WorldWideScience

Sample records for genome project information

  1. The Human Genome Project: Information access, management, and regulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.; Micikas, L.B.

    1996-08-31

    The Human Genome Project is a large, internationally coordinated effort in biological research directed at creating a detailed map of human DNA. This report describes the access of information, management, and regulation of the project. The project led to the development of an instructional module titled The Human Genome Project: Biology, Computers, and Privacy, designed for use in high school biology classes. The module consists of print materials and both Macintosh and Windows versions of related computer software-Appendix A contains a copy of the print materials and discs containing the two versions of the software.

  2. Democratizing Human Genome Project Information: A Model Program for Education, Information and Debate in Public Libraries.

    Science.gov (United States)

    Pollack, Miriam

    The "Mapping the Human Genome" project demonstrated that librarians can help whomever they serve in accessing information resources in the areas of biological and health information, whether it is the scientists who are developing the information or a member of the public who is using the information. Public libraries can guide library…

  3. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.

    Science.gov (United States)

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure.

  4. Genome projects and the functional-genomic era.

    Science.gov (United States)

    Sauer, Sascha; Konthur, Zoltán; Lehrach, Hans

    2005-12-01

    The problems we face today in public health as a result of the -- fortunately -- increasing age of people and the requirements of developing countries create an urgent need for new and innovative approaches in medicine and in agronomics. Genomic and functional genomic approaches have a great potential to at least partially solve these problems in the future. Important progress has been made by procedures to decode genomic information of humans, but also of other key organisms. The basic comprehension of genomic information (and its transfer) should now give us the possibility to pursue the next important step in life science eventually leading to a basic understanding of biological information flow; the elucidation of the function of all genes and correlative products encoded in the genome, as well as the discovery of their interactions in a molecular context and the response to environmental factors. As a result of the sequencing projects, we are now able to ask important questions about sequence variation and can start to comprehensively study the function of expressed genes on different levels such as RNA, protein or the cell in a systematic context including underlying networks. In this article we review and comment on current trends in large-scale systematic biological research. A particular emphasis is put on technology developments that can provide means to accomplish the tasks of future lines of functional genomics.

  5. A comprehensive crop genome research project: the Superhybrid Rice Genome Project in China.

    Science.gov (United States)

    Yu, Jun; Wong, Gane Ka-Shu; Liu, Siqi; Wang, Jian; Yang, Huanming

    2007-06-29

    In May 2000, the Beijing Institute of Genomics formally announced the launch of a comprehensive crop genome research project on rice genomics, the Chinese Superhybrid Rice Genome Project. SRGP is not simply a sequencing project targeted to a single rice (Oryza sativa L.) genome, but a full-swing research effort with an ultimate goal of providing inclusive basic genomic information and molecular tools not only to understand biology of the rice, both as an important crop species and a model organism of cereals, but also to focus on a popular superhybrid rice landrace, LYP9. We have completed the first phase of SRGP and provide the rice research community with a finished genome sequence of an indica variety, 93-11 (the paternal cultivar of LYP9), together with ample data on subspecific (between subspecies) polymorphisms, transcriptomes and proteomes, useful for within-species comparative studies. In the second phase, we have acquired the genome sequence of the maternal cultivar, PA64S, together with the detailed catalogues of genes uniquely expressed in the parental cultivars and the hybrid as well as allele-specific markers that distinguish parental alleles. Although SRGP in China is not an open-ended research programme, it has been designed to pave a way for future plant genomics research and application, such as to interrogate fundamentals of plant biology, including genome duplication, polyploidy and hybrid vigour, as well as to provide genetic tools for crop breeding and to carry along a social burden-leading a fight against the world's hunger. It began with genomics, the newly developed and industry-scale research field, and from the world's most populous country. In this review, we summarize our scientific goals and noteworthy discoveries that exploit new territories of systematic investigations on basic and applied biology of rice and other major cereal crops.

  6. Human genomics projects and precision medicine.

    Science.gov (United States)

    Carrasco-Ramiro, F; Peiró-Pastor, R; Aguado, B

    2017-09-01

    The completion of the Human Genome Project (HGP) in 2001 opened the floodgates to a deeper understanding of medicine. There are dozens of HGP-like projects which involve from a few tens to several million genomes currently in progress, which vary from having specialized goals or a more general approach. However, data generation, storage, management and analysis in public and private cloud computing platforms have raised concerns about privacy and security. The knowledge gained from further research has changed the field of genomics and is now slowly permeating into clinical medicine. The new precision (personalized) medicine, where genome sequencing and data analysis are essential components, allows tailored diagnosis and treatment according to the information from the patient's own genome and specific environmental factors. P4 (predictive, preventive, personalized and participatory) medicine is introducing new concepts, challenges and opportunities. This review summarizes current sequencing technologies, concentrates on ongoing human genomics projects, and provides some examples in which precision medicine has already demonstrated clinical impact in diagnosis and/or treatment.

  7. GI-POP: a combinational annotation and genomic island prediction pipeline for ongoing microbial genome projects.

    Science.gov (United States)

    Lee, Chi-Ching; Chen, Yi-Ping Phoebe; Yao, Tzu-Jung; Ma, Cheng-Yu; Lo, Wei-Cheng; Lyu, Ping-Chiang; Tang, Chuan Yi

    2013-04-10

    Sequencing of microbial genomes is important because of microbial-carrying antibiotic and pathogenetic activities. However, even with the help of new assembling software, finishing a whole genome is a time-consuming task. In most bacteria, pathogenetic or antibiotic genes are carried in genomic islands. Therefore, a quick genomic island (GI) prediction method is useful for ongoing sequencing genomes. In this work, we built a Web server called GI-POP (http://gipop.life.nthu.edu.tw) which integrates a sequence assembling tool, a functional annotation pipeline, and a high-performance GI predicting module, in a support vector machine (SVM)-based method called genomic island genomic profile scanning (GI-GPS). The draft genomes of the ongoing genome projects in contigs or scaffolds can be submitted to our Web server, and it provides the functional annotation and highly probable GI-predicting results. GI-POP is a comprehensive annotation Web server designed for ongoing genome project analysis. Researchers can perform annotation and obtain pre-analytic information include possible GIs, coding/non-coding sequences and functional analysis from their draft genomes. This pre-analytic system can provide useful information for finishing a genome sequencing project. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. RadGenomics project

    Energy Technology Data Exchange (ETDEWEB)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu [National Inst. of Radiological Sciences, Chiba (Japan). Frontier Research Center] [and others

    2002-06-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  9. RadGenomics project

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu

    2002-01-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  10. Origins of the Human Genome Project

    Science.gov (United States)

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  11. Origins of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, Robert

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the US and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  12. Ethical considerations of research policy for personal genome analysis: the approach of the Genome Science Project in Japan.

    Science.gov (United States)

    Minari, Jusaku; Shirai, Tetsuya; Kato, Kazuto

    2014-12-01

    As evidenced by high-throughput sequencers, genomic technologies have recently undergone radical advances. These technologies enable comprehensive sequencing of personal genomes considerably more efficiently and less expensively than heretofore. These developments present a challenge to the conventional framework of biomedical ethics; under these changing circumstances, each research project has to develop a pragmatic research policy. Based on the experience with a new large-scale project-the Genome Science Project-this article presents a novel approach to conducting a specific policy for personal genome research in the Japanese context. In creating an original informed-consent form template for the project, we present a two-tiered process: making the draft of the template following an analysis of national and international policies; refining the draft template in conjunction with genome project researchers for practical application. Through practical use of the template, we have gained valuable experience in addressing challenges in the ethical review process, such as the importance of sharing details of the latest developments in genomics with members of research ethics committees. We discuss certain limitations of the conventional concept of informed consent and its governance system and suggest the potential of an alternative process using information technology.

  13. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata

    Science.gov (United States)

    Liolios, Konstantinos; Chen, I-Min A.; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor M.; Kyrpides, Nikos C.

    2010-01-01

    The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) specification. GOLD is available at: http://www.genomesonline.org and has a mirror site at the Institute of Molecular Biology and Biotechnology, Crete, Greece, at: http://gold.imbb.forth.gr/ PMID:19914934

  14. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  15. Human genome project: revolutionizing biology through leveraging technology

    Science.gov (United States)

    Dahl, Carol A.; Strausberg, Robert L.

    1996-04-01

    The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.

  16. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Science.gov (United States)

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  17. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G; Shea, N [eds.

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  18. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative

    Directory of Open Access Journals (Sweden)

    Wim Degrave

    1997-11-01

    Full Text Available Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given

  19. An overview of the human genome project

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.

    1994-01-01

    The human genome project is one of the most ambitious scientific projects to date, with the ultimate goal being a nucleotide sequence for all four billion bases of human DNA. In the process of determining the nucleotide sequence for each base, the location, function, and regulatory regions from the estimated 100,000 human genes will be identified. The genome project itself relies upon maps of the human genetic code derived from several different levels of resolution. Genetic linkage analysis provides a low resolution genome map. The information for genetic linkage maps is derived from the analysis of chromosome specific markers such as Sequence Tagged Sites (STSs), Variable Number of Tandem Repeats (VNTRs) or other polymorphic (highly informative) loci in a number of different-families. Using this information the location of an unknown disease gene can be limited to a region comprised of one million base pairs of DNA or less. After this point, one must construct or have access to a physical map of the region of interest. Physical mapping involves the construction of an ordered overlapping (contiguous) set of recombinant DNA clones. These clones may be derived from a number of different vectors including cosmids, Bacterial Artificial Chromosomes (BACs), P1 derived Artificial Chromosomes (PACs), somatic cell hybrids, or Yeast Artificial Chromosomes (YACs). The ultimate goal for physical mapping is to establish a completely overlapping (contiguous) set of clones for the entire genome. After a gene or region of interest has been localized using physical mapping the nucleotide sequence is determined. The overlap between genetic mapping, physical mapping and DNA sequencing has proven to be a powerful tool for the isolation of disease genes through positional cloning.

  20. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata

    Science.gov (United States)

    Pagani, Ioanna; Liolios, Konstantinos; Jansson, Jakob; Chen, I-Min A.; Smirnova, Tatyana; Nosrat, Bahador; Markowitz, Victor M.; Kyrpides, Nikos C.

    2012-01-01

    The Genomes OnLine Database (GOLD, http://www.genomesonline.org/) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2011, GOLD, now on version 4.0, contains information for 11 472 sequencing projects, of which 2907 have been completed and their sequence data has been deposited in a public repository. Out of these complete projects, 1918 are finished and 989 are permanent drafts. Moreover, GOLD contains information for 340 metagenome studies associated with 1927 metagenome samples. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about any (x) Sequence specification and beyond. PMID:22135293

  1. TcruziDB, an Integrated Database, and the WWW Information Server for the Trypanosoma cruzi Genome Project

    Directory of Open Access Journals (Sweden)

    Degrave Wim

    1997-01-01

    Full Text Available Data analysis, presentation and distribution is of utmost importance to a genome project. A public domain software, ACeDB, has been chosen as the common basis for parasite genome databases, and a first release of TcruziDB, the Trypanosoma cruzi genome database, is available by ftp from ftp://iris.dbbm.fiocruz.br/pub/genomedb/TcruziDB as well as versions of the software for different operating systems (ftp://iris.dbbm.fiocruz.br/pub/unixsoft/. Moreover, data originated from the project are available from the WWW server at http://www.dbbm.fiocruz.br. It contains biological and parasitological data on CL Brener, its karyotype, all available T. cruzi sequences from Genbank, data on the EST-sequencing project and on available libraries, a T. cruzi codon table and a listing of activities and participating groups in the genome project, as well as meeting reports. T. cruzi discussion lists (tcruzi-l@iris.dbbm.fiocruz.br and tcgenics@iris.dbbm.fiocruz.br are being maintained for communication and to promote collaboration in the genome project

  2. Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Kitcher, P.

    1998-11-01

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and social problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.

  3. The Ensembl genome database project.

    Science.gov (United States)

    Hubbard, T; Barker, D; Birney, E; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Huminiecki, L; Kasprzyk, A; Lehvaslaiho, H; Lijnzaad, P; Melsopp, C; Mongin, E; Pettett, R; Pocock, M; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Clamp, M

    2002-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of the human genome sequence, with confirmed gene predictions that have been integrated with external data sources, and is available as either an interactive web site or as flat files. It is also an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements from sequence analysis to data storage and visualisation. The Ensembl site is one of the leading sources of human genome sequence annotation and provided much of the analysis for publication by the international human genome project of the draft genome. The Ensembl system is being installed around the world in both companies and academic sites on machines ranging from supercomputers to laptops.

  4. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification

    Science.gov (United States)

    Reddy, T.B.K.; Thomas, Alex D.; Stamatis, Dimitri; Bertsch, Jon; Isbandi, Michelle; Jansson, Jakob; Mallajosyula, Jyothi; Pagani, Ioanna; Lobos, Elizabeth A.; Kyrpides, Nikos C.

    2015-01-01

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Here we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencing projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards. PMID:25348402

  5. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Tatiparthi B. K. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Thomas, Alex D. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Stamatis, Dimitri [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Bertsch, Jon [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Isbandi, Michelle [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Jansson, Jakob [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Mallajosyula, Jyothi [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Pagani, Ioanna [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Lobos, Elizabeth A. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Kyrpides, Nikos C. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2014-10-27

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Within this paper, we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencing projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. Lastly, GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards.

  6. Origins of the Human Genome Project.

    Science.gov (United States)

    Watson, J D; Cook-Deegan, R M

    1991-01-01

    The Human Genome Project has become a reality. Building on a debate that dates back to 1985, several genome projects are now in full stride around the world, and more are likely to form in the next several years. Italy began its genome program in 1987, and the United Kingdom and U.S.S.R. in 1988. The European communities mounted several genome projects on yeast, bacteria, Drosophila, and Arabidospis thaliana (a rapidly growing plant with a small genome) in 1988, and in 1990 commenced a new 2-year program on the human genome. In the United States, we have completed the first year of operation of the National Center for Human Genome Research at the National Institutes of Health (NIH), now the largest single funding source for genome research in the world. There have been dedicated budgets focused on genome-scale research at NIH, the U.S. Department of Energy, and the Howard Hughes Medical Institute for several years, and results are beginning to accumulate. There were three annual meetings on genome mapping and sequencing at Cold Spring Harbor, New York, in the spring of 1988, 1989, and 1990; the talks have shifted from a discussion about how to approach problems to presenting results from experiments already performed. We have finally begun to work rather than merely talk. The purpose of genome projects is to assemble data on the structure of DNA in human chromosomes and those of other organisms. A second goal is to develop new technologies to perform mapping and sequencing. There have been impressive technical advances in the past 5 years since the debate about the human genome project began. We are on the verge of beginning pilot projects to test several approaches to sequencing long stretches of DNA, using both automation and manual methods. Ordered sets of yeast artificial chromosome and cosmid clones have been assembled to span more than 2 million base pairs of several human chromosomes, and a region of 10 million base pairs has been assembled for

  7. The human genome project

    International Nuclear Information System (INIS)

    Worton, R.

    1996-01-01

    The Human Genome Project is a massive international research project, costing 3 to 5 billion dollars and expected to take 15 years, which will identify the all the genes in the human genome - i.e. the complete sequence of bases in human DNA. The prize will be the ability to identify genes causing or predisposing to disease, and in some cases the development of gene therapy, but this new knowledge will raise important ethical issues

  8. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project.

    OpenAIRE

    Spradling, A C; Stern, D M; Kiss, I; Roote, J; Laverty, T; Rubin, G M

    1995-01-01

    Biologists require genetic as well as molecular tools to decipher genomic information and ultimately to understand gene function. The Berkeley Drosophila Genome Project is addressing these needs with a massive gene disruption project that uses individual, genetically engineered P transposable elements to target open reading frames throughout the Drosophila genome. DNA flanking the insertions is sequenced, thereby placing an extensive series of genetic markers on the physical genomic map and a...

  9. The Human Genome Diversity Project

    Energy Technology Data Exchange (ETDEWEB)

    Cavalli-Sforza, L. [Stanford Univ., CA (United States)

    1994-12-31

    The Human Genome Diversity Project (HGD Project) is an international anthropology project that seeks to study the genetic richness of the entire human species. This kind of genetic information can add a unique thread to the tapestry knowledge of humanity. Culture, environment, history, and other factors are often more important, but humanity`s genetic heritage, when analyzed with recent technology, brings another type of evidence for understanding species` past and present. The Project will deepen the understanding of this genetic richness and show both humanity`s diversity and its deep and underlying unity. The HGD Project is still largely in its planning stages, seeking the best ways to reach its goals. The continuing discussions of the Project, throughout the world, should improve the plans for the Project and their implementation. The Project is as global as humanity itself; its implementation will require the kinds of partnerships among different nations and cultures that make the involvement of UNESCO and other international organizations particularly appropriate. The author will briefly discuss the Project`s history, describe the Project, set out the core principles of the Project, and demonstrate how the Project will help combat the scourge of racism.

  10. The Human Genome Project: applications in the diagnosis and treatment of neurologic disease.

    Science.gov (United States)

    Evans, G A

    1998-10-01

    The Human Genome Project (HGP), an international program to decode the entire DNA sequence of the human genome in 15 years, represents the largest biological experiment ever conducted. This set of information will contain the blueprint for the construction and operation of a human being. While the primary driving force behind the genome project is the potential to vastly expand the amount of genetic information available for biomedical research, the ramifications for other fields of study in biological research, the biotechnology and pharmaceutical industry, our understanding of evolution, effects on agriculture, and implications for bioethics are likely to be profound.

  11. Genomics and the human genome project: implications for psychiatry

    OpenAIRE

    Kelsoe, J R

    2004-01-01

    In the past decade the Human Genome Project has made extraordinary strides in understanding of fundamental human genetics. The complete human genetic sequence has been determined, and the chromosomal location of almost all human genes identified. Presently, a large international consortium, the HapMap Project, is working to identify a large portion of genetic variation in different human populations and the structure and relationship of these variants to each other. The Human Genome Project h...

  12. The Human Genome Project: An Imperative for International Collaboration.

    Science.gov (United States)

    Allende, J. E.

    1989-01-01

    Discussed is the Human Genome Project which aims to decipher the totality of the human genetic information. The historical background, the objectives, international cooperation, ethical discussion, and the role of UNESCO are included. (KR)

  13. Human genome and genetic sequencing research and informed consent

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi

    2003-01-01

    On March 29, 2001, the Ethical Guidelines for Human Genome and Genetic Sequencing Research were established. They have intended to serve as ethical guidelines for all human genome and genetic sequencing research practice, for the purpose of upholding respect for human dignity and rights and enforcing use of proper methods in the pursuit of human genome and genetic sequencing research, with the understanding and cooperation of the public. The RadGenomics Project has prepared a research protocol and informed consent document that follow these ethical guidelines. We have endeavored to protect the privacy of individual information, and have established a procedure for examination of research practices by an ethics committee. Here we report our procedure in order to offer this concept to the patients. (authors)

  14. Informational laws of genome structures

    Science.gov (United States)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  15. The Pediatric Cancer Genome Project

    Science.gov (United States)

    Downing, James R; Wilson, Richard K; Zhang, Jinghui; Mardis, Elaine R; Pui, Ching-Hon; Ding, Li; Ley, Timothy J; Evans, William E

    2013-01-01

    The St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project (PCGP) is participating in the international effort to identify somatic mutations that drive cancer. These cancer genome sequencing efforts will not only yield an unparalleled view of the altered signaling pathways in cancer but should also identify new targets against which novel therapeutics can be developed. Although these projects are still deep in the phase of generating primary DNA sequence data, important results are emerging and valuable community resources are being generated that should catalyze future cancer research. We describe here the rationale for conducting the PCGP, present some of the early results of this project and discuss the major lessons learned and how these will affect the application of genomic sequencing in the clinic. PMID:22641210

  16. The Human Genome Diversity (HGD) Project. Summary document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    In 1991 a group of human geneticists and molecular biologists proposed to the scientific community that a world wide survey be undertaken of variation in the human genome. To aid their considerations, the committee therefore decided to hold a small series of international workshops to explore the major scientific issues involved. The intention was to define a framework for the project which could provide a basis for much wider and more detailed discussion and planning--it was recognized that the successful implementation of the proposed project, which has come to be known as the Human Genome Diversity (HGD) Project, would not only involve scientists but also various national and international non-scientific groups all of which should contribute to the project`s development. The international HGD workshop held in Sardinia in September 1993 was the last in the initial series of planning workshops. As such it not only explored new ground but also pulled together into a more coherent form much of the formal and informal discussion that had taken place in the preceding two years. This report presents the deliberations of the Sardinia workshop within a consideration of the overall development of the HGD Project to date.

  17. Enhancing Biology Instruction with the Human Genome Project

    Science.gov (United States)

    Buxeda, Rosa J.; Moore-Russo, Deborah A.

    2003-01-01

    The Human Genome Project (HGP) is a recent scientific milestone that has received notable attention. This article shows how a biology course is using the HGP to enhance students' experiences by providing awareness of cutting edge research, with information on new emerging career options, and with opportunities to consider ethical questions raised…

  18. Using web services for linking genomic data to medical information systems.

    Science.gov (United States)

    Maojo, V; Crespo, J; de la Calle, G; Barreiro, J; Garcia-Remesal, M

    2007-01-01

    To develop a new perspective for biomedical information systems, regarding the introduction of ideas, methods and tools related to the new scenario of genomic medicine. Technological aspects related to the analysis and integration of heterogeneous clinical and genomic data include mapping clinical and genetic concepts, potential future standards or the development of integrated biomedical ontologies. In this clinicomics scenario, we describe the use of Web services technologies to improve access to and integrate different information sources. We give a concrete example of the use of Web services technologies: the OntoFusion project. Web services provide new biomedical informatics (BMI) approaches related to genomic medicine. Customized workflows will aid research tasks by linking heterogeneous Web services. Two significant examples of these European Commission-funded efforts are the INFOBIOMED Network of Excellence and the Advancing Clinico-Genomic Trials on Cancer (ACGT) integrated project. Supplying medical researchers and practitioners with omics data and biologists with clinical datasets can help to develop genomic medicine. BMI is contributing by providing the informatics methods and technological infrastructure needed for these collaborative efforts.

  19. MIPS plant genome information resources.

    Science.gov (United States)

    Spannagl, Manuel; Haberer, Georg; Ernst, Rebecca; Schoof, Heiko; Mayer, Klaus F X

    2007-01-01

    The Munich Institute for Protein Sequences (MIPS) has been involved in maintaining plant genome databases since the Arabidopsis thaliana genome project. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable data sets for model plant genomes as a backbone against which experimental data, for example from high-throughput functional genomics, can be organized and evaluated. In addition, model genomes also form a scaffold for comparative genomics, and much can be learned from genome-wide evolutionary studies.

  20. The Human Genome Project: Biology, Computers, and Privacy.

    Science.gov (United States)

    Cutter, Mary Ann G.; Drexler, Edward; Gottesman, Kay S.; Goulding, Philip G.; McCullough, Laurence B.; McInerney, Joseph D.; Micikas, Lynda B.; Mural, Richard J.; Murray, Jeffrey C.; Zola, John

    This module, for high school teachers, is the second of two modules about the Human Genome Project (HGP) produced by the Biological Sciences Curriculum Study (BSCS). The first section of this module provides background information for teachers about the structure and objectives of the HGP, aspects of the science and technology that underlie the…

  1. Earth BioGenome Project: Sequencing life for the future of life.

    Science.gov (United States)

    Lewin, Harris A; Robinson, Gene E; Kress, W John; Baker, William J; Coddington, Jonathan; Crandall, Keith A; Durbin, Richard; Edwards, Scott V; Forest, Félix; Gilbert, M Thomas P; Goldstein, Melissa M; Grigoriev, Igor V; Hackett, Kevin J; Haussler, David; Jarvis, Erich D; Johnson, Warren E; Patrinos, Aristides; Richards, Stephen; Castilla-Rubio, Juan Carlos; van Sluys, Marie-Anne; Soltis, Pamela S; Xu, Xun; Yang, Huanming; Zhang, Guojie

    2018-04-24

    Increasing our understanding of Earth's biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet's organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project's goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.

  2. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.

    Science.gov (United States)

    Moraes, Fernanda; Góes, Andréa

    2016-05-06

    The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  3. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  4. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project

    DEFF Research Database (Denmark)

    Hayes, Benjamin J; MacLeod, Iona M; Daetwyler, Hans D

    Advantages of using whole genome sequence data to predict genomic estimated breeding values (GEBV) include better persistence of accuracy of GEBV across generations and more accurate GEBV across breeds. The 1000 Bull Genomes Project provides a database of whole genome sequenced key ancestor bulls....... In a dairy data set, predictions using BayesRC and imputed sequence data from 1000 Bull Genomes were 2% more accurate than with 800k data. We could demonstrate the method identified causal mutations in some cases. Further improvements will come from more accurate imputation of sequence variant genotypes...

  5. nGASP - the nematode genome annotation assessment project

    Energy Technology Data Exchange (ETDEWEB)

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C

  6. Skate Genome Project: Cyber-Enabled Bioinformatics Collaboration

    Science.gov (United States)

    Vincent, J.

    2011-01-01

    The Skate Genome Project, a pilot project of the North East Cyber infrastructure Consortium, aims to produce a draft genome sequence of Leucoraja erinacea, the Little Skate. The pilot project was designed to also develop expertise in large scale collaborations across the NECC region. An overview of the bioinformatics and infrastructure challenges faced during the first year of the project will be presented. Results to date and lessons learned from the perspective of a bioinformatics core will be highlighted.

  7. Understanding our genetic inheritance: The US Human Genome Project, The first five years FY 1991--1995

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-04-01

    The Human Genome Initiative is a worldwide research effort with the goal of analyzing the structure of human DNA and determining the location of the estimated 100,000 human genes. In parallel with this effort, the DNA of a set of model organisms will be studied to provide the comparative information necessary for understanding the functioning of the human genome. The information generated by the human genome project is expected to be the source book for biomedical science in the 21st century and will by of immense benefit to the field of medicine. It will help us to understand and eventually treat many of the more than 4000 genetic diseases that affect mankind, as well as the many multifactorial diseases in which genetic predisposition plays an important role. A centrally coordinated project focused on specific objectives is believed to be the most efficient and least expensive way of obtaining this information. The basic data produced will be collected in electronic databases that will make the information readily accessible on convenient form to all who need it. This report describes the plans for the U.S. human genome project and updates those originally prepared by the Office of Technology Assessment (OTA) and the National Research Council (NRC) in 1988. In the intervening two years, improvements in technology for almost every aspect of genomics research have taken place. As a result, more specific goals can now be set for the project.

  8. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects.

    Science.gov (United States)

    Holt, Carson; Yandell, Mark

    2011-12-22

    Second-generation sequencing technologies are precipitating major shifts with regards to what kinds of genomes are being sequenced and how they are annotated. While the first generation of genome projects focused on well-studied model organisms, many of today's projects involve exotic organisms whose genomes are largely terra incognita. This complicates their annotation, because unlike first-generation projects, there are no pre-existing 'gold-standard' gene-models with which to train gene-finders. Improvements in genome assembly and the wide availability of mRNA-seq data are also creating opportunities to update and re-annotate previously published genome annotations. Today's genome projects are thus in need of new genome annotation tools that can meet the challenges and opportunities presented by second-generation sequencing technologies. We present MAKER2, a genome annotation and data management tool designed for second-generation genome projects. MAKER2 is a multi-threaded, parallelized application that can process second-generation datasets of virtually any size. We show that MAKER2 can produce accurate annotations for novel genomes where training-data are limited, of low quality or even non-existent. MAKER2 also provides an easy means to use mRNA-seq data to improve annotation quality; and it can use these data to update legacy annotations, significantly improving their quality. We also show that MAKER2 can evaluate the quality of genome annotations, and identify and prioritize problematic annotations for manual review. MAKER2 is the first annotation engine specifically designed for second-generation genome projects. MAKER2 scales to datasets of any size, requires little in the way of training data, and can use mRNA-seq data to improve annotation quality. It can also update and manage legacy genome annotation datasets.

  9. An information and dialogue conference on the human genome project (HGP) for the minority communities in the state of Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    Zeta Phi Beta Sorority National Educational Foundation, in cooperation with Xavier University of New Orleans, and the New Orleans District Office of the United States Equal Employment Opportunity Commission, held the Information and Dialogue Conference on the Human Genome Project for the Minority Communities in the State of Louisiana on April 16-17, 1999. The Conference was held on the campus of Xavier University in New Orleans. Community leaders, government officials, minority professional and social organizations leaders, religious leaders, persons from the educational and academic community, and students were invited. Conference objectives included bringing HGP information and a focus in the minority community on the project, in clear and understandable terms, to spread the work in the minority community about the project; to explore the likely positive implications with respect to health care and related matters; to explore possible negative results and strategies to meet them; to discuss the social, legal, and ethical implications; and to facilitate minority input into the HGP as it develops.

  10. The 1000 Genomes Project: new opportunities for research and social challenges

    Science.gov (United States)

    2010-01-01

    The 1000 Genomes Project, an international collaboration, is sequencing the whole genome of approximately 2,000 individuals from different worldwide populations. The central goal of this project is to describe most of the genetic variation that occurs at a population frequency greater than 1%. The results of this project will allow scientists to identify genetic variation at an unprecedented degree of resolution and will also help improve the imputation methods for determining unobserved genetic variants that are not represented on current genotyping arrays. By identifying novel or rare functional genetic variants, researchers will be able to pinpoint disease-causing genes in genomic regions initially identified by association studies. This level of detailed sequence information will also improve our knowledge of the evolutionary processes and the genomic patterns that have shaped the human species as we know it today. The new data will also lay the foundation for future clinical applications, such as prediction of disease susceptibility and drug response. However, the forthcoming availability of whole genome sequences at affordable prices will raise ethical concerns and pose potential threats to individual privacy. Nevertheless, we believe that these potential risks are outweighed by the benefits in terms of diagnosis and research, so long as rigorous safeguards are kept in place through legislation that prevents discrimination on the basis of the results of genetic testing. PMID:20193048

  11. The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants.

    Science.gov (United States)

    Reuter, Miriam S; Walker, Susan; Thiruvahindrapuram, Bhooma; Whitney, Joe; Cohn, Iris; Sondheimer, Neal; Yuen, Ryan K C; Trost, Brett; Paton, Tara A; Pereira, Sergio L; Herbrick, Jo-Anne; Wintle, Richard F; Merico, Daniele; Howe, Jennifer; MacDonald, Jeffrey R; Lu, Chao; Nalpathamkalam, Thomas; Sung, Wilson W L; Wang, Zhuozhi; Patel, Rohan V; Pellecchia, Giovanna; Wei, John; Strug, Lisa J; Bell, Sherilyn; Kellam, Barbara; Mahtani, Melanie M; Bassett, Anne S; Bombard, Yvonne; Weksberg, Rosanna; Shuman, Cheryl; Cohn, Ronald D; Stavropoulos, Dimitri J; Bowdin, Sarah; Hildebrandt, Matthew R; Wei, Wei; Romm, Asli; Pasceri, Peter; Ellis, James; Ray, Peter; Meyn, M Stephen; Monfared, Nasim; Hosseini, S Mohsen; Joseph-George, Ann M; Keeley, Fred W; Cook, Ryan A; Fiume, Marc; Lee, Hin C; Marshall, Christian R; Davies, Jill; Hazell, Allison; Buchanan, Janet A; Szego, Michael J; Scherer, Stephen W

    2018-02-05

    The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set ( n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants - associated with cancer, cardiac or neurodegenerative phenotypes - remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care. © 2018 Joule Inc. or its licensors.

  12. A computational genomics pipeline for prokaryotic sequencing projects.

    Science.gov (United States)

    Kislyuk, Andrey O; Katz, Lee S; Agrawal, Sonia; Hagen, Matthew S; Conley, Andrew B; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C; Sammons, Scott A; Govil, Dhwani; Mair, Raydel D; Tatti, Kathleen M; Tondella, Maria L; Harcourt, Brian H; Mayer, Leonard W; Jordan, I King

    2010-08-01

    New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems.

  13. The Genome 10K Project: a way forward.

    Science.gov (United States)

    Koepfli, Klaus-Peter; Paten, Benedict; O'Brien, Stephen J

    2015-01-01

    The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ∼26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species.

  14. Family genome browser: visualizing genomes with pedigree information.

    Science.gov (United States)

    Juan, Liran; Liu, Yongzhuang; Wang, Yongtian; Teng, Mingxiang; Zang, Tianyi; Wang, Yadong

    2015-07-15

    Families with inherited diseases are widely used in Mendelian/complex disease studies. Owing to the advances in high-throughput sequencing technologies, family genome sequencing becomes more and more prevalent. Visualizing family genomes can greatly facilitate human genetics studies and personalized medicine. However, due to the complex genetic relationships and high similarities among genomes of consanguineous family members, family genomes are difficult to be visualized in traditional genome visualization framework. How to visualize the family genome variants and their functions with integrated pedigree information remains a critical challenge. We developed the Family Genome Browser (FGB) to provide comprehensive analysis and visualization for family genomes. The FGB can visualize family genomes in both individual level and variant level effectively, through integrating genome data with pedigree information. Family genome analysis, including determination of parental origin of the variants, detection of de novo mutations, identification of potential recombination events and identical-by-decent segments, etc., can be performed flexibly. Diverse annotations for the family genome variants, such as dbSNP memberships, linkage disequilibriums, genes, variant effects, potential phenotypes, etc., are illustrated as well. Moreover, the FGB can automatically search de novo mutations and compound heterozygous variants for a selected individual, and guide investigators to find high-risk genes with flexible navigation options. These features enable users to investigate and understand family genomes intuitively and systematically. The FGB is available at http://mlg.hit.edu.cn/FGB/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Sequencing of a new target genome: the Pediculus humanus humanus (Phthiraptera: Pediculidae) genome project.

    Science.gov (United States)

    Pittendrigh, B R; Clark, J M; Johnston, J S; Lee, S H; Romero-Severson, J; Dasch, G A

    2006-11-01

    The human body louse, Pediculus humanus humanus (L.), and the human head louse, Pediculus humanus capitis, belong to the hemimetabolous order Phthiraptera. The body louse is the primary vector that transmits the bacterial agents of louse-borne relapsing fever, trench fever, and epidemic typhus. The genomes of the bacterial causative agents of several of these aforementioned diseases have been sequenced. Thus, determining the body louse genome will enhance studies of host-vector-pathogen interactions. Although not important as a major disease vector, head lice are of major social concern. Resistance to traditional pesticides used to control head and body lice have developed. It is imperative that new molecular targets be discovered for the development of novel compounds to control these insects. No complete genome sequence exists for a hemimetabolous insect species primarily because hemimetabolous insects often have large (2000 Mb) to very large (up to 16,300 Mb) genomes. Fortuitously, we determined that the human body louse has one of the smallest genome sizes known in insects, suggesting it may be a suitable choice as a minimal hemimetabolous genome in which many genes have been eliminated during its adaptation to human parasitism. Because many louse species infest birds and mammals, the body louse genome-sequencing project will facilitate studies of their comparative genomics. A 6-8X coverage of the body louse genome, plus sequenced expressed sequence tags, should provide the entomological, evolutionary biology, medical, and public health communities with useful genetic information.

  16. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  17. All about the Human Genome Project (HGP)

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  18. The Human Genome Project: how do we protect Australians?

    Science.gov (United States)

    Stott Despoja, N

    It is the moon landing of the nineties: the ambitious Human Genome Project--identifying the up to 100,000 genes that make up human DNA and the sequences of the three billion base-pairs that comprise the human genome. However, unlike the moon landing, the effects of the genome project will have a fundamental impact on the way we see ourselves and each other.

  19. A 1000 Arab genome project to study the Emirati population.

    Science.gov (United States)

    Al-Ali, Mariam; Osman, Wael; Tay, Guan K; AlSafar, Habiba S

    2018-04-01

    Discoveries from the human genome, HapMap, and 1000 genome projects have collectively contributed toward the creation of a catalog of human genetic variations that has improved our understanding of human diversity. Despite the collegial nature of many of these genome study consortiums, which has led to the cataloging of genetic variations of different ethnic groups from around the world, genome data on the Arab population remains overwhelmingly underrepresented. The National Arab Genome project in the United Arab Emirates (UAE) aims to address this deficiency by using Next Generation Sequencing (NGS) technology to provide data to improve our understanding of the Arab genome and catalog variants that are unique to the Arab population of the UAE. The project was conceived to shed light on the similarities and differences between the Arab genome and those of the other ethnic groups.

  20. MIPS: analysis and annotation of genome information in 2007.

    Science.gov (United States)

    Mewes, H W; Dietmann, S; Frishman, D; Gregory, R; Mannhaupt, G; Mayer, K F X; Münsterkötter, M; Ruepp, A; Spannagl, M; Stümpflen, V; Rattei, T

    2008-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) combines automatic processing of large amounts of sequences with manual annotation of selected model genomes. Due to the massive growth of the available data, the depth of annotation varies widely between independent databases. Also, the criteria for the transfer of information from known to orthologous sequences are diverse. To cope with the task of global in-depth genome annotation has become unfeasible. Therefore, our efforts are dedicated to three levels of annotation: (i) the curation of selected genomes, in particular from fungal and plant taxa (e.g. CYGD, MNCDB, MatDB), (ii) the comprehensive, consistent, automatic annotation employing exhaustive methods for the computation of sequence similarities and sequence-related attributes as well as the classification of individual sequences (SIMAP, PEDANT and FunCat) and (iii) the compilation of manually curated databases for protein interactions based on scrutinized information from the literature to serve as an accepted set of reliable annotated interaction data (MPACT, MPPI, CORUM). All databases and tools described as well as the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  1. Attitudes towards the Human Genome Project.

    Science.gov (United States)

    Shahroudi, Julie; Shaw, Geraldine

    Attitudes concerning the Human Genome Project were reported by faculty (N=40) and students (N=66) from a liberal arts college. Positive attitudes toward the project involved privacy, insurance and health, economic purposes, reproductive purposes, genetic counseling, religion and overall opinions. Negative attitudes were expressed regarding…

  2. A novel genome-information content-based statistic for genome-wide association analysis designed for next-generation sequencing data.

    Science.gov (United States)

    Luo, Li; Zhu, Yun; Xiong, Momiao

    2012-06-01

    The genome-wide association studies (GWAS) designed for next-generation sequencing data involve testing association of genomic variants, including common, low frequency, and rare variants. The current strategies for association studies are well developed for identifying association of common variants with the common diseases, but may be ill-suited when large amounts of allelic heterogeneity are present in sequence data. Recently, group tests that analyze their collective frequency differences between cases and controls shift the current variant-by-variant analysis paradigm for GWAS of common variants to the collective test of multiple variants in the association analysis of rare variants. However, group tests ignore differences in genetic effects among SNPs at different genomic locations. As an alternative to group tests, we developed a novel genome-information content-based statistics for testing association of the entire allele frequency spectrum of genomic variation with the diseases. To evaluate the performance of the proposed statistics, we use large-scale simulations based on whole genome low coverage pilot data in the 1000 Genomes Project to calculate the type 1 error rates and power of seven alternative statistics: a genome-information content-based statistic, the generalized T(2), collapsing method, multivariate and collapsing (CMC) method, individual χ(2) test, weighted-sum statistic, and variable threshold statistic. Finally, we apply the seven statistics to published resequencing dataset from ANGPTL3, ANGPTL4, ANGPTL5, and ANGPTL6 genes in the Dallas Heart Study. We report that the genome-information content-based statistic has significantly improved type 1 error rates and higher power than the other six statistics in both simulated and empirical datasets.

  3. Comparative genomic data of the Avian Phylogenomics Project.

    Science.gov (United States)

    Zhang, Guojie; Li, Bo; Li, Cai; Gilbert, M Thomas P; Jarvis, Erich D; Wang, Jun

    2014-01-01

    genomic data that has been generated and used in our Avian Phylogenomics Project. To the best of our knowledge, the Avian Phylogenomics Project is the biggest vertebrate comparative genomics project to date. The genomic data presented here is expected to accelerate further analyses in many fields, including phylogenetics, comparative genomics, evolution, neurobiology, development biology, and other related areas.

  4. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    OpenAIRE

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with...

  5. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. (eds.)

    1992-01-01

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  6. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. [eds.

    1992-12-31

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  7. The Chlamydomonas genome project: a decade on

    Science.gov (United States)

    Blaby, Ian K.; Blaby-Haas, Crysten; Tourasse, Nicolas; Hom, Erik F. Y.; Lopez, David; Aksoy, Munevver; Grossman, Arthur; Umen, James; Dutcher, Susan; Porter, Mary; King, Stephen; Witman, George; Stanke, Mario; Harris, Elizabeth H.; Goodstein, David; Grimwood, Jane; Schmutz, Jeremy; Vallon, Olivier; Merchant, Sabeeha S.; Prochnik, Simon

    2014-01-01

    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis and micronutrient homeostasis. Ten years since its genome project was initiated, an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the “omics” era. Housed at Phytozome, the Joint Genome Institute’s (JGI) plant genomics portal, the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of RNA-Seq data. Here, we present the past, present and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes. PMID:24950814

  8. The Qatar genome project: translation of whole-genome sequencing into clinical practice.

    Science.gov (United States)

    Zayed, Hatem

    2016-10-01

    Qatar Genome Project was launched in 2013 with the intent to sequence the genome of each Qatari citizen in an effort to protect Qataris from the high rate of indigenous genetic diseases by allowing the mapping of disease-causing variants/rare variants and establishing a Qatari reference genome. Indeed, this project is expected to have numerous global benefits because the elevated homogeneity of the Qatari population, that will make Qatar an excellent genetic laboratory that will generate a wealth of data that will allow us to make sense of the genotype-phenotype correlations of many diseases, especially the complex multifactorial diseases, and will pave the way for changing the traditional medical practice of looking first at the phenotype rather than the genotype. © 2016 John Wiley & Sons Ltd.

  9. The human genome project: Information management, access, and regulation. Technical progress report, 1 April--31 August 1993

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.; Micikas, L.B.

    1993-09-10

    Efforts are described to prepare educational materials including computer based as well as conventional type teaching materials for training interested high school and elementary students in aspects of Human Genome Project.

  10. Enabling a community to dissect an organism: overview of the Neurospora functional genomics project.

    Science.gov (United States)

    Dunlap, Jay C; Borkovich, Katherine A; Henn, Matthew R; Turner, Gloria E; Sachs, Matthew S; Glass, N Louise; McCluskey, Kevin; Plamann, Michael; Galagan, James E; Birren, Bruce W; Weiss, Richard L; Townsend, Jeffrey P; Loros, Jennifer J; Nelson, Mary Anne; Lambreghts, Randy; Colot, Hildur V; Park, Gyungsoon; Collopy, Patrick; Ringelberg, Carol; Crew, Christopher; Litvinkova, Liubov; DeCaprio, Dave; Hood, Heather M; Curilla, Susan; Shi, Mi; Crawford, Matthew; Koerhsen, Michael; Montgomery, Phil; Larson, Lisa; Pearson, Matthew; Kasuga, Takao; Tian, Chaoguang; Baştürkmen, Meray; Altamirano, Lorena; Xu, Junhuan

    2007-01-01

    A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes.

  11. Harvard Personal Genome Project: lessons from participatory public research

    Science.gov (United States)

    2014-01-01

    Background Since its initiation in 2005, the Harvard Personal Genome Project has enrolled thousands of volunteers interested in publicly sharing their genome, health and trait data. Because these data are highly identifiable, we use an ‘open consent’ framework that purposefully excludes promises about privacy and requires participants to demonstrate comprehension prior to enrollment. Discussion Our model of non-anonymous, public genomes has led us to a highly participatory model of researcher-participant communication and interaction. The participants, who are highly committed volunteers, self-pursue and donate research-relevant datasets, and are actively engaged in conversations with both our staff and other Personal Genome Project participants. We have quantitatively assessed these communications and donations, and report our experiences with returning research-grade whole genome data to participants. We also observe some of the community growth and discussion that has occurred related to our project. Summary We find that public non-anonymous data is valuable and leads to a participatory research model, which we encourage others to consider. The implementation of this model is greatly facilitated by web-based tools and methods and participant education. Project results are long-term proactive participant involvement and the growth of a community that benefits both researchers and participants. PMID:24713084

  12. Harvard Personal Genome Project: lessons from participatory public research.

    Science.gov (United States)

    Ball, Madeleine P; Bobe, Jason R; Chou, Michael F; Clegg, Tom; Estep, Preston W; Lunshof, Jeantine E; Vandewege, Ward; Zaranek, Alexander; Church, George M

    2014-02-28

    Since its initiation in 2005, the Harvard Personal Genome Project has enrolled thousands of volunteers interested in publicly sharing their genome, health and trait data. Because these data are highly identifiable, we use an 'open consent' framework that purposefully excludes promises about privacy and requires participants to demonstrate comprehension prior to enrollment. Our model of non-anonymous, public genomes has led us to a highly participatory model of researcher-participant communication and interaction. The participants, who are highly committed volunteers, self-pursue and donate research-relevant datasets, and are actively engaged in conversations with both our staff and other Personal Genome Project participants. We have quantitatively assessed these communications and donations, and report our experiences with returning research-grade whole genome data to participants. We also observe some of the community growth and discussion that has occurred related to our project. We find that public non-anonymous data is valuable and leads to a participatory research model, which we encourage others to consider. The implementation of this model is greatly facilitated by web-based tools and methods and participant education. Project results are long-term proactive participant involvement and the growth of a community that benefits both researchers and participants.

  13. The 1000 bull genome project

    Science.gov (United States)

    To meet growing global demands for high value protein from milk and meat, rates of genetic gain in domestic cattle must be accelerated. At the same time, animal health and welfare must be considered. The 1000 bull genomes project supports these goals by providing annotated sequence variants and ge...

  14. The ethical introduction of genome-based information and technologies into public health.

    Science.gov (United States)

    Howard, H C; Swinnen, E; Douw, K; Vondeling, H; Cassiman, J-J; Cambon-Thomsen, A; Borry, P

    2013-01-01

    With the human genome project running from 1989 until its completion in 2003, and the incredible advances in sequencing technology and in bioinformatics during the last decade, there has been a shift towards an increase focus on studying common complex disorders which develop due to the interplay of many different genes as well as environmental factors. Although some susceptibility genes have been identified in some populations for disorders such as cancer, diabetes and cardiovascular diseases, the integration of this information into the health care system has proven to be much more problematic than for single gene disorders. Furthermore, with the 1000$ genome supposedly just around the corner, and whole genome sequencing gradually being integrated into research protocols as well as in the clinical context, there is a strong push for the uptake of additional genomic testing. Indeed, the advent of public health genomics, wherein genomics would be integrated in all aspects of health care and public health, should be taken seriously. Although laudable, these advances also bring with them a slew of ethical and social issues that challenge the normative frameworks used in clinical genetics until now. With this in mind, we highlight herein 5 principles that are used as a primer to discuss the ethical introduction of genome-based information and genome-based technologies into public health. Copyright © 2013 S. Karger AG, Basel.

  15. Helminth genome projects: all or nothing

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Julius; Horák, Aleš; Scholz, Tomáš

    2005-01-01

    Roč. 21, č. 6 (2005), s. 265-266 ISSN 1471-4922 Institutional research plan: CEZ:AV0Z60220518 Keywords : genome project * helminth * Dracunculus Subject RIV: EG - Zoology Impact factor: 4.526, year: 2005

  16. Ethical Considerations Regarding Classroom Use of Personal Genomic Information

    Directory of Open Access Journals (Sweden)

    Lisa S. Parker

    2014-10-01

    Full Text Available Rapidly decreasing costs of genetic technologies—especially next-generation sequencing—and intensifying need for a clinical workforce trained in genomic medicine have increased interest in having students use personal genomic information to motivate and enhance genomics education. Numerous ethical issues attend classroom/pedagogical use of students’ personal genomic information, including their informed decision to participate, pressures to participate, privacy concerns, and psychosocial sequelae of learning genomic information. This paper addresses these issues, advocates explicit discussion of these issues to cultivate students’ ethical reasoning skills, suggests ways to mitigate potential harms, and recommends collection of ethically relevant data regarding pedagogical use of personal genomic information.

  17. The MedSeq Project: a randomized trial of integrating whole genome sequencing into clinical medicine.

    Science.gov (United States)

    Vassy, Jason L; Lautenbach, Denise M; McLaughlin, Heather M; Kong, Sek Won; Christensen, Kurt D; Krier, Joel; Kohane, Isaac S; Feuerman, Lindsay Z; Blumenthal-Barby, Jennifer; Roberts, J Scott; Lehmann, Lisa Soleymani; Ho, Carolyn Y; Ubel, Peter A; MacRae, Calum A; Seidman, Christine E; Murray, Michael F; McGuire, Amy L; Rehm, Heidi L; Green, Robert C

    2014-03-20

    Whole genome sequencing (WGS) is already being used in certain clinical and research settings, but its impact on patient well-being, health-care utilization, and clinical decision-making remains largely unstudied. It is also unknown how best to communicate sequencing results to physicians and patients to improve health. We describe the design of the MedSeq Project: the first randomized trials of WGS in clinical care. This pair of randomized controlled trials compares WGS to standard of care in two clinical contexts: (a) disease-specific genomic medicine in a cardiomyopathy clinic and (b) general genomic medicine in primary care. We are recruiting 8 to 12 cardiologists, 8 to 12 primary care physicians, and approximately 200 of their patients. Patient participants in both the cardiology and primary care trials are randomly assigned to receive a family history assessment with or without WGS. Our laboratory delivers a genome report to physician participants that balances the needs to enhance understandability of genomic information and to convey its complexity. We provide an educational curriculum for physician participants and offer them a hotline to genetics professionals for guidance in interpreting and managing their patients' genome reports. Using varied data sources, including surveys, semi-structured interviews, and review of clinical data, we measure the attitudes, behaviors and outcomes of physician and patient participants at multiple time points before and after the disclosure of these results. The impact of emerging sequencing technologies on patient care is unclear. We have designed a process of interpreting WGS results and delivering them to physicians in a way that anticipates how we envision genomic medicine will evolve in the near future. That is, our WGS report provides clinically relevant information while communicating the complexity and uncertainty of WGS results to physicians and, through physicians, to their patients. This project will not only

  18. The Human Genome Project (HGP): dividends and challenges: a ...

    African Journals Online (AJOL)

    The Human Genome Project (HGP): dividends and challenges: a review. ... Genomic studies have given profound insights into the genetic organization of ... with it will be an essential part of modern medicine and biology for years to come.

  19. Laying the Foundation for a Genomic Rosetta Stone: Creating Information Hubs through the User of Consensus Idenifiers

    Energy Technology Data Exchange (ETDEWEB)

    Van Brabant, Bart; Kyrpides, Nikos; Glockner, Frank Oliver; Gray, Tanya; Field, Dawn; De Vos, Paul; De Baets, Bernard; Dawyndt, Peter

    2007-05-01

    This paper presents a holistic approach that illustrates how the semantic hurdle for integration of biological databases might be overcome when mapping sources that provide information on individual genes and complete genomes to sources that provide information on the biological resources from which these sequences where derived, and vice versa. In particular we will explain how each of the completed and ongoing whole-genome sequencing projects in the Genomes OnLine Database and each of the ribosomal RNA sequences in the SILVA ribosomal RNA database have been persistently cross-referenced with the StrainInfo.net bioportal, serving both a genome centric and an organism centric view to the life on our blue planet as one more stepping stone towards the establishment of fully integrated and flexible biological information networks.

  20. Identification of balanced chromosomal rearrangements previously unknown among participants in the 1000 Genomes Project: implications for interpretation of structural variation in genomes and the future of clinical cytogenetics.

    Science.gov (United States)

    Dong, Zirui; Wang, Huilin; Chen, Haixiao; Jiang, Hui; Yuan, Jianying; Yang, Zhenjun; Wang, Wen-Jing; Xu, Fengping; Guo, Xiaosen; Cao, Ye; Zhu, Zhenzhen; Geng, Chunyu; Cheung, Wan Chee; Kwok, Yvonne K; Yang, Huanming; Leung, Tak Yeung; Morton, Cynthia C; Cheung, Sau Wai; Choy, Kwong Wai

    2017-11-02

    PurposeRecent studies demonstrate that whole-genome sequencing enables detection of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic methods. We aimed to assess our analytical tool for detecting BCAs in the 1000 Genomes Project without knowing which bands were affected.MethodsThe 1000 Genomes Project provides an unprecedented integrated map of structural variants in phenotypically normal subjects, but there is no information on potential inclusion of subjects with apparent BCAs akin to those traditionally detected in diagnostic cytogenetics laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project with sufficient physical coverage (8.25-fold).ResultsWith this approach, we detected four reciprocal balanced translocations and four inversions, ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and polymerase chain reaction studies. One of these DNAs has a subtle translocation that is not readily identified by chromosome analysis because of the similarity of the banding patterns and size of exchanged segments, and another results in disruption of all transcripts of an OMIM gene.ConclusionOur study demonstrates the extension of utilizing low-pass whole-genome sequencing for unbiased detection of BCAs including translocations and inversions previously unknown in the 1000 Genomes Project.GENETICS in MEDICINE advance online publication, 2 November 2017; doi:10.1038/gim.2017.170.

  1. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    Science.gov (United States)

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  2. Genome Improvement at JGI-HAGSC

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.

    2012-03-03

    Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence. For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.

  3. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data.

    Science.gov (United States)

    Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul

    2017-01-04

    The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data-previously only browseable through our FTP site-by focusing on particular samples, populations or data sets of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Informing the Design of Direct-to-Consumer Interactive Personal Genomics Reports.

    Science.gov (United States)

    Shaer, Orit; Nov, Oded; Okerlund, Johanna; Balestra, Martina; Stowell, Elizabeth; Ascher, Laura; Bi, Joanna; Schlenker, Claire; Ball, Madeleine

    2015-06-12

    In recent years, people who sought direct-to-consumer genetic testing services have been increasingly confronted with an unprecedented amount of personal genomic information, which influences their decisions, emotional state, and well-being. However, these users of direct-to-consumer genetic services, who vary in their education and interests, frequently have little relevant experience or tools for understanding, reasoning about, and interacting with their personal genomic data. Online interactive techniques can play a central role in making personal genomic data useful for these users. We sought to (1) identify the needs of diverse users as they make sense of their personal genomic data, (2) consequently develop effective interactive visualizations of genomic trait data to address these users' needs, and (3) evaluate the effectiveness of the developed visualizations in facilitating comprehension. The first two user studies, conducted with 63 volunteers in the Personal Genome Project and with 36 personal genomic users who participated in a design workshop, respectively, employed surveys and interviews to identify the needs and expectations of diverse users. Building on the two initial studies, the third study was conducted with 730 Amazon Mechanical Turk users and employed a controlled experimental design to examine the effectiveness of different design interventions on user comprehension. The first two studies identified searching, comparing, sharing, and organizing data as fundamental to users' understanding of personal genomic data. The third study demonstrated that interactive and visual design interventions could improve the understandability of personal genomic reports for consumers. In particular, results showed that a new interactive bubble chart visualization designed for the study resulted in the highest comprehension scores, as well as the highest perceived comprehension scores. These scores were significantly higher than scores received using the

  5. Exploring Other Genomes: Bacteria.

    Science.gov (United States)

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  6. Alignment of 1000 Genomes Project reads to reference assembly GRCh38.

    Science.gov (United States)

    Zheng-Bradley, Xiangqun; Streeter, Ian; Fairley, Susan; Richardson, David; Clarke, Laura; Flicek, Paul

    2017-07-01

    The 1000 Genomes Project produced more than 100 trillion basepairs of short read sequence from more than 2600 samples in 26 populations over a period of five years. In its final phase, the project released over 85 million genotyped and phased variants on human reference genome assembly GRCh37. An updated reference assembly, GRCh38, was released in late 2013, but there was insufficient time for the final phase of the project analysis to change to the new assembly. Although it is possible to lift the coordinates of the 1000 Genomes Project variants to the new assembly, this is a potentially error-prone process as coordinate remapping is most appropriate only for non-repetitive regions of the genome and those that did not see significant change between the two assemblies. It will also miss variants in any region that was newly added to GRCh38. Thus, to produce the highest quality variants and genotypes on GRCh38, the best strategy is to realign the reads and recall the variants based on the new alignment. As the first step of variant calling for the 1000 Genomes Project data, we have finished remapping all of the 1000 Genomes sequence reads to GRCh38 with alternative scaffold-aware BWA-MEM. The resulting alignments are available as CRAM, a reference-based sequence compression format. The data have been released on our FTP site and are also available from European Nucleotide Archive to facilitate researchers discovering variants on the primary sequences and alternative contigs of GRCh38. © The Authors 2017. Published by Oxford University Press.

  7. National human genome projects: an update and an agenda.

    Science.gov (United States)

    An, Joon Yong

    2017-01-01

    Population genetic and human genetic studies are being accelerated with genome technology and data sharing. Accordingly, in the past 10 years, several countries have initiated genetic research using genome technology and identified the genetic architecture of the ethnic groups living in the corresponding country or suggested the genetic foundation of a social phenomenon. Genetic research has been conducted from epidemiological studies that previously described the health or disease conditions in defined population. This perspective summarizes national genome projects conducted in the past 10 years and introduces case studies to utilize genomic data in genetic research.

  8. Mapping our genes: The genome projects: How big, how fast

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for /open quotes/writing the rules/close quotes/ of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. OTA prepared this report with the assistance of several hundred experts throughout the world. 342 refs., 26 figs., 11 tabs.

  9. Mapping Our Genes: The Genome Projects: How Big, How Fast

    Science.gov (United States)

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for ?writing the rules? of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. The Office of Technology Assessment (OTA) prepared this report with the assistance of several hundred experts throughout the world.

  10. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; Harmon-Smith, Miranda; Doud, Devin; Reddy, T. B. K.; Schulz, Frederik; Jarett, Jessica; Rivers, Adam R.; Eloe-Fadrosh, Emiley A.; Tringe, Susannah G.; Ivanova, Natalia N.; Copeland, Alex; Clum, Alicia; Becraft, Eric D.; Malmstrom, Rex R.; Birren, Bruce; Podar, Mircea; Bork, Peer; Weinstock, George M.; Garrity, George M.; Dodsworth, Jeremy A.; Yooseph, Shibu; Sutton, Granger; Glöckner, Frank O.; Gilbert, Jack A.; Nelson, William C.; Hallam, Steven J.; Jungbluth, Sean P.; Ettema, Thijs J. G.; Tighe, Scott; Konstantinidis, Konstantinos T.; Liu, Wen-Tso; Baker, Brett J.; Rattei, Thomas; Eisen, Jonathan A.; Hedlund, Brian; McMahon, Katherine D.; Fierer, Noah; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Tyson, Gene W.; Rinke, Christian; Kyrpides, Nikos C.; Schriml, Lynn; Garrity, George M.; Hugenholtz, Philip; Sutton, Granger; Yilmaz, Pelin; Meyer, Folker; Glöckner, Frank O.; Gilbert, Jack A.; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Lapidus, Alla; Meyer, Folker; Yilmaz, Pelin; Parks, Donovan H.; Eren, A. M.; Schriml, Lynn; Banfield, Jillian F.; Hugenholtz, Philip; Woyke, Tanja

    2017-08-08

    We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.

  11. The Human Genome Project: big science transforms biology and medicine

    OpenAIRE

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and a...

  12. Genomic research and data-mining technology: implications for personal privacy and informed consent.

    Science.gov (United States)

    Tavani, Herman T

    2004-01-01

    This essay examines issues involving personal privacy and informed consent that arise at the intersection of information and communication technology (ICT) and population genomics research. I begin by briefly examining the ethical, legal, and social implications (ELSI) program requirements that were established to guide researchers working on the Human Genome Project (HGP). Next I consider a case illustration involving deCODE Genetics, a privately owned genetic company in Iceland, which raises some ethical concerns that are not clearly addressed in the current ELSI guidelines. The deCODE case also illustrates some ways in which an ICT technique known as data mining has both aided and posed special challenges for researchers working in the field of population genomics. On the one hand, data-mining tools have greatly assisted researchers in mapping the human genome and in identifying certain "disease genes" common in specific populations (which, in turn, has accelerated the process of finding cures for diseases tha affect those populations). On the other hand, this technology has significantly threatened the privacy of research subjects participating in population genomics studies, who may, unwittingly, contribute to the construction of new groups (based on arbitrary and non-obvious patterns and statistical correlations) that put those subjects at risk for discrimination and stigmatization. In the final section of this paper I examine some ways in which the use of data mining in the context of population genomics research poses a critical challenge for the principle of informed consent, which traditionally has played a central role in protecting the privacy interests of research subjects participating in epidemiological studies.

  13. Citrus sinensis annotation project (CAP): a comprehensive database for sweet orange genome.

    Science.gov (United States)

    Wang, Jia; Chen, Dijun; Lei, Yang; Chang, Ji-Wei; Hao, Bao-Hai; Xing, Feng; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Chen, Ling-Ling

    2014-01-01

    Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia), and constructed the Citrus sinensis annotation project (CAP) to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET) evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs) and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/.

  14. Deep whole-genome sequencing of 90 Han Chinese genomes.

    Science.gov (United States)

    Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen

    2017-09-01

    Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000

  15. The Human Genome Project and Mental Retardation: An Educational Program. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Sharon

    1999-05-03

    The Arc, a national organization on mental retardation, conducted an educational program for members, many of whom have a family member with a genetic condition causing mental retardation. The project informed members about the Human Genome scientific efforts, conducted training regarding ethical, legal and social implications and involved members in issue discussions. Short reports and fact sheets on genetic and ELSI topics were disseminated to 2,200 of the Arc's leaders across the country and to other interested individuals. Materials produced by the project can e found on the Arc's web site, TheArc.org.

  16. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2015-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  17. The African Genome Variation Project shapes medical genetics in Africa.

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S

    2015-01-15

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  18. The lawful uses of knowledge from the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Grad, F.P.

    1994-04-15

    Part I of this study deals with the right to know or not to know personal genetic information, and examines available legal protections of the right of privacy and the adverse effect of the disclosure of genetic information both on employment and insurance interests and on self esteem and protection of personal integrity. The study examines the rationale for the legal protection of privacy as the protection of a public interest. It examines the very limited protections currently available for privacy interests, including genetic privacy interests, and concludes that there is a need for broader, more far-reaching legal protections. The second part of the study is based on the assumption that as major a project as the Human Genome Project, spending billions of dollars on science which is health related, will indeed be applied for preventive and therapeutic public health purposes, as it has been in the past. It also addresses the recurring fear that public health initiatives in the genetic area must evolve a new eugenic agenda, that we must not repeat the miserable discriminatory experiences of the past.

  19. The human Genome project and the future of oncology

    International Nuclear Information System (INIS)

    Collins, Francis S.

    1996-01-01

    The Human Genome Project is an ambitious 15-year effort to devise maps and sequence of the 3-billion base pair human genome, including all 100,000 genes. The project is running ahead of schedule and under budget. Already the effects on progress in disease gene discovery have been dramatic, especially for cancer. The most appropriate uses of susceptibility testing for breast, ovarian, and colon cancer are being investigated in research protocols, and the need to prevent genetic discrimination in employment and health insurance is becoming more urgent. In the longer term, these gene discoveries are likely to usher in a new era of therapeutic molecular medicine

  20. The Human Genome Project and Biology Education.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Highlights the importance of the Human Genome Project in educating the public about genetics. Discusses four challenges that science educators must address: teaching for conceptual understanding, the nature of science, the personal and social impact of science and technology, and the principles of technology. Contains 45 references. (JRH)

  1. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; Harmon-Smith, Miranda; Doud, Devin; Reddy, T. B. K.; Schulz, Frederik; Jarett, Jessica; Rivers, Adam R.; Eloe-Fadrosh, Emiley A.; Tringe, Susannah G.; Ivanova, Natalia N.; Copeland, Alex; Clum, Alicia; Becraft, Eric D.; Malmstrom, Rex R.; Birren, Bruce; Podar, Mircea; Bork, Peer; Weinstock, George M.; Garrity, George M.; Dodsworth, Jeremy A.; Yooseph, Shibu; Sutton, Granger; Glöckner, Frank O.; Gilbert, Jack A.; Nelson, William C.; Hallam, Steven J.; Jungbluth, Sean P.; Ettema, Thijs J. G.; Tighe, Scott; Konstantinidis, Konstantinos T.; Liu, Wen-Tso; Baker, Brett J.; Rattei, Thomas; Eisen, Jonathan A.; Hedlund, Brian; McMahon, Katherine D.; Fierer, Noah; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Tyson, Gene W.; Rinke, Christian; Kyrpides, Nikos C.; Schriml, Lynn; Garrity, George M.; Hugenholtz, Philip; Sutton, Granger; Yilmaz, Pelin; Meyer, Folker; Glöckner, Frank O.; Gilbert, Jack A.; Knight, Rob; Finn, Rob; Cochrane, Guy; Karsch-Mizrachi, Ilene; Lapidus, Alla; Meyer, Folker; Yilmaz, Pelin; Parks, Donovan H.; Eren, A. M.; Schriml, Lynn; Banfield, Jillian F.; Hugenholtz, Philip; Woyke, Tanja

    2017-08-08

    The number of genomes from uncultivated microbes will soon surpass the number of isolate genomes in public databases (Hugenholtz, Skarshewski, & Parks, 2016). Technological advancements in high-throughput sequencing and assembly, including single-cell genomics and the computational extraction of genomes from metagenomes (GFMs), are largely responsible. Here we propose community standards for reporting the Minimum Information about a Single-Cell Genome (MIxS-SCG) and Minimum Information about Genomes extracted From Metagenomes (MIxS-GFM) specific for Bacteria and Archaea. The standards have been developed in the context of the International Genomics Standards Consortium (GSC) community (Field et al., 2014) and can be viewed as a supplement to other GSC checklists including the Minimum Information about a Genome Sequence (MIGS), Minimum information about a Metagenomic Sequence(s) (MIMS) (Field et al., 2008) and Minimum Information about a Marker Gene Sequence (MIMARKS) (P. Yilmaz et al., 2011). Community-wide acceptance of MIxS-SCG and MIxS-GFM for Bacteria and Archaea will enable broad comparative analyses of genomes from the majority of taxa that remain uncultivated, improving our understanding of microbial function, ecology, and evolution.

  2. MIPS: a database for genomes and protein sequences.

    Science.gov (United States)

    Mewes, H W; Frishman, D; Güldener, U; Mannhaupt, G; Mayer, K; Mokrejs, M; Morgenstern, B; Münsterkötter, M; Rudd, S; Weil, B

    2002-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz-Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91-93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155-158; Barker et al. (2001) Nucleic Acids Res., 29, 29-32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de).

  3. The minimum information about a genome sequence (MIGS) specification

    DEFF Research Database (Denmark)

    Field, D; Garrity, G; Gray, T

    2008-01-01

    With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the...... that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases....... the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources...

  4. Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project : open letter

    NARCIS (Netherlands)

    Archibald, A.L.; Bottema, C.D.; Brauning, R.; Burgess, S.C.; Burt, D.W.; Casas, E.; Cheng, H.H.; Clarke, L.; Couldrey, C.; Dalrymple, B.P.; Elsik, C.G.; Foissac, S.; Giuffra, E.; Groenen, M.A.M.; Hayes, B.J.; Huang, L.S.; Khatib, H.; Kijas, J.W.; Kim, H.; Lunney, J.K.; McCarthy, F.M.; McEwan, J.; Moore, S.; Nanduri, B.; Notredame, C.; Palti, Y.; Plastow, G.S.; Reecy, J.M.; Rohrer, G.; Sarropoulou, E.; Schmidt, C.J.; Silverstein, J.; Tellam, R.L.; Tixier-Boichard, M.; Tosser-klopp, G.; Tuggle, C.K.; Vilkki, J.; White, S.N.; Zhao, S.; Zhou, H.

    2015-01-01

    We describe the organization of a nascent international effort, the Functional Annotation of Animal Genomes (FAANG) project, whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species.

  5. Genomes to Life Project Quartely Report October 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Heffelfinger, Grant S.; Martino, Anthony; Rintoul, Mark Daniel; Geist, Al; Gorin, Andrey; Xu, Ying; Palenik, Brian

    2005-02-01

    a set of novel capabilities for inference of regulatory pathways in microbial genomes across multiple sources of information through the integration of computational and experimental technologies. These capabilities will be applied to Synechococcus regulatory pathways to characterize their interaction map and identify component proteins in these - 4 - pathways. We will also investigate methods for combining experimental and computational results with visualization and natural language tools to accelerate discovery of regulatory pathways. The ultimate goal of this effort is develop and apply new experimental and computational methods needed to generate a new level of understanding of how the Synechococcus genome affects carbon fixation at the global scale. Anticipated experimental and computational methods will provide ever-increasing insight about the individual elements and steps in the carbon fixation process, however relating an organism's genome to its cellular response in the presence of varying environments will require systems biology approaches. Thus a primary goal for this effort is to integrate the genomic data generated from experiments and lower level simulations with data from the existing body of literature into a whole cell model. We plan to accomplish this by developing and applying a set of tools for capturing the carbon fixation behavior of complex of Synechococcus at different levels of resolution. Finally, the explosion of data being produced by high-throughput experiments requires data analysis and models which are more computationally complex, more heterogeneous, and require coupling to ever increasing amounts of experimentally obtained data in varying formats. These challenges are unprecedented in high performance scientific computing and necessitate the development of a companion computational infrastructure to support this effort. More information about this project, including a copy of the original proposal, can be found at www.genomes

  6. Research study on analysis/use technologies of genome information; Genome joho kaidoku riyo gijutsu no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For wide use of genome information in the industrial field, the required R and D was surveyed from the standpoints of biology and information science. To clarify the present state and issues of the international research on genome analysis, the genome map as well as sequence and function information are first surveyed. The current analysis/use technologies of genome information are analyzed, and the following are summarized: prediction and identification of gene regions in genome sequences, techniques for searching and selecting useful genes, and techniques for predicting the expression of gene functions and the gene-product structure and functions. It is recommended that R and D and data collection/interpretation necessary to clarify inter-gene interactions and information networks should be promoted by integrating Japanese advanced know-how and technologies. As examples of the impact of the research results on industry and society, the present state and future expected effect are summarized for medicines, diagnosis/analysis instruments, chemicals, foods, agriculture, fishery, animal husbandry, electronics, environment and information. 278 refs., 42 figs., 5 tabs.

  7. JUICE: a data management system that facilitates the analysis of large volumes of information in an EST project workflow.

    Science.gov (United States)

    Latorre, Mariano; Silva, Herman; Saba, Juan; Guziolowski, Carito; Vizoso, Paula; Martinez, Veronica; Maldonado, Jonathan; Morales, Andrea; Caroca, Rodrigo; Cambiazo, Veronica; Campos-Vargas, Reinaldo; Gonzalez, Mauricio; Orellana, Ariel; Retamales, Julio; Meisel, Lee A

    2006-11-23

    Expressed sequence tag (EST) analyses provide a rapid and economical means to identify candidate genes that may be involved in a particular biological process. These ESTs are useful in many Functional Genomics studies. However, the large quantity and complexity of the data generated during an EST sequencing project can make the analysis of this information a daunting task. In an attempt to make this task friendlier, we have developed JUICE, an open source data management system (Apache + PHP + MySQL on Linux), which enables the user to easily upload, organize, visualize and search the different types of data generated in an EST project pipeline. In contrast to other systems, the JUICE data management system allows a branched pipeline to be established, modified and expanded, during the course of an EST project. The web interfaces and tools in JUICE enable the users to visualize the information in a graphical, user-friendly manner. The user may browse or search for sequences and/or sequence information within all the branches of the pipeline. The user can search using terms associated with the sequence name, annotation or other characteristics stored in JUICE and associated with sequences or sequence groups. Groups of sequences can be created by the user, stored in a clipboard and/or downloaded for further analyses. Different user profiles restrict the access of each user depending upon their role in the project. The user may have access exclusively to visualize sequence information, access to annotate sequences and sequence information, or administrative access. JUICE is an open source data management system that has been developed to aid users in organizing and analyzing the large amount of data generated in an EST Project workflow. JUICE has been used in one of the first functional genomics projects in Chile, entitled "Functional Genomics in nectarines: Platform to potentiate the competitiveness of Chile in fruit exportation". However, due to its ability to

  8. Illuminating the Druggable Genome (IDG)

    Data.gov (United States)

    Federal Laboratory Consortium — Results from the Human Genome Project revealed that the human genome contains 20,000 to 25,000 genes. A gene contains (encodes) the information that each cell uses...

  9. The minimum information about a genome sequence (MIGS) specification

    Science.gov (United States)

    Field, Dawn; Garrity, George; Gray, Tanya; Morrison, Norman; Selengut, Jeremy; Sterk, Peter; Tatusova, Tatiana; Thomson, Nicholas; Allen, Michael J; Angiuoli, Samuel V; Ashburner, Michael; Axelrod, Nelson; Baldauf, Sandra; Ballard, Stuart; Boore, Jeffrey; Cochrane, Guy; Cole, James; Dawyndt, Peter; De Vos, Paul; dePamphilis, Claude; Edwards, Robert; Faruque, Nadeem; Feldman, Robert; Gilbert, Jack; Gilna, Paul; Glöckner, Frank Oliver; Goldstein, Philip; Guralnick, Robert; Haft, Dan; Hancock, David; Hermjakob, Henning; Hertz-Fowler, Christiane; Hugenholtz, Phil; Joint, Ian; Kagan, Leonid; Kane, Matthew; Kennedy, Jessie; Kowalchuk, George; Kottmann, Renzo; Kolker, Eugene; Kravitz, Saul; Kyrpides, Nikos; Leebens-Mack, Jim; Lewis, Suzanna E; Li, Kelvin; Lister, Allyson L; Lord, Phillip; Maltsev, Natalia; Markowitz, Victor; Martiny, Jennifer; Methe, Barbara; Mizrachi, Ilene; Moxon, Richard; Nelson, Karen; Parkhill, Julian; Proctor, Lita; White, Owen; Sansone, Susanna-Assunta; Spiers, Andrew; Stevens, Robert; Swift, Paul; Taylor, Chris; Tateno, Yoshio; Tett, Adrian; Turner, Sarah; Ussery, David; Vaughan, Bob; Ward, Naomi; Whetzel, Trish; Gil, Ingio San; Wilson, Gareth; Wipat, Anil

    2008-01-01

    With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the ‘transparency’ of the information contained in existing genomic databases. PMID:18464787

  10. Documenting genomics: Applying archival theory to preserving the records of the Human Genome Project.

    Science.gov (United States)

    Shaw, Jennifer

    2016-02-01

    The Human Genome Archive Project (HGAP) aimed to preserve the documentary heritage of the UK's contribution to the Human Genome Project (HGP) by using archival theory to develop a suitable methodology for capturing the results of modern, collaborative science. After assessing past projects and different archival theories, the HGAP used an approach based on the theory of documentation strategy to try to capture the records of a scientific project that had an influence beyond the purely scientific sphere. The HGAP was an archival survey that ran for two years. It led to ninety scientists being contacted and has, so far, led to six collections being deposited in the Wellcome Library, with additional collections being deposited in other UK repositories. In applying documentation strategy the HGAP was attempting to move away from traditional archival approaches to science, which have generally focused on retired Nobel Prize winners. It has been partially successful in this aim, having managed to secure collections from people who are not 'big names', but who made an important contribution to the HGP. However, the attempt to redress the gender imbalance in scientific collections and to improve record-keeping in scientific organisations has continued to be difficult to achieve. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  11. An integrated clinical and genomic information system for cancer precision medicine.

    Science.gov (United States)

    Jang, Yeongjun; Choi, Taekjin; Kim, Jongho; Park, Jisub; Seo, Jihae; Kim, Sangok; Kwon, Yeajee; Lee, Seungjae; Lee, Sanghyuk

    2018-04-20

    Increasing affordability of next-generation sequencing (NGS) has created an opportunity for realizing genomically-informed personalized cancer therapy as a path to precision oncology. However, the complex nature of genomic information presents a huge challenge for clinicians in interpreting the patient's genomic alterations and selecting the optimum approved or investigational therapy. An elaborate and practical information system is urgently needed to support clinical decision as well as to test clinical hypotheses quickly. Here, we present an integrated clinical and genomic information system (CGIS) based on NGS data analyses. Major components include modules for handling clinical data, NGS data processing, variant annotation and prioritization, drug-target-pathway analysis, and population cohort explorer. We built a comprehensive knowledgebase of genes, variants, drugs by collecting annotated information from public and in-house resources. Structured reports for molecular pathology are generated using standardized terminology in order to help clinicians interpret genomic variants and utilize them for targeted cancer therapy. We also implemented many features useful for testing hypotheses to develop prognostic markers from mutation and gene expression data. Our CGIS software is an attempt to provide useful information for both clinicians and scientists who want to explore genomic information for precision oncology.

  12. The human genome project and the future of medical practice ...

    African Journals Online (AJOL)

    Contrary to the scepticism that characterised the planning stages of the human genome project, the technology and sequence data resulting from the project are set to revolutionise medical practice for good. The expected benefits include: enhanced discovery of disease genes, which will lead to improved knowledge on the ...

  13. Reconsidering democracy - History of the human genome project

    NARCIS (Netherlands)

    Huijer, M

    What options are open for people-citizens, politicians, and other nonscientists-to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  14. Genomes to life project quarterly report June 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Heffelfinger, Grant S.

    2005-01-01

    This SAND report provides the technical progress through June 2004 of the Sandia-led project, ''Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling'', funded by the DOE Office of Science Genomes to Life Program. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO{sub 2} are important terms in the global environmental response to anthropogenic atmospheric inputs of CO{sub 2} and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. In this project, we will investigate the carbon sequestration behavior of Synechococcus Sp., an abundant marine cyanobacteria known to be important to environmental responses to carbon dioxide levels, through experimental and computational methods. This project is a combined experimental and computational effort with emphasis on developing and applying new computational tools and methods. Our experimental effort will provide the biology and data to drive the computational efforts and include significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Computational tools will be essential to our efforts to discover and characterize the function of the molecular machines of Synechococcus. To this end, molecular simulation methods will be coupled with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes

  15. Short communication: Genomic selection in a crossbred cattle population using data from the Dairy Genetics East Africa Project.

    Science.gov (United States)

    Brown, A; Ojango, J; Gibson, J; Coffey, M; Okeyo, M; Mrode, R

    2016-09-01

    Due to the absence of accurate pedigree information, it has not been possible to implement genetic evaluations for crossbred cattle in African small-holder systems. Genomic selection techniques that do not rely on pedigree information could, therefore, be a useful alternative. The objective of this study was to examine the feasibility of using genomic selection techniques in a crossbred cattle population using data from Kenya provided by the Dairy Genetics East Africa Project. Genomic estimated breeding values for milk yield were estimated using 2 prediction methods, GBLUP and BayesC, and accuracies were calculated as the correlation between yield deviations and genomic breeding values included in the estimation process, mimicking the situation for young bulls. The accuracy of evaluation ranged from 0.28 to 0.41, depending on the validation population and prediction method used. No significant differences were found in accuracy between the 2 prediction methods. The results suggest that there is potential for implementing genomic selection for young bulls in crossbred small-holder cattle populations, and targeted genotyping and phenotyping should be pursued to facilitate this. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. The UK Human Genome Mapping Project online computing service.

    Science.gov (United States)

    Rysavy, F R; Bishop, M J; Gibbs, G P; Williams, G W

    1992-04-01

    This paper presents an overview of computing and networking facilities developed by the Medical Research Council to provide online computing support to the Human Genome Mapping Project (HGMP) in the UK. The facility is connected to a number of other computing facilities in various centres of genetics and molecular biology research excellence, either directly via high-speed links or through national and international wide-area networks. The paper describes the design and implementation of the current system, a 'client/server' network of Sun, IBM, DEC and Apple servers, gateways and workstations. A short outline of online computing services currently delivered by this system to the UK human genetics research community is also provided. More information about the services and their availability could be obtained by a direct approach to the UK HGMP-RC.

  17. Enabling a Community to Dissect an Organism: Overview of the Neurospora Functional Genomics Project

    OpenAIRE

    Dunlap, Jay C.; Borkovich, Katherine A.; Henn, Matthew R.; Turner, Gloria E.; Sachs, Matthew S.; Glass, N. Louise; McCluskey, Kevin; Plamann, Michael; Galagan, James E.; Birren, Bruce W.; Weiss, Richard L.; Townsend, Jeffrey P.; Loros, Jennifer J.; Nelson, Mary Anne; Lambreghts, Randy

    2007-01-01

    A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to acccomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of nonyeast fungi. Building fr...

  18. Tetrahedral gray code for visualization of genome information.

    Directory of Open Access Journals (Sweden)

    Natsuhiro Ichinose

    Full Text Available We propose a tetrahedral Gray code that facilitates visualization of genome information on the surfaces of a tetrahedron, where the relative abundance of each [Formula: see text]-mer in the genomic sequence is represented by a color of the corresponding cell of a triangular lattice. For biological significance, the code is designed such that the [Formula: see text]-mers corresponding to any adjacent pair of cells differ from each other by only one nucleotide. We present a simple procedure to draw such a pattern on the development surfaces of a tetrahedron. The thus constructed tetrahedral Gray code can demonstrate evolutionary conservation and variation of the genome information of many organisms at a glance. We also apply the tetrahedral Gray code to the honey bee (Apis mellifera genome to analyze its methylation structure. The results indicate that the honey bee genome exhibits CpG overrepresentation in spite of its methylation ability and that two conserved motifs, CTCGAG and CGCGCG, in the unmethylated regions are responsible for the overrepresentation of CpG.

  19. Reconsidering democracy. History of the Human Genome Project.

    NARCIS (Netherlands)

    Marli Huijer

    2003-01-01

    What options are open for people—citizens, politicians, and other nonscientists—to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  20. The Genome of the Netherlands: design, and project goals

    Science.gov (United States)

    Boomsma, Dorret I; Wijmenga, Cisca; Slagboom, Eline P; Swertz, Morris A; Karssen, Lennart C; Abdellaoui, Abdel; Ye, Kai; Guryev, Victor; Vermaat, Martijn; van Dijk, Freerk; Francioli, Laurent C; Hottenga, Jouke Jan; Laros, Jeroen F J; Li, Qibin; Li, Yingrui; Cao, Hongzhi; Chen, Ruoyan; Du, Yuanping; Li, Ning; Cao, Sujie; van Setten, Jessica; Menelaou, Androniki; Pulit, Sara L; Hehir-Kwa, Jayne Y; Beekman, Marian; Elbers, Clara C; Byelas, Heorhiy; de Craen, Anton J M; Deelen, Patrick; Dijkstra, Martijn; den Dunnen, Johan T; de Knijff, Peter; Houwing-Duistermaat, Jeanine; Koval, Vyacheslav; Estrada, Karol; Hofman, Albert; Kanterakis, Alexandros; Enckevort, David van; Mai, Hailiang; Kattenberg, Mathijs; van Leeuwen, Elisabeth M; Neerincx, Pieter B T; Oostra, Ben; Rivadeneira, Fernanodo; Suchiman, Eka H D; Uitterlinden, Andre G; Willemsen, Gonneke; Wolffenbuttel, Bruce H; Wang, Jun; de Bakker, Paul I W; van Ommen, Gert-Jan; van Duijn, Cornelia M

    2014-01-01

    Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one of the projects within BBMRI-NL. GoNL is a whole-genome-sequencing project in a representative sample consisting of 250 trio-families from all provinces in the Netherlands, which aims to characterize DNA sequence variation in the Dutch population. The parent–offspring trios include adult individuals ranging in age from 19 to 87 years (mean=53 years; SD=16 years) from birth cohorts 1910–1994. Sequencing was done on blood-derived DNA from uncultured cells and accomplished coverage was 14–15x. The family-based design represents a unique resource to assess the frequency of regional variants, accurately reconstruct haplotypes by family-based phasing, characterize short indels and complex structural variants, and establish the rate of de novo mutational events. GoNL will also serve as a reference panel for imputation in the available genome-wide association studies in Dutch and other cohorts to refine association signals and uncover population-specific variants. GoNL will create a catalog of human genetic variation in this sample that is uniquely characterized with respect to micro-geographic location and a wide range of phenotypes. The resource will be made available to the research and medical community to guide the interpretation of sequencing projects. The present paper summarizes the global characteristics of the project. PMID:23714750

  1. Genotype Imputation for Latinos Using the HapMap and 1000 Genomes Project Reference Panels

    Directory of Open Access Journals (Sweden)

    Xiaoyi eGao

    2012-06-01

    Full Text Available Genotype imputation is a vital tool in genome-wide association studies (GWAS and meta-analyses of multiple GWAS results. Imputation enables researchers to increase genomic coverage and to pool data generated using different genotyping platforms. HapMap samples are often employed as the reference panel. More recently, the 1000 Genomes Project resource is becoming the primary source for reference panels. Multiple GWAS and meta-analyses are targeting Latinos, the most populous and fastest growing minority group in the US. However, genotype imputation resources for Latinos are rather limited compared to individuals of European ancestry at present, largely because of the lack of good reference data. One choice of reference panel for Latinos is one derived from the population of Mexican individuals in Los Angeles contained in the HapMap Phase 3 project and the 1000 Genomes Project. However, a detailed evaluation of the quality of the imputed genotypes derived from the public reference panels has not yet been reported. Using simulation studies, the Illumina OmniExpress GWAS data from the Los Angles Latino Eye Study and the MACH software package, we evaluated the accuracy of genotype imputation in Latinos. Our results show that the 1000 Genomes Project AMR+CEU+YRI reference panel provides the highest imputation accuracy for Latinos, and that also including Asian samples in the panel can reduce imputation accuracy. We also provide the imputation accuracy for each autosomal chromosome using the 1000 Genomes Project panel for Latinos. Our results serve as a guide to future imputation-based analysis in Latinos.

  2. The IGNITE network: a model for genomic medicine implementation and research.

    Science.gov (United States)

    Weitzel, Kristin Wiisanen; Alexander, Madeline; Bernhardt, Barbara A; Calman, Neil; Carey, David J; Cavallari, Larisa H; Field, Julie R; Hauser, Diane; Junkins, Heather A; Levin, Phillip A; Levy, Kenneth; Madden, Ebony B; Manolio, Teri A; Odgis, Jacqueline; Orlando, Lori A; Pyeritz, Reed; Wu, R Ryanne; Shuldiner, Alan R; Bottinger, Erwin P; Denny, Joshua C; Dexter, Paul R; Flockhart, David A; Horowitz, Carol R; Johnson, Julie A; Kimmel, Stephen E; Levy, Mia A; Pollin, Toni I; Ginsburg, Geoffrey S

    2016-01-05

    Patients, clinicians, researchers and payers are seeking to understand the value of using genomic information (as reflected by genotyping, sequencing, family history or other data) to inform clinical decision-making. However, challenges exist to widespread clinical implementation of genomic medicine, a prerequisite for developing evidence of its real-world utility. To address these challenges, the National Institutes of Health-funded IGNITE (Implementing GeNomics In pracTicE; www.ignite-genomics.org ) Network, comprised of six projects and a coordinating center, was established in 2013 to support the development, investigation and dissemination of genomic medicine practice models that seamlessly integrate genomic data into the electronic health record and that deploy tools for point of care decision making. IGNITE site projects are aligned in their purpose of testing these models, but individual projects vary in scope and design, including exploring genetic markers for disease risk prediction and prevention, developing tools for using family history data, incorporating pharmacogenomic data into clinical care, refining disease diagnosis using sequence-based mutation discovery, and creating novel educational approaches. This paper describes the IGNITE Network and member projects, including network structure, collaborative initiatives, clinical decision support strategies, methods for return of genomic test results, and educational initiatives for patients and providers. Clinical and outcomes data from individual sites and network-wide projects are anticipated to begin being published over the next few years. The IGNITE Network is an innovative series of projects and pilot demonstrations aiming to enhance translation of validated actionable genomic information into clinical settings and develop and use measures of outcome in response to genome-based clinical interventions using a pragmatic framework to provide early data and proofs of concept on the utility of these

  3. JUICE: a data management system that facilitates the analysis of large volumes of information in an EST project workflow

    Directory of Open Access Journals (Sweden)

    Martinez Veronica

    2006-11-01

    Full Text Available Abstract Background Expressed sequence tag (EST analyses provide a rapid and economical means to identify candidate genes that may be involved in a particular biological process. These ESTs are useful in many Functional Genomics studies. However, the large quantity and complexity of the data generated during an EST sequencing project can make the analysis of this information a daunting task. Results In an attempt to make this task friendlier, we have developed JUICE, an open source data management system (Apache + PHP + MySQL on Linux, which enables the user to easily upload, organize, visualize and search the different types of data generated in an EST project pipeline. In contrast to other systems, the JUICE data management system allows a branched pipeline to be established, modified and expanded, during the course of an EST project. The web interfaces and tools in JUICE enable the users to visualize the information in a graphical, user-friendly manner. The user may browse or search for sequences and/or sequence information within all the branches of the pipeline. The user can search using terms associated with the sequence name, annotation or other characteristics stored in JUICE and associated with sequences or sequence groups. Groups of sequences can be created by the user, stored in a clipboard and/or downloaded for further analyses. Different user profiles restrict the access of each user depending upon their role in the project. The user may have access exclusively to visualize sequence information, access to annotate sequences and sequence information, or administrative access. Conclusion JUICE is an open source data management system that has been developed to aid users in organizing and analyzing the large amount of data generated in an EST Project workflow. JUICE has been used in one of the first functional genomics projects in Chile, entitled "Functional Genomics in nectarines: Platform to potentiate the competitiveness of Chile in

  4. A Scaffold Analysis Tool Using Mate-Pair Information in Genome Sequencing

    Directory of Open Access Journals (Sweden)

    Pan-Gyu Kim

    2008-01-01

    Full Text Available We have developed a Windows-based program, ConPath, as a scaffold analyzer. ConPath constructs scaffolds by ordering and orienting separate sequence contigs by exploiting the mate-pair information between contig-pairs. Our algorithm builds directed graphs from link information and traverses them to find the longest acyclic graphs. Using end read pairs of fixed-sized mate-pair libraries, ConPath determines relative orientations of all contigs, estimates the gap size of each adjacent contig pair, and reports wrong assembly information by validating orientations and gap sizes. We have utilized ConPath in more than 10 microbial genome projects, including Mannheimia succiniciproducens and Vibro vulnificus, where we verified contig assembly and identified several erroneous contigs using the four types of error defined in ConPath. Also, ConPath supports some convenient features and viewers that permit investigation of each contig in detail; these include contig viewer, scaffold viewer, edge information list, mate-pair list, and the printing of complex scaffold structures.

  5. Human Genome Project discoveries: Dialectics and rhetoric in the science of genetics

    Science.gov (United States)

    Robidoux, Charlotte A.

    The Human Genome Project (HGP), a $437 million effort that began in 1990 to chart the chemical sequence of our three billion base pairs of DNA, was completed in 2003, marking the 50th anniversary that proved the definitive structure of the molecule. This study considered how dialectical and rhetorical arguments functioned in the science, political, and public forums over a 20-year period, from 1980 to 2000, to advance human genome research and to establish the official project. I argue that Aristotle's continuum of knowledge--which ranges from the probable on one end to certified or demonstrated knowledge on the other--provides useful distinctions for analyzing scientific reasoning. While contemporary scientific research seeks to discover certified knowledge, investigators generally employ the hypothetico-deductive or scientific method, which often yields probable rather than certain findings, making these dialectical in nature. Analysis of the discourse describing human genome research revealed the use of numerous rhetorical figures and topics. Persuasive and probable reasoning were necessary for scientists to characterize unknown genetic phenomena, to secure interest in and funding for large-scale human genome research, to solve scientific problems, to issue probable findings, to convince colleagues and government officials that the findings were sound and to disseminate information to the public. Both government and private venture scientists drew on these tools of reasoning to promote their methods of mapping and sequencing the genome. The debate over how to carry out sequencing was rooted in conflicting values. Scientists representing the academic tradition valued a more conservative method that would establish high quality results, and those supporting private industry valued an unconventional approach that would yield products and profits more quickly. Values in turn influenced political and public forum arguments. Agency representatives and investors sided

  6. MIPS: analysis and annotation of proteins from whole genomes.

    Science.gov (United States)

    Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A

    2004-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  7. Genomics England's implementation of its public engagement strategy: Blurred boundaries between engagement for the United Kingdom's 100,000 Genomes project and the need for public support.

    Science.gov (United States)

    Samuel, Gabrielle Natalie; Farsides, Bobbie

    2018-04-01

    The United Kingdom's 100,000 Genomes Project has the aim of sequencing 100,000 genomes from National Health Service patients such that whole genome sequencing becomes routine clinical practice. It also has a research-focused goal to provide data for scientific discovery. Genomics England is the limited company established by the Department of Health to deliver the project. As an innovative scientific/clinical venture, it is interesting to consider how Genomics England positions itself in relation to public engagement activities. We set out to explore how individuals working at, or associated with, Genomics England enacted public engagement in practice. Our findings show that individuals offered a narrative in which public engagement performed more than one function. On one side, public engagement was seen as 'good practice'. On the other, public engagement was presented as core to the project's success - needed to encourage involvement and ultimately recruitment. We discuss the implications of this in this article.

  8. Comparing genetic variants detected in the 1000 genomes project ...

    Indian Academy of Sciences (India)

    Single-nucleotide polymorphisms (SNPs) determined based on SNP arrays from the international HapMap consortium (HapMap) and the genetic variants detected in the 1000 genomes project (1KGP) can serve as two references for genomewide association studies (GWAS). We conducted comparative analyses to provide ...

  9. Human genome. 1993 Program report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  10. Effects of informed consent for individual genome sequencing on relevant knowledge.

    Science.gov (United States)

    Kaphingst, K A; Facio, F M; Cheng, M-R; Brooks, S; Eidem, H; Linn, A; Biesecker, B B; Biesecker, L G

    2012-11-01

    Increasing availability of individual genomic information suggests that patients will need knowledge about genome sequencing to make informed decisions, but prior research is limited. In this study, we examined genome sequencing knowledge before and after informed consent among 311 participants enrolled in the ClinSeq™ sequencing study. An exploratory factor analysis of knowledge items yielded two factors (sequencing limitations knowledge; sequencing benefits knowledge). In multivariable analysis, high pre-consent sequencing limitations knowledge scores were significantly related to education [odds ratio (OR): 8.7, 95% confidence interval (CI): 2.45-31.10 for post-graduate education, and OR: 3.9; 95% CI: 1.05, 14.61 for college degree compared with less than college degree] and race/ethnicity (OR: 2.4, 95% CI: 1.09, 5.38 for non-Hispanic Whites compared with other racial/ethnic groups). Mean values increased significantly between pre- and post-consent for the sequencing limitations knowledge subscale (6.9-7.7, p benefits knowledge subscale (7.0-7.5, p < 0.0001); increase in knowledge did not differ by sociodemographic characteristics. This study highlights gaps in genome sequencing knowledge and underscores the need to target educational efforts toward participants with less education or from minority racial/ethnic groups. The informed consent process improved genome sequencing knowledge. Future studies could examine how genome sequencing knowledge influences informed decision making. © 2012 John Wiley & Sons A/S.

  11. Coverage of genomic medicine: information gap between lay public and scientists.

    Science.gov (United States)

    Sugawara, Yuya; Narimatsu, Hiroto; Fukao, Akira

    2012-01-01

    The sharing of information between the lay public and medical professionals is crucial to the conduct of personalized medicine using genomic information in the near future. Mass media, such as newspapers, can play an important role in disseminating scientific information. However, studies on the role of newspaper coverage of genome-related articles are highly limited. We investigated the coverage of genomic medicine in five major Japanese newspapers (Asahi, Mainichi, Yomiuri, Sankei, and Nikkei) using Nikkei Telecom and articles in scientific journals in PubMed from 1995 to 2009. The number of genome-related articles in all five newspapers temporarily increased in 2000, and began continuously decreasing thereafter from 2001 to 2009. Conversely, there was a continuous increasing trend in the number of genome-related articles in PubMed during this period. The numbers of genome-related articles among the five major newspapers from 1995 to 2009 were significantly different (P = 0.002). Commentaries, research articles, and articles about companies were the most frequent in 2001 and 2003, when the number of genome-related articles transiently increased in the five newspapers. This study highlights the significant gap between newspaper coverage and scientific articles in scientific journals.

  12. Human Genome Teacher Networking Project, Final Report, April 1, 1992 - March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Debra

    1999-10-01

    Project to provide education regarding ethical legal and social implications of Human Genome Project to high school science teachers through two consecutive summer workshops, in class activities, and peer teaching workshops.

  13. Saccharomyces genome database informs human biology

    OpenAIRE

    Skrzypek, Marek S; Nash, Robert S; Wong, Edith D; MacPherson, Kevin A; Hellerstedt, Sage T; Engel, Stacia R; Karra, Kalpana; Weng, Shuai; Sheppard, Travis K; Binkley, Gail; Simison, Matt; Miyasato, Stuart R; Cherry, J Michael

    2017-01-01

    Abstract The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae. SGD constantly strives to synergize new types of experimental data and bioinformatics predictions with existing data, and to organize them into a comprehensive and up-to-date information resource. The primary mission of SGD is to facilitate research into the biology of yeast and...

  14. Lawrence Livermore National Laboratory- Completing the Human Genome Project and Triggering Nearly $1 Trillion in U.S. Economic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Jeffrey S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-28

    The success of the Human Genome project is already nearing $1 Trillion dollars of U.S. economic activity. Lawrence Livermore National Laboratory (LLNL) was a co-leader in one of the biggest biological research effort in history, sequencing the Human Genome Project. This ambitious research effort set out to sequence the approximately 3 billion nucleotides in the human genome, an effort many thought was nearly impossible. Deoxyribonucleic acid (DNA) was discovered in 1869, and by 1943 came the discovery that DNA was a molecule that encodes the genetic instructions used in the development and functioning of living organisms and many viruses. To make full use of the information, scientists needed to first sequence the billions of nucleotides to begin linking them to genetic traits and illnesses, and eventually more effective treatments. New medical discoveries and improved agriculture productivity were some of the expected benefits. While the potential benefits were vast, the timeline (over a decade) and cost ($3.8 Billion) exceeded what the private sector would normally attempt, especially when this would only be the first phase toward the path to new discoveries and market opportunities. The Department of Energy believed its best research laboratories could meet this Grand Challenge and soon convinced the National Institute of Health to formally propose the Human Genome project to the federal government. The U.S. government accepted the risk and challenge to potentially create new healthcare and food discoveries that could benefit the world and the U.S. Industry.

  15. The whole genome sequences and experimentally phased haplotypes of over 100 personal genomes.

    Science.gov (United States)

    Mao, Qing; Ciotlos, Serban; Zhang, Rebecca Yu; Ball, Madeleine P; Chin, Robert; Carnevali, Paolo; Barua, Nina; Nguyen, Staci; Agarwal, Misha R; Clegg, Tom; Connelly, Abram; Vandewege, Ward; Zaranek, Alexander Wait; Estep, Preston W; Church, George M; Drmanac, Radoje; Peters, Brock A

    2016-10-11

    Since the completion of the Human Genome Project in 2003, it is estimated that more than 200,000 individual whole human genomes have been sequenced. A stunning accomplishment in such a short period of time. However, most of these were sequenced without experimental haplotype data and are therefore missing an important aspect of genome biology. In addition, much of the genomic data is not available to the public and lacks phenotypic information. As part of the Personal Genome Project, blood samples from 184 participants were collected and processed using Complete Genomics' Long Fragment Read technology. Here, we present the experimental whole genome haplotyping and sequencing of these samples to an average read coverage depth of 100X. This is approximately three-fold higher than the read coverage applied to most whole human genome assemblies and ensures the highest quality results. Currently, 114 genomes from this dataset are freely available in the GigaDB repository and are associated with rich phenotypic data; the remaining 70 should be added in the near future as they are approved through the PGP data release process. For reproducibility analyses, 20 genomes were sequenced at least twice using independent LFR barcoded libraries. Seven genomes were also sequenced using Complete Genomics' standard non-barcoded library process. In addition, we report 2.6 million high-quality, rare variants not previously identified in the Single Nucleotide Polymorphisms database or the 1000 Genomes Project Phase 3 data. These genomes represent a unique source of haplotype and phenotype data for the scientific community and should help to expand our understanding of human genome evolution and function.

  16. [Ethical considerations in genomic cohort study].

    Science.gov (United States)

    Choi, Eun Kyung; Kim, Ock-Joo

    2007-03-01

    During the last decade, genomic cohort study has been developed in many countries by linking health data and genetic data in stored samples. Genomic cohort study is expected to find key genetic components that contribute to common diseases, thereby promising great advance in genome medicine. While many countries endeavor to build biobank systems, biobank-based genome research has raised important ethical concerns including genetic privacy, confidentiality, discrimination, and informed consent. Informed consent for biobank poses an important question: whether true informed consent is possible in population-based genomic cohort research where the nature of future studies is unforeseeable when consent is obtained. Due to the sensitive character of genetic information, protecting privacy and keeping confidentiality become important topics. To minimize ethical problems and achieve scientific goals to its maximum degree, each country strives to build population-based genomic cohort research project, by organizing public consultation, trying public and expert consensus in research, and providing safeguards to protect privacy and confidentiality.

  17. Stakeholder engagement: a key component of integrating genomic information into electronic health records.

    Science.gov (United States)

    Hartzler, Andrea; McCarty, Catherine A; Rasmussen, Luke V; Williams, Marc S; Brilliant, Murray; Bowton, Erica A; Clayton, Ellen Wright; Faucett, William A; Ferryman, Kadija; Field, Julie R; Fullerton, Stephanie M; Horowitz, Carol R; Koenig, Barbara A; McCormick, Jennifer B; Ralston, James D; Sanderson, Saskia C; Smith, Maureen E; Trinidad, Susan Brown

    2013-10-01

    Integrating genomic information into clinical care and the electronic health record can facilitate personalized medicine through genetically guided clinical decision support. Stakeholder involvement is critical to the success of these implementation efforts. Prior work on implementation of clinical information systems provides broad guidance to inform effective engagement strategies. We add to this evidence-based recommendations that are specific to issues at the intersection of genomics and the electronic health record. We describe stakeholder engagement strategies employed by the Electronic Medical Records and Genomics Network, a national consortium of US research institutions funded by the National Human Genome Research Institute to develop, disseminate, and apply approaches that combine genomic and electronic health record data. Through select examples drawn from sites of the Electronic Medical Records and Genomics Network, we illustrate a continuum of engagement strategies to inform genomic integration into commercial and homegrown electronic health records across a range of health-care settings. We frame engagement as activities to consult, involve, and partner with key stakeholder groups throughout specific phases of health information technology implementation. Our aim is to provide insights into engagement strategies to guide genomic integration based on our unique network experiences and lessons learned within the broader context of implementation research in biomedical informatics. On the basis of our collective experience, we describe key stakeholder practices, challenges, and considerations for successful genomic integration to support personalized medicine.

  18. Utilizing linkage disequilibrium information from Indian Genome ...

    Indian Academy of Sciences (India)

    Using LD information derived from Indian Genome Variation database (IGVdb) on populations .... Line diagram represents the SNPs selected in Indian (upper panel) and CEPH .... out procedure for extracting DNA from human nucleated cells.

  19. Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal genome project community challenges.

    Science.gov (United States)

    Cai, Binghuang; Li, Biao; Kiga, Nikki; Thusberg, Janita; Bergquist, Timothy; Chen, Yun-Ching; Niknafs, Noushin; Carter, Hannah; Tokheim, Collin; Beleva-Guthrie, Violeta; Douville, Christopher; Bhattacharya, Rohit; Yeo, Hui Ting Grace; Fan, Jean; Sengupta, Sohini; Kim, Dewey; Cline, Melissa; Turner, Tychele; Diekhans, Mark; Zaucha, Jan; Pal, Lipika R; Cao, Chen; Yu, Chen-Hsin; Yin, Yizhou; Carraro, Marco; Giollo, Manuel; Ferrari, Carlo; Leonardi, Emanuela; Tosatto, Silvio C E; Bobe, Jason; Ball, Madeleine; Hoskins, Roger A; Repo, Susanna; Church, George; Brenner, Steven E; Moult, John; Gough, Julian; Stanke, Mario; Karchin, Rachel; Mooney, Sean D

    2017-09-01

    The advent of next-generation sequencing has dramatically decreased the cost for whole-genome sequencing and increased the viability for its application in research and clinical care. The Personal Genome Project (PGP) provides unrestricted access to genomes of individuals and their associated phenotypes. This resource enabled the Critical Assessment of Genome Interpretation (CAGI) to create a community challenge to assess the bioinformatics community's ability to predict traits from whole genomes. In the CAGI PGP challenge, researchers were asked to predict whether an individual had a particular trait or profile based on their whole genome. Several approaches were used to assess submissions, including ROC AUC (area under receiver operating characteristic curve), probability rankings, the number of correct predictions, and statistical significance simulations. Overall, we found that prediction of individual traits is difficult, relying on a strong knowledge of trait frequency within the general population, whereas matching genomes to trait profiles relies heavily upon a small number of common traits including ancestry, blood type, and eye color. When a rare genetic disorder is present, profiles can be matched when one or more pathogenic variants are identified. Prediction accuracy has improved substantially over the last 6 years due to improved methodology and a better understanding of features. © 2017 Wiley Periodicals, Inc.

  20. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.

    Science.gov (United States)

    Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine

    2013-01-01

    Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).

  1. The Human Genome Project and the social contract: a law policy approach.

    Science.gov (United States)

    Byk, C

    1992-08-01

    For the first time in history, genetics will enable science to completely identify each human as genetically unique. Will this knowledge reinforce the trend for more individual liberties or will it create a 'brave new world'? A law policy approach to the problems raised by the human genome project shows how far our democratic institutions are from being the proper forum to discuss such issues. Because of the fears and anxiety raised in the population, and also because of its wide implications on the everyday life, the human genome analysis more than any other project needs to succeed in setting up such a social assessment.

  2. Annotating individual human genomes.

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A; Topol, Eric J; Schork, Nicholas J

    2011-10-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. ANNOTATING INDIVIDUAL HUMAN GENOMES*

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A.; Topol, Eric J.; Schork, Nicholas J.

    2014-01-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely to amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. PMID:21839162

  4. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 Genomes Project.

    Science.gov (United States)

    Santpere, Gabriel; Darre, Fleur; Blanco, Soledad; Alcami, Antonio; Villoslada, Pablo; Mar Albà, M; Navarro, Arcadi

    2014-04-01

    Most people in the world (∼90%) are infected by the Epstein-Barr virus (EBV), which establishes itself permanently in B cells. Infection by EBV is related to a number of diseases including infectious mononucleosis, multiple sclerosis, and different types of cancer. So far, only seven complete EBV strains have been described, all of them coming from donors presenting EBV-related diseases. To perform a detailed comparative genomic analysis of EBV including, for the first time, EBV strains derived from healthy individuals, we reconstructed EBV sequences infecting lymphoblastoid cell lines (LCLs) from the 1000 Genomes Project. As strain B95-8 was used to transform B cells to obtain LCLs, it is always present, but a specific deletion in its genome sets it apart from natural EBV strains. After studying hundreds of individuals, we determined the presence of natural EBV in at least 10 of them and obtained a set of variants specific to wild-type EBV. By mapping the natural EBV reads into the EBV reference genome (NC007605), we constructed nearly complete wild-type viral genomes from three individuals. Adding them to the five disease-derived EBV genomic sequences available in the literature, we performed an in-depth comparative genomic analysis. We found that latency genes harbor more nucleotide diversity than lytic genes and that six out of nine latency-related genes, as well as other genes involved in viral attachment and entry into host cells, packaging, and the capsid, present the molecular signature of accelerated protein evolution rates, suggesting rapid host-parasite coevolution.

  5. Using community-based participatory research principles to develop more understandable recruitment and informed consent documents in genomic research.

    Directory of Open Access Journals (Sweden)

    Harlyn G Skinner

    Full Text Available Heart Healthy Lenoir is a transdisciplinary project aimed at creating long-term, sustainable approaches to reduce cardiovascular disease risk disparities in Lenoir County, North Carolina using a design spanning genomic analysis and clinical intervention. We hypothesized that residents of Lenoir County would be unfamiliar and mistrustful of genomic research, and therefore reluctant to participate; additionally, these feelings would be higher in African-Americans.To test our hypothesis, we conducted qualitative research using community-based participatory research principles to ensure our genomic research strategies addressed the needs, priorities, and concerns of the community. African-American (n = 19 and White (n = 16 adults in Lenoir County participated in four focus groups exploring perceptions about genomics and cardiovascular disease. Demographic surveys were administered and a semi-structured interview guide was used to facilitate discussions. The discussions were digitally recorded, transcribed verbatim, and analyzed in ATLAS.ti.From our analysis, key themes emerged: transparent communication, privacy, participation incentives and barriers, knowledge, and the impact of knowing. African-Americans were more concerned about privacy and community impact compared to Whites, however, African-Americans were still eager to participate in our genomic research project. The results from our formative study were used to improve the informed consent and recruitment processes by: 1 reducing misconceptions of genomic studies; and 2 helping to foster participant understanding and trust with the researchers. Our study demonstrates how community-based participatory research principles can be used to gain deeper insight into the community and increase participation in genomic research studies. Due in part to these efforts 80.3% of eligible African-American participants and 86.9% of eligible White participants enrolled in the Heart Healthy Lenoir Genomics

  6. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    Science.gov (United States)

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. The importance of identity-by-state information for the accuracy of genomic selection

    Directory of Open Access Journals (Sweden)

    Luan Tu

    2012-08-01

    Full Text Available Abstract Background It is commonly assumed that prediction of genome-wide breeding values in genomic selection is achieved by capitalizing on linkage disequilibrium between markers and QTL but also on genetic relationships. Here, we investigated the reliability of predicting genome-wide breeding values based on population-wide linkage disequilibrium information, based on identity-by-descent relationships within the known pedigree, and to what extent linkage disequilibrium information improves predictions based on identity-by-descent genomic relationship information. Methods The study was performed on milk, fat, and protein yield, using genotype data on 35 706 SNP and deregressed proofs of 1086 Italian Brown Swiss bulls. Genome-wide breeding values were predicted using a genomic identity-by-state relationship matrix and a genomic identity-by-descent relationship matrix (averaged over all marker loci. The identity-by-descent matrix was calculated by linkage analysis using one to five generations of pedigree data. Results We showed that genome-wide breeding values prediction based only on identity-by-descent genomic relationships within the known pedigree was as or more reliable than that based on identity-by-state, which implicitly also accounts for genomic relationships that occurred before the known pedigree. Furthermore, combining the two matrices did not improve the prediction compared to using identity-by-descent alone. Including different numbers of generations in the pedigree showed that most of the information in genome-wide breeding values prediction comes from animals with known common ancestors less than four generations back in the pedigree. Conclusions Our results show that, in pedigreed breeding populations, the accuracy of genome-wide breeding values obtained by identity-by-descent relationships was not improved by identity-by-state information. Although, in principle, genomic selection based on identity-by-state does not require

  8. Opportunities and challenges for the integration of massively parallel genomic sequencing into clinical practice: lessons from the ClinSeq project.

    Science.gov (United States)

    Biesecker, Leslie G

    2012-04-01

    The debate surrounding the return of results from high-throughput genomic interrogation encompasses many important issues including ethics, law, economics, and social policy. As well, the debate is also informed by the molecular, genetic, and clinical foundations of the emerging field of clinical genomics, which is based on this new technology. This article outlines the main biomedical considerations of sequencing technologies and demonstrates some of the early clinical experiences with the technology to enable the debate to stay focused on real-world practicalities. These experiences are based on early data from the ClinSeq project, which is a project to pilot the use of massively parallel sequencing in a clinical research context with a major aim to develop modes of returning results to individual subjects. The study has enrolled >900 subjects and generated exome sequence data on 572 subjects. These data are beginning to be interpreted and returned to the subjects, which provides examples of the potential usefulness and pitfalls of clinical genomics. There are numerous genetic results that can be readily derived from a genome including rare, high-penetrance traits, and carrier states. However, much work needs to be done to develop the tools and resources for genomic interpretation. The main lesson learned is that a genome sequence may be better considered as a health-care resource, rather than a test, one that can be interpreted and used over the lifetime of the patient.

  9. BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics

    DEFF Research Database (Denmark)

    Zhao, Wenming; Wang, Jing; He, Ximiao

    2004-01-01

    Rice is a major food staple for the world's population and serves as a model species in cereal genome research. The Beijing Genomics Institute (BGI) has long been devoting itself to sequencing, information analysis and biological research of the rice and other crop genomes. In order to facilitate....... Designed as a basic platform, BGI-RIS presents the sequenced genomes and related information in systematic and graphical ways for the convenience of in-depth comparative studies (http://rise.genomics.org.cn/). Udgivelsesdato: 2004-Jan-1...

  10. eGenomics: Cataloguing Our Complete Genome Collection III

    Directory of Open Access Journals (Sweden)

    Dawn Field

    2007-01-01

    Full Text Available This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS, Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS specification (v1.1, consensus on a variety of features to be added to the Genome Catalogue (GCat, agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates and working towards a single, global list of all public genomes and metagenomes.

  11. Public attitudes to genomic science: an experiment in information provision.

    Science.gov (United States)

    Sturgis, Patrick; Brunton-Smith, Ian; Fife-Schaw, Chris

    2010-03-01

    We use an experimental panel study design to investigate the effect of providing "value-neutral" information about genomic science in the form of a short film to a random sample of the British public. We find little evidence of attitude change as a function of information provision. However, our results show that information provision significantly increased dropout from the study amongst less educated respondents. Our findings have implications both for our understanding of the knowledge-attitude relationship in public opinion toward genomic science and for science communication more generally.

  12. Getting the Word Out on the Human Genome Project: A Course for Physicians

    Energy Technology Data Exchange (ETDEWEB)

    Sara L. Tobin

    2004-09-29

    Our project, ''Getting the Word Out on the Human Genome Project: A Course for Physicians,'' presented educational goals to convey the power and promise of the Human Genome Program to a variety of professional, educational, and public audiences. Our initial goal was to provide practicing physicians with a comprehensive multimedia tool to update their skills in the genomic era. We therefore created the multimedia courseware, ''The New Genetics: Courseware for Physicians. Molecular Concepts, Applications, and Ramifications.'' However, as the project moved forward, several unanticipated audiences found the courseware to be useful for instruction and for self-education, so an additional edition of the courseware ''The New Genetics: Medicine and the Human Genome. Molecular Concepts, Applications, and Ramifications'' was published simultaneously with the physician version. At the time that both versions of the courseware were being completed, Stanford's Office of Technology Licensing opted not to commercialize the courseware and offered a license-back agreement if the authors founded a commercial business. The authors thus became closely involved in marketing and sales, and several thousand copies of the courseware have been sold. Surprisingly, the non-physician version has turned out to be more in demand, and this has led us in several new directions, most of which involve undergraduate education. These are discussed in detail in the Report.

  13. Leveraging cancer genome information in hematologic malignancies.

    Science.gov (United States)

    Rampal, Raajit; Levine, Ross L

    2013-05-20

    The use of candidate gene and genome-wide discovery studies in the last several years has led to an expansion of our knowledge of the spectrum of recurrent, somatic disease alleles, which contribute to the pathogenesis of hematologic malignancies. Notably, these studies have also begun to fundamentally change our ability to develop informative prognostic schema that inform outcome and therapeutic response, yielding substantive insights into mechanisms of hematopoietic transformation in different tissue compartments. Although these studies have already had important biologic and translational impact, significant challenges remain in systematically applying these findings to clinical decision making and in implementing new technologies for genetic analysis into clinical practice to inform real-time decision making. Here, we review recent major genetic advances in myeloid and lymphoid malignancies, the impact of these findings on prognostic models, our understanding of disease initiation and evolution, and the implication of genomic discoveries on clinical decision making. Finally, we discuss general concepts in genetic modeling and the current state-of-the-art technology used in genetic investigation.

  14. Challenges and strategies for implementing genomic services in diverse settings: experiences from the Implementing GeNomics In pracTicE (IGNITE) network.

    Science.gov (United States)

    Sperber, Nina R; Carpenter, Janet S; Cavallari, Larisa H; J Damschroder, Laura; Cooper-DeHoff, Rhonda M; Denny, Joshua C; Ginsburg, Geoffrey S; Guan, Yue; Horowitz, Carol R; Levy, Kenneth D; Levy, Mia A; Madden, Ebony B; Matheny, Michael E; Pollin, Toni I; Pratt, Victoria M; Rosenman, Marc; Voils, Corrine I; W Weitzel, Kristen; Wilke, Russell A; Ryanne Wu, R; Orlando, Lori A

    2017-05-22

    To realize potential public health benefits from genetic and genomic innovations, understanding how best to implement the innovations into clinical care is important. The objective of this study was to synthesize data on challenges identified by six diverse projects that are part of a National Human Genome Research Institute (NHGRI)-funded network focused on implementing genomics into practice and strategies to overcome these challenges. We used a multiple-case study approach with each project considered as a case and qualitative methods to elicit and describe themes related to implementation challenges and strategies. We describe challenges and strategies in an implementation framework and typology to enable consistent definitions and cross-case comparisons. Strategies were linked to challenges based on expert review and shared themes. Three challenges were identified by all six projects, and strategies to address these challenges varied across the projects. One common challenge was to increase the relative priority of integrating genomics within the health system electronic health record (EHR). Four projects used data warehousing techniques to accomplish the integration. The second common challenge was to strengthen clinicians' knowledge and beliefs about genomic medicine. To overcome this challenge, all projects developed educational materials and conducted meetings and outreach focused on genomic education for clinicians. The third challenge was engaging patients in the genomic medicine projects. Strategies to overcome this challenge included use of mass media to spread the word, actively involving patients in implementation (e.g., a patient advisory board), and preparing patients to be active participants in their healthcare decisions. This is the first collaborative evaluation focusing on the description of genomic medicine innovations implemented in multiple real-world clinical settings. Findings suggest that strategies to facilitate integration of genomic

  15. Human genome education model project. Ethical, legal, and social implications of the human genome project: Education of interdisciplinary professionals

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, J.O. [Alliance of Genetic Support Groups, Chevy Chase, MD (United States); Lapham, E.V. [Georgetown Univ., Washington, DC (United States). Child Development Center

    1996-12-31

    This meeting was held June 10, 1996 at Georgetown University. The purpose of this meeting was to provide a multidisciplinary forum for exchange of state-of-the-art information on the human genome education model. Topics of discussion include the following: psychosocial issues; ethical issues for professionals; legislative issues and update; and education issues.

  16. Genomic information as a behavioral health intervention: can it work?

    Science.gov (United States)

    Bloss, Cinnamon S; Madlensky, Lisa; Schork, Nicholas J; Topol, Eric J

    2011-01-01

    Individuals can now obtain their personal genomic information via direct-to-consumer genetic testing, but what, if any, impact will this have on their lifestyle and health? A recent longitudinal cohort study of individuals who underwent consumer genome scanning found minimal impacts of testing on risk-reducing lifestyle behaviors, such as diet and exercise. These results raise an important question: is personal genomic information likely to beneficially impact public health through motivation of lifestyle behavioral change? In this article, we review the literature on lifestyle behavioral change in response to genetic testing for common disease susceptibility variants. We find that only a few studies have been carried out, and that those that have been done have yielded little evidence to suggest that the mere provision of genetic information alone results in widespread changes in lifestyle health behaviors. We suggest that further study of this issue is needed, in particular studies that examine response to multiplex testing for multiple genetic markers and conditions. This will be critical as we anticipate the wide availability of whole-genome sequencing and more comprehensive phenotyping of individuals. We also note that while simple communication of genomic information and disease susceptibility may be sufficient to catalyze lifestyle changes in some highly motivated groups of individuals, for others, additional strategies may be required to prompt changes, including more sophisticated means of risk communication (e.g., in the context of social norm feedback) either alone or in combination with other promising interventions (e.g., real-time wireless health monitoring devices). PMID:22199991

  17. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies.

    Science.gov (United States)

    Card, Daren C; Schield, Drew R; Reyes-Velasco, Jacobo; Fujita, Matthew K; Andrew, Audra L; Oyler-McCance, Sara J; Fike, Jennifer A; Tomback, Diana F; Ruggiero, Robert P; Castoe, Todd A

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (∼3.5-5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.

  18. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies

    Science.gov (United States)

    Card, Daren C.; Schield, Drew R.; Reyes-Velasco, Jacobo; Fujita, Matthre K.; Andrew, Audra L.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Tomback, Diana F.; Ruggiero, Robert P.; Castoe, Todd A.

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (~3.5–5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.

  19. The pig genome project has plenty to squeal about.

    Science.gov (United States)

    Fan, B; Gorbach, D M; Rothschild, M F

    2011-01-01

    Significant progress on pig genetics and genomics research has been witnessed in recent years due to the integration of advanced molecular biology techniques, bioinformatics and computational biology, and the collaborative efforts of researchers in the swine genomics community. Progress on expanding the linkage map has slowed down, but the efforts have created a higher-resolution physical map integrating the clone map and BAC end sequence. The number of QTL mapped is still growing and most of the updated QTL mapping results are available through PigQTLdb. Additionally, expression studies using high-throughput microarrays and other gene expression techniques have made significant advancements. The number of identified non-coding RNAs is rapidly increasing and their exact regulatory functions are being explored. A publishable draft (build 10) of the swine genome sequence was available for the pig genomics community by the end of December 2010. Build 9 of the porcine genome is currently available with Ensembl annotation; manual annotation is ongoing. These drafts provide useful tools for such endeavors as comparative genomics and SNP scans for fine QTL mapping. A recent community-wide effort to create a 60K porcine SNP chip has greatly facilitated whole-genome association analyses, haplotype block construction and linkage disequilibrium mapping, which can contribute to whole-genome selection. The future 'systems biology' that integrates and optimizes the information from all research levels can enhance the pig community's understanding of the full complexity of the porcine genome. These recent technological advances and where they may lead are reviewed. Copyright © 2011 S. Karger AG, Basel.

  20. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.

    Science.gov (United States)

    Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya; Guigó, Roderic; Gingeras, Thomas R; Margulies, Elliott H; Weng, Zhiping; Snyder, Michael; Dermitzakis, Emmanouil T; Thurman, Robert E; Kuehn, Michael S; Taylor, Christopher M; Neph, Shane; Koch, Christoph M; Asthana, Saurabh; Malhotra, Ankit; Adzhubei, Ivan; Greenbaum, Jason A; Andrews, Robert M; Flicek, Paul; Boyle, Patrick J; Cao, Hua; Carter, Nigel P; Clelland, Gayle K; Davis, Sean; Day, Nathan; Dhami, Pawandeep; Dillon, Shane C; Dorschner, Michael O; Fiegler, Heike; Giresi, Paul G; Goldy, Jeff; Hawrylycz, Michael; Haydock, Andrew; Humbert, Richard; James, Keith D; Johnson, Brett E; Johnson, Ericka M; Frum, Tristan T; Rosenzweig, Elizabeth R; Karnani, Neerja; Lee, Kirsten; Lefebvre, Gregory C; Navas, Patrick A; Neri, Fidencio; Parker, Stephen C J; Sabo, Peter J; Sandstrom, Richard; Shafer, Anthony; Vetrie, David; Weaver, Molly; Wilcox, Sarah; Yu, Man; Collins, Francis S; Dekker, Job; Lieb, Jason D; Tullius, Thomas D; Crawford, Gregory E; Sunyaev, Shamil; Noble, William S; Dunham, Ian; Denoeud, France; Reymond, Alexandre; Kapranov, Philipp; Rozowsky, Joel; Zheng, Deyou; Castelo, Robert; Frankish, Adam; Harrow, Jennifer; Ghosh, Srinka; Sandelin, Albin; Hofacker, Ivo L; Baertsch, Robert; Keefe, Damian; Dike, Sujit; Cheng, Jill; Hirsch, Heather A; Sekinger, Edward A; Lagarde, Julien; Abril, Josep F; Shahab, Atif; Flamm, Christoph; Fried, Claudia; Hackermüller, Jörg; Hertel, Jana; Lindemeyer, Manja; Missal, Kristin; Tanzer, Andrea; Washietl, Stefan; Korbel, Jan; Emanuelsson, Olof; Pedersen, Jakob S; Holroyd, Nancy; Taylor, Ruth; Swarbreck, David; Matthews, Nicholas; Dickson, Mark C; Thomas, Daryl J; Weirauch, Matthew T; Gilbert, James; Drenkow, Jorg; Bell, Ian; Zhao, XiaoDong; Srinivasan, K G; Sung, Wing-Kin; Ooi, Hong Sain; Chiu, Kuo Ping; Foissac, Sylvain; Alioto, Tyler; Brent, Michael; Pachter, Lior; Tress, Michael L; Valencia, Alfonso; Choo, Siew Woh; Choo, Chiou Yu; Ucla, Catherine; Manzano, Caroline; Wyss, Carine; Cheung, Evelyn; Clark, Taane G; Brown, James B; Ganesh, Madhavan; Patel, Sandeep; Tammana, Hari; Chrast, Jacqueline; Henrichsen, Charlotte N; Kai, Chikatoshi; Kawai, Jun; Nagalakshmi, Ugrappa; Wu, Jiaqian; Lian, Zheng; Lian, Jin; Newburger, Peter; Zhang, Xueqing; Bickel, Peter; Mattick, John S; Carninci, Piero; Hayashizaki, Yoshihide; Weissman, Sherman; Hubbard, Tim; Myers, Richard M; Rogers, Jane; Stadler, Peter F; Lowe, Todd M; Wei, Chia-Lin; Ruan, Yijun; Struhl, Kevin; Gerstein, Mark; Antonarakis, Stylianos E; Fu, Yutao; Green, Eric D; Karaöz, Ulaş; Siepel, Adam; Taylor, James; Liefer, Laura A; Wetterstrand, Kris A; Good, Peter J; Feingold, Elise A; Guyer, Mark S; Cooper, Gregory M; Asimenos, George; Dewey, Colin N; Hou, Minmei; Nikolaev, Sergey; Montoya-Burgos, Juan I; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Huang, Haiyan; Zhang, Nancy R; Holmes, Ian; Mullikin, James C; Ureta-Vidal, Abel; Paten, Benedict; Seringhaus, Michael; Church, Deanna; Rosenbloom, Kate; Kent, W James; Stone, Eric A; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross C; Haussler, David; Miller, Webb; Sidow, Arend; Trinklein, Nathan D; Zhang, Zhengdong D; Barrera, Leah; Stuart, Rhona; King, David C; Ameur, Adam; Enroth, Stefan; Bieda, Mark C; Kim, Jonghwan; Bhinge, Akshay A; Jiang, Nan; Liu, Jun; Yao, Fei; Vega, Vinsensius B; Lee, Charlie W H; Ng, Patrick; Shahab, Atif; Yang, Annie; Moqtaderi, Zarmik; Zhu, Zhou; Xu, Xiaoqin; Squazzo, Sharon; Oberley, Matthew J; Inman, David; Singer, Michael A; Richmond, Todd A; Munn, Kyle J; Rada-Iglesias, Alvaro; Wallerman, Ola; Komorowski, Jan; Fowler, Joanna C; Couttet, Phillippe; Bruce, Alexander W; Dovey, Oliver M; Ellis, Peter D; Langford, Cordelia F; Nix, David A; Euskirchen, Ghia; Hartman, Stephen; Urban, Alexander E; Kraus, Peter; Van Calcar, Sara; Heintzman, Nate; Kim, Tae Hoon; Wang, Kun; Qu, Chunxu; Hon, Gary; Luna, Rosa; Glass, Christopher K; Rosenfeld, M Geoff; Aldred, Shelley Force; Cooper, Sara J; Halees, Anason; Lin, Jane M; Shulha, Hennady P; Zhang, Xiaoling; Xu, Mousheng; Haidar, Jaafar N S; Yu, Yong; Ruan, Yijun; Iyer, Vishwanath R; Green, Roland D; Wadelius, Claes; Farnham, Peggy J; Ren, Bing; Harte, Rachel A; Hinrichs, Angie S; Trumbower, Heather; Clawson, Hiram; Hillman-Jackson, Jennifer; Zweig, Ann S; Smith, Kayla; Thakkapallayil, Archana; Barber, Galt; Kuhn, Robert M; Karolchik, Donna; Armengol, Lluis; Bird, Christine P; de Bakker, Paul I W; Kern, Andrew D; Lopez-Bigas, Nuria; Martin, Joel D; Stranger, Barbara E; Woodroffe, Abigail; Davydov, Eugene; Dimas, Antigone; Eyras, Eduardo; Hallgrímsdóttir, Ingileif B; Huppert, Julian; Zody, Michael C; Abecasis, Gonçalo R; Estivill, Xavier; Bouffard, Gerard G; Guan, Xiaobin; Hansen, Nancy F; Idol, Jacquelyn R; Maduro, Valerie V B; Maskeri, Baishali; McDowell, Jennifer C; Park, Morgan; Thomas, Pamela J; Young, Alice C; Blakesley, Robert W; Muzny, Donna M; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Jiang, Huaiyang; Weinstock, George M; Gibbs, Richard A; Graves, Tina; Fulton, Robert; Mardis, Elaine R; Wilson, Richard K; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B; Chang, Jean L; Lindblad-Toh, Kerstin; Lander, Eric S; Koriabine, Maxim; Nefedov, Mikhail; Osoegawa, Kazutoyo; Yoshinaga, Yuko; Zhu, Baoli; de Jong, Pieter J

    2007-06-14

    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

  1. The modest beginnings of one genome project.

    Science.gov (United States)

    Kaback, David B

    2013-06-01

    One of the top things on a geneticist's wish list has to be a set of mutants for every gene in their particular organism. Such a set was produced for the yeast, Saccharomyces cerevisiae near the end of the 20th century by a consortium of yeast geneticists. However, the functional genomic analysis of one chromosome, its smallest, had already begun more than 25 years earlier as a project that was designed to define most or all of that chromosome's essential genes by temperature-sensitive lethal mutations. When far fewer than expected genes were uncovered, the relatively new field of molecular cloning enabled us and indeed, the entire community of yeast researchers to approach this problem more definitively. These studies ultimately led to cloning, genomic sequencing, and the production and phenotypic analysis of the entire set of knockout mutations for this model organism as well as a better concept of what defines an essential function, a wish fulfilled that enables this model eukaryote to continue at the forefront of research in modern biology.

  2. A proposed clinical decision support architecture capable of supporting whole genome sequence information.

    Science.gov (United States)

    Welch, Brandon M; Loya, Salvador Rodriguez; Eilbeck, Karen; Kawamoto, Kensaku

    2014-04-04

    Whole genome sequence (WGS) information may soon be widely available to help clinicians personalize the care and treatment of patients. However, considerable barriers exist, which may hinder the effective utilization of WGS information in a routine clinical care setting. Clinical decision support (CDS) offers a potential solution to overcome such barriers and to facilitate the effective use of WGS information in the clinic. However, genomic information is complex and will require significant considerations when developing CDS capabilities. As such, this manuscript lays out a conceptual framework for a CDS architecture designed to deliver WGS-guided CDS within the clinical workflow. To handle the complexity and breadth of WGS information, the proposed CDS framework leverages service-oriented capabilities and orchestrates the interaction of several independently-managed components. These independently-managed components include the genome variant knowledge base, the genome database, the CDS knowledge base, a CDS controller and the electronic health record (EHR). A key design feature is that genome data can be stored separately from the EHR. This paper describes in detail: (1) each component of the architecture; (2) the interaction of the components; and (3) how the architecture attempts to overcome the challenges associated with WGS information. We believe that service-oriented CDS capabilities will be essential to using WGS information for personalized medicine.

  3. An object model for genome information at all levels of resolution

    Energy Technology Data Exchange (ETDEWEB)

    Honda, S.; Parrott, N.W.; Smith, R.; Lawrence, C.

    1993-12-31

    An object model for genome data at all levels of resolution is described. The model was derived by considering the requirements for representing genome related objects in three application domains: genome maps, large-scale DNA sequencing, and exploring functional information in gene and protein sequences. The methodology used for the object-oriented analysis is also described.

  4. Applying Shannon's information theory to bacterial and phage genomes and metagenomes

    Science.gov (United States)

    Akhter, Sajia; Bailey, Barbara A.; Salamon, Peter; Aziz, Ramy K.; Edwards, Robert A.

    2013-01-01

    All sequence data contain inherent information that can be measured by Shannon's uncertainty theory. Such measurement is valuable in evaluating large data sets, such as metagenomic libraries, to prioritize their analysis and annotation, thus saving computational resources. Here, Shannon's index of complete phage and bacterial genomes was examined. The information content of a genome was found to be highly dependent on the genome length, GC content, and sequence word size. In metagenomic sequences, the amount of information correlated with the number of matches found by comparison to sequence databases. A sequence with more information (higher uncertainty) has a higher probability of being significantly similar to other sequences in the database. Measuring uncertainty may be used for rapid screening for sequences with matches in available database, prioritizing computational resources, and indicating which sequences with no known similarities are likely to be important for more detailed analysis.

  5. Competence development organizations in project management on the basis of genomic model methodologies

    OpenAIRE

    Бушуев, Сергей Дмитриевич; Рогозина, Виктория Борисовна; Ярошенко, Юрий Федерович

    2013-01-01

    The matrix technology for identification of organisational competencies in project management is presented in the article. Matrix elements are the components of organizational competence in the field of project management and project management methodology represented in the structure of the genome. The matrix model of competence in the framework of the adopted methodologies and scanning method for identifying organizational competences formalised. Proposed methods for building effective proj...

  6. Genome-derived vaccines.

    Science.gov (United States)

    De Groot, Anne S; Rappuoli, Rino

    2004-02-01

    Vaccine research entered a new era when the complete genome of a pathogenic bacterium was published in 1995. Since then, more than 97 bacterial pathogens have been sequenced and at least 110 additional projects are now in progress. Genome sequencing has also dramatically accelerated: high-throughput facilities can draft the sequence of an entire microbe (two to four megabases) in 1 to 2 days. Vaccine developers are using microarrays, immunoinformatics, proteomics and high-throughput immunology assays to reduce the truly unmanageable volume of information available in genome databases to a manageable size. Vaccines composed by novel antigens discovered from genome mining are already in clinical trials. Within 5 years we can expect to see a novel class of vaccines composed by genome-predicted, assembled and engineered T- and Bcell epitopes. This article addresses the convergence of three forces--microbial genome sequencing, computational immunology and new vaccine technologies--that are shifting genome mining for vaccines onto the forefront of immunology research.

  7. Imputation of variants from the 1000 Genomes Project modestly improves known associations and can identify low-frequency variant-phenotype associations undetected by HapMap based imputation.

    Science.gov (United States)

    Wood, Andrew R; Perry, John R B; Tanaka, Toshiko; Hernandez, Dena G; Zheng, Hou-Feng; Melzer, David; Gibbs, J Raphael; Nalls, Michael A; Weedon, Michael N; Spector, Tim D; Richards, J Brent; Bandinelli, Stefania; Ferrucci, Luigi; Singleton, Andrew B; Frayling, Timothy M

    2013-01-01

    Genome-wide association (GWA) studies have been limited by the reliance on common variants present on microarrays or imputable from the HapMap Project data. More recently, the completion of the 1000 Genomes Project has provided variant and haplotype information for several million variants derived from sequencing over 1,000 individuals. To help understand the extent to which more variants (including low frequency (1% ≤ MAF 1000 Genomes imputation, respectively, and 9 and 11 that reached a stricter, likely conservative, threshold of P1000 Genomes genotype data modestly improved the strength of known associations. Of 20 associations detected at P1000 Genomes imputed data and one was nominally more strongly associated in HapMap imputed data. We also detected an association between a low frequency variant and phenotype that was previously missed by HapMap based imputation approaches. An association between rs112635299 and alpha-1 globulin near the SERPINA gene represented the known association between rs28929474 (MAF = 0.007) and alpha1-antitrypsin that predisposes to emphysema (P = 2.5×10(-12)). Our data provide important proof of principle that 1000 Genomes imputation will detect novel, low frequency-large effect associations.

  8. Competitiveness Improvement Project Informational Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Preus, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dana, Scott [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Dam, Jeroen J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jackson, Kyndall R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baring-Gould, Edward I [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jain, Anant [Intertek

    2018-02-27

    This presentation was given at the Competitiveness Improvement Project (CIP) Informational Workshop on December 6, 2017. Topics covered during the workshop include an overview of the CIP, past projects, scoring criteria, technical support opportunities, certification body requirements, standards applicable to distributed wind generators, information on the National Electric Code, certification testing requirements, test site requirements, National Environmental Policy Act, design review, levelized cost of energy, procurement/contracting, project management/deliverables, and outreach materials.

  9. Information management for decommissioning projects

    International Nuclear Information System (INIS)

    LeClair, A.N.; Lemire, D.S.

    2011-01-01

    This paper explores the importance of records and information management for decommissioning projects. Key decommissioning information and elements of a sound information management strategy are identified. Various knowledge management strategies and tools are discussed as opportunities for leveraging decommissioning information. The paper also examines the implementation of Atomic Energy of Canada Limited's (AECL) strategy for the long term preservation of decommissioning information, and its initiatives in leveraging of information with the application of several knowledge management strategies and tools. The implementation of AECL's strategy illustrates common as well as unique information and knowledge management challenges and opportunities for decommissioning projects. (author)

  10. A Proposed Clinical Decision Support Architecture Capable of Supporting Whole Genome Sequence Information

    Directory of Open Access Journals (Sweden)

    Brandon M. Welch

    2014-04-01

    Full Text Available Whole genome sequence (WGS information may soon be widely available to help clinicians personalize the care and treatment of patients. However, considerable barriers exist, which may hinder the effective utilization of WGS information in a routine clinical care setting. Clinical decision support (CDS offers a potential solution to overcome such barriers and to facilitate the effective use of WGS information in the clinic. However, genomic information is complex and will require significant considerations when developing CDS capabilities. As such, this manuscript lays out a conceptual framework for a CDS architecture designed to deliver WGS-guided CDS within the clinical workflow. To handle the complexity and breadth of WGS information, the proposed CDS framework leverages service-oriented capabilities and orchestrates the interaction of several independently-managed components. These independently-managed components include the genome variant knowledge base, the genome database, the CDS knowledge base, a CDS controller and the electronic health record (EHR. A key design feature is that genome data can be stored separately from the EHR. This paper describes in detail: (1 each component of the architecture; (2 the interaction of the components; and (3 how the architecture attempts to overcome the challenges associated with WGS information. We believe that service-oriented CDS capabilities will be essential to using WGS information for personalized medicine.

  11. Interactions of the NAEG information support project with other projects

    International Nuclear Information System (INIS)

    Pfuderer, H.A.

    1976-01-01

    In the past year the Information Support Project to the Nevada Applied Ecology Group has interacted with many other research projects on the transuranics and other radionuclides. Group interactions through symposiums, workshops, and responding to search requests have proven to be mutually beneficial. The NAEG Information Support Project will draw on the information resources of the Oak Ridge National Laboratory to produce a bibliography of the radionuclides (other than the transuranics) of interest to the Nevada Test Site

  12. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2014-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterisation of African genetic diversity is needed. The African Genome Variation Project (AGVP) provides a resource to help design, implement and interpret genomic studies in sub-Saharan Africa (SSA) and worldwide. The AGVP represents dense genotypes from 1,481 and whole genome sequences (WGS) from 320 individuals across SSA. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across SSA. We identify new loci under selection, including for malaria and hypertension. We show that modern imputation panels can identify association signals at highly differentiated loci across populations in SSA. Using WGS, we show further improvement in imputation accuracy supporting efforts for large-scale sequencing of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa, showing for the first time that such designs are feasible. PMID:25470054

  13. Perspectives from the Avian Phylogenomics Project: Questions that Can Be Answered with Sequencing All Genomes of a Vertebrate Class.

    Science.gov (United States)

    Jarvis, Erich D

    2016-01-01

    The rapid pace of advances in genome technology, with concomitant reductions in cost, makes it feasible that one day in our lifetime we will have available extant genomes of entire classes of species, including vertebrates. I recently helped cocoordinate the large-scale Avian Phylogenomics Project, which collected and sequenced genomes of 48 bird species representing most currently classified orders to address a range of questions in phylogenomics and comparative genomics. The consortium was able to answer questions not previously possible with just a few genomes. This success spurred on the creation of a project to sequence the genomes of at least one individual of all extant ∼10,500 bird species. The initiation of this project has led us to consider what questions now impossible to answer could be answered with all genomes, and could drive new questions now unimaginable. These include the generation of a highly resolved family tree of extant species, genome-wide association studies across species to identify genetic substrates of many complex traits, redefinition of species and the species concept, reconstruction of the genomes of common ancestors, and generation of new computational tools to address these questions. Here I present visions for the future by posing and answering questions regarding what scientists could potentially do with available genomes of an entire vertebrate class.

  14. DEFINING THE CHEMICAL SPACE OF PUBLIC GENOMIC ...

    Science.gov (United States)

    The current project aims to chemically index the genomics content of public genomic databases to make these data accessible in relation to other publicly available, chemically-indexed toxicological information. By defining the chemical space of public genomic data, it is possible to identify classes of chemicals on which to develop methodologies for the integration of chemogenomic data into predictive toxicology. The chemical space of public genomic data will be presented as well as the methodologies and tools developed to identify this chemical space.

  15. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project.

    Science.gov (United States)

    Higgins, Anne W; Alkuraya, Fowzan S; Bosco, Amy F; Brown, Kerry K; Bruns, Gail A P; Donovan, Diana J; Eisenman, Robert; Fan, Yanli; Farra, Chantal G; Ferguson, Heather L; Gusella, James F; Harris, David J; Herrick, Steven R; Kelly, Chantal; Kim, Hyung-Goo; Kishikawa, Shotaro; Korf, Bruce R; Kulkarni, Shashikant; Lally, Eric; Leach, Natalia T; Lemyre, Emma; Lewis, Janine; Ligon, Azra H; Lu, Weining; Maas, Richard L; MacDonald, Marcy E; Moore, Steven D P; Peters, Roxanna E; Quade, Bradley J; Quintero-Rivera, Fabiola; Saadi, Irfan; Shen, Yiping; Shendure, Jay; Williamson, Robin E; Morton, Cynthia C

    2008-03-01

    Apparently balanced chromosomal rearrangements in individuals with major congenital anomalies represent natural experiments of gene disruption and dysregulation. These individuals can be studied to identify novel genes critical in human development and to annotate further the function of known genes. Identification and characterization of these genes is the goal of the Developmental Genome Anatomy Project (DGAP). DGAP is a multidisciplinary effort that leverages the recent advances resulting from the Human Genome Project to increase our understanding of birth defects and the process of human development. Clinically significant phenotypes of individuals enrolled in DGAP are varied and, in most cases, involve multiple organ systems. Study of these individuals' chromosomal rearrangements has resulted in the mapping of 77 breakpoints from 40 chromosomal rearrangements by FISH with BACs and fosmids, array CGH, Southern-blot hybridization, MLPA, RT-PCR, and suppression PCR. Eighteen chromosomal breakpoints have been cloned and sequenced. Unsuspected genomic imbalances and cryptic rearrangements were detected, but less frequently than has been reported previously. Chromosomal rearrangements, both balanced and unbalanced, in individuals with multiple congenital anomalies continue to be a valuable resource for gene discovery and annotation.

  16. Relationship between Deleterious Variation, Genomic Autozygosity, and Disease Risk: Insights from The 1000 Genomes Project.

    Science.gov (United States)

    Pemberton, Trevor J; Szpiech, Zachary A

    2018-04-05

    Genomic regions of autozygosity (ROAs) represent segments of individual genomes that are homozygous for haplotypes inherited identical-by-descent (IBD) from a common ancestor. ROAs are nonuniformly distributed across the genome, and increased ROA levels are a reported risk factor for numerous complex diseases. Previously, we hypothesized that long ROAs are enriched for deleterious homozygotes as a result of young haplotypes with recent deleterious mutations-relatively untouched by purifying selection-being paired IBD as a consequence of recent parental relatedness, a pattern supported by ROA and whole-exome sequence data on 27 individuals. Here, we significantly bolster support for our hypothesis and expand upon our original analyses using ROA and whole-genome sequence data on 2,436 individuals from The 1000 Genomes Project. Considering CADD deleteriousness scores, we reaffirm our previous observation that long ROAs are enriched for damaging homozygotes worldwide. We show that strongly damaging homozygotes experience greater enrichment than weaker damaging homozygotes, while overall enrichment varies appreciably among populations. Mendelian disease genes and those encoding FDA-approved drug targets have significantly increased rates of gain in damaging homozygotes with increasing ROA coverage relative to all other genes. In genes implicated in eight complex phenotypes for which ROA levels have been identified as a risk factor, rates of gain in damaging homozygotes vary across phenotypes and populations but frequently differ significantly from non-disease genes. These findings highlight the potential confounding effects of population background in the assessment of associations between ROA levels and complex disease risk, which might underlie reported inconsistencies in ROA-phenotype associations. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Cloning, production, and purification of proteins for a medium-scale structural genomics project.

    Science.gov (United States)

    Quevillon-Cheruel, Sophie; Collinet, Bruno; Trésaugues, Lionel; Minard, Philippe; Henckes, Gilles; Aufrère, Robert; Blondeau, Karine; Zhou, Cong-Zhao; Liger, Dominique; Bettache, Nabila; Poupon, Anne; Aboulfath, Ilham; Leulliot, Nicolas; Janin, Joël; van Tilbeurgh, Herman

    2007-01-01

    The South-Paris Yeast Structural Genomics Pilot Project (http://www.genomics.eu.org) aims at systematically expressing, purifying, and determining the three-dimensional structures of Saccharomyces cerevisiae proteins. We have already cloned 240 yeast open reading frames in the Escherichia coli pET system. Eighty-two percent of the targets can be expressed in E. coli, and 61% yield soluble protein. We have currently purified 58 proteins. Twelve X-ray structures have been solved, six are in progress, and six other proteins gave crystals. In this chapter, we present the general experimental flowchart applied for this project. One of the main difficulties encountered in this pilot project was the low solubility of a great number of target proteins. We have developed parallel strategies to recover these proteins from inclusion bodies, including refolding, coexpression with chaperones, and an in vitro expression system. A limited proteolysis protocol, developed to localize flexible regions in proteins that could hinder crystallization, is also described.

  18. The Path to Enlightenment: Making Sense of Genomic and Proteomic Information

    OpenAIRE

    Maurer, Martin H.

    2016-01-01

    Whereas genomics describes the study of genome, mainly represented by its gene expression on the DNA or RNA level, the term proteomics denotes the study of the proteome, which is the protein complement encoded by the genome. In recent years, the number of proteomic experiments increased tremendously. While all fields of proteomics have made major technological advances, the biggest step was seen in bioinformatics. Biological information management relies on sequence and structure databases an...

  19. A LDA-based approach to promoting ranking diversity for genomics information retrieval.

    Science.gov (United States)

    Chen, Yan; Yin, Xiaoshi; Li, Zhoujun; Hu, Xiaohua; Huang, Jimmy Xiangji

    2012-06-11

    In the biomedical domain, there are immense data and tremendous increase of genomics and biomedical relevant publications. The wealth of information has led to an increasing amount of interest in and need for applying information retrieval techniques to access the scientific literature in genomics and related biomedical disciplines. In many cases, the desired information of a query asked by biologists is a list of a certain type of entities covering different aspects that are related to the question, such as cells, genes, diseases, proteins, mutations, etc. Hence, it is important of a biomedical IR system to be able to provide relevant and diverse answers to fulfill biologists' information needs. However traditional IR model only concerns with the relevance between retrieved documents and user query, but does not take redundancy between retrieved documents into account. This will lead to high redundancy and low diversity in the retrieval ranked lists. In this paper, we propose an approach which employs a topic generative model called Latent Dirichlet Allocation (LDA) to promoting ranking diversity for biomedical information retrieval. Different from other approaches or models which consider aspects on word level, our approach assumes that aspects should be identified by the topics of retrieved documents. We present LDA model to discover topic distribution of retrieval passages and word distribution of each topic dimension, and then re-rank retrieval results with topic distribution similarity between passages based on N-size slide window. We perform our approach on TREC 2007 Genomics collection and two distinctive IR baseline runs, which can achieve 8% improvement over the highest Aspect MAP reported in TREC 2007 Genomics track. The proposed method is the first study of adopting topic model to genomics information retrieval, and demonstrates its effectiveness in promoting ranking diversity as well as in improving relevance of ranked lists of genomics search

  20. Djeen (Database for Joomla!'s Extensible Engine): a research information management system for flexible multi-technology project administration.

    Science.gov (United States)

    Stahl, Olivier; Duvergey, Hugo; Guille, Arnaud; Blondin, Fanny; Vecchio, Alexandre Del; Finetti, Pascal; Granjeaud, Samuel; Vigy, Oana; Bidaut, Ghislain

    2013-06-06

    With the advance of post-genomic technologies, the need for tools to manage large scale data in biology becomes more pressing. This involves annotating and storing data securely, as well as granting permissions flexibly with several technologies (all array types, flow cytometry, proteomics) for collaborative work and data sharing. This task is not easily achieved with most systems available today. We developed Djeen (Database for Joomla!'s Extensible Engine), a new Research Information Management System (RIMS) for collaborative projects. Djeen is a user-friendly application, designed to streamline data storage and annotation collaboratively. Its database model, kept simple, is compliant with most technologies and allows storing and managing of heterogeneous data with the same system. Advanced permissions are managed through different roles. Templates allow Minimum Information (MI) compliance. Djeen allows managing project associated with heterogeneous data types while enforcing annotation integrity and minimum information. Projects are managed within a hierarchy and user permissions are finely-grained for each project, user and group.Djeen Component source code (version 1.5.1) and installation documentation are available under CeCILL license from http://sourceforge.net/projects/djeen/files and supplementary material.

  1. Hunting for genes for hypertension: the Millennium Genome Project for Hypertension.

    Science.gov (United States)

    Tabara, Yasuharu; Kohara, Katsuhiko; Miki, Tetsuro

    2012-06-01

    The Millennium Genome Project for Hypertension was started in 2000 to identify genetic variants conferring susceptibility to hypertension, with the aim of furthering the understanding of the pathogenesis of this condition and realizing genome-based personalized medical care. Two different approaches were launched, genome-wide association analysis using single-nucleotide polymorphisms (SNPs) and microsatellite markers, and systematic candidate gene analysis, under the hypothesis that common variants have an important role in the etiology of common diseases. These multilateral approaches identified ATP2B1 as a gene responsible for hypertension in not only Japanese but also Caucasians. The high blood pressure susceptibility conferred by certain alleles of ATP2B1 has been widely replicated in various populations. Ex vivo mRNA expression analysis in umbilical artery smooth muscle cells indicated that reduced expression of this gene associated with the risk allele may be an underlying mechanism relating the ATP2B1 variant to hypertension. However, the effect size of a SNP was too small to clarify the entire picture of the genetic basis of hypertension. Further, dense genome analysis with accurate phenotype data may be required.

  2. Technologies and techniques for analysis and use of genome information, 1997; Genome joho kaidoku riyo gijutsu no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper clarified the whole image of cell functions by elucidating the function and manifestation control mechanism of genes existing in genomes, and the network of their interactions, and surveyed applicability of the useful functions obtained of cells and proteins to the industrial field. The survey was made from a viewpoint of the fields of both biology and information science. Especially, based on the function-known DNA base sequence database, the following technologies were surveyed: technology to predict the function of the function-unknown DNA base sequence, search/separation technology to acquire the genes to be functionally elucidated in a state of being suitable for manifestation, technology to get perfect proteins by effectively manifesting the genes to be functionally elucidated, and technology to analyze the function of the proteins obtained by manifestation of genes. Further, the International Symposium was held which is titled `Genome Research Opens a New World to Bioindustry (New Developments in Genome Informatics Technologies). With the future progress of technology to decipher and use genome information, the construction of much newer genome industry is anticipated. 165 refs., 44 figs., 10 tabs.

  3. Informal worker phenomenon in housing construction project

    Science.gov (United States)

    Wijayaningtyas, Maranatha; Sipan, Ibrahim; Lukiyanto, Kukuh

    2017-11-01

    The informal workers phenomenon on housing construction projects in Indonesia is different from workers in other sectors who would always request as permanent employees. Substantively, the informal workers are disinclined to be bound as permanent employees which different from the general labor paradigm. Hence, the objective of this study is to find out how the labour selection process, the factors that affected their performance, and the suitable wage system to achieve the target completion of housing construction project. The qualitative method is used to uncover and understand the meaning behind the phenomena (numina) of informal workers action and their influence on housing construction project which called phenomenological approach. Five informal workers and two project managers were selected as informants based on predetermined criteria with in-depth interviews. The results showed that the informal worker were more satisfied with the wage based on unit price while working in the housing construction project for the flexibility in working hours. In addition, the developer was also relieved because they only control the quality and the achievement of the project completion time which supported by informal worker leader. Therefore, these findings are beneficial for both of developer and government as policy maker to succeed the housing program in Indonesia.

  4. The path to enlightenment: making sense of genomic and proteomic information.

    Science.gov (United States)

    Maurer, Martin H

    2004-05-01

    Whereas genomics describes the study of genome, mainly represented by its gene expression on the DNA or RNA level, the term proteomics denotes the study of the proteome, which is the protein complement encoded by the genome. In recent years, the number of proteomic experiments increased tremendously. While all fields of proteomics have made major technological advances, the biggest step was seen in bioinformatics. Biological information management relies on sequence and structure databases and powerful software tools to translate experimental results into meaningful biological hypotheses and answers. In this resource article, I provide a collection of databases and software available on the Internet that are useful to interpret genomic and proteomic data. The article is a toolbox for researchers who have genomic or proteomic datasets and need to put their findings into a biological context.

  5. From Mendel to the Human Genome Project: The Implications for Nurse Education.

    Science.gov (United States)

    Burton, Hilary; Stewart, Alison

    2003-01-01

    The Human Genome Project is brining new opportunities to predict and prevent diseases. Although pediatric nurses are the closest to these developments, most nurses will encounter genetic aspects of practice and must understand the basic science and its ethical, legal, and social dimensions. (Includes commentary by Peter Birchenall.) (SK)

  6. Genome-wide identification of breed-informative single-nucleotide ...

    African Journals Online (AJOL)

    This is because the SNPs on BovineSNP50 and GGP-80K assays were ascertained as being common in European taurine breeds. Lower MAF and SNP informativeness observed in this study limits the application of these assays in breed assignment, and could have other implications for genome-wide studies in South ...

  7. Djeen (Database for Joomla!’s Extensible Engine): a research information management system for flexible multi-technology project administration

    Science.gov (United States)

    2013-01-01

    Background With the advance of post-genomic technologies, the need for tools to manage large scale data in biology becomes more pressing. This involves annotating and storing data securely, as well as granting permissions flexibly with several technologies (all array types, flow cytometry, proteomics) for collaborative work and data sharing. This task is not easily achieved with most systems available today. Findings We developed Djeen (Database for Joomla!’s Extensible Engine), a new Research Information Management System (RIMS) for collaborative projects. Djeen is a user-friendly application, designed to streamline data storage and annotation collaboratively. Its database model, kept simple, is compliant with most technologies and allows storing and managing of heterogeneous data with the same system. Advanced permissions are managed through different roles. Templates allow Minimum Information (MI) compliance. Conclusion Djeen allows managing project associated with heterogeneous data types while enforcing annotation integrity and minimum information. Projects are managed within a hierarchy and user permissions are finely-grained for each project, user and group. Djeen Component source code (version 1.5.1) and installation documentation are available under CeCILL license from http://sourceforge.net/projects/djeen/files and supplementary material. PMID:23742665

  8. Map projections cartographic information systems

    CERN Document Server

    Grafarend, Erik W

    2006-01-01

    In the context of Geographical Information Systems (GIS) the book offers a timely review of map projections (sphere, ellipsoid, rotational surfaces) and geodetic datum transformations. For the needs of photogrammetry, computer vision, and remote sensing space projective mappings are reviewed.

  9. River Protection Project information systems assessment

    International Nuclear Information System (INIS)

    JOHNSON, A.L.

    1999-01-01

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report

  10. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics Project: one size fits all?

    Science.gov (United States)

    Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman

    2005-06-01

    Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.

  11. WormBase: Annotating many nematode genomes.

    Science.gov (United States)

    Howe, Kevin; Davis, Paul; Paulini, Michael; Tuli, Mary Ann; Williams, Gary; Yook, Karen; Durbin, Richard; Kersey, Paul; Sternberg, Paul W

    2012-01-01

    WormBase (www.wormbase.org) has been serving the scientific community for over 11 years as the central repository for genomic and genetic information for the soil nematode Caenorhabditis elegans. The resource has evolved from its beginnings as a database housing the genomic sequence and genetic and physical maps of a single species, and now represents the breadth and diversity of nematode research, currently serving genome sequence and annotation for around 20 nematodes. In this article, we focus on WormBase's role of genome sequence annotation, describing how we annotate and integrate data from a growing collection of nematode species and strains. We also review our approaches to sequence curation, and discuss the impact on annotation quality of large functional genomics projects such as modENCODE.

  12. Integrating genome-based informatics to modernize global disease monitoring, information sharing, and response

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Brown, Eric W; Detter, Chris

    2012-01-01

    The rapid advancement of genome technologies holds great promise for improving the quality and speed of clinical and public health laboratory investigations and for decreasing their cost. The latest generation of genome DNA sequencers can provide highly detailed and robust information on disease...... typing methods to provide point-of-care clinical diagnosis and other essential information for quicker and better treatment of patients. Provided there is free-sharing of information by all clinical and public health laboratories, these genomic tools could spawn a global system of linked databases......-causing microbes, and in the near future these technologies will be suitable for routine use in national, regional, and global public health laboratories. With additional improvements in instrumentation, these next- or third-generation sequencers are likely to replace conventional culture-based and molecular...

  13. Smart use of data, information and communication: the INFORM-ed Best Local Practice Project--Grafton Base Hospital.

    Science.gov (United States)

    Lloyd, Sheree; Collie, Jean; McInnes, Alastair; King, Kevin; Lollback, Alison; Garland, Angie

    This paper describes current progress for an information management project in a medium-sized rural hospital after the first four months of the one-year project. In particular, the article examines some of the project outcomes to date as these relate to the National Hospitals and Health Reform recommendations for the smart use of data, information and communication. The paper identifies a number of important challenges and issues that have been addressed by the project and proposes that the project findings may be used to inform similar projects in other settings. These findings relate to clinician requirements for reports, investment in human resources, development, and time for information management activities. An understanding of data collected, information systems, and presentation of clinician data are also important. The benefits of information sharing in assisting quality improvement activities are particularly relevant but, more importantly, they can engage and involve clinicians in the use of information. The importance of local data, information, and knowledge is described. Finally, issues for the health information management profession, such as working collegially and sharing knowledge and expertise, are outlined.

  14. Nuclear power project management information system

    International Nuclear Information System (INIS)

    Zou Lailong; Zhang Peng; Xiao Ziyan; Chun Zengjun; Huang Futong

    2001-01-01

    Project Management Information System is an important infrastructure facility for the construction and operation of Nuclear Power Station. Based on the practice of Lingao nuclear power project management information system (NPMIS), the author describes the NPMIS design goals, system architecture and software functionality, points out the outline issues during the development and deployment of NPMIS

  15. Public trust and 'ethics review' as a commodity: the case of Genomics England Limited and the UK's 100,000 genomes project.

    Science.gov (United States)

    Samuel, Gabrielle Natalie; Farsides, Bobbie

    2018-06-01

    The UK Chief Medical Officer's 2016 Annual Report, Generation Genome, focused on a vision to fully integrate genomics into all aspects of the UK's National Health Service (NHS). This process of integration, which has now already begun, raises a wide range of social and ethical concerns, many of which were discussed in the final Chapter of the report. This paper explores how the UK's 100,000 Genomes Project (100 kGP)-the catalyst for Generation Genome, and for bringing genomics into the NHS-is negotiating these ethical concerns. The UK's 100 kGP, promoted and delivered by Genomics England Limited (GEL), is an innovative venture aiming to sequence 100,000 genomes from NHS patients who have a rare disease, cancer, or an infectious disease. GEL has emphasised the importance of ethical governance and decision-making. However, some sociological critique argues that biomedical/technological organisations presenting themselves as 'ethical' entities do not necessarily reflect a space within which moral thinking occurs. Rather, the 'ethical work' conducted (and displayed) by organisations is more strategic, relating to the politics of the organisation and the need to build public confidence. We set out to explore whether GEL's ethical framework was reflective of this critique, and what this tells us more broadly about how genomics is being integrated into the NHS in response to the ethical and social concerns raised in Generation Genome. We do this by drawing on a series of 20 interviews with individuals associated with or working at GEL.

  16. Project Management Effectiveness: the choice - formal or informal controls

    Directory of Open Access Journals (Sweden)

    Jon Heales

    2007-12-01

    Full Text Available Development failures and runaway projects in the information systems (IS area can result in substantial losses to organizations, either financially or to a company’s reputation. One important strategy in mitigating risk is the use of effective controls over IS projects. This research investigates the effectiveness of control mechanisms in IS projects, i.e., how they have been established, applied, and how they have evolved throughout the project. We conducted an in-depth study of six information systems projects with six different project managers. We found that formal controls were adopted on project elements with clearly defined project outcomes and informal controls were adopted mainly on project elements that were unclear and often related to people. Furthermore, formal controls were dominant at project initiation and in most cases these controls became less dominant over the project duration. These formal controls were more rigorously applied in external IS projects while informal controls increased in importance throughout the project duration in internally developed projects. We found the existence of informal controls to be very important in helping ensure successful project outcomes.

  17. Field of genes: the politics of science and identity in the Estonian Genome Project.

    Science.gov (United States)

    Fletcher, Amy L

    2004-04-01

    This case study of the Estonian Genome Project (EGP) analyses the Estonian policy decision to construct a national human gene bank. Drawing upon qualitative data from newspaper articles and public policy documents, it focuses on how proponents use discourse to link the EGP to the broader political goal of securing Estonia's position within the Western/European scientific and cultural space. This dominant narrative is then situated within the analytical notion of the "brand state", which raises potentially negative political consequences for this type of market-driven genomic research. Considered against the increasing number of countries engaging in gene bank and/or gene database projects, this analysis of Estonia elucidates issues that cross national boundaries, while also illuminating factors specific to this small, post-Soviet state as it enters the global biocybernetic economy.

  18. The GenABEL Project for statistical genomics.

    Science.gov (United States)

    Karssen, Lennart C; van Duijn, Cornelia M; Aulchenko, Yurii S

    2016-01-01

    Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination.

  19. Clinical decision support for whole genome sequence information leveraging a service-oriented architecture: a prototype.

    Science.gov (United States)

    Welch, Brandon M; Rodriguez-Loya, Salvador; Eilbeck, Karen; Kawamoto, Kensaku

    2014-01-01

    Whole genome sequence (WGS) information could soon be routinely available to clinicians to support the personalized care of their patients. At such time, clinical decision support (CDS) integrated into the clinical workflow will likely be necessary to support genome-guided clinical care. Nevertheless, developing CDS capabilities for WGS information presents many unique challenges that need to be overcome for such approaches to be effective. In this manuscript, we describe the development of a prototype CDS system that is capable of providing genome-guided CDS at the point of care and within the clinical workflow. To demonstrate the functionality of this prototype, we implemented a clinical scenario of a hypothetical patient at high risk for Lynch Syndrome based on his genomic information. We demonstrate that this system can effectively use service-oriented architecture principles and standards-based components to deliver point of care CDS for WGS information in real-time.

  20. Understanding the Human Genome Project — A Fact Sheet | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... The Human Genome Project spurred a revolution in biotechnology innovation around the world and played a key ... the U.S. the global leader in the new biotechnology sector. In April 2003, researchers successfully completed the ...

  1. Ion torrent personal genome machine sequencing for genomic typing of Neisseria meningitidis for rapid determination of multiple layers of typing information.

    Science.gov (United States)

    Vogel, Ulrich; Szczepanowski, Rafael; Claus, Heike; Jünemann, Sebastian; Prior, Karola; Harmsen, Dag

    2012-06-01

    Neisseria meningitidis causes invasive meningococcal disease in infants, toddlers, and adolescents worldwide. DNA sequence-based typing, including multilocus sequence typing, analysis of genetic determinants of antibiotic resistance, and sequence typing of vaccine antigens, has become the standard for molecular epidemiology of the organism. However, PCR of multiple targets and consecutive Sanger sequencing provide logistic constraints to reference laboratories. Taking advantage of the recent development of benchtop next-generation sequencers (NGSs) and of BIGSdb, a database accommodating and analyzing genome sequence data, we therefore explored the feasibility and accuracy of Ion Torrent Personal Genome Machine (PGM) sequencing for genomic typing of meningococci. Three strains from a previous meningococcus serogroup B community outbreak were selected to compare conventional typing results with data generated by semiconductor chip-based sequencing. In addition, sequencing of the meningococcal type strain MC58 provided information about the general performance of the technology. The PGM technology generated sequence information for all target genes addressed. The results were 100% concordant with conventional typing results, with no further editing being necessary. In addition, the amount of typing information, i.e., nucleotides and target genes analyzed, could be substantially increased by the combined use of genome sequencing and BIGSdb compared to conventional methods. In the near future, affordable and fast benchtop NGS machines like the PGM might enable reference laboratories to switch to genomic typing on a routine basis. This will reduce workloads and rapidly provide information for laboratory surveillance, outbreak investigation, assessment of vaccine preventability, and antibiotic resistance gene monitoring.

  2. River Protection Project information systems assessment

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, A.L.

    1999-07-28

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report.

  3. Whole genome shotgun sequencing of Indian strains of Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Balaji Veeraraghavan

    2017-12-01

    Full Text Available Group B streptococcus is known as a leading cause of neonatal infections in developing countries. The present study describes the whole genome shotgun sequences of four Group B Streptococcus (GBS isolates. Molecular data on clonality is lacking for GBS in India. The present genome report will add important information on the scarce genome data of GBS and will help in deriving comparative genome studies of GBS isolates at global level. This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession numbers NHPL00000000 – NHPO00000000.

  4. Information Flows in Networked Engineering Design Projects

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Maier, Anja

    Complex engineering design projects need to manage simultaneously multiple information flows across design activities associated with different areas of the design process. Previous research on this area has mostly focused on either analysing the “required information flows” through activity...... networks at the project level or in studying the social networks that deliver the “actual information flow”. In this paper we propose and empirically test a model and method that integrates both social and activity networks into one compact representation, allowing to compare actual and required...... information flows between design spaces, and to assess the influence that these misalignments could have on the performance of engineering design projects....

  5. DNA Data Bank of Japan at work on genome sequence data.

    Science.gov (United States)

    Tateno, Y; Fukami-Kobayashi, K; Miyazaki, S; Sugawara, H; Gojobori, T

    1998-01-01

    We at the DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) have recently begun receiving, processing and releasing EST and genome sequence data submitted by various Japanese genome projects. The data include those for human, Arabidopsis thaliana, rice, nematode, Synechocystis sp. and Escherichia coli. Since the quantity of data is very large, we organized teams to conduct preliminary discussions with project teams about data submission and handling for release to the public. We also developed a mass submission tool to cope with a large quantity of data. In addition, to provide genome data on WWW, we developed a genome information system using Java. This system (http://mol.genes.nig.ac.jp/ecoli/) can in theory be used for any genome sequence data. These activities will facilitate processing of large quantities of EST and genome data.

  6. A locally funded Puerto Rican parrot (Amazona vittata genome sequencing project increases avian data and advances young researcher education

    Directory of Open Access Journals (Sweden)

    Oleksyk Taras K

    2012-09-01

    Full Text Available Abstract Background Amazona vittata is a critically endangered Puerto Rican endemic bird, the only surviving native parrot species in the United States territory, and the first parrot in the large Neotropical genus Amazona, to be studied on a genomic scale. Findings In a unique community-based funded project, DNA from an A. vittata female was sequenced using a HiSeq Illumina platform, resulting in a total of ~42.5 billion nucleotide bases. This provided approximately 26.89x average coverage depth at the completion of this funding phase. Filtering followed by assembly resulted in 259,423 contigs (N50 = 6,983 bp, longest = 75,003 bp, which was further scaffolded into 148,255 fragments (N50 = 19,470, longest = 206,462 bp. This provided ~76% coverage of the genome based on an estimated size of 1.58 Gb. The assembled scaffolds allowed basic genomic annotation and comparative analyses with other available avian whole-genome sequences. Conclusions The current data represents the first genomic information from and work carried out with a unique source of funding. This analysis further provides a means for directed training of young researchers in genetic and bioinformatics analyses and will facilitate progress towards a full assembly and annotation of the Puerto Rican parrot genome. It also adds extensive genomic data to a new branch of the avian tree, making it useful for comparative analyses with other avian species. Ultimately, the knowledge acquired from these data will contribute to an improved understanding of the overall population health of this species and aid in ongoing and future conservation efforts.

  7. GFFview: A Web Server for Parsing and Visualizing Annotation Information of Eukaryotic Genome.

    Science.gov (United States)

    Deng, Feilong; Chen, Shi-Yi; Wu, Zhou-Lin; Hu, Yongsong; Jia, Xianbo; Lai, Song-Jia

    2017-10-01

    Owing to wide application of RNA sequencing (RNA-seq) technology, more and more eukaryotic genomes have been extensively annotated, such as the gene structure, alternative splicing, and noncoding loci. Annotation information of genome is prevalently stored as plain text in General Feature Format (GFF), which could be hundreds or thousands Mb in size. Therefore, it is a challenge for manipulating GFF file for biologists who have no bioinformatic skill. In this study, we provide a web server (GFFview) for parsing the annotation information of eukaryotic genome and then generating statistical description of six indices for visualization. GFFview is very useful for investigating quality and difference of the de novo assembled transcriptome in RNA-seq studies.

  8. Brassica ASTRA: an integrated database for Brassica genomic research.

    Science.gov (United States)

    Love, Christopher G; Robinson, Andrew J; Lim, Geraldine A C; Hopkins, Clare J; Batley, Jacqueline; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-01-01

    Brassica ASTRA is a public database for genomic information on Brassica species. The database incorporates expressed sequences with Swiss-Prot and GenBank comparative sequence annotation as well as secondary Gene Ontology (GO) annotation derived from the comparison with Arabidopsis TAIR GO annotations. Simple sequence repeat molecular markers are identified within resident sequences and mapped onto the closely related Arabidopsis genome sequence. Bacterial artificial chromosome (BAC) end sequences derived from the Multinational Brassica Genome Project are also mapped onto the Arabidopsis genome sequence enabling users to identify candidate Brassica BACs corresponding to syntenic regions of Arabidopsis. This information is maintained in a MySQL database with a web interface providing the primary means of interrogation. The database is accessible at http://hornbill.cspp.latrobe.edu.au.

  9. Information systems project management: methods, tools, and techniques

    OpenAIRE

    Mcmanus, John; Wood-Harper, Trevor

    2004-01-01

    Information Systems Project Management offers a clear and logical exposition of how to plan, organise and monitor projects effectively in order to deliver quality information systems within time, to budget and quality. This new book by John McManus and Trevor Wood-Harper is suitable for upper level undergraduates and postgraduates studying project management and Information Systems. Practising managers will also find it to be a valuable tool in their work. Managing information systems pro...

  10. O admirável Projeto Genoma Humano The brave New Human Genome Project

    Directory of Open Access Journals (Sweden)

    Marilena V. Corrêa

    2002-12-01

    research. These problems raise challenges in terms of possible inequality in access to the benefits of research. On the other hand, we have the issue of genetic information and safeguarding individual data concerning the risks and susceptibilities to human diseases and characteristics. Defining men and women as a function of genetic traits poses a clear discriminatory threat and becomes even more acute as a function of the genetic reductionism propagated by the mass media. Answers to these problems cannot be expected only from bioethics. The bioethical approach should be combined with political analyses concerning reproduction, sexuality, health, and medicine. Such a vast range of problems cannot be discussed in depth in a single article. The choice was thus made to map them in the sense of emphasizing to what extent, in reflecting on the Genome Project, genomics, and post-genomics, the challenge is met to link such diverse aspects.

  11. Integration of genomic information with biological networks using Cytoscape.

    Science.gov (United States)

    Bauer-Mehren, Anna

    2013-01-01

    Cytoscape is an open-source software for visualizing, analyzing, and modeling biological networks. This chapter explains how to use Cytoscape to analyze the functional effect of sequence variations in the context of biological networks such as protein-protein interaction networks and signaling pathways. The chapter is divided into five parts: (1) obtaining information about the functional effect of sequence variation in a Cytoscape readable format, (2) loading and displaying different types of biological networks in Cytoscape, (3) integrating the genomic information (SNPs and mutations) with the biological networks, and (4) analyzing the effect of the genomic perturbation onto the network structure using Cytoscape built-in functions. Finally, we briefly outline how the integrated data can help in building mathematical network models for analyzing the effect of the sequence variation onto the dynamics of the biological system. Each part is illustrated by step-by-step instructions on an example use case and visualized by many screenshots and figures.

  12. Ethical, legal, and social implications of incorporating genomic information into electronic health records.

    Science.gov (United States)

    Hazin, Ribhi; Brothers, Kyle B; Malin, Bradley A; Koenig, Barbara A; Sanderson, Saskia C; Rothstein, Mark A; Williams, Marc S; Clayton, Ellen W; Kullo, Iftikhar J

    2013-10-01

    The inclusion of genomic data in the electronic health record raises important ethical, legal, and social issues. In this article, we highlight these challenges and discuss potential solutions. We provide a brief background on the current state of electronic health records in the context of genomic medicine, discuss the importance of equitable access to genome-enabled electronic health records, and consider the potential use of electronic health records for improving genomic literacy in patients and providers. We highlight the importance of privacy, access, and security, and of determining which genomic information is included in the electronic health record. Finally, we discuss the challenges of reporting incidental findings, storing and reinterpreting genomic data, and nondocumentation and duty to warn family members at potential genetic risk.

  13. An Approach for Implementation of Project Management Information Systems

    Science.gov (United States)

    Běrziša, Solvita; Grabis, Jānis

    Project management is governed by project management methodologies, standards, and other regulatory requirements. This chapter proposes an approach for implementing and configuring project management information systems according to requirements defined by these methodologies. The approach uses a project management specification framework to describe project management methodologies in a standardized manner. This specification is used to automatically configure the project management information system by applying appropriate transformation mechanisms. Development of the standardized framework is based on analysis of typical project management concepts and process and existing XML-based representations of project management. A demonstration example of project management information system's configuration is provided.

  14. A functional genomics study of extracellular protease production by Aspergillus niger

    OpenAIRE

    Braaksma, Machtelt

    2010-01-01

    The objective of the project described in this thesis was to study the complex induction of extracellular proteases in the filamentous fungus Aspergillus niger using information gathered with functional genomics technologies. A special emphasis is given to the requirements for performing a successful systems biology study and addressing the challenges met in analyzing the large, information-rich data sets generated with functional genomics technologies. The role that protease activity plays i...

  15. Fluorescent In Situ Hybridization (FISH) on Pachytene Chromosomes as a Tool for Genome Characterization. In: Legume Genomics

    NARCIS (Netherlands)

    Geurts, R.; Jong, de J.H.S.G.M.

    2013-01-01

    A growing number of international genome consortia have initiated large-scale sequencing projects for most of the major crop species. This huge amount of information not only boosted genetic and physical mapping research, but it also enabled novel applications on the level of chromosome biology

  16. diArk – a resource for eukaryotic genome research

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2007-04-01

    Full Text Available Abstract Background The number of completed eukaryotic genome sequences and cDNA projects has increased exponentially in the past few years although most of them have not been published yet. In addition, many microarray analyses yielded thousands of sequenced EST and cDNA clones. For the researcher interested in single gene analyses (from a phylogenetic, a structural biology or other perspective it is therefore important to have up-to-date knowledge about the various resources providing primary data. Description The database is built around 3 central tables: species, sequencing projects and publications. The species table contains commonly and alternatively used scientific names, common names and the complete taxonomic information. For projects the sequence type and links to species project web-sites and species homepages are stored. All publications are linked to projects. The web-interface provides comprehensive search modules with detailed options and three different views of the selected data. We have especially focused on developing an elaborate taxonomic tree search tool that allows the user to instantaneously identify e.g. the closest relative to the organism of interest. Conclusion We have developed a database, called diArk, to store, organize, and present the most relevant information about completed genome projects and EST/cDNA data from eukaryotes. Currently, diArk provides information about 415 eukaryotes, 823 sequencing projects, and 248 publications.

  17. MicroScope: a platform for microbial genome annotation and comparative genomics.

    Science.gov (United States)

    Vallenet, D; Engelen, S; Mornico, D; Cruveiller, S; Fleury, L; Lajus, A; Rouy, Z; Roche, D; Salvignol, G; Scarpelli, C; Médigue, C

    2009-01-01

    The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of software is available to the scientific community, and can be used to identify genomic objects, before predicting their biological functions. However, only a limited number of biologically interesting features can be revealed from an isolated sequence. Comparative genomics tools, on the other hand, by bringing together the information contained in numerous genomes simultaneously, allow annotators to make inferences based on the idea that evolution and natural selection are central to the definition of all biological processes. We have developed the MicroScope platform in order to offer a web-based framework for the systematic and efficient revision of microbial genome annotation and comparative analysis (http://www.genoscope.cns.fr/agc/microscope). Starting with the description of the flow chart of the annotation processes implemented in the MicroScope pipeline, and the development of traditional and novel microbial annotation and comparative analysis tools, this article emphasizes the essential role of expert annotation as a complement of automatic annotation. Several examples illustrate the use of implemented tools for the review and curation of annotations of both new and publicly available microbial genomes within MicroScope's rich integrated genome framework. The platform is used as a viewer in order to browse updated annotation information of available microbial genomes (more than 440 organisms to date), and in the context of new annotation projects (117 bacterial genomes). The human expertise gathered in the MicroScope database (about 280,000 independent annotations) contributes to improve the quality of

  18. Informed consent in direct-to-consumer personal genome testing: the outline of a model between specific and generic consent.

    Science.gov (United States)

    Bunnik, Eline M; Janssens, A Cecile J W; Schermer, Maartje H N

    2014-09-01

    Broad genome-wide testing is increasingly finding its way to the public through the online direct-to-consumer marketing of so-called personal genome tests. Personal genome tests estimate genetic susceptibilities to multiple diseases and other phenotypic traits simultaneously. Providers commonly make use of Terms of Service agreements rather than informed consent procedures. However, to protect consumers from the potential physical, psychological and social harms associated with personal genome testing and to promote autonomous decision-making with regard to the testing offer, we argue that current practices of information provision are insufficient and that there is a place--and a need--for informed consent in personal genome testing, also when it is offered commercially. The increasing quantity, complexity and diversity of most testing offers, however, pose challenges for information provision and informed consent. Both specific and generic models for informed consent fail to meet its moral aims when applied to personal genome testing. Consumers should be enabled to know the limitations, risks and implications of personal genome testing and should be given control over the genetic information they do or do not wish to obtain. We present the outline of a new model for informed consent which can meet both the norm of providing sufficient information and the norm of providing understandable information. The model can be used for personal genome testing, but will also be applicable to other, future forms of broad genetic testing or screening in commercial and clinical settings. © 2012 John Wiley & Sons Ltd.

  19. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-25

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human genome variations: 1) HapMap Data (1,417 individuals) (http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-08_phaseII+III/forward/), 2) HGDP (Human Genome Diversity Project) Data (940 individuals) (http://www.hagsc.org/hgdp/files.html), 3) 1000 genomes Data (2,504 individuals) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ If we can integrate all three data into a single volume of data, we should be able to conduct a more detailed analysis of human genome variations for a total number of 4,861 individuals (= 1,417+940+2,504 individuals). In fact, we successfully integrated these three data sets by use of information on the reference human genome sequence, and we conducted the big data analysis. In particular, we constructed a phylogenetic tree of about 5,000 human individuals at the genome level. As a result, we were able to identify clusters of ethnic groups, with detectable admixture, that were not possible by an analysis of each of the three data sets. Here, we report the outcome of this kind of big data analyses and discuss evolutionary significance of human genomic variations. Note that the present study was conducted in collaboration with Katsuhiko Mineta and Kosuke Goto at KAUST.

  20. BLAST Ring Image Generator (BRIG: simple prokaryote genome comparisons

    Directory of Open Access Journals (Sweden)

    Beatson Scott A

    2011-08-01

    Full Text Available Abstract Background Visualisation of genome comparisons is invaluable for helping to determine genotypic differences between closely related prokaryotes. New visualisation and abstraction methods are required in order to improve the validation, interpretation and communication of genome sequence information; especially with the increasing amount of data arising from next-generation sequencing projects. Visualising a prokaryote genome as a circular image has become a powerful means of displaying informative comparisons of one genome to a number of others. Several programs, imaging libraries and internet resources already exist for this purpose, however, most are either limited in the number of comparisons they can show, are unable to adequately utilise draft genome sequence data, or require a knowledge of command-line scripting for implementation. Currently, there is no freely available desktop application that enables users to rapidly visualise comparisons between hundreds of draft or complete genomes in a single image. Results BLAST Ring Image Generator (BRIG can generate images that show multiple prokaryote genome comparisons, without an arbitrary limit on the number of genomes compared. The output image shows similarity between a central reference sequence and other sequences as a set of concentric rings, where BLAST matches are coloured on a sliding scale indicating a defined percentage identity. Images can also include draft genome assembly information to show read coverage, assembly breakpoints and collapsed repeats. In addition, BRIG supports the mapping of unassembled sequencing reads against one or more central reference sequences. Many types of custom data and annotations can be shown using BRIG, making it a versatile approach for visualising a range of genomic comparison data. BRIG is readily accessible to any user, as it assumes no specialist computational knowledge and will perform all required file parsing and BLAST comparisons

  1. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons.

    Science.gov (United States)

    Alikhan, Nabil-Fareed; Petty, Nicola K; Ben Zakour, Nouri L; Beatson, Scott A

    2011-08-08

    Visualisation of genome comparisons is invaluable for helping to determine genotypic differences between closely related prokaryotes. New visualisation and abstraction methods are required in order to improve the validation, interpretation and communication of genome sequence information; especially with the increasing amount of data arising from next-generation sequencing projects. Visualising a prokaryote genome as a circular image has become a powerful means of displaying informative comparisons of one genome to a number of others. Several programs, imaging libraries and internet resources already exist for this purpose, however, most are either limited in the number of comparisons they can show, are unable to adequately utilise draft genome sequence data, or require a knowledge of command-line scripting for implementation. Currently, there is no freely available desktop application that enables users to rapidly visualise comparisons between hundreds of draft or complete genomes in a single image. BLAST Ring Image Generator (BRIG) can generate images that show multiple prokaryote genome comparisons, without an arbitrary limit on the number of genomes compared. The output image shows similarity between a central reference sequence and other sequences as a set of concentric rings, where BLAST matches are coloured on a sliding scale indicating a defined percentage identity. Images can also include draft genome assembly information to show read coverage, assembly breakpoints and collapsed repeats. In addition, BRIG supports the mapping of unassembled sequencing reads against one or more central reference sequences. Many types of custom data and annotations can be shown using BRIG, making it a versatile approach for visualising a range of genomic comparison data. BRIG is readily accessible to any user, as it assumes no specialist computational knowledge and will perform all required file parsing and BLAST comparisons automatically. There is a clear need for a user

  2. The European Renal Genome Project: An Integrated Approach Towards Understanding the Genetics of Kidney Development and Disease

    OpenAIRE

    Willnow, TE; Antignac, C; Brändli, AW; Christensen, EI; Cox, RD; Davidson, D; Davies, JA; Devuyst, O; Eichele, G; Hastie, ND; Verroust, PJ; Schedl, A; Meij, IC

    2005-01-01

    Rapid progress in genome research creates a wealth of information on the functional annotation of mammalian genome sequences. However, as we accumulate large amounts of scientific information we are facing problems of how to integrate and relate the data produced by various genomic approaches. Here, we propose the novel concept of an organ atlas where diverse data from expression maps to histological findings to mutant phenotypes can be queried, compared and visualized in the context of a thr...

  3. An Internet-Based Accounting Information Systems Project

    Science.gov (United States)

    Miller, Louise

    2012-01-01

    This paper describes a student project assignment used in an accounting information systems course. We are now truly immersed in the internet age, and while many required accounting information systems courses and textbooks introduce database design, accounting software development, cloud computing, and internet security, projects involving the…

  4. Effects of perceived weight discrimination on willingness to adopt unhealthy behaviours: influence of genomic information.

    Science.gov (United States)

    Beekman, Janine B; Ferrer, Rebecca A; Klein, William M P; Persky, Susan

    2016-01-01

    Weight-based discrimination negatively influences health, potentially via increased willingness to engage in unhealthful behaviours. This study examines whether the provision of genomic obesity information in a clinical context can lead to less willingness to engage in unhealthy eating and alcohol consumption through a mediated process including reduced perceptions of blame and discrimination. A total of 201 overweight or obese women aged 20-50 interacted with a virtual physician in a simulated clinical primary care environment, which included physician-delivered information that emphasised either genomic or behavioural underpinnings of weight and weight loss. Perceived blame and weight discrimination from the doctor, and willingness to eat unhealthy foods and consume alcohol. Controlling for BMI and race, participants who received genomic information perceived less blame from the doctor than participants who received behavioural information. In a serial multiple mediation model, reduced perceived blame was associated with less perceived discrimination, and in turn, lower willingness to eat unhealthy foods and drink alcohol. Providing patients with genomic information about weight and weight loss may positively influence interpersonal dynamics between patients and providers by reducing perceived blame and perceived discrimination. These improved dynamics, in turn, positively influence health cognitions.

  5. DNA Microarrays: a Powerful Genomic Tool for Biomedical and Clinical Research

    OpenAIRE

    Trevino, Victor; Falciani, Francesco; Barrera-Saldaña, Hugo A

    2007-01-01

    Among the many benefits of the Human Genome Project are new and powerful tools such as the genome-wide hybridization devices referred to as microarrays. Initially designed to measure gene transcriptional levels, microarray technologies are now used for comparing other genome features among individuals and their tissues and cells. Results provide valuable information on disease subcategories, disease prognosis, and treatment outcome. Likewise, they reveal differences in genetic makeup, regulat...

  6. Ethical challenges and innovations in the dissemination of genomic data: the experience of the PERSPECTIVE project

    Directory of Open Access Journals (Sweden)

    Lévesque E

    2015-08-01

    Full Text Available Emmanuelle Lévesque,1 Bartha Maria Knoppers,1 Jacques Simard,2 1Department of Human Genetics, Centre for Genomics and Policy, McGill University, Montréal, 2Genomics Centre, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec City, QC, Canada Abstract: The importance of making genomic data available for future research is now widely recognized among the scientific community and policymakers. In this era of shared responsibility for data dissemination, improved patient care through research depends on the development of powerful and secure data-sharing systems. As part of the concerted effort to share research resources, the project entitled Personalized Risk Stratification for Prevention and Early Detection of Breast Cancer (PERSPECTIVE makes effective data sharing through the development of a data-sharing framework, one of its goals. The secondary uses of data from PERSPECTIVE for future research promise to enhance our knowledge of breast cancer etiologies without duplicating data-gathering efforts. Despite its benefit for research, we recognize the ethical challenges of data sharing on the local, national, and international levels. The effective management of ethical approvals for projects spanning across jurisdictions, the return of results to research participants, and research incentives and recognition for data production, are but a few pressing issues that need to be properly addressed. We discuss how we managed these issues and suggest how ongoing innovations might help to facilitate data sharing in future genomic research projects. Keywords: data sharing, research ethics, cancer

  7. Project financing versus corporate financing under asymmetric information

    OpenAIRE

    Anton Miglo

    2008-01-01

    In recent years financing through the creation of an independent project company or financing by non-recourse debt has become an important part of corporate decisions. Shah and Thakor (JET, 1987) argue that project financing can be optimal when asymmetric information exists between firm's insiders and market participants. In contrast to that paper, we provide an asymmetric information argument for project financing without relying on corporate taxes, costly information production or an assump...

  8. Key drivers for informal project coordination among sub-contractors

    DEFF Research Database (Denmark)

    Aagaard, Annabeth; Eskerod, Pernille; Madsen, Erik Skov

    2015-01-01

    understandings. Still though, many sub-contractors choose not to coordinate informally. The purpose of this paper is to identify drivers that enhance or inhibits informal coordination in projects. A qualitative, explorative case study approach was applied. Fifteen SME sub-contractors within the offshore wind...... are massive. Six drivers which enhance informal coordination and three drivers which inhibit informal coordination among sub-contractors in projects were identified. The findings imply that management in project-oriented organizations can enhance informal coordination across project sub-contractors...... and by facilitating trust building, by emphasizing previous collaboration successes with the sub-contractors and the possibility of future common projects, by being explicit about expectations on informal coordination, and by developing sub-contractor contracts that are not as tight in economic terms, but instead...

  9. Open Access Data Sharing in Genomic Research

    Directory of Open Access Journals (Sweden)

    Stacey Pereira

    2014-08-01

    Full Text Available The current emphasis on broad sharing of human genomic data generated in research in order to maximize utility and public benefit is a significant legacy of the Human Genome Project. Concerns about privacy and discrimination have led to policy responses that restrict access to genomic data as the means for protecting research participants. Our research and experience show, however, that a considerable number of research participants agree to open access sharing of their genomic data when given the choice. General policies that limit access to all genomic data fail to respect the autonomy of these participants and, at the same time, unnecessarily limit the utility of the data. We advocate instead a more balanced approach that allows for individual choice and encourages informed decision making, while protecting against the misuse of genomic data through enhanced legislation.

  10. The fishes of Genome 10K

    KAUST Repository

    Bernardi, Giacomo

    2012-09-01

    The Genome 10K project aims to sequence the genomes of 10,000 vertebrates, representing approximately one genome for each vertebrate genus. Since fishes (cartilaginous fishes, ray-finned fishes and lobe-finned fishes) represent more than 50% of extant vertebrates, it is planned to target 4,000 fish genomes. At present, nearly 60 fish genomes are being sequenced at various public funded labs, and under a Genome 10K and BGI pilot project. An additional 100 fishes have been identified for sequencing in the next phase of Genome 10K project. © 2012 Elsevier B.V.

  11. The fishes of Genome 10K

    KAUST Repository

    Bernardi, Giacomo; Wiley, Edward O.; Mansour, Hicham; Miller, Michael R.; Ortí , Guillermo; Haussler, David H.; O'Brien, Stephen J O; Ryder, Oliver A.; Venkatesh, Byrappa

    2012-01-01

    The Genome 10K project aims to sequence the genomes of 10,000 vertebrates, representing approximately one genome for each vertebrate genus. Since fishes (cartilaginous fishes, ray-finned fishes and lobe-finned fishes) represent more than 50% of extant vertebrates, it is planned to target 4,000 fish genomes. At present, nearly 60 fish genomes are being sequenced at various public funded labs, and under a Genome 10K and BGI pilot project. An additional 100 fishes have been identified for sequencing in the next phase of Genome 10K project. © 2012 Elsevier B.V.

  12. Confidentiality, privacy, and security of genetic and genomic test information in electronic health records: points to consider.

    Science.gov (United States)

    McGuire, Amy L; Fisher, Rebecca; Cusenza, Paul; Hudson, Kathy; Rothstein, Mark A; McGraw, Deven; Matteson, Stephen; Glaser, John; Henley, Douglas E

    2008-07-01

    As clinical genetics evolves, and we embark down the path toward more personalized and effective health care, the amount, detail, and complexity of genetic/genomic test information within the electronic health record will increase. This information should be appropriately protected to secure the trust of patients and to support interoperable electronic health information exchange. This article discusses characteristics of genetic/genomic test information, including predictive capability, immutability, and uniqueness, which should be considered when developing policies about information protection. Issues related to "genetic exceptionalism"; i.e., whether genetic/genomic test information should be treated differently from other medical information for purposes of data access and permissible use, are also considered. These discussions can help guide policy that will facilitate the biological and clinical resource development to support the introduction of this information into health care.

  13. Genome-wide DNA polymorphism analyses using VariScan

    Directory of Open Access Journals (Sweden)

    Vilella Albert J

    2006-09-01

    Full Text Available Abstract Background DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. Results We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i exhaustive population-genetic analyses including those based on the coalescent theory; ii analysis adapted to the shallow data generated by the high-throughput genome projects; iii use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v visualization of the results integrated with current genome annotations in commonly available genome browsers. Conclusion VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.

  14. The catfish genome database cBARBEL: an informatic platform for genome biology of ictalurid catfish.

    Science.gov (United States)

    Lu, Jianguo; Peatman, Eric; Yang, Qing; Wang, Shaolin; Hu, Zhiliang; Reecy, James; Kucuktas, Huseyin; Liu, Zhanjiang

    2011-01-01

    The catfish genome database, cBARBEL (abbreviated from catfish Breeder And Researcher Bioinformatics Entry Location) is an online open-access database for genome biology of ictalurid catfish (Ictalurus spp.). It serves as a comprehensive, integrative platform for all aspects of catfish genetics, genomics and related data resources. cBARBEL provides BLAST-based, fuzzy and specific search functions, visualization of catfish linkage, physical and integrated maps, a catfish EST contig viewer with SNP information overlay, and GBrowse-based organization of catfish genomic data based on sequence similarity with zebrafish chromosomes. Subsections of the database are tightly related, allowing a user with a sequence or search string of interest to navigate seamlessly from one area to another. As catfish genome sequencing proceeds and ongoing quantitative trait loci (QTL) projects bear fruit, cBARBEL will allow rapid data integration and dissemination within the catfish research community and to interested stakeholders. cBARBEL can be accessed at http://catfishgenome.org.

  15. Insights from 20 years of bacterial genome sequencing

    DEFF Research Database (Denmark)

    Land, Miriam; Hauser, Loren; Jun, Se-Ran

    2015-01-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along...... the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative...... genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling...

  16. Changing Histopathological Diagnostics by Genome-Based Tumor Classification

    Directory of Open Access Journals (Sweden)

    Michael Kloth

    2014-05-01

    Full Text Available Traditionally, tumors are classified by histopathological criteria, i.e., based on their specific morphological appearances. Consequently, current therapeutic decisions in oncology are strongly influenced by histology rather than underlying molecular or genomic aberrations. The increase of information on molecular changes however, enabled by the Human Genome Project and the International Cancer Genome Consortium as well as the manifold advances in molecular biology and high-throughput sequencing techniques, inaugurated the integration of genomic information into disease classification. Furthermore, in some cases it became evident that former classifications needed major revision and adaption. Such adaptations are often required by understanding the pathogenesis of a disease from a specific molecular alteration, using this molecular driver for targeted and highly effective therapies. Altogether, reclassifications should lead to higher information content of the underlying diagnoses, reflecting their molecular pathogenesis and resulting in optimized and individual therapeutic decisions. The objective of this article is to summarize some particularly important examples of genome-based classification approaches and associated therapeutic concepts. In addition to reviewing disease specific markers, we focus on potentially therapeutic or predictive markers and the relevance of molecular diagnostics in disease monitoring.

  17. Focusing Information Systems Post-Graduate Research Projects

    Directory of Open Access Journals (Sweden)

    Gail Ridley

    1996-11-01

    Full Text Available This paper reports on an investigation of mechanisms that assist Information Systems post-graduate research students to focus their projects. An evaluation is presented of the experiences of Information Systems research students in focussing their research projects based on a survey conducted of students who participated in two of the first three Information Systems doctoral consortia to be held in Australia. The survey sought to determine whether a doctoral consortium or 'systematic expert review' is the most valuable mechanism for focussing a research proposal. Systematic expert review was considered by the students to be more effective than the doctoral consortium process for the purpose of focussing their research project proposals.

  18. ENCODE whole-genome data in the UCSC genome browser (2011 update).

    Science.gov (United States)

    Raney, Brian J; Cline, Melissa S; Rosenbloom, Kate R; Dreszer, Timothy R; Learned, Katrina; Barber, Galt P; Meyer, Laurence R; Sloan, Cricket A; Malladi, Venkat S; Roskin, Krishna M; Suh, Bernard B; Hinrichs, Angie S; Clawson, Hiram; Zweig, Ann S; Kirkup, Vanessa; Fujita, Pauline A; Rhead, Brooke; Smith, Kayla E; Pohl, Andy; Kuhn, Robert M; Karolchik, Donna; Haussler, David; Kent, W James

    2011-01-01

    The ENCODE project is an international consortium with a goal of cataloguing all the functional elements in the human genome. The ENCODE Data Coordination Center (DCC) at the University of California, Santa Cruz serves as the central repository for ENCODE data. In this role, the DCC offers a collection of high-throughput, genome-wide data generated with technologies such as ChIP-Seq, RNA-Seq, DNA digestion and others. This data helps illuminate transcription factor-binding sites, histone marks, chromatin accessibility, DNA methylation, RNA expression, RNA binding and other cell-state indicators. It includes sequences with quality scores, alignments, signals calculated from the alignments, and in most cases, element or peak calls calculated from the signal data. Each data set is available for visualization and download via the UCSC Genome Browser (http://genome.ucsc.edu/). ENCODE data can also be retrieved using a metadata system that captures the experimental parameters of each assay. The ENCODE web portal at UCSC (http://encodeproject.org/) provides information about the ENCODE data and links for access.

  19. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime

    2015-11-18

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a textbased browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  20. The Sellafield repository project information programme

    Energy Technology Data Exchange (ETDEWEB)

    Curd, P J [United Kingdom Nirex Limited (United Kingdom)

    1993-07-01

    The Sellafield Repository Project Information programme has been guided by formal research and by feedback through members of the team. Progress has been made and a significant majority of local people support the project and feel it will benefit the area. (author)

  1. The Sellafield repository project information programme

    International Nuclear Information System (INIS)

    Curd, P.J.

    1993-01-01

    The Sellafield Repository Project Information programme has been guided by formal research and by feedback through members of the team. Progress has been made and a significant majority of local people support the project and feel it will benefit the area. (author)

  2. Importing statistical measures into Artemis enhances gene identification in the Leishmania genome project

    Directory of Open Access Journals (Sweden)

    McDonagh Paul D

    2003-06-01

    Full Text Available Abstract Background Seattle Biomedical Research Institute (SBRI as part of the Leishmania Genome Network (LGN is sequencing chromosomes of the trypanosomatid protozoan species Leishmania major. At SBRI, chromosomal sequence is annotated using a combination of trained and untrained non-consensus gene-prediction algorithms with ARTEMIS, an annotation platform with rich and user-friendly interfaces. Results Here we describe a methodology used to import results from three different protein-coding gene-prediction algorithms (GLIMMER, TESTCODE and GENESCAN into the ARTEMIS sequence viewer and annotation tool. Comparison of these methods, along with the CODONUSAGE algorithm built into ARTEMIS, shows the importance of combining methods to more accurately annotate the L. major genomic sequence. Conclusion An improvised and powerful tool for gene prediction has been developed by importing data from widely-used algorithms into an existing annotation platform. This approach is especially fruitful in the Leishmania genome project where there is large proportion of novel genes requiring manual annotation.

  3. Consonance in Information System Projects: A Relationship Marketing Perspective

    Science.gov (United States)

    Lin, Pei-Ying

    2010-01-01

    Different stakeholders in the information system project usually have different perceptions and expectations of the projects. There is seldom consistency in the stakeholders' evaluations of the project outcome. Thus the outcomes of information system projects are usually disappointing to one or more stakeholders. Consonance is a process that can…

  4. INFORMATION TECHNOLOGY IN INVESTMENT PROJECT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Vjacheslav A. Kozlov

    2014-01-01

    Full Text Available In the article it is proved that use of information technology today is not only something innovative distinctive feature and competitive advantage for organizations, but it is a necessary condition for effective business. The article discusses the main functionality of financial-analytical system Project Expert as an effective tool of investment project management and instrument of business planning. The main advantages which organizations get from Project Expert program use are in detail considered. Thus in the article Project Expert is considered as the effective tool of investment project management which allows to receive a number of advantages and to carry out the qualitative analysis of projects.

  5. HLA diversity in the 1000 genomes dataset.

    Directory of Open Access Journals (Sweden)

    Pierre-Antoine Gourraud

    Full Text Available The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC, only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies.

  6. Fungal genome resources at NCBI

    Science.gov (United States)

    Robbertse, B.; Tatusova, T.

    2011-01-01

    The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools. PMID:22737589

  7. The Human Genome Project and Eugenics: Identifying the Impact on Individuals with Mental Retardation.

    Science.gov (United States)

    Kuna, Jason

    2001-01-01

    This article explores the impact of the mapping work of the Human Genome Project on individuals with mental retardation and the negative effects of genetic testing. The potential to identify disabilities and the concept of eugenics are discussed, along with ethical issues surrounding potential genetic therapies. (Contains references.) (CR)

  8. Effects of racial and ethnic group and health literacy on responses to genomic risk information in a medically underserved population.

    Science.gov (United States)

    Kaphingst, Kimberly A; Stafford, Jewel D; McGowan, Lucy D'Agostino; Seo, Joann; Lachance, Christina R; Goodman, Melody S

    2015-02-01

    Few studies have examined how individuals respond to genomic risk information for common, chronic diseases. This randomized study examined differences in responses by type of genomic information (genetic test/family history) and disease condition (diabetes/heart disease), and by race/ethnicity in a medically underserved population. 1,057 English-speaking adults completed a survey containing 1 of 4 vignettes (2-by-2 randomized design). Differences in dependent variables (i.e., interest in receiving genomic assessment, discussing with doctor or family, changing health habits) by experimental condition and race/ethnicity were examined using chi-squared tests and multivariable regression analysis. No significant differences were found in dependent variables by type of genomic information or disease condition. In multivariable models, Hispanics were more interested in receiving a genomic assessment than Whites (OR = 1.93; p literacy had greater interest than those with adequate health literacy. Blacks (OR = 1.78; p = .001) and Hispanics (OR = 1.85; p = .001) had greater interest in discussing information with family than Whites. Non-Hispanic Blacks (OR = 1.45; p = .04) had greater interest in discussing genomic information with a doctor than Whites. Blacks (β = -0.41; p literacy was negatively associated with number of health habits participants intended to change. Findings suggest that race/ethnicity may affect responses to genomic risk information. Additional research could examine how cognitive representations of this information differ across racial/ethnic groups. Health literacy is also critical to consider in developing approaches to communicating genomic information.

  9. INE: a rice genome database with an integrated map view.

    Science.gov (United States)

    Sakata, K; Antonio, B A; Mukai, Y; Nagasaki, H; Sakai, Y; Makino, K; Sasaki, T

    2000-01-01

    The Rice Genome Research Program (RGP) launched a large-scale rice genome sequencing in 1998 aimed at decoding all genetic information in rice. A new genome database called INE (INtegrated rice genome Explorer) has been developed in order to integrate all the genomic information that has been accumulated so far and to correlate these data with the genome sequence. A web interface based on Java applet provides a rapid viewing capability in the database. The first operational version of the database has been completed which includes a genetic map, a physical map using YAC (Yeast Artificial Chromosome) clones and PAC (P1-derived Artificial Chromosome) contigs. These maps are displayed graphically so that the positional relationships among the mapped markers on each chromosome can be easily resolved. INE incorporates the sequences and annotations of the PAC contig. A site on low quality information ensures that all submitted sequence data comply with the standard for accuracy. As a repository of rice genome sequence, INE will also serve as a common database of all sequence data obtained by collaborating members of the International Rice Genome Sequencing Project (IRGSP). The database can be accessed at http://www. dna.affrc.go.jp:82/giot/INE. html or its mirror site at http://www.staff.or.jp/giot/INE.html

  10. Exploring the possibilities and limitations of a nanomaterials genome.

    Science.gov (United States)

    Qian, Chenxi; Siler, Todd; Ozin, Geoffrey A

    2015-01-07

    What are we going to do with the cornucopia of nanomaterials appearing in the open and patent literature, every day? Imagine the benefits of an intelligent and convenient means of categorizing, organizing, sifting, sorting, connecting, and utilizing this information in scientifically and technologically innovative ways by building a Nanomaterials Genome founded upon an all-purpose Periodic Table of Nanomaterials. In this Concept article, inspired by work on the Human Genome project, which began in 1989 together with motivation from the recent emergence of the Materials Genome project initiated in 2011 and the Nanoinformatics Roadmap 2020 instigated in 2010, we envision the development of a Nanomaterials Genome (NMG) database with the most advanced data-mining tools that leverage inference engines to help connect and interpret patterns of nanomaterials information. It will be equipped with state-of-the-art visualization techniques that rapidly organize and picture, categorize and interrelate the inherited behavior of complex nanomatter from the information programmed in its constituent nanomaterials building blocks. A Nanomaterials Genome Initiative (NMGI) of the type imagined herein has the potential to serve the global nanoscience community with an opportunity to speed up the development continuum of nanomaterials through the innovation process steps of discovery, structure determination and property optimization, functionality elucidation, system design and integration, certification and manufacturing to deployment in technologies that apply these versatile nanomaterials in environmentally responsible ways. The possibilities and limitations of this concept are critically evaluated in this article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Correlational Study Assessing the Relationships among Information Technology Project Complexity, Project Complication, and Project Success

    Science.gov (United States)

    Williamson, David J.

    2011-01-01

    The specific problem addressed in this study was the low success rate of information technology (IT) projects in the U.S. Due to the abstract nature and inherent complexity of software development, IT projects are among the most complex projects encountered. Most existing schools of project management theory are based on the rational systems…

  12. Use of Genomic Databases for Inquiry-Based Learning about Influenza

    Science.gov (United States)

    Ledley, Fred; Ndung'u, Eric

    2011-01-01

    The genome projects of the past decades have created extensive databases of biological information with applications in both research and education. We describe an inquiry-based exercise that uses one such database, the National Center for Biotechnology Information Influenza Virus Resource, to advance learning about influenza. This database…

  13. Functional food ingredients against colorectal cancer. An example project integrating functional genomics, nutrition and health

    NARCIS (Netherlands)

    Stierum, R.; Burgemeister, R.; Helvoort, van A.; Peijnenburg, A.; Schütze, K.; Seidelin, M.; Vang, O.; Ommen, van B.

    2001-01-01

    Functional Food Ingredients Against Colorectal Cancer is one of the first European Union funded Research Projects at the cross-road of functional genomics [comprising transcriptomics, the measurement of the expression of all messengers RNA (mRNAs) and proteomics, the measurement of expression/state

  14. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation

    Directory of Open Access Journals (Sweden)

    Anubhav Jain

    2013-07-01

    Full Text Available Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org, a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design.

  15. The Epilepsy Phenome/Genome Project (EPGP) informatics platform.

    Science.gov (United States)

    Nesbitt, Gerry; McKenna, Kevin; Mays, Vickie; Carpenter, Alan; Miller, Kevin; Williams, Michael

    2013-04-01

    The Epilepsy Phenome/Genome Project (EPGP) is a large-scale, multi-institutional, collaborative network of 27 epilepsy centers throughout the U.S., Australia, and Argentina, with the objective of collecting detailed phenotypic and genetic data on a large number of epilepsy participants. The goals of EPGP are (1) to perform detailed phenotyping on 3750 participants with specific forms of non-acquired epilepsy and 1500 parents without epilepsy, (2) to obtain DNA samples on these individuals, and (3) to ultimately genotype the samples in order to discover novel genes that cause epilepsy. To carry out the project, a reliable and robust informatics platform was needed for standardized electronic data collection and storage, data quality review, and phenotypic analysis involving cases from multiple sites. EPGP developed its own suite of web-based informatics applications for participant tracking, electronic data collection (using electronic case report forms/surveys), data management, phenotypic data review and validation, specimen tracking, electroencephalograph and neuroimaging storage, and issue tracking. We implemented procedures to train and support end-users at each clinical site. Thus far, 3780 study participants have been enrolled and 20,957 web-based study activities have been completed using this informatics platform. Over 95% of respondents to an end-user satisfaction survey felt that the informatics platform was successful almost always or most of the time. The EPGP informatics platform has successfully and effectively allowed study management and efficient and reliable collection of phenotypic data. Our novel informatics platform met the requirements of a large, multicenter research project. The platform has had a high level of end-user acceptance by principal investigators and study coordinators, and can serve as a model for new tools to support future large scale, collaborative research projects collecting extensive phenotypic data. Copyright © 2012

  16. MendeLIMS: a web-based laboratory information management system for clinical genome sequencing.

    Science.gov (United States)

    Grimes, Susan M; Ji, Hanlee P

    2014-08-27

    Large clinical genomics studies using next generation DNA sequencing require the ability to select and track samples from a large population of patients through many experimental steps. With the number of clinical genome sequencing studies increasing, it is critical to maintain adequate laboratory information management systems to manage the thousands of patient samples that are subject to this type of genetic analysis. To meet the needs of clinical population studies using genome sequencing, we developed a web-based laboratory information management system (LIMS) with a flexible configuration that is adaptable to continuously evolving experimental protocols of next generation DNA sequencing technologies. Our system is referred to as MendeLIMS, is easily implemented with open source tools and is also highly configurable and extensible. MendeLIMS has been invaluable in the management of our clinical genome sequencing studies. We maintain a publicly available demonstration version of the application for evaluation purposes at http://mendelims.stanford.edu. MendeLIMS is programmed in Ruby on Rails (RoR) and accesses data stored in SQL-compliant relational databases. Software is freely available for non-commercial use at http://dna-discovery.stanford.edu/software/mendelims/.

  17. Consequences for diversity when prioritizing animals for conservation with pedigree or genomic information

    NARCIS (Netherlands)

    Engelsma, K.A.; Veerkamp, R.F.; Calus, M.P.L.; Windig, J.J.

    2011-01-01

    Up to now, prioritization of animals for conservation has been mainly based on pedigree information; however, genomic information may improve prioritization. In this study, we used two Holstein populations to investigate the consequences for genetic diversity when animals are prioritized with

  18. Project Management Accountability System (PMAS) - Project Information and Data

    Data.gov (United States)

    Department of Veterans Affairs — The PMAS Dashboard provides a wide range of helpful data and information to assist you in project management and assessment. The drop down menu can be used to search...

  19. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs.

    Science.gov (United States)

    Swain, Martin T; Tsai, Isheng J; Assefa, Samual A; Newbold, Chris; Berriman, Matthew; Otto, Thomas D

    2012-06-07

    Genome projects now produce draft assemblies within weeks owing to advanced high-throughput sequencing technologies. For milestone projects such as Escherichia coli or Homo sapiens, teams of scientists were employed to manually curate and finish these genomes to a high standard. Nowadays, this is not feasible for most projects, and the quality of genomes is generally of a much lower standard. This protocol describes software (PAGIT) that is used to improve the quality of draft genomes. It offers flexible functionality to close gaps in scaffolds, correct base errors in the consensus sequence and exploit reference genomes (if available) in order to improve scaffolding and generating annotations. The protocol is most accessible for bacterial and small eukaryotic genomes (up to 300 Mb), such as pathogenic bacteria, malaria and parasitic worms. Applying PAGIT to an E. coli assembly takes ∼24 h: it doubles the average contig size and annotates over 4,300 gene models.

  20. IAEA safeguards information system re-engineering project (IRP)

    International Nuclear Information System (INIS)

    Whitaker, G.; Becar, J.-M.; Ifyland, N.; Kirkgoeze, R.; Koevesd, G.; Szamosi, L.

    2007-01-01

    The Safeguards Information System Re-engineering Project (IRP) was initiated to assist the IAEA in addressing current and future verification and analysis activities through the establishment of a new information technology framework for strengthened and integrated safeguards. The Project provides a unique opportunity to enhance all of the information services for the Department of Safeguards and will require project management 'best practices' to balance limited funds, available resources and Departmental priorities. To achieve its goals, the Project will require the participation of all stakeholders to create a comprehensive and cohesive plan that provides both a flexible and stable foundation for address changing business needs. The expectation is that high quality integrated information systems will be developed that incorporate state-of-the-art technical architectural standards, improved business processes and consistent user interfaces to store various data types in an enterprise data repository which is accessible on-line in a secure environment. (author)

  1. Collaboration and Virtualization in Large Information Systems Projects

    Directory of Open Access Journals (Sweden)

    Stefan Ioan NITCHI

    2009-01-01

    Full Text Available A project is evolving through different phases from idea and conception until the experiments, implementation and maintenance. The globalization, the Internet, the Web and the mobile computing changed many human activities, and in this respect, the realization of the Information System (IS projects. The projects are growing, the teams are geographically distributed, and the users are heterogeneous. In this respect, the realization of the large Information Technology (IT projects needs to use collaborative technologies. The distribution of the team, the users' heterogeneity and the project complexity determines the virtualization. This paper is an overview of these aspects for large IT projects. It shortly present a general framework developed by the authors for collaborative systems in general and adapted to collaborative project management. The general considerations are illustrated on the case of a large IT project in which the authors were involved.

  2. The Role of the Project Management Office on Information Technology Project Success

    Science.gov (United States)

    Stewart, Jacob S.

    2010-01-01

    The rate of failed and challenged Information Technology (IT) projects is too high according to the CHAOS Studies by the Standish Group and the literature on project management (Standish Group, 2008). The CHAOS Studies define project success as meeting the triple constraints of scope, time, and cost. Assessing critical success factors is another…

  3. HGVA: the Human Genome Variation Archive

    OpenAIRE

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gr?f, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-01-01

    Abstract High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic...

  4. Framework for development of physician competencies in genomic medicine: report of the Competencies Working Group of the Inter-Society Coordinating Committee for Physician Education in Genomics.

    Science.gov (United States)

    Korf, Bruce R; Berry, Anna B; Limson, Melvin; Marian, Ali J; Murray, Michael F; O'Rourke, P Pearl; Passamani, Eugene R; Relling, Mary V; Tooker, John; Tsongalis, Gregory J; Rodriguez, Laura L

    2014-11-01

    Completion of the Human Genome Project, in conjunction with dramatic reductions in the cost of DNA sequencing and advances in translational research, is gradually ushering genomic discoveries and technologies into the practice of medicine. The rapid pace of these advances is opening up a gap between the knowledge available about the clinical relevance of genomic information and the ability of clinicians to include such information in their medical practices. This educational gap threatens to be rate limiting to the clinical adoption of genomics in medicine. Solutions will require not only a better understanding of the clinical implications of genetic discoveries but also training in genomics at all levels of professional development, including for individuals in formal training and others who long ago completed such training. The National Human Genome Research Institute has convened the Inter-Society Coordinating Committee for Physician Education in Genomics (ISCC) to develop and share best practices in the use of genomics in medicine. The ISCC has developed a framework for development of genomics practice competencies that may serve as a starting point for formulation of competencies for physicians in various medical disciplines.

  5. INFORMATION TECHNOLOGIES IN MANAGEMENT OF ENERGY SAVING PROJECTS

    Directory of Open Access Journals (Sweden)

    Дмитро Валерійович МАРГАСОВ

    2015-06-01

    Full Text Available The information technology structure is considered of energy saving projects. The project management diagram of energy saving projects is developed, using GIS, ICS, BIM and other control and visual systems.

  6. Informational and linguistic analysis of large genomic sequence collections via efficient Hadoop cluster algorithms.

    Science.gov (United States)

    Ferraro Petrillo, Umberto; Roscigno, Gianluca; Cattaneo, Giuseppe; Giancarlo, Raffaele

    2018-06-01

    Information theoretic and compositional/linguistic analysis of genomes have a central role in bioinformatics, even more so since the associated methodologies are becoming very valuable also for epigenomic and meta-genomic studies. The kernel of those methods is based on the collection of k-mer statistics, i.e. how many times each k-mer in {A,C,G,T}k occurs in a DNA sequence. Although this problem is computationally very simple and efficiently solvable on a conventional computer, the sheer amount of data available now in applications demands to resort to parallel and distributed computing. Indeed, those type of algorithms have been developed to collect k-mer statistics in the realm of genome assembly. However, they are so specialized to this domain that they do not extend easily to the computation of informational and linguistic indices, concurrently on sets of genomes. Following the well-established approach in many disciplines, and with a growing success also in bioinformatics, to resort to MapReduce and Hadoop to deal with 'Big Data' problems, we present KCH, the first set of MapReduce algorithms able to perform concurrently informational and linguistic analysis of large collections of genomic sequences on a Hadoop cluster. The benchmarking of KCH that we provide indicates that it is quite effective and versatile. It is also competitive with respect to the parallel and distributed algorithms highly specialized to k-mer statistics collection for genome assembly problems. In conclusion, KCH is a much needed addition to the growing number of algorithms and tools that use MapReduce for bioinformatics core applications. The software, including instructions for running it over Amazon AWS, as well as the datasets are available at http://www.di-srv.unisa.it/KCH. umberto.ferraro@uniroma1.it. Supplementary data are available at Bioinformatics online.

  7. Integration of genomic information into sport horse breeding programs for optimization of accuracy of selection.

    Science.gov (United States)

    Haberland, A M; König von Borstel, U; Simianer, H; König, S

    2012-09-01

    Reliable selection criteria are required for young riding horses to increase genetic gain by increasing accuracy of selection and decreasing generation intervals. In this study, selection strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages of selection in sport horse breeding programs were analyzed by applying selection index theory. Results in terms of accuracies of indices (r(TI) ) and relative selection response indicated that information on single nucleotide polymorphism (SNP) genotypes considerably increases the accuracy of breeding values estimated for young horses without own or progeny performance. In a first scenario, the correlation between the breeding value estimated from the SNP genotype and the true breeding value (= accuracy of GEBV) was fixed to a relatively low value of r(mg) = 0.5. For a low heritability trait (h(2) = 0.15), and an index for a young horse based only on information from both parents, additional genomic information doubles r(TI) from 0.27 to 0.54. Including the conventional information source 'own performance' into the before mentioned index, additional SNP information increases r(TI) by 40%. Thus, particularly with regard to traits of low heritability, genomic information can provide a tool for well-founded selection decisions early in life. In a further approach, different sources of breeding values (e.g. GEBV and estimated breeding values (EBVs) from different countries) were combined into an overall index when altering accuracies of EBVs and correlations between traits. In summary, we showed that genomic selection strategies have the potential to contribute to a substantial reduction in generation intervals in horse breeding programs.

  8. HGVA: the Human Genome Variation Archive.

    Science.gov (United States)

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gräf, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-07-03

    High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic data for key reference projects in a clean, fast and integrated fashion. HGVA provides an efficient and intuitive web-interface for easy data mining, a comprehensive RESTful API and client libraries in Python, Java and JavaScript for fast programmatic access to its knowledge base. HGVA calculates population frequencies for these projects and enriches their data with variant annotation provided by CellBase, a rich and fast annotation solution. HGVA serves as a proof-of-concept of the genome analysis developments being carried out by the University of Cambridge together with UK's 100 000 genomes project and the National Institute for Health Research BioResource Rare-Diseases, in particular, deploying open-source for Computational Biology (OpenCB) software platform for storing and analyzing massive genomic datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures.

    Science.gov (United States)

    Holmes, Avram J; Hollinshead, Marisa O; O'Keefe, Timothy M; Petrov, Victor I; Fariello, Gabriele R; Wald, Lawrence L; Fischl, Bruce; Rosen, Bruce R; Mair, Ross W; Roffman, Joshua L; Smoller, Jordan W; Buckner, Randy L

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset's utility.

  10. Analysis of pan-genome content and its application in microbial identification

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana

    microorganisms and eventually speed up the diagnosis of foodborne illnesses. This genomic data can give biologists many possibilities to improve knowledge of organismal evolution and complex genetic systems. The general interest of this PhD thesis is how to obtain relevant information from growing amounts...... groups or genomic structures; and to use the information of a specific proteome to predict which species it might belong to. Two different algorithms, BLAST and profile Hidden Markov Models (HMMs), are used to determine similarity between sequences and to address the questions in this thesis. The first...... the application of PanFunPro to a set of more than 2000 genomes; this paper aims to define set of protein families, which are conserved among all the genomes. Papers V demonstrates comparative genomics analysis of proteomes, belonging to Vibrio genus. In the last project, described in Chapter 5, both BLAST...

  11. Information flow in the DAMA Project beyond database managers: Information flow managers

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L. [Argonne National Lab., IL (United States); Wolfson, O.; Yu, C. [Illinois Univ., Chicago, IL (United States)

    1996-03-01

    To meet the demands of commercial data traffic on the information highway, a new look at managing data is necessary. One projected activity, sharing of point-of-sale information, is being considered in the Demand Activated Manufacturing Project of the American Textile Partnership project. A scenario is examined in which 100,000 retail outlets communicate over a period of days. They provide the latest estimate of demand for sewn products across a chain of 26,000 suppliers through the use of bill-of-materials explosions at four levels of detail. A new paradign the information flow manager, is developed to handle this situation, including the case where members of the supply chain fail to communicate and go out of business. Techniques for approximation are introduced to keep estimates of demand as current as possible.

  12. Risk-informed ranking of engineering projects

    International Nuclear Information System (INIS)

    Jyrkama, M.; Pandey, M.

    2011-01-01

    Refurbishment planning requires prudent investment decisions with respect to the various systems and components at the station. These decisions are influenced by many factors, including engineering, safety, regulatory, economic, and political constraints. From an engineering perspective, the concept of cost-benefit analysis is a common way to allocate capital among various projects. Naturally, the 'best' or optimal project should have the lowest cost and the highest benefit. In the context of risk-informed decision making (RIDM), a process that has been widely embraced by the global nuclear community, the costs and benefits must further be 'weighted' by probabilities to estimate the underlying risk associated with the various planning alternatives. The main purpose of this study is to illustrate how risk and reliability information can be integrated into the refurbishment planning process to facilitate more objective and transparent investment decisions. The methodology is based on the concept of generation risk assessment (GRA) which provides a systematic approach for balancing investment costs with the reduction in overall financial risk. In addition to reliability predictions, the model provides estimates for the level of risk reduction associated with each system/project and also the break-even point for investment. This information is vital for project ranking, and helps to address the key question of whether capital investment should be made in the most risk critical systems, or in systems that reduce the overall risk the most. The application of the proposed methodology requires only basic information regarding the current reliability of each engineering system, which should be readily available from plant records and routine condition assessments. Because the methodology can be readily implemented in a Microsoft Excel spreadsheet, all plausible (e.g., bounding) planning scenarios, with or without investment, can also be generated quickly and easily, while

  13. Redefining Project Management Information Systems with New IT Services

    Directory of Open Access Journals (Sweden)

    Luminita Hurbean

    2013-04-01

    Full Text Available Achieving successful adoption of an innovative project management information system should involve influencing the project management environment by providing useful tools, training, reusable templates, techniques, and methods that improve the project manager's ability to successfully execute. This paper suggests that project management practice, enabled by emerging IT, could more explicitly recognize, represent, and manage the interdependencies that are pervasive throughout projects, thereby fully exploiting the potential of the IT to improve overall project performance. The last few years IT&C evolution led to new approaches to application and infrastructure architecture. Breaking from the traditional procedures used by organizations, they propose a cloud operating platform that reduces complexity and improves agility and scalability by altering the approach to the way data centres are built, applications are developed, infrastructure is managed, and organizations align and collaborate. Further, the paper explores the growing impact of mobile computing, cloud delivery and social business collaboration project management information systems and proposes a shift of a Five C’s for information systems in a cloud based operating platform, driven by cooperation, teamwork and continuous improvement.The proposed shift in the cloud indicates actual tools that may be adopted for better collaboration and higher business value of the project information management.

  14. Integrating public information activities on a technical project

    International Nuclear Information System (INIS)

    Little, Sh. K.; Vecchiola, S.F.

    1984-01-01

    Through gradual evolution and successful performance, the WIPP Communications group has gained respect and recognition as a dual service organization that offers numerous benefits to a technical project. Westinghouse assembled a team that has successfully coordinated and encouraged an exchange of information not only with the public information realm but also as a project service and function. WIPP has combined educational services, external and employee communication and public information into one unit called ''Communications''

  15. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  16. A standard MIGS/MIMS compliant XML Schema: toward the development of the Genomic Contextual Data Markup Language (GCDML).

    Science.gov (United States)

    Kottmann, Renzo; Gray, Tanya; Murphy, Sean; Kagan, Leonid; Kravitz, Saul; Lombardot, Thierry; Field, Dawn; Glöckner, Frank Oliver

    2008-06-01

    The Genomic Contextual Data Markup Language (GCDML) is a core project of the Genomic Standards Consortium (GSC) that implements the "Minimum Information about a Genome Sequence" (MIGS) specification and its extension, the "Minimum Information about a Metagenome Sequence" (MIMS). GCDML is an XML Schema for generating MIGS/MIMS compliant reports for data entry, exchange, and storage. When mature, this sample-centric, strongly-typed schema will provide a diverse set of descriptors for describing the exact origin and processing of a biological sample, from sampling to sequencing, and subsequent analysis. Here we describe the need for such a project, outline design principles required to support the project, and make an open call for participation in defining the future content of GCDML. GCDML is freely available, and can be downloaded, along with documentation, from the GSC Web site (http://gensc.org).

  17. Structural biology at York Structural Biology Laboratory; laboratory information management systems for structural genomics

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan

    2005-01-01

    Roč. 12, č. 1 (2005), s. 3 ISSN 1211-5894. [Meeting of Structural Biologists /4./. 10.03.2005-12.03.2005, Nové Hrady] R&D Projects: GA MŠk(CZ) 1K05008 Keywords : structural biology * LIMS * structural genomics Subject RIV: CD - Macromolecular Chemistry

  18. Informative genomic microsatellite markers for efficient genotyping applications in sugarcane.

    Science.gov (United States)

    Parida, Swarup K; Kalia, Sanjay K; Kaul, Sunita; Dalal, Vivek; Hemaprabha, G; Selvi, Athiappan; Pandit, Awadhesh; Singh, Archana; Gaikwad, Kishor; Sharma, Tilak R; Srivastava, Prem Shankar; Singh, Nagendra K; Mohapatra, Trilochan

    2009-01-01

    Genomic microsatellite markers are capable of revealing high degree of polymorphism. Sugarcane (Saccharum sp.), having a complex polyploid genome requires more number of such informative markers for various applications in genetics and breeding. With the objective of generating a large set of microsatellite markers designated as Sugarcane Enriched Genomic MicroSatellite (SEGMS), 6,318 clones from genomic libraries of two hybrid sugarcane cultivars enriched with 18 different microsatellite repeat-motifs were sequenced to generate 4.16 Mb high-quality sequences. Microsatellites were identified in 1,261 of the 5,742 non-redundant clones that accounted for 22% enrichment of the libraries. Retro-transposon association was observed for 23.1% of the identified microsatellites. The utility of the microsatellite containing genomic sequences were demonstrated by higher primer designing potential (90%) and PCR amplification efficiency (87.4%). A total of 1,315 markers including 567 class I microsatellite markers were designed and placed in the public domain for unrestricted use. The level of polymorphism detected by these markers among sugarcane species, genera, and varieties was 88.6%, while cross-transferability rate was 93.2% within Saccharum complex and 25% to cereals. Cloning and sequencing of size variant amplicons revealed that the variation in the number of repeat-units was the main source of SEGMS fragment length polymorphism. High level of polymorphism and wide range of genetic diversity (0.16-0.82 with an average of 0.44) assayed with the SEGMS markers suggested their usefulness in various genotyping applications in sugarcane.

  19. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  20. From Utopia to Science: Challenges of Personalised Genomics Information for Health Management and Health Enhancement

    Science.gov (United States)

    2009-01-01

    From 1900 onwards, scientists and novelists have explored the contours of a future society based on the use of “anthropotechnologies” (techniques applicable to human beings for the purpose of performance enhancement ranging from training and education to genome-based biotechnologies). Gradually but steadily, the technologies involved migrated from (science) fiction into scholarly publications, and from “utopia” (or “dystopia”) into science. Building on seminal ideas borrowed from Nietzsche, Peter Sloterdijk has outlined the challenges inherent in this development. Since time immemorial, and at least since the days of Plato’s Academy, human beings have been interested in possibilities for (physical or mental) performance enhancement. We are constantly trying to improve ourselves, both collectively and individually, for better or for worse. At present, however, new genomics-based technologies are opening up new avenues for self-amelioration. Developments in research facilities using animal models may to a certain extent be seen as expeditions into our own future. Are we able to address the bioethical and biopolitical issues awaiting us? After analyzing and assessing Sloterdijk’s views, attention will shift to a concrete domain of application, namely sport genomics. For various reasons, top athletes are likely to play the role of genomics pioneers by using personalized genomics information to adjust diet, life-style, training schedules and doping intake to the strengths and weaknesses of their personalized genome information. Thus, sport genomics may be regarded as a test bed where the contours of genomics-based self-management are tried out. PMID:20234832

  1. Integrating Genomic Data Sets for Knowledge Discovery: An Informed Approach to Management of Captive Endangered Species

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.

  2. Integrating Genomic Data Sets for Knowledge Discovery: An Informed Approach to Management of Captive Endangered Species.

    Science.gov (United States)

    Irizarry, Kristopher J L; Bryant, Doug; Kalish, Jordan; Eng, Curtis; Schmidt, Peggy L; Barrett, Gini; Barr, Margaret C

    2016-01-01

    Many endangered captive populations exhibit reduced genetic diversity resulting in health issues that impact reproductive fitness and quality of life. Numerous cost effective genomic sequencing and genotyping technologies provide unparalleled opportunity for incorporating genomics knowledge in management of endangered species. Genomic data, such as sequence data, transcriptome data, and genotyping data, provide critical information about a captive population that, when leveraged correctly, can be utilized to maximize population genetic variation while simultaneously reducing unintended introduction or propagation of undesirable phenotypes. Current approaches aimed at managing endangered captive populations utilize species survival plans (SSPs) that rely upon mean kinship estimates to maximize genetic diversity while simultaneously avoiding artificial selection in the breeding program. However, as genomic resources increase for each endangered species, the potential knowledge available for management also increases. Unlike model organisms in which considerable scientific resources are used to experimentally validate genotype-phenotype relationships, endangered species typically lack the necessary sample sizes and economic resources required for such studies. Even so, in the absence of experimentally verified genetic discoveries, genomics data still provides value. In fact, bioinformatics and comparative genomics approaches offer mechanisms for translating these raw genomics data sets into integrated knowledge that enable an informed approach to endangered species management.

  3. Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets, and Homology Models.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB, target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB, it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html.

  4. An information-theoretic approach to the modeling and analysis of whole-genome bisulfite sequencing data.

    Science.gov (United States)

    Jenkinson, Garrett; Abante, Jordi; Feinberg, Andrew P; Goutsias, John

    2018-03-07

    DNA methylation is a stable form of epigenetic memory used by cells to control gene expression. Whole genome bisulfite sequencing (WGBS) has emerged as a gold-standard experimental technique for studying DNA methylation by producing high resolution genome-wide methylation profiles. Statistical modeling and analysis is employed to computationally extract and quantify information from these profiles in an effort to identify regions of the genome that demonstrate crucial or aberrant epigenetic behavior. However, the performance of most currently available methods for methylation analysis is hampered by their inability to directly account for statistical dependencies between neighboring methylation sites, thus ignoring significant information available in WGBS reads. We present a powerful information-theoretic approach for genome-wide modeling and analysis of WGBS data based on the 1D Ising model of statistical physics. This approach takes into account correlations in methylation by utilizing a joint probability model that encapsulates all information available in WGBS methylation reads and produces accurate results even when applied on single WGBS samples with low coverage. Using the Shannon entropy, our approach provides a rigorous quantification of methylation stochasticity in individual WGBS samples genome-wide. Furthermore, it utilizes the Jensen-Shannon distance to evaluate differences in methylation distributions between a test and a reference sample. Differential performance assessment using simulated and real human lung normal/cancer data demonstrate a clear superiority of our approach over DSS, a recently proposed method for WGBS data analysis. Critically, these results demonstrate that marginal methods become statistically invalid when correlations are present in the data. This contribution demonstrates clear benefits and the necessity of modeling joint probability distributions of methylation using the 1D Ising model of statistical physics and of

  5. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko

    2018-02-14

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  6. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko; Tanaka, Tsuyoshi; Ohyanagi, Hajime; Hsing, Yue-Ie C.; Itoh, Takeshi

    2018-01-01

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  7. The human genome project and the Catholic Church (1)

    Science.gov (United States)

    Moraczewski, Albert S

    1991-12-01

    The Cathlic Church has not made any formal statements about the Human Genome Project as such. But the present Pope, John Paul II, has commented, albeit very briefly, on various aspects of genetic manipulation. Genetic interventions which are therapeutic (e.g. gene therapy), namely, directed to the correction or amelioration of a disorder are acceptable, in principle, provided they promote the personal well being of the individual being so treated. Genetic interventions which are not therapeutic for the specific individual involved but are experimental and directed primarily to improving humans as biological entities are of dubious moral probity, but are not necessarily to be totally rejected out of hand. To be morally acceptable such genetic intervention should meet certain conditions which include due respect for the given psychological nature of each individual human being. In addition, no harm should be inflicted on the process of human generation, and its fundamental design should not be altered. Any genetic manipulation which results in, or tends to, the creation of groups with different qualities such that there would result a fresh marginalization of these people must be avoided. It has been also suggested by a few that because the Son of God took on a human nature in Jesus Christ, one may not so alter the human genome that a new distinct species would be created....

  8. Disruption of Information Technology Projects: The Reactive Decoupling of Project Management Methodologies

    Science.gov (United States)

    Schmitz, Kurt W.

    2013-01-01

    Information Technology projects have migrated toward two dominant Project Management (PM) methodologies. Plan-driven practices provide organizational control through highly structured plans, schedules, and specifications that facilitate oversight by hierarchical bureaucracies. In contrast, agile practices emphasize empowered teams using flexible…

  9. Genomics: The Science and Technology Behind the Human Genome Project (by Charles R. Cantor and Cassandra L. Smith)

    Science.gov (United States)

    Serra, Reviewed By Martin J.

    2000-01-01

    analysis of error in sequencing and current bottlenecks in the sequencing effort. The next chapter describes the steps necessary to scale current technologies for the sequencing of entire genomes. Chapter 12 examines alternate methods for DNA sequencing. Initially, methods of single-molecule sequencing and sequencing by microscopy are introduced; the majority of the chapter is devoted to the development of DNA sequencing methods using chip microarrays and hybridization. The remaining chapters (13-15) consider the uses and analysis of DNA sequence information. The initial focus is on the identification of genes. Several examples are given of the use of DNA sequence information for diagnosis of inherited or infectious diseases. The sequence-specific manipulation of DNA is discussed in Chapter 14. The final chapter deals with the implications of large-scale sequencing, including methods for identifying genes and finding errors in DNA sequences, to the development of computer algorithms for the interpretation of DNA sequence information. The text figures are black and white line drawings that, although clearly done, seem a bit primitive for 1999. While I appreciated the simplicity of the drawings, many students accustomed to more colorful presentations will find them wanting. The four color figures in the center of the text seem an afterthought and add little to the text's clarity. Each chapter has a set of additional reading sources, mostly primary sources. Often, specialized topics are offset into boxes that provide clarification and amplification without cluttering the text. An appendix includes a list of the Web-based database resources. As an undergraduate instructor who has previously taught biochemistry, molecular biology, and a course on the human genome, I found many interesting tidbits and amplifications throughout the text. I would recommend this book as a text for an advanced undergraduate or beginning graduate course in genomics. Although the text works though

  10. Project Management Information System: the Role and the Issues of Implementation

    Directory of Open Access Journals (Sweden)

    Dumitru OPREA

    2006-01-01

    Full Text Available We are coping more and more with the project and project management in day by day life. Even if some activities are the similarly with common organization actions, the life cycle project activities request more information and more actions. So it is necessary to have some tools, methods and rules to manage a large amount of information which must be disseminated to numerous stakeholders. This need could be solved by project management information systems (PMIS. PMIS is a complex one, with various components which are depending on type of project, type of organization etc. The latest evolution of information and communication technology was favorable to our research field. Therefore, there are different tools to support the structure, automation and efficiency of PMIS. Moreover from several years it is spread the following notions: web-based project management, project management office, enterprise project management. So, we can see the fast evolution of this field. But, our paper will bring general ideas relating to project management information systems, like definition of PMIS, the project life cycle and the information needed of each stage, various tools to support the PMIS procedures. The characteristics, tools, trends will be our future research.

  11. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  12. Human genetics and genomics a decade after the release of the draft sequence of the human genome

    Science.gov (United States)

    2011-01-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

  13. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  14. i-Genome: A database to summarize oligonucleotide data in genomes

    Directory of Open Access Journals (Sweden)

    Chang Yu-Chung

    2004-10-01

    Full Text Available Abstract Background Information on the occurrence of sequence features in genomes is crucial to comparative genomics, evolutionary analysis, the analyses of regulatory sequences and the quantitative evaluation of sequences. Computing the frequencies and the occurrences of a pattern in complete genomes is time-consuming. Results The proposed database provides information about sequence features generated by exhaustively computing the sequences of the complete genome. The repetitive elements in the eukaryotic genomes, such as LINEs, SINEs, Alu and LTR, are obtained from Repbase. The database supports various complete genomes including human, yeast, worm, and 128 microbial genomes. Conclusions This investigation presents and implements an efficiently computational approach to accumulate the occurrences of the oligonucleotides or patterns in complete genomes. A database is established to maintain the information of the sequence features, including the distributions of oligonucleotide, the gene distribution, the distribution of repetitive elements in genomes and the occurrences of the oligonucleotides. The database can provide more effective and efficient way to access the repetitive features in genomes.

  15. Management of information in development projects – a proposed integrated model

    Directory of Open Access Journals (Sweden)

    C. Bester

    2008-11-01

    Full Text Available The first section of the article focuses on the need for development in Africa and the specific challenges of development operations. It describes the need for a holistic and integrated information management model as part of the project management body of knowledge aimed at managing the information flow between communities and development project teams. It is argued that information, and access to information, is crucial in development projects and can therefore be seen as a critical success factor in any development project. In the second section of the article, the three information areas of the holistic and integrated information management model are described. In the section thereafter we suggest roles and actions for information managers to facilitate information processes integral to the model. These processes seek to create a developing information community that aligns itself with the development project, and supports and sustains it.

  16. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    Science.gov (United States)

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.

  17. Technology Uncertainty and Project Managers' Information Sharing - A comparative case study of two new product development projects

    DEFF Research Database (Denmark)

    Jepsen, Lisbeth Brøde; Dietrich, Perttu

    2014-01-01

    uncertainty during various phases of new product development (NPD) projects. In this study, we compare two longitudinal NPD sub-projects that differ in uncertainty within the same large NPD project, in which the data source is the complete email exchange between a project manager and various actors...... (consisting of 3979 emails). The results show high levels of information sharing with the customer in both the early and late phases of high uncertainty. Interestingly, in the low uncertainty project, information sharing with the production department and the supplier is higher during the late phase...... of the NPD project. Unexpectedly, in both sub-projects, the project manager shares information with a wider range of both intra- and inter-organization actors in the early phases of the projects than in the late phases....

  18. JPL Project Information Management: A Continuum Back to the Future

    Science.gov (United States)

    Reiz, Julie M.

    2009-01-01

    This slide presentation reviews the practices and architecture that support information management at JPL. This practice has allowed concurrent use and reuse of information by primary and secondary users. The use of this practice is illustrated in the evolution of the Mars Rovers from the Mars Pathfinder to the development of the Mars Science Laboratory. The recognition of the importance of information management during all phases of a project life cycle has resulted in the design of an information system that includes metadata, has reduced the risk of information loss through the use of an in-process appraisal, shaping of project's appreciation for capturing and managing the information on one project for re-use by future projects as a natural outgrowth of the process. This process has also assisted in connection of geographically disbursed partners into a team through sharing information, common tools and collaboration.

  19. Techno-politics of genomic nationalism: tracing genomics and its use in drug regulation in Japan and Taiwan.

    Science.gov (United States)

    Kuo, Wen-Hua

    2011-10-01

    This paper compares the development of genomics as a form of state project in Japan and Taiwan. Broadening the concepts of genomic sovereignty and bionationalism, I argue that the establishment and use of genomic databases vary according to techno-political context. While both Japan and Taiwan hold population-based databases to be necessary for scientific advance and competitiveness, they differ in how they have attempted to transform the information produced by databases into regulatory schemes for drug approval. The effectiveness of Taiwan's biobank is severely limited by the IRB reviewing process. By contrast, while updating its regulations for drug approval, Japan, is using pharmacogenomics to deal with matters relating to ethnic identity. By analysing genomic initiatives in the political context that nurtures them, this paper seeks to capture how global science and local societies interact and offers insight into the assessment of state-sponsored science in East Asia as they become transnational. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The analysis of APOL1 genetic variation and haplotype diversity provided by 1000 Genomes project.

    Science.gov (United States)

    Peng, Ting; Wang, Li; Li, Guisen

    2017-08-11

    The APOL1 gene variants has been shown to be associated with an increased risk of multiple kinds of diseases, particularly in African Americans, but not in Caucasians and Asians. In this study, we explored the single nucleotide polymorphism (SNP) and haplotype diversity of APOL1 gene in different races provided by 1000 Genomes project. Variants of APOL1 gene in 1000 Genome Project were obtained and SNPs located in the regulatory region or coding region were selected for genetic variation analysis. Total 2504 individuals from 26 populations were classified as four groups that included Africa, Europe, Asia and Admixed populations. Tag SNPs were selected to evaluate the haplotype diversities in the four populations by HaploStats software. APOL1 gene was surrounded by some of the most polymorphic genes in the human genome, variation of APOL1 gene was common, with up to 613 SNP (1000 Genome Project reported) and 99 of them (16.2%) with MAF ≥ 1%. There were 79 SNPs in the URR and 92 SNPs in 3'UTR. Total 12 SNPs in URR and 24 SNPs in 3'UTR were considered as common variants with MAF ≥ 1%. It is worth noting that URR-1 was presents lower frequencies in European populations, while other three haplotypes taken an opposite pattern; 3'UTR presents several high-frequency variation sites in a short segment, and the differences of its haplotypes among different population were significant (P < 0.01), UTR-1 and UTR-5 presented much higher frequency in African population, while UTR-2, UTR-3 and UTR-4 were much lower. APOL1 coding region showed that two SNP of G1 with higher frequency are actually pull down the haplotype H-1 frequency when considering all populations pooled together, and the diversity among the four populations be widen by the G1 two mutation (P 1  = 3.33E-4 vs P 2  = 3.61E-30). The distributions of APOL1 gene variants and haplotypes were significantly different among the different populations, in either regulatory or coding regions. It could provide

  1. User's operating procedures. Volume 1: Scout project information programs

    Science.gov (United States)

    Harris, C. G.; Harris, D. K.

    1985-01-01

    A review of the user's operating procedures for the Scout Project Automatic Data System, called SPADS is given. SPADS is the result of the past seven years of software development on a Prime minicomputer located at the Scout Project Office. SPADS was developed as a single entry, multiple cross reference data management and information retrieval system for the automation of Project office tasks, including engineering, financial, managerial, and clerical support. The instructions to operate the Scout Project Information programs in data retrieval and file maintenance via the user friendly menu drivers is presented.

  2. Information flow in the DAMA project beyond database managers: information flow managers

    Science.gov (United States)

    Russell, Lucian; Wolfson, Ouri; Yu, Clement

    1996-12-01

    To meet the demands of commercial data traffic on the information highway, a new look at managing data is necessary. One projected activity, sharing of point of sale information, is being considered in the Demand Activated Manufacturing Project (DAMA) of the American Textile Partnership (AMTEX) project. A scenario is examined in which 100 000 retail outlets communicate over a period of days. They provide the latest estimate of demand for sewn products across a chain of 26 000 suppliers through the use of bill of materials explosions at four levels of detail. Enabling this communication requires an approach that shares common features with both workflows and database management. A new paradigm, the information flow manager, is developed to handle this situation, including the case where members of the supply chain fail to communicate and go out of business. Techniques for approximation are introduced so as to keep estimates of demand as current as possible.

  3. AFSC Laboratory Management Information Requirements Project

    National Research Council Canada - National Science Library

    1982-01-01

    This document was developed under the auspices of the Laboratory IRM (LIRM) Management Working Group in response to AFSC Program Directive 0008-81-1, Management Information Requirement Project (23 February 1981...

  4. Reflections on Mental Retardation and Eugenics, Old and New: Mensa and the Human Genome Project.

    Science.gov (United States)

    Smith, J. David

    1994-01-01

    This article addresses the moral and ethical issues of mental retardation and a continuing legacy of belief in eugenics. It discusses the involuntary sterilization of Carrie Buck in 1927, support for legalized killing of subnormal infants by 47% of respondents to a Mensa survey, and implications of the Human Genome Project for the field of mental…

  5. The Secure Information Exchange (SIX) Project at the OPCW

    International Nuclear Information System (INIS)

    Gulay, M.; Milenkovic, G.

    2015-01-01

    The Chemical Weapons Convention (CWC) entered into force in 1997 and the member states of the Organisation for the Prohibition of Chemical Weapons (OPCW) have obligations for making declarations under various articles of the convention. These declarations could contain confidential information and until recently the only mechanism to submit confidential information to the OPCW Technical Secretariat was through physical delivery by the permanent representatives of the member states which introduced delays in the exchange of information in general. In 2012, the Technical Secretariat initiated a strategic project to establish a secure electronic transmission channel that could be used as an alternative option for the exchange of information between the Technical Secretariat and the member states. The Secure Information Exchange (SIX) Project has been given priority by the Director-General and it received support from the member states. A core project team comprising representatives of the main business unit, the office of legal affairs, IT security and implementation teams were established. Following a feasibility study and with continuous communication with the representatives of the member states, the pilot phase of the project was completed successfully in 2013. In the near future, the project will go live and the member states and the Technical Secretariat will benefit from this key initiative. This paper aims to provide an overview of the project: the solution approach, data gathered in order to assess the delays in communication through traditional means, IT security and implementation issues as well as the legal considerations. (author)

  6. MIPS: analysis and annotation of proteins from whole genomes in 2005.

    Science.gov (United States)

    Mewes, H W; Frishman, D; Mayer, K F X; Münsterkötter, M; Noubibou, O; Pagel, P; Rattei, T; Oesterheld, M; Ruepp, A; Stümpflen, V

    2006-01-01

    The Munich Information Center for Protein Sequences (MIPS at the GSF), Neuherberg, Germany, provides resources related to genome information. Manually curated databases for several reference organisms are maintained. Several of these databases are described elsewhere in this and other recent NAR database issues. In a complementary effort, a comprehensive set of >400 genomes automatically annotated with the PEDANT system are maintained. The main goal of our current work on creating and maintaining genome databases is to extend gene centered information to information on interactions within a generic comprehensive framework. We have concentrated our efforts along three lines (i) the development of suitable comprehensive data structures and database technology, communication and query tools to include a wide range of different types of information enabling the representation of complex information such as functional modules or networks Genome Research Environment System, (ii) the development of databases covering computable information such as the basic evolutionary relations among all genes, namely SIMAP, the sequence similarity matrix and the CABiNet network analysis framework and (iii) the compilation and manual annotation of information related to interactions such as protein-protein interactions or other types of relations (e.g. MPCDB, MPPI, CYGD). All databases described and the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.gsf.de).

  7. Ensembl Genomes 2013: scaling up access to genome-wide data.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Hughes, Daniel Seth Toney; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Langridge, Nicholas; McDowall, Mark D; Maheswari, Uma; Maslen, Gareth; Nuhn, Michael; Ong, Chuang Kee; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Tuli, Mary Ann; Walts, Brandon; Williams, Gareth; Wilson, Derek; Youens-Clark, Ken; Monaco, Marcela K; Stein, Joshua; Wei, Xuehong; Ware, Doreen; Bolser, Daniel M; Howe, Kevin Lee; Kulesha, Eugene; Lawson, Daniel; Staines, Daniel Michael

    2014-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.

  8. The promise of insect genomics

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J P; Cazzamali, Giuseppe; Williamson, Michael

    2007-01-01

    Insects are the largest animal group in the world and are ecologically and economically extremely important. This importance of insects is reflected by the existence of currently 24 insect genome projects. Our perspective discusses the state-of-the-art of these genome projects and the impacts...

  9. Ensembl Genomes 2016: more genomes, more complexity.

    Science.gov (United States)

    Kersey, Paul Julian; Allen, James E; Armean, Irina; Boddu, Sanjay; Bolt, Bruce J; Carvalho-Silva, Denise; Christensen, Mikkel; Davis, Paul; Falin, Lee J; Grabmueller, Christoph; Humphrey, Jay; Kerhornou, Arnaud; Khobova, Julia; Aranganathan, Naveen K; Langridge, Nicholas; Lowy, Ernesto; McDowall, Mark D; Maheswari, Uma; Nuhn, Michael; Ong, Chuang Kee; Overduin, Bert; Paulini, Michael; Pedro, Helder; Perry, Emily; Spudich, Giulietta; Tapanari, Electra; Walts, Brandon; Williams, Gareth; Tello-Ruiz, Marcela; Stein, Joshua; Wei, Sharon; Ware, Doreen; Bolser, Daniel M; Howe, Kevin L; Kulesha, Eugene; Lawson, Daniel; Maslen, Gareth; Staines, Daniel M

    2016-01-04

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Consortium biology in immunology: the perspective from the Immunological Genome Project.

    Science.gov (United States)

    Benoist, Christophe; Lanier, Lewis; Merad, Miriam; Mathis, Diane

    2012-10-01

    Although the field has a long collaborative tradition, immunology has made less use than genetics of 'consortium biology', wherein groups of investigators together tackle large integrated questions or problems. However, immunology is naturally suited to large-scale integrative and systems-level approaches, owing to the multicellular and adaptive nature of the cells it encompasses. Here, we discuss the value and drawbacks of this organization of research, in the context of the long-running 'big science' debate, and consider the opportunities that may exist for the immunology community. We position this analysis in light of our own experience, both positive and negative, as participants of the Immunological Genome Project.

  11. Information management for nuclear power stations: project description

    International Nuclear Information System (INIS)

    Halpin, D.W.

    1978-03-01

    A study of the information management structure required to support nuclear power plant construction was performed by a joint university-industry group under the sponsorship of the Department of Energy (DOE), formerly the Energy Research and Development Administration (ERDA). The purpose of this study was (1) to study methods for the control of information during the construction and start-up of nuclear power plants, and (2) identify those data elements intrinsic to nuclear power plants which must be maintained in a structured format for quick access and retrieval. Maintenance of the massive amount of data needed for control of a nuclear project during design, procurement, construction, start-up/testing, and operational phases requires a structuring which allows immediate update and retrieval based on a wide variety of access criteria. The objective of the research described has been to identify design concepts which support the development of an information control system responsive to these requirements. A conceptual design of a Management Information Data Base System which can meet the project control and information exchange needs of today's large nuclear power plant construction projects has been completed and an approach recommended for development and implementation of a complete operational system

  12. Are electronic health records ready for genomic medicine?

    Science.gov (United States)

    Scheuner, Maren T; de Vries, Han; Kim, Benjamin; Meili, Robin C; Olmstead, Sarah H; Teleki, Stephanie

    2009-07-01

    The goal of this project was to assess genetic/genomic content in electronic health records. Semistructured interviews were conducted with key informants. Questions addressed documentation, organization, display, decision support and security of family history and genetic test information, and challenges and opportunities relating to integrating genetic/genomics content in electronic health records. There were 56 participants: 10 electronic health record specialists, 18 primary care clinicians, 16 medical geneticists, and 12 genetic counselors. Few clinicians felt their electronic record met their current genetic/genomic medicine needs. Barriers to integration were mostly related to problems with family history data collection, documentation, and organization. Lack of demand for genetics content and privacy concerns were also mentioned as challenges. Data elements and functionality requirements that clinicians see include: pedigree drawing; clinical decision support for familial risk assessment and genetic testing indications; a patient portal for patient-entered data; and standards for data elements, terminology, structure, interoperability, and clinical decision support rules. Although most said that there is little impact of genetics/genomics on electronic records today, many stated genetics/genomics would be a driver of content in the next 5-10 years. Electronic health records have the potential to enable clinical integration of genetic/genomic medicine and improve delivery of personalized health care; however, structured and standardized data elements and functionality requirements are needed.

  13. In the Beginning was the Genome: Genomics and the Bi-textuality of Human Existence.

    Science.gov (United States)

    Zwart, H A E Hub

    2018-04-01

    This paper addresses the cultural impact of genomics and the Human Genome Project (HGP) on human self-understanding. Notably, it addresses the claim made by Francis Collins (director of the HGP) that the genome is the language of God and the claim made by Max Delbrück (founding father of molecular life sciences research) that Aristotle must be credited with having predicted DNA as the soul that organises bio-matter. From a continental philosophical perspective I will argue that human existence results from a dialectical interaction between two types of texts: the language of molecular biology and the language of civilisation; the language of the genome and the language of our socio-cultural, symbolic ambiance. Whereas the former ultimately builds on the alphabets of genes and nucleotides, the latter is informed by primordial texts such as the Bible and the Quran. In applied bioethics deliberations on genomics, science is easily framed as liberating and progressive, religious world-views as conservative and restrictive (Zwart 1993). This paper focusses on the broader cultural ambiance of the debate to discern how the bi-textuality of human existence is currently undergoing a transition, as not only the physiological, but also the normative dimension is being reframed in biomolecular and terabyte terms.

  14. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    Science.gov (United States)

    Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal

  15. Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India

    Science.gov (United States)

    S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali

    2014-01-01

    Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic

  16. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Science.gov (United States)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  17. The New World of Human Genetics: A dialogue between Practitioners & the General Public on Ethical, Legal & Social Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Amy

    2014-12-08

    The history and reasons for launching the Human Genome project and the current uses of genetic human material; Identifying and discussing the major issues stemming directly from genetic research and therapy-including genetic discrimination, medical/ person privacy, allocation of government resources and individual finances, and the effect on the way in which we perceive the value of human life; Discussing the sometimes hidden ethical, social and legislative implications of genetic research and therapy such as informed consent, screening and preservation of genetic materials, efficacy of medical procedures, the role of the government, and equal access to medical coverage.

  18. Sequence Analysis and Characterization of Active Human Alu Subfamilies Based on the 1000 Genomes Pilot Project.

    Science.gov (United States)

    Konkel, Miriam K; Walker, Jerilyn A; Hotard, Ashley B; Ranck, Megan C; Fontenot, Catherine C; Storer, Jessica; Stewart, Chip; Marth, Gabor T; Batzer, Mark A

    2015-08-29

    The goal of the 1000 Genomes Consortium is to characterize human genome structural variation (SV), including forms of copy number variations such as deletions, duplications, and insertions. Mobile element insertions, particularly Alu elements, are major contributors to genomic SV among humans. During the pilot phase of the project we experimentally validated 645 (611 intergenic and 34 exon targeted) polymorphic "young" Alu insertion events, absent from the human reference genome. Here, we report high resolution sequencing of 343 (322 unique) recent Alu insertion events, along with their respective target site duplications, precise genomic breakpoint coordinates, subfamily assignment, percent divergence, and estimated A-rich tail lengths. All the sequenced Alu loci were derived from the AluY lineage with no evidence of retrotransposition activity involving older Alu families (e.g., AluJ and AluS). AluYa5 is currently the most active Alu subfamily in the human lineage, followed by AluYb8, and many others including three newly identified subfamilies we have termed AluYb7a3, AluYb8b1, and AluYa4a1. This report provides the structural details of 322 unique Alu variants from individual human genomes collectively adding about 100 kb of genomic variation. Many Alu subfamilies are currently active in human populations, including a surprising level of AluY retrotransposition. Human Alu subfamilies exhibit continuous evolution with potential drivers sprouting new Alu lineages. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. The Informatics (R) Evolution in Biology: The Case of Genomics

    International Nuclear Information System (INIS)

    Michan Aguirre, Layla; Alvarez, Eduardo; Montoya Perez, Laura Elizabeth

    2011-01-01

    Biology has been revolutionized by the introduction of new disciplines, such is the case of genomics that introduced in the 80s has turned unlikely to modern science, the discipline refers to the study not only of genes but their roles, relations among themselves and with the environment. Arises, with the consolidation of the human genome project and introduces us to a period of transition in which specific genetic knowledge becomes critical. Differs from other approaches in the type of information provided, the prospects for technical and intellectual improvements in the collection and use of data from the whole genome, (Murray, 2000). This work aims to investigate the recent biology, in particular, to show the history of genomics, through literature search and bibliometric analysis.

  20. Analysis and Comparison of Information Theory-based Distances for Genomic Strings

    Science.gov (United States)

    Balzano, Walter; Cicalese, Ferdinando; Del Sorbo, Maria Rosaria; Vaccaro, Ugo

    2008-07-01

    Genomic string comparison via alignment are widely applied for mining and retrieval of information in biological databases. In some situation, the effectiveness of such alignment based comparison is still unclear, e.g., for sequences with non-uniform length and with significant shuffling of identical substrings. An alternative approach is the one based on information theory distances. Biological data information content is stored in very long strings of only four characters. In last ten years, several entropic measures have been proposed for genomic string analysis. Notwithstanding their individual merit and experimental validation, to the nest of our knowledge, there is no direct comparison of these different metrics. We shall present four of the most representative alignment-free distance measures, based on mutual information. Each one has a different origin and expression. Our comparison involves a sort of arrangement, to reduce different concepts to a unique formalism, so as it has been possible to construct a phylogenetic tree for each of them. The trees produced via these metrics are compared to the ones widely accepted as biologically validated. In general the results provided more evidence of the reliability of the alignment-free distance models. Also, we observe that one of the metrics appeared to be more robust than the other three. We believe that this result can be object of further researches and observations. Many of the results of experimentation, the graphics and the table are available at the following URL: http://people.na.infn.it/˜wbalzano/BIO

  1. Global Implementation of Genomic Medicine: We Are Not Alone

    Science.gov (United States)

    Manolio, Teri A.; Abramowicz, Marc; Al-Mulla, Fahd; Anderson, Warwick; Balling, Rudi; Berger, Adam C.; Bleyl, Steven; Chakravarti, Aravinda; Chantratita, Wasun; Chisholm, Rex L.; Dissanayake, Vajira H. W.; Dunn, Michael; Dzau, Victor J.; Han, Bok-Ghee; Hubbard, Tim; Kolbe, Anne; Korf, Bruce; Kubo, Michiaki; Lasko, Paul; Leego, Erkki; Mahasirimongkol, Surakameth; Majumdar, Partha P.; Matthijs, Gert; McLeod, Howard L.; Metspalu, Andres; Meulien, Pierre; Miyano, Satoru; Naparstek, Yaakov; O’Rourke, P. Pearl; Patrinos, George P.; Rehm, Heidi L.; Relling, Mary V.; Rennert, Gad; Rodriguez, Laura Lyman; Roden, Dan M.; Shuldiner, Alan R.; Sinha, Sukdev; Tan, Patrick; Ulfendahl, Mats; Ward, Robyn; Williams, Marc S.; Wong, John E.L.; Green, Eric D.; Ginsburg, Geoffrey S.

    2016-01-01

    Advances in high-throughput genomic technologies coupled with a growing number of genomic results potentially useful in clinical care have led to ground-breaking genomic medicine implementation programs in various nations. Many of these innovative programs capitalize on unique local capabilities arising from the structure of their health care systems or their cultural or political milieu, as well as from unusual burdens of disease or risk alleles. Many such programs are being conducted in relative isolation and might benefit from sharing of approaches and lessons learned in other nations. The National Human Genome Research Institute recently brought together 25 of these groups from around the world to describe and compare projects, examine the current state of implementation and desired near-term capabilities, and identify opportunities for collaboration to promote the responsible implementation of genomic medicine. The wide variety of nascent programs in diverse settings demonstrates that implementation of genomic medicine is expanding globally in varied and highly innovative ways. Opportunities for collaboration abound in the areas of evidence generation, health information technology, education, workforce development, pharmacogenomics, and policy and regulatory issues. Several international organizations that are already facilitating effective research collaborations should engage to ensure implementation proceeds collaboratively without potentially wasteful duplication. Efforts to coalesce these groups around concrete but compelling signature projects, such as global eradication of genetically-mediated drug reactions or developing a truly global genomic variant data resource across a wide number of ethnicities, would accelerate appropriate implementation of genomics to improve clinical care world-wide. PMID:26041702

  2. Personal genomics services: whose genomes?

    Science.gov (United States)

    Gurwitz, David; Bregman-Eschet, Yael

    2009-07-01

    New companies offering personal whole-genome information services over the internet are dynamic and highly visible players in the personal genomics field. For fees currently ranging from US$399 to US$2500 and a vial of saliva, individuals can now purchase online access to their individual genetic information regarding susceptibility to a range of chronic diseases and phenotypic traits based on a genome-wide SNP scan. Most of the companies offering such services are based in the United States, but their clients may come from nearly anywhere in the world. Although the scientific validity, clinical utility and potential future implications of such services are being hotly debated, several ethical and regulatory questions related to direct-to-consumer (DTC) marketing strategies of genetic tests have not yet received sufficient attention. For example, how can we minimize the risk of unauthorized third parties from submitting other people's DNA for testing? Another pressing question concerns the ownership of (genotypic and phenotypic) information, as well as the unclear legal status of customers regarding their own personal information. Current legislation in the US and Europe falls short of providing clear answers to these questions. Until the regulation of personal genomics services catches up with the technology, we call upon commercial providers to self-regulate and coordinate their activities to minimize potential risks to individual privacy. We also point out some specific steps, along the trustee model, that providers of DTC personal genomics services as well as regulators and policy makers could consider for addressing some of the concerns raised below.

  3. Bat biology, genomes, and the Bat1K project

    DEFF Research Database (Denmark)

    Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M

    2018-01-01

    and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any...

  4. Genome Maps, a new generation genome browser.

    Science.gov (United States)

    Medina, Ignacio; Salavert, Francisco; Sanchez, Rubén; de Maria, Alejandro; Alonso, Roberto; Escobar, Pablo; Bleda, Marta; Dopazo, Joaquín

    2013-07-01

    Genome browsers have gained importance as more genomes and related genomic information become available. However, the increase of information brought about by new generation sequencing technologies is, at the same time, causing a subtle but continuous decrease in the efficiency of conventional genome browsers. Here, we present Genome Maps, a genome browser that implements an innovative model of data transfer and management. The program uses highly efficient technologies from the new HTML5 standard, such as scalable vector graphics, that optimize workloads at both server and client sides and ensure future scalability. Thus, data management and representation are entirely carried out by the browser, without the need of any Java Applet, Flash or other plug-in technology installation. Relevant biological data on genes, transcripts, exons, regulatory features, single-nucleotide polymorphisms, karyotype and so forth, are imported from web services and are available as tracks. In addition, several DAS servers are already included in Genome Maps. As a novelty, this web-based genome browser allows the local upload of huge genomic data files (e.g. VCF or BAM) that can be dynamically visualized in real time at the client side, thus facilitating the management of medical data affected by privacy restrictions. Finally, Genome Maps can easily be integrated in any web application by including only a few lines of code. Genome Maps is an open source collaborative initiative available in the GitHub repository (https://github.com/compbio-bigdata-viz/genome-maps). Genome Maps is available at: http://www.genomemaps.org.

  5. A functional genomics study of extracellular protease production by Aspergillus niger

    NARCIS (Netherlands)

    Braaksma, Machtelt

    2010-01-01

    The objective of the project described in this thesis was to study the complex induction of extracellular proteases in the filamentous fungus Aspergillus niger using information gathered with functional genomics technologies. A special emphasis is given to the requirements for performing a

  6. Genomic Data Commons and Genomic Cloud Pilots - Google Hangout

    Science.gov (United States)

    Join us for a live, moderated discussion about two NCI efforts to expand access to cancer genomics data: the Genomic Data Commons and Genomic Cloud Pilots. NCI subject matters experts will include Louis M. Staudt, M.D., Ph.D., Director Center for Cancer Genomics, Warren Kibbe, Ph.D., Director, NCI Center for Biomedical Informatics and Information Technology, and moderated by Anthony Kerlavage, Ph.D., Chief, Cancer Informatics Branch, Center for Biomedical Informatics and Information Technology. We welcome your questions before and during the Hangout on Twitter using the hashtag #AskNCI.

  7. Learning about the Human Genome. Part 1: Challenge to Science Educators. ERIC Digest.

    Science.gov (United States)

    Haury, David L.

    This digest explains how to inform high school students and their parents about the human genome project (HGP) and how the information from this milestone finding will affect future biological and medical research and challenge science educators. The sections include: (1) "The Emerging Legacy of the HGP"; (2) "Transforming How…

  8. Genome Sequence of the Freshwater Yangtze Finless Porpoise.

    Science.gov (United States)

    Yuan, Yuan; Zhang, Peijun; Wang, Kun; Liu, Mingzhong; Li, Jing; Zheng, Jingsong; Wang, Ding; Xu, Wenjie; Lin, Mingli; Dong, Lijun; Zhu, Chenglong; Qiu, Qiang; Li, Songhai

    2018-04-16

    The Yangtze finless porpoise ( Neophocaena asiaeorientalis ssp. asiaeorientalis ) is a subspecies of the narrow-ridged finless porpoise ( N. asiaeorientalis ). In total, 714.28 gigabases (Gb) of raw reads were generated by whole-genome sequencing of the Yangtze finless porpoise, using an Illumina HiSeq 2000 platform. After filtering the low-quality and duplicated reads, we assembled a draft genome of 2.22 Gb, with contig N50 and scaffold N50 values of 46.69 kilobases (kb) and 1.71 megabases (Mb), respectively. We identified 887.63 Mb of repetitive sequences and predicted 18,479 protein-coding genes in the assembled genome. The phylogenetic tree showed a relationship between the Yangtze finless porpoise and the Yangtze River dolphin, which diverged approximately 20.84 million years ago. In comparisons with the genomes of 10 other mammals, we detected 44 species-specific gene families, 164 expanded gene families, and 313 positively selected genes in the Yangtze finless porpoise genome. The assembled genome sequence and underlying sequence data are available at the National Center for Biotechnology Information under BioProject accession number PRJNA433603.

  9. Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species.

    Science.gov (United States)

    Kersey, Paul J; Staines, Daniel M; Lawson, Daniel; Kulesha, Eugene; Derwent, Paul; Humphrey, Jay C; Hughes, Daniel S T; Keenan, Stephan; Kerhornou, Arnaud; Koscielny, Gautier; Langridge, Nicholas; McDowall, Mark D; Megy, Karine; Maheswari, Uma; Nuhn, Michael; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Wilson, Derek; Yates, Andrew; Birney, Ewan

    2012-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrative resource for genome-scale data from non-vertebrate species. The project exploits and extends technology (for genome annotation, analysis and dissemination) developed in the context of the (vertebrate-focused) Ensembl project and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. Since its launch in 2009, Ensembl Genomes has undergone rapid expansion, with the goal of providing coverage of all major experimental organisms, and additionally including taxonomic reference points to provide the evolutionary context in which genes can be understood. Against the backdrop of a continuing increase in genome sequencing activities in all parts of the tree of life, we seek to work, wherever possible, with the communities actively generating and using data, and are participants in a growing range of collaborations involved in the annotation and analysis of genomes.

  10. Information management needs for Fort Calhoun's design basis reconstitution project

    International Nuclear Information System (INIS)

    Beach, D.R.; Erickson, E.A.; Gambhir, S.K.; Parsons, R.D.

    1989-01-01

    While the need for information management is not new to the nuclear industry or Omaha Public Power District (OPPD), the interrelationship among design information, multiple systems, and design basis issues has necessitated the management of this information in new ways. The project team involved in the reconstitution of the design basis for OPPD's Fort Calhoun nuclear station has experienced the need for the developed effective methods for managing the vast amount of interrelated information associated with this effort. This management of information has been necessary to ensure that design basis documents (DBDs) adequately reflect the interrelated nature of component, system, and plant design; are complete and accurate; and are produced and maintained in a cost-effective manner. Fort Calhoun's aggressive design basis reconstitution project began in early 1987. The present scope of the project includes the production of 52 system and plant level DBDs; currently the project is ∼50% complete with DBDs in various stages of completion, from pilot DBDs through DBDs with approved formats, which have been issued for use. The experience in producing these documents has lead to a growing understanding of the special need for information management in each stage of the project. The development of the information tracking and management processes for the various stages of DBD development has proven to be cost-effective and gives a level of assurance that information has been included in the DBDs consistently and accurately

  11. Researchers' preferences and attitudes on ethical aspects of genomics research: a comparative study between the USA and Spain.

    Science.gov (United States)

    Ruiz-Canela, M; Valle-Mansilla, J I; Sulmasy, D P

    2009-04-01

    The use of human samples in genomic research has increased ethical debate about informed consent (IC) requirements and the information that subjects should receive regarding the results of the research. However, there are no quantitative data regarding researchers' attitudes about these issues. We present the results of a survey of 104 US and 100 Spanish researchers who had published genomic epidemiology studies in 61 journals during 2006. Researchers preferred a broader IC than the IC they had actually obtained in their published papers. US authors were more likely than their Spanish colleagues to support obtaining a broad IC, covering either any future research project or any projects related to a group of diseases (67.6% vs 43%; adjusted OR = 4.84, 95% CI, 2.32 to 10.12). A slight majority of researchers (55.8%) supported informing participants about individual genomic results only if the reliability and clinical validity of the information had been established. Men were more likely than women to believe that patients should be informed of research results even if these conditions were not met (adjusted OR = 2.89, 95% CI = 1.46 to 5.72). This study provides evidence of a wide range of views among scientists regarding some controversial ethical issues related to genomic research, suggesting the need for more study, debate and education. In the interim, journals might consider including the investigators' policies regarding these ethical issues in the papers they publish in the field of genomic epidemiology.

  12. Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review.

    Science.gov (United States)

    Cárdenas, Juan Pablo; Quatrini, Raquel; Holmes, David S

    2016-09-01

    High-throughput genomic technologies are accelerating progress in understanding the diversity of microbial life in many environments. Here we highlight advances in genomics and metagenomics of microorganisms from bioleaching heaps and related acidic mining environments. Bioleaching heaps used for copper recovery provide significant opportunities to study the processes and mechanisms underlying microbial successions and the influence of community composition on ecosystem functioning. Obtaining quantitative and process-level knowledge of these dynamics is pivotal for understanding how microorganisms contribute to the solubilization of copper for industrial recovery. Advances in DNA sequencing technology provide unprecedented opportunities to obtain information about the genomes of bioleaching microorganisms, allowing predictive models of metabolic potential and ecosystem-level interactions to be constructed. These approaches are enabling predictive phenotyping of organisms many of which are recalcitrant to genetic approaches or are unculturable. This mini-review describes current bioleaching genomic and metagenomic projects and addresses the use of genome information to: (i) build metabolic models; (ii) predict microbial interactions; (iii) estimate genetic diversity; and (iv) study microbial evolution. Key challenges and perspectives of bioleaching genomics/metagenomics are addressed. Copyright © 2016 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.

  13. The genome of Arabidopsis thaliana.

    OpenAIRE

    Goodman, H M; Ecker, J R; Dean, C

    1995-01-01

    Arabidopsis thaliana is a small flowering plant that is a member of the family cruciferae. It has many characteristics--diploid genetics, rapid growth cycle, relatively low repetitive DNA content, and small genome size--that recommend it as the model for a plant genome project. The current status of the genetic and physical maps, as well as efforts to sequence the genome, are presented. Examples are given of genes isolated by using map-based cloning. The importance of the Arabidopsis project ...

  14. MaizeGDB: The Maize Genetics and Genomics Database.

    Science.gov (United States)

    Harper, Lisa; Gardiner, Jack; Andorf, Carson; Lawrence, Carolyn J

    2016-01-01

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.

  15. User's operating procedures. Volume 3: Projects directorate information programs

    Science.gov (United States)

    Haris, C. G.; Harris, D. K.

    1985-01-01

    A review of the user's operating procedures for the scout project automatic data system, called SPADS is presented. SPADS is the results of the past seven years of software development on a prime mini-computer. SPADS was developed as a single entry, multiple cross-reference data management and information retrieval system for the automation of Project office tasks, including engineering, financial, managerial, and clerical support. This volume, three of three, provides the instructions to operate the projects directorate information programs in data retrieval and file maintenance via the user friendly menu drivers.

  16. SUCCESS CONCEPT ANALYSIS APPLIED TO THE INFORMATION TECHNOLOGY PROJECT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Cassio C. Montenegro Duarte

    2012-05-01

    Full Text Available This study evaluates the concept of success in project management that is applicable to the IT universe, from the classical theory associated with the techniques of project management. Therefore, it applies the theoretical analysis associated to the context of information technology in enterprises as well as the classic literature of traditional project management, focusing on its application in business information technology. From the literature developed in the first part of the study, four propositions were prepared for study which formed the basis for the development of the field research with three large companies that develop projects of Information Technology. The methodology used in the study predicted the development of the multiple case study. Empirical evidence suggests that the concept of success found in the classical literature in project management adjusts to the environment management of IT projects. Showed that it is possible to create the model of standard IT projects in order to replicate it in future derivatives projects, which depends on the learning acquired at the end of a long and continuous process and sponsorship of senior management, which ultimately results in its merger into the company culture.

  17. Defining functional DNA elements in the human genome

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  18. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project

    DEFF Research Database (Denmark)

    Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya

    2007-01-01

    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses...

  19. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs

    Directory of Open Access Journals (Sweden)

    Elisabeth eJonas

    2015-02-01

    Full Text Available Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies. It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating genomic selection into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken and fish. It outlines tasks to help understanding possible consequences when applying genomic information in

  20. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment.

    Science.gov (United States)

    Wurch, Louie; Giannone, Richard J; Belisle, Bernard S; Swift, Carolyn; Utturkar, Sagar; Hettich, Robert L; Reysenbach, Anna-Louise; Podar, Mircea

    2016-07-05

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota ('Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of 'Nanopusillus' are among the smallest known cellular organisms (100-300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea.

  1. INFORMATION MODELING OF LIFE CYCLE OF HIGH-RISE CONSTRUCTION PROJECTS

    Directory of Open Access Journals (Sweden)

    Gusakova Elena Aleksandrovna

    2018-02-01

    Full Text Available To date, many years’ experience in the construction and operation of high-rise buildings has been accumulated. Its analysis reveals not only the engineering and organizational-technological specifics of such projects, but also systemic gaps in the field of management. In the implementation of large-scale and unique projects for high-rise buildings, the problems and tasks of improving approaches to managing the full life cycle of projects and methods, which will improve their competitiveness, become topical. The systems being used have largely exhausted their resource efficiency, which is associated with automation of traditional “inherited” processes and management structures, as well as development of IT-systems focused on digitalization of the activities of construction company, rather than the project. To solve these problems, it is proposed to carry out: reengineering of the schemes of information interaction between the project’s participants; formation of integrated digital environment for the life cycle of the project; development of systems for integrating data management and project management. Subject: problems, approaches and methods of digitalization of project’s life cycle management in relation to the specifics and features of high-rise buildings. Research objectives: substantiation of the most perspective approaches and methods of information modeling of high-rise construction as the basis for managing the full life cycle of the given project. Materials and methods: the experience of digitalization of design, construction, operation and development of high-rise buildings, presented in specialized literature, is analyzed. The methods for integrating information models of various stages of project’s life cycle and for information interaction of project’s participants are considered. Results: the concept of forming a single digital environment for the project is proposed, taking into account the features of the life

  2. Boundary Spanning in Offshored Information Systems Development Projects

    Science.gov (United States)

    Krishnan, Poornima

    2010-01-01

    Recent growth in offshore outsourcing of information systems (IS) services is accompanied by managing the offshore projects successfully. Much of the project failures can be attributed to geographic and organizational boundaries which create differences in culture, language, work patterns, and decision making processes among the offshore project…

  3. How could disclosing incidental information from whole-genome sequencing affect patient behavior?

    Science.gov (United States)

    Christensen, Kurt D; Green, Robert C

    2013-06-01

    In this article, we argue that disclosure of incidental findings from whole-genome sequencing has the potential to motivate individuals to change health behaviors through psychological mechanisms that differ from typical risk assessment interventions. Their ability to do so, however, is likely to be highly contingent upon the nature of the incidental findings and how they are disclosed, the context of the disclosure and the characteristics of the patient. Moreover, clinicians need to be aware that behavioral responses may occur in unanticipated ways. This article argues for commentators and policy makers to take a cautious but optimistic perspective while empirical evidence is collected through ongoing research involving whole-genome sequencing and the disclosure of incidental information.

  4. Ensembl 2002: accommodating comparative genomics.

    Science.gov (United States)

    Clamp, M; Andrews, D; Barker, D; Bevan, P; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Hubbard, T; Kasprzyk, A; Keefe, D; Lehvaslaiho, H; Iyer, V; Melsopp, C; Mongin, E; Pettett, R; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Birney, E

    2003-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of human, mouse and other genome sequences, available as either an interactive web site or as flat files. Ensembl also integrates manually annotated gene structures from external sources where available. As well as being one of the leading sources of genome annotation, Ensembl is an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements. These range from sequence analysis to data storage and visualisation and installations exist around the world in both companies and at academic sites. With both human and mouse genome sequences available and more vertebrate sequences to follow, many of the recent developments in Ensembl have focusing on developing automatic comparative genome analysis and visualisation.

  5. Sequencing and characterizing the genome of Estrella lausannensis as an undergraduate project: training students and biological insights

    Directory of Open Access Journals (Sweden)

    Claire eBertelli

    2015-02-01

    Full Text Available With the widespread availability of high-throughput sequencing technologies, sequencing projects have become pervasive in the molecular life sciences. The huge bulk of data generated daily must be analyzed further by biologists with skills in bioinformatics and by embedded bioinformaticians, i.e., bioinformaticians integrated in wet lab research groups. Thus, students interested in molecular life sciences must be trained in the main steps of genomics: sequencing, assembly, annotation and analysis. To reach that goal, a practical course has been set up for master students at the University of Lausanne: the Sequence a genome class. At the beginning of the academic year, a few bacterial species whose genome is unknown are provided to the students, who sequence and assemble the genome(s and perform manual annotation. Here, we report the progress of the first class from September 2010 to June 2011 and the results obtained by seven master students who specifically assembled and annotated the genome of Estrella lausannensis, an obligate intracellular bacterium related to Chlamydia. The draft genome of Estrella is composed of 29 scaffolds encompassing 2,819,825 bp that encode for 2,233 putative proteins. Estrella also possesses a 9,136 bp plasmid that encodes for 14 genes, among which we found an integrase and a toxin/antitoxin module. Like all other members of the Chlamydiales order, Estrella possesses a highly conserved type III secretion system, considered as a key virulence factor. The annotation of the Estrella genome also allowed the characterization of the metabolic abilities of this strictly intracellular bacterium. Altogether, the students provided the scientific community with the Estrella genome sequence and a preliminary understanding of the biology of this recently-discovered bacterial genus, while learning to use cutting-edge technologies for sequencing and to perform bioinformatics analyses.

  6. Newly discovered young CORE-SINEs in marsupial genomes.

    Science.gov (United States)

    Munemasa, Maruo; Nikaido, Masato; Nishihara, Hidenori; Donnellan, Stephen; Austin, Christopher C; Okada, Norihiro

    2008-01-15

    Although recent mammalian genome projects have uncovered a large part of genomic component of various groups, several repetitive sequences still remain to be characterized and classified for particular groups. The short interspersed repetitive elements (SINEs) distributed among marsupial genomes are one example. We have identified and characterized two new SINEs from marsupial genomes that belong to the CORE-SINE family, characterized by a highly conserved "CORE" domain. PCR and genomic dot blot analyses revealed that the distribution of each SINE shows distinct patterns among the marsupial genomes, implying different timing of their retroposition during the evolution of marsupials. The members of Mar3 (Marsupialia 3) SINE are distributed throughout the genomes of all marsupials, whereas the Mac1 (Macropodoidea 1) SINE is distributed specifically in the genomes of kangaroos. Sequence alignment of the Mar3 SINEs revealed that they can be further divided into four subgroups, each of which has diagnostic nucleotides. The insertion patterns of each SINE at particular genomic loci, together with the distribution patterns of each SINE, suggest that the Mar3 SINEs have intensively amplified after the radiation of diprotodontians, whereas the Mac1 SINE has amplified only slightly after the divergence of hypsiprimnodons from other macropods. By compiling the information of CORE-SINEs characterized to date, we propose a comprehensive picture of how SINE evolution occurred in the genomes of marsupials.

  7. Leadership Styles: Perceptions in Information Technology Project Teams

    Science.gov (United States)

    Fune, Roy P.

    2013-01-01

    The purpose of this study was to uncover Information Technology (IT) Project Managers' and IT Professionals' perceptions of effective leadership styles as they apply to project success. There have been prior studies dealing with the differences in perceptions between IT Functional Manager's leadership self-perception versus staff perceptions of…

  8. Complex New Product Development projects - How the Project Manager’s Information Sharing With Core Actors Changes Over Time

    DEFF Research Database (Denmark)

    Jepsen, Lisbeth Brøde

    2013-01-01

    A heavily burdened project manager must ensure effective information sharing with actors inside and outside the organization because this is a necessary condition for a new product development (NPD) project to achieve its objectives. Knowledge, however, on who actually assists a project manager...... with the information sharing during NPD projects is limited; therefore, this study of longitudinal objective email data (4658 emails) during a NPD project contributes to theory and practice by advancing our understanding of when and how the project manager establishes relationships with different core actors inside...

  9. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information

    Science.gov (United States)

    2012-01-01

    Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource

  10. Fueling the Future with Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  11. The Proteins API: accessing key integrated protein and genome information.

    Science.gov (United States)

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-07-03

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs.

    Science.gov (United States)

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios.

  13. OligoPVP: Phenotype-driven analysis of individual genomic information to prioritize oligogenic disease variants

    KAUST Repository

    Boudellioua, Imene

    2018-05-02

    Purpose: An increasing number of Mendelian disorders have been identified for which two or more variants in one or more genes are required to cause the disease, or significantly modify its severity or phenotype. It is difficult to discover such interactions using existing approaches. The purpose of our work is to develop and evaluate a system that can identify combinations of variants underlying oligogenic diseases in individual whole exome or whole genome sequences. Methods: Information that links patient phenotypes to databases of gene-phenotype associations observed in clinical research can provide useful information and improve variant prioritization for Mendelian diseases. Additionally, background knowledge about interactions between genes can be utilized to guide and restrict the selection of candidate disease modules. Results: We developed OligoPVP, an algorithm that can be used to identify variants in oligogenic diseases and their interactions, using whole exome or whole genome sequences together with patient phenotypes as input. We demonstrate that OligoPVP has significantly improved performance when compared to state of the art pathogenicity detection methods. Conclusions: Our results show that OligoPVP can efficiently detect oligogenic interactions using a phenotype-driven approach and identify etiologically important variants in whole genomes.

  14. The PiGeOn project: protocol of a longitudinal study examining psychosocial and ethical issues and outcomes in germline genomic sequencing for cancer.

    Science.gov (United States)

    Best, Megan; Newson, Ainsley J; Meiser, Bettina; Juraskova, Ilona; Goldstein, David; Tucker, Kathy; Ballinger, Mandy L; Hess, Dominique; Schlub, Timothy E; Biesecker, Barbara; Vines, Richard; Vines, Kate; Thomas, David; Young, Mary-Anne; Savard, Jacqueline; Jacobs, Chris; Butow, Phyllis

    2018-04-23

    Advances in genomics offer promise for earlier detection or prevention of cancer, by personalisation of medical care tailored to an individual's genomic risk status. However genome sequencing can generate an unprecedented volume of results for the patient to process with potential implications for their families and reproductive choices. This paper describes a protocol for a study (PiGeOn) that aims to explore how patients and their blood relatives experience germline genomic sequencing, to help guide the appropriate future implementation of genome sequencing into routine clinical practice. We have designed a mixed-methods, prospective, cohort sub-study of a germline genomic sequencing study that targets adults with cancer suggestive of a genetic aetiology. One thousand probands and 2000 of their blood relatives will undergo germline genomic sequencing as part of the parent study in Sydney, Australia between 2016 and 2020. Test results are expected within12-15 months of recruitment. For the PiGeOn sub-study, participants will be invited to complete surveys at baseline, three months and twelve months after baseline using self-administered questionnaires, to assess the experience of long waits for results (despite being informed that results may not be returned) and expectations of receiving them. Subsets of both probands and blood relatives will be purposively sampled and invited to participate in three semi-structured qualitative interviews (at baseline and each follow-up) to triangulate the data. Ethical themes identified in the data will be used to inform critical revisions of normative ethical concepts or frameworks. This will be one of the first studies internationally to follow the psychosocial impact on probands and their blood relatives who undergo germline genome sequencing, over time. Study results will inform ongoing ethical debates on issues such as informed consent for genomic sequencing, and informing participants and their relatives of specific

  15. ELSI Bibliography: Ethical legal and social implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Yesley, M.S. [comp.

    1993-11-01

    This second edition of the ELSI Bibliography provides a current and comprehensive resource for identifying publications on the major topics related to the ethical, legal and social issues (ELSI) of the Human Genome Project. Since the first edition of the ELSI Bibliography was printed last year, new publications and earlier ones identified by additional searching have doubled our computer database of ELSI publications to over 5600 entries. The second edition of the ELSI Bibliography reflects this growth of the underlying computer database. Researchers should note that an extensive collection of publications in the database is available for public use at the General Law Library of Los Alamos National Laboratory (LANL).

  16. Growing up at the intersection of the genomic era and the information age.

    Science.gov (United States)

    Driessnack, Martha

    2009-06-01

    Children actively seek to make sense of their worlds based on the information they receive and their experience. For children growing up at the intersection of genomic era and information age, the array of information and experience continues to expand. This article highlights the importance of exploring these early contexts for learning, including the children's exposure to books and mass media, and the impact of early learning on later health literacy and behaviors. This article presents a case study discussing the inheritance of cystic fibrosis using the Harry Potter book series.

  17. On the Concept of Cis-regulatory Information: From Sequence Motifs to Logic Functions

    Science.gov (United States)

    Tarpine, Ryan; Istrail, Sorin

    The regulatory genome is about the “system level organization of the core genomic regulatory apparatus, and how this is the locus of causality underlying the twin phenomena of animal development and animal evolution” (E.H. Davidson. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution, Academic Press, 2006). Information processing in the regulatory genome is done through regulatory states, defined as sets of transcription factors (sequence-specific DNA binding proteins which determine gene expression) that are expressed and active at the same time. The core information processing machinery consists of modular DNA sequence elements, called cis-modules, that interact with transcription factors. The cis-modules “read” the information contained in the regulatory state of the cell through transcription factor binding, “process” it, and directly or indirectly communicate with the basal transcription apparatus to determine gene expression. This endowment of each gene with the information-receiving capacity through their cis-regulatory modules is essential for the response to every possible regulatory state to which it might be exposed during all phases of the life cycle and in all cell types. We present here a set of challenges addressed by our CYRENE research project aimed at studying the cis-regulatory code of the regulatory genome. The CYRENE Project is devoted to (1) the construction of a database, the cis-Lexicon, containing comprehensive information across species about experimentally validated cis-regulatory modules; and (2) the software development of a next-generation genome browser, the cis-Browser, specialized for the regulatory genome. The presentation is anchored on three main computational challenges: the Gene Naming Problem, the Consensus Sequence Bottleneck Problem, and the Logic Function Inference Problem.

  18. Fungal Genomics for Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  19. WORK BREAKDOWN STRUCTURE FORMATION FOR IT-PROJECT OF INFORMATION SYSTEM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Виктор Макарович ЛЕВЫКИН

    2015-06-01

    Full Text Available The approach for modeling the structure of IT-works project to create an information system as a forest domain ontology. The main features of information technology to manage such IT-projects.

  20. Interrogating the druggable genome with structural informatics.

    Science.gov (United States)

    Hambly, Kevin; Danzer, Joseph; Muskal, Steven; Debe, Derek A

    2006-08-01

    Structural genomics projects are producing protein structure data at an unprecedented rate. In this paper, we present the Target Informatics Platform (TIP), a novel structural informatics approach for amplifying the rapidly expanding body of experimental protein structure information to enhance the discovery and optimization of small molecule protein modulators on a genomic scale. In TIP, existing experimental structure information is augmented using a homology modeling approach, and binding sites across multiple target families are compared using a clique detection algorithm. We report here a detailed analysis of the structural coverage for the set of druggable human targets, highlighting drug target families where the level of structural knowledge is currently quite high, as well as those areas where structural knowledge is sparse. Furthermore, we demonstrate the utility of TIP's intra- and inter-family binding site similarity analysis using a series of retrospective case studies. Our analysis underscores the utility of a structural informatics infrastructure for extracting drug discovery-relevant information from structural data, aiding researchers in the identification of lead discovery and optimization opportunities as well as potential "off-target" liabilities.

  1. phiGENOME: an integrative navigation throughout bacteriophage genomes.

    Science.gov (United States)

    Stano, Matej; Klucar, Lubos

    2011-11-01

    phiGENOME is a web-based genome browser generating dynamic and interactive graphical representation of phage genomes stored in the phiSITE, database of gene regulation in bacteriophages. phiGENOME is an integral part of the phiSITE web portal (http://www.phisite.org/phigenome) and it was optimised for visualisation of phage genomes with the emphasis on the gene regulatory elements. phiGENOME consists of three components: (i) genome map viewer built using Adobe Flash technology, providing dynamic and interactive graphical display of phage genomes; (ii) sequence browser based on precisely formatted HTML tags, providing detailed exploration of genome features on the sequence level and (iii) regulation illustrator, based on Scalable Vector Graphics (SVG) and designed for graphical representation of gene regulations. Bringing 542 complete genome sequences accompanied with their rich annotations and references, makes phiGENOME a unique information resource in the field of phage genomics. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Fiscal 1998 achievement report. Industrial technology research and development project. (Strategic human cDNA genome application technology development); 1998 nendo senryakuteki hito cDNA genome oyo gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A human genome related project named above was started, and studies were conducted for base sequence determination and function analysis for approximately 10,000 kinds of full-length or long-chain human cDNA clones owned by research organizations in this country. The Institute of Medical Science of University of Tokyo and Helix Research Institute dealt with a full-length human cDNA library constructed by oligo-capping, and determined the base sequences of all specimens in the library. The Kazusa DNA Research Institute determined partial sequences for long-chain clones which are not shorter than 4-5kbp, and determined entire sequences for some bases. The obtained base sequence data were subjected to homology analysis, the base sequences were converted into amino acid sequences, and functions of proteins were predicted. In the analysis of gene functions, ATAC-PCR (adaptor tagged competitive-polymerase chain reaction) was applied to the clones covered by this project, and a database was prepared by use of the results of analyses of frequency-related information. For the preparation of a comprehensive gene expression profile, technologies for cDNA microarray construction were established. (NEDO)

  3. Implementing information systems with project teams using ethnographic-action research

    NARCIS (Netherlands)

    Hartmann, Timo; Fischer, Martin; Haymaker, John

    2009-01-01

    Architecture, engineering, and construction (AEC) projects are characterized by a large variation in requirements and work routines. Therefore, it is difficult to develop and implement information systems to support projects. To address these challenges, this paper presents a project-centric

  4. SNUGB: a versatile genome browser supporting comparative and functional fungal genomics

    Directory of Open Access Journals (Sweden)

    Kim Seungill

    2008-12-01

    Full Text Available Abstract Background Since the full genome sequences of Saccharomyces cerevisiae were released in 1996, genome sequences of over 90 fungal species have become publicly available. The heterogeneous formats of genome sequences archived in different sequencing centers hampered the integration of the data for efficient and comprehensive comparative analyses. The Comparative Fungal Genomics Platform (CFGP was developed to archive these data via a single standardized format that can support multifaceted and integrated analyses of the data. To facilitate efficient data visualization and utilization within and across species based on the architecture of CFGP and associated databases, a new genome browser was needed. Results The Seoul National University Genome Browser (SNUGB integrates various types of genomic information derived from 98 fungal/oomycete (137 datasets and 34 plant and animal (38 datasets species, graphically presents germane features and properties of each genome, and supports comparison between genomes. The SNUGB provides three different forms of the data presentation interface, including diagram, table, and text, and six different display options to support visualization and utilization of the stored information. Information for individual species can be quickly accessed via a new tool named the taxonomy browser. In addition, SNUGB offers four useful data annotation/analysis functions, including 'BLAST annotation.' The modular design of SNUGB makes its adoption to support other comparative genomic platforms easy and facilitates continuous expansion. Conclusion The SNUGB serves as a powerful platform supporting comparative and functional genomics within the fungal kingdom and also across other kingdoms. All data and functions are available at the web site http://genomebrowser.snu.ac.kr/.

  5. Human Genome Epidemiology : A scientific foundation for using genetic information to improve health and prevent disease

    Directory of Open Access Journals (Sweden)

    Stefania Boccia

    2005-03-01

    Full Text Available

    Human health is determined by the interplay of genetic factors and the environment. In this context the recent advances in human genomics are expected to play a central role in medicine and public health by providing genetic information for disease prediction and prevention.

    After the completion of the human genome sequencing, a fundamental step will be represented by the translation of these discoveries into meaningful actions to improve health and prevent diseases, and the field of epidemiology plays a central role in this effort. These are some of the issues addressed by Human Genome Epidemiology –A scientific foundation for using genetic information to improve health and prevent disease, a volume edited by Prof. M. Khoury, Prof. J. Little, Prof.W. Burke and published by Oxford university Press 2004.

    This book describes the important role that epidemiological methods play in the continuum from gene discovery to the development and application of genetic tests. The Authors calls this continuum human genome epidemiology (HuGE to denote an evolving field of inquiry that uses systematic applications of epidemiological methods to assess the impact of human genetic variation on health and disease.

    The book is divided into four sections and it is structured to allow readers to proceed systematically from the fundamentals of genome technology and discovery, to the epidemiological approaches, to gene characterisation, to the evaluation of genetic tests and their use in health services and public health.

  6. The impact of the human genome project on risk assessment

    International Nuclear Information System (INIS)

    Katarzyna Doerffer; Paul Unrau.

    1996-01-01

    The radiation protection approach to risk assessment assumes that cancer induction following radiation exposure is purely random. Present risk assessment methods derive risk from cancer incidence frequencies in exposed populations and associate disease outcomes totally with the level of exposure to ionizing red aeon. Exposure defines a risk factor that affects the probability of the disease outcome. But cancer risk can be affected by other risk factors such as underlying genetic factors (predisposition) of the exposed organism. These genetic risk factors are now becoming available for incorporation into ionizing radiation risk assessment Progress in the Human Genome Project (HOP) will lead to direct assays to measure the effects of genetic risk determinants in disease outcomes. When all genetic risk determinants are known and incorporated into risk assessment it will be possible to reevaluate the role of ionizing radiation in the causation of cancer. (author)

  7. Information Technology in Engineering and Project Management

    Directory of Open Access Journals (Sweden)

    Chien-Ho Ko

    2017-01-01

    Full Text Available Information Technology (IT can be regarded as the use of computers to store, analyze, and manipulate data (Daintith, 2009. With the rapid development of personal computers, IT has been widely applied in nearly every field (Davenport, 2013. This issue presents five papers covering engineering and project management, three of which focus on the application of IT to solve engineering and project management issues, while one presents research into public private partnerships, and another into cash flow forecasting.

  8. National Human Genome Research Institute

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  9. Spiral model pilot project information model

    Science.gov (United States)

    1991-01-01

    The objective was an evaluation of the Spiral Model (SM) development approach to allow NASA Marshall to develop an experience base of that software management methodology. A discussion is presented of the Information Model (IM) that was used as part of the SM methodology. A key concept of the SM is the establishment of an IM to be used by management to track the progress of a project. The IM is the set of metrics that is to be measured and reported throughout the life of the project. These metrics measure both the product and the process to ensure the quality of the final delivery item and to ensure the project met programmatic guidelines. The beauty of the SM, along with the IM, is the ability to measure not only the correctness of the specification and implementation of the requirements but to also obtain a measure of customer satisfaction.

  10. An empirical Bayes method for updating inferences in analysis of quantitative trait loci using information from related genome scans.

    Science.gov (United States)

    Zhang, Kui; Wiener, Howard; Beasley, Mark; George, Varghese; Amos, Christopher I; Allison, David B

    2006-08-01

    Individual genome scans for quantitative trait loci (QTL) mapping often suffer from low statistical power and imprecise estimates of QTL location and effect. This lack of precision yields large confidence intervals for QTL location, which are problematic for subsequent fine mapping and positional cloning. In prioritizing areas for follow-up after an initial genome scan and in evaluating the credibility of apparent linkage signals, investigators typically examine the results of other genome scans of the same phenotype and informally update their beliefs about which linkage signals in their scan most merit confidence and follow-up via a subjective-intuitive integration approach. A method that acknowledges the wisdom of this general paradigm but formally borrows information from other scans to increase confidence in objectivity would be a benefit. We developed an empirical Bayes analytic method to integrate information from multiple genome scans. The linkage statistic obtained from a single genome scan study is updated by incorporating statistics from other genome scans as prior information. This technique does not require that all studies have an identical marker map or a common estimated QTL effect. The updated linkage statistic can then be used for the estimation of QTL location and effect. We evaluate the performance of our method by using extensive simulations based on actual marker spacing and allele frequencies from available data. Results indicate that the empirical Bayes method can account for between-study heterogeneity, estimate the QTL location and effect more precisely, and provide narrower confidence intervals than results from any single individual study. We also compared the empirical Bayes method with a method originally developed for meta-analysis (a closely related but distinct purpose). In the face of marked heterogeneity among studies, the empirical Bayes method outperforms the comparator.

  11. Genetics, genomes and cloning the biotechnology revolution

    CERN Document Server

    CERN. Geneva

    1999-01-01

    As this century draws to a close, spectacular advances in the fields of genomics and genetics are opening up dramatic new horizons for medicine. For much of the 20th century, genetic research has focused on rare diseases caused by mutations in a particular gene. However, more recently it has been realised that common genetic variations (polymorphisms), interacting with the environment, can influence an individual's susceptibility to diseases widely represented in our populations (e.g. mental illness and asthma), redefining the term "genetic disease". Officially starting in 1990, the Human Genome Project was a $3-billion, 15-year program to find the estimated 80,000 human genes and determine the sequence of the 3 billion DNA building blocks that underlie all of human biology and its diversity. The resulting boom in genetic information and technologies, not only from humans, but from many other organisms, means that we now have new tools to understand and treat normal and disease states. This information is bei...

  12. Genomic dissection of anthracnose resistant response in sorghum [Sorghum bicolor (L.)

    Science.gov (United States)

    The goal of this project is to use a genomics-based approaches to identify anthracnose resistance loci from diverse sorghum germplasm as an effort to the disease resistance mechanism of at least one of these genes. This information will provide plant breeders with a tool kit that can be used to maxi...

  13. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  14. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  15. Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation.

    Science.gov (United States)

    Nowrousian, Minou; Würtz, Christian; Pöggeler, Stefanie; Kück, Ulrich

    2004-03-01

    One of the most challenging parts of large scale sequencing projects is the identification of functional elements encoded in a genome. Recently, studies of genomes of up to six different Saccharomyces species have demonstrated that a comparative analysis of genome sequences from closely related species is a powerful approach to identify open reading frames and other functional regions within genomes [Science 301 (2003) 71, Nature 423 (2003) 241]. Here, we present a comparison of selected sequences from Sordaria macrospora to their corresponding Neurospora crassa orthologous regions. Our analysis indicates that due to the high degree of sequence similarity and conservation of overall genomic organization, S. macrospora sequence information can be used to simplify the annotation of the N. crassa genome.

  16. Molluscan Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  17. Project Integration Architecture: Inter-Application Propagation of Information

    Science.gov (United States)

    Jones, William Henry

    2005-01-01

    A principal goal of the Project Integration Architecture (PIA) is to facilitate the meaningful inter-application transfer of application-value-added information. Such exchanging applications may be largely unrelated to each other except through their applicability to an overall project; however, the PIA effort recognizes as fundamental the need to make such applications cooperate despite wide disparaties either in the fidelity of the analyses carried out, or even the disciplines of the analysis. This paper discusses the approach and techniques applied and anticipated by the PIA project in treating this need.

  18. The human genome project and novel aspects of cytochrome P450 research

    International Nuclear Information System (INIS)

    Ingelman-Sundberg, Magnus

    2005-01-01

    Currently, 57 active cytochrome P450 (CYP) genes and 58 pseudogenes are known to be present in the human genome. Among the genes discovered by initiatives in the human genome project are CYP2R1, CYP2W1, CYP2S1, CYP2U1 and CYP3A43, the latter apparently encoding a pseudoenzyme. The function, polymorphism and regulation of these genes are still to be discovered to a great extent. The polymorphism of drug metabolizing CYPs is extensive and influences the outcome of drug therapy causing lack of response or adverse drug reactions. The basis for the differences in the global distribution of the polymorphic variants is inactivating gene mutations and subsequent genetic drift. However, polymorphic alleles carrying multiple active gene copies also exist and are suggested in case of CYP2D6 to be caused by positive selection due to development of alkaloid resistance in North East Africa about 10,000-5000 BC. The knowledge about the CYP genes and their polymorphisms is of fundamental importance for effective drug therapy and for drug development as well as for understanding metabolic activation of carcinogens and other xenobiotics. Here, a short review of the current knowledge is given

  19. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy.

    Science.gov (United States)

    Rittmann, Bruce E; Krajmalnik-Brown, Rosa; Halden, Rolf U

    2008-08-01

    Microorganisms can produce renewable energy in large quantities and without damaging the environment or disrupting food supply. The microbial communities must be robust and self-stabilizing, and their essential syntrophies must be managed. Pre-genomic, genomic and post-genomic tools can provide crucial information about the structure and function of these microbial communities. Applying these tools will help accelerate the rate at which microbial bioenergy processes move from intriguing science to real-world practice.

  20. HTS-DB: an online resource to publish and query data from functional genomics high-throughput siRNA screening projects.

    Science.gov (United States)

    Saunders, Rebecca E; Instrell, Rachael; Rispoli, Rossella; Jiang, Ming; Howell, Michael

    2013-01-01

    High-throughput screening (HTS) uses technologies such as RNA interference to generate loss-of-function phenotypes on a genomic scale. As these technologies become more popular, many research institutes have established core facilities of expertise to deal with the challenges of large-scale HTS experiments. As the efforts of core facility screening projects come to fruition, focus has shifted towards managing the results of these experiments and making them available in a useful format that can be further mined for phenotypic discovery. The HTS-DB database provides a public view of data from screening projects undertaken by the HTS core facility at the CRUK London Research Institute. All projects and screens are described with comprehensive assay protocols, and datasets are provided with complete descriptions of analysis techniques. This format allows users to browse and search data from large-scale studies in an informative and intuitive way. It also provides a repository for additional measurements obtained from screens that were not the focus of the project, such as cell viability, and groups these data so that it can provide a gene-centric summary across several different cell lines and conditions. All datasets from our screens that can be made available can be viewed interactively and mined for further hit lists. We believe that in this format, the database provides researchers with rapid access to results of large-scale experiments that might facilitate their understanding of genes/compounds identified in their own research. DATABASE URL: http://hts.cancerresearchuk.org/db/public.

  1. MIPS: a database for protein sequences, homology data and yeast genome information.

    Science.gov (United States)

    Mewes, H W; Albermann, K; Heumann, K; Liebl, S; Pfeiffer, F

    1997-01-01

    The MIPS group (Martinsried Institute for Protein Sequences) at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, collects, processes and distributes protein sequence data within the framework of the tripartite association of the PIR-International Protein Sequence Database (,). MIPS contributes nearly 50% of the data input to the PIR-International Protein Sequence Database. The database is distributed on CD-ROM together with PATCHX, an exhaustive supplement of unique, unverified protein sequences from external sources compiled by MIPS. Through its WWW server (http://www.mips.biochem.mpg.de/ ) MIPS permits internet access to sequence databases, homology data and to yeast genome information. (i) Sequence similarity results from the FASTA program () are stored in the FASTA database for all proteins from PIR-International and PATCHX. The database is dynamically maintained and permits instant access to FASTA results. (ii) Starting with FASTA database queries, proteins have been classified into families and superfamilies (PROT-FAM). (iii) The HPT (hashed position tree) data structure () developed at MIPS is a new approach for rapid sequence and pattern searching. (iv) MIPS provides access to the sequence and annotation of the complete yeast genome (), the functional classification of yeast genes (FunCat) and its graphical display, the 'Genome Browser' (). A CD-ROM based on the JAVA programming language providing dynamic interactive access to the yeast genome and the related protein sequences has been compiled and is available on request. PMID:9016498

  2. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  3. A project management quality cost information system for the construction industry

    OpenAIRE

    Love, PED; Irani, Z

    2003-01-01

    A prototype Project Management Quality Cost System (PROMQACS) was developed to determine quality costs in construction projects. The structure and information requirements that are needed to provide a classification system of quality costs were identified and discussed. The developed system was tested and implemented in two case study construction projects to determine the information and management issues needed to develop PROMQACS into a software program. In addition, the system was used to...

  4. GDC 2: Compression of large collections of genomes.

    Science.gov (United States)

    Deorowicz, Sebastian; Danek, Agnieszka; Niemiec, Marcin

    2015-06-25

    The fall of prices of the high-throughput genome sequencing changes the landscape of modern genomics. A number of large scale projects aimed at sequencing many human genomes are in progress. Genome sequencing also becomes an important aid in the personalized medicine. One of the significant side effects of this change is a necessity of storage and transfer of huge amounts of genomic data. In this paper we deal with the problem of compression of large collections of complete genomic sequences. We propose an algorithm that is able to compress the collection of 1092 human diploid genomes about 9,500 times. This result is about 4 times better than what is offered by the other existing compressors. Moreover, our algorithm is very fast as it processes the data with speed 200 MB/s on a modern workstation. In a consequence the proposed algorithm allows storing the complete genomic collections at low cost, e.g., the examined collection of 1092 human genomes needs only about 700 MB when compressed, what can be compared to about 6.7 TB of uncompressed FASTA files. The source code is available at http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=gdc&subpage=about.

  5. PopGenome: An Efficient Swiss Army Knife for Population Genomic Analyses in R

    OpenAIRE

    Pfeifer, Bastian; Wittelsbürger, Ulrich; Ramos-Onsins, Sebastian E.; Lercher, Martin J.

    2014-01-01

    Although many computer programs can perform population genetics calculations, they are typically limited in the analyses and data input formats they offer; few applications can process the large data sets produced by whole-genome resequencing projects. Furthermore, there is no coherent framework for the easy integration of new statistics into existing pipelines, hindering the development and application of new population genetics and genomics approaches. Here, we present PopGenome, a populati...

  6. A Framework for BIM-Enabled Life-Cycle Information Management of Construction Project

    Directory of Open Access Journals (Sweden)

    Xun Xu

    2014-08-01

    Full Text Available BIM has been widely used in project management, but on the whole the applications have been scattered and the BIM models have not been deployed throughout the whole project life-cycle. Each participant builds their own BIM, so there is a major problem in how to integrate these dynamic and fragmented data together. In order to solve this problem, this paper focuses on BIM-based life-cycle information management and builds a framework for BIM-enabled life-cycle information management. To organize the life-cycle information well, the information components and information flow during the project life-cycle are defined. Then, the application of BIM in life-cycle information management is analysed. This framework will provide a unified platform for information management and ensure data integrity.

  7. Multi-scale coding of genomic information: From DNA sequence to genome structure and function

    International Nuclear Information System (INIS)

    Arneodo, Alain; Vaillant, Cedric; Audit, Benjamin; Argoul, Francoise; D'Aubenton-Carafa, Yves; Thermes, Claude

    2011-01-01

    Understanding how chromatin is spatially and dynamically organized in the nucleus of eukaryotic cells and how this affects genome functions is one of the main challenges of cell biology. Since the different orders of packaging in the hierarchical organization of DNA condition the accessibility of DNA sequence elements to trans-acting factors that control the transcription and replication processes, there is actually a wealth of structural and dynamical information to learn in the primary DNA sequence. In this review, we show that when using concepts, methodologies, numerical and experimental techniques coming from statistical mechanics and nonlinear physics combined with wavelet-based multi-scale signal processing, we are able to decipher the multi-scale sequence encoding of chromatin condensation-decondensation mechanisms that play a fundamental role in regulating many molecular processes involved in nuclear functions.

  8. Human genome I

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    An international conference, Human Genome I, was held Oct. 2-4, 1989 in San Diego, Calif. Selected speakers discussed: Current Status of the Genome Project; Technique Innovations; Interesting regions; Applications; and Organization - Different Views of Current and Future Science and Procedures. Posters, consisting of 119 presentations, were displayed during the sessions. 119 were indexed for inclusion to the Energy Data Base

  9. Efficient Breeding by Genomic Mating.

    Science.gov (United States)

    Akdemir, Deniz; Sánchez, Julio I

    2016-01-01

    Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.

  10. Information, Vol. 1, Number 4. Teacher Corps Dissemination Project Bulletin.

    Science.gov (United States)

    Rosenau, Fred S., Ed.

    Guidelines are provided for disseminating information on teacher corps projects. Information is given on experienced disseminators such as existing networks that are available to help in planning. Suggestions are made on targeting information and marketing. (JD)

  11. ABrowse - a customizable next-generation genome browser framework

    Directory of Open Access Journals (Sweden)

    Kong Lei

    2012-01-01

    Full Text Available Abstract Background With the rapid growth of genome sequencing projects, genome browser is becoming indispensable, not only as a visualization system but also as an interactive platform to support open data access and collaborative work. Thus a customizable genome browser framework with rich functions and flexible configuration is needed to facilitate various genome research projects. Results Based on next-generation web technologies, we have developed a general-purpose genome browser framework ABrowse which provides interactive browsing experience, open data access and collaborative work support. By supporting Google-map-like smooth navigation, ABrowse offers end users highly interactive browsing experience. To facilitate further data analysis, multiple data access approaches are supported for external platforms to retrieve data from ABrowse. To promote collaborative work, an online user-space is provided for end users to create, store and share comments, annotations and landmarks. For data providers, ABrowse is highly customizable and configurable. The framework provides a set of utilities to import annotation data conveniently. To build ABrowse on existing annotation databases, data providers could specify SQL statements according to database schema. And customized pages for detailed information display of annotation entries could be easily plugged in. For developers, new drawing strategies could be integrated into ABrowse for new types of annotation data. In addition, standard web service is provided for data retrieval remotely, providing underlying machine-oriented programming interface for open data access. Conclusions ABrowse framework is valuable for end users, data providers and developers by providing rich user functions and flexible customization approaches. The source code is published under GNU Lesser General Public License v3.0 and is accessible at http://www.abrowse.org/. To demonstrate all the features of ABrowse, a live demo for

  12. ABrowse--a customizable next-generation genome browser framework.

    Science.gov (United States)

    Kong, Lei; Wang, Jun; Zhao, Shuqi; Gu, Xiaocheng; Luo, Jingchu; Gao, Ge

    2012-01-05

    With the rapid growth of genome sequencing projects, genome browser is becoming indispensable, not only as a visualization system but also as an interactive platform to support open data access and collaborative work. Thus a customizable genome browser framework with rich functions and flexible configuration is needed to facilitate various genome research projects. Based on next-generation web technologies, we have developed a general-purpose genome browser framework ABrowse which provides interactive browsing experience, open data access and collaborative work support. By supporting Google-map-like smooth navigation, ABrowse offers end users highly interactive browsing experience. To facilitate further data analysis, multiple data access approaches are supported for external platforms to retrieve data from ABrowse. To promote collaborative work, an online user-space is provided for end users to create, store and share comments, annotations and landmarks. For data providers, ABrowse is highly customizable and configurable. The framework provides a set of utilities to import annotation data conveniently. To build ABrowse on existing annotation databases, data providers could specify SQL statements according to database schema. And customized pages for detailed information display of annotation entries could be easily plugged in. For developers, new drawing strategies could be integrated into ABrowse for new types of annotation data. In addition, standard web service is provided for data retrieval remotely, providing underlying machine-oriented programming interface for open data access. ABrowse framework is valuable for end users, data providers and developers by providing rich user functions and flexible customization approaches. The source code is published under GNU Lesser General Public License v3.0 and is accessible at http://www.abrowse.org/. To demonstrate all the features of ABrowse, a live demo for Arabidopsis thaliana genome has been built at http://arabidopsis.cbi.edu.cn/.

  13. ABrowse - a customizable next-generation genome browser framework

    Science.gov (United States)

    2012-01-01

    Background With the rapid growth of genome sequencing projects, genome browser is becoming indispensable, not only as a visualization system but also as an interactive platform to support open data access and collaborative work. Thus a customizable genome browser framework with rich functions and flexible configuration is needed to facilitate various genome research projects. Results Based on next-generation web technologies, we have developed a general-purpose genome browser framework ABrowse which provides interactive browsing experience, open data access and collaborative work support. By supporting Google-map-like smooth navigation, ABrowse offers end users highly interactive browsing experience. To facilitate further data analysis, multiple data access approaches are supported for external platforms to retrieve data from ABrowse. To promote collaborative work, an online user-space is provided for end users to create, store and share comments, annotations and landmarks. For data providers, ABrowse is highly customizable and configurable. The framework provides a set of utilities to import annotation data conveniently. To build ABrowse on existing annotation databases, data providers could specify SQL statements according to database schema. And customized pages for detailed information display of annotation entries could be easily plugged in. For developers, new drawing strategies could be integrated into ABrowse for new types of annotation data. In addition, standard web service is provided for data retrieval remotely, providing underlying machine-oriented programming interface for open data access. Conclusions ABrowse framework is valuable for end users, data providers and developers by providing rich user functions and flexible customization approaches. The source code is published under GNU Lesser General Public License v3.0 and is accessible at http://www.abrowse.org/. To demonstrate all the features of ABrowse, a live demo for Arabidopsis thaliana genome

  14. Genomic sequencing in clinical trials

    OpenAIRE

    Mestan, Karen K; Ilkhanoff, Leonard; Mouli, Samdeep; Lin, Simon

    2011-01-01

    Abstract Human genome sequencing is the process by which the exact order of nucleic acid base pairs in the 24 human chromosomes is determined. Since the completion of the Human Genome Project in 2003, genomic sequencing is rapidly becoming a major part of our translational research efforts to understand and improve human health and disease. This article reviews the current and future directions of clinical research with respect to genomic sequencing, a technology that is just beginning to fin...

  15. [The human variome project and its progress].

    Science.gov (United States)

    Gao, Shan; Zhang, Ning; Zhang, Lei; Duan, Guang-You; Zhang, Tao

    2010-11-01

    The main goal of post genomics is to explain how the genome, the map of which has been constructed in the Human Genome Project, affacts activities of life. This leads to generate multiple "omics": structural genomics, functional genomics, proteomics, metabonomics, et al. In Jun. 2006, Melbourne, Australia, Human Genome Variation Society (HGVS) initiated the Human Variome Project (HVP) to collect all the sequence variation and polymorphism data worldwidely. HVP is to search and determine those mutations related with human diseases by association study between genetype and phenotype on the scale of genome level and other methods. Those results will be translated into clinical application. Considering the potential effects of this project on human health, this paper introduced its origin and main content in detail and discussed its meaning and prospect.

  16. MBGD update 2013: the microbial genome database for exploring the diversity of microbial world.

    Science.gov (United States)

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2013-01-01

    The microbial genome database for comparative analysis (MBGD, available at http://mbgd.genome.ad.jp/) is a platform for microbial genome comparison based on orthology analysis. As its unique feature, MBGD allows users to conduct orthology analysis among any specified set of organisms; this flexibility allows MBGD to adapt to a variety of microbial genomic study. Reflecting the huge diversity of microbial world, the number of microbial genome projects now becomes several thousands. To efficiently explore the diversity of the entire microbial genomic data, MBGD now provides summary pages for pre-calculated ortholog tables among various taxonomic groups. For some closely related taxa, MBGD also provides the conserved synteny information (core genome alignment) pre-calculated using the CoreAligner program. In addition, efficient incremental updating procedure can create extended ortholog table by adding additional genomes to the default ortholog table generated from the representative set of genomes. Combining with the functionalities of the dynamic orthology calculation of any specified set of organisms, MBGD is an efficient and flexible tool for exploring the microbial genome diversity.

  17. Whitehead Policy Symposium. The Human Genome Project: Science, law, and social change in the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, E.K.

    2000-02-17

    Advances in the biomedical sciences, especially in human genomics, will dramatically influence law, medicine, public health, and many other sectors of our society in the decades ahead. The public already senses the revolutionary nature of genomic knowledge. In the US and Europe, we have seen widespread discussions about genetic discrimination in health insurance; privacy issues raised by the proliferation of DNA data banks; the challenge of interpreting new DNA diagnostic tests; changing definitions of what it means to be healthy; and the science and ethics of cloning animals and human beings. The primary goal of the Whitehead/ASLME Policy Symposium was to provide a bridge between the research community and professionals, who were just beginning to grasp the potential impact of new genetic technologies on their fields. The ''Human Genome Project: Science, Law, and Social Change in the 21st Century'' initially was designed as a forum for 300-500 physicians, lawyers, consumers, ethicists, and scientists to explore the impact of new genetic technologies and prepare for the challenges ahead.

  18. Genomic research perspectives in Kazakhstan

    Directory of Open Access Journals (Sweden)

    Ainur Akilzhanova

    2014-01-01

    Full Text Available Introduction: Technological advancements rapidly propel the field of genome research. Advances in genetics and genomics such as the sequence of the human genome, the human haplotype map, open access databases, cheaper genotyping and chemical genomics, have transformed basic and translational biomedical research. Several projects in the field of genomic and personalized medicine have been conducted at the Center for Life Sciences in Nazarbayev University. The prioritized areas of research include: genomics of multifactorial diseases, cancer genomics, bioinformatics, genetics of infectious diseases and population genomics. At present, DNA-based risk assessment for common complex diseases, application of molecular signatures for cancer diagnosis and prognosis, genome-guided therapy, and dose selection of therapeutic drugs are the important issues in personalized medicine. Results: To further develop genomic and biomedical projects at Center for Life Sciences, the development of bioinformatics research and infrastructure and the establishment of new collaborations in the field are essential. Widespread use of genetic tools will allow the identification of diseases before the onset of clinical symptoms, the individualization of drug treatment, and could induce individual behavioral changes on the basis of calculated disease risk. However, many challenges remain for the successful translation of genomic knowledge and technologies into health advances, such as medicines and diagnostics. It is important to integrate research and education in the fields of genomics, personalized medicine, and bioinformatics, which will be possible with opening of the new Medical Faculty at Nazarbayev University. People in practice and training need to be educated about the key concepts of genomics and engaged so they can effectively apply their knowledge in a matter that will bring the era of genomic medicine to patient care. This requires the development of well

  19. Communicating genetic risk information for common disorders in the era of genomic medicine.

    Science.gov (United States)

    Lautenbach, Denise M; Christensen, Kurt D; Sparks, Jeffrey A; Green, Robert C

    2013-01-01

    Communicating genetic risk information in ways that maximize understanding and promote health is increasingly important given the rapidly expanding availability and capabilities of genomic technologies. A well-developed literature on risk communication in general provides guidance for best practices, including presentation of information in multiple formats, attention to framing effects, use of graphics, sensitivity to the way numbers are presented, parsimony of information, attentiveness to emotions, and interactivity as part of the communication process. Challenges to communicating genetic risk information include deciding how best to tailor it, streamlining the process, deciding what information to disclose, accepting that communications may have limited influence, and understanding the impact of context. Meeting these challenges has great potential for empowering individuals to adopt healthier lifestyles and improve public health, but will require multidisciplinary approaches and collaboration.

  20. A map of human genome variation from population-scale sequencing.

    Science.gov (United States)

    Abecasis, Gonçalo R; Altshuler, David; Auton, Adam; Brooks, Lisa D; Durbin, Richard M; Gibbs, Richard A; Hurles, Matt E; McVean, Gil A

    2010-10-28

    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

  1. Ethical Considerations Related to Return of Results from Genomic Medicine Projects: The eMERGE Network (Phase III) Experience

    Science.gov (United States)

    Fossey, Robyn; Kochan, David; Winkler, Erin; Pacyna, Joel E.; Olson, Janet; Thibodeau, Stephen; Connolly, John J.; Harr, Margaret; Behr, Meckenzie A.; Prows, Cynthia A.; Cobb, Beth; Myers, Melanie F.; Leslie, Nancy D.; Namjou-Khales, Bahram; Milo Rasouly, Hila; Wynn, Julia; Fedotov, Alexander; Chung, Wendy K.; Gharavi, Ali; Williams, Janet L.; Pais, Lynn; Holm, Ingrid; Aufox, Sharon; Smith, Maureen E.; Scrol, Aaron; Leppig, Kathleen; Jarvik, Gail P.; Wiesner, Georgia L.; Li, Rongling; Stroud, Mary; Smoller, Jordan W.; Sharp, Richard R.; Kullo, Iftikhar J.

    2018-01-01

    We examined the Institutional Review Board (IRB) process at 9 academic institutions in the electronic Medical Records and Genomics (eMERGE) Network, for proposed electronic health record-based genomic medicine studies, to identify common questions and concerns. Sequencing of 109 disease related genes and genotyping of 14 actionable variants is being performed in ~28,100 participants from the 9 sites. Pathogenic/likely pathogenic variants in actionable genes are being returned to study participants. We examined each site’s research protocols, informed-consent materials, and interactions with IRB staff. Research staff at each site completed questionnaires regarding their IRB interactions. The time to prepare protocols for IRB submission, number of revisions and time to approval ranged from 10–261 days, 0–11, and 11–90 days, respectively. IRB recommendations related to the readability of informed consent materials, specifying the full range of potential risks, providing options for receiving limited results or withdrawal, sharing of information with family members, and establishing the mechanisms to answer participant questions. IRBs reviewing studies that involve the return of results from genomic sequencing have a diverse array of concerns, and anticipating these concerns can help investigators to more effectively engage IRBs. PMID:29301385

  2. Information technology project risk management in Peru

    OpenAIRE

    Del Carpio Gallegos, Javier

    2014-01-01

    This article shows how some principles, uses, and practices of risk management are applied in information technology projects in Peru; in the last four years, in representative sectors like manufacturing, banking, information and communications, academics institutions, construction, government, consulting, services, and others. El presente artículo muestra algunos principios, usos y prácticas de cómo la gestión de riesgos de proyectos de tecnología se ha llevado a cabo en los últimos cuatr...

  3. Development of a Network-Based Information Infrastructure for Fisheries and Hydropower Information in the Columbia River Basin : Final Project Report.

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Timothy D.; Johnson, Gary E.; Perkins, Bill

    1997-05-01

    The goal of this project was to help develop technology and a unified structure to access and disseminate information related to the Bonneville Power Administration's fish and wildlife responsibility in the Pacific Northwest. BPA desires to increase access to, and exchange of, information produced by the Environment Fish, and Wildlife Group in concert with regional partners. Historically, data and information have been managed through numerous centralized, controlled information systems. Fisheries information has been fragmented and not widely exchanged. Where exchange has occurred, it often is not timely enough to allow resource managers to effectively use the information to guide planning and decision making. This project (and related projects) have successfully developed and piloted a network-based infrastructure that will serve as a vehicle to transparently connect existing information systems in a manner that makes information exchange efficient and inexpensive. This project was designed to provide a mechanism to help BPA address measures in the Northwest Power Planning Council's (NPPC) Fish and Wildlife program: 3.2H Disseminate Research and Monitoring Information and 5.1A.5 manage water supplies in accordance with the Annual Implementation Work Plan. This project also provided resources that can be used to assist monitoring and evaluation of the Program.

  4. Genome technologies and personalized dental medicine.

    Science.gov (United States)

    Eng, G; Chen, A; Vess, T; Ginsburg, G S

    2012-04-01

    The addition of genomic information to our understanding of oral disease is driving important changes in oral health care. It is anticipated that genome-derived information will promote a deeper understanding of disease etiology and permit earlier diagnosis, allowing for preventative measures prior to disease onset rather than treatment that attempts to repair the diseased state. Advances in genome technologies have fueled expectations for this proactive healthcare approach. Application of genomic testing is expanding and has already begun to find its way into the practice of clinical dentistry. To take full advantage of the information and technologies currently available, it is vital that dental care providers, consumers, and policymakers be aware of genomic approaches to understanding of oral diseases and the application of genomic testing to disease diagnosis and treatment. Ethical, legal, clinical, and educational initiatives are also required to responsibly incorporate genomic information into the practice of dentistry. This article provides an overview of the application of genomic technologies to oral health care and introduces issues that require consideration if we are to realize the full potential of genomics to enable the practice of personalized dental medicine. © 2011 John Wiley & Sons A/S.

  5. Genome Investigations of Vector Competence in Aedes aegypti to Inform Novel Arbovirus Disease Control Approaches

    Directory of Open Access Journals (Sweden)

    David W. Severson

    2016-10-01

    Full Text Available Dengue (DENV, yellow fever, chikungunya, and Zika virus transmission to humans by a mosquito host is confounded by both intrinsic and extrinsic variables. Besides virulence factors of the individual arboviruses, likelihood of virus transmission is subject to variability in the genome of the primary mosquito vector, Aedes aegypti. The “vectorial capacity” of A. aegypti varies depending upon its density, biting rate, and survival rate, as well as its intrinsic ability to acquire, host and transmit a given arbovirus. This intrinsic ability is known as “vector competence”. Based on whole transcriptome analysis, several genes and pathways have been predicated to have an association with a susceptible or refractory response in A. aegypti to DENV infection. However, the functional genomics of vector competence of A. aegypti is not well understood, primarily due to lack of integrative approaches in genomic or transcriptomic studies. In this review, we focus on the present status of genomics studies of DENV vector competence in A. aegypti as limited information is available relative to the other arboviruses. We propose future areas of research needed to facilitate the integration of vector and virus genomics and environmental factors to work towards better understanding of vector competence and vectorial capacity in natural conditions.

  6. Solid waste information and tracking system server conversion project management plan

    International Nuclear Information System (INIS)

    MAY, D.L.

    1999-01-01

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents

  7. Musa sebagai Model Genom

    Directory of Open Access Journals (Sweden)

    RITA MEGIA

    2005-12-01

    Full Text Available During the meeting in Arlington, USA in 2001, the scientists grouped in PROMUSA agreed with the launching of the Global Musa Genomics Consortium. The Consortium aims to apply genomics technologies to the improvement of this important crop. These genome projects put banana as the third model species after Arabidopsis and rice that will be analyzed and sequenced. Comparing to Arabidopsis and rice, banana genome provides a unique and powerful insight into structural and in functional genomics that could not be found in those two species. This paper discussed these subjects-including the importance of banana as the fourth main food in the world, the evolution and biodiversity of this genetic resource and its parasite.

  8. A Snapshot of the Emerging Tomato Genome Sequence

    Directory of Open Access Journals (Sweden)

    Lukas A. Mueller

    2009-03-01

    Full Text Available The genome of tomato ( L. is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy, and the United States as part of the larger “International Solanaceae Genome Project (SOL: Systems Approach to Diversity and Adaptation” initiative. The tomato genome sequencing project uses an ordered bacterial artificial chromosome (BAC approach to generate a high-quality tomato euchromatic genome sequence for use as a reference genome for the Solanaceae and euasterids. Sequence is deposited at GenBank and at the SOL Genomics Network (SGN. Currently, there are around 1000 BACs finished or in progress, representing more than a third of the projected euchromatic portion of the genome. An annotation effort is also underway by the International Tomato Annotation Group. The expected number of genes in the euchromatin is ∼40,000, based on an estimate from a preliminary annotation of 11% of finished sequence. Here, we present this first snapshot of the emerging tomato genome and its annotation, a short comparison with potato ( L. sequence data, and the tools available for the researchers to exploit this new resource are also presented. In the future, whole-genome shotgun techniques will be combined with the BAC-by-BAC approach to cover the entire tomato genome. The high-quality reference euchromatic tomato sequence is expected to be near completion by 2010.

  9. Balancing Benefits and Risks of Immortal Data: Participants' Views of Open Consent in the Personal Genome Project.

    Science.gov (United States)

    Zarate, Oscar A; Brody, Julia Green; Brown, Phil; Ramirez-Andreotta, Mónica D; Perovich, Laura; Matz, Jacob

    2016-01-01

    An individual's health, genetic, or environmental-exposure data, placed in an online repository, creates a valuable shared resource that can accelerate biomedical research and even open opportunities for crowd-sourcing discoveries by members of the public. But these data become "immortalized" in ways that may create lasting risk as well as benefit. Once shared on the Internet, the data are difficult or impossible to redact, and identities may be revealed by a process called data linkage, in which online data sets are matched to each other. Reidentification (re-ID), the process of associating an individual's name with data that were considered deidentified, poses risks such as insurance or employment discrimination, social stigma, and breach of the promises often made in informed-consent documents. At the same time, re-ID poses risks to researchers and indeed to the future of science, should re-ID end up undermining the trust and participation of potential research participants. The ethical challenges of online data sharing are heightened as so-called big data becomes an increasingly important research tool and driver of new research structures. Big data is shifting research to include large numbers of researchers and institutions as well as large numbers of participants providing diverse types of data, so the participants' consent relationship is no longer with a person or even a research institution. In addition, consent is further transformed because big data analysis often begins with descriptive inquiry and generation of a hypothesis, and the research questions cannot be clearly defined at the outset and may be unforeseeable over the long term. In this article, we consider how expanded data sharing poses new challenges, illustrated by genomics and the transition to new models of consent. We draw on the experiences of participants in an open data platform-the Personal Genome Project-to allow study participants to contribute their voices to inform ethical consent

  10. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Henrik [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Cantor, Michael [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Dusheyko, Serge [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Hua, Susan [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Poliakov, Alexander [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Shabalov, Igor [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Smirnova, Tatyana [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Grigoriev, Igor V. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Dubchak, Inna [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2013-11-12

    The U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a national user facility, serves the diverse scientific community by providing integrated high-throughput sequencing and computational analysis to enable system-based scientific approaches in support of DOE missions related to clean energy generation and environmental characterization. The JGI Genome Portal (http://genome.jgi.doe.gov) provides unified access to all JGI genomic databases and analytical tools. The JGI maintains extensive data management systems and specialized analytical capabilities to manage and interpret complex genomic data. A user can search, download and explore multiple data sets available for all DOE JGI sequencing projects including their status, assemblies and annotations of sequenced genomes. In this paper, we describe major updates of the Genome Portal in the past 2 years with a specific emphasis on efficient handling of the rapidly growing amount of diverse genomic data accumulated in JGI.

  11. Genome analysis of medicinal Ganoderma spp. with plant-pathogenic and saprotrophic life-styles.

    Science.gov (United States)

    Kües, Ursula; Nelson, David R; Liu, Chang; Yu, Guo-Jun; Zhang, Jianhui; Li, Jianqin; Wang, Xin-Cun; Sun, Hui

    2015-06-01

    Ganoderma is a fungal genus belonging to the Ganodermataceae family and Polyporales order. Plant-pathogenic species in this genus can cause severe diseases (stem, butt, and root rot) in economically important trees and perennial crops, especially in tropical countries. Ganoderma species are white rot fungi and have ecological importance in the breakdown of woody plants for nutrient mobilization. They possess effective machineries of lignocellulose-decomposing enzymes useful for bioenergy production and bioremediation. In addition, the genus contains many important species that produce pharmacologically active compounds used in health food and medicine. With the rapid adoption of next-generation DNA sequencing technologies, whole genome sequencing and systematic transcriptome analyses become affordable approaches to identify an organism's genes. In the last few years, numerous projects have been initiated to identify the genetic contents of several Ganoderma species, particularly in different strains of Ganoderma lucidum. In November 2013, eleven whole genome sequencing projects for Ganoderma species were registered in international databases, three of which were already completed with genomes being assembled to high quality. In addition to the nuclear genome, two mitochondrial genomes for Ganoderma species have also been reported. Complementing genome analysis, four transcriptome studies on various developmental stages of Ganoderma species have been performed. Information obtained from these studies has laid the foundation for the identification of genes involved in biological pathways that are critical for understanding the biology of Ganoderma, such as the mechanism of pathogenesis, the biosynthesis of active components, life cycle and cellular development, etc. With abundant genetic information becoming available, a few centralized resources have been established to disseminate the knowledge and integrate relevant data to support comparative genomic analyses of

  12. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  13. A Taste of Algal Genomes from the Joint Genome Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  14. Rhipicephalus microplus strain Deutsch, whole genome shotgun sequencing project Version 2

    Science.gov (United States)

    The cattle tick, Rhipicephalus (Boophilus) microplus, has a genome over 2.4 times the size of the human genome, and with over 70% of repetitive DNA, this genome would prove very costly to sequence at today's prices and difficult to assemble and analyze. Cot filtration/selection techniques were used ...

  15. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Developing reliable biomarkers of tumor cell drug sensitivity and resistance can guide hypothesis-driven basic science research and influence pre-therapy clinical decisions. A popular strategy for developing biomarkers uses characterizations of human tumor samples against a range of cancer drug responses that correlate with genomic change; developed largely from the efforts of the Cancer Cell Line Encyclopedia (CCLE and Sanger Cancer Genome Project (CGP. The purpose of this study is to provide an independent analysis of this data that aims to vet existing and add novel perspectives to biomarker discoveries and applications. Existing and alternative data mining and statistical methods will be used to a evaluate drug responses of compounds with similar mechanism of action (MOA, b examine measures of gene expression (GE, copy number (CN and mutation status (MUT biomarkers, combined with gene set enrichment analysis (GSEA, for hypothesizing biological processes important for drug response, c conduct global comparisons of GE, CN and MUT as biomarkers across all drugs screened in the CGP dataset, and d assess the positive predictive power of CGP-derived GE biomarkers as predictors of drug response in CCLE tumor cells. The perspectives derived from individual and global examinations of GEs, MUTs and CNs confirm existing and reveal unique and shared roles for these biomarkers in tumor cell drug sensitivity and resistance. Applications of CGP-derived genomic biomarkers to predict the drug response of CCLE tumor cells finds a highly significant ROC, with a positive predictive power of 0.78. The results of this study expand the available data mining and analysis methods for genomic biomarker development and provide additional support for using biomarkers to guide hypothesis-driven basic science research and pre-therapy clinical decisions.

  16. A map to a new treasure island: the human genome and the concept of common heritage.

    Science.gov (United States)

    Byk, C

    1998-06-01

    While the 1970's have been called the environmental years, the 1990's could be seen as the genome years. As the challenge to map and to sequence the human genome mobilized the scientific community, risks and benefits of information and uses that would derive from this project have also raised ethical issues at the international level. The particular interest of the 1997 UNESCO Declaration relies on the fact that it emphasizes both the scientific importance of genetics and the appropriate reinforcement of human rights in this area. It considers the human genome, at least symbolically, as the common heritage of humanity.

  17. Spent nuclear fuel project high-level information management plan

    Energy Technology Data Exchange (ETDEWEB)

    Main, G.C.

    1996-09-13

    This document presents the results of the Spent Nuclear Fuel Project (SNFP) Information Management Planning Project (IMPP), a short-term project that identified information management (IM) issues and opportunities within the SNFP and outlined a high-level plan to address them. This high-level plan for the SNMFP IM focuses on specific examples from within the SNFP. The plan`s recommendations can be characterized in several ways. Some recommendations address specific challenges that the SNFP faces. Others form the basis for making smooth transitions in several important IM areas. Still others identify areas where further study and planning are indicated. The team`s knowledge of developments in the IM industry and at the Hanford Site were crucial in deciding where to recommend that the SNFP act and where they should wait for Site plans to be made. Because of the fast pace of the SNFP and demands on SNFP staff, input and interaction were primarily between the IMPP team and members of the SNFP Information Management Steering Committee (IMSC). Key input to the IMPP came from a workshop where IMSC members and their delegates developed a set of draft IM principles. These principles, described in Section 2, became the foundation for the recommendations found in the transition plan outlined in Section 5. Availability of SNFP staff was limited, so project documents were used as a basis for much of the work. The team, realizing that the status of the project and the environment are continually changing, tried to keep abreast of major developments since those documents were generated. To the extent possible, the information contained in this document is current as of the end of fiscal year (FY) 1995. Programs and organizations on the Hanford Site as a whole are trying to maximize their return on IM investments. They are coordinating IM activities and trying to leverage existing capabilities. However, the SNFP cannot just rely on Sitewide activities to meet its IM requirements

  18. Technical specification for the Quality Information Management System (QIMS) Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.C.; Claussen, L.M.; Thurston, I.

    1992-01-01

    This document contains implementation details for the Quality Information Management System (QIMS) Pilot Project, which has been released for VAX/VMS systems using the INGRES RDBMS. The INGRES Applications-By-Forms (ABF) software development tool was used to define the modules and screens which comprise the QIMS Pilot application. These specifications together with the QIMS information model and corresponding database definition constitute the QIMS technical specification and implementation description presented herein. The QIMS Pilot Project represents a completed software product which has been released for production use. Further extension projects are planned which will release new versions for QIMS. These versions will offer expanded and enhanced functionality to meet further customer requirements not accommodated by the QIMS Pilot Project.

  19. A haplotype regression approach for genetic evaluation using sequences from the 1000 bull genomes Project

    International Nuclear Information System (INIS)

    Lakhssassi, K.; González-Recio, O.

    2017-01-01

    Haplotypes from sequencing data may improve the prediction accuracy in genomic evaluations as haplotypes are in stronger linkage disequilibrium with quantitative trait loci than markers from SNP chips. This study focuses first, on the creation of haplotypes in a population sample of 450 Holstein animals, with full-sequence data from the 1000 bull genomes project; and second, on incorporating them into the whole genome prediction model. In total, 38,319,258 SNPs (and indels) from Next Generation Sequencing were included in the analysis. After filtering variants with minor allele frequency (MAF< 0.025) 13,912,326 SNPs were available for the haplotypes extraction with findhap.f90. The number of SNPs in the haploblocks was on average 924 SNP (166,552 bp). Unique haplotypes were around 97% in all chromosomes and were ignored leaving 153,428 haplotypes. Estimated haplotypes had a large contribution to the total variance of genomic estimated breeding values for kilogram of protein, Global Type Index, Somatic Cell Score and Days Open (between 32 and 99.9%). Haploblocks containing haplotypes with large effects were selected by filtering for each trait, haplotypes whose effect was larger/lower than the mean plus/minus 3 times the standard deviation (SD) and 1 SD above the mean of the haplotypes effect distribution. Results showed that filtering by 3 SD would not be enough to capture a large proportion of genetic variance, whereas filtering by 1 SD could be useful but model convergence should be considered. Additionally, sequence haplotypes were able to capture additional genetic variance to the polygenic effect for traits undergoing lower selection intensity like fertility and health traits.

  20. A haplotype regression approach for genetic evaluation using sequences from the 1000 bull genomes Project

    Energy Technology Data Exchange (ETDEWEB)

    Lakhssassi, K.; González-Recio, O.

    2017-07-01

    Haplotypes from sequencing data may improve the prediction accuracy in genomic evaluations as haplotypes are in stronger linkage disequilibrium with quantitative trait loci than markers from SNP chips. This study focuses first, on the creation of haplotypes in a population sample of 450 Holstein animals, with full-sequence data from the 1000 bull genomes project; and second, on incorporating them into the whole genome prediction model. In total, 38,319,258 SNPs (and indels) from Next Generation Sequencing were included in the analysis. After filtering variants with minor allele frequency (MAF< 0.025) 13,912,326 SNPs were available for the haplotypes extraction with findhap.f90. The number of SNPs in the haploblocks was on average 924 SNP (166,552 bp). Unique haplotypes were around 97% in all chromosomes and were ignored leaving 153,428 haplotypes. Estimated haplotypes had a large contribution to the total variance of genomic estimated breeding values for kilogram of protein, Global Type Index, Somatic Cell Score and Days Open (between 32 and 99.9%). Haploblocks containing haplotypes with large effects were selected by filtering for each trait, haplotypes whose effect was larger/lower than the mean plus/minus 3 times the standard deviation (SD) and 1 SD above the mean of the haplotypes effect distribution. Results showed that filtering by 3 SD would not be enough to capture a large proportion of genetic variance, whereas filtering by 1 SD could be useful but model convergence should be considered. Additionally, sequence haplotypes were able to capture additional genetic variance to the polygenic effect for traits undergoing lower selection intensity like fertility and health traits.

  1. The GenABEL Project for statistical genomics [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Lennart C. Karssen

    2016-05-01

    Full Text Available Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the “core team”, facilitating agile statistical omics methodology development and fast dissemination.

  2. Exploring the Potential Emotional and Behavioural Impact of Providing Personalised Genomic Risk Information to the Public: A Focus Group Study.

    Science.gov (United States)

    Smit, Amelia K; Keogh, Louise A; Newson, Ainsley J; Hersch, Jolyn; Butow, Phyllis; Cust, Anne E

    2015-01-01

    To explore the potential emotional and behavioural impact of providing information on personalised genomic risk to the public, using melanoma as an example, to aid research translation. We conducted four focus groups in which 34 participants were presented with a hypothetical scenario of an individual's lifetime genomic risk of melanoma (using the term 'genetic risk'). We asked about understanding of genetic risk, who would choose to receive this risk information, potential emotional and behavioural impacts, and other concerns or potential benefits. Data were analysed thematically. Participants thought this risk information could potentially motivate preventive behaviours such as sun protection and related it to screening for other diseases including breast cancer. Factors identified as influencing the decision to receive genetic risk information included education level, children, age and gender. Participants identified potential negative impacts on the recipient such as anxiety and worry, and proposed that this could be mitigated by providing additional explanatory and prevention information, and contact details of a health professional for further discussion. Participants' concerns included workplace and insurance discrimination. Participants recognised the potential for both positive and negative emotional and behavioural impacts related to receiving information on the personalised genomic risk of melanoma. © 2015 S. Karger AG, Basel.

  3. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    Science.gov (United States)

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  4. Genomes: At the edge of chaos with maximum information capacity

    Science.gov (United States)

    Kong, Sing-Guan; Chen, Hong-Da; Torda, Andrew; Lee, H. C.

    2016-12-01

    We propose an order index, ϕ, which quantifies the notion of “life at the edge of chaos” when applied to genome sequences. It maps genomes to a number from 0 (random and of infinite length) to 1 (fully ordered) and applies regardless of sequence length and base composition. The 786 complete genomic sequences in GenBank were found to have ϕ values in a very narrow range, 0.037 ± 0.027. We show this implies that genomes are halfway towards being completely random, namely, at the edge of chaos. We argue that this narrow range represents the neighborhood of a fixed-point in the space of sequences, and genomes are driven there by the dynamics of a robust, predominantly neutral evolution process.

  5. Comparative Genome Viewer

    International Nuclear Information System (INIS)

    Molineris, I.; Sales, G.

    2009-01-01

    The amount of information about genomes, both in the form of complete sequences and annotations, has been exponentially increasing in the last few years. As a result there is the need for tools providing a graphical representation of such information that should be comprehensive and intuitive. Visual representation is especially important in the comparative genomics field since it should provide a combined view of data belonging to different genomes. We believe that existing tools are limited in this respect as they focus on a single genome at a time (conservation histograms) or compress alignment representation to a single dimension. We have therefore developed a web-based tool called Comparative Genome Viewer (Cgv): it integrates a bidimensional representation of alignments between two regions, both at small and big scales, with the richness of annotations present in other genome browsers. We give access to our system through a web-based interface that provides the user with an interactive representation that can be updated in real time using the mouse to move from region to region and to zoom in on interesting details.

  6. National human genome projects: an update and an agenda

    OpenAIRE

    An, Joon Yong

    2017-01-01

    Population genetic and human genetic studies are being accelerated with genome technology and data sharing. Accordingly, in the past 10 years, several countries have initiated genetic research using genome technology and identified the genetic architecture of the ethnic groups living in the corresponding country or suggested the genetic foundation of a social phenomenon. Genetic research has been conducted from epidemiological studies that previously described the health or disease conditions...

  7. Genome resource banking of biomedically important laboratory animals.

    Science.gov (United States)

    Agca, Yuksel

    2012-11-01

    Genome resource banking is the systematic collection, storage, and redistribution of biomaterials in an organized, logistical, and secure manner. Genome cryobanks usually contain biomaterials and associated genomic information essential for progression of biomedicine, human health, and research. In that regard, appropriate genome cryobanks could provide essential biomaterials for both current and future research projects in the form of various cell types and tissues, including sperm, oocytes, embryos, embryonic or adult stem cells, induced pluripotent stem cells, and gonadal tissues. In addition to cryobanked germplasm, cryobanking of DNA, serum, blood products, and tissues from scientifically, economically, and ecologically important species has become a common practice. For revitalization of the whole organism, cryopreserved germplasm in conjunction with assisted reproductive technologies, offer a powerful approach for research model management, as well as assisting in animal production for agriculture, conservation, and human reproductive medicine. Recently, many developed and developing countries have allocated substantial resources to establish genome resources banks which are responsible for safeguarding scientifically, economically, and ecologically important wild type, mutant, and transgenic plants, fish, and local livestock breeds, as well as wildlife species. This review is dedicated to the memory of Dr. John K. Critser, who has made profound contributions to the science of cryobiology and establishment of genome research and resources centers for mice, rats, and swine. Emphasis will be given to application of genome resource banks to species with substantial contributions to the advancement of biomedicine and human health. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. A probabilistic model to predict clinical phenotypic traits from genome sequencing.

    Science.gov (United States)

    Chen, Yun-Ching; Douville, Christopher; Wang, Cheng; Niknafs, Noushin; Yeo, Grace; Beleva-Guthrie, Violeta; Carter, Hannah; Stenson, Peter D; Cooper, David N; Li, Biao; Mooney, Sean; Karchin, Rachel

    2014-09-01

    Genetic screening is becoming possible on an unprecedented scale. However, its utility remains controversial. Although most variant genotypes cannot be easily interpreted, many individuals nevertheless attempt to interpret their genetic information. Initiatives such as the Personal Genome Project (PGP) and Illumina's Understand Your Genome are sequencing thousands of adults, collecting phenotypic information and developing computational pipelines to identify the most important variant genotypes harbored by each individual. These pipelines consider database and allele frequency annotations and bioinformatics classifications. We propose that the next step will be to integrate these different sources of information to estimate the probability that a given individual has specific phenotypes of clinical interest. To this end, we have designed a Bayesian probabilistic model to predict the probability of dichotomous phenotypes. When applied to a cohort from PGP, predictions of Gilbert syndrome, Graves' disease, non-Hodgkin lymphoma, and various blood groups were accurate, as individuals manifesting the phenotype in question exhibited the highest, or among the highest, predicted probabilities. Thirty-eight PGP phenotypes (26%) were predicted with area-under-the-ROC curve (AUC)>0.7, and 23 (15.8%) of these were statistically significant, based on permutation tests. Moreover, in a Critical Assessment of Genome Interpretation (CAGI) blinded prediction experiment, the models were used to match 77 PGP genomes to phenotypic profiles, generating the most accurate prediction of 16 submissions, according to an independent assessor. Although the models are currently insufficiently accurate for diagnostic utility, we expect their performance to improve with growth of publicly available genomics data and model refinement by domain experts.

  9. Mapping of information and identification of construction waste at project life cycle

    Science.gov (United States)

    Wibowo, Mochamad Agung; Handayani, Naniek Utami; Nurdiana, Asri; Sholeh, Moh Nur; Pamungkas, Gita Silvia

    2018-03-01

    The development of construction project towards green construction is needed in order to improve the efficiency of construction projects. One that needs to be minimized is construction waste. Construction waste is waste generated from construction project activities, both solid waste and non solid waste. More specifically, the waste happens at every phase of the project life cycle. Project life cycle are the stage of idea, design, construction, and operation/maintenance. Each phase is managed by different stakeholders. Therefore it requires special handling from the involved stakeholders. The objective of the study is to map the information and identify the waste at each phase of the project life cycle. The purpose of mapping is to figure out the process of information and product flow and with its timeline. This mapping used Value Stream Mapping (VSM). Identification of waste was done by distributing questionnaire to respondents to know the waste according to owner, consultant planner, contractor, and supervisory consultant. The result of the study is the mapping of information flow and product flow at the phases of idea, design, construction, and operation/ maintenance.

  10. The Middle Eastern Regional Irrigation Management Information Systems project-update

    Science.gov (United States)

    The Middle Eastern Regional Irrigation Management Information Systems Project (MERIMIS) was formulated at a meeting of experts from the region in Jordan in 2003. Funded by the U.S. Department of State, it is a cooperative regional project bringing together participants from Israel, Jordan, Palestini...

  11. Controlling our destinies: Historical, philosophical, social and ethical perspectives on the Human Genome Project: Final report, July 1, 1995-June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, P.R.

    1996-09-25

    This report briefly describes the efforts by the organizing committee in preparation for the conference entitled Controlling Our Destinies: Historical, Philosophical, Social, and Ethical Perspectives on the Human Genome Project. The conference was held October 5-8, 1995.

  12. Development of a network-based information infrastructure for fisheries and hydropower information in the Columbia River Basin : Final project report; TOPICAL

    International Nuclear Information System (INIS)

    Scheibe, Timothy D.; Johnson, Gary E.; Perkins, Bill

    1997-01-01

    The goal of this project was to help develop technology and a unified structure to access and disseminate information related to the Bonneville Power Administration's fish and wildlife responsibility in the Pacific Northwest. BPA desires to increase access to, and exchange of, information produced by the Environment Fish, and Wildlife Group in concert with regional partners. Historically, data and information have been managed through numerous centralized, controlled information systems. Fisheries information has been fragmented and not widely exchanged. Where exchange has occurred, it often is not timely enough to allow resource managers to effectively use the information to guide planning and decision making. This project (and related projects) have successfully developed and piloted a network-based infrastructure that will serve as a vehicle to transparently connect existing information systems in a manner that makes information exchange efficient and inexpensive. This project was designed to provide a mechanism to help BPA address measures in the Northwest Power Planning Council's (NPPC) Fish and Wildlife program: 3.2H Disseminate Research and Monitoring Information and 5.1A.5 manage water supplies in accordance with the Annual Implementation Work Plan. This project also provided resources that can be used to assist monitoring and evaluation of the Program

  13. Genome Writing: Current Progress and Related Applications

    Directory of Open Access Journals (Sweden)

    Yueqiang Wang

    2018-02-01

    Full Text Available The ultimate goal of synthetic biology is to build customized cells or organisms to meet specific industrial or medical needs. The most important part of the customized cell is a synthetic genome. Advanced genomic writing technologies are required to build such an artificial genome. Recently, the partially-completed synthetic yeast genome project represents a milestone in this field. In this mini review, we briefly introduce the techniques for de novo genome synthesis and genome editing. Furthermore, we summarize recent research progresses and highlight several applications in the synthetic genome field. Finally, we discuss current challenges and future prospects. Keywords: Synthetic biology, Genome writing, Genome editing, Bioethics, Biosafety

  14. High participation rate among 25 721 patients with broad age range in a hospital-based research project involving whole-genome sequencing - the Lausanne Institutional Biobank.

    Science.gov (United States)

    Bochud, Murielle; Currat, Christine; Chapatte, Laurence; Roth, Cindy; Mooser, Vincent

    2017-10-24

    We aimed to evaluate the interest of adult inpatients and selected outpatients in engaging in a large, real-life, hospital-based, genomic medicine research project and in receiving clinically actionable incidental findings. Within the framework of the cross-sectional Institutional Biobank of Lausanne, Switzerland, a total of 25721 patients of the CHUV University Hospital were systematically invited to grant researchers access to their biomedical data and to donate blood for future analyses, including whole-genome sequencing. Multivariable logistic regression analysis was used to identify personal factors, including age, gender, religion, ethnicity, citizenship, education level and mode of admission, associated with willingness to participate in this genomic research project and with interest in receiving clinically actionable incidental findings. The overall participation rate was 79% (20343/25721). Participation rate declined progressively with age, averaging 83%, 75%, 67% and 62% in patients aged rate, but not with higher willingness to receive incidental findings within the population who had agreed to participate. A large proportion of adult patients, even among the elderly, are willing to actively participate and receive incidental findings in this systematic hospital-based precision and genomic medicine research program with broad consent.

  15. Improving biological understanding and complex trait prediction by integrating prior information in genomic feature models

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon

    externally founded information, such as KEGG pathways, Gene Ontology gene sets, or genomic features, and estimate the joint contribution of the genetic variants within these sets to complex trait phenotypes. The analysis of complex trait phenotypes is hampered by the myriad of genes that control the trait...

  16. Whitefly (Bemisia tabaci genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and non-viruliferous cDNA libraries

    Directory of Open Access Journals (Sweden)

    Czosnek Henryk

    2006-04-01

    Full Text Available Abstract Background The past three decades have witnessed a dramatic increase in interest in the whitefly Bemisia tabaci, owing to its nature as a taxonomically cryptic species, the damage it causes to a large number of herbaceous plants because of its specialized feeding in the phloem, and to its ability to serve as a vector of plant viruses. Among the most important plant viruses to be transmitted by B. tabaci are those in the genus Begomovirus (family, Geminiviridae. Surprisingly, little is known about the genome of this whitefly. The haploid genome size for male B. tabaci has been estimated to be approximately one billion bp by flow cytometry analysis, about five times the size of the fruitfly Drosophila melanogaster. The genes involved in whitefly development, in host range plasticity, and in begomovirus vector specificity and competency, are unknown. Results To address this general shortage of genomic sequence information, we have constructed three cDNA libraries from non-viruliferous whiteflies (eggs, immature instars, and adults and two from adult insects that fed on tomato plants infected by two geminiviruses: Tomato yellow leaf curl virus (TYLCV and Tomato mottle virus (ToMoV. In total, the sequence of 18,976 clones was determined. After quality control, and removal of 5,542 clones of mitochondrial origin 9,110 sequences remained which included 3,843 singletons and 1,017 contigs. Comparisons with public databases indicated that the libraries contained genes involved in cellular and developmental processes. In addition, approximately 1,000 bases aligned with the genome of the B. tabaci endosymbiotic bacterium Candidatus Portiera aleyrodidarum, originating primarily from the egg and instar libraries. Apart from the mitochondrial sequences, the longest and most abundant sequence encodes vitellogenin, which originated from whitefly adult libraries, indicating that much of the gene expression in this insect is directed toward the production

  17. Supporting Project Work with Information Technology

    DEFF Research Database (Denmark)

    Heilesen, Simon

    2015-01-01

    University problem-oriented project work is based. However, in implementing and integrating the new technologies in academic practices, a number of challenges have had to be addressed. This chapter discusses four of these challenges. The first is to provide a physical and virtual framework for learning......Like so many other institutions, Roskilde University has had to adapt to the new realities brought about by the rapid developments in information and communication technology (ICT). On the whole, ICT tools have proven to be helpful in supporting and developing the work forms on which Roskilde...... activities. The second is to direct student use of ICT in terms of making systems available and teaching academic computing. The third challenge is to supervise and conduct project work online and in blended learning environments. Finally, one must find a way to exploit the potentials of ICT in problem...

  18. Supporting Project Work with Information Technology

    DEFF Research Database (Denmark)

    Heilesen, Simon

    2015-01-01

    University problem-oriented project work is based. However, in implementing and integrating the new technologies in academic practices, a number of challenges have had to be addressed. This chapter discusses four of these challenges. The first is to provide a physical and virtual framework for learning...... activities. The second is to direct student use of ICT in terms of making systems available and teaching academic computing. The third challenge is to supervise and conduct project work online and in blended learning environments. Finally, one must find a way to exploit the potentials of ICT in problem......Like so many other institutions, Roskilde University has had to adapt to the new realities brought about by the rapid developments in information and communication technology (ICT). On the whole, ICT tools have proven to be helpful in supporting and developing the work forms on which Roskilde...

  19. Australians' views on personal genomic testing: focus group findings from the Genioz study.

    Science.gov (United States)

    Metcalfe, Sylvia A; Hickerton, Chriselle; Savard, Jacqueline; Terrill, Bronwyn; Turbitt, Erin; Gaff, Clara; Gray, Kathleen; Middleton, Anna; Wilson, Brenda; Newson, Ainsley J

    2018-04-30

    Personal genomic testing provides healthy individuals with access to information about their genetic makeup for purposes including ancestry, paternity, sporting ability and health. Such tests are available commercially and globally, with accessibility expected to continue to grow, including in Australia; yet little is known of the views/expectations of Australians. Focus groups were conducted within a multi-stage, cross-disciplinary project (Genioz) to explore this. In mid-2015, 56 members of the public participated in seven focus groups, allocated into three age groups: 18-24, 25-49, and ≥50 years. Three researchers coded transcripts independently and generated themes. Awareness of personal genomic testing was low, but most could deduce what "personal genomics" might entail. Very few had heard of the term "direct-to-consumer" testing, which has implications for organisations developing information to support individuals in their decision-making. Participants' understanding of genetics was varied and drawn from several sources. There were diverse perceptions of the relative influence of genetics and environment on health, mental health, behavior, talent, or personality. Views about having a personal genomic test were mixed, with greater interest in health-related tests if they believed there was a reason for doing so. However, many expressed scepticisms about the types of tests available, and how the information might be used; concerns were also raised about privacy and the potential for discrimination. These exploratory findings inform subsequent stages of the Genioz study, thereby contributing to strategies of supporting Australians to understand and make meaningful and well-considered decisions about the benefits, harms, and implications of personal genomic tests.

  20. Opening plenary speaker: Human genomics, precision medicine, and advancing human health.

    Science.gov (United States)

    Green, Eric D

    2016-08-01

    Starting with the launch of the Human Genome Project in 1990, the past quarter-century has brought spectacular achievements in genomics that dramatically empower the study of human biology and disease. The human genomics enterprise is now in the midst of an important transition, as the growing foundation of genomic knowledge is being used by researchers and clinicians to tackle increasingly complex problems in biomedicine. Of particular prominence is the use of revolutionary new DNA sequencing technologies for generating prodigious amounts of DNA sequence data to elucidate the complexities of genome structure, function, and evolution, as well as to unravel the genomic bases of rare and common diseases. Together, these developments are ushering in the era of genomic medicine. Augmenting the advances in human genomics have been innovations in technologies for measuring environmental and lifestyle information, electronic health records, and data science; together, these provide opportunities of unprecedented scale and scope for investigating the underpinnings of health and disease. To capitalize on these opportunities, U.S. President Barack Obama recently announced a major new research endeavor - the U.S. Precision Medicine Initiative. This bold effort will be framed around several key aims, which include accelerating the use of genomically informed approaches to cancer care, making important policy and regulatory changes, and establishing a large research cohort of >1 million volunteers to facilitate precision medicine research. The latter will include making the partnership with all participants a centerpiece feature in the cohort's design and development. The Precision Medicine Initiative represents a broad-based research program that will allow new approaches for individualized medical care to be rigorously tested, so as to establish a new evidence base for advancing clinical practice and, eventually, human health.

  1. Validation of rice genome sequence by optical mapping

    Directory of Open Access Journals (Sweden)

    Pape Louise

    2007-08-01

    Full Text Available Abstract Background Rice feeds much of the world, and possesses the simplest genome analyzed to date within the grass family, making it an economically relevant model system for other cereal crops. Although the rice genome is sequenced, validation and gap closing efforts require purely independent means for accurate finishing of sequence build data. Results To facilitate ongoing sequencing finishing and validation efforts, we have constructed a whole-genome SwaI optical restriction map of the rice genome. The physical map consists of 14 contigs, covering 12 chromosomes, with a total genome size of 382.17 Mb; this value is about 11% smaller than original estimates. 9 of the 14 optical map contigs are without gaps, covering chromosomes 1, 2, 3, 4, 5, 7, 8 10, and 12 in their entirety – including centromeres and telomeres. Alignments between optical and in silico restriction maps constructed from IRGSP (International Rice Genome Sequencing Project and TIGR (The Institute for Genomic Research genome sequence sources are comprehensive and informative, evidenced by map coverage across virtually all published gaps, discovery of new ones, and characterization of sequence misassemblies; all totalling ~14 Mb. Furthermore, since optical maps are ordered restriction maps, identified discordances are pinpointed on a reliable physical scaffold providing an independent resource for closure of gaps and rectification of misassemblies. Conclusion Analysis of sequence and optical mapping data effectively validates genome sequence assemblies constructed from large, repeat-rich genomes. Given this conclusion we envision new applications of such single molecule analysis that will merge advantages offered by high-resolution optical maps with inexpensive, but short sequence reads generated by emerging sequencing platforms. Lastly, map construction techniques presented here points the way to new types of comparative genome analysis that would focus on discernment of

  2. AID to overcome the limitations of genomic information by introducing somatic DNA alterations.

    Science.gov (United States)

    Honjo, Tasuku; Muramatsu, Masamichi; Nagaoka, Hitoshi; Kinoshita, Kazuo; Shinkura, Reiko

    2006-05-01

    The immune system has adopted somatic DNA alterations to overcome the limitations of the genomic information. Activation induced cytidine deaminase (AID) is an essential enzyme to regulate class switch recombination (CSR), somatic hypermutation (SHM) and gene conversion (GC) of the immunoglobulin gene. AID is known to be required for DNA cleavage of S regions in CSR and V regions in SHM. However, its molecular mechanism is a focus of extensive debate. RNA editing hypothesis postulates that AID edits yet unknown mRNA, to generate specific endonucleases for CSR and SHM. By contrast, DNA deamination hypothesis assumes that AID deaminates cytosine in DNA, followed by DNA cleavage by base excision repair enzymes. We summarize the basic knowledge for molecular mechanisms for CSR and SHM and then discuss the importance of AID not only in the immune regulation but also in the genome instability.

  3. BIOETHICS METHODS IN THE ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS OF THE HUMAN GENOME PROJECT LITERATURE

    Science.gov (United States)

    Walker, Rebecca; Morrissey, Clair

    2013-01-01

    While bioethics as a field has concerned itself with methodological issues since the early years, there has been no systematic examination of how ethics is incorporated into research on the Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. Yet ELSI research may bear a particular burden of investigating and substantiating its methods given public funding, an explicitly cross-disciplinary approach, and the perceived significance of adequate responsiveness to advances in genomics. We undertook a qualitative content analysis of a sample of ELSI publications appearing between 2003-2008 with the aim of better understanding the methods, aims, and approaches to ethics that ELSI researchers employ. We found that the aims of ethics within ELSI are largely prescriptive and address multiple groups. We also found that the bioethics methods used in the ELSI literature are both diverse between publications and multiple within publications, but are usually not themselves discussed or employed as suggested by bioethics method proponents. Ethics in ELSI is also sometimes undistinguished from related inquiries (such as social, legal, or political investigations). PMID:23796275

  4. The Yeast Deletion Collection: A Decade of Functional Genomics

    Science.gov (United States)

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  5. Building information models for astronomy projects

    Science.gov (United States)

    Ariño, Javier; Murga, Gaizka; Campo, Ramón; Eletxigerra, Iñigo; Ampuero, Pedro

    2012-09-01

    A Building Information Model is a digital representation of physical and functional characteristics of a building. BIMs represent the geometrical characteristics of the Building, but also properties like bills of quantities, definition of COTS components, status of material in the different stages of the project, project economic data, etc. The BIM methodology, which is well established in the Architecture Engineering and Construction (AEC) domain for conventional buildings, has been brought one step forward in its application for Astronomical/Scientific facilities. In these facilities steel/concrete structures have high dynamic and seismic requirements, M&E installations are complex and there is a large amount of special equipment and mechanisms involved as a fundamental part of the facility. The detail design definition is typically implemented by different design teams in specialized design software packages. In order to allow the coordinated work of different engineering teams, the overall model, and its associated engineering database, is progressively integrated using a coordination and roaming software which can be used before starting construction phase for checking interferences, planning the construction sequence, studying maintenance operation, reporting to the project office, etc. This integrated design & construction approach will allow to efficiently plan construction sequence (4D). This is a powerful tool to study and analyze in detail alternative construction sequences and ideally coordinate the work of different construction teams. In addition engineering, construction and operational database can be linked to the virtual model (6D), what gives to the end users a invaluable tool for the lifecycle management, as all the facility information can be easily accessed, added or replaced. This paper presents the BIM methodology as implemented by IDOM with the E-ELT and ATST Enclosures as application examples.

  6. The PiGeOn project: protocol for a longitudinal study examining psychosocial, behavioural and ethical issues and outcomes in cancer tumour genomic profiling.

    Science.gov (United States)

    Best, Megan; Newson, Ainsley J; Meiser, Bettina; Juraskova, Ilona; Goldstein, David; Tucker, Kathy; Ballinger, Mandy L; Hess, Dominique; Schlub, Timothy E; Biesecker, Barbara; Vines, Richard; Vines, Kate; Thomas, David; Young, Mary-Anne; Savard, Jacqueline; Jacobs, Chris; Butow, Phyllis

    2018-04-05

    Genomic sequencing in cancer (both tumour and germline), and development of therapies targeted to tumour genetic status, hold great promise for improvement of patient outcomes. However, the imminent introduction of genomics into clinical practice calls for better understanding of how patients value, experience, and cope with this novel technology and its often complex results. Here we describe a protocol for a novel mixed-methods, prospective study (PiGeOn) that aims to examine patients' psychosocial, cognitive, affective and behavioural responses to tumour genomic profiling and to integrate a parallel critical ethical analysis of returning results. This is a cohort sub-study of a parent tumour genomic profiling programme enrolling patients with advanced cancer. One thousand patients will be recruited for the parent study in Sydney, Australia from 2016 to 2019. They will be asked to complete surveys at baseline, three, and five months. Primary outcomes are: knowledge, preferences, attitudes and values. A purposively sampled subset of patients will be asked to participate in three semi-structured interviews (at each time point) to provide deeper data interpretation. Relevant ethical themes will be critically analysed to iteratively develop or refine normative ethical concepts or frameworks currently used in the return of genetic information. This will be the first Australian study to collect longitudinal data on cancer patients' experience of tumour genomic profiling. Findings will be used to inform ongoing ethical debates on issues such as how to effectively obtain informed consent for genomic profiling return results, distinguish between research and clinical practice and manage patient expectations. The combination of quantitative and qualitative methods will provide comprehensive and critical data on how patients cope with 'actionable' and 'non-actionable' results. This information is needed to ensure that when tumour genomic profiling becomes part of routine

  7. Risk Management in Information Technology Project: An Empirical Study

    Directory of Open Access Journals (Sweden)

    Kornelius Irfandhi

    2016-09-01

    Full Text Available The companies are facing some risks due to changes in a dynamic environment. If risks are not managed properly, it will have some negative impacts on the companies at the present and the future. One important function of the Information Technology (IT governance is risk management. Risk management in IT project aims to provide a safe environment for IT projects undertaken. Risk management becomes an important process for the success of IT projects. This article discussed the risk of IT project and whether there was a relationship between risk management and the success of the project. The method used was performing a literature review of several scientific articles which published between 2010 and 2014. The results of this study are the presence of risk management and risk manager influence the success of the project. Risk analysis and risk monitoring and control also have a relationship with the subjective performance of IT projects. If risk management is applied properly, the chance of the success of the projects undertaken can be increased. 

  8. KAIKObase: An integrated silkworm genome database and data mining tool

    Directory of Open Access Journals (Sweden)

    Nagaraju Javaregowda

    2009-10-01

    Full Text Available Abstract Background The silkworm, Bombyx mori, is one of the most economically important insects in many developing countries owing to its large-scale cultivation for silk production. With the development of genomic and biotechnological tools, B. mori has also become an important bioreactor for production of various recombinant proteins of biomedical interest. In 2004, two genome sequencing projects for B. mori were reported independently by Chinese and Japanese teams; however, the datasets were insufficient for building long genomic scaffolds which are essential for unambiguous annotation of the genome. Now, both the datasets have been merged and assembled through a joint collaboration between the two groups. Description Integration of the two data sets of silkworm whole-genome-shotgun sequencing by the Japanese and Chinese groups together with newly obtained fosmid- and BAC-end sequences produced the best continuity (~3.7 Mb in N50 scaffold size among the sequenced insect genomes and provided a high degree of nucleotide coverage (88% of all 28 chromosomes. In addition, a physical map of BAC contigs constructed by fingerprinting BAC clones and a SNP linkage map constructed using BAC-end sequences were available. In parallel, proteomic data from two-dimensional polyacrylamide gel electrophoresis in various tissues and developmental stages were compiled into a silkworm proteome database. Finally, a Bombyx trap database was constructed for documenting insertion positions and expression data of transposon insertion lines. Conclusion For efficient usage of genome information for functional studies, genomic sequences, physical and genetic map information and EST data were compiled into KAIKObase, an integrated silkworm genome database which consists of 4 map viewers, a gene viewer, and sequence, keyword and position search systems to display results and data at the level of nucleotide sequence, gene, scaffold and chromosome. Integration of the

  9. Patient-controlled encrypted genomic data: an approach to advance clinical genomics

    Directory of Open Access Journals (Sweden)

    Trakadis Yannis J

    2012-07-01

    Full Text Available Abstract Background The revolution in DNA sequencing technologies over the past decade has made it feasible to sequence an individual’s whole genome at a relatively low cost. The potential value of the information generated by genomic technologies for medicine and society is enormous. However, in order for exome sequencing, and eventually whole genome sequencing, to be implemented clinically, a number of major challenges need to be overcome. For instance, obtaining meaningful informed-consent, managing incidental findings and the great volume of data generated (including multiple findings with uncertain clinical significance, re-interpreting the genomic data and providing additional counselling to patients as genetic knowledge evolves are issues that need to be addressed. It appears that medical genetics is shifting from the present “phenotype-first” medical model to a “data-first” model which leads to multiple complexities. Discussion This manuscript discusses the different challenges associated with integrating genomic technologies into clinical practice and describes a “phenotype-first” approach, namely, “Individualized Mutation-weighed Phenotype Search”, and its benefits. The proposed approach allows for a more efficient prioritization of the genes to be tested in a clinical lab based on both the patient’s phenotype and his/her entire genomic data. It simplifies “informed-consent” for clinical use of genomic technologies and helps to protect the patient’s autonomy and privacy. Overall, this approach could potentially render widespread use of genomic technologies, in the immediate future, practical, ethical and clinically useful. Summary The “Individualized Mutation-weighed Phenotype Search” approach allows for an incremental integration of genomic technologies into clinical practice. It ensures that we do not over-medicalize genomic data but, rather, continue our current medical model which is based on serving

  10. Integrating genomics into undergraduate nursing education.

    Science.gov (United States)

    Daack-Hirsch, Sandra; Dieter, Carla; Quinn Griffin, Mary T

    2011-09-01

    To prepare the next generation of nurses, faculty are now faced with the challenge of incorporating genomics into curricula. Here we discuss how to meet this challenge. Steps to initiate curricular changes to include genomics are presented along with a discussion on creating a genomic curriculum thread versus a standalone course. Ideas for use of print material and technology on genomic topics are also presented. Information is based on review of the literature and curriculum change efforts by the authors. In recognition of advances in genomics, the nursing profession is increasing an emphasis on the integration of genomics into professional practice and educational standards. Incorporating genomics into nurses' practices begins with changes in our undergraduate curricula. Information given in didactic courses should be reinforced in clinical practica, and Internet-based tools such as WebQuest, Second Life, and wikis offer attractive, up-to-date platforms to deliver this now crucial content. To provide information that may assist faculty to prepare the next generation of nurses to practice using genomics. © 2011 Sigma Theta Tau International.

  11. 1000 Bull Genomes - Toward genomic Selectionf from whole genome sequence Data in Dairy and Beef Cattle

    NARCIS (Netherlands)

    Hayes, B.; Daetwyler, H.D.; Fries, R.; Guldbrandtsen, B.; Mogens Sando Lund, M.; Didier A. Boichard, D.A.; Stothard, P.; Veerkamp, R.F.; Hulsegge, B.; Rocha, D.; Tassell, C.; Mullaart, E.; Gredler, B.; Druet, T.; Bagnato, A.; Goddard, M.E.; Chamberlain, H.L.

    2013-01-01

    Genomic prediction of breeding values is now used as the basis for selection of dairy cattle, and in some cases beef cattle, in a number of countries. When genomic prediction was introduced most of the information was to thought to be derived from linkage disequilibrium between markers and causative

  12. Human genetics: international projects and personalized medicine.

    Science.gov (United States)

    Apellaniz-Ruiz, Maria; Gallego, Cristina; Ruiz-Pinto, Sara; Carracedo, Angel; Rodríguez-Antona, Cristina

    2016-03-01

    In this article, we present the progress driven by the recent technological advances and new revolutionary massive sequencing technologies in the field of human genetics. We discuss this knowledge in relation with drug response prediction, from the germline genetic variation compiled in the 1000 Genomes Project or in the Genotype-Tissue Expression project, to the phenome-genome archives, the international cancer projects, such as The Cancer Genome Atlas or the International Cancer Genome Consortium, and the epigenetic variation and its influence in gene expression, including the regulation of drug metabolism. This review is based on the lectures presented by the speakers of the Symposium "Human Genetics: International Projects & New Technologies" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held on the 20th and 21st of April 2015.

  13. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species.

    Science.gov (United States)

    Salzberg, Steven L; Dunning Hotopp, Julie C; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C

    2005-01-01

    The Trace Archive is a repository for the raw, unanalyzed data generated by large-scale genome sequencing projects. The existence of this data offers scientists the possibility of discovering additional genomic sequences beyond those originally sequenced. In particular, if the source DNA for a sequencing project came from a species that was colonized by another organism, then the project may yield substantial amounts of genomic DNA, including near-complete genomes, from the symbiotic or parasitic organism. By searching the publicly available repository of DNA sequencing trace data, we discovered three new species of the bacterial endosymbiont Wolbachia pipientis in three different species of fruit fly: Drosophila ananassae, D. simulans, and D. mojavensis. We extracted all sequences with partial matches to a previously sequenced Wolbachia strain and assembled those sequences using customized software. For one of the three new species, the data recovered were sufficient to produce an assembly that covers more than 95% of the genome; for a second species the data produce the equivalent of a 'light shotgun' sampling of the genome, covering an estimated 75-80% of the genome; and for the third species the data cover approximately 6-7% of the genome. The results of this study reveal an unexpected benefit of depositing raw data in a central genome sequence repository: new species can be discovered within this data. The differences between these three new Wolbachia genomes and the previously sequenced strain revealed numerous rearrangements and insertions within each lineage and hundreds of novel genes. The three new genomes, with annotation, have been deposited in GenBank.

  14. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  15. Social implications of the Human Genome Project: Policy roundtable series and journals. Final progress report, March 15, 2001 - March 15, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Seiguer, Erica

    2002-12-30

    This report reflects the activities of the Harvard Health Caucus at Harvard Medical School that were supported, in part, by the Department of Energy. The following policy roundtables and panels were held: Spring 2001 Policy Roundtable Series: The social implications of the Human Genome Project; Spring 2002 Policy Roundtable Series: Managing globalization to improve health; 13 February 2002 Keynote Address: The globalization of health; 25 February 2002 Healthier or Wealthier: Which comes first in the new global era?; 28 February 2002 The crisis of neglected diseases: Creating R&D incentives for diseases of developing countries; 7 March 2002 Health care education in the developing world: Bridging global and local health care practices; 20 March 2002 Building a legal framework for global health: How can the US and UN work to reduce global disparities?; 25 April 2002 The role of mass media and tobacco control efforts. Caucus organizational information is also included.

  16. The Need for Clinical Decision Support Integrated with the Electronic Health Record for the Clinical Application of Whole Genome Sequencing Information

    Directory of Open Access Journals (Sweden)

    Brandon M. Welch

    2013-12-01

    Full Text Available Whole genome sequencing (WGS is rapidly approaching widespread clinical application. Technology advancements over the past decade, since the first human genome was decoded, have made it feasible to use WGS for clinical care. Future advancements will likely drive down the price to the point wherein WGS is routinely available for care. However, were this to happen today, most of the genetic information available to guide clinical care would go unused due to the complexity of genetics, limited physician proficiency in genetics, and lack of genetics professionals in the clinical workforce. Furthermore, these limitations are unlikely to change in the future. As such, the use of clinical decision support (CDS to guide genome-guided clinical decision-making is imperative. In this manuscript, we describe the barriers to widespread clinical application of WGS information, describe how CDS can be an important tool for overcoming these barriers, and provide clinical examples of how genome-enabled CDS can be used in the clinical setting.

  17. 78 FR 64143 - 30-Day Notice of Proposed Information Collection: Contractor's Requisition-Project Mortgages

    Science.gov (United States)

    2013-10-25

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5683-N-88] 30-Day Notice of Proposed Information Collection: Contractor's Requisition--Project Mortgages AGENCY: Office of the Chief Information... Title of Information Collection: Contractor's Requisition--Project Mortgages. OMB Approval Number: 2502...

  18. Effects of sample treatments on genome recovery via single-cell genomics

    Energy Technology Data Exchange (ETDEWEB)

    Clingenpeel, Scott [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Schwientek, Patrick [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Hugenholtz, Philip [Univ. of Queensland, Brisbane (Australia); Woyke, Tanja [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2014-06-13

    It is known that single-cell genomics is a powerful tool for accessing genetic information from uncultivated microorganisms. Methods of handling samples before single-cell genomic amplification may affect the quality of the genomes obtained. Using three bacterial strains we demonstrate that, compared to cryopreservation, lower-quality single-cell genomes are recovered when the sample is preserved in ethanol or if the sample undergoes fluorescence in situ hybridization, while sample preservation in paraformaldehyde renders it completely unsuitable for sequencing.

  19. How genome complexity can explain the difficulty of aligning reads to genomes.

    Science.gov (United States)

    Phan, Vinhthuy; Gao, Shanshan; Tran, Quang; Vo, Nam S

    2015-01-01

    Although it is frequently observed that aligning short reads to genomes becomes harder if they contain complex repeat patterns, there has not been much effort to quantify the relationship between complexity of genomes and difficulty of short-read alignment. Existing measures of sequence complexity seem unsuitable for the understanding and quantification of this relationship. We investigated several measures of complexity and found that length-sensitive measures of complexity had the highest correlation to accuracy of alignment. In particular, the rate of distinct substrings of length k, where k is similar to the read length, correlated very highly to alignment performance in terms of precision and recall. We showed how to compute this measure efficiently in linear time, making it useful in practice to estimate quickly the difficulty of alignment for new genomes without having to align reads to them first. We showed how the length-sensitive measures could provide additional information for choosing aligners that would align consistently accurately on new genomes. We formally established a connection between genome complexity and the accuracy of short-read aligners. The relationship between genome complexity and alignment accuracy provides additional useful information for selecting suitable aligners for new genomes. Further, this work suggests that the complexity of genomes sometimes should be thought of in terms of specific computational problems, such as the alignment of short reads to genomes.

  20. Decoding the human genome

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Antonerakis, S E

    2002-01-01

    Decoding the Human genome is a very up-to-date topic, raising several questions besides purely scientific, in view of the two competing teams (public and private), the ethics of using the results, and the fact that the project went apparently faster and easier than expected. The lecture series will address the following chapters: Scientific basis and challenges. Ethical and social aspects of genomics.

  1. GMATA: An Integrated Software Package for Genome-Scale SSR Mining, Marker Development and Viewing.

    Science.gov (United States)

    Wang, Xuewen; Wang, Le

    2016-01-01

    Simple sequence repeats (SSRs), also referred to as microsatellites, are highly variable tandem DNAs that are widely used as genetic markers. The increasing availability of whole-genome and transcript sequences provides information resources for SSR marker development. However, efficient software is required to efficiently identify and display SSR information along with other gene features at a genome scale. We developed novel software package Genome-wide Microsatellite Analyzing Tool Package (GMATA) integrating SSR mining, statistical analysis and plotting, marker design, polymorphism screening and marker transferability, and enabled simultaneously display SSR markers with other genome features. GMATA applies novel strategies for SSR analysis and primer design in large genomes, which allows GMATA to perform faster calculation and provides more accurate results than existing tools. Our package is also capable of processing DNA sequences of any size on a standard computer. GMATA is user friendly, only requires mouse clicks or types inputs on the command line, and is executable in multiple computing platforms. We demonstrated the application of GMATA in plants genomes and reveal a novel distribution pattern of SSRs in 15 grass genomes. The most abundant motifs are dimer GA/TC, the A/T monomer and the GCG/CGC trimer, rather than the rich G/C content in DNA sequence. We also revealed that SSR count is a linear to the chromosome length in fully assembled grass genomes. GMATA represents a powerful application tool that facilitates genomic sequence analyses. GAMTA is freely available at http://sourceforge.net/projects/gmata/?source=navbar.

  2. A rigorous approach to facilitate and guarantee the correctness of the genetic testing management in human genome information systems.

    Science.gov (United States)

    Araújo, Luciano V; Malkowski, Simon; Braghetto, Kelly R; Passos-Bueno, Maria R; Zatz, Mayana; Pu, Calton; Ferreira, João E

    2011-12-22

    Recent medical and biological technology advances have stimulated the development of new testing systems that have been providing huge, varied amounts of molecular and clinical data. Growing data volumes pose significant challenges for information processing systems in research centers. Additionally, the routines of genomics laboratory are typically characterized by high parallelism in testing and constant procedure changes. This paper describes a formal approach to address this challenge through the implementation of a genetic testing management system applied to human genome laboratory. We introduced the Human Genome Research Center Information System (CEGH) in Brazil, a system that is able to support constant changes in human genome testing and can provide patients updated results based on the most recent and validated genetic knowledge. Our approach uses a common repository for process planning to ensure reusability, specification, instantiation, monitoring, and execution of processes, which are defined using a relational database and rigorous control flow specifications based on process algebra (ACP). The main difference between our approach and related works is that we were able to join two important aspects: 1) process scalability achieved through relational database implementation, and 2) correctness of processes using process algebra. Furthermore, the software allows end users to define genetic testing without requiring any knowledge about business process notation or process algebra. This paper presents the CEGH information system that is a Laboratory Information Management System (LIMS) based on a formal framework to support genetic testing management for Mendelian disorder studies. We have proved the feasibility and showed usability benefits of a rigorous approach that is able to specify, validate, and perform genetic testing using easy end user interfaces.

  3. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach.

    Science.gov (United States)

    Greub, Gilbert; Kebbi-Beghdadi, Carole; Bertelli, Claire; Collyn, François; Riederer, Beat M; Yersin, Camille; Croxatto, Antony; Raoult, Didier

    2009-12-23

    With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium.

  4. The human genome: Some assembly required. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Human Genome Project promises to be one of the most rewarding endeavors in modern biology. The cost and the ethical and social implications, however, have made this project the source of considerable debate both in the scientific community and in the public at large. The 1994 Graduate Student Symposium addresses the scientific merits of the project, the technical issues involved in accomplishing the task, as well as the medical and social issues which stem from the wealth of knowledge which the Human Genome Project will help create. To this end, speakers were brought together who represent the diverse areas of expertise characteristic of this multidisciplinary project. The keynote speaker addresses the project`s motivations and goals in the larger context of biological and medical sciences. The first two sessions address relevant technical issues, data collection with a focus on high-throughput sequencing methods and data analysis with an emphasis on identification of coding sequences. The third session explores recent advances in the understanding of genetic diseases and possible routes to treatment. Finally, the last session addresses some of the ethical, social and legal issues which will undoubtedly arise from having a detailed knowledge of the human genome.

  5. Report: EPA Needs to Improve Oversight of Its Information Technology Projects

    Science.gov (United States)

    Report #2005-P-00023, September 14, 2005. EPA’s Office of Environmental Information (OEI) did not sufficiently oversee information technology projects to ensure they met planned budgets and schedules.

  6. Microbial profiling, neural network and semantic web: an integrated information system for human pathogen risk management, prevention and surveillance in food safety

    Science.gov (United States)

    It is estimated that food-borne pathogens cause approximately 76 million cases of gastrointestinal illnesses, 325,000 hospitalizations, and 5,000 deaths in the United States annually. Genomic, proteomic, and metabolomic studies, particularly, genome sequencing projects are providing valuable inform...

  7. Human Genome Diversity Project. Summary of planning workshop 3(B): Ethical and human-rights implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The third planning workshop of the Human Genome Diversity Project was held on the campus of the US National Institutes of Health in Bethesda, Maryland, from February 16 through February 18, 1993. The second day of the workshop was devoted to an exploration of the ethical and human-rights implications of the Project. This open meeting centered on three roundtables, involving 12 invited participants, and the resulting discussions among all those present. Attendees and their affiliations are listed in the attached Appendix A. The discussion was guided by a schedule and list of possible issues, distributed to all present and attached as Appendix B. This is a relatively complete, and thus lengthy, summary of the comments at the meeting. The beginning of the summary sets out as conclusions some issues on which there appeared to be widespread agreement, but those conclusions are not intended to serve as a set of detailed recommendations. The meeting organizer is distributing his recommendations in a separate memorandum; recommendations from others who attended the meeting are welcome and will be distributed by the meeting organizer to the participants and to the Project committee.

  8. Efficient privacy-preserving string search and an application in genomics.

    Science.gov (United States)

    Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar

    2016-06-01

    Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. We propose a novel approach that combines efficient string data structures such as the Burrows-Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows-Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within [Formula: see text] 4.6 s and [Formula: see text] 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  9. Development of a panel of genome-wide ancestry informative markers to study admixture throughout the Americas.

    Directory of Open Access Journals (Sweden)

    Joshua Mark Galanter

    Full Text Available Most individuals throughout the Americas are admixed descendants of Native American, European, and African ancestors. Complex historical factors have resulted in varying proportions of ancestral contributions between individuals within and among ethnic groups. We developed a panel of 446 ancestry informative markers (AIMs optimized to estimate ancestral proportions in individuals and populations throughout Latin America. We used genome-wide data from 953 individuals from diverse African, European, and Native American populations to select AIMs optimized for each of the three main continental populations that form the basis of modern Latin American populations. We selected markers on the basis of locus-specific branch length to be informative, well distributed throughout the genome, capable of being genotyped on widely available commercial platforms, and applicable throughout the Americas by minimizing within-continent heterogeneity. We then validated the panel in samples from four admixed populations by comparing ancestry estimates based on the AIMs panel to estimates based on genome-wide association study (GWAS data. The panel provided balanced discriminatory power among the three ancestral populations and accurate estimates of individual ancestry proportions (R² > 0.9 for ancestral components with significant between-subject variance. Finally, we genotyped samples from 18 populations from Latin America using the AIMs panel and estimated variability in ancestry within and between these populations. This panel and its reference genotype information will be useful resources to explore population history of admixture in Latin America and to correct for the potential effects of population stratification in admixed samples in the region.

  10. Genomic selection strategies in breeding programs: Strong positive interaction between application of genotypic information and intensive use of young bulls on genetic gain

    DEFF Research Database (Denmark)

    Buch, Line Hjortø; Sørensen, Morten Kargo; Berg, Peer

    2012-01-01

    We tested the following hypotheses: (i) breeding schemes with genomic selection are superior to breeding schemes without genomic selection regarding annual genetic gain of the aggregate genotype (ΔGAG), annual genetic gain of the functional traits and rate of inbreeding per generation (ΔF), (ii......) a positive interaction exists between the use of genotypic information and a short generation interval on ΔGAG and (iii) the inclusion of an indicator trait in the selection index will only result in a negligible increase in ΔGAG if genotypic information about the breeding goal trait is known. We examined......, greater contributions of the functional trait to ΔGAG and lower ΔF than the two breeding schemes without genomic selection. Thus, the use of genotypic information may lead to more sustainable breeding schemes. In addition, a short generation interval increases the effect of using genotypic information...

  11. Comparative Genomics in Homo sapiens.

    Science.gov (United States)

    Oti, Martin; Sammeth, Michael

    2018-01-01

    Genomes can be compared at different levels of divergence, either between species or within species. Within species genomes can be compared between different subpopulations, such as human subpopulations from different continents. Investigating the genomic differences between different human subpopulations is important when studying complex diseases that are affected by many genetic variants, as the variants involved can differ between populations. The 1000 Genomes Project collected genome-scale variation data for 2504 human individuals from 26 different populations, enabling a systematic comparison of variation between human subpopulations. In this chapter, we present step-by-step a basic protocol for the identification of population-specific variants employing the 1000 Genomes data. These variants are subsequently further investigated for those that affect the proteome or RNA splice sites, to investigate potentially biologically relevant differences between the populations.

  12. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    Science.gov (United States)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of

  13. Genomics in health and disease | Shawky | Egyptian Journal of ...

    African Journals Online (AJOL)

    Genomics is the study of all person's genes including interactions of those genes ... Our environment and our biology are two factors that strongly influence our health. ... The completion of the Human Genome Project signaled that the genome ...

  14. 78 FR 8544 - Training Program for Regulatory Project Managers; Information Available to Industry

    Science.gov (United States)

    2013-02-06

    ...] Training Program for Regulatory Project Managers; Information Available to Industry AGENCY: Food and Drug... Brum, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave... to industry's drug development processes and (2) a venue for sharing information about project...

  15. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    DEFF Research Database (Denmark)

    Maretty, Lasse; Jensen, Jacob Malte; Petersen, Bent

    2017-01-01

    Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome......-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set...... or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high...

  16. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    DEFF Research Database (Denmark)

    Maretty, Lasse; Jensen, Jacob Malte; Petersen, Bent

    2017-01-01

    Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome...... or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high......-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set...

  17. Genome sequence of the dark pink pigmented Listia bainesii microsymbiont Methylobacterium sp. WSM2598.

    Science.gov (United States)

    Ardley, Julie; Tian, Rui; Howieson, John; Yates, Ron; Bräu, Lambert; Han, James; Lobos, Elizabeth; Huntemann, Marcel; Chen, Amy; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Pati, Amrita; Goodwin, Lynne; Woyke, Tanja; Kyrpides, Nikos; Reeve, Wayne

    2014-01-01

    Strains of a pink-pigmented Methylobacterium sp. are effective nitrogen- (N2) fixing microsymbionts of species of the African crotalarioid genus Listia. Strain WSM2598 is an aerobic, motile, Gram-negative, non-spore-forming rod isolated in 2002 from a Listia bainesii root nodule collected at Estcourt Research Station in South Africa. Here we describe the features of Methylobacterium sp. WSM2598, together with information and annotation of a high-quality draft genome sequence. The 7,669,765 bp draft genome is arranged in 5 scaffolds of 83 contigs, contains 7,236 protein-coding genes and 18 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 G enomic E ncyclopedia for B acteria and A rchaea- R oot N odule B acteria (GEBA-RNB) project.

  18. Empowering Students in Information Literacy Practices Using a Collaborative Digital Library for School Projects

    Directory of Open Access Journals (Sweden)

    Abrizah Abdullah

    2008-09-01

    Full Text Available This paper examines the affordances that a collaborative digital library (CDL can bring to bear on supporting information literacy practices in the digital information environment. It suggests that the digital library can contribute to student empowerment in information literacy practices while searching, using and collaboratively building the digital library resources. To illustrate this, the authors have been experimenting with the implementation of an integrated information literacy model based on Eisenberg and Berkowitz’ Big 6 Model and describes the CDL features in association with the information literacy dimensions in this model. The CDL focuses on the project-based learning approach to conduct students’ project, which supports specific information behaviors that underpin research and learning such as information seeking, browsing, encountering, foraging, sharing, gathering, filtering, and using. Findings regarding teachers’ reception of the digital library are encouraging as they feel the relevance of the digital library to the current requirement of the students’ project and its potential to entrench information and resource study skills through project-based learning.

  19. Variability among the Most Rapidly Evolving Plastid Genomic Regions is Lineage-Specific: Implications of Pairwise Genome Comparisons in Pyrus (Rosaceae) and Other Angiosperms for Marker Choice

    Science.gov (United States)

    Ter-Voskanyan, Hasmik; Allgaier, Martin; Borsch, Thomas

    2014-01-01

    Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae)—a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC–trnV, trnR–atpA, ndhF–rpl32, psbM–trnD, and trnQ–rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters). Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid), Olea (asterids) and Cymbidium (monocots) showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF–rpl32 and trnK–rps16) were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations

  20. Variability among the most rapidly evolving plastid genomic regions is lineage-specific: implications of pairwise genome comparisons in Pyrus (Rosaceae and other angiosperms for marker choice.

    Directory of Open Access Journals (Sweden)

    Nadja Korotkova

    Full Text Available Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae-a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC-trnV, trnR-atpA, ndhF-rpl32, psbM-trnD, and trnQ-rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters. Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid, Olea (asterids and Cymbidium (monocots showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF-rpl32 and trnK-rps16 were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing

  1. Why Phishing Works: Project for an Information Security Capstone Course

    Science.gov (United States)

    Pollacia, Lissa; Ding, Yan Zong; Yang, Seung

    2015-01-01

    This paper presents a project which was conducted in a capstone course in Information Security. The project focused on conducting research concerning the various aspects of phishing, such as why phishing works and who is more likely to be deceived by phishing. Students were guided through the process of conducting research: finding background and…

  2. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed Missael Vargas

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence...... data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery...

  3. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Wei [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Simmons, Blake A. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Steven W. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-10-29

    The recovery of genomes from metagenomic datasets is a critical step to defining the functional roles of the underlying uncultivated populations. We previously developed MaxBin, an automated binning approach for high-throughput recovery of microbial genomes from metagenomes. Here, we present an expanded binning algorithm, MaxBin 2.0, which recovers genomes from co-assembly of a collection of metagenomic datasets. Tests on simulated datasets revealed that MaxBin 2.0 is highly accurate in recovering individual genomes, and the application of MaxBin 2.0 to several metagenomes from environmental samples demonstrated that it could achieve two complementary goals: recovering more bacterial genomes compared to binning a single sample as well as comparing the microbial community composition between different sampling environments. Availability and implementation: MaxBin 2.0 is freely available at http://sourceforge.net/projects/maxbin/ under BSD license. Supplementary information: Supplementary data are available at Bioinformatics online.

  4. Draft genome sequence of Sclerospora graminicola, the pearl millet downy mildew pathogen

    Directory of Open Access Journals (Sweden)

    Navajeet Chakravartty

    2017-12-01

    Full Text Available Sclerospora graminicola pathogen is the most important biotic production constraints of pearl millet in India, Africa and other parts of the world. We report a de novo whole genome assembly and analysis of pathotype 1, one of the most virulent pathotypes of S. graminicola from India. The whole genome sequencing was performed by sequencing of 7.38 Gb with 73,889,924 paired end reads from the paired-end library, and 1.15 Gb with 3,851,788 reads from the mate pair library generated from Illumina HiSeq 2500 and Illumina MiSeq, respectively. A total 597,293 filtered sub reads with average read length of 6.39 Kb was generated on PACBIO RSII with P6-C4 chemistry. Assembled draft genome sequence of S. graminicola pathotype 1 was 299,901,251 bp in length, N50 of 17,909 bp with a minimum of 1 Kb scaffold size. The GC content was 47.2 % consisting of 26,786 scaffolds with longest scaffold size of 238,843 bp. The overall coverage was 40X. The draft genome sequence was used for gene prediction using AUGUSTUS which resulted in 65,404 genes using Saccharomyces cerevisiae as a model. A total of 52,285 predicted genes found homology using BLASTX against nr database and 38,120 genes were observed with a significant BLASTX match with E-value cutoff of 1e-5 and 40% identity percentage. Out of 38,120 genes annotated a set of 11,873 genes had UniProt entries, while 7,248 were GO terms and 9,686 with KEGG IDs. Of the 7,248 GO terms, 2,724 were associated with the biological processes. The genome information of downy mildew pathogen is available in the NCBI GenBank database. The Sclerospora graminicola whole genome shotgun (WGS project has the project accession MIQA00000000. This version of the project (02 has the accession number MIQA02000000, and consists of sequences MIQA02000001-MIQA02026786, with BioProject ID PRJNA325098 and BioSample ID SAMN05219233. This study may help understand the evolutionary pattern of pathogen and aid elucidation of effector evolution for

  5. Comparative RNA genomics

    DEFF Research Database (Denmark)

    Backofen, Rolf; Gorodkin, Jan; Hofacker, Ivo L.

    2018-01-01

    Over the last two decades it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly...... small RNAs is their reliance of conserved secondary structures. Large scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible noncoding RNAs...... that exert a vastly diverse array of molecule functions. In this chapter we provide a—necessarily incomplete—overview of the current state of comparative analysis of noncoding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world....

  6. Architecture and Functionality of the Advanced Life Support On-Line Project Information System

    Science.gov (United States)

    Hogan, John A.; Levri, Julie A.; Morrow, Rich; Cavazzoni, Jim; Rodriguez, Luis F.; Riano, Rebecca; Whitaker, Dawn R.

    2004-01-01

    An ongoing effort is underway at NASA Ames Research Center (ARC) to develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a Web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an research and technology development (R&TD) status information hub that can potentially serve as the primary annual reporting mechanism for ALS-funded projects. Using OPIS, ALS managers and element leads will be able to carry out informed R&TD investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, Controls and Systems Analysis). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.

  7. Genomic research in Eucalyptus.

    Science.gov (United States)

    Poke, Fiona S; Vaillancourt, René E; Potts, Brad M; Reid, James B

    2005-09-01

    Eucalyptus L'Hérit. is a genus comprised of more than 700 species that is of vital importance ecologically to Australia and to the forestry industry world-wide, being grown in plantations for the production of solid wood products as well as pulp for paper. With the sequencing of the genomes of Arabidopsis thaliana and Oryza sativa and the recent completion of the first tree genome sequence, Populus trichocarpa, attention has turned to the current status of genomic research in Eucalyptus. For several eucalypt species, large segregating families have been established, high-resolution genetic maps constructed and large EST databases generated. Collaborative efforts have been initiated for the integration of diverse genomic projects and will provide the framework for future research including exploiting the sequence of the entire eucalypt genome which is currently being sequenced. This review summarises the current position of genomic research in Eucalyptus and discusses the direction of future research.

  8. The interplay between formal and informal contracting in integrated project delivery

    NARCIS (Netherlands)

    Bygballe, L.E.; Dewulf, Geert P.M.R.; Levitt, R.

    2015-01-01

    This research examines the interplay between formal and informal contracting in integrated project delivery (IPD). It investigates how the interplay enables parties in health-care construction projects to cope with uncertainty and complexities, due to, among others, changing demands. New delivery

  9. Design of management information system for nuclear industry architectural project costs

    International Nuclear Information System (INIS)

    Zhang Xingzhi; Li Wei

    1996-01-01

    Management Information System (MIS) for nuclear industry architectural project is analysed and designed in detail base on quota management and engineering budget management of nuclear industry in respect of the practice of Qinshan Second Phase 2 x 600 MW Project

  10. The RadGenomics project. Prediction for radio-susceptibility of individuals with genetic predisposition

    International Nuclear Information System (INIS)

    Imai, Takashi

    2003-01-01

    The ultimate goal of our project, named RadGenomics, is to elucidate the heterogeneity of the response to ionizing radiation arising from genetic variation among individuals, for the purpose of developing personalized radiation therapy regimens for cancer patients. Cancer patients exhibit patient-to-patient variability in normal tissue reactions after radiotherapy. Several observations support the hypothesis that the radiosensitivity of normal tissue is influenced by genetic factors. The rapid progression of human genome sequencing and the recent development of new technologies in molecular biology are providing new opportunities for elucidating the genetic basis of individual differences in susceptibility to radiation exposure. The development of a sufficiently robust, predictive assay enabling individual dose adjustment would improve the outcome of radiation therapy in patients. Our strategy for identification of DNA polymorphisms that contribute to the individual radiosensitivity is as follows. First, we have been categorizing DNA samples obtained from cancer patients, who have been kindly introduced to us through many collaborators, according to their clinical characteristics including the method and effect of treatment and side effects as scored by toxicity criteria, and also the result of an in vitro radiosensitivity assay, e.g., the micronuclei assay of their lymphocytes. Second, we have identified candidate genes for genotyping mainly by using our custom-designed oligonucleotide array with RNA samples, in which the probes were obtained from more than 40 cancer and 3 fibroblast cell lines whose radiosensitivity level was quite heterogeneous. We have also been studying the modification of proteins after irradiation of cells which may be caused by mainly phosphorylation or dephosphorylation, using mass spectrometry. Genes encoding the modified proteins and/or other proteins with which they interact such as specific protein kinases and phosphatases are also

  11. CyanoBase: the cyanobacteria genome database update 2010

    OpenAIRE

    Nakao, Mitsuteru; Okamoto, Shinobu; Kohara, Mitsuyo; Fujishiro, Tsunakazu; Fujisawa, Takatomo; Sato, Shusei; Tabata, Satoshi; Kaneko, Takakazu; Nakamura, Yasukazu

    2009-01-01

    CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in var...

  12. Development of a website and an information system for an European R&D project : the example of the STRATFEED project

    Directory of Open Access Journals (Sweden)

    Baeten V.

    2003-01-01

    Full Text Available The multidisciplinary nature, the international partnership and the large amount of information to be managed in an European project such as STRATFEED, require the development of an information management system. Within the framework of this project, the development of the Internet-oriented computer system required three facets: the data and information collection, the database building and the development of different applications. A tool for the dissemination of results (STRATFEED website with both a public part and a confidential part, a tool for data management (STRATFEED manager, a tool for data queries (STRATFEED explorer and two tools for decision-making (ARIES Decision Support System –– CD-Rom release and STRATFEED Decision Support System – Internet release were developed. The modular concept, which relates to the different topics of the project, facilitates the updating and development of a system according to research progress and user needs. The concept developed for this project can be used for any other project and can easily be adapted to meet new requirements. The example of the STRATFEED project can be accessed at: http://stratfeed.cra.wallonie.be

  13. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  14. Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study

    DEFF Research Database (Denmark)

    de Vries, Paul S; Sabater-Lleal, Maria; Chasman, Daniel I

    2017-01-01

    An increasing number of genome-wide association (GWA) studies are now using the higher resolution 1000 Genomes Project reference panel (1000G) for imputation, with the expectation that 1000G imputation will lead to the discovery of additional associated loci when compared to HapMap imputation. In...

  15. How American Nurses Association Code of Ethics informs genetic/genomic nursing.

    Science.gov (United States)

    Tluczek, Audrey; Twal, Marie E; Beamer, Laura Curr; Burton, Candace W; Darmofal, Leslie; Kracun, Mary; Zanni, Karen L; Turner, Martha

    2018-01-01

    Members of the Ethics and Public Policy Committee of the International Society of Nurses in Genetics prepared this article to assist nurses in interpreting the American Nurses Association (2015) Code of Ethics for Nurses with Interpretive Statements (Code) within the context of genetics/genomics. The Code explicates the nursing profession's norms and responsibilities in managing ethical issues. The nearly ubiquitous application of genetic/genomic technologies in healthcare poses unique ethical challenges for nursing. Therefore, authors conducted literature searches that drew from various professional resources to elucidate implications of the code in genetic/genomic nursing practice, education, research, and public policy. We contend that the revised Code coupled with the application of genomic technologies to healthcare creates moral obligations for nurses to continually refresh their knowledge and capacities to translate genetic/genomic research into evidence-based practice, assure the ethical conduct of scientific inquiry, and continually develop or revise national/international guidelines that protect the rights of individuals and populations within the context of genetics/genomics. Thus, nurses have an ethical responsibility to remain knowledgeable about advances in genetics/genomics and incorporate emergent evidence into their work.

  16. PROJECT MANAGEMENT INFORMATION SYSTEM: STUDY IN SMALL AND MEDIUM ENTERPRISES OF INDUSTRIAL AUTOMATION

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Mondin

    2016-12-01

    Full Text Available This article aims to analyze the structuring stage and use of information systems in project management in small and medium-sized companies in the business of providing services in industrial automation. Information systems applied to project management - SIGPs can contribute to decision-making on projects, assisting in the management of reliable information in real time, making it a natural choice for most companies looking to increase performance management of their projects. The research method used was multiple case study, in line with the explanatory nature of the study, when to investigate and perform analytical comparisons on how small and medium-sized enterprises of the studied branch structure and use the SIGPs, considering the contemporary character theme and the possibility of direct observation of the object of study, in addition to conducting interviews. The main results were identified the main gaps in project management in companies and research as the management characteristics of these SMEs have influence in how their projects are managed. It was observed that there is a predominance of features involving scope, time and resources on projects, whereas aspects related to costs, risks, quality, procurement and communications have unimpressive results in relation to structuring.

  17. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-01

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human

  18. Comparing genomes: databases and computational tools for comparative analysis of prokaryotic genomes - DOI: 10.3395/reciis.v1i2.Sup.105en

    Directory of Open Access Journals (Sweden)

    Marcos Catanho

    2007-12-01

    Full Text Available Since the 1990's, the complete genetic code of more than 600 living organisms has been deciphered, such as bacteria, yeasts, protozoan parasites, invertebrates and vertebrates, including Homo sapiens, and plants. More than 2,000 other genome projects representing medical, commercial, environmental and industrial interests, or comprising model organisms, important for the development of the scientific research, are currently in progress. The achievement of complete genome sequences of numerous species combined with the tremendous progress in computation that occurred in the last few decades allowed the use of new holistic approaches in the study of genome structure, organization and evolution, as well as in the field of gene prediction and functional classification. Numerous public or proprietary databases and computational tools have been created attempting to optimize the access to this information through the web. In this review, we present the main resources available through the web for comparative analysis of prokaryotic genomes. We concentrated on the group of mycobacteria that contains important human and animal pathogens. The birth of Bioinformatics and Computational Biology and the contributions of these disciplines to the scientific development of this field are also discussed.

  19. Integrated project management information systems: the French nuclear industry experience

    International Nuclear Information System (INIS)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-01-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK)

  20. Integrated project management information systems: the French nuclear industry experience

    Energy Technology Data Exchange (ETDEWEB)

    Jacquin, J.-C.; Caupin, G.-M.

    1990-03-01

    The article discusses the desirability of integrated project management systems within the French nuclear power industry. Change in demand for nuclear generation facilities over the last two decades has necessitated a change of policy concerning organization, cost and planning within the industry. Large corporate systems can benefit from integrating equipment and bulk materials tracking. Project management for the nuclear industry will, in future, need to incorporate computer aided design tools and project management information systems data bases as well as equipment and planning data. (UK).