornithopus pinnatus (Miller) Druce growing at Oyster Harbour, Albany district, Western Australia in 1982. This strain is in commercial production as an inoculant for Lupinus and Ornithopus. Here we describe the features of Bradyrhizobium sp. strain WSM471, together with genome sequence information and annotation. The 7,784,016 bp high-quality-draft genome is arranged in 1 scaffold of 2 contigs, contains 7,372 protein-coding genes and 58 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.