WorldWideScience

Sample records for genome diversity project

  1. The Human Genome Diversity Project

    Energy Technology Data Exchange (ETDEWEB)

    Cavalli-Sforza, L. [Stanford Univ., CA (United States)

    1994-12-31

    The Human Genome Diversity Project (HGD Project) is an international anthropology project that seeks to study the genetic richness of the entire human species. This kind of genetic information can add a unique thread to the tapestry knowledge of humanity. Culture, environment, history, and other factors are often more important, but humanity`s genetic heritage, when analyzed with recent technology, brings another type of evidence for understanding species` past and present. The Project will deepen the understanding of this genetic richness and show both humanity`s diversity and its deep and underlying unity. The HGD Project is still largely in its planning stages, seeking the best ways to reach its goals. The continuing discussions of the Project, throughout the world, should improve the plans for the Project and their implementation. The Project is as global as humanity itself; its implementation will require the kinds of partnerships among different nations and cultures that make the involvement of UNESCO and other international organizations particularly appropriate. The author will briefly discuss the Project`s history, describe the Project, set out the core principles of the Project, and demonstrate how the Project will help combat the scourge of racism.

  2. The Human Genome Diversity (HGD) Project. Summary document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    In 1991 a group of human geneticists and molecular biologists proposed to the scientific community that a world wide survey be undertaken of variation in the human genome. To aid their considerations, the committee therefore decided to hold a small series of international workshops to explore the major scientific issues involved. The intention was to define a framework for the project which could provide a basis for much wider and more detailed discussion and planning--it was recognized that the successful implementation of the proposed project, which has come to be known as the Human Genome Diversity (HGD) Project, would not only involve scientists but also various national and international non-scientific groups all of which should contribute to the project`s development. The international HGD workshop held in Sardinia in September 1993 was the last in the initial series of planning workshops. As such it not only explored new ground but also pulled together into a more coherent form much of the formal and informal discussion that had taken place in the preceding two years. This report presents the deliberations of the Sardinia workshop within a consideration of the overall development of the HGD Project to date.

  3. Visualization of Genome Diversity in German Shepherd Dogs

    OpenAIRE

    Sally-Anne Mortlock; Rachel Booth; Hamutal Mazrier; Mehar S. Khatkar; Peter Williamson

    2016-01-01

    A loss of genetic diversity may lead to increased disease risks in subpopulations of dogs. The canine breed structure has contributed to relatively small effective population size in many breeds and can limit the options for selective breeding strategies to maintain diversity. With the completion of the canine genome sequencing project, and the subsequent reduction in the cost of genotyping on a genomic scale, evaluating diversity in dogs has become much more accurate and accessible. This pro...

  4. The analysis of APOL1 genetic variation and haplotype diversity provided by 1000 Genomes project.

    Science.gov (United States)

    Peng, Ting; Wang, Li; Li, Guisen

    2017-08-11

    The APOL1 gene variants has been shown to be associated with an increased risk of multiple kinds of diseases, particularly in African Americans, but not in Caucasians and Asians. In this study, we explored the single nucleotide polymorphism (SNP) and haplotype diversity of APOL1 gene in different races provided by 1000 Genomes project. Variants of APOL1 gene in 1000 Genome Project were obtained and SNPs located in the regulatory region or coding region were selected for genetic variation analysis. Total 2504 individuals from 26 populations were classified as four groups that included Africa, Europe, Asia and Admixed populations. Tag SNPs were selected to evaluate the haplotype diversities in the four populations by HaploStats software. APOL1 gene was surrounded by some of the most polymorphic genes in the human genome, variation of APOL1 gene was common, with up to 613 SNP (1000 Genome Project reported) and 99 of them (16.2%) with MAF ≥ 1%. There were 79 SNPs in the URR and 92 SNPs in 3'UTR. Total 12 SNPs in URR and 24 SNPs in 3'UTR were considered as common variants with MAF ≥ 1%. It is worth noting that URR-1 was presents lower frequencies in European populations, while other three haplotypes taken an opposite pattern; 3'UTR presents several high-frequency variation sites in a short segment, and the differences of its haplotypes among different population were significant (P < 0.01), UTR-1 and UTR-5 presented much higher frequency in African population, while UTR-2, UTR-3 and UTR-4 were much lower. APOL1 coding region showed that two SNP of G1 with higher frequency are actually pull down the haplotype H-1 frequency when considering all populations pooled together, and the diversity among the four populations be widen by the G1 two mutation (P 1  = 3.33E-4 vs P 2  = 3.61E-30). The distributions of APOL1 gene variants and haplotypes were significantly different among the different populations, in either regulatory or coding regions. It could provide

  5. Genomic Diversity in the Genus of Aspergillus

    DEFF Research Database (Denmark)

    Rasmussen, Jane Lind Nybo

    , sections and genus of Aspergillus. The work uncovers a large genomic diversity across all studied groups of species. The genomic diversity was especially evident on the section level, where the proteins shared by all species only represents ⇠55% of the proteome. This number decreases even further, to 38......, sections Nigri, Usti and Cavericolus, clade Tubingensis, and species A. niger. It lastly uses these results to predict genetic traits that take part in fungal speciation. Within a few years the Aspergillus whole-genus sequencing project will have published all currently-accepted Aspergillus genomes......Aspergillus is a highly important genus of saprotrophic filamentous fungi. It is a very diverse genus that is inextricably intertwined with human a↵airs on a daily basis, holding species relevant to plant and human pathology, enzyme and bulk chemistry production, food and beverage biotechnology...

  6. HLA diversity in the 1000 genomes dataset.

    Directory of Open Access Journals (Sweden)

    Pierre-Antoine Gourraud

    Full Text Available The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC, only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies.

  7. Bacillus subtilis genome diversity.

    Science.gov (United States)

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2007-02-01

    Microarray-based comparative genomic hybridization (M-CGH) is a powerful method for rapidly identifying regions of genome diversity among closely related organisms. We used M-CGH to examine the genome diversity of 17 strains belonging to the nonpathogenic species Bacillus subtilis. Our M-CGH results indicate that there is considerable genetic heterogeneity among members of this species; nearly one-third of Bsu168-specific genes exhibited variability, as measured by the microarray hybridization intensities. The variable loci include those encoding proteins involved in antibiotic production, cell wall synthesis, sporulation, and germination. The diversity in these genes may reflect this organism's ability to survive in diverse natural settings.

  8. Genome Surfing As Driver of Microbial Genomic Diversity.

    Science.gov (United States)

    Choudoir, Mallory J; Panke-Buisse, Kevin; Andam, Cheryl P; Buckley, Daniel H

    2017-08-01

    Historical changes in population size, such as those caused by demographic range expansions, can produce nonadaptive changes in genomic diversity through mechanisms such as gene surfing. We propose that demographic range expansion of a microbial population capable of horizontal gene exchange can result in genome surfing, a mechanism that can cause widespread increase in the pan-genome frequency of genes acquired by horizontal gene exchange. We explain that patterns of genetic diversity within Streptomyces are consistent with genome surfing, and we describe several predictions for testing this hypothesis both in Streptomyces and in other microorganisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A 1000 Arab genome project to study the Emirati population.

    Science.gov (United States)

    Al-Ali, Mariam; Osman, Wael; Tay, Guan K; AlSafar, Habiba S

    2018-04-01

    Discoveries from the human genome, HapMap, and 1000 genome projects have collectively contributed toward the creation of a catalog of human genetic variations that has improved our understanding of human diversity. Despite the collegial nature of many of these genome study consortiums, which has led to the cataloging of genetic variations of different ethnic groups from around the world, genome data on the Arab population remains overwhelmingly underrepresented. The National Arab Genome project in the United Arab Emirates (UAE) aims to address this deficiency by using Next Generation Sequencing (NGS) technology to provide data to improve our understanding of the Arab genome and catalog variants that are unique to the Arab population of the UAE. The project was conceived to shed light on the similarities and differences between the Arab genome and those of the other ethnic groups.

  10. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Directory of Open Access Journals (Sweden)

    McGuire Patrick E

    2010-12-01

    Full Text Available Abstract Background A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. Results Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. Conclusions In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large

  11. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2015-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  12. The African Genome Variation Project shapes medical genetics in Africa.

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S

    2015-01-15

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  13. Report of the second Human Genome Diversity workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The Second Human Genome Diversity Workshop was successfully held at Penn State University from October 29--31, 1992. The Workshop was essentially organized around 7 groups, each comprising approximately 10 participants, representing the sampling issues in different regions of the world. These groups worked independently, using a common format provided by the organizers; this was adjusted as needed by the individual groups. The Workshop began with a presentation of the mandate to the participants, and of the procedures to be followed during the workshop. Dr. Feldman presented a summary of the results from the First Workshop. He and the other organizers also presented brief comments giving their perspective on the objectives of the Second Workshop. Dr. Julia Bodmer discussed the study of European genetic diversity, especially in the context of the HLA experience there, and of plans to extend such studies in the coming years. She also discussed surveys of world HLA laboratories in regard to resources related to Human Genome Diversity. Dr. Mark Weiss discussed the relevance of nonhuman primate studies for understanding how demographic processes, such as mate exchange between local groups, affected the local dispersion of genetic variation. Primate population geneticists have some relevant experience in interpreting variation at this local level, in particular, with various DNA fingerprinting methods. This experience may be relevant to the Human Genome Diversity Project, in terms of practical and statistical issues.

  14. MBGD update 2013: the microbial genome database for exploring the diversity of microbial world.

    Science.gov (United States)

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2013-01-01

    The microbial genome database for comparative analysis (MBGD, available at http://mbgd.genome.ad.jp/) is a platform for microbial genome comparison based on orthology analysis. As its unique feature, MBGD allows users to conduct orthology analysis among any specified set of organisms; this flexibility allows MBGD to adapt to a variety of microbial genomic study. Reflecting the huge diversity of microbial world, the number of microbial genome projects now becomes several thousands. To efficiently explore the diversity of the entire microbial genomic data, MBGD now provides summary pages for pre-calculated ortholog tables among various taxonomic groups. For some closely related taxa, MBGD also provides the conserved synteny information (core genome alignment) pre-calculated using the CoreAligner program. In addition, efficient incremental updating procedure can create extended ortholog table by adding additional genomes to the default ortholog table generated from the representative set of genomes. Combining with the functionalities of the dynamic orthology calculation of any specified set of organisms, MBGD is an efficient and flexible tool for exploring the microbial genome diversity.

  15. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium.

    Science.gov (United States)

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur , amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.

  16. RadGenomics project

    Energy Technology Data Exchange (ETDEWEB)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu [National Inst. of Radiological Sciences, Chiba (Japan). Frontier Research Center] [and others

    2002-06-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  17. RadGenomics project

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi; Imai, Takashi; Harada, Yoshinobu

    2002-01-01

    Human health is determined by a complex interplay of factors, predominantly between genetic susceptibility, environmental conditions and aging. The ultimate aim of the RadGenomics (Radiation Genomics) project is to understand the implications of heterogeneity in responses to ionizing radiation arising from genetic variation between individuals in the human population. The rapid progression of the human genome sequencing and the recent development of new technologies in molecular genetics are providing us with new opportunities to understand the genetic basis of individual differences in susceptibility to natural and/or artificial environmental factors, including radiation exposure. The RadGenomics project will inevitably lead to improved protocols for personalized radiotherapy and reductions in the potential side effects of such treatment. The project will contribute to future research into the molecular mechanisms of radiation sensitivity in humans and will stimulate the development of new high-throughput technologies for a broader application of biological and medical sciences. The staff members are specialists in a variety of fields, including genome science, radiation biology, medical science, molecular biology, and informatics, and have joined the RadGenomics project from various universities, companies, and research institutes. The project started in April 2001. (author)

  18. Genomic Diversity of Lactobacillus salivarius▿ †

    OpenAIRE

    Raftis, Emma J.; Salvetti, Elisa; Torriani, Sandra; Felis, Giovanna E.; O'Toole, Paul W.

    2010-01-01

    Strains of Lactobacillus salivarius are increasingly employed as probiotic agents for humans or animals. Despite the diversity of environmental sources from which they have been isolated, the genomic diversity of L. salivarius has been poorly characterized, and the implications of this diversity for strain selection have not been examined. To tackle this, we applied comparative genomic hybridization (CGH) and multilocus sequence typing (MLST) to 33 strains derived from humans, animals, or foo...

  19. Genomic Diversity of Lactobacillus salivarius▿ †

    Science.gov (United States)

    Raftis, Emma J.; Salvetti, Elisa; Torriani, Sandra; Felis, Giovanna E.; O'Toole, Paul W.

    2011-01-01

    Strains of Lactobacillus salivarius are increasingly employed as probiotic agents for humans or animals. Despite the diversity of environmental sources from which they have been isolated, the genomic diversity of L. salivarius has been poorly characterized, and the implications of this diversity for strain selection have not been examined. To tackle this, we applied comparative genomic hybridization (CGH) and multilocus sequence typing (MLST) to 33 strains derived from humans, animals, or food. The CGH, based on total genome content, including small plasmids, identified 18 major regions of genomic variation, or hot spots for variation. Three major divisions were thus identified, with only a subset of the human isolates constituting an ecologically discernible group. Omission of the small plasmids from the CGH or analysis by MLST provided broadly concordant fine divisions and separated human-derived and animal-derived strains more clearly. The two gene clusters for exopolysaccharide (EPS) biosynthesis corresponded to regions of significant genomic diversity. The CGH-based groupings of these regions did not correlate with levels of production of bound or released EPS. Furthermore, EPS production was significantly modulated by available carbohydrate. In addition to proving difficult to predict from the gene content, EPS production levels correlated inversely with production of biofilms, a trait considered desirable in probiotic commensals. L. salivarius displays a high level of genomic diversity, and while selection of L. salivarius strains for probiotic use can be informed by CGH or MLST, it also requires pragmatic experimental validation of desired phenotypic traits. PMID:21131523

  20. Human Genome Diversity Project. Summary of planning workshop 3(B): Ethical and human-rights implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The third planning workshop of the Human Genome Diversity Project was held on the campus of the US National Institutes of Health in Bethesda, Maryland, from February 16 through February 18, 1993. The second day of the workshop was devoted to an exploration of the ethical and human-rights implications of the Project. This open meeting centered on three roundtables, involving 12 invited participants, and the resulting discussions among all those present. Attendees and their affiliations are listed in the attached Appendix A. The discussion was guided by a schedule and list of possible issues, distributed to all present and attached as Appendix B. This is a relatively complete, and thus lengthy, summary of the comments at the meeting. The beginning of the summary sets out as conclusions some issues on which there appeared to be widespread agreement, but those conclusions are not intended to serve as a set of detailed recommendations. The meeting organizer is distributing his recommendations in a separate memorandum; recommendations from others who attended the meeting are welcome and will be distributed by the meeting organizer to the participants and to the Project committee.

  1. Genetic Competence Drives Genome Diversity in Bacillus subtilis

    Science.gov (United States)

    Chevreux, Bastien; Serra, Cláudia R; Schyns, Ghislain; Henriques, Adriano O

    2018-01-01

    Abstract Prokaryote genomes are the result of a dynamic flux of genes, with increases achieved via horizontal gene transfer and reductions occurring through gene loss. The ecological and selective forces that drive this genomic flexibility vary across species. Bacillus subtilis is a naturally competent bacterium that occupies various environments, including plant-associated, soil, and marine niches, and the gut of both invertebrates and vertebrates. Here, we quantify the genomic diversity of B. subtilis and infer the genome dynamics that explain the high genetic and phenotypic diversity observed. Phylogenomic and comparative genomic analyses of 42 B. subtilis genomes uncover a remarkable genome diversity that translates into a core genome of 1,659 genes and an asymptotic pangenome growth rate of 57 new genes per new genome added. This diversity is due to a large proportion of low-frequency genes that are acquired from closely related species. We find no gene-loss bias among wild isolates, which explains why the cloud genome, 43% of the species pangenome, represents only a small proportion of each genome. We show that B. subtilis can acquire xenologous copies of core genes that propagate laterally among strains within a niche. While not excluding the contributions of other mechanisms, our results strongly suggest a process of gene acquisition that is largely driven by competence, where the long-term maintenance of acquired genes depends on local and global fitness effects. This competence-driven genomic diversity provides B. subtilis with its generalist character, enabling it to occupy a wide range of ecological niches and cycle through them. PMID:29272410

  2. Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes.

    Science.gov (United States)

    Hirsch, Cory D; Evans, Joseph; Buell, C Robin; Hirsch, Candice N

    2014-07-01

    Technology and software improvements in the last decade now provide methodologies to access the genome sequence of not only a single accession, but also multiple accessions of plant species. This provides a means to interrogate species diversity at the genome level. Ample diversity among accessions in a collection of species can be found, including single-nucleotide polymorphisms, insertions and deletions, copy number variation and presence/absence variation. For species with small, non-repetitive rich genomes, re-sequencing of query accessions is robust, highly informative, and economically feasible. However, for species with moderate to large sized repetitive-rich genomes, technical and economic barriers prevent en masse genome re-sequencing of accessions. Multiple approaches to access a focused subset of loci in species with larger genomes have been developed, including reduced representation sequencing, exome capture and transcriptome sequencing. Collectively, these approaches have enabled interrogation of diversity on a genome scale for large plant genomes, including crop species important to worldwide food security. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  4. Genomic Diversity and Evolution of the Lyssaviruses

    Science.gov (United States)

    Delmas, Olivier; Holmes, Edward C.; Talbi, Chiraz; Larrous, Florence; Dacheux, Laurent; Bouchier, Christiane; Bourhy, Hervé

    2008-01-01

    Lyssaviruses are RNA viruses with single-strand, negative-sense genomes responsible for rabies-like diseases in mammals. To date, genomic and evolutionary studies have most often utilized partial genome sequences, particularly of the nucleoprotein and glycoprotein genes, with little consideration of genome-scale evolution. Herein, we report the first genomic and evolutionary analysis using complete genome sequences of all recognised lyssavirus genotypes, including 14 new complete genomes of field isolates from 6 genotypes and one genotype that is completely sequenced for the first time. In doing so we significantly increase the extent of genome sequence data available for these important viruses. Our analysis of these genome sequence data reveals that all lyssaviruses have the same genomic organization. A phylogenetic analysis reveals strong geographical structuring, with the greatest genetic diversity in Africa, and an independent origin for the two known genotypes that infect European bats. We also suggest that multiple genotypes may exist within the diversity of viruses currently classified as ‘Lagos Bat’. In sum, we show that rigorous phylogenetic techniques based on full length genome sequence provide the best discriminatory power for genotype classification within the lyssaviruses. PMID:18446239

  5. Genomic diversity and evolution of the lyssaviruses.

    Directory of Open Access Journals (Sweden)

    Olivier Delmas

    2008-04-01

    Full Text Available Lyssaviruses are RNA viruses with single-strand, negative-sense genomes responsible for rabies-like diseases in mammals. To date, genomic and evolutionary studies have most often utilized partial genome sequences, particularly of the nucleoprotein and glycoprotein genes, with little consideration of genome-scale evolution. Herein, we report the first genomic and evolutionary analysis using complete genome sequences of all recognised lyssavirus genotypes, including 14 new complete genomes of field isolates from 6 genotypes and one genotype that is completely sequenced for the first time. In doing so we significantly increase the extent of genome sequence data available for these important viruses. Our analysis of these genome sequence data reveals that all lyssaviruses have the same genomic organization. A phylogenetic analysis reveals strong geographical structuring, with the greatest genetic diversity in Africa, and an independent origin for the two known genotypes that infect European bats. We also suggest that multiple genotypes may exist within the diversity of viruses currently classified as 'Lagos Bat'. In sum, we show that rigorous phylogenetic techniques based on full length genome sequence provide the best discriminatory power for genotype classification within the lyssaviruses.

  6. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data.

    Science.gov (United States)

    Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul

    2017-01-04

    The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data-previously only browseable through our FTP site-by focusing on particular samples, populations or data sets of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative

    Directory of Open Access Journals (Sweden)

    Wim Degrave

    1997-11-01

    Full Text Available Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given

  8. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.

    Science.gov (United States)

    Papanicolaou, Alexie

    2016-01-01

    Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure.

  9. The African Genome Variation Project shapes medical genetics in Africa

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2014-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterisation of African genetic diversity is needed. The African Genome Variation Project (AGVP) provides a resource to help design, implement and interpret genomic studies in sub-Saharan Africa (SSA) and worldwide. The AGVP represents dense genotypes from 1,481 and whole genome sequences (WGS) from 320 individuals across SSA. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across SSA. We identify new loci under selection, including for malaria and hypertension. We show that modern imputation panels can identify association signals at highly differentiated loci across populations in SSA. Using WGS, we show further improvement in imputation accuracy supporting efforts for large-scale sequencing of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa, showing for the first time that such designs are feasible. PMID:25470054

  10. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    OpenAIRE

    Henrique Machado; Henrique Machado; Lone Gram

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationship...

  11. Genomic diversity of Lactobacillus salivarius

    OpenAIRE

    Raftis, Emma J.

    2015-01-01

    Lactobacillus salivarius is unusual among the lactobacilli due to its multireplicon genome architecture. The circular megaplasmids harboured by L. salivarius strains encode strain-specific traits for intestinal survival and probiotic activity. L. salivarius strains are increasingly being exploited for their probiotic properties in humans and animals. In terms of probiotic strain selection, it is important to have an understanding of the level of genomic diversity present in this species. Comp...

  12. Comparative genomics of the marine bacterial genus Glaciecola reveals the high degree of genomic diversity and genomic characteristic for cold adaptation.

    Science.gov (United States)

    Qin, Qi-Long; Xie, Bin-Bin; Yu, Yong; Shu, Yan-Li; Rong, Jin-Cheng; Zhang, Yan-Jiao; Zhao, Dian-Li; Chen, Xiu-Lan; Zhang, Xi-Ying; Chen, Bo; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2014-06-01

    To what extent the genomes of different species belonging to one genus can be diverse and the relationship between genomic differentiation and environmental factor remain unclear for oceanic bacteria. With many new bacterial genera and species being isolated from marine environments, this question warrants attention. In this study, we sequenced all the type strains of the published species of Glaciecola, a recently defined cold-adapted genus with species from diverse marine locations, to study the genomic diversity and cold-adaptation strategy in this genus.The genome size diverged widely from 3.08 to 5.96 Mb, which can be explained by massive gene gain and loss events. Horizontal gene transfer and new gene emergence contributed substantially to the genome size expansion. The genus Glaciecola had an open pan-genome. Comparative genomic research indicated that species of the genus Glaciecola had high diversity in genome size, gene content and genetic relatedness. This may be prevalent in marine bacterial genera considering the dynamic and complex environments of the ocean. Species of Glaciecola had some common genomic features related to cold adaptation, which enable them to thrive and play a role in biogeochemical cycle in the cold marine environments.

  13. Early Epstein-Barr Virus Genomic Diversity and Convergence toward the B95.8 Genome in Primary Infection.

    Science.gov (United States)

    Weiss, Eric R; Lamers, Susanna L; Henderson, Jennifer L; Melnikov, Alexandre; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa; Nusbaum, Chad; Luzuriaga, Katherine

    2018-01-15

    Over 90% of the world's population is persistently infected with Epstein-Barr virus. While EBV does not cause disease in most individuals, it is the common cause of acute infectious mononucleosis (AIM) and has been associated with several cancers and autoimmune diseases, highlighting a need for a preventive vaccine. At present, very few primary, circulating EBV genomes have been sequenced directly from infected individuals. While low levels of diversity and low viral evolution rates have been predicted for double-stranded DNA (dsDNA) viruses, recent studies have demonstrated appreciable diversity in common dsDNA pathogens (e.g., cytomegalovirus). Here, we report 40 full-length EBV genome sequences obtained from matched oral wash and B cell fractions from a cohort of 10 AIM patients. Both intra- and interpatient diversity were observed across the length of the entire viral genome. Diversity was most pronounced in viral genes required for establishing latent infection and persistence, with appreciable levels of diversity also detected in structural genes, including envelope glycoproteins. Interestingly, intrapatient diversity declined significantly over time ( P < 0.01), and this was particularly evident on comparison of viral genomes sequenced from B cell fractions in early primary infection and convalescence ( P < 0.001). B cell-associated viral genomes were observed to converge, becoming nearly identical to the B95.8 reference genome over time (Spearman rank-order correlation test; r = -0.5589, P = 0.0264). The reduction in diversity was most marked in the EBV latency genes. In summary, our data suggest independent convergence of diverse viral genome sequences toward a reference-like strain within a relatively short period following primary EBV infection. IMPORTANCE Identification of viral proteins with low variability and high immunogenicity is important for the development of a protective vaccine. Knowledge of genome diversity within circulating viral

  14. The Ensembl genome database project.

    Science.gov (United States)

    Hubbard, T; Barker, D; Birney, E; Cameron, G; Chen, Y; Clark, L; Cox, T; Cuff, J; Curwen, V; Down, T; Durbin, R; Eyras, E; Gilbert, J; Hammond, M; Huminiecki, L; Kasprzyk, A; Lehvaslaiho, H; Lijnzaad, P; Melsopp, C; Mongin, E; Pettett, R; Pocock, M; Potter, S; Rust, A; Schmidt, E; Searle, S; Slater, G; Smith, J; Spooner, W; Stabenau, A; Stalker, J; Stupka, E; Ureta-Vidal, A; Vastrik, I; Clamp, M

    2002-01-01

    The Ensembl (http://www.ensembl.org/) database project provides a bioinformatics framework to organise biology around the sequences of large genomes. It is a comprehensive source of stable automatic annotation of the human genome sequence, with confirmed gene predictions that have been integrated with external data sources, and is available as either an interactive web site or as flat files. It is also an open source software engineering project to develop a portable system able to handle very large genomes and associated requirements from sequence analysis to data storage and visualisation. The Ensembl site is one of the leading sources of human genome sequence annotation and provided much of the analysis for publication by the international human genome project of the draft genome. The Ensembl system is being installed around the world in both companies and academic sites on machines ranging from supercomputers to laptops.

  15. Intraclonal genome diversity of Pseudomonas aeruginosa clones CHA and TB

    Science.gov (United States)

    2013-01-01

    Background Adaptation of Pseudomonas aeruginosa to different living conditions is accompanied by microevolution resulting in genomic diversity between strains of the same clonal lineage. In order to detect the impact of colonized habitats on P. aeruginosa microevolution we determined the genomic diversity between the highly virulent cystic fibrosis (CF) isolate CHA and two temporally and geographically unrelated clonal variants. The outcome was compared with the intraclonal genome diversity between three more closely related isolates of another clonal complex. Results The three clone CHA isolates differed in their core genome in several dozen strain specific nucleotide exchanges and small deletions from each other. Loss of function mutations and non-conservative amino acid replacements affected several habitat- and lifestyle-associated traits, for example, the key regulator GacS of the switch between acute and chronic disease phenotypes was disrupted in strain CHA. Intraclonal genome diversity manifested in an individual composition of the respective accessory genome whereby the highest number of accessory DNA elements was observed for isolate PT22 from a polluted aquatic habitat. Little intraclonal diversity was observed between three spatiotemporally related outbreak isolates of clone TB. Although phenotypically different, only a few individual SNPs and deletions were detected in the clone TB isolates. Their accessory genome mainly differed in prophage-like DNA elements taken up by one of the strains. Conclusions The higher geographical and temporal distance of the clone CHA isolates was associated with an increased intraclonal genome diversity compared to the more closely related clone TB isolates derived from a common source demonstrating the impact of habitat adaptation on the microevolution of P. aeruginosa. However, even short-term habitat differentiation can cause major phenotypic diversification driven by single genomic variation events and uptake of phage

  16. Challenges and strategies for implementing genomic services in diverse settings: experiences from the Implementing GeNomics In pracTicE (IGNITE) network.

    Science.gov (United States)

    Sperber, Nina R; Carpenter, Janet S; Cavallari, Larisa H; J Damschroder, Laura; Cooper-DeHoff, Rhonda M; Denny, Joshua C; Ginsburg, Geoffrey S; Guan, Yue; Horowitz, Carol R; Levy, Kenneth D; Levy, Mia A; Madden, Ebony B; Matheny, Michael E; Pollin, Toni I; Pratt, Victoria M; Rosenman, Marc; Voils, Corrine I; W Weitzel, Kristen; Wilke, Russell A; Ryanne Wu, R; Orlando, Lori A

    2017-05-22

    To realize potential public health benefits from genetic and genomic innovations, understanding how best to implement the innovations into clinical care is important. The objective of this study was to synthesize data on challenges identified by six diverse projects that are part of a National Human Genome Research Institute (NHGRI)-funded network focused on implementing genomics into practice and strategies to overcome these challenges. We used a multiple-case study approach with each project considered as a case and qualitative methods to elicit and describe themes related to implementation challenges and strategies. We describe challenges and strategies in an implementation framework and typology to enable consistent definitions and cross-case comparisons. Strategies were linked to challenges based on expert review and shared themes. Three challenges were identified by all six projects, and strategies to address these challenges varied across the projects. One common challenge was to increase the relative priority of integrating genomics within the health system electronic health record (EHR). Four projects used data warehousing techniques to accomplish the integration. The second common challenge was to strengthen clinicians' knowledge and beliefs about genomic medicine. To overcome this challenge, all projects developed educational materials and conducted meetings and outreach focused on genomic education for clinicians. The third challenge was engaging patients in the genomic medicine projects. Strategies to overcome this challenge included use of mass media to spread the word, actively involving patients in implementation (e.g., a patient advisory board), and preparing patients to be active participants in their healthcare decisions. This is the first collaborative evaluation focusing on the description of genomic medicine innovations implemented in multiple real-world clinical settings. Findings suggest that strategies to facilitate integration of genomic

  17. A comprehensive crop genome research project: the Superhybrid Rice Genome Project in China.

    Science.gov (United States)

    Yu, Jun; Wong, Gane Ka-Shu; Liu, Siqi; Wang, Jian; Yang, Huanming

    2007-06-29

    In May 2000, the Beijing Institute of Genomics formally announced the launch of a comprehensive crop genome research project on rice genomics, the Chinese Superhybrid Rice Genome Project. SRGP is not simply a sequencing project targeted to a single rice (Oryza sativa L.) genome, but a full-swing research effort with an ultimate goal of providing inclusive basic genomic information and molecular tools not only to understand biology of the rice, both as an important crop species and a model organism of cereals, but also to focus on a popular superhybrid rice landrace, LYP9. We have completed the first phase of SRGP and provide the rice research community with a finished genome sequence of an indica variety, 93-11 (the paternal cultivar of LYP9), together with ample data on subspecific (between subspecies) polymorphisms, transcriptomes and proteomes, useful for within-species comparative studies. In the second phase, we have acquired the genome sequence of the maternal cultivar, PA64S, together with the detailed catalogues of genes uniquely expressed in the parental cultivars and the hybrid as well as allele-specific markers that distinguish parental alleles. Although SRGP in China is not an open-ended research programme, it has been designed to pave a way for future plant genomics research and application, such as to interrogate fundamentals of plant biology, including genome duplication, polyploidy and hybrid vigour, as well as to provide genetic tools for crop breeding and to carry along a social burden-leading a fight against the world's hunger. It began with genomics, the newly developed and industry-scale research field, and from the world's most populous country. In this review, we summarize our scientific goals and noteworthy discoveries that exploit new territories of systematic investigations on basic and applied biology of rice and other major cereal crops.

  18. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    DEFF Research Database (Denmark)

    Machado, Henrique; Gram, Lone

    2017-01-01

    was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.......Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand...... the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two...

  19. Global biogeography of Prochlorococcus genome diversity in the surface ocean.

    Science.gov (United States)

    Kent, Alyssa G; Dupont, Chris L; Yooseph, Shibu; Martiny, Adam C

    2016-08-01

    Prochlorococcus, the smallest known photosynthetic bacterium, is abundant in the ocean's surface layer despite large variation in environmental conditions. There are several genetically divergent lineages within Prochlorococcus and superimposed on this phylogenetic diversity is extensive gene gain and loss. The environmental role in shaping the global ocean distribution of genome diversity in Prochlorococcus is largely unknown, particularly in a framework that considers the vertical and lateral mechanisms of evolution. Here we show that Prochlorococcus field populations from a global circumnavigation harbor extensive genome diversity across the surface ocean, but this diversity is not randomly distributed. We observed a significant correspondence between phylogenetic and gene content diversity, including regional differences in both phylogenetic composition and gene content that were related to environmental factors. Several gene families were strongly associated with specific regions and environmental factors, including the identification of a set of genes related to lower nutrient and temperature regions. Metagenomic assemblies of natural Prochlorococcus genomes reinforced this association by providing linkage of genes across genomic backbones. Overall, our results show that the phylogeography in Prochlorococcus taxonomy is echoed in its genome content. Thus environmental variation shapes the functional capabilities and associated ecosystem role of the globally abundant Prochlorococcus.

  20. Origins of the Human Genome Project.

    Science.gov (United States)

    Watson, J D; Cook-Deegan, R M

    1991-01-01

    The Human Genome Project has become a reality. Building on a debate that dates back to 1985, several genome projects are now in full stride around the world, and more are likely to form in the next several years. Italy began its genome program in 1987, and the United Kingdom and U.S.S.R. in 1988. The European communities mounted several genome projects on yeast, bacteria, Drosophila, and Arabidospis thaliana (a rapidly growing plant with a small genome) in 1988, and in 1990 commenced a new 2-year program on the human genome. In the United States, we have completed the first year of operation of the National Center for Human Genome Research at the National Institutes of Health (NIH), now the largest single funding source for genome research in the world. There have been dedicated budgets focused on genome-scale research at NIH, the U.S. Department of Energy, and the Howard Hughes Medical Institute for several years, and results are beginning to accumulate. There were three annual meetings on genome mapping and sequencing at Cold Spring Harbor, New York, in the spring of 1988, 1989, and 1990; the talks have shifted from a discussion about how to approach problems to presenting results from experiments already performed. We have finally begun to work rather than merely talk. The purpose of genome projects is to assemble data on the structure of DNA in human chromosomes and those of other organisms. A second goal is to develop new technologies to perform mapping and sequencing. There have been impressive technical advances in the past 5 years since the debate about the human genome project began. We are on the verge of beginning pilot projects to test several approaches to sequencing long stretches of DNA, using both automation and manual methods. Ordered sets of yeast artificial chromosome and cosmid clones have been assembled to span more than 2 million base pairs of several human chromosomes, and a region of 10 million base pairs has been assembled for

  1. Genomic diversity of Escherichia isolates from diverse habitats.

    Directory of Open Access Journals (Sweden)

    Seungdae Oh

    Full Text Available Our understanding of the Escherichia genus is heavily biased toward pathogenic or commensal isolates from human or animal hosts. Recent studies have recovered Escherichia isolates that persist, and even grow, outside these hosts. Although the environmental isolates are typically phylogenetically distinct, they are highly related to and phenotypically indistinguishable from their human counterparts, including for the coliform test. To gain insights into the genomic diversity of Escherichia isolates from diverse habitats, including freshwater, soil, animal, and human sources, we carried out comparative DNA-DNA hybridizations using a multi-genome E. coli DNA microarray. The microarray was validated based on hybridizations with selected strains whose genome sequences were available and used to assess the frequency of microarray false positive and negative signals. Our results showed that human fecal isolates share two sets of genes (n>90 that are rarely found among environmental isolates, including genes presumably important for evading host immune mechanisms (e.g., a multi-drug transporter for acids and antimicrobials and adhering to epithelial cells (e.g., hemolysin E and fimbrial-like adhesin protein. These results imply that environmental isolates are characterized by decreased ability to colonize host cells relative to human isolates. Our study also provides gene markers that can distinguish human isolates from those of warm-blooded animal and environmental origins, and thus can be used to more reliably assess fecal contamination in natural ecosystems.

  2. Relationship between metabolic and genomic diversity in sesame (Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    Karlovsky Petr

    2008-05-01

    Full Text Available Abstract Background Diversity estimates in cultivated plants provide a rationale for conservation strategies and support the selection of starting material for breeding programs. Diversity measures applied to crops usually have been limited to the assessment of genome polymorphism at the DNA level. Occasionally, selected morphological features are recorded and the content of key chemical constituents determined, but unbiased and comprehensive chemical phenotypes have not been included systematically in diversity surveys. Our objective in this study was to assess metabolic diversity in sesame by nontargeted metabolic profiling and elucidate the relationship between metabolic and genome diversity in this crop. Results Ten sesame accessions were selected that represent most of the genome diversity of sesame grown in India, Western Asia, Sudan and Venezuela based on previous AFLP studies. Ethanolic seed extracts were separated by HPLC, metabolites were ionized by positive and negative electrospray and ions were detected with an ion trap mass spectrometer in full-scan mode for m/z from 50 to 1000. Genome diversity was determined by Amplified Fragment Length Polymorphism (AFLP using eight primer pair combinations. The relationship between biodiversity at the genome and at the metabolome levels was assessed by correlation analysis and multivariate statistics. Conclusion Patterns of diversity at the genomic and metabolic levels differed, indicating that selection played a significant role in the evolution of metabolic diversity in sesame. This result implies that when used for the selection of genotypes in breeding and conservation, diversity assessment based on neutral DNA markers should be complemented with metabolic profiles. We hypothesize that this applies to all crops with a long history of domestication that possess commercially relevant traits affected by chemical phenotypes.

  3. Genome Size Diversity and Its Impact on the Evolution of Land Plants

    Directory of Open Access Journals (Sweden)

    Jaume Pellicer

    2018-02-01

    Full Text Available Genome size is a biodiversity trait that shows staggering diversity across eukaryotes, varying over 64,000-fold. Of all major taxonomic groups, land plants stand out due to their staggering genome size diversity, ranging ca. 2400-fold. As our understanding of the implications and significance of this remarkable genome size diversity in land plants grows, it is becoming increasingly evident that this trait plays not only an important role in shaping the evolution of plant genomes, but also in influencing plant community assemblages at the ecosystem level. Recent advances and improvements in novel sequencing technologies, as well as analytical tools, make it possible to gain critical insights into the genomic and epigenetic mechanisms underpinning genome size changes. In this review we provide an overview of our current understanding of genome size diversity across the different land plant groups, its implications on the biology of the genome and what future directions need to be addressed to fill key knowledge gaps.

  4. The human genome project

    International Nuclear Information System (INIS)

    Worton, R.

    1996-01-01

    The Human Genome Project is a massive international research project, costing 3 to 5 billion dollars and expected to take 15 years, which will identify the all the genes in the human genome - i.e. the complete sequence of bases in human DNA. The prize will be the ability to identify genes causing or predisposing to disease, and in some cases the development of gene therapy, but this new knowledge will raise important ethical issues

  5. Reconstruction of Diverse Verrucomicrobial Genomes from Metagenome Datasets of Freshwater Reservoirs

    Directory of Open Access Journals (Sweden)

    Pedro J. Cabello-Yeves

    2017-11-01

    Full Text Available The phylum Verrucomicrobia contains freshwater representatives which remain poorly studied at the genomic, taxonomic, and ecological levels. In this work we present eighteen new reconstructed verrucomicrobial genomes from two freshwater reservoirs located close to each other (Tous and Amadorio, Spain. These metagenome-assembled genomes (MAGs display a remarkable taxonomic diversity inside the phylum and comprise wide ranges of estimated genome sizes (from 1.8 to 6 Mb. Among all Verrucomicrobia studied we found some of the smallest genomes of the Spartobacteria and Opitutae classes described so far. Some of the Opitutae family MAGs were small, cosmopolitan, with a general heterotrophic metabolism with preference for carbohydrates, and capable of xylan, chitin, or cellulose degradation. Besides, we assembled large copiotroph genomes, which contain a higher number of transporters, polysaccharide degrading pathways and in general more strategies for the uptake of nutrients and carbohydrate-based metabolic pathways in comparison with the representatives with the smaller genomes. The diverse genomes revealed interesting features like green-light absorbing rhodopsins and a complete set of genes involved in nitrogen fixation. The large diversity in genome sizes and physiological properties emphasize the diversity of this clade in freshwaters enlarging even further the already broad eco-physiological range of these microbes.

  6. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer

    Science.gov (United States)

    2011-01-01

    In the past decade it has become clear that the lactic acid bacterium Lactobacillus plantarum occupies a diverse range of environmental niches and has an enormous diversity in phenotypic properties, metabolic capacity and industrial applications. In this review, we describe how genome sequencing, comparative genome hybridization and comparative genomics has provided insight into the underlying genomic diversity and versatility of L. plantarum. One of the main features appears to be genomic life-style islands consisting of numerous functional gene cassettes, in particular for carbohydrates utilization, which can be acquired, shuffled, substituted or deleted in response to niche requirements. In this sense, L. plantarum can be considered a “natural metabolic engineer”. PMID:21995294

  7. Genomics and the human genome project: implications for psychiatry

    OpenAIRE

    Kelsoe, J R

    2004-01-01

    In the past decade the Human Genome Project has made extraordinary strides in understanding of fundamental human genetics. The complete human genetic sequence has been determined, and the chromosomal location of almost all human genes identified. Presently, a large international consortium, the HapMap Project, is working to identify a large portion of genetic variation in different human populations and the structure and relationship of these variants to each other. The Human Genome Project h...

  8. Evolution and Diversity of Transposable Elements in Vertebrate Genomes.

    Science.gov (United States)

    Sotero-Caio, Cibele G; Platt, Roy N; Suh, Alexander; Ray, David A

    2017-01-01

    Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Consequences of genomic diversity in Mycobacterium tuberculosis

    Science.gov (United States)

    Coscolla, Mireia; Gagneux, Sebastien

    2014-01-01

    The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions. PMID:25453224

  10. India, Genomic diversity & Disease susceptibility

    Indian Academy of Sciences (India)

    Table of contents. India, Genomic diversity & Disease susceptibility · India, a paradise for Genetic Studies · Involved in earlier stages of Immune response protecting us from Diseases, Responsible for kidney and other transplant rejections Inherited from our parents · PowerPoint Presentation · Slide 5 · Slide 6 · Slide 7.

  11. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido-Sanz

    Full Text Available The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as

  12. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime

    2015-11-18

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a textbased browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  13. Cancer Genomics: Diversity and Disparity Across Ethnicity and Geography.

    Science.gov (United States)

    Tan, Daniel S W; Mok, Tony S K; Rebbeck, Timothy R

    2016-01-01

    Ethnic and geographic differences in cancer incidence, prognosis, and treatment outcomes can be attributed to diversity in the inherited (germline) and somatic genome. Although international large-scale sequencing efforts are beginning to unravel the genomic underpinnings of cancer traits, much remains to be known about the underlying mechanisms and determinants of genomic diversity. Carcinogenesis is a dynamic, complex phenomenon representing the interplay between genetic and environmental factors that results in divergent phenotypes across ethnicities and geography. For example, compared with whites, there is a higher incidence of prostate cancer among Africans and African Americans, and the disease is generally more aggressive and fatal. Genome-wide association studies have identified germline susceptibility loci that may account for differences between the African and non-African patients, but the lack of availability of appropriate cohorts for replication studies and the incomplete understanding of genomic architecture across populations pose major limitations. We further discuss the transformative potential of routine diagnostic evaluation for actionable somatic alterations, using lung cancer as an example, highlighting implications of population disparities, current hurdles in implementation, and the far-reaching potential of clinical genomics in enhancing cancer prevention, diagnosis, and treatment. As we enter the era of precision cancer medicine, a concerted multinational effort is key to addressing population and genomic diversity as well as overcoming barriers and geographical disparities in research and health care delivery. © 2015 by American Society of Clinical Oncology.

  14. Genomic Diversity and Evolution of the Fish Pathogen Flavobacterium psychrophilum

    Directory of Open Access Journals (Sweden)

    Eric Duchaud

    2018-02-01

    Full Text Available Flavobacterium psychrophilum, the etiological agent of rainbow trout fry syndrome and bacterial cold-water disease in salmonid fish, is currently one of the main bacterial pathogens hampering the productivity of salmonid farming worldwide. In this study, the genomic diversity of the F. psychrophilum species is analyzed using a set of 41 genomes, including 30 newly sequenced isolates. These were selected on the basis of available MLST data with the two-fold objective of maximizing the coverage of the species diversity and of allowing a focus on the main clonal complex (CC-ST10 infecting farmed rainbow trout (Oncorhynchus mykiss worldwide. The results reveal a bacterial species harboring a limited genomic diversity both in terms of nucleotide diversity, with ~0.3% nucleotide divergence inside CDSs in pairwise genome comparisons, and in terms of gene repertoire, with the core genome accounting for ~80% of the genes in each genome. The pan-genome seems nevertheless “open” according to the scaling exponent of a power-law fitted on the rate of new gene discovery when genomes are added one-by-one. Recombination is a key component of the evolutionary process of the species as seen in the high level of apparent homoplasy in the core genome. Using a Hidden Markov Model to delineate recombination tracts in pairs of closely related genomes, the average recombination tract length was estimated to ~4.0 Kbp and the typical ratio of the contributions of recombination and mutations to nucleotide-level differentiation (r/m was estimated to ~13. Within CC-ST10, evolutionary distances computed on non-recombined regions and comparisons between 22 isolates sampled up to 27 years apart suggest a most recent common ancestor in the second half of the nineteenth century in North America with subsequent diversification and transmission of this clonal complex coinciding with the worldwide expansion of rainbow trout farming. With the goal to promote the development of

  15. Evolution and Diversity in Human Herpes Simplex Virus Genomes

    Science.gov (United States)

    Gatherer, Derek; Ochoa, Alejandro; Greenbaum, Benjamin; Dolan, Aidan; Bowden, Rory J.; Enquist, Lynn W.; Legendre, Matthieu; Davison, Andrew J.

    2014-01-01

    Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide. PMID:24227835

  16. The Pediatric Cancer Genome Project

    Science.gov (United States)

    Downing, James R; Wilson, Richard K; Zhang, Jinghui; Mardis, Elaine R; Pui, Ching-Hon; Ding, Li; Ley, Timothy J; Evans, William E

    2013-01-01

    The St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project (PCGP) is participating in the international effort to identify somatic mutations that drive cancer. These cancer genome sequencing efforts will not only yield an unparalleled view of the altered signaling pathways in cancer but should also identify new targets against which novel therapeutics can be developed. Although these projects are still deep in the phase of generating primary DNA sequence data, important results are emerging and valuable community resources are being generated that should catalyze future cancer research. We describe here the rationale for conducting the PCGP, present some of the early results of this project and discuss the major lessons learned and how these will affect the application of genomic sequencing in the clinic. PMID:22641210

  17. Human genomics projects and precision medicine.

    Science.gov (United States)

    Carrasco-Ramiro, F; Peiró-Pastor, R; Aguado, B

    2017-09-01

    The completion of the Human Genome Project (HGP) in 2001 opened the floodgates to a deeper understanding of medicine. There are dozens of HGP-like projects which involve from a few tens to several million genomes currently in progress, which vary from having specialized goals or a more general approach. However, data generation, storage, management and analysis in public and private cloud computing platforms have raised concerns about privacy and security. The knowledge gained from further research has changed the field of genomics and is now slowly permeating into clinical medicine. The new precision (personalized) medicine, where genome sequencing and data analysis are essential components, allows tailored diagnosis and treatment according to the information from the patient's own genome and specific environmental factors. P4 (predictive, preventive, personalized and participatory) medicine is introducing new concepts, challenges and opportunities. This review summarizes current sequencing technologies, concentrates on ongoing human genomics projects, and provides some examples in which precision medicine has already demonstrated clinical impact in diagnosis and/or treatment.

  18. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Jun, Se-Ran; Wassenaar, Trudy M; Nookaew, Intawat; Hauser, Loren; Wanchai, Visanu; Land, Miriam; Timm, Collin M; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A; Ussery, David W

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches, including the rhizosphere and endosphere of many plants. Their diversity influences the phylogenetic diversity and heterogeneity of these communities. On the basis of average amino acid identity, comparative genome analysis of >1,000 Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides (eastern cottonwood) trees resulted in consistent and robust genomic clusters with phylogenetic homogeneity. All Pseudomonas aeruginosa genomes clustered together, and these were clearly distinct from other Pseudomonas species groups on the basis of pangenome and core genome analyses. In contrast, the genomes of Pseudomonas fluorescens were organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. Most of our 21 Populus-associated isolates formed three distinct subgroups within the major P. fluorescens group, supported by pathway profile analysis, while two isolates were more closely related to Pseudomonas chlororaphis and Pseudomonas putida. Genes specific to Populus-associated subgroups were identified. Genes specific to subgroup 1 include several sensory systems that act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor. Genes specific to subgroup 2 contain hypothetical genes, and genes specific to subgroup 3 were annotated with hydrolase activity. This study justifies the need to sequence multiple isolates, especially from P. fluorescens, which displays the most genetic variation, in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants. Copyright © 2015 Jun et al.

  19. Genomic diversity within the haloalkaliphilic genus Thioalkalivibrio.

    Science.gov (United States)

    Ahn, Anne-Catherine; Meier-Kolthoff, Jan P; Overmars, Lex; Richter, Michael; Woyke, Tanja; Sorokin, Dimitry Y; Muyzer, Gerard

    2017-01-01

    Thioalkalivibrio is a genus of obligate chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria. Their habitat are soda lakes which are dual extreme environments with a pH range from 9.5 to 11 and salt concentrations up to saturation. More than 100 strains of this genus have been isolated from various soda lakes all over the world, but only ten species have been effectively described yet. Therefore, the assignment of the remaining strains to either existing or novel species is important and will further elucidate their genomic diversity as well as give a better general understanding of this genus. Recently, the genomes of 76 Thioalkalivibrio strains were sequenced. On these, we applied different methods including (i) 16S rRNA gene sequence analysis, (ii) Multilocus Sequence Analysis (MLSA) based on eight housekeeping genes, (iii) Average Nucleotide Identity based on BLAST (ANIb) and MUMmer (ANIm), (iv) Tetranucleotide frequency correlation coefficients (TETRA), (v) digital DNA:DNA hybridization (dDDH) as well as (vi) nucleotide- and amino acid-based Genome BLAST Distance Phylogeny (GBDP) analyses. We detected a high genomic diversity by revealing 15 new "genomic" species and 16 new "genomic" subspecies in addition to the ten already described species. Phylogenetic and phylogenomic analyses showed that the genus is not monophyletic, because four strains were clearly separated from the other Thioalkalivibrio by type strains from other genera. Therefore, it is recommended to classify the latter group as a novel genus. The biogeographic distribution of Thioalkalivibrio suggested that the different "genomic" species can be classified as candidate disjunct or candidate endemic species. This study is a detailed genome-based classification and identification of members within the genus Thioalkalivibrio. However, future phenotypical and chemotaxonomical studies will be needed for a full species description of this genus.

  20. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    KAUST Repository

    Bracken-Grissom, Heather

    2013-12-12

    Over 95% of all metazoan (animal) species comprise the invertebrates, but very few genomes from these organisms have been sequenced. We have, therefore, formed a Global Invertebrate Genomics Alliance (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site () has been launched to facilitate this collaborative venture.

  1. Genomic landscape of human diversity across Madagascar

    Science.gov (United States)

    Pierron, Denis; Heiske, Margit; Razafindrazaka, Harilanto; Rakoto, Ignace; Rabetokotany, Nelly; Ravololomanga, Bodo; Rakotozafy, Lucien M.-A.; Rakotomalala, Mireille Mialy; Razafiarivony, Michel; Rasoarifetra, Bako; Raharijesy, Miakabola Andriamampianina; Razafindralambo, Lolona; Ramilisonina; Fanony, Fulgence; Lejamble, Sendra; Thomas, Olivier; Mohamed Abdallah, Ahmed; Rocher, Christophe; Arachiche, Amal; Tonaso, Laure; Pereda-loth, Veronica; Schiavinato, Stéphanie; Brucato, Nicolas; Ricaut, Francois-Xavier; Kusuma, Pradiptajati; Sudoyo, Herawati; Ni, Shengyu; Boland, Anne; Deleuze, Jean-Francois; Beaujard, Philippe; Grange, Philippe; Adelaar, Sander; Stoneking, Mark; Rakotoarisoa, Jean-Aimé; Radimilahy, Chantal; Letellier, Thierry

    2017-01-01

    Although situated ∼400 km from the east coast of Africa, Madagascar exhibits cultural, linguistic, and genetic traits from both Southeast Asia and Eastern Africa. The settlement history remains contentious; we therefore used a grid-based approach to sample at high resolution the genomic diversity (including maternal lineages, paternal lineages, and genome-wide data) across 257 villages and 2,704 Malagasy individuals. We find a common Bantu and Austronesian descent for all Malagasy individuals with a limited paternal contribution from Europe and the Middle East. Admixture and demographic growth happened recently, suggesting a rapid settlement of Madagascar during the last millennium. However, the distribution of African and Asian ancestry across the island reveals that the admixture was sex biased and happened heterogeneously across Madagascar, suggesting independent colonization of Madagascar from Africa and Asia rather than settlement by an already admixed population. In addition, there are geographic influences on the present genomic diversity, independent of the admixture, showing that a few centuries is sufficient to produce detectable genetic structure in human populations. PMID:28716916

  2. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko

    2018-02-14

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  3. Genome Sequences of Oryza Species

    KAUST Repository

    Kumagai, Masahiko; Tanaka, Tsuyoshi; Ohyanagi, Hajime; Hsing, Yue-Ie C.; Itoh, Takeshi

    2018-01-01

    This chapter summarizes recent data obtained from genome sequencing, annotation projects, and studies on the genome diversity of Oryza sativa and related Oryza species. O. sativa, commonly known as Asian rice, is the first monocot species whose complete genome sequence was deciphered based on physical mapping by an international collaborative effort. This genome, along with its accurate and comprehensive annotation, has become an indispensable foundation for crop genomics and breeding. With the development of innovative sequencing technologies, genomic studies of O. sativa have dramatically increased; in particular, a large number of cultivars and wild accessions have been sequenced and compared with the reference rice genome. Since de novo genome sequencing has become cost-effective, the genome of African cultivated rice, O. glaberrima, has also been determined. Comparative genomic studies have highlighted the independent domestication processes of different rice species, but it also turned out that Asian and African rice share a common gene set that has experienced similar artificial selection. An international project aimed at constructing reference genomes and examining the genome diversity of wild Oryza species is currently underway, and the genomes of some species are publicly available. This project provides a platform for investigations such as the evolution, development, polyploidization, and improvement of crops. Studies on the genomic diversity of Oryza species, including wild species, should provide new insights to solve the problem of growing food demands in the face of rapid climatic changes.

  4. Genome Size Diversity in Lilium (Liliaceae Is Correlated with Karyotype and Environmental Traits

    Directory of Open Access Journals (Sweden)

    Yun-peng Du

    2017-07-01

    Full Text Available Genome size (GS diversity is of fundamental biological importance. The occurrence of giant genomes in angiosperms is restricted to just a few lineages in the analyzed genome size of plant species so far. It is still an open question whether GS diversity is shaped by neutral or natural selection. The genus Lilium, with giant genomes, is phylogenetically and horticulturally important and is distributed throughout the northern hemisphere. GS diversity in Lilium and the underlying evolutionary mechanisms are poorly understood. We performed a comprehensive study involving phylogenetically independent analysis on 71 species to explore the diversity and evolution of GS and its correlation with karyological and environmental traits within Lilium (including Nomocharis. The strong phylogenetic signal detected for GS in the genus provides evidence consistent with that the repetitive DNA may be the primary contributors to the GS diversity, while the significant positive relationships detected between GS and the haploid chromosome length (HCL provide insights into patterns of genome evolution. The relationships between GS and karyotypes indicate that ancestral karyotypes of Lilium are likely to have exhibited small genomes, low diversity in centromeric index (CVCI values and relatively high relative variation in chromosome length (CVCL values. Significant relationships identified between GS and annual temperature and between GS and annual precipitation suggest that adaptation to habitat strongly influences GS diversity. We conclude that GS in Lilium is shaped by both neutral (genetic drift and adaptive evolution. These findings will have important consequences for understanding the evolution of giant plant genomes, and exploring the role of repetitive DNA fraction and chromosome changes in a plant group with large genomes and conservation of chromosome number.

  5. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.

    Science.gov (United States)

    Moraes, Fernanda; Góes, Andréa

    2016-05-06

    The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing

    Directory of Open Access Journals (Sweden)

    M. Michelle Malmberg

    2018-04-01

    Full Text Available Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD. Complexity reduction genotyping-by-sequencing (GBS methods, including GBS-transcriptomics (GBS-t, enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs, and identify structural variants (SVs. Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.

  7. Correlation exploration of metabolic and genomic diversity in rice

    Directory of Open Access Journals (Sweden)

    Shinozaki Kazuo

    2009-12-01

    Full Text Available Abstract Background It is essential to elucidate the relationship between metabolic and genomic diversity to understand the genetic regulatory networks associated with the changing metabolo-phenotype among natural variation and/or populations. Recent innovations in metabolomics technologies allow us to grasp the comprehensive features of the metabolome. Metabolite quantitative trait analysis is a key approach for the identification of genetic loci involved in metabolite variation using segregated populations. Although several attempts have been made to find correlative relationships between genetic and metabolic diversity among natural populations in various organisms, it is still unclear whether it is possible to discover such correlations between each metabolite and the polymorphisms found at each chromosomal location. To assess the correlative relationship between the metabolic and genomic diversity found in rice accessions, we compared the distance matrices for these two "omics" patterns in the rice accessions. Results We selected 18 accessions from the world rice collection based on their population structure. To determine the genomic diversity of the rice genome, we genotyped 128 restriction fragment length polymorphism (RFLP markers to calculate the genetic distance among the accessions. To identify the variations in the metabolic fingerprint, a soluble extract from the seed grain of each accession was analyzed with one dimensional 1H-nuclear magnetic resonance (NMR. We found no correlation between global metabolic diversity and the phylogenetic relationships among the rice accessions (rs = 0.14 by analyzing the distance matrices (calculated from the pattern of the metabolic fingerprint in the 4.29- to 0.71-ppm 1H chemical shift and the genetic distance on the basis of the RFLP markers. However, local correlation analysis between the distance matrices (derived from each 0.04-ppm integral region of the 1H chemical shift against genetic

  8. Expanding the Diversity of Mycobacteriophages: Insights into Genome Architecture and Evolution

    Science.gov (United States)

    Pope, Welkin H.; Jacobs-Sera, Deborah; Russell, Daniel A.; Peebles, Craig L.; Al-Atrache, Zein; Alcoser, Turi A.; Alexander, Lisa M.; Alfano, Matthew B.; Alford, Samantha T.; Amy, Nichols E.; Anderson, Marie D.; Anderson, Alexander G.; Ang, Andrew A. S.; Ares, Manuel; Barber, Amanda J.; Barker, Lucia P.; Barrett, Jonathan M.; Barshop, William D.; Bauerle, Cynthia M.; Bayles, Ian M.; Belfield, Katherine L.; Best, Aaron A.; Borjon, Agustin; Bowman, Charles A.; Boyer, Christine A.; Bradley, Kevin W.; Bradley, Victoria A.; Broadway, Lauren N.; Budwal, Keshav; Busby, Kayla N.; Campbell, Ian W.; Campbell, Anne M.; Carey, Alyssa; Caruso, Steven M.; Chew, Rebekah D.; Cockburn, Chelsea L.; Cohen, Lianne B.; Corajod, Jeffrey M.; Cresawn, Steven G.; Davis, Kimberly R.; Deng, Lisa; Denver, Dee R.; Dixon, Breyon R.; Ekram, Sahrish; Elgin, Sarah C. R.; Engelsen, Angela E.; English, Belle E. V.; Erb, Marcella L.; Estrada, Crystal; Filliger, Laura Z.; Findley, Ann M.; Forbes, Lauren; Forsyth, Mark H.; Fox, Tyler M.; Fritz, Melissa J.; Garcia, Roberto; George, Zindzi D.; Georges, Anne E.; Gissendanner, Christopher R.; Goff, Shannon; Goldstein, Rebecca; Gordon, Kobie C.; Green, Russell D.; Guerra, Stephanie L.; Guiney-Olsen, Krysta R.; Guiza, Bridget G.; Haghighat, Leila; Hagopian, Garrett V.; Harmon, Catherine J.; Harmson, Jeremy S.; Hartzog, Grant A.; Harvey, Samuel E.; He, Siping; He, Kevin J.; Healy, Kaitlin E.; Higinbotham, Ellen R.; Hildebrandt, Erin N.; Ho, Jason H.; Hogan, Gina M.; Hohenstein, Victoria G.; Holz, Nathan A.; Huang, Vincent J.; Hufford, Ericka L.; Hynes, Peter M.; Jackson, Arrykka S.; Jansen, Erica C.; Jarvik, Jonathan; Jasinto, Paul G.; Jordan, Tuajuanda C.; Kasza, Tomas; Katelyn, Murray A.; Kelsey, Jessica S.; Kerrigan, Larisa A.; Khaw, Daryl; Kim, Junghee; Knutter, Justin Z.; Ko, Ching-Chung; Larkin, Gail V.; Laroche, Jennifer R.; Latif, Asma; Leuba, Kohana D.; Leuba, Sequoia I.; Lewis, Lynn O.; Loesser-Casey, Kathryn E.; Long, Courtney A.; Lopez, A. Javier; Lowery, Nicholas; Lu, Tina Q.; Mac, Victor; Masters, Isaac R.; McCloud, Jazmyn J.; McDonough, Molly J.; Medenbach, Andrew J.; Menon, Anjali; Miller, Rachel; Morgan, Brandon K.; Ng, Patrick C.; Nguyen, Elvis; Nguyen, Katrina T.; Nguyen, Emilie T.; Nicholson, Kaylee M.; Parnell, Lindsay A.; Peirce, Caitlin E.; Perz, Allison M.; Peterson, Luke J.; Pferdehirt, Rachel E.; Philip, Seegren V.; Pogliano, Kit; Pogliano, Joe; Polley, Tamsen; Puopolo, Erica J.; Rabinowitz, Hannah S.; Resiss, Michael J.; Rhyan, Corwin N.; Robinson, Yetta M.; Rodriguez, Lauren L.; Rose, Andrew C.; Rubin, Jeffrey D.; Ruby, Jessica A.; Saha, Margaret S.; Sandoz, James W.; Savitskaya, Judith; Schipper, Dale J.; Schnitzler, Christine E.; Schott, Amanda R.; Segal, J. Bradley; Shaffer, Christopher D.; Sheldon, Kathryn E.; Shepard, Erica M.; Shepardson, Jonathan W.; Shroff, Madav K.; Simmons, Jessica M.; Simms, Erika F.; Simpson, Brandy M.; Sinclair, Kathryn M.; Sjoholm, Robert L.; Slette, Ingrid J.; Spaulding, Blaire C.; Straub, Clark L.; Stukey, Joseph; Sughrue, Trevor; Tang, Tin-Yun; Tatyana, Lyons M.; Taylor, Stephen B.; Taylor, Barbara J.; Temple, Louise M.; Thompson, Jasper V.; Tokarz, Michael P.; Trapani, Stephanie E.; Troum, Alexander P.; Tsay, Jonathan; Tubbs, Anthony T.; Walton, Jillian M.; Wang, Danielle H.; Wang, Hannah; Warner, John R.; Weisser, Emilie G.; Wendler, Samantha C.; Weston-Hafer, Kathleen A.; Whelan, Hilary M.; Williamson, Kurt E.; Willis, Angelica N.; Wirtshafter, Hannah S.; Wong, Theresa W.; Wu, Phillip; Yang, Yun jeong; Yee, Brandon C.; Zaidins, David A.; Zhang, Bo; Zúniga, Melina Y.; Hendrix, Roger W.; Hatfull, Graham F.

    2011-01-01

    Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists. PMID:21298013

  9. Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution.

    Directory of Open Access Journals (Sweden)

    Welkin H Pope

    2011-01-01

    Full Text Available Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists.

  10. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project

    DEFF Research Database (Denmark)

    Hayes, Benjamin J; MacLeod, Iona M; Daetwyler, Hans D

    Advantages of using whole genome sequence data to predict genomic estimated breeding values (GEBV) include better persistence of accuracy of GEBV across generations and more accurate GEBV across breeds. The 1000 Bull Genomes Project provides a database of whole genome sequenced key ancestor bulls....... In a dairy data set, predictions using BayesRC and imputed sequence data from 1000 Bull Genomes were 2% more accurate than with 800k data. We could demonstrate the method identified causal mutations in some cases. Further improvements will come from more accurate imputation of sequence variant genotypes...

  11. Genome mining of the genetic diversity in the Aspergillus genus - from a collection of more than 30 Aspergillus species

    DEFF Research Database (Denmark)

    Rasmussen, Jane Lind Nybo; Vesth, Tammi Camilla; Theobald, Sebastian

    In the era of high-throughput sequencing, comparative genomics can be applied for evaluating species diversity. In this project we aim to compare the genomes of 300 species of filamentous fungi from the Aspergillus genus, a complex task. To be able to define species, clade, and core features......, this project uses BLAST on the amino acid level to discover orthologs. With a potential of 300 Aspergillus species each having ~12,000 annotated genes, traditional clustering will demand supercomputing. Instead, our approach reduces the search space by identifying isoenzymes within each genome creating...... intragenomic protein families (iPFs), and then connecting iPFs across all genomes. The initial findings in a set of 31 species show that ~48% of the annotated genes are core genes (genes shared between all species) and 2-24% of the genes are defining the individual species. The methods presented here...

  12. Skate Genome Project: Cyber-Enabled Bioinformatics Collaboration

    Science.gov (United States)

    Vincent, J.

    2011-01-01

    The Skate Genome Project, a pilot project of the North East Cyber infrastructure Consortium, aims to produce a draft genome sequence of Leucoraja erinacea, the Little Skate. The pilot project was designed to also develop expertise in large scale collaborations across the NECC region. An overview of the bioinformatics and infrastructure challenges faced during the first year of the project will be presented. Results to date and lessons learned from the perspective of a bioinformatics core will be highlighted.

  13. Origins of the Human Genome Project

    Science.gov (United States)

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  14. Origins of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, Robert

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the US and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  15. Low diversity, activity, and density of transposable elements in five avian genomes.

    Science.gov (United States)

    Gao, Bo; Wang, Saisai; Wang, Yali; Shen, Dan; Xue, Songlei; Chen, Cai; Cui, Hengmi; Song, Chengyi

    2017-07-01

    In this study, we conducted the activity, diversity, and density analysis of transposable elements (TEs) across five avian genomes (budgerigar, chicken, turkey, medium ground finch, and zebra finch) to explore the potential reason of small genome sizes of birds. We found that these avian genomes exhibited low density of TEs by about 10% of genome coverages and low diversity of TEs with the TE landscapes dominated by CR1 and ERV elements, and contrasting proliferation dynamics both between TE types and between species were observed across the five avian genomes. Phylogenetic analysis revealed that CR1 clade was more diverse in the family structure compared with R2 clade in birds; avian ERVs were classified into four clades (alpha, beta, gamma, and ERV-L) and belonged to three classes of ERV with an uneven distributed in these lineages. The activities of DNA and SINE TEs were very low in the evolution history of avian genomes; most LINEs and LTRs were ancient copies with a substantial decrease of activity in recent, with only LTRs and LINEs in chicken and zebra finch exhibiting weak activity in very recent, and very few TEs were intact; however, the recent activity may be underestimated due to the sequencing/assembly technologies in some species. Overall, this study demonstrates low diversity, activity, and density of TEs in the five avian species; highlights the differences of TEs in these lineages; and suggests that the current and recent activity of TEs in avian genomes is very limited, which may be one of the reasons of small genome sizes in birds.

  16. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects.

    Science.gov (United States)

    Holt, Carson; Yandell, Mark

    2011-12-22

    Second-generation sequencing technologies are precipitating major shifts with regards to what kinds of genomes are being sequenced and how they are annotated. While the first generation of genome projects focused on well-studied model organisms, many of today's projects involve exotic organisms whose genomes are largely terra incognita. This complicates their annotation, because unlike first-generation projects, there are no pre-existing 'gold-standard' gene-models with which to train gene-finders. Improvements in genome assembly and the wide availability of mRNA-seq data are also creating opportunities to update and re-annotate previously published genome annotations. Today's genome projects are thus in need of new genome annotation tools that can meet the challenges and opportunities presented by second-generation sequencing technologies. We present MAKER2, a genome annotation and data management tool designed for second-generation genome projects. MAKER2 is a multi-threaded, parallelized application that can process second-generation datasets of virtually any size. We show that MAKER2 can produce accurate annotations for novel genomes where training-data are limited, of low quality or even non-existent. MAKER2 also provides an easy means to use mRNA-seq data to improve annotation quality; and it can use these data to update legacy annotations, significantly improving their quality. We also show that MAKER2 can evaluate the quality of genome annotations, and identify and prioritize problematic annotations for manual review. MAKER2 is the first annotation engine specifically designed for second-generation genome projects. MAKER2 scales to datasets of any size, requires little in the way of training data, and can use mRNA-seq data to improve annotation quality. It can also update and manage legacy genome annotation datasets.

  17. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 Genomes Project.

    Science.gov (United States)

    Santpere, Gabriel; Darre, Fleur; Blanco, Soledad; Alcami, Antonio; Villoslada, Pablo; Mar Albà, M; Navarro, Arcadi

    2014-04-01

    Most people in the world (∼90%) are infected by the Epstein-Barr virus (EBV), which establishes itself permanently in B cells. Infection by EBV is related to a number of diseases including infectious mononucleosis, multiple sclerosis, and different types of cancer. So far, only seven complete EBV strains have been described, all of them coming from donors presenting EBV-related diseases. To perform a detailed comparative genomic analysis of EBV including, for the first time, EBV strains derived from healthy individuals, we reconstructed EBV sequences infecting lymphoblastoid cell lines (LCLs) from the 1000 Genomes Project. As strain B95-8 was used to transform B cells to obtain LCLs, it is always present, but a specific deletion in its genome sets it apart from natural EBV strains. After studying hundreds of individuals, we determined the presence of natural EBV in at least 10 of them and obtained a set of variants specific to wild-type EBV. By mapping the natural EBV reads into the EBV reference genome (NC007605), we constructed nearly complete wild-type viral genomes from three individuals. Adding them to the five disease-derived EBV genomic sequences available in the literature, we performed an in-depth comparative genomic analysis. We found that latency genes harbor more nucleotide diversity than lytic genes and that six out of nine latency-related genes, as well as other genes involved in viral attachment and entry into host cells, packaging, and the capsid, present the molecular signature of accelerated protein evolution rates, suggesting rapid host-parasite coevolution.

  18. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication.

    Science.gov (United States)

    Avni, Raz; Nave, Moran; Barad, Omer; Baruch, Kobi; Twardziok, Sven O; Gundlach, Heidrun; Hale, Iago; Mascher, Martin; Spannagl, Manuel; Wiebe, Krystalee; Jordan, Katherine W; Golan, Guy; Deek, Jasline; Ben-Zvi, Batsheva; Ben-Zvi, Gil; Himmelbach, Axel; MacLachlan, Ron P; Sharpe, Andrew G; Fritz, Allan; Ben-David, Roi; Budak, Hikmet; Fahima, Tzion; Korol, Abraham; Faris, Justin D; Hernandez, Alvaro; Mikel, Mark A; Levy, Avraham A; Steffenson, Brian; Maccaferri, Marco; Tuberosa, Roberto; Cattivelli, Luigi; Faccioli, Primetta; Ceriotti, Aldo; Kashkush, Khalil; Pourkheirandish, Mohammad; Komatsuda, Takao; Eilam, Tamar; Sela, Hanan; Sharon, Amir; Ohad, Nir; Chamovitz, Daniel A; Mayer, Klaus F X; Stein, Nils; Ronen, Gil; Peleg, Zvi; Pozniak, Curtis J; Akhunov, Eduard D; Distelfeld, Assaf

    2017-07-07

    Wheat ( Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer ( T. turgidum ssp. dicoccoides ). We report a 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity. With this fully assembled polyploid wheat genome, we identified the causal mutations in Brittle Rachis 1 ( TtBtr1 ) genes controlling shattering, a key domestication trait. A study of genomic diversity among wild and domesticated accessions revealed genomic regions bearing the signature of selection under domestication. This reference assembly will serve as a resource for accelerating the genome-assisted improvement of modern wheat varieties. Copyright © 2017, American Association for the Advancement of Science.

  19. Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages.

    Directory of Open Access Journals (Sweden)

    Karen K Klyczek

    Full Text Available The vast bacteriophage population harbors an immense reservoir of genetic information. Almost 2000 phage genomes have been sequenced from phages infecting hosts in the phylum Actinobacteria, and analysis of these genomes reveals substantial diversity, pervasive mosaicism, and novel mechanisms for phage replication and lysogeny. Here, we describe the isolation and genomic characterization of 46 phages from environmental samples at various geographic locations in the U.S. infecting a single Arthrobacter sp. strain. These phages include representatives of all three virion morphologies, and Jasmine is the first sequenced podovirus of an actinobacterial host. The phages also span considerable sequence diversity, and can be grouped into 10 clusters according to their nucleotide diversity, and two singletons each with no close relatives. However, the clusters/singletons appear to be genomically well separated from each other, and relatively few genes are shared between clusters. Genome size varies from among the smallest of siphoviral phages (15,319 bp to over 70 kbp, and G+C contents range from 45-68%, compared to 63.4% for the host genome. Although temperate phages are common among other actinobacterial hosts, these Arthrobacter phages are primarily lytic, and only the singleton Galaxy is likely temperate.

  20. Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages.

    Science.gov (United States)

    Klyczek, Karen K; Bonilla, J Alfred; Jacobs-Sera, Deborah; Adair, Tamarah L; Afram, Patricia; Allen, Katherine G; Archambault, Megan L; Aziz, Rahat M; Bagnasco, Filippa G; Ball, Sarah L; Barrett, Natalie A; Benjamin, Robert C; Blasi, Christopher J; Borst, Katherine; Braun, Mary A; Broomell, Haley; Brown, Conner B; Brynell, Zachary S; Bue, Ashley B; Burke, Sydney O; Casazza, William; Cautela, Julia A; Chen, Kevin; Chimalakonda, Nitish S; Chudoff, Dylan; Connor, Jade A; Cross, Trevor S; Curtis, Kyra N; Dahlke, Jessica A; Deaton, Bethany M; Degroote, Sarah J; DeNigris, Danielle M; DeRuff, Katherine C; Dolan, Milan; Dunbar, David; Egan, Marisa S; Evans, Daniel R; Fahnestock, Abby K; Farooq, Amal; Finn, Garrett; Fratus, Christopher R; Gaffney, Bobby L; Garlena, Rebecca A; Garrigan, Kelly E; Gibbon, Bryan C; Goedde, Michael A; Guerrero Bustamante, Carlos A; Harrison, Melinda; Hartwell, Megan C; Heckman, Emily L; Huang, Jennifer; Hughes, Lee E; Hyduchak, Kathryn M; Jacob, Aswathi E; Kaku, Machika; Karstens, Allen W; Kenna, Margaret A; Khetarpal, Susheel; King, Rodney A; Kobokovich, Amanda L; Kolev, Hannah; Konde, Sai A; Kriese, Elizabeth; Lamey, Morgan E; Lantz, Carter N; Lapin, Jonathan S; Lawson, Temiloluwa O; Lee, In Young; Lee, Scott M; Lee-Soety, Julia Y; Lehmann, Emily M; London, Shawn C; Lopez, A Javier; Lynch, Kelly C; Mageeney, Catherine M; Martynyuk, Tetyana; Mathew, Kevin J; Mavrich, Travis N; McDaniel, Christopher M; McDonald, Hannah; McManus, C Joel; Medrano, Jessica E; Mele, Francis E; Menninger, Jennifer E; Miller, Sierra N; Minick, Josephine E; Nabua, Courtney T; Napoli, Caroline K; Nkangabwa, Martha; Oates, Elizabeth A; Ott, Cassandra T; Pellerino, Sarah K; Pinamont, William J; Pirnie, Ross T; Pizzorno, Marie C; Plautz, Emilee J; Pope, Welkin H; Pruett, Katelyn M; Rickstrew, Gabbi; Rimple, Patrick A; Rinehart, Claire A; Robinson, Kayla M; Rose, Victoria A; Russell, Daniel A; Schick, Amelia M; Schlossman, Julia; Schneider, Victoria M; Sells, Chloe A; Sieker, Jeremy W; Silva, Morgan P; Silvi, Marissa M; Simon, Stephanie E; Staples, Amanda K; Steed, Isabelle L; Stowe, Emily L; Stueven, Noah A; Swartz, Porter T; Sweet, Emma A; Sweetman, Abigail T; Tender, Corrina; Terry, Katrina; Thomas, Chrystal; Thomas, Daniel S; Thompson, Allison R; Vanderveen, Lorianna; Varma, Rohan; Vaught, Hannah L; Vo, Quynh D; Vonberg, Zachary T; Ware, Vassie C; Warrad, Yasmene M; Wathen, Kaitlyn E; Weinstein, Jonathan L; Wyper, Jacqueline F; Yankauskas, Jakob R; Zhang, Christine; Hatfull, Graham F

    2017-01-01

    The vast bacteriophage population harbors an immense reservoir of genetic information. Almost 2000 phage genomes have been sequenced from phages infecting hosts in the phylum Actinobacteria, and analysis of these genomes reveals substantial diversity, pervasive mosaicism, and novel mechanisms for phage replication and lysogeny. Here, we describe the isolation and genomic characterization of 46 phages from environmental samples at various geographic locations in the U.S. infecting a single Arthrobacter sp. strain. These phages include representatives of all three virion morphologies, and Jasmine is the first sequenced podovirus of an actinobacterial host. The phages also span considerable sequence diversity, and can be grouped into 10 clusters according to their nucleotide diversity, and two singletons each with no close relatives. However, the clusters/singletons appear to be genomically well separated from each other, and relatively few genes are shared between clusters. Genome size varies from among the smallest of siphoviral phages (15,319 bp) to over 70 kbp, and G+C contents range from 45-68%, compared to 63.4% for the host genome. Although temperate phages are common among other actinobacterial hosts, these Arthrobacter phages are primarily lytic, and only the singleton Galaxy is likely temperate.

  1. Genomic diversity of drug-resistant Mycobacterium tuberculosis isolates in Lisbon Portugal: Towards tuberculosis genomic epidemiology

    Directory of Open Access Journals (Sweden)

    João Perdigão

    2015-01-01

    Full Text Available Multidrug- (MDR and extensively drug-resistant (XDR tuberculosis (TB present a challenge to disease control and elimination goals. Lisbon, Portugal, has a high TB incidencerate and unusual and successful XDR-TB strains that have been found in circulation foralmost two decades. For the last 20 years, a continued circulation of two phylogenetic clades, Lisboa3 and Q1, which are highly associated with MDR and XDR, have been observed. In recent years, these strains have been well characterized regarding the molecular basis of drug resistance and have been inclusively subjected to whole genome sequencing (WGS. Researchers have been studying the genomic diversity of strains circulating in Lisbon and its genomic determinants through cutting-edge next generation sequencing. An enormous amount of whole genome sequence data are now available for the most prevalent and clinically relevant strains circulating in Lisbon. It is the persistence, prevalence and rapid evolution towards drug resistance that has prompted researchers to investigate the properties of these strains at the genomic level and in the future at a global transcriptomic level. Seventy Mycobacterium tuberculosis (MTB isolates, mostly recovered in Lisbon, were genotyped by 24-loci Mycobacterial Interspersed Repetitive Unit – Variable Number of Tandem Repeats (MIRU-VNTR and the genomes sequenced using a next generation sequencing platform – Illumina HiSeq 2000. The genotyping data revealed three major clusters associated with MDR-TB (Lisboa3-A, Lisboa3-B and Q1, two of which are associated with XDR-TB (Lisboa3-B and Q1, whilst the genomic data contributed to elucidating the phylogenetic positioning of circulating MDR-TB strains, showing a high predominance of a single SNP cluster group 5. Furthermore, a genome-wide phylogeny analysis from these strains, together with 19 publicly available genomes of MTB clinical isolates, revealed two major clades responsible for MDR/XDR-TB in the region

  2. Genomic diversity of drug-resistant Mycobacterium tuberculosis isolates in Lisbon Portugal: Towards tuberculosis genomic epidemiology

    KAUST Repository

    Perdigã o, Joã o; Silva, Hugo; Machado, Diana; Macedo, Rita; Maltez, Fernando; Silva, Carla; Jordao, Luisa; Couto, Isabel; Mallard, Kim; Coll, Francesc; Hill-Cawthorne, Grant A.; McNerney, Ruth; Pain, Arnab; Clark, Taane G.; Viveiros, Miguel; Portugal, Isabel

    2015-01-01

    Multidrug- (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) present a challenge to disease control and elimination goals. Lisbon, Portugal, has a high TB incidence rate and unusual and successful XDR-TB strains that have been found in circulation for almost two decades. For the last 20. years, a continued circulation of two phylogenetic clades, Lisboa3 and Q1, which are highly associated with MDR and XDR, have been observed. In recent years, these strains have been well characterized regarding the molecular basis of drug resistance and have been inclusively subjected to whole genome sequencing (WGS). Researchers have been studying the genomic diversity of strains circulating in Lisbon and its genomic determinants through cutting-edge next generation sequencing. An enormous amount of whole genome sequence data are now available for the most prevalent and clinically relevant strains circulating in Lisbon.It is the persistence, prevalence and rapid evolution towards drug resistance that has prompted researchers to investigate the properties of these strains at the genomic level and in the future at a global transcriptomic level. Seventy Mycobacterium tuberculosis (MTB) isolates, mostly recovered in Lisbon, were genotyped by 24-. loci Mycobacterial Interspersed Repetitive Unit - Variable Number of Tandem Repeats (MIRU-VNTR) and the genomes sequenced using a next generation sequencing platform - Illumina HiSeq 2000.The genotyping data revealed three major clusters associated with MDR-TB (Lisboa3-A, Lisboa3-B and Q1), two of which are associated with XDR-TB (Lisboa3-B and Q1), whilst the genomic data contributed to elucidating the phylogenetic positioning of circulating MDR-TB strains, showing a high predominance of a single SNP cluster group 5. Furthermore, a genome-wide phylogeny analysis from these strains, together with 19 publicly available genomes of MTB clinical isolates, revealed two major clades responsible for MDR/XDR-TB in the region: Lisboa3 and Q

  3. Genomic diversity of drug-resistant Mycobacterium tuberculosis isolates in Lisbon Portugal: Towards tuberculosis genomic epidemiology

    KAUST Repository

    Perdigão, João

    2015-03-01

    Multidrug- (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) present a challenge to disease control and elimination goals. Lisbon, Portugal, has a high TB incidence rate and unusual and successful XDR-TB strains that have been found in circulation for almost two decades. For the last 20. years, a continued circulation of two phylogenetic clades, Lisboa3 and Q1, which are highly associated with MDR and XDR, have been observed. In recent years, these strains have been well characterized regarding the molecular basis of drug resistance and have been inclusively subjected to whole genome sequencing (WGS). Researchers have been studying the genomic diversity of strains circulating in Lisbon and its genomic determinants through cutting-edge next generation sequencing. An enormous amount of whole genome sequence data are now available for the most prevalent and clinically relevant strains circulating in Lisbon.It is the persistence, prevalence and rapid evolution towards drug resistance that has prompted researchers to investigate the properties of these strains at the genomic level and in the future at a global transcriptomic level. Seventy Mycobacterium tuberculosis (MTB) isolates, mostly recovered in Lisbon, were genotyped by 24-. loci Mycobacterial Interspersed Repetitive Unit - Variable Number of Tandem Repeats (MIRU-VNTR) and the genomes sequenced using a next generation sequencing platform - Illumina HiSeq 2000.The genotyping data revealed three major clusters associated with MDR-TB (Lisboa3-A, Lisboa3-B and Q1), two of which are associated with XDR-TB (Lisboa3-B and Q1), whilst the genomic data contributed to elucidating the phylogenetic positioning of circulating MDR-TB strains, showing a high predominance of a single SNP cluster group 5. Furthermore, a genome-wide phylogeny analysis from these strains, together with 19 publicly available genomes of MTB clinical isolates, revealed two major clades responsible for MDR/XDR-TB in the region: Lisboa3 and Q

  4. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  5. Insights into the genetic structure and diversity of 38 South Asian Indians from deep whole-genome sequencing.

    Science.gov (United States)

    Wong, Lai-Ping; Lai, Jason Kuan-Han; Saw, Woei-Yuh; Ong, Rick Twee-Hee; Cheng, Anthony Youzhi; Pillai, Nisha Esakimuthu; Liu, Xuanyao; Xu, Wenting; Chen, Peng; Foo, Jia-Nee; Tan, Linda Wei-Lin; Koo, Seok-Hwee; Soong, Richie; Wenk, Markus Rene; Lim, Wei-Yen; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2014-05-01

    South Asia possesses a significant amount of genetic diversity due to considerable intergroup differences in culture and language. There have been numerous reports on the genetic structure of Asian Indians, although these have mostly relied on genotyping microarrays or targeted sequencing of the mitochondria and Y chromosomes. Asian Indians in Singapore are primarily descendants of immigrants from Dravidian-language-speaking states in south India, and 38 individuals from the general population underwent deep whole-genome sequencing with a target coverage of 30X as part of the Singapore Sequencing Indian Project (SSIP). The genetic structure and diversity of these samples were compared against samples from the Singapore Sequencing Malay Project and populations in Phase 1 of the 1,000 Genomes Project (1 KGP). SSIP samples exhibited greater intra-population genetic diversity and possessed higher heterozygous-to-homozygous genotype ratio than other Asian populations. When compared against a panel of well-defined Asian Indians, the genetic makeup of the SSIP samples was closely related to South Indians. However, even though the SSIP samples clustered distinctly from the Europeans in the global population structure analysis with autosomal SNPs, eight samples were assigned to mitochondrial haplogroups that were predominantly present in Europeans and possessed higher European admixture than the remaining samples. An analysis of the relative relatedness between SSIP with two archaic hominins (Denisovan, Neanderthal) identified higher ancient admixture in East Asian populations than in SSIP. The data resource for these samples is publicly available and is expected to serve as a valuable complement to the South Asian samples in Phase 3 of 1 KGP.

  6. GI-POP: a combinational annotation and genomic island prediction pipeline for ongoing microbial genome projects.

    Science.gov (United States)

    Lee, Chi-Ching; Chen, Yi-Ping Phoebe; Yao, Tzu-Jung; Ma, Cheng-Yu; Lo, Wei-Cheng; Lyu, Ping-Chiang; Tang, Chuan Yi

    2013-04-10

    Sequencing of microbial genomes is important because of microbial-carrying antibiotic and pathogenetic activities. However, even with the help of new assembling software, finishing a whole genome is a time-consuming task. In most bacteria, pathogenetic or antibiotic genes are carried in genomic islands. Therefore, a quick genomic island (GI) prediction method is useful for ongoing sequencing genomes. In this work, we built a Web server called GI-POP (http://gipop.life.nthu.edu.tw) which integrates a sequence assembling tool, a functional annotation pipeline, and a high-performance GI predicting module, in a support vector machine (SVM)-based method called genomic island genomic profile scanning (GI-GPS). The draft genomes of the ongoing genome projects in contigs or scaffolds can be submitted to our Web server, and it provides the functional annotation and highly probable GI-predicting results. GI-POP is a comprehensive annotation Web server designed for ongoing genome project analysis. Researchers can perform annotation and obtain pre-analytic information include possible GIs, coding/non-coding sequences and functional analysis from their draft genomes. This pre-analytic system can provide useful information for finishing a genome sequencing project. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Diversity of 23S rRNA genes within individual prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Anna Pei

    Full Text Available BACKGROUND: The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. METHODOLOGY/PRINCIPAL FINDINGS: Using the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4% genomes (mean 0.40%, range 0.01%-4.04%. Significant (1.17%-4.04% intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition. In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS, ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes. CONCLUSIONS/SIGNIFICANCE: These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.

  8. A computational genomics pipeline for prokaryotic sequencing projects.

    Science.gov (United States)

    Kislyuk, Andrey O; Katz, Lee S; Agrawal, Sonia; Hagen, Matthew S; Conley, Andrew B; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C; Sammons, Scott A; Govil, Dhwani; Mair, Raydel D; Tatti, Kathleen M; Tondella, Maria L; Harcourt, Brian H; Mayer, Leonard W; Jordan, I King

    2010-08-01

    New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems.

  9. Lampreys as Diverse Model Organisms in the Genomics Era.

    Science.gov (United States)

    McCauley, David W; Docker, Margaret F; Whyard, Steve; Li, Weiming

    2015-11-01

    Lampreys, one of the two surviving groups of ancient vertebrates, have become important models for study in diverse fields of biology. Lampreys (of which there are approximately 40 species) are being studied, for example, (a) to control pest sea lamprey in the North American Great Lakes and to restore declining populations of native species elsewhere; (b) in biomedical research, focusing particularly on the regenerative capability of lampreys; and (c) by developmental biologists studying the evolution of key vertebrate characters. Although a lack of genetic resources has hindered research on the mechanisms regulating many aspects of lamprey life history and development, formerly intractable questions are now amenable to investigation following the recent publication of the sea lamprey genome. Here, we provide an overview of the ways in which genomic tools are currently being deployed to tackle diverse research questions and suggest several areas that may benefit from the availability of the sea lamprey genome.

  10. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project

    DEFF Research Database (Denmark)

    Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya

    2007-01-01

    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses...

  11. The Genome 10K Project: a way forward.

    Science.gov (United States)

    Koepfli, Klaus-Peter; Paten, Benedict; O'Brien, Stephen J

    2015-01-01

    The Genome 10K Project was established in 2009 by a consortium of biologists and genome scientists determined to facilitate the sequencing and analysis of the complete genomes of 10,000 vertebrate species. Since then the number of selected and initiated species has risen from ∼26 to 277 sequenced or ongoing with funding, an approximately tenfold increase in five years. Here we summarize the advances and commitments that have occurred by mid-2014 and outline the achievements and present challenges of reaching the 10,000-species goal. We summarize the status of known vertebrate genome projects, recommend standards for pronouncing a genome as sequenced or completed, and provide our present and future vision of the landscape of Genome 10K. The endeavor is ambitious, bold, expensive, and uncertain, but together the Genome 10K Consortium of Scientists and the worldwide genomics community are moving toward their goal of delivering to the coming generation the gift of genome empowerment for many vertebrate species.

  12. Genome projects and the functional-genomic era.

    Science.gov (United States)

    Sauer, Sascha; Konthur, Zoltán; Lehrach, Hans

    2005-12-01

    The problems we face today in public health as a result of the -- fortunately -- increasing age of people and the requirements of developing countries create an urgent need for new and innovative approaches in medicine and in agronomics. Genomic and functional genomic approaches have a great potential to at least partially solve these problems in the future. Important progress has been made by procedures to decode genomic information of humans, but also of other key organisms. The basic comprehension of genomic information (and its transfer) should now give us the possibility to pursue the next important step in life science eventually leading to a basic understanding of biological information flow; the elucidation of the function of all genes and correlative products encoded in the genome, as well as the discovery of their interactions in a molecular context and the response to environmental factors. As a result of the sequencing projects, we are now able to ask important questions about sequence variation and can start to comprehensively study the function of expressed genes on different levels such as RNA, protein or the cell in a systematic context including underlying networks. In this article we review and comment on current trends in large-scale systematic biological research. A particular emphasis is put on technology developments that can provide means to accomplish the tasks of future lines of functional genomics.

  13. Human genome project: revolutionizing biology through leveraging technology

    Science.gov (United States)

    Dahl, Carol A.; Strausberg, Robert L.

    1996-04-01

    The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.

  14. Natural selection shaped the rise and fall of passenger pigeon genomic diversity.

    Science.gov (United States)

    Murray, Gemma G R; Soares, André E R; Novak, Ben J; Schaefer, Nathan K; Cahill, James A; Baker, Allan J; Demboski, John R; Doll, Andrew; Da Fonseca, Rute R; Fulton, Tara L; Gilbert, M Thomas P; Heintzman, Peter D; Letts, Brandon; McIntosh, George; O'Connell, Brendan L; Peck, Mark; Pipes, Marie-Lorraine; Rice, Edward S; Santos, Kathryn M; Sohrweide, A Gregory; Vohr, Samuel H; Corbett-Detig, Russell B; Green, Richard E; Shapiro, Beth

    2017-11-17

    The extinct passenger pigeon was once the most abundant bird in North America, and possibly the world. Although theory predicts that large populations will be more genetically diverse, passenger pigeon genetic diversity was surprisingly low. To investigate this disconnect, we analyzed 41 mitochondrial and 4 nuclear genomes from passenger pigeons and 2 genomes from band-tailed pigeons, which are passenger pigeons' closest living relatives. Passenger pigeons' large population size appears to have allowed for faster adaptive evolution and removal of harmful mutations, driving a huge loss in their neutral genetic diversity. These results demonstrate the effect that selection can have on a vertebrate genome and contradict results that suggested that population instability contributed to this species's surprisingly rapid extinction. Copyright © 2017, American Association for the Advancement of Science.

  15. Two Tales of Prokaryotic Genomic Diversity: Escherichia coli and Halophiles

    Directory of Open Access Journals (Sweden)

    Lejla Pašić

    2014-01-01

    Full Text Available Prokaryotes are generally characterized by vast genomic diversity that has been shaped by mutations, horizontal gene transfer, bacteriocins and phage predation. Enormous genetic diversity has developed as a result of stresses imposed in harsh environments and the ability of microorganisms to adapt. Two examples of prokaryotic diversity are presented: on intraspecies level, exemplified by Escherichia coli, and the diversity of the hypersaline environment, with the discussion of food-related health issues and biotechnological potential.

  16. Evolution of genomic diversity and sex at extreme environments: Fungal life under hypersaline Dead Sea stress

    Science.gov (United States)

    Kis-Papo, Tamar; Kirzhner, Valery; Wasser, Solomon P.; Nevo, Eviatar

    2003-01-01

    We have found that genomic diversity is generally positively correlated with abiotic and biotic stress levels (1–3). However, beyond a high-threshold level of stress, the diversity declines to a few adapted genotypes. The Dead Sea is the harshest planetary hypersaline environment (340 g·liter–1 total dissolved salts, ≈10 times sea water). Hence, the Dead Sea is an excellent natural laboratory for testing the “rise and fall” pattern of genetic diversity with stress proposed in this article. Here, we examined genomic diversity of the ascomycete fungus Aspergillus versicolor from saline, nonsaline, and hypersaline Dead Sea environments. We screened the coding and noncoding genomes of A. versicolor isolates by using >600 AFLP (amplified fragment length polymorphism) markers (equal to loci). Genomic diversity was positively correlated with stress, culminating in the Dead Sea surface but dropped drastically in 50- to 280-m-deep seawater. The genomic diversity pattern paralleled the pattern of sexual reproduction of fungal species across the same southward gradient of increasing stress in Israel. This parallel may suggest that diversity and sex are intertwined intimately according to the rise and fall pattern and adaptively selected by natural selection in fungal genome evolution. Future large-scale verification in micromycetes will define further the trajectories of diversity and sex in the rise and fall pattern. PMID:14645702

  17. The use of comparative genomic hybridization to characterize genome dynamics and diversity among the serotypes of Shigella

    Directory of Open Access Journals (Sweden)

    Sun Meisheng

    2006-08-01

    Full Text Available Abstract Background Compelling evidence indicates that Shigella species, the etiologic agents of bacillary dysentery, as well as enteroinvasive Escherichia coli, are derived from multiple origins of Escherichia coli and form a single pathovar. To further understand the genome diversity and virulence evolution of Shigella, comparative genomic hybridization microarray analysis was employed to compare the gene content of E. coli K-12 with those of 43 Shigella strains from all lineages. Results For the 43 strains subjected to CGH microarray analyses, the common backbone of the Shigella genome was estimated to contain more than 1,900 open reading frames (ORFs, with a mean number of 726 undetectable ORFs. The mosaic distribution of absent regions indicated that insertions and/or deletions have led to the highly diversified genomes of pathogenic strains. Conclusion These results support the hypothesis that by gain and loss of functions, Shigella species became successful human pathogens through convergent evolution from diverse genomic backgrounds. Moreover, we also found many specific differences between different lineages, providing a window into understanding bacterial speciation and taxonomic relationships.

  18. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  19. Population Genomics of sub-saharan Drosophila melanogaster: African diversity and non-African admixture.

    Directory of Open Access Journals (Sweden)

    John E Pool

    Full Text Available Drosophila melanogaster has played a pivotal role in the development of modern population genetics. However, many basic questions regarding the demographic and adaptive history of this species remain unresolved. We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia, while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection within an African population, between African populations, and between European and African populations. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa F(ST were found to be enriched in genomic regions of locally

  20. Population Genomics of Sub-Saharan Drosophila melanogaster: African Diversity and Non-African Admixture

    Science.gov (United States)

    Pool, John E.; Corbett-Detig, Russell B.; Sugino, Ryuichi P.; Stevens, Kristian A.; Cardeno, Charis M.; Crepeau, Marc W.; Duchen, Pablo; Emerson, J. J.; Saelao, Perot; Begun, David J.; Langley, Charles H.

    2012-01-01

    Drosophila melanogaster has played a pivotal role in the development of modern population genetics. However, many basic questions regarding the demographic and adaptive history of this species remain unresolved. We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia), while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection within an African population, between African populations, and between European and African populations. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa FST were found to be enriched in genomic regions of locally elevated cosmopolitan

  1. All about the Human Genome Project (HGP)

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  2. Absence of genome reduction in diverse, facultative endohyphal bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Baltrus, David A. [Univ. of Arizona, Tucson, AZ (United States); Dougherty, Kevin [Univ. of Arizona, Tucson, AZ (United States); Arendt, Kayla R. [Univ. of Arizona, Tucson, AZ (United States); Huntemann, Marcel [Joint Genome Institute, Walnut Creek, CA (United States); Clum, Alicia [Joint Genome Institute, Walnut Creek, CA (United States); Pillay, Manoj [Joint Genome Institute, Walnut Creek, CA (United States); Palaniappan, Krishnaveni [Joint Genome Institute, Walnut Creek, CA (United States); Varghese, Neha [Joint Genome Institute, Walnut Creek, CA (United States); Mikhailova, Natalia [Joint Genome Institute, Walnut Creek, CA (United States); Stamatis, Dimitrios [Joint Genome Institute, Walnut Creek, CA (United States); Reddy, T. B. K. [Joint Genome Institute, Walnut Creek, CA (United States); Ngan, Chew Yee [Joint Genome Institute, Walnut Creek, CA (United States); Daum, Chris [Joint Genome Institute, Walnut Creek, CA (United States); Shapiro, Nicole [Joint Genome Institute, Walnut Creek, CA (United States); Markowitz, Victor [Joint Genome Institute, Walnut Creek, CA (United States); Ivanova, Natalia [Joint Genome Institute, Walnut Creek, CA (United States); Kyrpides, Nikos [Joint Genome Institute, Walnut Creek, CA (United States); Woyke, Tanja [Joint Genome Institute, Walnut Creek, CA (United States); Arnold, A. Elizabeth [Univ. of Arizona, Tucson, AZ (United States)

    2017-02-28

    Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, and generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.

  3. Insights into the genetic structure and diversity of 38 South Asian Indians from deep whole-genome sequencing.

    Directory of Open Access Journals (Sweden)

    Lai-Ping Wong

    2014-05-01

    Full Text Available South Asia possesses a significant amount of genetic diversity due to considerable intergroup differences in culture and language. There have been numerous reports on the genetic structure of Asian Indians, although these have mostly relied on genotyping microarrays or targeted sequencing of the mitochondria and Y chromosomes. Asian Indians in Singapore are primarily descendants of immigrants from Dravidian-language-speaking states in south India, and 38 individuals from the general population underwent deep whole-genome sequencing with a target coverage of 30X as part of the Singapore Sequencing Indian Project (SSIP. The genetic structure and diversity of these samples were compared against samples from the Singapore Sequencing Malay Project and populations in Phase 1 of the 1,000 Genomes Project (1 KGP. SSIP samples exhibited greater intra-population genetic diversity and possessed higher heterozygous-to-homozygous genotype ratio than other Asian populations. When compared against a panel of well-defined Asian Indians, the genetic makeup of the SSIP samples was closely related to South Indians. However, even though the SSIP samples clustered distinctly from the Europeans in the global population structure analysis with autosomal SNPs, eight samples were assigned to mitochondrial haplogroups that were predominantly present in Europeans and possessed higher European admixture than the remaining samples. An analysis of the relative relatedness between SSIP with two archaic hominins (Denisovan, Neanderthal identified higher ancient admixture in East Asian populations than in SSIP. The data resource for these samples is publicly available and is expected to serve as a valuable complement to the South Asian samples in Phase 3 of 1 KGP.

  4. Diversity in research projects - A key to success?

    Science.gov (United States)

    Henkel, Daniela; Eisenhauer, Anton; Taubner, Isabelle

    2017-04-01

    According to demographers, psychologists, sociologists and economists diverse groups, which are groups of different race, ethnicity, gender and sexual orientation, are more innovative than homogeneous groups. This is also true for groups working together in research collaborations and international cooperation involving a culturally and functionally diverse mix of individuals who have to be integrated into an effective unit - a project team. If the goal is scientific excellence, diversity should be an essential ingredient to conduct science on high level productivity, quality and innovation. Effective teamwork is a key to project success and prime responsibilities of the project manager. Therefore, the project manager has to take into consideration different characteristics such as cultures, languages, and different values related to individual project partners. Here we show how diversity can affect the performance of a research project. Furthermore, the presentation indicates skills and abilities which are required for the management in order to deal also with the challenges of diversity in research projects. The presentation is based on insights experienced in the context of an Innovative Training Network (ITN) project within Marie Skłodowska-Curie Actions of the European HORIZON 2020 program and TRION a Collaborative Research Project in the Framework of the Trilateral Program of the German Research Foundation.

  5. A LDA-based approach to promoting ranking diversity for genomics information retrieval.

    Science.gov (United States)

    Chen, Yan; Yin, Xiaoshi; Li, Zhoujun; Hu, Xiaohua; Huang, Jimmy Xiangji

    2012-06-11

    In the biomedical domain, there are immense data and tremendous increase of genomics and biomedical relevant publications. The wealth of information has led to an increasing amount of interest in and need for applying information retrieval techniques to access the scientific literature in genomics and related biomedical disciplines. In many cases, the desired information of a query asked by biologists is a list of a certain type of entities covering different aspects that are related to the question, such as cells, genes, diseases, proteins, mutations, etc. Hence, it is important of a biomedical IR system to be able to provide relevant and diverse answers to fulfill biologists' information needs. However traditional IR model only concerns with the relevance between retrieved documents and user query, but does not take redundancy between retrieved documents into account. This will lead to high redundancy and low diversity in the retrieval ranked lists. In this paper, we propose an approach which employs a topic generative model called Latent Dirichlet Allocation (LDA) to promoting ranking diversity for biomedical information retrieval. Different from other approaches or models which consider aspects on word level, our approach assumes that aspects should be identified by the topics of retrieved documents. We present LDA model to discover topic distribution of retrieval passages and word distribution of each topic dimension, and then re-rank retrieval results with topic distribution similarity between passages based on N-size slide window. We perform our approach on TREC 2007 Genomics collection and two distinctive IR baseline runs, which can achieve 8% improvement over the highest Aspect MAP reported in TREC 2007 Genomics track. The proposed method is the first study of adopting topic model to genomics information retrieval, and demonstrates its effectiveness in promoting ranking diversity as well as in improving relevance of ranked lists of genomics search

  6. The Human Genome Project: how do we protect Australians?

    Science.gov (United States)

    Stott Despoja, N

    It is the moon landing of the nineties: the ambitious Human Genome Project--identifying the up to 100,000 genes that make up human DNA and the sequences of the three billion base-pairs that comprise the human genome. However, unlike the moon landing, the effects of the genome project will have a fundamental impact on the way we see ourselves and each other.

  7. SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects.

    Science.gov (United States)

    Dereeper, Alexis; Nicolas, Stéphane; Le Cunff, Loïc; Bacilieri, Roberto; Doligez, Agnès; Peros, Jean-Pierre; Ruiz, Manuel; This, Patrice

    2011-05-05

    High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data. In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to

  8. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria.

    Science.gov (United States)

    Dittmann, Elke; Gugger, Muriel; Sivonen, Kaarina; Fewer, David P

    2015-10-01

    Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms. Copyright © 2015. Published by Elsevier Ltd.

  9. Attitudes towards the Human Genome Project.

    Science.gov (United States)

    Shahroudi, Julie; Shaw, Geraldine

    Attitudes concerning the Human Genome Project were reported by faculty (N=40) and students (N=66) from a liberal arts college. Positive attitudes toward the project involved privacy, insurance and health, economic purposes, reproductive purposes, genetic counseling, religion and overall opinions. Negative attitudes were expressed regarding…

  10. Genomic diversity and evolution of the head crest in the rock pigeon

    DEFF Research Database (Denmark)

    Shapiro, Michael D.; Kronenberg, Zev; Li, Cai

    2013-01-01

    The geographic origins of breeds and the genetic basis of variation within the widely distributed and phenotypically diverse domestic rock pigeon (Columba livia) remain largely unknown. We generated a rock pigeon reference genome and additional genome sequences representing domestic and feral...

  11. Impacts of Genome-Wide Analyses on Our Understanding of Human Herpesvirus Diversity and Evolution.

    Science.gov (United States)

    Renner, Daniel W; Szpara, Moriah L

    2018-01-01

    Until fairly recently, genome-wide evolutionary dynamics and within-host diversity were more commonly examined in the context of small viruses than in the context of large double-stranded DNA viruses such as herpesviruses. The high mutation rates and more compact genomes of RNA viruses have inspired the investigation of population dynamics for these species, and recent data now suggest that herpesviruses might also be considered candidates for population modeling. High-throughput sequencing (HTS) and bioinformatics have expanded our understanding of herpesviruses through genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures. Here we discuss recent data on the mechanisms that generate herpesvirus genomic diversity and underlie the evolution of these virus families. We focus on human herpesviruses, with key insights drawn from veterinary herpesviruses and other large DNA virus families. We consider the impacts of cell culture on herpesvirus genomes and how to accurately describe the viral populations under study. The need for a strong foundation of high-quality genomes is also discussed, since it underlies all secondary genomic analyses such as RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling. Areas where we foresee future progress, such as the linking of viral genetic differences to phenotypic or clinical outcomes, are highlighted as well. Copyright © 2017 Renner and Szpara.

  12. Impacts of Genome-Wide Analyses on Our Understanding of Human Herpesvirus Diversity and Evolution

    Science.gov (United States)

    Renner, Daniel W.

    2017-01-01

    ABSTRACT Until fairly recently, genome-wide evolutionary dynamics and within-host diversity were more commonly examined in the context of small viruses than in the context of large double-stranded DNA viruses such as herpesviruses. The high mutation rates and more compact genomes of RNA viruses have inspired the investigation of population dynamics for these species, and recent data now suggest that herpesviruses might also be considered candidates for population modeling. High-throughput sequencing (HTS) and bioinformatics have expanded our understanding of herpesviruses through genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures. Here we discuss recent data on the mechanisms that generate herpesvirus genomic diversity and underlie the evolution of these virus families. We focus on human herpesviruses, with key insights drawn from veterinary herpesviruses and other large DNA virus families. We consider the impacts of cell culture on herpesvirus genomes and how to accurately describe the viral populations under study. The need for a strong foundation of high-quality genomes is also discussed, since it underlies all secondary genomic analyses such as RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling. Areas where we foresee future progress, such as the linking of viral genetic differences to phenotypic or clinical outcomes, are highlighted as well. PMID:29046445

  13. Comparative genomic data of the Avian Phylogenomics Project.

    Science.gov (United States)

    Zhang, Guojie; Li, Bo; Li, Cai; Gilbert, M Thomas P; Jarvis, Erich D; Wang, Jun

    2014-01-01

    genomic data that has been generated and used in our Avian Phylogenomics Project. To the best of our knowledge, the Avian Phylogenomics Project is the biggest vertebrate comparative genomics project to date. The genomic data presented here is expected to accelerate further analyses in many fields, including phylogenetics, comparative genomics, evolution, neurobiology, development biology, and other related areas.

  14. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Henrik [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Cantor, Michael [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Dusheyko, Serge [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Hua, Susan [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Poliakov, Alexander [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Shabalov, Igor [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Smirnova, Tatyana [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Grigoriev, Igor V. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Dubchak, Inna [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2013-11-12

    The U.S. Department of Energy (DOE) Joint Genome Institute (JGI), a national user facility, serves the diverse scientific community by providing integrated high-throughput sequencing and computational analysis to enable system-based scientific approaches in support of DOE missions related to clean energy generation and environmental characterization. The JGI Genome Portal (http://genome.jgi.doe.gov) provides unified access to all JGI genomic databases and analytical tools. The JGI maintains extensive data management systems and specialized analytical capabilities to manage and interpret complex genomic data. A user can search, download and explore multiple data sets available for all DOE JGI sequencing projects including their status, assemblies and annotations of sequenced genomes. In this paper, we describe major updates of the Genome Portal in the past 2 years with a specific emphasis on efficient handling of the rapidly growing amount of diverse genomic data accumulated in JGI.

  15. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    OpenAIRE

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with...

  16. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  17. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. (eds.)

    1992-01-01

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  18. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. [eds.

    1992-12-31

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  19. The Chlamydomonas genome project: a decade on

    Science.gov (United States)

    Blaby, Ian K.; Blaby-Haas, Crysten; Tourasse, Nicolas; Hom, Erik F. Y.; Lopez, David; Aksoy, Munevver; Grossman, Arthur; Umen, James; Dutcher, Susan; Porter, Mary; King, Stephen; Witman, George; Stanke, Mario; Harris, Elizabeth H.; Goodstein, David; Grimwood, Jane; Schmutz, Jeremy; Vallon, Olivier; Merchant, Sabeeha S.; Prochnik, Simon

    2014-01-01

    The green alga Chlamydomonas reinhardtii is a popular unicellular organism for studying photosynthesis, cilia biogenesis and micronutrient homeostasis. Ten years since its genome project was initiated, an iterative process of improvements to the genome and gene predictions has propelled this organism to the forefront of the “omics” era. Housed at Phytozome, the Joint Genome Institute’s (JGI) plant genomics portal, the most up-to-date genomic data include a genome arranged on chromosomes and high-quality gene models with alternative splice forms supported by an abundance of RNA-Seq data. Here, we present the past, present and future of Chlamydomonas genomics. Specifically, we detail progress on genome assembly and gene model refinement, discuss resources for gene annotations, functional predictions and locus ID mapping between versions and, importantly, outline a standardized framework for naming genes. PMID:24950814

  20. Using genomic information to conserve genetic diversity in livestock

    NARCIS (Netherlands)

    Eynard, Sonia E.

    2018-01-01

    Concern about the status of livestock breeds and their conservation has increased as selection and small population sizes caused loss of genetic diversity. Meanwhile, dense SNP chips and whole genome sequences (WGS) became available, providing opportunities to accurately quantify the impact of

  1. The Qatar genome project: translation of whole-genome sequencing into clinical practice.

    Science.gov (United States)

    Zayed, Hatem

    2016-10-01

    Qatar Genome Project was launched in 2013 with the intent to sequence the genome of each Qatari citizen in an effort to protect Qataris from the high rate of indigenous genetic diseases by allowing the mapping of disease-causing variants/rare variants and establishing a Qatari reference genome. Indeed, this project is expected to have numerous global benefits because the elevated homogeneity of the Qatari population, that will make Qatar an excellent genetic laboratory that will generate a wealth of data that will allow us to make sense of the genotype-phenotype correlations of many diseases, especially the complex multifactorial diseases, and will pave the way for changing the traditional medical practice of looking first at the phenotype rather than the genotype. © 2016 John Wiley & Sons Ltd.

  2. The family Rhabdoviridae: Mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins

    Science.gov (United States)

    Dietzgen, Ralf G.; Kondo, Hideki; Goodin, Michael M.; Kurath, Gael; Vasilakis, Nikos

    2017-01-01

    The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- and bipartite genomes.

  3. Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists

    Directory of Open Access Journals (Sweden)

    Matheus Sanitá Lima

    2017-11-01

    Full Text Available Organelle genomes are among the most sequenced kinds of chromosome. This is largely because they are small and widely used in molecular studies, but also because next-generation sequencing technologies made sequencing easier, faster, and cheaper. However, studies of organelle RNA have not kept pace with those of DNA, despite huge amounts of freely available eukaryotic RNA-sequencing (RNA-seq data. Little is known about organelle transcription in nonmodel species, and most of the available eukaryotic RNA-seq data have not been mined for organelle transcripts. Here, we use publicly available RNA-seq experiments to investigate organelle transcription in 30 diverse plastid-bearing protists with varying organelle genomic architectures. Mapping RNA-seq data to organelle genomes revealed pervasive, genome-wide transcription, regardless of the taxonomic grouping, gene organization, or noncoding content. For every species analyzed, transcripts covered ≥85% of the mitochondrial and/or plastid genomes (all of which were ≤105 kb, indicating that most of the organelle DNA—coding and noncoding—is transcriptionally active. These results follow earlier studies of model species showing that organellar transcription is coupled and ubiquitous across the genome, requiring significant downstream processing of polycistronic transcripts. Our findings suggest that noncoding organelle DNA can be transcriptionally active, raising questions about the underlying function of these transcripts and underscoring the utility of publicly available RNA-seq data for recovering complete genome sequences. If pervasive transcription is also found in bigger organelle genomes (>105 kb and across a broader range of eukaryotes, this could indicate that noncoding organelle RNAs are regulating fundamental processes within eukaryotic cells.

  4. Genome-level comparisons provide insight into the phylogeny and metabolic diversity of species within the genus Lactococcus.

    Science.gov (United States)

    Yu, Jie; Song, Yuqin; Ren, Yan; Qing, Yanting; Liu, Wenjun; Sun, Zhihong

    2017-11-03

    The genomic diversity of different species within the genus Lactococcus and the relationships between genomic differentiation and environmental factors remain unclear. In this study, type isolates of ten Lactococcus species/subspecies were sequenced to assess their genomic characteristics, metabolic diversity, and phylogenetic relationships. The total genome sizes varied between 1.99 (Lactococcus plantarum) and 2.46 megabases (Mb; L. lactis subsp. lactis), and the G + C content ranged from 34.81 (L. lactis subsp. hordniae) to 39.67% (L. raffinolactis) with an average value of 37.02%. Analysis of genome dynamics indicated that the genus Lactococcus has an open pan-genome, while the core genome size decreased with sequential addition at the genus and species group levels. A phylogenetic dendrogram based on the concatenated amino acid sequences of 643 core genes was largely consistent with the phylogenetic tree obtained by 16S ribosomal RNA (rRNA) genes, but it provided a more robust phylogenetic resolution than the 16S rRNA gene-based analysis. Comparative genomics indicated that species in the genus Lactococcus had high degrees of diversity in genome size, gene content, and carbohydrate metabolism. This may be important for the specific adaptations that allow different Lactococcus species to survive in different environments. These results provide a quantitative basis for understanding the genomic and metabolic diversity within the genus Lactococcus, laying the foundation for future studies on taxonomy and functional genomics.

  5. Harvard Personal Genome Project: lessons from participatory public research

    Science.gov (United States)

    2014-01-01

    Background Since its initiation in 2005, the Harvard Personal Genome Project has enrolled thousands of volunteers interested in publicly sharing their genome, health and trait data. Because these data are highly identifiable, we use an ‘open consent’ framework that purposefully excludes promises about privacy and requires participants to demonstrate comprehension prior to enrollment. Discussion Our model of non-anonymous, public genomes has led us to a highly participatory model of researcher-participant communication and interaction. The participants, who are highly committed volunteers, self-pursue and donate research-relevant datasets, and are actively engaged in conversations with both our staff and other Personal Genome Project participants. We have quantitatively assessed these communications and donations, and report our experiences with returning research-grade whole genome data to participants. We also observe some of the community growth and discussion that has occurred related to our project. Summary We find that public non-anonymous data is valuable and leads to a participatory research model, which we encourage others to consider. The implementation of this model is greatly facilitated by web-based tools and methods and participant education. Project results are long-term proactive participant involvement and the growth of a community that benefits both researchers and participants. PMID:24713084

  6. Harvard Personal Genome Project: lessons from participatory public research.

    Science.gov (United States)

    Ball, Madeleine P; Bobe, Jason R; Chou, Michael F; Clegg, Tom; Estep, Preston W; Lunshof, Jeantine E; Vandewege, Ward; Zaranek, Alexander; Church, George M

    2014-02-28

    Since its initiation in 2005, the Harvard Personal Genome Project has enrolled thousands of volunteers interested in publicly sharing their genome, health and trait data. Because these data are highly identifiable, we use an 'open consent' framework that purposefully excludes promises about privacy and requires participants to demonstrate comprehension prior to enrollment. Our model of non-anonymous, public genomes has led us to a highly participatory model of researcher-participant communication and interaction. The participants, who are highly committed volunteers, self-pursue and donate research-relevant datasets, and are actively engaged in conversations with both our staff and other Personal Genome Project participants. We have quantitatively assessed these communications and donations, and report our experiences with returning research-grade whole genome data to participants. We also observe some of the community growth and discussion that has occurred related to our project. We find that public non-anonymous data is valuable and leads to a participatory research model, which we encourage others to consider. The implementation of this model is greatly facilitated by web-based tools and methods and participant education. Project results are long-term proactive participant involvement and the growth of a community that benefits both researchers and participants.

  7. Geoscience Diversity Enhancement Project: Student Responses.

    Science.gov (United States)

    Rodrigue, Christine M.; Wechsler, Suzanne P.; Whitney, David J.; Ambos, Elizabeth L.; Ramirez-Herrera, Maria Teresa; Behl, Richard; Francis, Robert D.; Larson, Daniel O.; Hazen, Crisanne

    This paper describes an interdisciplinary project at California State University (Long Beach) designed to increase the attractiveness of the geosciences to underrepresented groups. The project is called the Geoscience Diversity Enhancement Project (GDEP). It is a 3-year program which began in the fall of 2001 with funding from the National Science…

  8. Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon, Portugal, a highly drug resistant setting

    KAUST Repository

    Perdigã o, Joã o; Silva, Hugo; Machado, Diana; Macedo, Rita; Maltez, Fernando; Silva, Carla; Jordao, Luisa; Couto, Isabel; Mallard, Kim; Coll, Francesc; Hill-Cawthorne, Grant A.; McNerney, Ruth; Pain, Arnab; Clark, Taane G; Viveiros, Miguel; Portugal, Isabel

    2014-01-01

    Globally, this study contributes with novel genome-wide phylogenetic data and has led to the identification of new genomic variants that support the notion of a growing genomic diversity facing both setting and host adaptation.

  9. Genome-Based Studies of Marine Microorganisms to Maximize the Diversity of Natural Products Discovery for Medical Treatments

    Directory of Open Access Journals (Sweden)

    Xin-Qing Zhao

    2011-01-01

    Full Text Available Marine microorganisms are rich source for natural products which play important roles in pharmaceutical industry. Over the past decade, genome-based studies of marine microorganisms have unveiled the tremendous diversity of the producers of natural products and also contributed to the efficiency of harness the strain diversity and chemical diversity, as well as the genetic diversity of marine microorganisms for the rapid discovery and generation of new natural products. In the meantime, genomic information retrieved from marine symbiotic microorganisms can also be employed for the discovery of new medical molecules from yet-unculturable microorganisms. In this paper, the recent progress in the genomic research of marine microorganisms is reviewed; new tools of genome mining as well as the advance in the activation of orphan pathways and metagenomic studies are summarized. Genome-based research of marine microorganisms will maximize the biodiscovery process and solve the problems of supply and sustainability of drug molecules for medical treatments.

  10. Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Kitcher, P.

    1998-11-01

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and social problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.

  11. The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins.

    Science.gov (United States)

    Dietzgen, Ralf G; Kondo, Hideki; Goodin, Michael M; Kurath, Gael; Vasilakis, Nikos

    2017-01-02

    The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the characteristics and diversity of rhabdoviruses, their taxonomic classification, replication mechanism, properties of classical rhabdoviruses such as rabies virus and rhabdoviruses with complex genomes, rhabdoviruses infecting aquatic species, and plant rhabdoviruses with both mono- and bipartite genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ethical considerations of research policy for personal genome analysis: the approach of the Genome Science Project in Japan.

    Science.gov (United States)

    Minari, Jusaku; Shirai, Tetsuya; Kato, Kazuto

    2014-12-01

    As evidenced by high-throughput sequencers, genomic technologies have recently undergone radical advances. These technologies enable comprehensive sequencing of personal genomes considerably more efficiently and less expensively than heretofore. These developments present a challenge to the conventional framework of biomedical ethics; under these changing circumstances, each research project has to develop a pragmatic research policy. Based on the experience with a new large-scale project-the Genome Science Project-this article presents a novel approach to conducting a specific policy for personal genome research in the Japanese context. In creating an original informed-consent form template for the project, we present a two-tiered process: making the draft of the template following an analysis of national and international policies; refining the draft template in conjunction with genome project researchers for practical application. Through practical use of the template, we have gained valuable experience in addressing challenges in the ethical review process, such as the importance of sharing details of the latest developments in genomics with members of research ethics committees. We discuss certain limitations of the conventional concept of informed consent and its governance system and suggest the potential of an alternative process using information technology.

  13. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Science.gov (United States)

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  14. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G; Shea, N [eds.

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  15. Pervasive, Genome-Wide Transcription in the Organelle Genomes of Diverse Plastid-Bearing Protists.

    Science.gov (United States)

    Sanitá Lima, Matheus; Smith, David Roy

    2017-11-06

    Organelle genomes are among the most sequenced kinds of chromosome. This is largely because they are small and widely used in molecular studies, but also because next-generation sequencing technologies made sequencing easier, faster, and cheaper. However, studies of organelle RNA have not kept pace with those of DNA, despite huge amounts of freely available eukaryotic RNA-sequencing (RNA-seq) data. Little is known about organelle transcription in nonmodel species, and most of the available eukaryotic RNA-seq data have not been mined for organelle transcripts. Here, we use publicly available RNA-seq experiments to investigate organelle transcription in 30 diverse plastid-bearing protists with varying organelle genomic architectures. Mapping RNA-seq data to organelle genomes revealed pervasive, genome-wide transcription, regardless of the taxonomic grouping, gene organization, or noncoding content. For every species analyzed, transcripts covered ≥85% of the mitochondrial and/or plastid genomes (all of which were ≤105 kb), indicating that most of the organelle DNA-coding and noncoding-is transcriptionally active. These results follow earlier studies of model species showing that organellar transcription is coupled and ubiquitous across the genome, requiring significant downstream processing of polycistronic transcripts. Our findings suggest that noncoding organelle DNA can be transcriptionally active, raising questions about the underlying function of these transcripts and underscoring the utility of publicly available RNA-seq data for recovering complete genome sequences. If pervasive transcription is also found in bigger organelle genomes (>105 kb) and across a broader range of eukaryotes, this could indicate that noncoding organelle RNAs are regulating fundamental processes within eukaryotic cells. Copyright © 2017 Sanitá Lima and Smith.

  16. Patterns of genome size diversity in bats (order Chiroptera).

    Science.gov (United States)

    Smith, Jillian D L; Bickham, John W; Gregory, T Ryan

    2013-08-01

    Despite being a group of particular interest in considering relationships between genome size and metabolic parameters, bats have not been well studied from this perspective. This study presents new estimates for 121 "microbat" species from 12 families and complements a previous study on members of the family Pteropodidae ("megabats"). The results confirm that diversity in genome size in bats is very limited even compared with other mammals, varying approximately 2-fold from 1.63 pg in Lophostoma carrikeri to 3.17 pg in Rhinopoma hardwickii and averaging only 2.35 pg ± 0.02 SE (versus 3.5 pg overall for mammals). However, contrary to some other vertebrate groups, and perhaps owing to the narrow range observed, genome size correlations were not apparent with any chromosomal, physiological, flight-related, developmental, or ecological characteristics within the order Chiroptera. Genome size is positively correlated with measures of body size in bats, though the strength of the relationships differs between pteropodids ("megabats") and nonpteropodids ("microbats").

  17. The 1000 bull genome project

    Science.gov (United States)

    To meet growing global demands for high value protein from milk and meat, rates of genetic gain in domestic cattle must be accelerated. At the same time, animal health and welfare must be considered. The 1000 bull genomes project supports these goals by providing annotated sequence variants and ge...

  18. Mitochondrial genome diversity and population structure of the giant squid Architeuthis

    DEFF Research Database (Denmark)

    Winkelmann, Inger Eleanor Hall; Campos, Paula; Strugnell, Jan

    2013-01-01

    techniques, considerable controversy exists with regard to topics as varied as their taxonomy, biology and even behaviour. In this study, we have characterized the mitochondrial genome (mitogenome) diversity of 43 Architeuthis samples collected from across the range of the species, in order to use genetic...... a recent population expansion or selective sweep, which may explain the low level of genetic diversity....

  19. Genomics and fish adaptation

    Directory of Open Access Journals (Sweden)

    Agostinho Antunes

    2015-12-01

    Full Text Available The completion of the human genome sequencing in 2003 opened a new perspective into the importance of whole genome sequencing projects, and currently multiple species are having their genomes completed sequenced, from simple organisms, such as bacteria, to more complex taxa, such as mammals. This voluminous sequencing data generated across multiple organisms provides also the framework to better understand the genetic makeup of such species and related ones, allowing to explore the genetic changes underlining the evolution of diverse phenotypic traits. Here, recent results from our group retrieved from comparative evolutionary genomic analyses of varied fish species will be considered to exemplify how gene novelty and gene enhancement by positive selection might have been determinant in the success of adaptive radiations into diverse habitats and lifestyles.

  20. Helminth genome projects: all or nothing

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Julius; Horák, Aleš; Scholz, Tomáš

    2005-01-01

    Roč. 21, č. 6 (2005), s. 265-266 ISSN 1471-4922 Institutional research plan: CEZ:AV0Z60220518 Keywords : genome project * helminth * Dracunculus Subject RIV: EG - Zoology Impact factor: 4.526, year: 2005

  1. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity.

    Directory of Open Access Journals (Sweden)

    Nicolas Heslot

    Full Text Available Genome-wide molecular markers are often being used to evaluate genetic diversity in germplasm collections and for making genomic selections in breeding programs. To accurately predict phenotypes and assay genetic diversity, molecular markers should assay a representative sample of the polymorphisms in the population under study. Ascertainment bias arises when marker data is not obtained from a random sample of the polymorphisms in the population of interest. Genotyping-by-sequencing (GBS is rapidly emerging as a low-cost genotyping platform, even for the large, complex, and polyploid wheat (Triticum aestivum L. genome. With GBS, marker discovery and genotyping occur simultaneously, resulting in minimal ascertainment bias. The previous platform of choice for whole-genome genotyping in many species such as wheat was DArT (Diversity Array Technology and has formed the basis of most of our knowledge about cereals genetic diversity. This study compared GBS and DArT marker platforms for measuring genetic diversity and genomic selection (GS accuracy in elite U.S. soft winter wheat. From a set of 365 breeding lines, 38,412 single nucleotide polymorphism GBS markers were discovered and genotyped. The GBS SNPs gave a higher GS accuracy than 1,544 DArT markers on the same lines, despite 43.9% missing data. Using a bootstrap approach, we observed significantly more clustering of markers and ascertainment bias with DArT relative to GBS. The minor allele frequency distribution of GBS markers had a deficit of rare variants compared to DArT markers. Despite the ascertainment bias of the DArT markers, GS accuracy for three traits out of four was not significantly different when an equal number of markers were used for each platform. This suggests that the gain in accuracy observed using GBS compared to DArT markers was mainly due to a large increase in the number of markers available for the analysis.

  2. Impact of Marker Ascertainment Bias on Genomic Selection Accuracy and Estimates of Genetic Diversity

    Science.gov (United States)

    Heslot, Nicolas; Rutkoski, Jessica; Poland, Jesse; Jannink, Jean-Luc; Sorrells, Mark E.

    2013-01-01

    Genome-wide molecular markers are often being used to evaluate genetic diversity in germplasm collections and for making genomic selections in breeding programs. To accurately predict phenotypes and assay genetic diversity, molecular markers should assay a representative sample of the polymorphisms in the population under study. Ascertainment bias arises when marker data is not obtained from a random sample of the polymorphisms in the population of interest. Genotyping-by-sequencing (GBS) is rapidly emerging as a low-cost genotyping platform, even for the large, complex, and polyploid wheat (Triticum aestivum L.) genome. With GBS, marker discovery and genotyping occur simultaneously, resulting in minimal ascertainment bias. The previous platform of choice for whole-genome genotyping in many species such as wheat was DArT (Diversity Array Technology) and has formed the basis of most of our knowledge about cereals genetic diversity. This study compared GBS and DArT marker platforms for measuring genetic diversity and genomic selection (GS) accuracy in elite U.S. soft winter wheat. From a set of 365 breeding lines, 38,412 single nucleotide polymorphism GBS markers were discovered and genotyped. The GBS SNPs gave a higher GS accuracy than 1,544 DArT markers on the same lines, despite 43.9% missing data. Using a bootstrap approach, we observed significantly more clustering of markers and ascertainment bias with DArT relative to GBS. The minor allele frequency distribution of GBS markers had a deficit of rare variants compared to DArT markers. Despite the ascertainment bias of the DArT markers, GS accuracy for three traits out of four was not significantly different when an equal number of markers were used for each platform. This suggests that the gain in accuracy observed using GBS compared to DArT markers was mainly due to a large increase in the number of markers available for the analysis. PMID:24040295

  3. Expanding the Diversity of Mycobacteriophages: Insights into Genome Architecture and Evolution

    OpenAIRE

    Pope, Welkin H.; Jacobs-Sera, Deborah; Russell, Daniel A.; Peebles, Craig L.; Al-Atrache, Zein; Alcoser, Turi A.; Alexander, Lisa M.; Alfano, Matthew B.; Alford, Samantha T.; Amy, Nichols E.; Anderson, Marie D.; Anderson, Alexander G.; Ang, Andrew A. S.; Ares, Manuel; Barber, Amanda J.

    2011-01-01

    Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we repo...

  4. Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion.

    Science.gov (United States)

    Vanwonterghem, Inka; Jensen, Paul D; Rabaey, Korneel; Tyson, Gene W

    2016-09-01

    Our understanding of the complex interconnected processes performed by microbial communities is hindered by our inability to culture the vast majority of microorganisms. Metagenomics provides a way to bypass this cultivation bottleneck and recent advances in this field now allow us to recover a growing number of genomes representing previously uncultured populations from increasingly complex environments. In this study, a temporal genome-centric metagenomic analysis was performed of lab-scale anaerobic digesters that host complex microbial communities fulfilling a series of interlinked metabolic processes to enable the conversion of cellulose to methane. In total, 101 population genomes that were moderate to near-complete were recovered based primarily on differential coverage binning. These populations span 19 phyla, represent mostly novel species and expand the genomic coverage of several rare phyla. Classification into functional guilds based on their metabolic potential revealed metabolic networks with a high level of functional redundancy as well as niche specialization, and allowed us to identify potential roles such as hydrolytic specialists for several rare, uncultured populations. Genome-centric analyses of complex microbial communities across diverse environments provide the key to understanding the phylogenetic and metabolic diversity of these interactive communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses.

    Science.gov (United States)

    Li, Ci-Xiu; Shi, Mang; Tian, Jun-Hua; Lin, Xian-Dan; Kang, Yan-Jun; Chen, Liang-Jun; Qin, Xin-Cheng; Xu, Jianguo; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-29

    Although arthropods are important viral vectors, the biodiversity of arthropod viruses, as well as the role that arthropods have played in viral origins and evolution, is unclear. Through RNA sequencing of 70 arthropod species we discovered 112 novel viruses that appear to be ancestral to much of the documented genetic diversity of negative-sense RNA viruses, a number of which are also present as endogenous genomic copies. With this greatly enriched diversity we revealed that arthropods contain viruses that fall basal to major virus groups, including the vertebrate-specific arenaviruses, filoviruses, hantaviruses, influenza viruses, lyssaviruses, and paramyxoviruses. We similarly documented a remarkable diversity of genome structures in arthropod viruses, including a putative circular form, that sheds new light on the evolution of genome organization. Hence, arthropods are a major reservoir of viral genetic diversity and have likely been central to viral evolution.

  6. Population genetic analysis of shotgun assemblies of genomic sequences from multiple individuals

    DEFF Research Database (Denmark)

    Hellmann, Ines; Mang, Yuan; Gu, Zhiping

    2008-01-01

    We introduce a simple, broadly applicable method for obtaining estimates of nucleotide diversity from genomic shotgun sequencing data. The method takes into account the special nature of these data: random sampling of genomic segments from one or more individuals and a relatively high error rate...... for individual reads. Applying this method to data from the Celera human genome sequencing and SNP discovery project, we obtain estimates of nucleotide diversity in windows spanning the human genome and show that the diversity to divergence ratio is reduced in regions of low recombination. Furthermore, we show...

  7. Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo)

    Science.gov (United States)

    2012-01-01

    Background The turkey (Meleagris gallopavo) is an important agricultural species and the second largest contributor to the world’s poultry meat production. Genetic improvement is attributed largely to selective breeding programs that rely on highly heritable phenotypic traits, such as body size and breast muscle development. Commercial breeding with small effective population sizes and epistasis can result in loss of genetic diversity, which in turn can lead to reduced individual fitness and reduced response to selection. The presence of genomic diversity in domestic livestock species therefore, is of great importance and a prerequisite for rapid and accurate genetic improvement of selected breeds in various environments, as well as to facilitate rapid adaptation to potential changes in breeding goals. Genomic selection requires a large number of genetic markers such as e.g. single nucleotide polymorphisms (SNPs) the most abundant source of genetic variation within the genome. Results Alignment of next generation sequencing data of 32 individual turkeys from different populations was used for the discovery of 5.49 million SNPs, which subsequently were used for the analysis of genetic diversity among the different populations. All of the commercial lines branched from a single node relative to the heritage varieties and the South Mexican turkey population. Heterozygosity of all individuals from the different turkey populations ranged from 0.17-2.73 SNPs/Kb, while heterozygosity of populations ranged from 0.73-1.64 SNPs/Kb. The average frequency of heterozygous SNPs in individual turkeys was 1.07 SNPs/Kb. Five genomic regions with very low nucleotide variation were identified in domestic turkeys that showed state of fixation towards alleles different than wild alleles. Conclusion The turkey genome is much less diverse with a relatively low frequency of heterozygous SNPs as compared to other livestock species like chicken and pig. The whole genome SNP discovery

  8. Whole genome SNP discovery and analysis of genetic diversity in Turkey (Meleagris gallopavo

    Directory of Open Access Journals (Sweden)

    Aslam Muhammad L

    2012-08-01

    Full Text Available Abstract Background The turkey (Meleagris gallopavo is an important agricultural species and the second largest contributor to the world’s poultry meat production. Genetic improvement is attributed largely to selective breeding programs that rely on highly heritable phenotypic traits, such as body size and breast muscle development. Commercial breeding with small effective population sizes and epistasis can result in loss of genetic diversity, which in turn can lead to reduced individual fitness and reduced response to selection. The presence of genomic diversity in domestic livestock species therefore, is of great importance and a prerequisite for rapid and accurate genetic improvement of selected breeds in various environments, as well as to facilitate rapid adaptation to potential changes in breeding goals. Genomic selection requires a large number of genetic markers such as e.g. single nucleotide polymorphisms (SNPs the most abundant source of genetic variation within the genome. Results Alignment of next generation sequencing data of 32 individual turkeys from different populations was used for the discovery of 5.49 million SNPs, which subsequently were used for the analysis of genetic diversity among the different populations. All of the commercial lines branched from a single node relative to the heritage varieties and the South Mexican turkey population. Heterozygosity of all individuals from the different turkey populations ranged from 0.17-2.73 SNPs/Kb, while heterozygosity of populations ranged from 0.73-1.64 SNPs/Kb. The average frequency of heterozygous SNPs in individual turkeys was 1.07 SNPs/Kb. Five genomic regions with very low nucleotide variation were identified in domestic turkeys that showed state of fixation towards alleles different than wild alleles. Conclusion The turkey genome is much less diverse with a relatively low frequency of heterozygous SNPs as compared to other livestock species like chicken and pig. The

  9. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabian; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2013-03-05

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops that are grown for biofuel, food or feed. Most Dothideomycetes have only a single host plant, and related species can have very diverse hosts. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  10. The Human Genome Project (HGP): dividends and challenges: a ...

    African Journals Online (AJOL)

    The Human Genome Project (HGP): dividends and challenges: a review. ... Genomic studies have given profound insights into the genetic organization of ... with it will be an essential part of modern medicine and biology for years to come.

  11. Sifting through genomes with iterative-sequence clustering produces a large, phylogenetically diverse protein-family resource.

    Science.gov (United States)

    Sharpton, Thomas J; Jospin, Guillaume; Wu, Dongying; Langille, Morgan G I; Pollard, Katherine S; Eisen, Jonathan A

    2012-10-13

    New computational resources are needed to manage the increasing volume of biological data from genome sequencing projects. One fundamental challenge is the ability to maintain a complete and current catalog of protein diversity. We developed a new approach for the identification of protein families that focuses on the rapid discovery of homologous protein sequences. We implemented fully automated and high-throughput procedures to de novo cluster proteins into families based upon global alignment similarity. Our approach employs an iterative clustering strategy in which homologs of known families are sifted out of the search for new families. The resulting reduction in computational complexity enables us to rapidly identify novel protein families found in new genomes and to perform efficient, automated updates that keep pace with genome sequencing. We refer to protein families identified through this approach as "Sifting Families," or SFams. Our analysis of ~10.5 million protein sequences from 2,928 genomes identified 436,360 SFams, many of which are not represented in other protein family databases. We validated the quality of SFam clustering through statistical as well as network topology-based analyses. We describe the rapid identification of SFams and demonstrate how they can be used to annotate genomes and metagenomes. The SFam database catalogs protein-family quality metrics, multiple sequence alignments, hidden Markov models, and phylogenetic trees. Our source code and database are publicly available and will be subject to frequent updates (http://edhar.genomecenter.ucdavis.edu/sifting_families/).

  12. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    Science.gov (United States)

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  13. Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis.

    Science.gov (United States)

    Yutin, Natalya; Bäckström, Disa; Ettema, Thijs J G; Krupovic, Mart; Koonin, Eugene V

    2018-04-10

    Analysis of metagenomic sequences has become the principal approach for the study of the diversity of viruses. Many recent, extensive metagenomic studies on several classes of viruses have dramatically expanded the visible part of the virosphere, showing that previously undetected viruses, or those that have been considered rare, actually are important components of the global virome. We investigated the provenance of viruses related to tail-less bacteriophages of the family Tectiviridae by searching genomic and metagenomics sequence databases for distant homologs of the tectivirus-like Double Jelly-Roll major capsid proteins (DJR MCP). These searches resulted in the identification of numerous genomes of virus-like elements that are similar in size to tectiviruses (10-15 kilobases) and have diverse gene compositions. By comparison of the gene repertoires, the DJR MCP-encoding genomes were classified into 6 distinct groups that can be predicted to differ in reproduction strategies and host ranges. Only the DJR MCP gene that is present by design is shared by all these genomes, and most also encode a predicted DNA-packaging ATPase; the rest of the genes are present only in subgroups of this unexpectedly diverse collection of DJR MCP-encoding genomes. Only a minority encode a DNA polymerase which is a hallmark of the family Tectiviridae and the putative family "Autolykiviridae". Notably, one of the identified putative DJR MCP viruses encodes a homolog of Cas1 endonuclease, the integrase involved in CRISPR-Cas adaptation and integration of transposon-like elements called casposons. This is the first detected occurrence of Cas1 in a virus. Many of the identified elements are individual contigs flanked by inverted or direct repeats and appear to represent complete, extrachromosomal viral genomes, whereas others are flanked by bacterial genes and thus can be considered as proviruses. These contigs come from metagenomes of widely different environments, some dominated by

  14. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    Directory of Open Access Journals (Sweden)

    Carolyn A. Young

    2015-04-01

    Full Text Available The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization. The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine.

  15. An overview of the human genome project

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.

    1994-01-01

    The human genome project is one of the most ambitious scientific projects to date, with the ultimate goal being a nucleotide sequence for all four billion bases of human DNA. In the process of determining the nucleotide sequence for each base, the location, function, and regulatory regions from the estimated 100,000 human genes will be identified. The genome project itself relies upon maps of the human genetic code derived from several different levels of resolution. Genetic linkage analysis provides a low resolution genome map. The information for genetic linkage maps is derived from the analysis of chromosome specific markers such as Sequence Tagged Sites (STSs), Variable Number of Tandem Repeats (VNTRs) or other polymorphic (highly informative) loci in a number of different-families. Using this information the location of an unknown disease gene can be limited to a region comprised of one million base pairs of DNA or less. After this point, one must construct or have access to a physical map of the region of interest. Physical mapping involves the construction of an ordered overlapping (contiguous) set of recombinant DNA clones. These clones may be derived from a number of different vectors including cosmids, Bacterial Artificial Chromosomes (BACs), P1 derived Artificial Chromosomes (PACs), somatic cell hybrids, or Yeast Artificial Chromosomes (YACs). The ultimate goal for physical mapping is to establish a completely overlapping (contiguous) set of clones for the entire genome. After a gene or region of interest has been localized using physical mapping the nucleotide sequence is determined. The overlap between genetic mapping, physical mapping and DNA sequencing has proven to be a powerful tool for the isolation of disease genes through positional cloning.

  16. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    LENUS (Irish Health Repository)

    Potnis, Neha

    2011-03-11

    Abstract Background Bacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10. Results We sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity. Conclusions Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster

  17. Genetic diversity analysis of two commercial breeds of pigs using genomic and pedigree data.

    Science.gov (United States)

    Zanella, Ricardo; Peixoto, Jane O; Cardoso, Fernando F; Cardoso, Leandro L; Biegelmeyer, Patrícia; Cantão, Maurício E; Otaviano, Antonio; Freitas, Marcelo S; Caetano, Alexandre R; Ledur, Mônica C

    2016-03-30

    Genetic improvement in livestock populations can be achieved without significantly affecting genetic diversity if mating systems and selection decisions take genetic relationships among individuals into consideration. The objective of this study was to examine the genetic diversity of two commercial breeds of pigs. Genotypes from 1168 Landrace (LA) and 1094 Large White (LW) animals from a commercial breeding program in Brazil were obtained using the Illumina PorcineSNP60 Beadchip. Inbreeding estimates based on pedigree (F x) and genomic information using runs of homozygosity (F ROH) and the single nucleotide polymorphisms (SNP) by SNP inbreeding coefficient (F SNP) were obtained. Linkage disequilibrium (LD), correlation of linkage phase (r) and effective population size (N e ) were also estimated. Estimates of inbreeding obtained with pedigree information were lower than those obtained with genomic data in both breeds. We observed that the extent of LD was slightly larger at shorter distances between SNPs in the LW population than in the LA population, which indicates that the LW population was derived from a smaller N e . Estimates of N e based on genomic data were equal to 53 and 40 for the current populations of LA and LW, respectively. The correlation of linkage phase between the two breeds was equal to 0.77 at distances up to 50 kb, which suggests that genome-wide association and selection should be performed within breed. Although selection intensities have been stronger in the LA breed than in the LW breed, levels of genomic and pedigree inbreeding were lower for the LA than for the LW breed. The use of genomic data to evaluate population diversity in livestock animals can provide new and more precise insights about the effects of intense selection for production traits. Resulting information and knowledge can be used to effectively increase response to selection by appropriately managing the rate of inbreeding, minimizing negative effects of inbreeding

  18. Characterizing neutral genomic diversity and selection signatures in indigenous populations of Moroccan goats (Capra hircus using WGS data

    Directory of Open Access Journals (Sweden)

    Badr eBenjelloun

    2015-04-01

    Full Text Available Since the time of their domestication, goats (Capra hircus have evolved in a large variety of locally adapted populations in response to different human and environmental pressures. In the present era, many indigenous populations are threatened with extinction due to their substitution by cosmopolitan breeds, while they might represent highly valuable genomic resources. It is thus crucial to characterize the neutral and adaptive genetic diversity of indigenous populations. A fine characterization of whole genome variation in farm animals is now possible by using new sequencing technologies. We sequenced the complete genome at 12X coverage of 44 goats geographically representative of the three phenotypically distinct indigenous populations in Morocco. The study of mitochondrial genomes showed a high diversity exclusively restricted to the haplogroup A. The 44 nuclear genomes showed a very high diversity (24 million variants associated with low linkage disequilibrium. The overall genetic diversity was weakly structured according to geography and phenotypes. When looking for signals of positive selection in each population we identified many candidate genes, several of which gave insights into the metabolic pathways or biological processes involved in the adaptation to local conditions (e.g. panting in warm/desert conditions. This study highlights the interest of WGS data to characterize livestock genomic diversity. It illustrates the valuable genetic richness present in indigenous populations that have to be sustainably managed and may represent valuable genetic resources for the long-term preservation of the species.

  19. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species.

    Science.gov (United States)

    Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M; Ray, David A; Gilbert, M Thomas P; Myers, Eugene

    2018-02-15

    Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.

  20. The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins

    OpenAIRE

    Dietzgen, Ralf G.; Kondo, Hideki; Goodin, Michael M.; Kurath, Gael; Vasilakis, Nikos

    2016-01-01

    The family Rhabdoviridae consists of mostly enveloped, bullet-shaped or bacilliform viruses with a negative-sense, single-stranded RNA genome that infect vertebrates, invertebrates or plants. This ecological diversity is reflected by the diversity and complexity of their genomes. Five canonical structural protein genes are conserved in all rhabdoviruses, but may be overprinted, overlapped or interspersed with several novel and diverse accessory genes. This review gives an overview of the char...

  1. Alignment of 1000 Genomes Project reads to reference assembly GRCh38.

    Science.gov (United States)

    Zheng-Bradley, Xiangqun; Streeter, Ian; Fairley, Susan; Richardson, David; Clarke, Laura; Flicek, Paul

    2017-07-01

    The 1000 Genomes Project produced more than 100 trillion basepairs of short read sequence from more than 2600 samples in 26 populations over a period of five years. In its final phase, the project released over 85 million genotyped and phased variants on human reference genome assembly GRCh37. An updated reference assembly, GRCh38, was released in late 2013, but there was insufficient time for the final phase of the project analysis to change to the new assembly. Although it is possible to lift the coordinates of the 1000 Genomes Project variants to the new assembly, this is a potentially error-prone process as coordinate remapping is most appropriate only for non-repetitive regions of the genome and those that did not see significant change between the two assemblies. It will also miss variants in any region that was newly added to GRCh38. Thus, to produce the highest quality variants and genotypes on GRCh38, the best strategy is to realign the reads and recall the variants based on the new alignment. As the first step of variant calling for the 1000 Genomes Project data, we have finished remapping all of the 1000 Genomes sequence reads to GRCh38 with alternative scaffold-aware BWA-MEM. The resulting alignments are available as CRAM, a reference-based sequence compression format. The data have been released on our FTP site and are also available from European Nucleotide Archive to facilitate researchers discovering variants on the primary sequences and alternative contigs of GRCh38. © The Authors 2017. Published by Oxford University Press.

  2. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Doethideomycetes Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabien; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2012-03-13

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related species can have very diverse host plants. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  3. Secondary uses and the governance of de-identified data: Lessons from the human genome diversity panel

    Directory of Open Access Journals (Sweden)

    Lee Sandra S-J

    2011-09-01

    Full Text Available Abstract Background Recent changes to regulatory guidance in the US and Europe have complicated oversight of secondary research by rendering most uses of de-identified data exempt from human subjects oversight. To identify the implications of such guidelines for harms to participants and communities, this paper explores the secondary uses of one de-identified DNA sample collection with limited oversight: the Human Genome Diversity Project (HGDP-Centre d'Etude du Polymorphisme Humain, Fondation Jean Dausset (CEPH Human Genome Diversity Panel. Methods Using a combination of keyword and cited reference search, we identified English-language scientific articles published between 2002 and 2009 that reported analysis of HGDP Diversity Panel samples and/or data. We then reviewed each article to identify the specific research use to which the samples and/or data was applied. Secondary uses were categorized according to the type and kind of research supported by the collection. Results A wide variety of secondary uses were identified from 148 peer-reviewed articles. While the vast majority of these uses were consistent with the original intent of the collection, a minority of published reports described research whose primary findings could be regarded as controversial, objectionable, or potentially stigmatizing in their interpretation. Conclusions We conclude that potential risks to participants and communities cannot be wholly eliminated by anonymization of individual data and suggest that explicit review of proposed secondary uses, by a Data Access Committee or similar internal oversight body with suitable stakeholder representation, should be a required component of the trustworthy governance of any repository of data or specimens.

  4. National human genome projects: an update and an agenda.

    Science.gov (United States)

    An, Joon Yong

    2017-01-01

    Population genetic and human genetic studies are being accelerated with genome technology and data sharing. Accordingly, in the past 10 years, several countries have initiated genetic research using genome technology and identified the genetic architecture of the ethnic groups living in the corresponding country or suggested the genetic foundation of a social phenomenon. Genetic research has been conducted from epidemiological studies that previously described the health or disease conditions in defined population. This perspective summarizes national genome projects conducted in the past 10 years and introduces case studies to utilize genomic data in genetic research.

  5. Sifting through genomes with iterative-sequence clustering produces a large, phylogenetically diverse protein-family resource

    Directory of Open Access Journals (Sweden)

    Sharpton Thomas J

    2012-10-01

    Full Text Available Abstract Background New computational resources are needed to manage the increasing volume of biological data from genome sequencing projects. One fundamental challenge is the ability to maintain a complete and current catalog of protein diversity. We developed a new approach for the identification of protein families that focuses on the rapid discovery of homologous protein sequences. Results We implemented fully automated and high-throughput procedures to de novo cluster proteins into families based upon global alignment similarity. Our approach employs an iterative clustering strategy in which homologs of known families are sifted out of the search for new families. The resulting reduction in computational complexity enables us to rapidly identify novel protein families found in new genomes and to perform efficient, automated updates that keep pace with genome sequencing. We refer to protein families identified through this approach as “Sifting Families,” or SFams. Our analysis of ~10.5 million protein sequences from 2,928 genomes identified 436,360 SFams, many of which are not represented in other protein family databases. We validated the quality of SFam clustering through statistical as well as network topology–based analyses. Conclusions We describe the rapid identification of SFams and demonstrate how they can be used to annotate genomes and metagenomes. The SFam database catalogs protein-family quality metrics, multiple sequence alignments, hidden Markov models, and phylogenetic trees. Our source code and database are publicly available and will be subject to frequent updates (http://edhar.genomecenter.ucdavis.edu/sifting_families/.

  6. Mapping our genes: The genome projects: How big, how fast

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for /open quotes/writing the rules/close quotes/ of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. OTA prepared this report with the assistance of several hundred experts throughout the world. 342 refs., 26 figs., 11 tabs.

  7. Mapping Our Genes: The Genome Projects: How Big, How Fast

    Science.gov (United States)

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for ?writing the rules? of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. The Office of Technology Assessment (OTA) prepared this report with the assistance of several hundred experts throughout the world.

  8. Genetic diversity and trait genomic prediction in a pea diversity panel.

    Science.gov (United States)

    Burstin, Judith; Salloignon, Pauline; Chabert-Martinello, Marianne; Magnin-Robert, Jean-Bernard; Siol, Mathieu; Jacquin, Françoise; Chauveau, Aurélie; Pont, Caroline; Aubert, Grégoire; Delaitre, Catherine; Truntzer, Caroline; Duc, Gérard

    2015-02-21

    Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection. A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted. The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being

  9. Genomes to life project quarterly report June 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Heffelfinger, Grant S.

    2005-01-01

    This SAND report provides the technical progress through June 2004 of the Sandia-led project, ''Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling'', funded by the DOE Office of Science Genomes to Life Program. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO{sub 2} are important terms in the global environmental response to anthropogenic atmospheric inputs of CO{sub 2} and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. In this project, we will investigate the carbon sequestration behavior of Synechococcus Sp., an abundant marine cyanobacteria known to be important to environmental responses to carbon dioxide levels, through experimental and computational methods. This project is a combined experimental and computational effort with emphasis on developing and applying new computational tools and methods. Our experimental effort will provide the biology and data to drive the computational efforts and include significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Computational tools will be essential to our efforts to discover and characterize the function of the molecular machines of Synechococcus. To this end, molecular simulation methods will be coupled with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes

  10. The Human Genome Project: big science transforms biology and medicine

    OpenAIRE

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and a...

  11. Consequences for diversity when animals are prioritized for conservation of the whole genome or of one specific allele

    NARCIS (Netherlands)

    Engelsma, K.A.; Veerkamp, R.F.; Calus, M.P.L.; Windig, J.J.

    2014-01-01

    When animals are selected for one specific allele, for example for inclusion in a gene bank, this may result in the loss of diversity in other parts of the genome. The aim of this study was to quantify the risk of losing diversity across the genome when targeting a single allele for conservation

  12. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata

    Science.gov (United States)

    Liolios, Konstantinos; Chen, I-Min A.; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor M.; Kyrpides, Nikos C.

    2010-01-01

    The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) specification. GOLD is available at: http://www.genomesonline.org and has a mirror site at the Institute of Molecular Biology and Biotechnology, Crete, Greece, at: http://gold.imbb.forth.gr/ PMID:19914934

  13. Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes.

    Science.gov (United States)

    Chen, Poyin; den Bakker, Henk C; Korlach, Jonas; Kong, Nguyet; Storey, Dylan B; Paxinos, Ellen E; Ashby, Meredith; Clark, Tyson; Luong, Khai; Wiedmann, Martin; Weimer, Bart C

    2017-02-01

    Listeria monocytogenes is a bacterial pathogen that is found in a wide variety of anthropogenic and natural environments. Genome sequencing technologies are rapidly becoming a powerful tool in facilitating our understanding of how genotype, classification phenotypes, and virulence phenotypes interact to predict the health risks of individual bacterial isolates. Currently, 57 closed L. monocytogenes genomes are publicly available, representing three of the four phylogenetic lineages, and they suggest that L. monocytogenes has high genomic synteny. This study contributes an additional 15 closed L. monocytogenes genomes that were used to determine the associations between the genome and methylome with host invasion magnitude. In contrast to previous findings, large chromosomal inversions and rearrangements were detected in five isolates at the chromosome terminus and within rRNA genes, including a previously undescribed inversion within rRNA-encoding regions. Each isolate's epigenome contained highly diverse methyltransferase recognition sites, even within the same serotype and methylation pattern. Eleven strains contained a single chromosomally encoded methyltransferase, one strain contained two methylation systems (one system on a plasmid), and three strains exhibited no methylation, despite the occurrence of methyltransferase genes. In three isolates a new, unknown DNA modification was observed in addition to diverse methylation patterns, accompanied by a novel methylation system. Neither chromosome rearrangement nor strain-specific patterns of epigenome modification observed within virulence genes were correlated with serotype designation, clonal complex, or in vitro infectivity. These data suggest that genome diversity is larger than previously considered in L. monocytogenes and that as more genomes are sequenced, additional structure and methylation novelty will be observed in this organism. Listeria monocytogenes is the causative agent of listeriosis, a disease

  14. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  15. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  16. Fueling the Future with Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2014-10-27

    Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.

  17. The Human Genome Project: Information access, management, and regulation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.; Micikas, L.B.

    1996-08-31

    The Human Genome Project is a large, internationally coordinated effort in biological research directed at creating a detailed map of human DNA. This report describes the access of information, management, and regulation of the project. The project led to the development of an instructional module titled The Human Genome Project: Biology, Computers, and Privacy, designed for use in high school biology classes. The module consists of print materials and both Macintosh and Windows versions of related computer software-Appendix A contains a copy of the print materials and discs containing the two versions of the software.

  18. eGenomics: Cataloguing Our Complete Genome Collection III

    Directory of Open Access Journals (Sweden)

    Dawn Field

    2007-01-01

    Full Text Available This meeting report summarizes the proceedings of the “eGenomics: Cataloguing our Complete Genome Collection III” workshop held September 11–13, 2006, at the National Institute for Environmental eScience (NIEeS, Cambridge, United Kingdom. This 3rd workshop of the Genomic Standards Consortium was divided into two parts. The first half of the three-day workshop was dedicated to reviewing the genomic diversity of our current and future genome and metagenome collection, and exploring linkages to a series of existing projects through formal presentations. The second half was dedicated to strategic discussions. Outcomes of the workshop include a revised “Minimum Information about a Genome Sequence” (MIGS specification (v1.1, consensus on a variety of features to be added to the Genome Catalogue (GCat, agreement by several researchers to adopt MIGS for imminent genome publications, and an agreement by the EBI and NCBI to input their genome collections into GCat for the purpose of quantifying the amount of optional data already available (e.g., for geographic location coordinates and working towards a single, global list of all public genomes and metagenomes.

  19. READINGS FROM THE FORMAL DISCOURSE OF PROJECT MANAGERS REGARDING DIVERSITY IN TEAMS

    Directory of Open Access Journals (Sweden)

    Sandra Regina da Rocha-Pinto

    2012-04-01

    Full Text Available Based on the viewpoint of project managers with regards to diversity, this paper used a phenomenographic method. Fifteen project managers were interviewed. The latter focused primarily on the variety of techniques, rather than on varieties of any other kind. This view of diversity extends beyond those angles generally taken in the literature on the theme which in most instances refer to diversity as based on gender, race and disadvantaged ethnic and minority groups. Additionally, the study brings to light the fact that diversities of knowledge and behavior are as beneficial for the development of projects. Furthermore, communication and the role of the project manager were raised as mitigating factors when it came to diversity. And, lastly, the conclusion arrived at was that project managers have similar discourses which correspond to the recommendation of the main project management manuals. These discourses and forms of expression are in most cases ready-made.

  20. Characterization of Human Cytomegalovirus Genome Diversity in Immunocompromised Hosts by Whole-Genome Sequencing Directly From Clinical Specimens.

    Science.gov (United States)

    Hage, Elias; Wilkie, Gavin S; Linnenweber-Held, Silvia; Dhingra, Akshay; Suárez, Nicolás M; Schmidt, Julius J; Kay-Fedorov, Penelope C; Mischak-Weissinger, Eva; Heim, Albert; Schwarz, Anke; Schulz, Thomas F; Davison, Andrew J; Ganzenmueller, Tina

    2017-06-01

    Advances in next-generation sequencing (NGS) technologies allow comprehensive studies of genetic diversity over the entire genome of human cytomegalovirus (HCMV), a significant pathogen for immunocompromised individuals. Next-generation sequencing was performed on target enriched sequence libraries prepared directly from a variety of clinical specimens (blood, urine, breast milk, respiratory samples, biopsies, and vitreous humor) obtained longitudinally or from different anatomical compartments from 20 HCMV-infected patients (renal transplant recipients, stem cell transplant recipients, and congenitally infected children). De novo-assembled HCMV genome sequences were obtained for 57 of 68 sequenced samples. Analysis of longitudinal or compartmental HCMV diversity revealed various patterns: no major differences were detected among longitudinal, intraindividual blood samples from 9 of 15 patients and in most of the patients with compartmental samples, whereas a switch of the major HCMV population was observed in 6 individuals with sequential blood samples and upon compartmental analysis of 1 patient with HCMV retinitis. Variant analysis revealed additional aspects of minor virus population dynamics and antiviral-resistance mutations. In immunosuppressed patients, HCMV can remain relatively stable or undergo drastic genomic changes that are suggestive of the emergence of minor resident strains or de novo infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

    KAUST Repository

    Neave, Matthew J.

    2017-01-17

    Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.

  2. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

    KAUST Repository

    Neave, Matthew J.; Michell, Craig; Apprill, Amy; Voolstra, Christian R.

    2017-01-01

    Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.

  3. Whole-genome sequence variation, population structure and demographic history of the Dutch population

    NARCIS (Netherlands)

    The Genome of the Netherlands Consortium; T. Marschall (Tobias); A. Schönhuth (Alexander)

    2014-01-01

    htmlabstractWhole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch

  4. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification

    Science.gov (United States)

    Reddy, T.B.K.; Thomas, Alex D.; Stamatis, Dimitri; Bertsch, Jon; Isbandi, Michelle; Jansson, Jakob; Mallajosyula, Jyothi; Pagani, Ioanna; Lobos, Elizabeth A.; Kyrpides, Nikos C.

    2015-01-01

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Here we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencing projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards. PMID:25348402

  5. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Tatiparthi B. K. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Thomas, Alex D. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Stamatis, Dimitri [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Bertsch, Jon [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Isbandi, Michelle [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Jansson, Jakob [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Mallajosyula, Jyothi [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Pagani, Ioanna [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Lobos, Elizabeth A. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Kyrpides, Nikos C. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2014-10-27

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Within this paper, we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencing projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. Lastly, GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards.

  6. A Glimpse of the genomic diversity of haloarchaeal tailed viruses

    Directory of Open Access Journals (Sweden)

    Ana eSencilo

    2014-03-01

    Full Text Available Tailed viruses are the most common isolates infecting prokaryotic hosts residing hypersaline environments. Archaeal tailed viruses represent only a small portion of all characterized tailed viruses of prokaryotes. But even this small dataset revealed that archaeal tailed viruses have many similarities to their counterparts infecting bacteria, the bacteriophages. Shared functional homologues and similar genome organizations suggested that all microbial tailed viruses have common virion architectural and assembly principles. Recent structural studies have provided evidence justifying this thereby grouping archaeal and bacterial tailed viruses into a single lineage. Currently there are 17 haloarchaeal tailed viruses with entirely sequenced genomes. Nine viruses have at least one close relative among the 17 viruses and, according to the similarities, can be divided into three groups. Two other viruses share some homologues and therefore are distantly related, whereas the rest of the viruses are rather divergent (or singletons. Comparative genomics analysis of these viruses offers a glimpse into the genetic diversity and structure of haloarchaeal tailed virus communities.

  7. Whole-genome sequence variation, population structure and demographic history of the Dutch population

    NARCIS (Netherlands)

    Francioli, Laurent C.; Menelaou, Andronild; Pulit, Sara L.; Van Dijk, Freerk; Palamara, Pier Francesco; Elbers, Clara C.; Neerincx, Pieter B. T.; Ye, Kai; Guryev, Victor; Kloosterman, Wigard P.; Deelen, Patrick; Abdellaoui, Abdel; Van Leeuwen, Elisabeth M.; Van Oven, Mannis; Vermaat, Martijn; Li, Mingkun; Laros, Jeroen F. J.; Karssen, Lennart C.; Kanterakis, Alexandros; Amin, Najaf; Hottenga, Jouke Jan; Lameijer, Eric-Wubbo; Kattenberg, Mathijs; Dijkstra, Martijn; Byelas, Heorhiy; Van Settenl, Jessica; Van Schaik, Barbera D. C.; Bot, Jan; Nijman, Isaac J.; Renkens, Ivo; Marscha, Tobias; Schonhuth, Alexander; Hehir-Kwa, Jayne Y.; Handsaker, Robert E.; Polak, Paz; Sohail, Mashaal; Vuzman, Dana; Hormozdiari, Fereydoun; Van Enckevort, David; Mei, Hailiang; Koval, Vyacheslav; Moed, Ma-Tthijs H.; Van der Velde, K. Joeri; Rivadeneira, Fernando; Estrada, Karol; Medina-Gomez, Carolina; Isaacs, Aaron; Platteel, Mathieu; Swertz, Morris A.; Wijmenga, Cisca

    Whole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch parent-offspring

  8. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides.

    Science.gov (United States)

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn M; Johnson, Courtney M; Martin, Stanton L; Land, Miriam L; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A

    2012-11-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated.

  9. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project.

    OpenAIRE

    Spradling, A C; Stern, D M; Kiss, I; Roote, J; Laverty, T; Rubin, G M

    1995-01-01

    Biologists require genetic as well as molecular tools to decipher genomic information and ultimately to understand gene function. The Berkeley Drosophila Genome Project is addressing these needs with a massive gene disruption project that uses individual, genetically engineered P transposable elements to target open reading frames throughout the Drosophila genome. DNA flanking the insertions is sequenced, thereby placing an extensive series of genetic markers on the physical genomic map and a...

  10. The human Genome project and the future of oncology

    International Nuclear Information System (INIS)

    Collins, Francis S.

    1996-01-01

    The Human Genome Project is an ambitious 15-year effort to devise maps and sequence of the 3-billion base pair human genome, including all 100,000 genes. The project is running ahead of schedule and under budget. Already the effects on progress in disease gene discovery have been dramatic, especially for cancer. The most appropriate uses of susceptibility testing for breast, ovarian, and colon cancer are being investigated in research protocols, and the need to prevent genetic discrimination in employment and health insurance is becoming more urgent. In the longer term, these gene discoveries are likely to usher in a new era of therapeutic molecular medicine

  11. Fungal Genomics for Energy and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2013-03-11

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  12. Comparison of relative efficiency of genomic SSR and EST-SSR markers in estimating genetic diversity in sugarcane.

    Science.gov (United States)

    Parthiban, S; Govindaraj, P; Senthilkumar, S

    2018-03-01

    Twenty-five primer pairs developed from genomic simple sequence repeats (SSR) were compared with 25 expressed sequence tags (EST) SSRs to evaluate the efficiency of these two sets of primers using 59 sugarcane genetic stocks. The mean polymorphism information content (PIC) of genomic SSR was higher (0.72) compared to the PIC value recorded by EST-SSR marker (0.62). The relatively low level of polymorphism in EST-SSR markers may be due to the location of these markers in more conserved and expressed sequences compared to genomic sequences which are spread throughout the genome. Dendrogram based on the genomic SSR and EST-SSR marker data showed differences in grouping of genotypes. A total of 59 sugarcane accessions were grouped into 6 and 4 clusters using genomic SSR and EST-SSR, respectively. The highly efficient genomic SSR could subcluster the genotypes of some of the clusters formed by EST-SSR markers. The difference in dendrogram observed was probably due to the variation in number of markers produced by genomic SSR and EST-SSR and different portion of genome amplified by both the markers. The combined dendrogram (genomic SSR and EST-SSR) more clearly showed the genetic relationship among the sugarcane genotypes by forming four clusters. The mean genetic similarity (GS) value obtained using EST-SSR among 59 sugarcane accessions was 0.70, whereas the mean GS obtained using genomic SSR was 0.63. Although relatively lower level of polymorphism was displayed by the EST-SSR markers, genetic diversity shown by the EST-SSR was found to be promising as they were functional marker. High level of PIC and low genetic similarity values of genomic SSR may be more useful in DNA fingerprinting, selection of true hybrids, identification of variety specific markers and genetic diversity analysis. Identification of diverse parents based on cluster analysis can be effectively done with EST-SSR as the genetic similarity estimates are based on functional attributes related to

  13. Phenotypic Heterogeneity of Genomically-Diverse Isolates of Streptococcus mutans

    Science.gov (United States)

    Palmer, Sara R.; Miller, James H.; Abranches, Jacqueline; Zeng, Lin; Lefebure, Tristan; Richards, Vincent P.; Lemos, José A.; Stanhope, Michael J.; Burne, Robert A.

    2013-01-01

    High coverage, whole genome shotgun (WGS) sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat) and exposure to competence stimulating peptide (CSP). Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease. PMID:23613838

  14. Phenotypic heterogeneity of genomically-diverse isolates of Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Sara R Palmer

    Full Text Available High coverage, whole genome shotgun (WGS sequencing of 57 geographically- and genetically-diverse isolates of Streptococcus mutans from individuals of known dental caries status was recently completed. Of the 57 sequenced strains, fifteen isolates, were selected based primarily on differences in gene content and phenotypic characteristics known to affect virulence and compared with the reference strain UA159. A high degree of variability in these properties was observed between strains, with a broad spectrum of sensitivities to low pH, oxidative stress (air and paraquat and exposure to competence stimulating peptide (CSP. Significant differences in autolytic behavior and in biofilm development in glucose or sucrose were also observed. Natural genetic competence varied among isolates, and this was correlated to the presence or absence of competence genes, comCDE and comX, and to bacteriocins. In general strains that lacked the ability to become competent possessed fewer genes for bacteriocins and immunity proteins or contained polymorphic variants of these genes. WGS sequence analysis of the pan-genome revealed, for the first time, components of a Type VII secretion system in several S. mutans strains, as well as two putative ORFs that encode possible collagen binding proteins located upstream of the cnm gene, which is associated with host cell invasiveness. The virulence of these particular strains was assessed in a wax-worm model. This is the first study to combine a comprehensive analysis of key virulence-related phenotypes with extensive genomic analysis of a pathogen that evolved closely with humans. Our analysis highlights the phenotypic diversity of S. mutans isolates and indicates that the species has evolved a variety of adaptive strategies to persist in the human oral cavity and, when conditions are favorable, to initiate disease.

  15. Genome Microscale Heterogeneity among Wild Potatoes Revealed by Diversity Arrays Technology Marker Sequences

    Directory of Open Access Journals (Sweden)

    Alessandra Traini

    2013-01-01

    Full Text Available Tuber-bearing potato species possess several genes that can be exploited to improve the genetic background of the cultivated potato Solanum tuberosum. Among them, S. bulbocastanum and S. commersonii are well known for their strong resistance to environmental stresses. However, scant information is available for these species in terms of genome organization, gene function, and regulatory networks. Consequently, genomic tools to assist breeding are meager, and efficient exploitation of these species has been limited so far. In this paper, we employed the reference genome sequences from cultivated potato and tomato and a collection of sequences of 1,423 potato Diversity Arrays Technology (DArT markers that show polymorphic representation across the genomes of S. bulbocastanum and/or S. commersonii genotypes. Our results highlighted microscale genome sequence heterogeneity that may play a significant role in functional and structural divergence between related species. Our analytical approach provides knowledge of genome structural and sequence variability that could not be detected by transcriptome and proteome approaches.

  16. Genome Microscale Heterogeneity among Wild Potatoes Revealed by Diversity Arrays Technology Marker Sequences.

    Science.gov (United States)

    Traini, Alessandra; Iorizzo, Massimo; Mann, Harpartap; Bradeen, James M; Carputo, Domenico; Frusciante, Luigi; Chiusano, Maria Luisa

    2013-01-01

    Tuber-bearing potato species possess several genes that can be exploited to improve the genetic background of the cultivated potato Solanum tuberosum. Among them, S. bulbocastanum and S. commersonii are well known for their strong resistance to environmental stresses. However, scant information is available for these species in terms of genome organization, gene function, and regulatory networks. Consequently, genomic tools to assist breeding are meager, and efficient exploitation of these species has been limited so far. In this paper, we employed the reference genome sequences from cultivated potato and tomato and a collection of sequences of 1,423 potato Diversity Arrays Technology (DArT) markers that show polymorphic representation across the genomes of S. bulbocastanum and/or S. commersonii genotypes. Our results highlighted microscale genome sequence heterogeneity that may play a significant role in functional and structural divergence between related species. Our analytical approach provides knowledge of genome structural and sequence variability that could not be detected by transcriptome and proteome approaches.

  17. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Utturkar, Sagar M [ORNL; Klingeman, Dawn Marie [ORNL; Johnson, Courtney M [ORNL; Martin, Stanton [ORNL; Land, Miriam L [ORNL; Lu, Tse-Yuan [ORNL; Schadt, Christopher Warren [ORNL; Doktycz, Mitchel John [ORNL; Pelletier, Dale A [ORNL

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  18. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.

    Science.gov (United States)

    Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya; Guigó, Roderic; Gingeras, Thomas R; Margulies, Elliott H; Weng, Zhiping; Snyder, Michael; Dermitzakis, Emmanouil T; Thurman, Robert E; Kuehn, Michael S; Taylor, Christopher M; Neph, Shane; Koch, Christoph M; Asthana, Saurabh; Malhotra, Ankit; Adzhubei, Ivan; Greenbaum, Jason A; Andrews, Robert M; Flicek, Paul; Boyle, Patrick J; Cao, Hua; Carter, Nigel P; Clelland, Gayle K; Davis, Sean; Day, Nathan; Dhami, Pawandeep; Dillon, Shane C; Dorschner, Michael O; Fiegler, Heike; Giresi, Paul G; Goldy, Jeff; Hawrylycz, Michael; Haydock, Andrew; Humbert, Richard; James, Keith D; Johnson, Brett E; Johnson, Ericka M; Frum, Tristan T; Rosenzweig, Elizabeth R; Karnani, Neerja; Lee, Kirsten; Lefebvre, Gregory C; Navas, Patrick A; Neri, Fidencio; Parker, Stephen C J; Sabo, Peter J; Sandstrom, Richard; Shafer, Anthony; Vetrie, David; Weaver, Molly; Wilcox, Sarah; Yu, Man; Collins, Francis S; Dekker, Job; Lieb, Jason D; Tullius, Thomas D; Crawford, Gregory E; Sunyaev, Shamil; Noble, William S; Dunham, Ian; Denoeud, France; Reymond, Alexandre; Kapranov, Philipp; Rozowsky, Joel; Zheng, Deyou; Castelo, Robert; Frankish, Adam; Harrow, Jennifer; Ghosh, Srinka; Sandelin, Albin; Hofacker, Ivo L; Baertsch, Robert; Keefe, Damian; Dike, Sujit; Cheng, Jill; Hirsch, Heather A; Sekinger, Edward A; Lagarde, Julien; Abril, Josep F; Shahab, Atif; Flamm, Christoph; Fried, Claudia; Hackermüller, Jörg; Hertel, Jana; Lindemeyer, Manja; Missal, Kristin; Tanzer, Andrea; Washietl, Stefan; Korbel, Jan; Emanuelsson, Olof; Pedersen, Jakob S; Holroyd, Nancy; Taylor, Ruth; Swarbreck, David; Matthews, Nicholas; Dickson, Mark C; Thomas, Daryl J; Weirauch, Matthew T; Gilbert, James; Drenkow, Jorg; Bell, Ian; Zhao, XiaoDong; Srinivasan, K G; Sung, Wing-Kin; Ooi, Hong Sain; Chiu, Kuo Ping; Foissac, Sylvain; Alioto, Tyler; Brent, Michael; Pachter, Lior; Tress, Michael L; Valencia, Alfonso; Choo, Siew Woh; Choo, Chiou Yu; Ucla, Catherine; Manzano, Caroline; Wyss, Carine; Cheung, Evelyn; Clark, Taane G; Brown, James B; Ganesh, Madhavan; Patel, Sandeep; Tammana, Hari; Chrast, Jacqueline; Henrichsen, Charlotte N; Kai, Chikatoshi; Kawai, Jun; Nagalakshmi, Ugrappa; Wu, Jiaqian; Lian, Zheng; Lian, Jin; Newburger, Peter; Zhang, Xueqing; Bickel, Peter; Mattick, John S; Carninci, Piero; Hayashizaki, Yoshihide; Weissman, Sherman; Hubbard, Tim; Myers, Richard M; Rogers, Jane; Stadler, Peter F; Lowe, Todd M; Wei, Chia-Lin; Ruan, Yijun; Struhl, Kevin; Gerstein, Mark; Antonarakis, Stylianos E; Fu, Yutao; Green, Eric D; Karaöz, Ulaş; Siepel, Adam; Taylor, James; Liefer, Laura A; Wetterstrand, Kris A; Good, Peter J; Feingold, Elise A; Guyer, Mark S; Cooper, Gregory M; Asimenos, George; Dewey, Colin N; Hou, Minmei; Nikolaev, Sergey; Montoya-Burgos, Juan I; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Huang, Haiyan; Zhang, Nancy R; Holmes, Ian; Mullikin, James C; Ureta-Vidal, Abel; Paten, Benedict; Seringhaus, Michael; Church, Deanna; Rosenbloom, Kate; Kent, W James; Stone, Eric A; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross C; Haussler, David; Miller, Webb; Sidow, Arend; Trinklein, Nathan D; Zhang, Zhengdong D; Barrera, Leah; Stuart, Rhona; King, David C; Ameur, Adam; Enroth, Stefan; Bieda, Mark C; Kim, Jonghwan; Bhinge, Akshay A; Jiang, Nan; Liu, Jun; Yao, Fei; Vega, Vinsensius B; Lee, Charlie W H; Ng, Patrick; Shahab, Atif; Yang, Annie; Moqtaderi, Zarmik; Zhu, Zhou; Xu, Xiaoqin; Squazzo, Sharon; Oberley, Matthew J; Inman, David; Singer, Michael A; Richmond, Todd A; Munn, Kyle J; Rada-Iglesias, Alvaro; Wallerman, Ola; Komorowski, Jan; Fowler, Joanna C; Couttet, Phillippe; Bruce, Alexander W; Dovey, Oliver M; Ellis, Peter D; Langford, Cordelia F; Nix, David A; Euskirchen, Ghia; Hartman, Stephen; Urban, Alexander E; Kraus, Peter; Van Calcar, Sara; Heintzman, Nate; Kim, Tae Hoon; Wang, Kun; Qu, Chunxu; Hon, Gary; Luna, Rosa; Glass, Christopher K; Rosenfeld, M Geoff; Aldred, Shelley Force; Cooper, Sara J; Halees, Anason; Lin, Jane M; Shulha, Hennady P; Zhang, Xiaoling; Xu, Mousheng; Haidar, Jaafar N S; Yu, Yong; Ruan, Yijun; Iyer, Vishwanath R; Green, Roland D; Wadelius, Claes; Farnham, Peggy J; Ren, Bing; Harte, Rachel A; Hinrichs, Angie S; Trumbower, Heather; Clawson, Hiram; Hillman-Jackson, Jennifer; Zweig, Ann S; Smith, Kayla; Thakkapallayil, Archana; Barber, Galt; Kuhn, Robert M; Karolchik, Donna; Armengol, Lluis; Bird, Christine P; de Bakker, Paul I W; Kern, Andrew D; Lopez-Bigas, Nuria; Martin, Joel D; Stranger, Barbara E; Woodroffe, Abigail; Davydov, Eugene; Dimas, Antigone; Eyras, Eduardo; Hallgrímsdóttir, Ingileif B; Huppert, Julian; Zody, Michael C; Abecasis, Gonçalo R; Estivill, Xavier; Bouffard, Gerard G; Guan, Xiaobin; Hansen, Nancy F; Idol, Jacquelyn R; Maduro, Valerie V B; Maskeri, Baishali; McDowell, Jennifer C; Park, Morgan; Thomas, Pamela J; Young, Alice C; Blakesley, Robert W; Muzny, Donna M; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Jiang, Huaiyang; Weinstock, George M; Gibbs, Richard A; Graves, Tina; Fulton, Robert; Mardis, Elaine R; Wilson, Richard K; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B; Chang, Jean L; Lindblad-Toh, Kerstin; Lander, Eric S; Koriabine, Maxim; Nefedov, Mikhail; Osoegawa, Kazutoyo; Yoshinaga, Yuko; Zhu, Baoli; de Jong, Pieter J

    2007-06-14

    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

  19. nGASP - the nematode genome annotation assessment project

    Energy Technology Data Exchange (ETDEWEB)

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C

  20. Pan-genome analysis of Aeromonas hydrophila, Aeromonas veronii and Aeromonas caviae indicates phylogenomic diversity and greater pathogenic potential for Aeromonas hydrophila.

    Science.gov (United States)

    Ghatak, Sandeep; Blom, Jochen; Das, Samir; Sanjukta, Rajkumari; Puro, Kekungu; Mawlong, Michael; Shakuntala, Ingudam; Sen, Arnab; Goesmann, Alexander; Kumar, Ashok; Ngachan, S V

    2016-07-01

    Aeromonas species are important pathogens of fishes and aquatic animals capable of infecting humans and other animals via food. Due to the paucity of pan-genomic studies on aeromonads, the present study was undertaken to analyse the pan-genome of three clinically important Aeromonas species (A. hydrophila, A. veronii, A. caviae). Results of pan-genome analysis revealed an open pan-genome for all three species with pan-genome sizes of 9181, 7214 and 6884 genes for A. hydrophila, A. veronii and A. caviae, respectively. Core-genome: pan-genome ratio (RCP) indicated greater genomic diversity for A. hydrophila and interestingly RCP emerged as an effective indicator to gauge genomic diversity which could possibly be extended to other organisms too. Phylogenomic network analysis highlighted the influence of homologous recombination and lateral gene transfer in the evolution of Aeromonas spp. Prediction of virulence factors indicated no significant difference among the three species though analysis of pathogenic potential and acquired antimicrobial resistance genes revealed greater hazards from A. hydrophila. In conclusion, the present study highlighted the usefulness of whole genome analyses to infer evolutionary cues for Aeromonas species which indicated considerable phylogenomic diversity for A. hydrophila and hitherto unknown genomic evidence for pathogenic potential of A. hydrophila compared to A. veronii and A. caviae.

  1. The Human Genome Project and Biology Education.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Highlights the importance of the Human Genome Project in educating the public about genetics. Discusses four challenges that science educators must address: teaching for conceptual understanding, the nature of science, the personal and social impact of science and technology, and the principles of technology. Contains 45 references. (JRH)

  2. Comparative Genomics of the Herbivore Gut Symbiont Lactobacillus reuteri Reveals Genetic Diversity and Lifestyle Adaptation

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2018-06-01

    Full Text Available Lactobacillus reuteri is a catalase-negative, Gram-positive, non-motile, obligately heterofermentative bacterial species that has been used as a model to describe the ecology and evolution of vertebrate gut symbionts. However, the genetic features and evolutionary strategies of L. reuteri from the gastrointestinal tract of herbivores remain unknown. Therefore, 16 L. reuteri strains isolated from goat, sheep, cow, and horse in Inner Mongolia, China were sequenced in this study. A comparative genomic approach was used to assess genetic diversity and gain insight into the distinguishing features related to the different hosts based on 21 published genomic sequences. Genome size, G + C content, and average nucleotide identity values of the L. reuteri strains from different hosts indicated that the strains have broad genetic diversity. The pan-genome of 37 L. reuteri strains contained 8,680 gene families, and the core genome contained 726 gene families. A total of 92,270 nucleotide mutation sites were discovered among 37 L. reuteri strains, and all core genes displayed a Ka/Ks ratio much lower than 1, suggesting strong purifying selective pressure (negative selection. A highly robust maximum likelihood tree based on the core genes shown in the herbivore isolates were divided into three clades; clades A and B contained most of the herbivore isolates and were more closely related to human isolates and vastly distinct from clade C. Some functional genes may be attributable to host-specific of the herbivore, omnivore, and sourdough groups. Moreover, the numbers of genes encoding cell surface proteins and active carbohydrate enzymes were host-specific. This study provides new insight into the adaptation of L. reuteri to the intestinal habitat of herbivores, suggesting that the genomic diversity of L. reuteri from different ecological origins is closely associated with their living environment.

  3. Analysis of genetic diversity in Arrhenatherum elatius Germplasm ...

    African Journals Online (AJOL)

    Jane

    2011-07-25

    Jul 25, 2011 ... The genetic diversity of 19 Arrhenatherum elatius accessions was analyzed ... can be used as novel DNA markers for genomic .... phylogenies and evolutionary biology. .... struction Project of the Beijing Academy of Agriculture.

  4. 10KP: A phylodiverse genome sequencing plan.

    Science.gov (United States)

    Cheng, Shifeng; Melkonian, Michael; Smith, Stephen A; Brockington, Samuel; Archibald, John M; Delaux, Pierre-Marc; Li, Fay-Wei; Melkonian, Barbara; Mavrodiev, Evgeny V; Sun, Wenjing; Fu, Yuan; Yang, Huanming; Soltis, Douglas E; Graham, Sean W; Soltis, Pamela S; Liu, Xin; Xu, Xun; Wong, Gane Ka-Shu

    2018-03-01

    Understanding plant evolution and diversity in a phylogenomic context is an enormous challenge due, in part, to limited availability of genome-scale data across phylodiverse species. The 10KP (10,000 Plants) Genome Sequencing Project will sequence and characterize representative genomes from every major clade of embryophytes, green algae, and protists (excluding fungi) within the next 5 years. By implementing and continuously improving leading-edge sequencing technologies and bioinformatics tools, 10KP will catalogue the genome content of plant and protist diversity and make these data freely available as an enduring foundation for future scientific discoveries and applications. 10KP is structured as an international consortium, open to the global community, including botanical gardens, plant research institutes, universities, and private industry. Our immediate goal is to establish a policy framework for this endeavor, the principles of which are outlined here.

  5. 10KP: A phylodiverse genome sequencing plan

    Science.gov (United States)

    Cheng, Shifeng; Melkonian, Michael; Brockington, Samuel; Archibald, John M; Delaux, Pierre-Marc; Melkonian, Barbara; Mavrodiev, Evgeny V; Sun, Wenjing; Fu, Yuan; Yang, Huanming; Soltis, Douglas E; Graham, Sean W; Soltis, Pamela S; Liu, Xin; Xu, Xun

    2018-01-01

    Abstract Understanding plant evolution and diversity in a phylogenomic context is an enormous challenge due, in part, to limited availability of genome-scale data across phylodiverse species. The 10KP (10,000 Plants) Genome Sequencing Project will sequence and characterize representative genomes from every major clade of embryophytes, green algae, and protists (excluding fungi) within the next 5 years. By implementing and continuously improving leading-edge sequencing technologies and bioinformatics tools, 10KP will catalogue the genome content of plant and protist diversity and make these data freely available as an enduring foundation for future scientific discoveries and applications. 10KP is structured as an international consortium, open to the global community, including botanical gardens, plant research institutes, universities, and private industry. Our immediate goal is to establish a policy framework for this endeavor, the principles of which are outlined here. PMID:29618049

  6. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome.

    Directory of Open Access Journals (Sweden)

    Regina S Baucom

    2009-11-01

    Full Text Available Recent comprehensive sequence analysis of the maize genome now permits detailed discovery and description of all transposable elements (TEs in this complex nuclear environment. Reiteratively optimized structural and homology criteria were used in the computer-assisted search for retroelements, TEs that transpose by reverse transcription of an RNA intermediate, with the final results verified by manual inspection. Retroelements were found to occupy the majority (>75% of the nuclear genome in maize inbred B73. Unprecedented genetic diversity was discovered in the long terminal repeat (LTR retrotransposon class of retroelements, with >400 families (>350 newly discovered contributing >31,000 intact elements. The two other classes of retroelements, SINEs (four families and LINEs (at least 30 families, were observed to contribute 1,991 and approximately 35,000 copies, respectively, or a combined approximately 1% of the B73 nuclear genome. With regard to fully intact elements, median copy numbers for all retroelement families in maize was 2 because >250 LTR retrotransposon families contained only one or two intact members that could be detected in the B73 draft sequence. The majority, perhaps all, of the investigated retroelement families exhibited non-random dispersal across the maize genome, with LINEs, SINEs, and many low-copy-number LTR retrotransposons exhibiting a bias for accumulation in gene-rich regions. In contrast, most (but not all medium- and high-copy-number LTR retrotransposons were found to preferentially accumulate in gene-poor regions like pericentromeric heterochromatin, while a few high-copy-number families exhibited the opposite bias. Regions of the genome with the highest LTR retrotransposon density contained the lowest LTR retrotransposon diversity. These results indicate that the maize genome provides a great number of different niches for the survival and procreation of a great variety of retroelements that have evolved to

  7. Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping

    Directory of Open Access Journals (Sweden)

    Walid Mottawea

    2018-05-01

    Full Text Available Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide. Prompt and accurate identification of the sources of Salmonella responsible for disease outbreaks is crucial to minimize infections and eliminate ongoing sources of contamination. Current subtyping tools including single nucleotide polymorphism (SNP typing may be inadequate, in some instances, to provide the required discrimination among epidemiologically unrelated Salmonella strains. Prophage genes represent the majority of the accessory genes in bacteria genomes and have potential to be used as high discrimination markers in Salmonella. In this study, the prophage sequence diversity in different Salmonella serovars and genetically related strains was investigated. Using whole genome sequences of 1,760 isolates of S. enterica representing 151 Salmonella serovars and 66 closely related bacteria, prophage sequences were identified from assembled contigs using PHASTER. We detected 154 different prophages in S. enterica genomes. Prophage sequences were highly variable among S. enterica serovars with a median ± interquartile range (IQR of 5 ± 3 prophage regions per genome. While some prophage sequences were highly conserved among the strains of specific serovars, few regions were lineage specific. Therefore, strains belonging to each serovar could be clustered separately based on their prophage content. Analysis of S. Enteritidis isolates from seven outbreaks generated distinct prophage profiles for each outbreak. Taken altogether, the diversity of the prophage sequences correlates with genome diversity. Prophage repertoires provide an additional marker for differentiating S. enterica subtypes during foodborne outbreaks.

  8. Microsatellite genotyping and genome-wide single nucleotide polymorphism-based indices of Plasmodium falciparum diversity within clinical infections.

    Science.gov (United States)

    Murray, Lee; Mobegi, Victor A; Duffy, Craig W; Assefa, Samuel A; Kwiatkowski, Dominic P; Laman, Eugene; Loua, Kovana M; Conway, David J

    2016-05-12

    In regions where malaria is endemic, individuals are often infected with multiple distinct parasite genotypes, a situation that may impact on evolution of parasite virulence and drug resistance. Most approaches to studying genotypic diversity have involved analysis of a modest number of polymorphic loci, although whole genome sequencing enables a broader characterisation of samples. PCR-based microsatellite typing of a panel of ten loci was performed on Plasmodium falciparum in 95 clinical isolates from a highly endemic area in the Republic of Guinea, to characterize within-isolate genetic diversity. Separately, single nucleotide polymorphism (SNP) data from genome-wide short-read sequences of the same samples were used to derive within-isolate fixation indices (F ws), an inverse measure of diversity within each isolate compared to overall local genetic diversity. The latter indices were compared with the microsatellite results, and also with indices derived by randomly sampling modest numbers of SNPs. As expected, the number of microsatellite loci with more than one allele in each isolate was highly significantly inversely correlated with the genome-wide F ws fixation index (r = -0.88, P 10 % had high correlation (r > 0.90) with the index derived using all SNPs. Different types of data give highly correlated indices of within-infection diversity, although PCR-based analysis detects low-level minority genotypes not apparent in bulk sequence analysis. When whole-genome data are not obtainable, quantitative assay of ten or more SNPs can yield a reasonably accurate estimate of the within-infection fixation index (F ws).

  9. The impact of genomics on research in diversity and evolution of archaea.

    Science.gov (United States)

    Mardanov, A V; Ravin, N V

    2012-08-01

    Since the definition of archaea as a separate domain of life along with bacteria and eukaryotes, they have become one of the most interesting objects of modern microbiology, molecular biology, and biochemistry. Sequencing and analysis of archaeal genomes were especially important for studies on archaea because of a limited availability of genetic tools for the majority of these microorganisms and problems associated with their cultivation. Fifteen years since the publication of the first genome of an archaeon, more than one hundred complete genome sequences of representatives of different phylogenetic groups have been determined. Analysis of these genomes has expanded our knowledge of biology of archaea, their diversity and evolution, and allowed identification and characterization of new deep phylogenetic lineages of archaea. The development of genome technologies has allowed sequencing the genomes of uncultivated archaea directly from enrichment cultures, metagenomic samples, and even from single cells. Insights have been gained into the evolution of key biochemical processes in archaea, such as cell division and DNA replication, the role of horizontal gene transfer in the evolution of archaea, and new relationships between archaea and eukaryotes have been revealed.

  10. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis.

    Science.gov (United States)

    Zhu, Huayu; Song, Pengyao; Koo, Dal-Hoe; Guo, Luqin; Li, Yanman; Sun, Shouru; Weng, Yiqun; Yang, Luming

    2016-08-05

    Microsatellite markers are one of the most informative and versatile DNA-based markers used in plant genetic research, but their development has traditionally been difficult and costly. The whole genome sequencing with next-generation sequencing (NGS) technologies provides large amounts of sequence data to develop numerous microsatellite markers at whole genome scale. SSR markers have great advantage in cross-species comparisons and allow investigation of karyotype and genome evolution through highly efficient computation approaches such as in silico PCR. Here we described genome wide development and characterization of SSR markers in the watermelon (Citrullus lanatus) genome, which were then use in comparative analysis with two other important crop species in the Cucurbitaceae family: cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). We further applied these markers in evaluating the genetic diversity and population structure in watermelon germplasm collections. A total of 39,523 microsatellite loci were identified from the watermelon draft genome with an overall density of 111 SSRs/Mbp, and 32,869 SSR primers were designed with suitable flanking sequences. The dinucleotide SSRs were the most common type representing 34.09 % of the total SSR loci and the AT-rich motifs were the most abundant in all nucleotide repeat types. In silico PCR analysis identified 832 and 925 SSR markers with each having a single amplicon in the cucumber and melon draft genome, respectively. Comparative analysis with these cross-species SSR markers revealed complicated mosaic patterns of syntenic blocks among the genomes of three species. In addition, genetic diversity analysis of 134 watermelon accessions with 32 highly informative SSR loci placed these lines into two groups with all accessions of C.lanatus var. citorides and three accessions of C. colocynthis clustered in one group and all accessions of C. lanatus var. lanatus and the remaining accessions of C. colocynthis

  11. Co-invading symbiotic mutualists of Medicago polymorpha retain high ancestral diversity and contain diverse accessory genomes.

    Science.gov (United States)

    Porter, Stephanie S; Faber-Hammond, Joshua J; Friesen, Maren L

    2018-01-01

    Exotic, invasive plants and animals can wreak havoc on ecosystems by displacing natives and altering environmental conditions. However, much less is known about the identities or evolutionary dynamics of the symbiotic microbes that accompany invasive species. Most leguminous plants rely upon symbiotic rhizobium bacteria to fix nitrogen and are incapable of colonizing areas devoid of compatible rhizobia. We compare the genomes of symbiotic rhizobia in a portion of the legume's invaded range with those of the rhizobium symbionts from across the legume's native range. We show that in an area of California the legume Medicago polymorpha has invaded, its Ensifer medicae symbionts: (i) exhibit genome-wide patterns of relatedness that together with historical evidence support host-symbiont co-invasion from Europe into California, (ii) exhibit population genomic patterns consistent with the introduction of the majority of deep diversity from the native range, rather than a genetic bottleneck during colonization of California and (iii) harbor a large set of accessory genes uniquely enriched in binding functions, which could play a role in habitat invasion. Examining microbial symbiont genome dynamics during biological invasions is critical for assessing host-symbiont co-invasions whereby microbial symbiont range expansion underlies plant and animal invasions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Genomic and Metagenomic Analysis of Diversity-Generating Retroelements Associated with Treponema denticola

    Directory of Open Access Journals (Sweden)

    Sutichot eNimkulrat

    2016-06-01

    Full Text Available Diversity-generating retroelements (DGRs are genetic cassettes that can produce massive protein sequence variation in prokaryotes. Presumably DGRs confer selective advantages to their hosts (bacteria or viruses by generating variants of target genes—typically resulting in target proteins with altered ligand-binding specificity—through a specialized error-prone reverse transcription process. The only extensively studied DGR system is from the Bordetella phage BPP-1, although DGRs are predicted to exist in other species. Using bioinformatics analysis, we discovered that the DGR system associated with the Treponema denticola species (a human oral-associated periopathogen is dynamic (with gains/losses of the system found in the isolates and diverse (with multiple types found in isolated genomes and the human microbiota. The T. denticola DGR is found in only nine of the 17 sequenced T. denticola strains. Analysis of the DGR-associated template regions and reverse transcriptase gene sequences revealed two types of DGR systems in T. denticola: the ATCC35405-type shared by seven isolates including ATCC35405; and the SP32-type shared by two isolates (SP32 and SP33, suggesting multiple DGR acquisitions. We detected additional variants of the T. denticola DGR systems in the human microbiomes, and found that the SP32-type DGR is more abundant than the ATCC35405-type in the healthy human oral microbiome, although the latter is found in more sequenced isolates. This is the first comprehensive study to characterize the DGRs associated with T. denticola in individual genomes as well as human microbiomes, demonstrating the importance of utilizing both individual genomes and metagenomes for characterizing the elements, and for analyzing their diversity and distribution in human populations.

  13. Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project : open letter

    NARCIS (Netherlands)

    Archibald, A.L.; Bottema, C.D.; Brauning, R.; Burgess, S.C.; Burt, D.W.; Casas, E.; Cheng, H.H.; Clarke, L.; Couldrey, C.; Dalrymple, B.P.; Elsik, C.G.; Foissac, S.; Giuffra, E.; Groenen, M.A.M.; Hayes, B.J.; Huang, L.S.; Khatib, H.; Kijas, J.W.; Kim, H.; Lunney, J.K.; McCarthy, F.M.; McEwan, J.; Moore, S.; Nanduri, B.; Notredame, C.; Palti, Y.; Plastow, G.S.; Reecy, J.M.; Rohrer, G.; Sarropoulou, E.; Schmidt, C.J.; Silverstein, J.; Tellam, R.L.; Tixier-Boichard, M.; Tosser-klopp, G.; Tuggle, C.K.; Vilkki, J.; White, S.N.; Zhao, S.; Zhou, H.

    2015-01-01

    We describe the organization of a nascent international effort, the Functional Annotation of Animal Genomes (FAANG) project, whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species.

  14. The 1000 Genomes Project: new opportunities for research and social challenges

    Science.gov (United States)

    2010-01-01

    The 1000 Genomes Project, an international collaboration, is sequencing the whole genome of approximately 2,000 individuals from different worldwide populations. The central goal of this project is to describe most of the genetic variation that occurs at a population frequency greater than 1%. The results of this project will allow scientists to identify genetic variation at an unprecedented degree of resolution and will also help improve the imputation methods for determining unobserved genetic variants that are not represented on current genotyping arrays. By identifying novel or rare functional genetic variants, researchers will be able to pinpoint disease-causing genes in genomic regions initially identified by association studies. This level of detailed sequence information will also improve our knowledge of the evolutionary processes and the genomic patterns that have shaped the human species as we know it today. The new data will also lay the foundation for future clinical applications, such as prediction of disease susceptibility and drug response. However, the forthcoming availability of whole genome sequences at affordable prices will raise ethical concerns and pose potential threats to individual privacy. Nevertheless, we believe that these potential risks are outweighed by the benefits in terms of diagnosis and research, so long as rigorous safeguards are kept in place through legislation that prevents discrimination on the basis of the results of genetic testing. PMID:20193048

  15. Consequences for diversity when prioritizing animals for conservation with pedigree or genomic information

    NARCIS (Netherlands)

    Engelsma, K.A.; Veerkamp, R.F.; Calus, M.P.L.; Windig, J.J.

    2011-01-01

    Up to now, prioritization of animals for conservation has been mainly based on pedigree information; however, genomic information may improve prioritization. In this study, we used two Holstein populations to investigate the consequences for genetic diversity when animals are prioritized with

  16. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data.

    Science.gov (United States)

    Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing

    2017-10-01

    Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.

  17. Evolution of small prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    David José Martínez-Cano

    2015-01-01

    Full Text Available As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ~800 genes as well as endosymbiotic bacteria with as few as ~140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria; metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature.

  18. Genome sequence diversity and clues to the evolution of variola (smallpox) virus.

    Science.gov (United States)

    Esposito, Joseph J; Sammons, Scott A; Frace, A Michael; Osborne, John D; Olsen-Rasmussen, Melissa; Zhang, Ming; Govil, Dhwani; Damon, Inger K; Kline, Richard; Laker, Miriam; Li, Yu; Smith, Geoffrey L; Meyer, Hermann; Leduc, James W; Wohlhueter, Robert M

    2006-08-11

    Comparative genomics of 45 epidemiologically varied variola virus isolates from the past 30 years of the smallpox era indicate low sequence diversity, suggesting that there is probably little difference in the isolates' functional gene content. Phylogenetic clustering inferred three clades coincident with their geographical origin and case-fatality rate; the latter implicated putative proteins that mediate viral virulence differences. Analysis of the viral linear DNA genome suggests that its evolution involved direct descent and DNA end-region recombination events. Knowing the sequences will help understand the viral proteome and improve diagnostic test precision, therapeutics, and systems for their assessment.

  19. Sequencing of a new target genome: the Pediculus humanus humanus (Phthiraptera: Pediculidae) genome project.

    Science.gov (United States)

    Pittendrigh, B R; Clark, J M; Johnston, J S; Lee, S H; Romero-Severson, J; Dasch, G A

    2006-11-01

    The human body louse, Pediculus humanus humanus (L.), and the human head louse, Pediculus humanus capitis, belong to the hemimetabolous order Phthiraptera. The body louse is the primary vector that transmits the bacterial agents of louse-borne relapsing fever, trench fever, and epidemic typhus. The genomes of the bacterial causative agents of several of these aforementioned diseases have been sequenced. Thus, determining the body louse genome will enhance studies of host-vector-pathogen interactions. Although not important as a major disease vector, head lice are of major social concern. Resistance to traditional pesticides used to control head and body lice have developed. It is imperative that new molecular targets be discovered for the development of novel compounds to control these insects. No complete genome sequence exists for a hemimetabolous insect species primarily because hemimetabolous insects often have large (2000 Mb) to very large (up to 16,300 Mb) genomes. Fortuitously, we determined that the human body louse has one of the smallest genome sizes known in insects, suggesting it may be a suitable choice as a minimal hemimetabolous genome in which many genes have been eliminated during its adaptation to human parasitism. Because many louse species infest birds and mammals, the body louse genome-sequencing project will facilitate studies of their comparative genomics. A 6-8X coverage of the body louse genome, plus sequenced expressed sequence tags, should provide the entomological, evolutionary biology, medical, and public health communities with useful genetic information.

  20. Genomes to Life Project Quartely Report October 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Heffelfinger, Grant S.; Martino, Anthony; Rintoul, Mark Daniel; Geist, Al; Gorin, Andrey; Xu, Ying; Palenik, Brian

    2005-02-01

    This SAND report provides the technical progress through October 2004 of the Sandia-led project, %22Carbon Sequestration in Synechococcus Sp.: From Molecular Machines to Hierarchical Modeling,%22 funded by the DOE Office of Science Genomes to Life Program. Understanding, predicting, and perhaps manipulating carbon fixation in the oceans has long been a major focus of biological oceanography and has more recently been of interest to a broader audience of scientists and policy makers. It is clear that the oceanic sinks and sources of CO2 are important terms in the global environmental response to anthropogenic atmospheric inputs of CO2 and that oceanic microorganisms play a key role in this response. However, the relationship between this global phenomenon and the biochemical mechanisms of carbon fixation in these microorganisms is poorly understood. In this project, we will investigate the carbon sequestration behavior of Synechococcus Sp., an abundant marine cyanobacteria known to be important to environmental responses to carbon dioxide levels, through experimental and computational methods. This project is a combined experimental and computational effort with emphasis on developing and applying new computational tools and methods. Our experimental effort will provide the biology and data to drive the computational efforts and include significant investment in developing new experimental methods for uncovering protein partners, characterizing protein complexes, identifying new binding domains. We will also develop and apply new data measurement and statistical methods for analyzing microarray experiments. Computational tools will be essential to our efforts to discover and characterize the function of the molecular machines of Synechococcus. To this end, molecular simulation methods will be coupled with knowledge discovery from diverse biological data sets for high-throughput discovery and characterization of protein-protein complexes. In addition, we will develop

  1. Selection for silage yield and composition did not affect genomic diversity within the Wisconsin Quality Synthetic maize population.

    Science.gov (United States)

    Lorenz, Aaron J; Beissinger, Timothy M; Silva, Renato Rodrigues; de Leon, Natalia

    2015-02-02

    Maize silage is forage of high quality and yield, and represents the second most important use of maize in the United States. The Wisconsin Quality Synthetic (WQS) maize population has undergone five cycles of recurrent selection for silage yield and composition, resulting in a genetically improved population. The application of high-density molecular markers allows breeders and geneticists to identify important loci through association analysis and selection mapping, as well as to monitor changes in the distribution of genetic diversity across the genome. The objectives of this study were to identify loci controlling variation for maize silage traits through association analysis and the assessment of selection signatures and to describe changes in the genomic distribution of gene diversity through selection and genetic drift in the WQS recurrent selection program. We failed to find any significant marker-trait associations using the historical phenotypic data from WQS breeding trials combined with 17,719 high-quality, informative single nucleotide polymorphisms. Likewise, no strong genomic signatures were left by selection on silage yield and quality in the WQS despite genetic gain for these traits. These results could be due to the genetic complexity underlying these traits, or the role of selection on standing genetic variation. Variation in loss of diversity through drift was observed across the genome. Some large regions experienced much greater loss in diversity than what is expected, suggesting limited recombination combined with small populations in recurrent selection programs could easily lead to fixation of large swaths of the genome. Copyright © 2015 Lorenz et al.

  2. Documenting genomics: Applying archival theory to preserving the records of the Human Genome Project.

    Science.gov (United States)

    Shaw, Jennifer

    2016-02-01

    The Human Genome Archive Project (HGAP) aimed to preserve the documentary heritage of the UK's contribution to the Human Genome Project (HGP) by using archival theory to develop a suitable methodology for capturing the results of modern, collaborative science. After assessing past projects and different archival theories, the HGAP used an approach based on the theory of documentation strategy to try to capture the records of a scientific project that had an influence beyond the purely scientific sphere. The HGAP was an archival survey that ran for two years. It led to ninety scientists being contacted and has, so far, led to six collections being deposited in the Wellcome Library, with additional collections being deposited in other UK repositories. In applying documentation strategy the HGAP was attempting to move away from traditional archival approaches to science, which have generally focused on retired Nobel Prize winners. It has been partially successful in this aim, having managed to secure collections from people who are not 'big names', but who made an important contribution to the HGP. However, the attempt to redress the gender imbalance in scientific collections and to improve record-keeping in scientific organisations has continued to be difficult to achieve. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  3. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata

    Science.gov (United States)

    Pagani, Ioanna; Liolios, Konstantinos; Jansson, Jakob; Chen, I-Min A.; Smirnova, Tatyana; Nosrat, Bahador; Markowitz, Victor M.; Kyrpides, Nikos C.

    2012-01-01

    The Genomes OnLine Database (GOLD, http://www.genomesonline.org/) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2011, GOLD, now on version 4.0, contains information for 11 472 sequencing projects, of which 2907 have been completed and their sequence data has been deposited in a public repository. Out of these complete projects, 1918 are finished and 989 are permanent drafts. Moreover, GOLD contains information for 340 metagenome studies associated with 1927 metagenome samples. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about any (x) Sequence specification and beyond. PMID:22135293

  4. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol.

    Directory of Open Access Journals (Sweden)

    Fei Lu

    Full Text Available Switchgrass (Panicum virgatum L. is a perennial grass that has been designated as an herbaceous model biofuel crop for the United States of America. To facilitate accelerated breeding programs of switchgrass, we developed both an association panel and linkage populations for genome-wide association study (GWAS and genomic selection (GS. All of the 840 individuals were then genotyped using genotyping by sequencing (GBS, generating 350 GB of sequence in total. As a highly heterozygous polyploid (tetraploid and octoploid species lacking a reference genome, switchgrass is highly intractable with earlier methodologies of single nucleotide polymorphism (SNP discovery. To access the genetic diversity of species like switchgrass, we developed a SNP discovery pipeline based on a network approach called the Universal Network-Enabled Analysis Kit (UNEAK. Complexities that hinder single nucleotide polymorphism discovery, such as repeats, paralogs, and sequencing errors, are easily resolved with UNEAK. Here, 1.2 million putative SNPs were discovered in a diverse collection of primarily upland, northern-adapted switchgrass populations. Further analysis of this data set revealed the fundamentally diploid nature of tetraploid switchgrass. Taking advantage of the high conservation of genome structure between switchgrass and foxtail millet (Setaria italica (L. P. Beauv., two parent-specific, synteny-based, ultra high-density linkage maps containing a total of 88,217 SNPs were constructed. Also, our results showed clear patterns of isolation-by-distance and isolation-by-ploidy in natural populations of switchgrass. Phylogenetic analysis supported a general south-to-north migration path of switchgrass. In addition, this analysis suggested that upland tetraploid arose from upland octoploid. All together, this study provides unparalleled insights into the diversity, genomic complexity, population structure, phylogeny, phylogeography, ploidy, and evolutionary dynamics

  5. The human genome project and the future of medical practice ...

    African Journals Online (AJOL)

    Contrary to the scepticism that characterised the planning stages of the human genome project, the technology and sequence data resulting from the project are set to revolutionise medical practice for good. The expected benefits include: enhanced discovery of disease genes, which will lead to improved knowledge on the ...

  6. The Human Genome Project: An Imperative for International Collaboration.

    Science.gov (United States)

    Allende, J. E.

    1989-01-01

    Discussed is the Human Genome Project which aims to decipher the totality of the human genetic information. The historical background, the objectives, international cooperation, ethical discussion, and the role of UNESCO are included. (KR)

  7. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions.

    Science.gov (United States)

    Guo, Shaogui; Zhang, Jianguo; Sun, Honghe; Salse, Jerome; Lucas, William J; Zhang, Haiying; Zheng, Yi; Mao, Linyong; Ren, Yi; Wang, Zhiwen; Min, Jiumeng; Guo, Xiaosen; Murat, Florent; Ham, Byung-Kook; Zhang, Zhaoliang; Gao, Shan; Huang, Mingyun; Xu, Yimin; Zhong, Silin; Bombarely, Aureliano; Mueller, Lukas A; Zhao, Hong; He, Hongju; Zhang, Yan; Zhang, Zhonghua; Huang, Sanwen; Tan, Tao; Pang, Erli; Lin, Kui; Hu, Qun; Kuang, Hanhui; Ni, Peixiang; Wang, Bo; Liu, Jingan; Kou, Qinghe; Hou, Wenju; Zou, Xiaohua; Jiang, Jiao; Gong, Guoyi; Klee, Kathrin; Schoof, Heiko; Huang, Ying; Hu, Xuesong; Dong, Shanshan; Liang, Dequan; Wang, Juan; Wu, Kui; Xia, Yang; Zhao, Xiang; Zheng, Zequn; Xing, Miao; Liang, Xinming; Huang, Bangqing; Lv, Tian; Wang, Junyi; Yin, Ye; Yi, Hongping; Li, Ruiqiang; Wu, Mingzhu; Levi, Amnon; Zhang, Xingping; Giovannoni, James J; Wang, Jun; Li, Yunfu; Fei, Zhangjun; Xu, Yong

    2013-01-01

    Watermelon, Citrullus lanatus, is an important cucurbit crop grown throughout the world. Here we report a high-quality draft genome sequence of the east Asia watermelon cultivar 97103 (2n = 2× = 22) containing 23,440 predicted protein-coding genes. Comparative genomics analysis provided an evolutionary scenario for the origin of the 11 watermelon chromosomes derived from a 7-chromosome paleohexaploid eudicot ancestor. Resequencing of 20 watermelon accessions representing three different C. lanatus subspecies produced numerous haplotypes and identified the extent of genetic diversity and population structure of watermelon germplasm. Genomic regions that were preferentially selected during domestication were identified. Many disease-resistance genes were also found to be lost during domestication. In addition, integrative genomic and transcriptomic analyses yielded important insights into aspects of phloem-based vascular signaling in common between watermelon and cucumber and identified genes crucial to valuable fruit-quality traits, including sugar accumulation and citrulline metabolism.

  8. Reconsidering democracy - History of the human genome project

    NARCIS (Netherlands)

    Huijer, M

    What options are open for people-citizens, politicians, and other nonscientists-to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  9. BIOETHICS METHODS IN THE ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS OF THE HUMAN GENOME PROJECT LITERATURE

    Science.gov (United States)

    Walker, Rebecca; Morrissey, Clair

    2013-01-01

    While bioethics as a field has concerned itself with methodological issues since the early years, there has been no systematic examination of how ethics is incorporated into research on the Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. Yet ELSI research may bear a particular burden of investigating and substantiating its methods given public funding, an explicitly cross-disciplinary approach, and the perceived significance of adequate responsiveness to advances in genomics. We undertook a qualitative content analysis of a sample of ELSI publications appearing between 2003-2008 with the aim of better understanding the methods, aims, and approaches to ethics that ELSI researchers employ. We found that the aims of ethics within ELSI are largely prescriptive and address multiple groups. We also found that the bioethics methods used in the ELSI literature are both diverse between publications and multiple within publications, but are usually not themselves discussed or employed as suggested by bioethics method proponents. Ethics in ELSI is also sometimes undistinguished from related inquiries (such as social, legal, or political investigations). PMID:23796275

  10. Enabling a Community to Dissect an Organism: Overview of the Neurospora Functional Genomics Project

    OpenAIRE

    Dunlap, Jay C.; Borkovich, Katherine A.; Henn, Matthew R.; Turner, Gloria E.; Sachs, Matthew S.; Glass, N. Louise; McCluskey, Kevin; Plamann, Michael; Galagan, James E.; Birren, Bruce W.; Weiss, Richard L.; Townsend, Jeffrey P.; Loros, Jennifer J.; Nelson, Mary Anne; Lambreghts, Randy

    2007-01-01

    A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to acccomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of nonyeast fungi. Building fr...

  11. The little bacteria that can – diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp. in contaminated environments

    Science.gov (United States)

    Taş, Neslihan; Van Eekert, Miriam H. A.; De Vos, Willem M.; Smidt, Hauke

    2010-01-01

    Summary The fate and persistence of chlorinated organics in the environment have been a concern for the past 50 years. Industrialization and extensive agricultural activities have led to the accumulation of these pollutants in the environment, while their adverse impact on various ecosystems and human health also became evident. This review provides an update on the current knowledge of specialized anaerobic bacteria, namely ‘Dehalococcoides’ spp., which are dedicated to the transformation of various chlorinated organic compounds via reductive dechlorination. Advances in microbiology and molecular techniques shed light into the diversity and functioning of Dehalococcoides spp. in several different locations. Recent genome sequencing projects revealed a large number of genes that are potentially involved in reductive dechlorination. Molecular approaches towards analysis of diversity and expression especially of reductive dehalogenase‐encoding genes are providing a growing body of knowledge on biodegradative pathways active in defined pure and mixed cultures as well as directly in the environment. Moreover, several successful field cases of bioremediation strengthen the notion of dedicated degraders such as Dehalococcoides spp. as key players in the restoration of contaminated environments. PMID:21255338

  12. WormBase: Annotating many nematode genomes.

    Science.gov (United States)

    Howe, Kevin; Davis, Paul; Paulini, Michael; Tuli, Mary Ann; Williams, Gary; Yook, Karen; Durbin, Richard; Kersey, Paul; Sternberg, Paul W

    2012-01-01

    WormBase (www.wormbase.org) has been serving the scientific community for over 11 years as the central repository for genomic and genetic information for the soil nematode Caenorhabditis elegans. The resource has evolved from its beginnings as a database housing the genomic sequence and genetic and physical maps of a single species, and now represents the breadth and diversity of nematode research, currently serving genome sequence and annotation for around 20 nematodes. In this article, we focus on WormBase's role of genome sequence annotation, describing how we annotate and integrate data from a growing collection of nematode species and strains. We also review our approaches to sequence curation, and discuss the impact on annotation quality of large functional genomics projects such as modENCODE.

  13. Entangled fates of holobiont genomes during invasion: nested bacterial and host diversities in Caulerpa taxifolia

    KAUST Repository

    Arnaud-Haond, S.; Aires, T.; Candeias, R.; Teixeira, S. J. L; Duarte, Carlos M.; Valero, M.; Serrã o, E. A.

    2017-01-01

    Successful prevention and mitigation of biological invasions requires retracing the initial steps of introduction, as well as understanding key elements enhancing the adaptability of invasive species. We studied the genetic diversity of the green alga Caulerpa taxifolia and its associated bacterial communities in several areas around the world. The striking congruence of α and ß diversity of the algal genome and endophytic communities reveals a tight association, supporting the holobiont concept as best describing the unit of spreading and invasion. Both genomic compartments support the hypotheses of a unique accidental introduction in the Mediterranean and of multiple invasion events in Southern Australia. In addition to helping with tracing the origin of invasion, bacterial communities exhibit metabolic functions that can potentially enhance adaptability and competitiveness of the consortium they form with their host. We thus hypothesize that low genetic diversities of both host and symbiont communities may contribute to the recent regression in the Mediterranean, in contrast with the persistence of highly diverse assemblages in southern Australia. This study supports the importance of scaling up from the host to the holobiont for a comprehensive understanding of invasions. This article is protected by copyright. All rights reserved.

  14. Entangled fates of holobiont genomes during invasion: nested bacterial and host diversities in Caulerpa taxifolia

    KAUST Repository

    Arnaud-Haond, S.

    2017-01-30

    Successful prevention and mitigation of biological invasions requires retracing the initial steps of introduction, as well as understanding key elements enhancing the adaptability of invasive species. We studied the genetic diversity of the green alga Caulerpa taxifolia and its associated bacterial communities in several areas around the world. The striking congruence of α and ß diversity of the algal genome and endophytic communities reveals a tight association, supporting the holobiont concept as best describing the unit of spreading and invasion. Both genomic compartments support the hypotheses of a unique accidental introduction in the Mediterranean and of multiple invasion events in Southern Australia. In addition to helping with tracing the origin of invasion, bacterial communities exhibit metabolic functions that can potentially enhance adaptability and competitiveness of the consortium they form with their host. We thus hypothesize that low genetic diversities of both host and symbiont communities may contribute to the recent regression in the Mediterranean, in contrast with the persistence of highly diverse assemblages in southern Australia. This study supports the importance of scaling up from the host to the holobiont for a comprehensive understanding of invasions. This article is protected by copyright. All rights reserved.

  15. Genomic research in Eucalyptus.

    Science.gov (United States)

    Poke, Fiona S; Vaillancourt, René E; Potts, Brad M; Reid, James B

    2005-09-01

    Eucalyptus L'Hérit. is a genus comprised of more than 700 species that is of vital importance ecologically to Australia and to the forestry industry world-wide, being grown in plantations for the production of solid wood products as well as pulp for paper. With the sequencing of the genomes of Arabidopsis thaliana and Oryza sativa and the recent completion of the first tree genome sequence, Populus trichocarpa, attention has turned to the current status of genomic research in Eucalyptus. For several eucalypt species, large segregating families have been established, high-resolution genetic maps constructed and large EST databases generated. Collaborative efforts have been initiated for the integration of diverse genomic projects and will provide the framework for future research including exploiting the sequence of the entire eucalypt genome which is currently being sequenced. This review summarises the current position of genomic research in Eucalyptus and discusses the direction of future research.

  16. Hidden diversity revealed by genome-resolved metagenomics of iron-oxidizing microbial mats from Lō'ihi Seamount, Hawai'i.

    Science.gov (United States)

    Fullerton, Heather; Hager, Kevin W; McAllister, Sean M; Moyer, Craig L

    2017-08-01

    The Zetaproteobacteria are ubiquitous in marine environments, yet this class of Proteobacteria is only represented by a few closely-related cultured isolates. In high-iron environments, such as diffuse hydrothermal vents, the Zetaproteobacteria are important members of the community driving its structure. Biogeography of Zetaproteobacteria has shown two ubiquitous operational taxonomic units (OTUs), yet much is unknown about their genomic diversity. Genome-resolved metagenomics allows for the specific binning of microbial genomes based on genomic signatures present in composite metagenome assemblies. This resulted in the recovery of 93 genome bins, of which 34 were classified as Zetaproteobacteria. Form II ribulose 1,5-bisphosphate carboxylase genes were recovered from nearly all the Zetaproteobacteria genome bins. In addition, the Zetaproteobacteria genome bins contain genes for uptake and utilization of bioavailable nitrogen, detoxification of arsenic, and a terminal electron acceptor adapted for low oxygen concentration. Our results also support the hypothesis of a Cyc2-like protein as the site for iron oxidation, now detected across a majority of the Zetaproteobacteria genome bins. Whole genome comparisons showed a high genomic diversity across the Zetaproteobacteria OTUs and genome bins that were previously unidentified by SSU rRNA gene analysis. A single lineage of cosmopolitan Zetaproteobacteria (zOTU 2) was found to be monophyletic, based on cluster analysis of average nucleotide identity and average amino acid identity comparisons. From these data, we can begin to pinpoint genomic adaptations of the more ecologically ubiquitous Zetaproteobacteria, and further understand their environmental constraints and metabolic potential.

  17. Reconsidering democracy. History of the Human Genome Project.

    NARCIS (Netherlands)

    Marli Huijer

    2003-01-01

    What options are open for people—citizens, politicians, and other nonscientists—to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  18. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax.

    Science.gov (United States)

    de Oliveira, Thais C; Rodrigues, Priscila T; Menezes, Maria José; Gonçalves-Lopes, Raquel M; Bastos, Melissa S; Lima, Nathália F; Barbosa, Susana; Gerber, Alexandra L; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R; Alves, João Marcelo P; Ferreira, Marcelo U

    2017-07-01

    The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites

  19. Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes

    DEFF Research Database (Denmark)

    Barah, Pankaj; Jayavelu, Naresh Doni; Rasmussen, Simon

    2013-01-01

    available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about......BACKGROUND: Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking....... RESULTS: In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes...

  20. The Genome of the Netherlands: design, and project goals

    Science.gov (United States)

    Boomsma, Dorret I; Wijmenga, Cisca; Slagboom, Eline P; Swertz, Morris A; Karssen, Lennart C; Abdellaoui, Abdel; Ye, Kai; Guryev, Victor; Vermaat, Martijn; van Dijk, Freerk; Francioli, Laurent C; Hottenga, Jouke Jan; Laros, Jeroen F J; Li, Qibin; Li, Yingrui; Cao, Hongzhi; Chen, Ruoyan; Du, Yuanping; Li, Ning; Cao, Sujie; van Setten, Jessica; Menelaou, Androniki; Pulit, Sara L; Hehir-Kwa, Jayne Y; Beekman, Marian; Elbers, Clara C; Byelas, Heorhiy; de Craen, Anton J M; Deelen, Patrick; Dijkstra, Martijn; den Dunnen, Johan T; de Knijff, Peter; Houwing-Duistermaat, Jeanine; Koval, Vyacheslav; Estrada, Karol; Hofman, Albert; Kanterakis, Alexandros; Enckevort, David van; Mai, Hailiang; Kattenberg, Mathijs; van Leeuwen, Elisabeth M; Neerincx, Pieter B T; Oostra, Ben; Rivadeneira, Fernanodo; Suchiman, Eka H D; Uitterlinden, Andre G; Willemsen, Gonneke; Wolffenbuttel, Bruce H; Wang, Jun; de Bakker, Paul I W; van Ommen, Gert-Jan; van Duijn, Cornelia M

    2014-01-01

    Within the Netherlands a national network of biobanks has been established (Biobanking and Biomolecular Research Infrastructure-Netherlands (BBMRI-NL)) as a national node of the European BBMRI. One of the aims of BBMRI-NL is to enrich biobanks with different types of molecular and phenotype data. Here, we describe the Genome of the Netherlands (GoNL), one of the projects within BBMRI-NL. GoNL is a whole-genome-sequencing project in a representative sample consisting of 250 trio-families from all provinces in the Netherlands, which aims to characterize DNA sequence variation in the Dutch population. The parent–offspring trios include adult individuals ranging in age from 19 to 87 years (mean=53 years; SD=16 years) from birth cohorts 1910–1994. Sequencing was done on blood-derived DNA from uncultured cells and accomplished coverage was 14–15x. The family-based design represents a unique resource to assess the frequency of regional variants, accurately reconstruct haplotypes by family-based phasing, characterize short indels and complex structural variants, and establish the rate of de novo mutational events. GoNL will also serve as a reference panel for imputation in the available genome-wide association studies in Dutch and other cohorts to refine association signals and uncover population-specific variants. GoNL will create a catalog of human genetic variation in this sample that is uniquely characterized with respect to micro-geographic location and a wide range of phenotypes. The resource will be made available to the research and medical community to guide the interpretation of sequencing projects. The present paper summarizes the global characteristics of the project. PMID:23714750

  1. Genotype Imputation for Latinos Using the HapMap and 1000 Genomes Project Reference Panels

    Directory of Open Access Journals (Sweden)

    Xiaoyi eGao

    2012-06-01

    Full Text Available Genotype imputation is a vital tool in genome-wide association studies (GWAS and meta-analyses of multiple GWAS results. Imputation enables researchers to increase genomic coverage and to pool data generated using different genotyping platforms. HapMap samples are often employed as the reference panel. More recently, the 1000 Genomes Project resource is becoming the primary source for reference panels. Multiple GWAS and meta-analyses are targeting Latinos, the most populous and fastest growing minority group in the US. However, genotype imputation resources for Latinos are rather limited compared to individuals of European ancestry at present, largely because of the lack of good reference data. One choice of reference panel for Latinos is one derived from the population of Mexican individuals in Los Angeles contained in the HapMap Phase 3 project and the 1000 Genomes Project. However, a detailed evaluation of the quality of the imputed genotypes derived from the public reference panels has not yet been reported. Using simulation studies, the Illumina OmniExpress GWAS data from the Los Angles Latino Eye Study and the MACH software package, we evaluated the accuracy of genotype imputation in Latinos. Our results show that the 1000 Genomes Project AMR+CEU+YRI reference panel provides the highest imputation accuracy for Latinos, and that also including Asian samples in the panel can reduce imputation accuracy. We also provide the imputation accuracy for each autosomal chromosome using the 1000 Genomes Project panel for Latinos. Our results serve as a guide to future imputation-based analysis in Latinos.

  2. The Human Genome Project: applications in the diagnosis and treatment of neurologic disease.

    Science.gov (United States)

    Evans, G A

    1998-10-01

    The Human Genome Project (HGP), an international program to decode the entire DNA sequence of the human genome in 15 years, represents the largest biological experiment ever conducted. This set of information will contain the blueprint for the construction and operation of a human being. While the primary driving force behind the genome project is the potential to vastly expand the amount of genetic information available for biomedical research, the ramifications for other fields of study in biological research, the biotechnology and pharmaceutical industry, our understanding of evolution, effects on agriculture, and implications for bioethics are likely to be profound.

  3. Earth BioGenome Project: Sequencing life for the future of life.

    Science.gov (United States)

    Lewin, Harris A; Robinson, Gene E; Kress, W John; Baker, William J; Coddington, Jonathan; Crandall, Keith A; Durbin, Richard; Edwards, Scott V; Forest, Félix; Gilbert, M Thomas P; Goldstein, Melissa M; Grigoriev, Igor V; Hackett, Kevin J; Haussler, David; Jarvis, Erich D; Johnson, Warren E; Patrinos, Aristides; Richards, Stephen; Castilla-Rubio, Juan Carlos; van Sluys, Marie-Anne; Soltis, Pamela S; Xu, Xun; Yang, Huanming; Zhang, Guojie

    2018-04-24

    Increasing our understanding of Earth's biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet's organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project's goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.

  4. The genome diversity and karyotype evolution of mammals

    Directory of Open Access Journals (Sweden)

    Trifonov Vladimir A

    2011-10-01

    Full Text Available Abstract The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat, laboratory (mice and rat and agricultural (cattle, pig, and horse animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results.

  5. Comparative Analysis of 35 Basidiomycete Genomes Reveals Diversity and Uniqueness of the Phylum

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Otillar, Robert; Fagnan, Kirsten; Boussau, Bastien; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Held, Benjamin; Nagy, Laszlo; Floudas, Dimitris; Morin, Emmanuelle; Manning, Gerard; Baker, Scott; Martin, Francis; Blanchette, Robert; Hibbett, David; Grigoriev, Igor V.

    2013-03-11

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprobes including wood decaying fungi. To better understand the diversity of this phylum we compared the genomes of 35 basidiomycete fungi including 6 newly sequenced genomes. The genomes of basidiomycetes span extremes of genome size, gene number, and repeat content. A phylogenetic tree of Basidiomycota was generated using the Phyldog software, which uses all available protein sequence data to simultaneously infer gene and species trees. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) comprising proteins found in only one organism. Phylogenetic patterns of plant biomass-degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay among the members of Agaricomycotina subphylum. There is a correlation of the profile of certain gene families to nutritional mode in Agaricomycotina. Based on phylogenetically-informed PCA analysis of such profiles, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has liginolytic class II fungal peroxidases. Furthermore, we find that both fungi exhibit wood decay with white rot-like characteristics in growth assays. Analysis of the rate of discovery of proteins with no or few homologs suggests the high value of continued sequencing of basidiomycete fungi.

  6. Diversity Management Change Projects: In Need of Alternative Conceptual Approaches?

    Directory of Open Access Journals (Sweden)

    Christina Evans

    2012-09-01

    Full Text Available Drawing on a meta-analysis of an evaluation of a European Social Fund project aimed at enhancing employment opportunities for women in Information Technology, Electronic and Computing (ITEC, this paper critically debates how effectual a diversity management approach alone is as an underpinning rationale for change in the complex area of diversity. The paper draws on the experiences of ‘partner organizations’, gathered through interviews conducted during the evaluation stage of the project. The paper discusses some of the tensions experienced by partner organizations, thus providing new insights into why such projects are not as effectual as they might be. The paper concludes by presenting a case for the need to re-conceptualise how change as part of a wider diversity management approach might best be conceptualized. We suggest that a ‘systems approach’ could prove a more fruitful way of conceptualizing change of this nature given the inter-dependences between different organizations and institutions.

  7. TcruziDB, an Integrated Database, and the WWW Information Server for the Trypanosoma cruzi Genome Project

    Directory of Open Access Journals (Sweden)

    Degrave Wim

    1997-01-01

    Full Text Available Data analysis, presentation and distribution is of utmost importance to a genome project. A public domain software, ACeDB, has been chosen as the common basis for parasite genome databases, and a first release of TcruziDB, the Trypanosoma cruzi genome database, is available by ftp from ftp://iris.dbbm.fiocruz.br/pub/genomedb/TcruziDB as well as versions of the software for different operating systems (ftp://iris.dbbm.fiocruz.br/pub/unixsoft/. Moreover, data originated from the project are available from the WWW server at http://www.dbbm.fiocruz.br. It contains biological and parasitological data on CL Brener, its karyotype, all available T. cruzi sequences from Genbank, data on the EST-sequencing project and on available libraries, a T. cruzi codon table and a listing of activities and participating groups in the genome project, as well as meeting reports. T. cruzi discussion lists (tcruzi-l@iris.dbbm.fiocruz.br and tcgenics@iris.dbbm.fiocruz.br are being maintained for communication and to promote collaboration in the genome project

  8. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    DEFF Research Database (Denmark)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara

    2017-01-01

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity ...

  9. Intraspecies genomic diversity and natural population structure of the meat-borne lactic acid bacterium Lactobacillus sakei.

    Science.gov (United States)

    Chaillou, Stéphane; Daty, Marie; Baraige, Fabienne; Dudez, Anne-Marie; Anglade, Patricia; Jones, Rhys; Alpert, Carl-Alfred; Champomier-Vergès, Marie-Christine; Zagorec, Monique

    2009-02-01

    Lactobacillus sakei is a food-borne bacterium naturally found in meat and fish products. A study was performed to examine the intraspecies diversity among 73 isolates sourced from laboratory collections in several different countries. Pulsed-field gel electrophoresis analysis demonstrated a 25% variation in genome size between isolates, ranging from 1,815 kb to 2,310 kb. The relatedness between isolates was then determined using a PCR-based method that detects the possession of 60 chromosomal genes belonging to the flexible gene pool. Ten different strain clusters were identified that had noticeable differences in their average genome size reflecting the natural population structure. The results show that many different genotypes may be isolated from similar types of meat products, suggesting a complex ecological habitat in which intraspecies diversity may be required for successful adaptation. Finally, proteomic analysis revealed a slight difference between the migration patterns of highly abundant GapA isoforms of the two prevailing L. sakei subspecies (sakei and carnosus). This analysis was used to affiliate the genotypic clusters with the corresponding subspecies. These findings reveal for the first time the extent of intraspecies genomic diversity in L. sakei. Consequently, identification of molecular subtypes may in the future prove valuable for a better understanding of microbial ecosystems in food products.

  10. Enhancing Biology Instruction with the Human Genome Project

    Science.gov (United States)

    Buxeda, Rosa J.; Moore-Russo, Deborah A.

    2003-01-01

    The Human Genome Project (HGP) is a recent scientific milestone that has received notable attention. This article shows how a biology course is using the HGP to enhance students' experiences by providing awareness of cutting edge research, with information on new emerging career options, and with opportunities to consider ethical questions raised…

  11. Extremely Low Genomic Diversity of Rickettsia japonica Distributed in Japan.

    Science.gov (United States)

    Akter, Arzuba; Ooka, Tadasuke; Gotoh, Yasuhiro; Yamamoto, Seigo; Fujita, Hiromi; Terasoma, Fumio; Kida, Kouji; Taira, Masakatsu; Nakadouzono, Fumiko; Gokuden, Mutsuyo; Hirano, Manabu; Miyashiro, Mamoru; Inari, Kouichi; Shimazu, Yukie; Tabara, Kenji; Toyoda, Atsushi; Yoshimura, Dai; Itoh, Takehiko; Kitano, Tomokazu; Sato, Mitsuhiko P; Katsura, Keisuke; Mondal, Shakhinur Islam; Ogura, Yoshitoshi; Ando, Shuji; Hayashi, Tetsuya

    2017-01-01

    Rickettsiae are obligate intracellular bacteria that have small genomes as a result of reductive evolution. Many Rickettsia species of the spotted fever group (SFG) cause tick-borne diseases known as "spotted fevers". The life cycle of SFG rickettsiae is closely associated with that of the tick, which is generally thought to act as a bacterial vector and reservoir that maintains the bacterium through transstadial and transovarial transmission. Each SFG member is thought to have adapted to a specific tick species, thus restricting the bacterial distribution to a relatively limited geographic region. These unique features of SFG rickettsiae allow investigation of how the genomes of such biologically and ecologically specialized bacteria evolve after genome reduction and the types of population structures that are generated. Here, we performed a nationwide, high-resolution phylogenetic analysis of Rickettsia japonica, an etiological agent of Japanese spotted fever that is distributed in Japan and Korea. The comparison of complete or nearly complete sequences obtained from 31 R. japonica strains isolated from various sources in Japan over the past 30 years demonstrated an extremely low level of genomic diversity. In particular, only 34 single nucleotide polymorphisms were identified among the 27 strains of the major lineage containing all clinical isolates and tick isolates from the three tick species. Our data provide novel insights into the biology and genome evolution of R. japonica, including the possibilities of recent clonal expansion and a long generation time in nature due to the long dormant phase associated with tick life cycles. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies.

    Science.gov (United States)

    Card, Daren C; Schield, Drew R; Reyes-Velasco, Jacobo; Fujita, Matthew K; Andrew, Audra L; Oyler-McCance, Sara J; Fike, Jennifer A; Tomback, Diana F; Ruggiero, Robert P; Castoe, Todd A

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (∼3.5-5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.

  13. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies

    Science.gov (United States)

    Card, Daren C.; Schield, Drew R.; Reyes-Velasco, Jacobo; Fujita, Matthre K.; Andrew, Audra L.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Tomback, Diana F.; Ruggiero, Robert P.; Castoe, Todd A.

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (~3.5–5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.

  14. European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures.

    Science.gov (United States)

    Seth-Smith, H M B; Busó, Leonor Sánchez; Livingstone, M; Sait, M; Harris, S R; Aitchison, K D; Vretou, Evangelia; Siarkou, V I; Laroucau, K; Sachse, K; Longbottom, D; Thomson, N R

    2017-05-04

    Chlamydia abortus (formerly Chlamydophila abortus) is an economically important livestock pathogen, causing ovine enzootic abortion (OEA), and can also cause zoonotic infections in humans affecting pregnancy outcome. Large-scale genomic studies on other chlamydial species are giving insights into the biology of these organisms but have not yet been performed on C. abortus. Our aim was to investigate a broad collection of European isolates of C. abortus, using next generation sequencing methods, looking at diversity, geographic distribution and genome dynamics. Whole genome sequencing was performed on our collection of 57 C. abortus isolates originating primarily from the UK, Germany, France and Greece, but also from Tunisia, Namibia and the USA. Phylogenetic analysis of a total of 64 genomes shows a deep structural division within the C. abortus species with a major clade displaying limited diversity, in addition to a branch carrying two more distantly related Greek isolates, LLG and POS. Within the major clade, seven further phylogenetic groups can be identified, demonstrating geographical associations. The number of variable nucleotide positions across the sampled isolates is significantly lower than those published for C. trachomatis and C. psittaci. No recombination was identified within C. abortus, and no plasmid was found. Analysis of pseudogenes showed lineage specific loss of some functions, notably with several Pmp and TMH/Inc proteins predicted to be inactivated in many of the isolates studied. The diversity within C. abortus appears to be much lower compared to other species within the genus. There are strong geographical signatures within the phylogeny, indicating clonal expansion within areas of limited livestock transport. No recombination has been identified within this species, showing that different species of Chlamydia may demonstrate different evolutionary dynamics, and that the genome of C. abortus is highly stable.

  15. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    NARCIS (Netherlands)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L L; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R P; Alhusseini, Tamera I; Bedford, Felicity E; Bennett, Dominic J; Booth, Hollie; Burton, Victoria J; Chng, Charlotte W T; Choimes, Argyrios; Correia, David L P; Day, Julie; Echeverría-Londoño, Susy; Emerson, Susan R; Gao, Di; Garon, Morgan; Harrison, Michelle L K; Ingram, Daniel J; Jung, Martin; Kemp, Victoria; Kirkpatrick, Lucinda; Martin, Callum D; Pan, Yuan; Pask-Hale, Gwilym D; Pynegar, Edwin L; Robinson, Alexandra N; Sanchez-Ortiz, Katia; Senior, Rebecca A; Simmons, Benno I; White, Hannah J; Zhang, Hanbin; Aben, Job; Abrahamczyk, Stefan; Adum, Gilbert B; Aguilar-Barquero, Virginia; Aizen, Marcelo A; Albertos, Belén; Alcala, E L; Del Mar Alguacil, Maria; Alignier, Audrey; Ancrenaz, Marc; Andersen, Alan N; Arbeláez-Cortés, Enrique; Armbrecht, Inge; Arroyo-Rodríguez, Víctor; Aumann, Tom; Axmacher, Jan C; Azhar, Badrul; Azpiroz, Adrián B; Baeten, Lander; Bakayoko, Adama; Báldi, András; Banks, John E; Baral, Sharad K; Barlow, Jos; Barratt, Barbara I P; Barrico, Lurdes; Bartolommei, Paola; Barton, Diane M; Basset, Yves; Batáry, Péter; Bates, Adam J; Baur, Bruno; Bayne, Erin M; Beja, Pedro; Benedick, Suzan; Berg, Åke; Bernard, Henry; Berry, Nicholas J; Bhatt, Dinesh; Bicknell, Jake E; Bihn, Jochen H; Blake, Robin J; Bobo, Kadiri S; Bóçon, Roberto; Boekhout, Teun; Böhning-Gaese, Katrin; Bonham, Kevin J; Borges, Paulo A V; Borges, Sérgio H; Boutin, Céline; Bouyer, Jérémy; Bragagnolo, Cibele; Brandt, Jodi S; Brearley, Francis Q; Brito, Isabel; Bros, Vicenç; Brunet, Jörg; Buczkowski, Grzegorz; Buddle, Christopher M; Bugter, Rob; Buscardo, Erika; Buse, Jörn; Cabra-García, Jimmy; Cáceres, Nilton C; Cagle, Nicolette L; Calviño-Cancela, María; Cameron, Sydney A; Cancello, Eliana M; Caparrós, Rut; Cardoso, Pedro; Carpenter, Dan; Carrijo, Tiago F; Carvalho, Anelena L; Cassano, Camila R; Castro, Helena; Castro-Luna, Alejandro A; Rolando, Cerda B; Cerezo, Alexis; Chapman, Kim Alan; Chauvat, Matthieu; Christensen, Morten; Clarke, Francis M; Cleary, Daniel F R; Colombo, Giorgio; Connop, Stuart P; Craig, Michael D; Cruz-López, Leopoldo; Cunningham, Saul A; D'Aniello, Biagio; D'Cruze, Neil; da Silva, Pedro Giovâni; Dallimer, Martin; Danquah, Emmanuel; Darvill, Ben; Dauber, Jens; Davis, Adrian L V; Dawson, Jeff; de Sassi, Claudio; de Thoisy, Benoit; Deheuvels, Olivier; Dejean, Alain; Devineau, Jean-Louis; Diekötter, Tim; Dolia, Jignasu V; Domínguez, Erwin; Dominguez-Haydar, Yamileth; Dorn, Silvia; Draper, Isabel; Dreber, Niels; Dumont, Bertrand; Dures, Simon G; Dynesius, Mats; Edenius, Lars; Eggleton, Paul; Eigenbrod, Felix; Elek, Zoltán; Entling, Martin H; Esler, Karen J; de Lima, Ricardo F; Faruk, Aisyah; Farwig, Nina; Fayle, Tom M; Felicioli, Antonio; Felton, Annika M; Fensham, Roderick J; Fernandez, Ignacio C; Ferreira, Catarina C; Ficetola, Gentile F; Fiera, Cristina; Filgueiras, Bruno K C; Fırıncıoğlu, Hüseyin K; Flaspohler, David; Floren, Andreas; Fonte, Steven J; Fournier, Anne; Fowler, Robert E; Franzén, Markus; Fraser, Lauchlan H; Fredriksson, Gabriella M; Freire, Geraldo B; Frizzo, Tiago L M; Fukuda, Daisuke; Furlani, Dario; Gaigher, René; Ganzhorn, Jörg U; García, Karla P; Garcia-R, Juan C; Garden, Jenni G; Garilleti, Ricardo; Ge, Bao-Ming; Gendreau-Berthiaume, Benoit; Gerard, Philippa J; Gheler-Costa, Carla; Gilbert, Benjamin; Giordani, Paolo; Giordano, Simonetta; Golodets, Carly; Gomes, Laurens G L; Gould, Rachelle K; Goulson, Dave; Gove, Aaron D; Granjon, Laurent; Grass, Ingo; Gray, Claudia L; Grogan, James; Gu, Weibin; Guardiola, Moisès; Gunawardene, Nihara R; Gutierrez, Alvaro G; Gutiérrez-Lamus, Doris L; Haarmeyer, Daniela H; Hanley, Mick E; Hanson, Thor; Hashim, Nor R; Hassan, Shombe N; Hatfield, Richard G; Hawes, Joseph E; Hayward, Matt W; Hébert, Christian; Helden, Alvin J; Henden, John-André; Henschel, Philipp; Hernández, Lionel; Herrera, James P; Herrmann, Farina; Herzog, Felix; Higuera-Diaz, Diego; Hilje, Branko; Höfer, Hubert; Hoffmann, Anke; Horgan, Finbarr G; Hornung, Elisabeth; Horváth, Roland; Hylander, Kristoffer; Isaacs-Cubides, Paola; Ishida, Hiroaki; Ishitani, Masahiro; Jacobs, Carmen T; Jaramillo, Víctor J; Jauker, Birgit; Hernández, F Jiménez; Johnson, McKenzie F; Jolli, Virat; Jonsell, Mats; Juliani, S Nur; Jung, Thomas S; Kapoor, Vena; Kappes, Heike; Kati, Vassiliki; Katovai, Eric; Kellner, Klaus; Kessler, Michael; Kirby, Kathryn R; Kittle, Andrew M; Knight, Mairi E; Knop, Eva; Kohler, Florian; Koivula, Matti; Kolb, Annette; Kone, Mouhamadou; Kőrösi, Ádám; Krauss, Jochen; Kumar, Ajith; Kumar, Raman; Kurz, David J; Kutt, Alex S; Lachat, Thibault; Lantschner, Victoria; Lara, Francisco; Lasky, Jesse R; Latta, Steven C; Laurance, William F; Lavelle, Patrick; Le Féon, Violette; LeBuhn, Gretchen; Légaré, Jean-Philippe; Lehouck, Valérie; Lencinas, María V; Lentini, Pia E; Letcher, Susan G; Li, Qi; Litchwark, Simon A; Littlewood, Nick A; Liu, Yunhui; Lo-Man-Hung, Nancy; López-Quintero, Carlos A; Louhaichi, Mounir; Lövei, Gabor L; Lucas-Borja, Manuel Esteban; Luja, Victor H; Luskin, Matthew S; MacSwiney G, M Cristina; Maeto, Kaoru; Magura, Tibor; Mallari, Neil Aldrin; Malone, Louise A; Malonza, Patrick K; Malumbres-Olarte, Jagoba; Mandujano, Salvador; Måren, Inger E; Marin-Spiotta, Erika; Marsh, Charles J; Marshall, E J P; Martínez, Eliana; Martínez Pastur, Guillermo; Moreno Mateos, David; Mayfield, Margaret M; Mazimpaka, Vicente; McCarthy, Jennifer L; McCarthy, Kyle P; McFrederick, Quinn S; McNamara, Sean; Medina, Nagore G; Medina, Rafael; Mena, Jose L; Mico, Estefania; Mikusinski, Grzegorz; Milder, Jeffrey C; Miller, James R; Miranda-Esquivel, Daniel R; Moir, Melinda L; Morales, Carolina L; Muchane, Mary N; Muchane, Muchai; Mudri-Stojnic, Sonja; Munira, A Nur; Muoñz-Alonso, Antonio; Munyekenye, B F; Naidoo, Robin; Naithani, A; Nakagawa, Michiko; Nakamura, Akihiro; Nakashima, Yoshihiro; Naoe, Shoji; Nates-Parra, Guiomar; Navarrete Gutierrez, Dario A; Navarro-Iriarte, Luis; Ndang'ang'a, Paul K; Neuschulz, Eike L; Ngai, Jacqueline T; Nicolas, Violaine; Nilsson, Sven G; Noreika, Norbertas; Norfolk, Olivia; Noriega, Jorge Ari; Norton, David A; Nöske, Nicole M; Nowakowski, A Justin; Numa, Catherine; O'Dea, Niall; O'Farrell, Patrick J; Oduro, William; Oertli, Sabine; Ofori-Boateng, Caleb; Oke, Christopher Omamoke; Oostra, Vicencio; Osgathorpe, Lynne M; Otavo, Samuel Eduardo; Page, Navendu V; Paritsis, Juan; Parra-H, Alejandro; Parry, Luke; Pe'er, Guy; Pearman, Peter B; Pelegrin, Nicolás; Pélissier, Raphaël; Peres, Carlos A; Peri, Pablo L; Persson, Anna S; Petanidou, Theodora; Peters, Marcell K; Pethiyagoda, Rohan S; Phalan, Ben; Philips, T Keith; Pillsbury, Finn C; Pincheira-Ulbrich, Jimmy; Pineda, Eduardo; Pino, Joan; Pizarro-Araya, Jaime; Plumptre, A J; Poggio, Santiago L; Politi, Natalia; Pons, Pere; Poveda, Katja; Power, Eileen F; Presley, Steven J; Proença, Vânia; Quaranta, Marino; Quintero, Carolina; Rader, Romina; Ramesh, B R; Ramirez-Pinilla, Martha P; Ranganathan, Jai; Rasmussen, Claus; Redpath-Downing, Nicola A; Reid, J Leighton; Reis, Yana T; Rey Benayas, José M; Rey-Velasco, Juan Carlos; Reynolds, Chevonne; Ribeiro, Danilo Bandini; Richards, Miriam H; Richardson, Barbara A; Richardson, Michael J; Ríos, Rodrigo Macip; Robinson, Richard; Robles, Carolina A; Römbke, Jörg; Romero-Duque, Luz Piedad; Rös, Matthias; Rosselli, Loreta; Rossiter, Stephen J; Roth, Dana S; Roulston, T'ai H; Rousseau, Laurent; Rubio, André V; Ruel, Jean-Claude; Sadler, Jonathan P; Sáfián, Szabolcs; Saldaña-Vázquez, Romeo A; Sam, Katerina; Samnegård, Ulrika; Santana, Joana; Santos, Xavier; Savage, Jade; Schellhorn, Nancy A; Schilthuizen, Menno; Schmiedel, Ute; Schmitt, Christine B; Schon, Nicole L; Schüepp, Christof; Schumann, Katharina; Schweiger, Oliver; Scott, Dawn M; Scott, Kenneth A; Sedlock, Jodi L; Seefeldt, Steven S; Shahabuddin, Ghazala; Shannon, Graeme; Sheil, Douglas; Sheldon, Frederick H; Shochat, Eyal; Siebert, Stefan J; Silva, Fernando A B; Simonetti, Javier A; Slade, Eleanor M; Smith, Jo; Smith-Pardo, Allan H; Sodhi, Navjot S; Somarriba, Eduardo J; Sosa, Ramón A; Soto Quiroga, Grimaldo; St-Laurent, Martin-Hugues; Starzomski, Brian M; Stefanescu, Constanti; Steffan-Dewenter, Ingolf; Stouffer, Philip C; Stout, Jane C; Strauch, Ayron M; Struebig, Matthew J; Su, Zhimin; Suarez-Rubio, Marcela; Sugiura, Shinji; Summerville, Keith S; Sung, Yik-Hei; Sutrisno, Hari; Svenning, Jens-Christian; Teder, Tiit; Threlfall, Caragh G; Tiitsaar, Anu; Todd, Jacqui H; Tonietto, Rebecca K; Torre, Ignasi; Tóthmérész, Béla; Tscharntke, Teja; Turner, Edgar C; Tylianakis, Jason M; Uehara-Prado, Marcio; Urbina-Cardona, Nicolas; Vallan, Denis; Vanbergen, Adam J; Vasconcelos, Heraldo L; Vassilev, Kiril; Verboven, Hans A F; Verdasca, Maria João; Verdú, José R; Vergara, Carlos H; Vergara, Pablo M; Verhulst, Jort; Virgilio, Massimiliano; Vu, Lien Van; Waite, Edward M; Walker, Tony R; Wang, Hua-Feng; Wang, Yanping; Watling, James I; Weller, Britta; Wells, Konstans; Westphal, Catrin; Wiafe, Edward D; Williams, Christopher D; Willig, Michael R; Woinarski, John C Z; Wolf, Jan H D; Wolters, Volkmar; Woodcock, Ben A; Wu, Jihua; Wunderle, Joseph M; Yamaura, Yuichi; Yoshikura, Satoko; Yu, Douglas W; Zaitsev, Andrey S; Zeidler, Juliane; Zou, Fasheng; Collen, Ben; Ewers, Rob M; Mace, Georgina M; Purves, Drew W; Scharlemann, Jörn P W; Purvis, Andy

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of

  16. The Human Genome Project: Biology, Computers, and Privacy.

    Science.gov (United States)

    Cutter, Mary Ann G.; Drexler, Edward; Gottesman, Kay S.; Goulding, Philip G.; McCullough, Laurence B.; McInerney, Joseph D.; Micikas, Lynda B.; Mural, Richard J.; Murray, Jeffrey C.; Zola, John

    This module, for high school teachers, is the second of two modules about the Human Genome Project (HGP) produced by the Biological Sciences Curriculum Study (BSCS). The first section of this module provides background information for teachers about the structure and objectives of the HGP, aspects of the science and technology that underlie the…

  17. Aerobic mitochondria of parasitic protists: diverse genomes and complex functions

    Czech Academy of Sciences Publication Activity Database

    Zíková, Alena; Hampl, V.; Paris, Zdeněk; Týč, Jiří; Lukeš, Julius

    2016-01-01

    Roč. 209, 1-2 (2016), s. 46-57 ISSN 0166-6851 R&D Projects: GA ČR GA15-21974S; GA MŠk LL1205 Institutional support: RVO:60077344 Keywords : protists * mitochondrion * genomes * repliation * RNA editing * ribosomes * electron transport chain * iron-sulfur cluster * heme Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.536, year: 2016

  18. The human genome: Some assembly required. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Human Genome Project promises to be one of the most rewarding endeavors in modern biology. The cost and the ethical and social implications, however, have made this project the source of considerable debate both in the scientific community and in the public at large. The 1994 Graduate Student Symposium addresses the scientific merits of the project, the technical issues involved in accomplishing the task, as well as the medical and social issues which stem from the wealth of knowledge which the Human Genome Project will help create. To this end, speakers were brought together who represent the diverse areas of expertise characteristic of this multidisciplinary project. The keynote speaker addresses the project`s motivations and goals in the larger context of biological and medical sciences. The first two sessions address relevant technical issues, data collection with a focus on high-throughput sequencing methods and data analysis with an emphasis on identification of coding sequences. The third session explores recent advances in the understanding of genetic diseases and possible routes to treatment. Finally, the last session addresses some of the ethical, social and legal issues which will undoubtedly arise from having a detailed knowledge of the human genome.

  19. Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine

    Science.gov (United States)

    2014-01-01

    Background The accessibility of high-throughput genotyping technologies has contributed greatly to the development of genomic resources in non-model organisms. High-density genotyping arrays have only recently been developed for some economically important species such as conifers. The potential for using genomic technologies in association mapping and breeding depends largely on the genome wide patterns of diversity and linkage disequilibrium in current breeding populations. This study aims to deepen our knowledge regarding these issues in maritime pine, the first species used for reforestation in south western Europe. Results Using a new map merging algorithm, we first established a 1,712 cM composite linkage map (comprising 1,838 SNP markers in 12 linkage groups) by bringing together three already available genetic maps. Using rigorous statistical testing based on kernel density estimation and resampling we identified cold and hot spots of recombination. In parallel, 186 unrelated trees of a mass-selected population were genotyped using a 12k-SNP array. A total of 2,600 informative SNPs allowed to describe historical recombination, genetic diversity and genetic structure of this recently domesticated breeding pool that forms the basis of much of the current and future breeding of this species. We observe very low levels of population genetic structure and find no evidence that artificial selection has caused a reduction in genetic diversity. By combining these two pieces of information, we provided the map position of 1,671 SNPs corresponding to 1,192 different loci. This made it possible to analyze the spatial pattern of genetic diversity (H e ) and long distance linkage disequilibrium (LD) along the chromosomes. We found no particular pattern in the empirical variogram of H e across the 12 linkage groups and, as expected for an outcrossing species with large effective population size, we observed an almost complete lack of long distance LD. Conclusions These

  20. The Genomics Education Partnership: Successful Integration of Research into Laboratory Classes at a Diverse Group of Undergraduate Institutions

    Science.gov (United States)

    Shaffer, Christopher D.; Alvarez, Consuelo; Bailey, Cheryl; Barnard, Daron; Bhalla, Satish; Chandrasekaran, Chitra; Chandrasekaran, Vidya; Chung, Hui-Min; Dorer, Douglas R.; Du, Chunguang; Eckdahl, Todd T.; Poet, Jeff L.; Frohlich, Donald; Goodman, Anya L.; Gosser, Yuying; Hauser, Charles; Hoopes, Laura L.M.; Johnson, Diana; Jones, Christopher J.; Kaehler, Marian; Kokan, Nighat; Kopp, Olga R.; Kuleck, Gary A.; McNeil, Gerard; Moss, Robert; Myka, Jennifer L.; Nagengast, Alexis; Morris, Robert; Overvoorde, Paul J.; Shoop, Elizabeth; Parrish, Susan; Reed, Kelynne; Regisford, E. Gloria; Revie, Dennis; Rosenwald, Anne G.; Saville, Ken; Schroeder, Stephanie; Shaw, Mary; Skuse, Gary; Smith, Christopher; Smith, Mary; Spana, Eric P.; Spratt, Mary; Stamm, Joyce; Thompson, Jeff S.; Wawersik, Matthew; Wilson, Barbara A.; Youngblom, Jim; Leung, Wilson; Buhler, Jeremy; Mardis, Elaine R.; Lopatto, David

    2010-01-01

    Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students. PMID:20194808

  1. Molluscan Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  2. The Arab genome: Health and wealth.

    Science.gov (United States)

    Zayed, Hatem

    2016-11-05

    The 22 Arab nations have a unique genetic structure, which reflects both conserved and diverse gene pools due to the prevalent endogamous and consanguineous marriage culture and the long history of admixture among different ethnic subcultures descended from the Asian, European, and African continents. Human genome sequencing has enabled large-scale genomic studies of different populations and has become a powerful tool for studying disease predictions and diagnosis. Despite the importance of the Arab genome for better understanding the dynamics of the human genome, discovering rare genetic variations, and studying early human migration out of Africa, it is poorly represented in human genome databases, such as HapMap and the 1000 Genomes Project. In this review, I demonstrate the significance of sequencing the Arab genome and setting an Arab genome reference(s) for better understanding the molecular pathogenesis of genetic diseases, discovering novel/rare variants, and identifying a meaningful genotype-phenotype correlation for complex diseases. Copyright © 2016. Published by Elsevier B.V.

  3. A Snapshot of the Emerging Tomato Genome Sequence

    Directory of Open Access Journals (Sweden)

    Lukas A. Mueller

    2009-03-01

    Full Text Available The genome of tomato ( L. is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy, and the United States as part of the larger “International Solanaceae Genome Project (SOL: Systems Approach to Diversity and Adaptation” initiative. The tomato genome sequencing project uses an ordered bacterial artificial chromosome (BAC approach to generate a high-quality tomato euchromatic genome sequence for use as a reference genome for the Solanaceae and euasterids. Sequence is deposited at GenBank and at the SOL Genomics Network (SGN. Currently, there are around 1000 BACs finished or in progress, representing more than a third of the projected euchromatic portion of the genome. An annotation effort is also underway by the International Tomato Annotation Group. The expected number of genes in the euchromatin is ∼40,000, based on an estimate from a preliminary annotation of 11% of finished sequence. Here, we present this first snapshot of the emerging tomato genome and its annotation, a short comparison with potato ( L. sequence data, and the tools available for the researchers to exploit this new resource are also presented. In the future, whole-genome shotgun techniques will be combined with the BAC-by-BAC approach to cover the entire tomato genome. The high-quality reference euchromatic tomato sequence is expected to be near completion by 2010.

  4. Sustainability of mega water diversion projects: Experience and lessons from China.

    Science.gov (United States)

    Yu, Min; Wang, Chaoran; Liu, Yi; Olsson, Gustaf; Wang, Chunyan

    2018-04-01

    Water availability and water demand are not evenly distributed in time and space. Many mega water diversion projects have been launched to alleviate water shortages in China. This paper analyzes the temporal and spatial features of 59 mega water diversion projects in China using statistical analysis. The relationship between nine major basins is measured using a network analysis method, and the associated economic, environmental and social impacts are explored using an impact analysis method. The study finds the development of water diversion has experienced four stages in China, from a starting period through to a period of high-speed development. Both the length of water diversion channels and the amount of transferred water have increased significantly in the past 50years. As of 2015, over 100billionm 3 of water was transferred in China through 16,000km in channels. These projects reached over half of China's provinces. The Yangtze River Basin is now the largest source of transferred water. Through inter-basin water diversion, China gains the opportunity to increase Gross Domestic Product by 4%. However, the construction costs exceed 150 billion US dollars, larger than in any other country. The average cost per unit of transferred water has increased with time and scale but decreased from western to eastern China. Furthermore, annual total energy consumption for pumping exceeded 50billionkilowatt-hours and the related greenhouse gas emissions are estimated to be 48milliontons. It is worth noting that ecological problems caused by water diversion affect the Han River and Yellow River Basins. Over 500 thousand people have been relocated away from their homes due to water diversion. To improve the sustainability of water diversion, four kinds of innovative measures have been provided for decision makers: national diversion guidelines, integrated water basin management, economic incentives and ex-post evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Plasmodium falciparum Erythrocyte Membrane Protein 1 Diversity in Seven Genomes – Divide and Conquer

    DEFF Research Database (Denmark)

    Rask, Thomas Salhøj; Hansen, Daniel Aaen; Theander, Thor G.

    2010-01-01

    of a PfEMP1 based vaccine mimicking natural acquired immunity depends on a thorough understanding of the evolved PfEMP1 diversity, balancing antigenic variation against conserved receptor binding affinities. This study redefines and reclassifies the domains of PfEMP1 from seven genomes. Analysis...

  6. The post-Human Genome Project mindset: race, reliability, and health care.

    Science.gov (United States)

    Kimmelman, J

    2006-11-01

    The following essay reports on the first session of a 2-day workshop on genetic diversity and science communication, organized by the Institute of Genetics. I argue that the four talks in this session reflected two different facets of a 'post-Human Genome Project (HGP)' view of human genetics. The first is characterized by an increasing interest in genetic differences. Two speakers - Troy Duster and Jasber Singh - expressed skepticism about one aspect of this trend: an emphasis on race in medicine and genetics. The other two speakers - Kenneth Weiss and Gustavo Turecki - spoke to a second facet of the post-HGP view: a recognition of the difficulty in translating genetic discovery into medical or public health applications. Though both sets of talks were highly critical of current trends in genetic research, they pulled in opposite directions: one warned about the role of genetics in stabilizing racial categories, while the other lamented the failure of any genetic claims or categories to stabilize at all. I argue that the use of racial categories in medicine seems likely to encounter scientific, medical, and social challenges.

  7. Extensive Genomic Diversity among Bovine-Adapted Staphylococcus aureus: Evidence for a Genomic Rearrangement within CC97.

    Directory of Open Access Journals (Sweden)

    Kathleen E Budd

    Full Text Available Staphylococcus aureus is an important pathogen associated with both human and veterinary disease and is a common cause of bovine mastitis. Genomic heterogeneity exists between S. aureus strains and has been implicated in the adaptation of specific strains to colonise particular mammalian hosts. Knowledge of the factors required for host specificity and virulence is important for understanding the pathogenesis and management of S. aureus mastitis. In this study, a panel of mastitis-associated S. aureus isolates (n = 126 was tested for resistance to antibiotics commonly used to treat mastitis. Over half of the isolates (52% demonstrated resistance to penicillin and ampicillin but all were susceptible to the other antibiotics tested. S. aureus isolates were further examined for their clonal diversity by Multi-Locus Sequence Typing (MLST. In total, 18 different sequence types (STs were identified and eBURST analysis demonstrated that the majority of isolates grouped into clonal complexes CC97, CC151 or sequence type (ST 136. Analysis of the role of recombination events in determining S. aureus population structure determined that ST diversification through nucleotide substitutions were more likely to be due to recombination compared to point mutation, with regions of the genome possibly acting as recombination hotspots. DNA microarray analysis revealed a large number of differences amongst S. aureus STs in their variable genome content, including genes associated with capsule and biofilm formation and adhesion factors. Finally, evidence for a genomic arrangement was observed within isolates from CC97 with the ST71-like subgroup showing evidence of an IS431 insertion element having replaced approximately 30 kb of DNA including the ica operon and histidine biosynthesis genes, resulting in histidine auxotrophy. This genomic rearrangement may be responsible for the diversification of ST71 into an emerging bovine adapted subgroup.

  8. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis.

    Science.gov (United States)

    Chen, Eric C H; Morin, Emmanuelle; Beaudet, Denis; Noel, Jessica; Yildirir, Gokalp; Ndikumana, Steve; Charron, Philippe; St-Onge, Camille; Giorgi, John; Krüger, Manuela; Marton, Timea; Ropars, Jeanne; Grigoriev, Igor V; Hainaut, Matthieu; Henrissat, Bernard; Roux, Christophe; Martin, Francis; Corradi, Nicolas

    2018-01-22

    Arbuscular mycorrhizal fungi (AMF) are known to improve plant fitness through the establishment of mycorrhizal symbioses. Genetic and phenotypic variations among closely related AMF isolates can significantly affect plant growth, but the genomic changes underlying this variability are unclear. To address this issue, we improved the genome assembly and gene annotation of the model strain Rhizophagus irregularis DAOM197198, and compared its gene content with five isolates of R. irregularis sampled in the same field. All isolates harbor striking genome variations, with large numbers of isolate-specific genes, gene family expansions, and evidence of interisolate genetic exchange. The observed variability affects all gene ontology terms and PFAM protein domains, as well as putative mycorrhiza-induced small secreted effector-like proteins and other symbiosis differentially expressed genes. High variability is also found in active transposable elements. Overall, these findings indicate a substantial divergence in the functioning capacity of isolates harvested from the same field, and thus their genetic potential for adaptation to biotic and abiotic changes. Our data also provide a first glimpse into the genome diversity that resides within natural populations of these symbionts, and open avenues for future analyses of plant-AMF interactions that link AMF genome variation with plant phenotype and fitness. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  9. Genome diversity of marine phages recovered from Mediterranean metagenomes: Size matters.

    Directory of Open Access Journals (Sweden)

    Mario López-Pérez

    2017-09-01

    Full Text Available Marine viruses play a critical role not only in the global geochemical cycles but also in the biology and evolution of their hosts. Despite their importance, viral diversity remains underexplored mostly due to sampling and cultivation challenges. Direct sequencing approaches such as viromics has provided new insights into the marine viral world. As a complementary approach, we analysed 24 microbial metagenomes (>0.2 μm size range obtained from six sites in the Mediterranean Sea that vary by depth, season and filter used to retrieve the fraction. Filter-size comparison showed a significant number of viral sequences that were retained on the larger-pore filters and were different from those found in the viral fraction from the same sample, indicating that some important viral information is missing using only assembly from viromes. Besides, we were able to describe 1,323 viral genomic fragments that were more than 10Kb in length, of which 36 represented complete viral genomes including some of them retrieved from a cross-assembly from different metagenomes. Host prediction based on sequence methods revealed new phage groups belonging to marine prokaryotes like SAR11, Cyanobacteria or SAR116. We also identified the first complete virophage from deep seawater and a new endemic clade of the recently discovered Marine group II Euryarchaeota virus. Furthermore, analysis of viral distribution using metagenomes and viromes indicated that most of the new phages were found exclusively in the Mediterranean Sea and some of them, mostly the ones recovered from deep metagenomes, do not recruit in any database probably indicating higher variability and endemicity in Mediterranean bathypelagic waters. Together these data provide the first detailed picture of genomic diversity, spatial and depth variations of viral communities within the Mediterranean Sea using metagenome assembly.

  10. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax.

    Directory of Open Access Journals (Sweden)

    Thais C de Oliveira

    2017-07-01

    Full Text Available The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax.We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences, Peru (PER, n = 23, Colombia (COL, n = 31, and Mexico (MEX, n = 19.We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4 as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092. Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically

  11. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax

    Science.gov (United States)

    de Oliveira, Thais C.; Rodrigues, Priscila T.; Menezes, Maria José; Gonçalves-Lopes, Raquel M.; Bastos, Melissa S.; Lima, Nathália F.; Barbosa, Susana; Gerber, Alexandra L.; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R.

    2017-01-01

    Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between

  12. Genomics England's implementation of its public engagement strategy: Blurred boundaries between engagement for the United Kingdom's 100,000 Genomes project and the need for public support.

    Science.gov (United States)

    Samuel, Gabrielle Natalie; Farsides, Bobbie

    2018-04-01

    The United Kingdom's 100,000 Genomes Project has the aim of sequencing 100,000 genomes from National Health Service patients such that whole genome sequencing becomes routine clinical practice. It also has a research-focused goal to provide data for scientific discovery. Genomics England is the limited company established by the Department of Health to deliver the project. As an innovative scientific/clinical venture, it is interesting to consider how Genomics England positions itself in relation to public engagement activities. We set out to explore how individuals working at, or associated with, Genomics England enacted public engagement in practice. Our findings show that individuals offered a narrative in which public engagement performed more than one function. On one side, public engagement was seen as 'good practice'. On the other, public engagement was presented as core to the project's success - needed to encourage involvement and ultimately recruitment. We discuss the implications of this in this article.

  13. Comparing genetic variants detected in the 1000 genomes project ...

    Indian Academy of Sciences (India)

    Single-nucleotide polymorphisms (SNPs) determined based on SNP arrays from the international HapMap consortium (HapMap) and the genetic variants detected in the 1000 genomes project (1KGP) can serve as two references for genomewide association studies (GWAS). We conducted comparative analyses to provide ...

  14. Genomic diversity among Beijing and non-Beijing Mycobacterium tuberculosis isolates from Myanmar.

    Directory of Open Access Journals (Sweden)

    Ruth Stavrum

    2008-04-01

    Full Text Available The Beijing family of Mycobacterium tuberculosis is dominant in countries in East Asia. Genomic polymorphisms are a source of diversity within the M. tuberculosis genome and may account for the variation of virulence among M. tuberculosis isolates. Till date there are no studies that have examined the genomic composition of M. tuberculosis isolates from the high TB-burden country, Myanmar.Twenty-two M. tuberculosis isolates from Myanmar were screened on whole-genome arrays containing genes from M. tuberculosis H37Rv, M. tuberculosis CDC1551 and M. bovis AF22197. Screening identified 198 deletions or extra regions in the clinical isolates compared to H37Rv. Twenty-two regions differentiated between Beijing and non-Beijing isolates and were verified by PCR on an additional 40 isolates. Six regions (Rv0071-0074 [RD105], Rv1572-1576c [RD149], Rv1585c-1587c [RD149], MT1798-Rv1755c [RD152], Rv1761c [RD152] and Rv0279c were deleted in Beijing isolates, of which 4 (Rv1572-1576c, Rv1585c-1587c, MT1798-Rv1755c and Rv1761c were variably deleted among ST42 isolates, indicating a closer relationship between the Beijing and ST42 lineages. The TbD1 region, Mb1582-Mb1583 was deleted in Beijing and ST42 isolates. One M. bovis gene of unknown function, Mb3184c was present in all isolates, except 11 of 13 ST42 isolates. The CDC1551 gene, MT1360 coding for a putative adenylate cyclase, was present in all Beijing and ST42 isolates (except 1. The pks15/1 gene, coding for a putative virulence factor, was intact in all Beijing and non-Beijing isolates, except in ST42 and ST53 isolates.This study describes previously unreported deletions/extra regions in Beijing and non-Beijing M. tuberculosis isolates. The modern and highly frequent ST42 lineage showed a closer relationship to the hypervirulent Beijing lineage than to the ancient non-Beijing lineages. The pks15/1 gene was disrupted only in modern non-Beijing isolates. This is the first report of an in-depth analysis on

  15. Enabling a community to dissect an organism: overview of the Neurospora functional genomics project.

    Science.gov (United States)

    Dunlap, Jay C; Borkovich, Katherine A; Henn, Matthew R; Turner, Gloria E; Sachs, Matthew S; Glass, N Louise; McCluskey, Kevin; Plamann, Michael; Galagan, James E; Birren, Bruce W; Weiss, Richard L; Townsend, Jeffrey P; Loros, Jennifer J; Nelson, Mary Anne; Lambreghts, Randy; Colot, Hildur V; Park, Gyungsoon; Collopy, Patrick; Ringelberg, Carol; Crew, Christopher; Litvinkova, Liubov; DeCaprio, Dave; Hood, Heather M; Curilla, Susan; Shi, Mi; Crawford, Matthew; Koerhsen, Michael; Montgomery, Phil; Larson, Lisa; Pearson, Matthew; Kasuga, Takao; Tian, Chaoguang; Baştürkmen, Meray; Altamirano, Lorena; Xu, Junhuan

    2007-01-01

    A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes.

  16. Contrasting Patterns of Genomic Diversity Reveal Accelerated Genetic Drift but Reduced Directional Selection on X-Chromosome in Wild and Domestic Sheep Species.

    Science.gov (United States)

    Chen, Ze-Hui; Zhang, Min; Lv, Feng-Hua; Ren, Xue; Li, Wen-Rong; Liu, Ming-Jun; Nam, Kiwoong; Bruford, Michael W; Li, Meng-Hua

    2018-04-01

    Analyses of genomic diversity along the X chromosome and of its correlation with autosomal diversity can facilitate understanding of evolutionary forces in shaping sex-linked genomic architecture. Strong selective sweeps and accelerated genetic drift on the X-chromosome have been inferred in primates and other model species, but no such insight has yet been gained in domestic animals compared with their wild relatives. Here, we analyzed X-chromosome variability in a large ovine data set, including a BeadChip array for 943 ewes from the world's sheep populations and 110 whole genomes of wild and domestic sheep. Analyzing whole-genome sequences, we observed a substantially reduced X-to-autosome diversity ratio (∼0.6) compared with the value expected under a neutral model (0.75). In particular, one large X-linked segment (43.05-79.25 Mb) was found to show extremely low diversity, most likely due to a high density of coding genes, featuring highly conserved regions. In general, we observed higher nucleotide diversity on the autosomes, but a flat diversity gradient in X-linked segments, as a function of increasing distance from the nearest genes, leading to a decreased X: autosome (X/A) diversity ratio and contrasting to the positive correlation detected in primates and other model animals. Our evidence suggests that accelerated genetic drift but reduced directional selection on X chromosome, as well as sex-biased demographic events, explain low X-chromosome diversity in sheep species. The distinct patterns of X-linked and X/A diversity we observed between Middle Eastern and non-Middle Eastern sheep populations can be explained by multiple migrations, selection, and admixture during the domestic sheep's recent postdomestication demographic expansion, coupled with natural selection for adaptation to new environments. In addition, we identify important novel genes involved in abnormal behavioral phenotypes, metabolism, and immunity, under selection on the sheep X-chromosome.

  17. Human Genome Teacher Networking Project, Final Report, April 1, 1992 - March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Debra

    1999-10-01

    Project to provide education regarding ethical legal and social implications of Human Genome Project to high school science teachers through two consecutive summer workshops, in class activities, and peer teaching workshops.

  18. Art meets science: The Cosmopolitan Chicken Research Project.

    Science.gov (United States)

    Stinckens, A; Vereijken, A; Ons, E; Konings, P; Van As, P; Cuppens, H; Moreau, Y; Sakai, R; Aerts, J; Goddeeris, B; Buys, N; Vanmechelen, K; Cassiman, J J

    2015-01-01

    The Cosmopolitan Chicken Project is an artistic undertaking of renowned artist Koen Vanmechelen. In this project, the artist interbreeds domestic chickens from different countries aiming at the creation of a true Cosmopolitan Chicken as a symbol for global diversity. The unifying theme is the chicken and the egg, symbols that link scientific, political, philosophical and ethical issues. The Cosmopolitan Chicken Research Project is the scientific component of this artwork. Based on state of the art genomic techniques, the project studies the effect of the crossing of chickens on the genetic diversity. Also, this research is potentially applicable to the human population. The setup of the CC®P is quite different from traditional breeding experiments: starting from the crossbreed of two purebred chickens (Mechelse Koekoek x Poule de Bresse), every generation is crossed with a few animals from another breed. For 26 of these purebred and crossbred populations, genetic diversity was measured (1) under the assumption that populations were sufficiently large to maintain all informative SNP within a generation and (2) under the circumstances of the CCP breeding experiment. Under the first assumption, a steady increase in genetic diversity was witnessed over the consecutive generations, thus indeed indicating the creation of a "Cosmopolitan Chicken Genome". However, under the conditions of the CCP, which reflects the reality within the human population, diversity is seen to fluctuate within given boundaries instead of steadily increasing. A reflection on this might be that this is because, in humans, an evolutionary optimum in genetic diversity is reached. Key words.

  19. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log(10-transformed protein-coding gene number (Y' versus log(10-transformed genome size (X', genome size in kbp were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y' = ln(-46.200+22.678X', whereas non-eukaryotes a linear model, Y' = 0.045+0.977X', both with high significance (p0.91. Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%-1% compared to higher and relatively stable percentages in prokaryotes and viruses (97%-47%. The eukaryotic regression models project that the smallest dinoflagellate genome (3x10(6 kbp contains 38,188 protein-coding (40,086 total genes and the largest (245x10(6 kbp 87,688 protein-coding (92,013 total genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.

  20. Karyotype diversity and genome size variation in Neotropical Maxillariinae orchids.

    Science.gov (United States)

    Moraes, A P; Koehler, S; Cabral, J S; Gomes, S S L; Viccini, L F; Barros, F; Felix, L P; Guerra, M; Forni-Martins, E R

    2017-03-01

    Orchidaceae is a widely distributed plant family with very diverse vegetative and floral morphology, and such variability is also reflected in their karyotypes. However, since only a low proportion of Orchidaceae has been analysed for chromosome data, greater diversity may await to be unveiled. Here we analyse both genome size (GS) and karyotype in two subtribes recently included in the broadened Maxillariinea to detect how much chromosome and GS variation there is in these groups and to evaluate which genome rearrangements are involved in the species evolution. To do so, the GS (14 species), the karyotype - based on chromosome number, heterochromatic banding and 5S and 45S rDNA localisation (18 species) - was characterised and analysed along with published data using phylogenetic approaches. The GS presented a high phylogenetic correlation and it was related to morphological groups in Bifrenaria (larger plants - higher GS). The two largest GS found among genera were caused by different mechanisms: polyploidy in Bifrenaria tyrianthina and accumulation of repetitive DNA in Scuticaria hadwenii. The chromosome number variability was caused mainly through descending dysploidy, and x=20 was estimated as the base chromosome number. Combining GS and karyotype data with molecular phylogeny, our data provide a more complete scenario of the karyotype evolution in Maxillariinae orchids, allowing us to suggest, besides dysploidy, that inversions and transposable elements as two mechanisms involved in the karyotype evolution. Such karyotype modifications could be associated with niche changes that occurred during species evolution. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabian; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; Wit, Pierre J. G. M. de; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2012-02-29

    The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.

  2. PGG.Population: a database for understanding the genomic diversity and genetic ancestry of human populations.

    Science.gov (United States)

    Zhang, Chao; Gao, Yang; Liu, Jiaojiao; Xue, Zhe; Lu, Yan; Deng, Lian; Tian, Lei; Feng, Qidi; Xu, Shuhua

    2018-01-04

    There are a growing number of studies focusing on delineating genetic variations that are associated with complex human traits and diseases due to recent advances in next-generation sequencing technologies. However, identifying and prioritizing disease-associated causal variants relies on understanding the distribution of genetic variations within and among populations. The PGG.Population database documents 7122 genomes representing 356 global populations from 107 countries and provides essential information for researchers to understand human genomic diversity and genetic ancestry. These data and information can facilitate the design of research studies and the interpretation of results of both evolutionary and medical studies involving human populations. The database is carefully maintained and constantly updated when new data are available. We included miscellaneous functions and a user-friendly graphical interface for visualization of genomic diversity, population relationships (genetic affinity), ancestral makeup, footprints of natural selection, and population history etc. Moreover, PGG.Population provides a useful feature for users to analyze data and visualize results in a dynamic style via online illustration. The long-term ambition of the PGG.Population, together with the joint efforts from other researchers who contribute their data to our database, is to create a comprehensive depository of geographic and ethnic variation of human genome, as well as a platform bringing influence on future practitioners of medicine and clinical investigators. PGG.Population is available at https://www.pggpopulation.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing.

    Science.gov (United States)

    Zhang, Tifu; Gu, Minfeng; Liu, Yuhe; Lv, Yuanda; Zhou, Ling; Lu, Haiyan; Liang, Shuaiqiang; Bao, Huabin; Zhao, Han

    2017-09-05

    Quinoa (Chenopodium quinoa Willd.) is a balanced nutritional crop, but its breeding improvement has been limited by the lack of information on its genetics and genomics. Therefore, it is necessary to obtain knowledge on genomic variation, population structure, and genetic diversity and to develop novel Insertion/Deletion (InDel) markers for quinoa by whole-genome re-sequencing. We re-sequenced 11 quinoa accessions and obtained a coverage depth between approximately 7× to 23× the quinoa genome. Based on the 1453-megabase (Mb) assembly from the reference accession Riobamba, 8,441,022 filtered bi-allelic single nucleotide polymorphisms (SNPs) and 842,783 filtered InDels were identified, with an estimated SNP and InDel density of 5.81 and 0.58 per kilobase (kb). From the genomic InDel variations, 85 dimorphic InDel markers were newly developed and validated. Together with the 62 simple sequence repeat (SSR) markers reported, a total of 147 markers were used for genotyping the 129 quinoa accessions. Molecular grouping analysis showed classification into two major groups, the Andean highland (composed of the northern and southern highland subgroups) and Chilean coastal, based on combined STRUCTURE, phylogenetic tree and PCA (Principle Component Analysis) analyses. Further analysis of the genetic diversity exhibited a decreasing tendency from the Chilean coast group to the Andean highland group, and the gene flow between subgroups was more frequent than that between the two subgroups and the Chilean coastal group. The majority of the variations (approximately 70%) were found through an analysis of molecular variation (AMOVA) due to the diversity between the groups. This was congruent with the observation of a highly significant F ST value (0.705) between the groups, demonstrating significant genetic differentiation between the Andean highland type of quinoa and the Chilean coastal type. Moreover, a core set of 16 quinoa germplasms that capture all 362 alleles was

  4. Genomic diversity and evolution of the head crest in the rock pigeon.

    Science.gov (United States)

    Shapiro, Michael D; Kronenberg, Zev; Li, Cai; Domyan, Eric T; Pan, Hailin; Campbell, Michael; Tan, Hao; Huff, Chad D; Hu, Haofu; Vickrey, Anna I; Nielsen, Sandra C A; Stringham, Sydney A; Hu, Hao; Willerslev, Eske; Gilbert, M Thomas P; Yandell, Mark; Zhang, Guojie; Wang, Jun

    2013-03-01

    The geographic origins of breeds and the genetic basis of variation within the widely distributed and phenotypically diverse domestic rock pigeon (Columba livia) remain largely unknown. We generated a rock pigeon reference genome and additional genome sequences representing domestic and feral populations. We found evidence for the origins of major breed groups in the Middle East and contributions from a racing breed to North American feral populations. We identified the gene EphB2 as a strong candidate for the derived head crest phenotype shared by numerous breeds, an important trait in mate selection in many avian species. We also found evidence that this trait evolved just once and spread throughout the species, and that the crest originates early in development by the localized molecular reversal of feather bud polarity.

  5. DivStat: a user-friendly tool for single nucleotide polymorphism analysis of genomic diversity.

    Directory of Open Access Journals (Sweden)

    Inês Soares

    Full Text Available Recent developments have led to an enormous increase of publicly available large genomic data, including complete genomes. The 1000 Genomes Project was a major contributor, releasing the results of sequencing a large number of individual genomes, and allowing for a myriad of large scale studies on human genetic variation. However, the tools currently available are insufficient when the goal concerns some analyses of data sets encompassing more than hundreds of base pairs and when considering haplotype sequences of single nucleotide polymorphisms (SNPs. Here, we present a new and potent tool to deal with large data sets allowing the computation of a variety of summary statistics of population genetic data, increasing the speed of data analysis.

  6. A Near-Complete Haplotype-Phased Genome of the Dikaryotic Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici Reveals High Interhaplotype Diversity.

    Science.gov (United States)

    Schwessinger, Benjamin; Sperschneider, Jana; Cuddy, William S; Garnica, Diana P; Miller, Marisa E; Taylor, Jennifer M; Dodds, Peter N; Figueroa, Melania; Park, Robert F; Rathjen, John P

    2018-02-20

    A long-standing biological question is how evolution has shaped the genomic architecture of dikaryotic fungi. To answer this, high-quality genomic resources that enable haplotype comparisons are essential. Short-read genome assemblies for dikaryotic fungi are highly fragmented and lack haplotype-specific information due to the high heterozygosity and repeat content of these genomes. Here, we present a diploid-aware assembly of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici based on long reads using the FALCON-Unzip assembler. Transcriptome sequencing data sets were used to infer high-quality gene models and identify virulence genes involved in plant infection referred to as effectors. This represents the most complete Puccinia striiformis f. sp. tritici genome assembly to date (83 Mb, 156 contigs, N 50 of 1.5 Mb) and provides phased haplotype information for over 92% of the genome. Comparisons of the phase blocks revealed high interhaplotype diversity of over 6%. More than 25% of all genes lack a clear allelic counterpart. When we investigated genome features that potentially promote the rapid evolution of virulence, we found that candidate effector genes are spatially associated with conserved genes commonly found in basidiomycetes. Yet, candidate effectors that lack an allelic counterpart are more distant from conserved genes than allelic candidate effectors and are less likely to be evolutionarily conserved within the P. striiformis species complex and Pucciniales In summary, this haplotype-phased assembly enabled us to discover novel genome features of a dikaryotic plant-pathogenic fungus previously hidden in collapsed and fragmented genome assemblies. IMPORTANCE Current representations of eukaryotic microbial genomes are haploid, hiding the genomic diversity intrinsic to diploid and polyploid life forms. This hidden diversity contributes to the organism's evolutionary potential and ability to adapt to stress conditions. Yet, it is

  7. Planning the human variome project: the Spain report.

    OpenAIRE

    Kaput, Jim; Cotton, Richard G H; Hardman, Lauren; Watson, Michael; Al Aqeel, Aida I; Al-Aama, Jumana Y; Al-Mulla, Fahd; Alonso, Santos; Aretz, Stefan; Auerbach, Arleen D; Bapat, Bharati; Bernstein, Inge T; Bhak, Jong; Bleoo, Stacey L; Blöcker, Helmut

    2009-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and e...

  8. Genomic Resource and Genome Guided Comparison of Twenty Type Strains of the Genus Methylobacterium

    Directory of Open Access Journals (Sweden)

    Vasvi Chaudhry

    2017-12-01

    Full Text Available Bacteria of the genus Methylobacterium are widespread in diverse habitats ranging from soil, water and plant (phyllosphere, rhizosphere and endosphere. In the present study, we in house generated genomic data resource of six type strains along with fourteen database genomes of the Methylobacterium genus to carry out phylogenomic, taxonomic, comparative and ecological studies of this genus. Overall, the genus shows high diversity and genetic variation primarily due to its ability to acquire genetic material from diverse sources through horizontal gene transfer. As majority of species identified in this study are plant associated with their genomes equipped with methylotrophy and photosynthesis related gene along with genes for plant probiotic traits. Most of the species genomes are equipped with genes for adaptation and defense for UV radiation, oxidative stress and desiccation. The genus has an open pan-genome and we predicted the role of gain/loss of prophages and CRISPR elements in diversity and evolution. Our genomic resource with annotation and analysis provides a platform for interspecies genomic comparisons in the genus Methylobacterium, and to unravel their natural genome diversity and to study how natural selection shapes their genome with the adaptive mechanisms which allow them to acquire diverse habitat lifestyles. This type strains genomic data display power of Next Generation Sequencing in rapidly creating resource paving the way for studies on phylogeny and taxonomy as well as for basic and applied research for this important genus.

  9. Brazilian Microbiome Project: revealing the unexplored microbial diversity--challenges and prospects.

    Science.gov (United States)

    Pylro, Victor Satler; Roesch, Luiz Fernando Wurdig; Ortega, José Miguel; do Amaral, Alexandre Morais; Tótola, Marcos Rogério; Hirsch, Penny Ruth; Rosado, Alexandre Soares; Góes-Neto, Aristóteles; da Costa da Silva, Artur Luiz; Rosa, Carlos Augusto; Morais, Daniel Kumazawa; Andreote, Fernando Dini; Duarte, Gabriela Frois; de Melo, Itamar Soares; Seldin, Lucy; Lambais, Márcio Rodrigues; Hungria, Mariangela; Peixoto, Raquel Silva; Kruger, Ricardo Henrique; Tsai, Siu Mui; Azevedo, Vasco

    2014-02-01

    The Brazilian Microbiome Project (BMP) aims to assemble a Brazilian Metagenomic Consortium/Database. At present, many metagenomic projects underway in Brazil are widely known. Our goal in this initiative is to co-ordinate and standardize these together with new projects to come. It is estimated that Brazil hosts approximately 20 % of the entire world's macroorganism biological diversity. It is 1 of the 17 countries that share nearly 70 % of the world's catalogued animal and plant species, and is recognized as one of the most megadiverse countries. At the end of 2012, Brazil has joined GBIF (Global Biodiversity Information Facility), as associated member, to improve the access to the Brazilian biodiversity data in a free and open way. This was an important step toward increasing international collaboration and clearly shows the commitment of the Brazilian government in directing national policies toward sustainable development. Despite its importance, the Brazilian microbial diversity is still considered to be largely unknown, and it is clear that to maintain ecosystem dynamics and to sustainably manage land use, it is crucial to understand the biological and functional diversity of the system. This is the first attempt to collect and collate information about Brazilian microbial genetic and functional diversity in a systematic and holistic manner. The success of the BMP depends on a massive collaborative effort of both the Brazilian and international scientific communities, and therefore, we invite all colleagues to participate in this project.

  10. Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus.

    Science.gov (United States)

    Romano, Stefano; Fernàndez-Guerra, Antonio; Reen, F Jerry; Glöckner, Frank O; Crowley, Susan P; O'Sullivan, Orla; Cotter, Paul D; Adams, Claire; Dobson, Alan D W; O'Gara, Fergal

    2016-01-01

    Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its

  11. Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal genome project community challenges.

    Science.gov (United States)

    Cai, Binghuang; Li, Biao; Kiga, Nikki; Thusberg, Janita; Bergquist, Timothy; Chen, Yun-Ching; Niknafs, Noushin; Carter, Hannah; Tokheim, Collin; Beleva-Guthrie, Violeta; Douville, Christopher; Bhattacharya, Rohit; Yeo, Hui Ting Grace; Fan, Jean; Sengupta, Sohini; Kim, Dewey; Cline, Melissa; Turner, Tychele; Diekhans, Mark; Zaucha, Jan; Pal, Lipika R; Cao, Chen; Yu, Chen-Hsin; Yin, Yizhou; Carraro, Marco; Giollo, Manuel; Ferrari, Carlo; Leonardi, Emanuela; Tosatto, Silvio C E; Bobe, Jason; Ball, Madeleine; Hoskins, Roger A; Repo, Susanna; Church, George; Brenner, Steven E; Moult, John; Gough, Julian; Stanke, Mario; Karchin, Rachel; Mooney, Sean D

    2017-09-01

    The advent of next-generation sequencing has dramatically decreased the cost for whole-genome sequencing and increased the viability for its application in research and clinical care. The Personal Genome Project (PGP) provides unrestricted access to genomes of individuals and their associated phenotypes. This resource enabled the Critical Assessment of Genome Interpretation (CAGI) to create a community challenge to assess the bioinformatics community's ability to predict traits from whole genomes. In the CAGI PGP challenge, researchers were asked to predict whether an individual had a particular trait or profile based on their whole genome. Several approaches were used to assess submissions, including ROC AUC (area under receiver operating characteristic curve), probability rankings, the number of correct predictions, and statistical significance simulations. Overall, we found that prediction of individual traits is difficult, relying on a strong knowledge of trait frequency within the general population, whereas matching genomes to trait profiles relies heavily upon a small number of common traits including ancestry, blood type, and eye color. When a rare genetic disorder is present, profiles can be matched when one or more pathogenic variants are identified. Prediction accuracy has improved substantially over the last 6 years due to improved methodology and a better understanding of features. © 2017 Wiley Periodicals, Inc.

  12. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.

    Science.gov (United States)

    Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine

    2013-01-01

    Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).

  13. The Human Genome Project and the social contract: a law policy approach.

    Science.gov (United States)

    Byk, C

    1992-08-01

    For the first time in history, genetics will enable science to completely identify each human as genetically unique. Will this knowledge reinforce the trend for more individual liberties or will it create a 'brave new world'? A law policy approach to the problems raised by the human genome project shows how far our democratic institutions are from being the proper forum to discuss such issues. Because of the fears and anxiety raised in the population, and also because of its wide implications on the everyday life, the human genome analysis more than any other project needs to succeed in setting up such a social assessment.

  14. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions

    Directory of Open Access Journals (Sweden)

    Cheryl-Emiliane Tien Chow

    2015-04-01

    Full Text Available Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs, remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10m and oxygen-starved basin (200m waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs predicted across all 34 viral fosmids, 77.6% (n=5010 had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI’s non-redundant ‘nr’ database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems.

  15. Detecting exact breakpoints of deletions with diversity in hepatitis B viral genomic DNA from next-generation sequencing data.

    Science.gov (United States)

    Cheng, Ji-Hong; Liu, Wen-Chun; Chang, Ting-Tsung; Hsieh, Sun-Yuan; Tseng, Vincent S

    2017-10-01

    Many studies have suggested that deletions of Hepatitis B Viral (HBV) are associated with the development of progressive liver diseases, even ultimately resulting in hepatocellular carcinoma (HCC). Among the methods for detecting deletions from next-generation sequencing (NGS) data, few methods considered the characteristics of virus, such as high evolution rates and high divergence among the different HBV genomes. Sequencing high divergence HBV genome sequences using the NGS technology outputs millions of reads. Thus, detecting exact breakpoints of deletions from these big and complex data incurs very high computational cost. We proposed a novel analytical method named VirDelect (Virus Deletion Detect), which uses split read alignment base to detect exact breakpoint and diversity variable to consider high divergence in single-end reads data, such that the computational cost can be reduced without losing accuracy. We use four simulated reads datasets and two real pair-end reads datasets of HBV genome sequence to verify VirDelect accuracy by score functions. The experimental results show that VirDelect outperforms the state-of-the-art method Pindel in terms of accuracy score for all simulated datasets and VirDelect had only two base errors even in real datasets. VirDelect is also shown to deliver high accuracy in analyzing the single-end read data as well as pair-end data. VirDelect can serve as an effective and efficient bioinformatics tool for physiologists with high accuracy and efficient performance and applicable to further analysis with characteristics similar to HBV on genome length and high divergence. The software program of VirDelect can be downloaded at https://sourceforge.net/projects/virdelect/. Copyright © 2017. Published by Elsevier Inc.

  16. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River.

    Science.gov (United States)

    Zhu, Y P; Zhang, H P; Chen, L; Zhao, J F

    2008-11-15

    Situated in the central part of China, the Han River Basin is undergoing rapid social and economic development with some human interventions to be made soon which will profoundly influence the water environment of the basin. The integrated MIKE 11 model system comprising of a rainfall-runoff model (NAM), a non-point load evaluation model (LOAD), a hydrodynamic model (MIKE 11 HD) and a water quality model (ECOLab) was applied to investigate the impact of the Middle Route of the South-North Water Diversion Project on the Han River and the effectiveness of the 2 proposed mitigation projects, the 22 wastewater treatment plants (WWTPs) and the Yangtze-Han Water Diversion Project. The study concludes that business as usual will lead to a continuing rapid deterioration of the water quality of the Han River. Implementation of the Middle Route of the South-North Water Diversion Project in 2010 will bring disastrous consequence in the form of the remarkably elevated pollution level and high risk of algae bloom in the middle and lower reaches. The proposed WWTPs will merely lower the pollution level in the reach by around 10%, while the Yangtze-Han Water Diversion Project can significantly improve the water quality in the downstream 200-km reach. The results reveal that serious water quality problem will emerge in the middle reach between Xiangfan and Qianjiang in the future. Implementation of the South-North Water Diversion Project (phase II) in 2030 will further exacerbate the problem. In order to effectively improve the water quality of the Han River, it is suggested that nutrient removal processes should be adopted in the proposed WWTPs, and the pollution load from the non-point sources, especially the load from the upstream Henan Province, should be effectively controlled.

  17. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-25

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human genome variations: 1) HapMap Data (1,417 individuals) (http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-08_phaseII+III/forward/), 2) HGDP (Human Genome Diversity Project) Data (940 individuals) (http://www.hagsc.org/hgdp/files.html), 3) 1000 genomes Data (2,504 individuals) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ If we can integrate all three data into a single volume of data, we should be able to conduct a more detailed analysis of human genome variations for a total number of 4,861 individuals (= 1,417+940+2,504 individuals). In fact, we successfully integrated these three data sets by use of information on the reference human genome sequence, and we conducted the big data analysis. In particular, we constructed a phylogenetic tree of about 5,000 human individuals at the genome level. As a result, we were able to identify clusters of ethnic groups, with detectable admixture, that were not possible by an analysis of each of the three data sets. Here, we report the outcome of this kind of big data analyses and discuss evolutionary significance of human genomic variations. Note that the present study was conducted in collaboration with Katsuhiko Mineta and Kosuke Goto at KAUST.

  18. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    Science.gov (United States)

    Lawrence N. Hudson; Joseph Wunderle M.; And Others

    2016-01-01

    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to...

  19. The genomic diversity and stability of field strains of Suid herpesvirus 1 (Aujeszky's disease virus)

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig; Sørensen, K. J.

    1991-01-01

    The genomic diversity among isolates of suid herpesvirus 1 (SHV-1) collected in the same herd and among clones from the same isolate was studied by restriction fragment pattern (RFP) analysis using BamHI. Tentatively defining a field strain as a transmissible entity, it was concluded that strains...

  20. 2012 U.S. Department of Energy: Joint Genome Institute: Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, David [DOE JGI Public Affairs Manager

    2013-01-01

    The mission of the U.S. Department of Energy Joint Genome Institute (DOE JGI) is to serve the diverse scientific community as a user facility, enabling the application of large-scale genomics and analysis of plants, microbes, and communities of microbes to address the DOE mission goals in bioenergy and the environment. The DOE JGI's sequencing efforts fall under the Eukaryote Super Program, which includes the Plant and Fungal Genomics Programs; and the Prokaryote Super Program, which includes the Microbial Genomics and Metagenomics Programs. In 2012, several projects made news for their contributions to energy and environment research.

  1. Leadership and organizational tenure diversity as determinants of project team effectiveness

    NARCIS (Netherlands)

    de Poel, Frouke M.; Stoker, Janka I.; Van der Zee, Karen I.

    2014-01-01

    The present study reveals how leadership effectiveness in project teams is dependent on the level of organizational tenure diversity. Data from 34 project teams showed that transformational leadership is related to organizational commitment, creative behavior, and job satisfaction, but only in teams

  2. Leadership and Organizational Tenure Diversity as Determinants of Project Team Effectiveness

    NARCIS (Netherlands)

    de Poel, Frouke M.; Stoker, Janka I.; Van der Zee, Karen I.

    2014-01-01

    The present study reveals how leadership effectiveness in project teams is dependent on the level of organizational tenure diversity. Data from 34 project teams showed that transformational leadership is related to organizational commitment, creative behavior, and job satisfaction, but only in teams

  3. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome.

    Directory of Open Access Journals (Sweden)

    Keyan Zhao

    2010-05-01

    Full Text Available The domestication of Asian rice (Oryza sativa was a complex process punctuated by episodes of introgressive hybridization among and between subpopulations. Deep genetic divergence between the two main varietal groups (Indica and Japonica suggests domestication from at least two distinct wild populations. However, genetic uniformity surrounding key domestication genes across divergent subpopulations suggests cultural exchange of genetic material among ancient farmers.In this study, we utilize a novel 1,536 SNP panel genotyped across 395 diverse accessions of O. sativa to study genome-wide patterns of polymorphism, to characterize population structure, and to infer the introgression history of domesticated Asian rice. Our population structure analyses support the existence of five major subpopulations (indica, aus, tropical japonica, temperate japonica and GroupV consistent with previous analyses. Our introgression analysis shows that most accessions exhibit some degree of admixture, with many individuals within a population sharing the same introgressed segment due to artificial selection. Admixture mapping and association analysis of amylose content and grain length illustrate the potential for dissecting the genetic basis of complex traits in domesticated plant populations.Genes in these regions control a myriad of traits including plant stature, blast resistance, and amylose content. These analyses highlight the power of population genomics in agricultural systems to identify functionally important regions of the genome and to decipher the role of human-directed breeding in refashioning the genomes of a domesticated species.

  4. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe.

    Directory of Open Access Journals (Sweden)

    Verena J Schuenemann

    2018-05-01

    Full Text Available Studying ancient DNA allows us to retrace the evolutionary history of human pathogens, such as Mycobacterium leprae, the main causative agent of leprosy. Leprosy is one of the oldest recorded and most stigmatizing diseases in human history. The disease was prevalent in Europe until the 16th century and is still endemic in many countries with over 200,000 new cases reported annually. Previous worldwide studies on modern and European medieval M. leprae genomes revealed that they cluster into several distinct branches of which two were present in medieval Northwestern Europe. In this study, we analyzed 10 new medieval M. leprae genomes including the so far oldest M. leprae genome from one of the earliest known cases of leprosy in the United Kingdom-a skeleton from the Great Chesterford cemetery with a calibrated age of 415-545 C.E. This dataset provides a genetic time transect of M. leprae diversity in Europe over the past 1500 years. We find M. leprae strains from four distinct branches to be present in the Early Medieval Period, and strains from three different branches were detected within a single cemetery from the High Medieval Period. Altogether these findings suggest a higher genetic diversity of M. leprae strains in medieval Europe at various time points than previously assumed. The resulting more complex picture of the past phylogeography of leprosy in Europe impacts current phylogeographical models of M. leprae dissemination. It suggests alternative models for the past spread of leprosy such as a wide spread prevalence of strains from different branches in Eurasia already in Antiquity or maybe even an origin in Western Eurasia. Furthermore, these results highlight how studying ancient M. leprae strains improves understanding the history of leprosy worldwide.

  5. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe.

    Science.gov (United States)

    Schuenemann, Verena J; Avanzi, Charlotte; Krause-Kyora, Ben; Seitz, Alexander; Herbig, Alexander; Inskip, Sarah; Bonazzi, Marion; Reiter, Ella; Urban, Christian; Dangvard Pedersen, Dorthe; Taylor, G Michael; Singh, Pushpendra; Stewart, Graham R; Velemínský, Petr; Likovsky, Jakub; Marcsik, Antónia; Molnár, Erika; Pálfi, György; Mariotti, Valentina; Riga, Alessandro; Belcastro, M Giovanna; Boldsen, Jesper L; Nebel, Almut; Mays, Simon; Donoghue, Helen D; Zakrzewski, Sonia; Benjak, Andrej; Nieselt, Kay; Cole, Stewart T; Krause, Johannes

    2018-05-01

    Studying ancient DNA allows us to retrace the evolutionary history of human pathogens, such as Mycobacterium leprae, the main causative agent of leprosy. Leprosy is one of the oldest recorded and most stigmatizing diseases in human history. The disease was prevalent in Europe until the 16th century and is still endemic in many countries with over 200,000 new cases reported annually. Previous worldwide studies on modern and European medieval M. leprae genomes revealed that they cluster into several distinct branches of which two were present in medieval Northwestern Europe. In this study, we analyzed 10 new medieval M. leprae genomes including the so far oldest M. leprae genome from one of the earliest known cases of leprosy in the United Kingdom-a skeleton from the Great Chesterford cemetery with a calibrated age of 415-545 C.E. This dataset provides a genetic time transect of M. leprae diversity in Europe over the past 1500 years. We find M. leprae strains from four distinct branches to be present in the Early Medieval Period, and strains from three different branches were detected within a single cemetery from the High Medieval Period. Altogether these findings suggest a higher genetic diversity of M. leprae strains in medieval Europe at various time points than previously assumed. The resulting more complex picture of the past phylogeography of leprosy in Europe impacts current phylogeographical models of M. leprae dissemination. It suggests alternative models for the past spread of leprosy such as a wide spread prevalence of strains from different branches in Eurasia already in Antiquity or maybe even an origin in Western Eurasia. Furthermore, these results highlight how studying ancient M. leprae strains improves understanding the history of leprosy worldwide.

  6. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi.

    Directory of Open Access Journals (Sweden)

    Robin A Ohm

    Full Text Available The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemibiotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.

  7. Hidden diversity revealed by genome-resolved metagenomics of iron-oxidizing microbial mats from L??ihi Seamount, Hawai?i

    OpenAIRE

    Fullerton, Heather; Hager, Kevin W; McAllister, Sean M; Moyer, Craig L

    2017-01-01

    The Zetaproteobacteria are ubiquitous in marine environments, yet this class of Proteobacteria is only represented by a few closely-related cultured isolates. In high-iron environments, such as diffuse hydrothermal vents, the Zetaproteobacteria are important members of the community driving its structure. Biogeography of Zetaproteobacteria has shown two ubiquitous operational taxonomic units (OTUs), yet much is unknown about their genomic diversity. Genome-resolved metagenomics allows for the...

  8. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs

    Czech Academy of Sciences Publication Activity Database

    Cabello-Yeves, P.J.; Ghai, Rohit; Mehrshad, Maliheh; Picazo, A.; Camacho, A.; Rodriguez-Valera, F.

    2017-01-01

    Roč. 8, Nov (2017), č. článku 2131. ISSN 1664-302X R&D Projects: GA ČR GA17-04828S Grant - others:AV ČR(CZ) L200961651 Institutional support: RVO:60077344 Keywords : freshwater Verrucomicrobia * metagenomics * rhodopsin * nitrogen fixation * genome streamlining Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.076, year: 2016

  9. Getting the Word Out on the Human Genome Project: A Course for Physicians

    Energy Technology Data Exchange (ETDEWEB)

    Sara L. Tobin

    2004-09-29

    Our project, ''Getting the Word Out on the Human Genome Project: A Course for Physicians,'' presented educational goals to convey the power and promise of the Human Genome Program to a variety of professional, educational, and public audiences. Our initial goal was to provide practicing physicians with a comprehensive multimedia tool to update their skills in the genomic era. We therefore created the multimedia courseware, ''The New Genetics: Courseware for Physicians. Molecular Concepts, Applications, and Ramifications.'' However, as the project moved forward, several unanticipated audiences found the courseware to be useful for instruction and for self-education, so an additional edition of the courseware ''The New Genetics: Medicine and the Human Genome. Molecular Concepts, Applications, and Ramifications'' was published simultaneously with the physician version. At the time that both versions of the courseware were being completed, Stanford's Office of Technology Licensing opted not to commercialize the courseware and offered a license-back agreement if the authors founded a commercial business. The authors thus became closely involved in marketing and sales, and several thousand copies of the courseware have been sold. Surprisingly, the non-physician version has turned out to be more in demand, and this has led us in several new directions, most of which involve undergraduate education. These are discussed in detail in the Report.

  10. The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population.

    Science.gov (United States)

    Lack, Justin B; Cardeno, Charis M; Crepeau, Marc W; Taylor, William; Corbett-Detig, Russell B; Stevens, Kristian A; Langley, Charles H; Pool, John E

    2015-04-01

    Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets. Copyright © 2015 by the Genetics Society of America.

  11. PREDICTS: Projecting Responses of Ecological Diversity in Changing Terrestrial Systems

    Directory of Open Access Journals (Sweden)

    Georgina Mace

    2012-12-01

    Full Text Available The PREDICTS project (www.predicts.org.uk is a three-year NERC-funded project to model and predict at a global scale how local terrestrial diversity responds to human pressures such as land use, land cover, pollution, invasive species and infrastructure. PREDICTS is a collaboration between Imperial College London, the UNEP World Conservation Monitoring Centre, Microsoft Research Cambridge, UCL and the University of Sussex. In order to meet its aims, the project relies on extensive data describing the diversity and composition of biological communities at a local scale. Such data are collected on a vast scale through the committed efforts of field ecologists. If you have appropriate data that you would be willing to share with us, please get in touch (enquiries@predicts.org.uk. All contributions will be acknowledged appropriately and all data contributors will be included as co-authors on an open-access paper describing the database.

  12. Trends in genome-wide and region-specific genetic diversity in the Dutch-Flemish Holstein-Friesian breeding program from 1986 to 2015.

    Science.gov (United States)

    Doekes, Harmen P; Veerkamp, Roel F; Bijma, Piter; Hiemstra, Sipke J; Windig, Jack J

    2018-04-11

    In recent decades, Holstein-Friesian (HF) selection schemes have undergone profound changes, including the introduction of optimal contribution selection (OCS; around 2000), a major shift in breeding goal composition (around 2000) and the implementation of genomic selection (GS; around 2010). These changes are expected to have influenced genetic diversity trends. Our aim was to evaluate genome-wide and region-specific diversity in HF artificial insemination (AI) bulls in the Dutch-Flemish breeding program from 1986 to 2015. Pedigree and genotype data (~ 75.5 k) of 6280 AI-bulls were used to estimate rates of genome-wide inbreeding and kinship and corresponding effective population sizes. Region-specific inbreeding trends were evaluated using regions of homozygosity (ROH). Changes in observed allele frequencies were compared to those expected under pure drift to identify putative regions under selection. We also investigated the direction of changes in allele frequency over time. Effective population size estimates for the 1986-2015 period ranged from 69 to 102. Two major breakpoints were observed in genome-wide inbreeding and kinship trends. Around 2000, inbreeding and kinship levels temporarily dropped. From 2010 onwards, they steeply increased, with pedigree-based, ROH-based and marker-based inbreeding rates as high as 1.8, 2.1 and 2.8% per generation, respectively. Accumulation of inbreeding varied substantially across the genome. A considerable fraction of markers showed changes in allele frequency that were greater than expected under pure drift. Putative selected regions harboured many quantitative trait loci (QTL) associated to a wide range of traits. In consecutive 5-year periods, allele frequencies changed more often in the same direction than in opposite directions, except when comparing the 1996-2000 and 2001-2005 periods. Genome-wide and region-specific diversity trends reflect major changes in the Dutch-Flemish HF breeding program. Introduction of

  13. A high-density Diversity Arrays Technology (DArT microarray for genome-wide genotyping in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Myburg Alexander A

    2010-06-01

    Full Text Available Abstract Background A number of molecular marker technologies have allowed important advances in the understanding of the genetics and evolution of Eucalyptus, a genus that includes over 700 species, some of which are used worldwide in plantation forestry. Nevertheless, the average marker density achieved with current technologies remains at the level of a few hundred markers per population. Furthermore, the transferability of markers produced with most existing technology across species and pedigrees is usually very limited. High throughput, combined with wide genome coverage and high transferability are necessary to increase the resolution, speed and utility of molecular marker technology in eucalypts. We report the development of a high-density DArT genome profiling resource and demonstrate its potential for genome-wide diversity analysis and linkage mapping in several species of Eucalyptus. Findings After testing several genome complexity reduction methods we identified the PstI/TaqI method as the most effective for Eucalyptus and developed 18 genomic libraries from PstI/TaqI representations of 64 different Eucalyptus species. A total of 23,808 cloned DNA fragments were screened and 13,300 (56% were found to be polymorphic among 284 individuals. After a redundancy analysis, 6,528 markers were selected for the operational array and these were supplemented with 1,152 additional clones taken from a library made from the E. grandis tree whose genome has been sequenced. Performance validation for diversity studies revealed 4,752 polymorphic markers among 174 individuals. Additionally, 5,013 markers showed segregation when screened using six inter-specific mapping pedigrees, with an average of 2,211 polymorphic markers per pedigree and a minimum of 859 polymorphic markers that were shared between any two pedigrees. Conclusions This operational DArT array will deliver 1,000-2,000 polymorphic markers for linkage mapping in most eucalypt pedigrees

  14. A genomic insight into diversity among tribal and nontribal population groups of Manipur, India.

    Science.gov (United States)

    Saraswathy, K N; Kiranmala, Naorem; Murry, Benrithung; Sinha, Ekata; Saksena, Deepti; Kaur, Harpreet; Sachdeva, M P; Kalla, A K

    2009-10-01

    Twenty autosomal markers, including linked markers at two gene markers, are used to understand the genomic similarity and diversity among three tribal (Paite, Thadou, and Kom) and one nontribal communities of Manipur (Northeast India). Two of the markers (CD4 and HB9) are monomorphic in Paite and one (the CD4 marker) in Kom. Data suggest the Meitei (nontribal groups) stand apart from the three tribal groups with respect to higher heterozygosity (0.366) and presence of the highest ancestor haplotypes of DRD2 markers (0.228); this is also supported by principal co-ordinate analysis. These populations are found to be genomically closer to the Chinese population than to other Indian populations.

  15. The dnd operon for DNA phosphorothioation modification system in Escherichia coli is located in diverse genomic islands.

    Science.gov (United States)

    Ho, Wing Sze; Ou, Hong-Yu; Yeo, Chew Chieng; Thong, Kwai Lin

    2015-03-17

    Strains of Escherichia coli that are non-typeable by pulsed-field gel electrophoresis (PFGE) due to in-gel degradation can influence their molecular epidemiological data. The DNA degradation phenotype (Dnd(+)) is mediated by the dnd operon that encode enzymes catalyzing the phosphorothioation of DNA, rendering the modified DNA susceptible to oxidative cleavage during a PFGE run. In this study, a PCR assay was developed to detect the presence of the dnd operon in Dnd(+) E. coli strains and to improve their typeability. Investigations into the genetic environments of the dnd operon in various E. coli strains led to the discovery that the dnd operon is harboured in various diverse genomic islands. The dndBCDE genes (dnd operon) were detected in all Dnd(+) E. coli strains by PCR. The addition of thiourea improved the typeability of Dnd(+) E. coli strains to 100% using PFGE and the Dnd(+) phenotype can be observed in both clonal and genetically diverse E. coli strains. Genomic analysis of 101 dnd operons from genome sequences of Enterobacteriaceae revealed that the dnd operons of the same bacterial species were generally clustered together in the phylogenetic tree. Further analysis of dnd operons of 52 E. coli genomes together with their respective immediate genetic environments revealed a total of 7 types of genetic organizations, all of which were found to be associated with genomic islands designated dnd-encoding GIs. The dnd-encoding GIs displayed mosaic structure and the genomic context of the 7 islands (with 1 representative genome from each type of genetic organization) were also highly variable, suggesting multiple recombination events. This is also the first report where two dnd operons were found within a strain although the biological implication is unknown. Surprisingly, dnd operons were frequently found in pathogenic E. coli although their link with virulence has not been explored. Genomic islands likely play an important role in facilitating the horizontal

  16. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors.

    Science.gov (United States)

    Kiu, Raymond; Caim, Shabhonam; Alexander, Sarah; Pachori, Purnima; Hall, Lindsay J

    2017-01-01

    Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an "open" pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens -associated exotoxins genes including α-toxin ( plc ), enterotoxin ( cpe ), and Perfringolysin O ( pfo or pfoA ), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes ( tet ) and anti-defensins genes ( mprF ) were consistently detected in silico ( tet : 75%; mprF : 100%). However, pre-antibiotic era strain genomes did not encode for tet , thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.

  17. Genomic diversity among Danish field strains of Mycoplasma hyosynoviae assessed by amplified fragment length polymorphism analysis

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Friis, Niels F.; Nielsen, Elisabeth O.

    2002-01-01

    Genomic diversity among strains of Mycoplasma hyosynoviae isolated in Denmark was assessed by using amplified fragment length polymorphism (AFLP) analysis. Ninety-six strains, obtained from different specimens and geographical locations during 30 years and the type strain of M. hyosynoviae S16(T......) were concurrently examined for variance in BglII-MfeI and EcoRI-Csp6I-A AFLP markers. A total of 56 different genomic fingerprints having an overall similarity between 77 and 96% were detected. No correlation between AFLP variability and period of isolation or anatomical site of isolation could...

  18. The European Renal Genome Project: An Integrated Approach Towards Understanding the Genetics of Kidney Development and Disease

    OpenAIRE

    Willnow, TE; Antignac, C; Brändli, AW; Christensen, EI; Cox, RD; Davidson, D; Davies, JA; Devuyst, O; Eichele, G; Hastie, ND; Verroust, PJ; Schedl, A; Meij, IC

    2005-01-01

    Rapid progress in genome research creates a wealth of information on the functional annotation of mammalian genome sequences. However, as we accumulate large amounts of scientific information we are facing problems of how to integrate and relate the data produced by various genomic approaches. Here, we propose the novel concept of an organ atlas where diverse data from expression maps to histological findings to mutant phenotypes can be queried, compared and visualized in the context of a thr...

  19. Pantoea ananatis Genetic Diversity Analysis Reveals Limited Genomic Diversity as Well as Accessory Genes Correlated with Onion Pathogenicity

    Directory of Open Access Journals (Sweden)

    Shaun P. Stice

    2018-02-01

    Full Text Available Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA and repetitive extragenic palindrome repeat (rep-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study.

  20. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Elodie eGazave

    2016-04-01

    Full Text Available The allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia and America. We detected strong population structure broadly concordant with growth habit and geography, and identified three major genetic groups: spring (SP, winter Europe (WE, and winter Asia (WA. Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.

  1. The genome of the endophytic bacterium H. frisingense GSF30T identifies diverse strategies in the Herbaspirillum genus to interact with plants

    Directory of Open Access Journals (Sweden)

    Daniel eStraub

    2013-06-01

    Full Text Available The diazotrophic, bacterial endophyte Herbaspirillum frisingense GSF30T has been identified in biomass grasses grown in temperate climate, including the highly nitrogen-efficient grass Miscanthus. Its genome was annotated and compared with related Herbaspirillum species from diverse habitats, including H. seropedicae, and further well-characterized endophytes. The analysis revealed that Herbaspirillum frisingense lacks a type III secretion system that is present in some related Herbaspirillum grass endophytes. Together with the lack of components of the type II secretion system, the genomic inventory indicates distinct interaction scenarios of endophytic Herbaspirillum strains with plants. Differences in respiration, carbon, nitrogen and cell wall metabolism among Herbaspirillum isolates partially correlate with their different habitats. Herbaspirillum frisingense is closely related to strains isolated from the rhizosphere of phragmites and from well water, but these lack nitrogen fixation and metabolism genes. Within grass endophytes, the high diversity in their genomic inventory suggests that even individual plant species provide distinct, highly diverse metabolic niches for successful endophyte-plant associations.

  2. The genome of the endophytic bacterium H. frisingense GSF30(T) identifies diverse strategies in the Herbaspirillum genus to interact with plants.

    Science.gov (United States)

    Straub, Daniel; Rothballer, Michael; Hartmann, Anton; Ludewig, Uwe

    2013-01-01

    The diazotrophic, bacterial endophyte Herbaspirillum frisingense GSF30(T) has been identified in biomass grasses grown in temperate climate, including the highly nitrogen-efficient grass Miscanthus. Its genome was annotated and compared with related Herbaspirillum species from diverse habitats, including H. seropedicae, and further well-characterized endophytes. The analysis revealed that Herbaspirillum frisingense lacks a type III secretion system that is present in some related Herbaspirillum grass endophytes. Together with the lack of components of the type II secretion system, the genomic inventory indicates distinct interaction scenarios of endophytic Herbaspirillum strains with plants. Differences in respiration, carbon, nitrogen and cell wall metabolism among Herbaspirillum isolates partially correlate with their different habitats. Herbaspirillum frisingense is closely related to strains isolated from the rhizosphere of phragmites and from well water, but these lack nitrogen fixation and metabolism genes. Within grass endophytes, the high diversity in their genomic inventory suggests that even individual plant species provide distinct, highly diverse metabolic niches for successful endophyte-plant associations.

  3. The genome of the endophytic bacterium H. frisingense GSF30T identifies diverse strategies in the Herbaspirillum genus to interact with plants

    Science.gov (United States)

    Straub, Daniel; Rothballer, Michael; Hartmann, Anton; Ludewig, Uwe

    2013-01-01

    The diazotrophic, bacterial endophyte Herbaspirillum frisingense GSF30T has been identified in biomass grasses grown in temperate climate, including the highly nitrogen-efficient grass Miscanthus. Its genome was annotated and compared with related Herbaspirillum species from diverse habitats, including H. seropedicae, and further well-characterized endophytes. The analysis revealed that Herbaspirillum frisingense lacks a type III secretion system that is present in some related Herbaspirillum grass endophytes. Together with the lack of components of the type II secretion system, the genomic inventory indicates distinct interaction scenarios of endophytic Herbaspirillum strains with plants. Differences in respiration, carbon, nitrogen and cell wall metabolism among Herbaspirillum isolates partially correlate with their different habitats. Herbaspirillum frisingense is closely related to strains isolated from the rhizosphere of phragmites and from well water, but these lack nitrogen fixation and metabolism genes. Within grass endophytes, the high diversity in their genomic inventory suggests that even individual plant species provide distinct, highly diverse metabolic niches for successful endophyte-plant associations. PMID:23825472

  4. The modest beginnings of one genome project.

    Science.gov (United States)

    Kaback, David B

    2013-06-01

    One of the top things on a geneticist's wish list has to be a set of mutants for every gene in their particular organism. Such a set was produced for the yeast, Saccharomyces cerevisiae near the end of the 20th century by a consortium of yeast geneticists. However, the functional genomic analysis of one chromosome, its smallest, had already begun more than 25 years earlier as a project that was designed to define most or all of that chromosome's essential genes by temperature-sensitive lethal mutations. When far fewer than expected genes were uncovered, the relatively new field of molecular cloning enabled us and indeed, the entire community of yeast researchers to approach this problem more definitively. These studies ultimately led to cloning, genomic sequencing, and the production and phenotypic analysis of the entire set of knockout mutations for this model organism as well as a better concept of what defines an essential function, a wish fulfilled that enables this model eukaryote to continue at the forefront of research in modern biology.

  5. The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants.

    Science.gov (United States)

    Reuter, Miriam S; Walker, Susan; Thiruvahindrapuram, Bhooma; Whitney, Joe; Cohn, Iris; Sondheimer, Neal; Yuen, Ryan K C; Trost, Brett; Paton, Tara A; Pereira, Sergio L; Herbrick, Jo-Anne; Wintle, Richard F; Merico, Daniele; Howe, Jennifer; MacDonald, Jeffrey R; Lu, Chao; Nalpathamkalam, Thomas; Sung, Wilson W L; Wang, Zhuozhi; Patel, Rohan V; Pellecchia, Giovanna; Wei, John; Strug, Lisa J; Bell, Sherilyn; Kellam, Barbara; Mahtani, Melanie M; Bassett, Anne S; Bombard, Yvonne; Weksberg, Rosanna; Shuman, Cheryl; Cohn, Ronald D; Stavropoulos, Dimitri J; Bowdin, Sarah; Hildebrandt, Matthew R; Wei, Wei; Romm, Asli; Pasceri, Peter; Ellis, James; Ray, Peter; Meyn, M Stephen; Monfared, Nasim; Hosseini, S Mohsen; Joseph-George, Ann M; Keeley, Fred W; Cook, Ryan A; Fiume, Marc; Lee, Hin C; Marshall, Christian R; Davies, Jill; Hazell, Allison; Buchanan, Janet A; Szego, Michael J; Scherer, Stephen W

    2018-02-05

    The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set ( n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants - associated with cancer, cardiac or neurodegenerative phenotypes - remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care. © 2018 Joule Inc. or its licensors.

  6. Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316

    Science.gov (United States)

    Guo, Jing; Jing, Xueping; Peng, Wen-Lei; Nie, Qiyu; Zhai, Yile; Shao, Zongze; Zheng, Longyu; Cai, Minmin; Li, Guangyu; Zuo, Huaiyu; Zhang, Zhitao; Wang, Rui-Ru; Huang, Dian; Cheng, Wanli; Yu, Ziniu; Chen, Ling-Ling; Zhang, Jibin

    2016-01-01

    We isolated Pseudomonas putida (P. putida) strain 1A00316 from Antarctica. This bacterium has a high efficiency against Meloidogyne incognita (M. incognita) in vitro and under greenhouse conditions. The complete genome of P. putida 1A00316 was sequenced using PacBio single molecule real-time (SMRT) technology. A comparative genomic analysis of 16 Pseudomonas strains revealed that although P. putida 1A00316 belonged to P. putida, it was phenotypically more similar to nematicidal Pseudomonas fluorescens (P. fluorescens) strains. We characterized the diversity and specificity of nematicidal factors in P. putida 1A00316 with comparative genomics and functional analysis, and found that P. putida 1A00316 has diverse nematicidal factors including protein alkaline metalloproteinase AprA and two secondary metabolites, hydrogen cyanide and cyclo-(l-isoleucyl-l-proline). We show for the first time that cyclo-(l-isoleucyl-l-proline) exhibit nematicidal activity in P. putida. Interestingly, our study had not detected common nematicidal factors such as 2,4-diacetylphloroglucinol (2,4-DAPG) and pyrrolnitrin in P. putida 1A00316. The results of the present study reveal the diversity and specificity of nematicidal factors in P. putida strain 1A00316. PMID:27384076

  7. Enhancing STEM coursework at MSIs through the AMS Climate Studies Diversity Project

    Science.gov (United States)

    Abshire, W. E.; Mills, E. W.; Slough, S. W.; Brey, J. A.; Geer, I. W.; Nugnes, K. A.

    2017-12-01

    The AMS Education Program celebrates a successful completion to its AMS Climate Studies Diversity Project. The project was funded for 6 years (2011-2017) through the National Science Foundation (NSF). It introduced and enhanced geoscience and/or sustainability-focused course components at minority-serving institutions (MSIs) across the U.S., many of which are signatories to the President's Climate Leadership Commitments, administered by Second Nature, and/or members of the Louis Stokes Alliances for Minority Participation. The Project introduced AMS Climate Studies curriculum to approximately 130 faculty representing 113 MSIs. Each year a cohort of, on average, 25 faculty attended a course implementation workshop where they were immersed in the course materials, received presentations from high-level speakers, and trained as change agents for their local institutions. This workshop was held in the Washington, DC area in collaboration with Second Nature, NOAA, NASA Goddard Space Flight Center, Howard University, and other local climate educational and research institutions. Following, faculty introduced and enhanced geoscience curricula on their local campuses with AMS Climate Studies course materials, thereby bringing change from within. Faculty were then invited to the following AMS Annual Meeting to report on their AMS Climate Studies course implementation progress, reconnect with their colleagues, and learn new science presented at the meeting. A longitudinal survey was administered to all Climate Diversity Project faculty participants who attended the course implementation workshops. The survey goals were to assess the effectiveness of the Project in helping faculty implement/enhance their institutional climate science offering, share best practices in offering AMS Climate Studies, and analyze the usefulness of course materials. Results will be presented during this presentation. The AMS Climate Studies Diversity Project builds on highly successful, NSF

  8. Identification of balanced chromosomal rearrangements previously unknown among participants in the 1000 Genomes Project: implications for interpretation of structural variation in genomes and the future of clinical cytogenetics.

    Science.gov (United States)

    Dong, Zirui; Wang, Huilin; Chen, Haixiao; Jiang, Hui; Yuan, Jianying; Yang, Zhenjun; Wang, Wen-Jing; Xu, Fengping; Guo, Xiaosen; Cao, Ye; Zhu, Zhenzhen; Geng, Chunyu; Cheung, Wan Chee; Kwok, Yvonne K; Yang, Huanming; Leung, Tak Yeung; Morton, Cynthia C; Cheung, Sau Wai; Choy, Kwong Wai

    2017-11-02

    PurposeRecent studies demonstrate that whole-genome sequencing enables detection of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic methods. We aimed to assess our analytical tool for detecting BCAs in the 1000 Genomes Project without knowing which bands were affected.MethodsThe 1000 Genomes Project provides an unprecedented integrated map of structural variants in phenotypically normal subjects, but there is no information on potential inclusion of subjects with apparent BCAs akin to those traditionally detected in diagnostic cytogenetics laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project with sufficient physical coverage (8.25-fold).ResultsWith this approach, we detected four reciprocal balanced translocations and four inversions, ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and polymerase chain reaction studies. One of these DNAs has a subtle translocation that is not readily identified by chromosome analysis because of the similarity of the banding patterns and size of exchanged segments, and another results in disruption of all transcripts of an OMIM gene.ConclusionOur study demonstrates the extension of utilizing low-pass whole-genome sequencing for unbiased detection of BCAs including translocations and inversions previously unknown in the 1000 Genomes Project.GENETICS in MEDICINE advance online publication, 2 November 2017; doi:10.1038/gim.2017.170.

  9. Project to expand diversity in the nursing workforce.

    Science.gov (United States)

    Georges, Catherine

    2012-05-01

    The Bronx, one of the five boroughs of New York City, has a diverse population, but the largest ethnic group is Hispanic, or Latino. More than half (53 per cent) of the students at Lehman College of the City University of New York are from this group, reflecting the population demographic of the borough, but in 2006 Hispanic students comprised just 8 per cent of those enrolled in the department of nursing. To address this disparity, the department undertook a project to increase recruitment, retention and graduation of Hispanic nursing students. The project involved several activities in collaboration with a Bronx high school, Lehman College's baccalaureate nursing programme, and a partner hospital that serves thousands of people of Hispanic origin. This article describes the project and the lessons learnt.

  10. Blueprint for Sustainable Change in Diversity Management and Cultural Competence: Lessons From the National Center for Healthcare Leadership Diversity Demonstration Project.

    Science.gov (United States)

    Dreachslin, Janice L; Weech-Maldonado, Robert; Gail, Judith; Epané, Josué Patien; Wainio, Joyce Anne

    How can healthcare leaders build a sustainable infrastructure to leverage workforce diversity and deliver culturally and linguistically appropriate care to patients? To answer that question, two health systems participated in the National Center for Healthcare Leadership's diversity leadership demonstration project, November 2008 to December 2013. Each system provided one intervention hospital and one control hospital.The control hospital in each system participated in pre- and postassessments but received no preassessment feedback and no intervention support. Each intervention hospital's C-suite leadership and demonstration project manager worked with a diversity coach provided by the National Center for Healthcare Leadership to design and implement an action plan to improve diversity and cultural competence practices and build a sustainable infrastructure. Plans explored areas of strength and areas for improvement that were identified through preintervention assessments. The assessments focused on five competencies of strategic diversity management and culturally and linguistically appropriate care: diversity leadership, strategic human resource management, organizational climate, diversity climate, and patient cultural competence.This article describes each intervention hospital's success in action plan implementation and reports results of postintervention interviews with leadership to provide a blueprint for sustainable change.

  11. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta).

    Science.gov (United States)

    Cremen, Ma Chiela M; Leliaert, Frederik; Marcelino, Vanessa R; Verbruggen, Heroen

    2018-04-01

    Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.

  12. Competence development organizations in project management on the basis of genomic model methodologies

    OpenAIRE

    Бушуев, Сергей Дмитриевич; Рогозина, Виктория Борисовна; Ярошенко, Юрий Федерович

    2013-01-01

    The matrix technology for identification of organisational competencies in project management is presented in the article. Matrix elements are the components of organizational competence in the field of project management and project management methodology represented in the structure of the genome. The matrix model of competence in the framework of the adopted methodologies and scanning method for identifying organizational competences formalised. Proposed methods for building effective proj...

  13. CMG-biotools, a free workbench for basic comparative microbial genomics.

    Science.gov (United States)

    Vesth, Tammi; Lagesen, Karin; Acar, Öncel; Ussery, David

    2013-01-01

    Today, there are more than a hundred times as many sequenced prokaryotic genomes than were present in the year 2000. The economical sequencing of genomic DNA has facilitated a whole new approach to microbial genomics. The real power of genomics is manifested through comparative genomics that can reveal strain specific characteristics, diversity within species and many other aspects. However, comparative genomics is a field not easily entered into by scientists with few computational skills. The CMG-biotools package is designed for microbiologists with limited knowledge of computational analysis and can be used to perform a number of analyses and comparisons of genomic data. The CMG-biotools system presents a stand-alone interface for comparative microbial genomics. The package is a customized operating system, based on Xubuntu 10.10, available through the open source Ubuntu project. The system can be installed on a virtual computer, allowing the user to run the system alongside any other operating system. Source codes for all programs are provided under GNU license, which makes it possible to transfer the programs to other systems if so desired. We here demonstrate the package by comparing and analyzing the diversity within the class Negativicutes, represented by 31 genomes including 10 genera. The analyses include 16S rRNA phylogeny, basic DNA and codon statistics, proteome comparisons using BLAST and graphical analyses of DNA structures. This paper shows the strength and diverse use of the CMG-biotools system. The system can be installed on a vide range of host operating systems and utilizes as much of the host computer as desired. It allows the user to compare multiple genomes, from various sources using standardized data formats and intuitive visualizations of results. The examples presented here clearly shows that users with limited computational experience can perform complicated analysis without much training.

  14. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    OpenAIRE

    Hudson, L. N.; Newbold, T.; Contu, S.; Hill, S. L.; Lysenko, I.; De Palma, A.; Phillips, H. R.; Alhusseini, T. I.; Bedford, F. E.; Bennett, D. J.; Booth, H.; Burton, V. J.; Chng, C. W.; Choimes, A.; Correia, D. L.

    2017-01-01

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make free...

  15. Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review.

    Science.gov (United States)

    Cárdenas, Juan Pablo; Quatrini, Raquel; Holmes, David S

    2016-09-01

    High-throughput genomic technologies are accelerating progress in understanding the diversity of microbial life in many environments. Here we highlight advances in genomics and metagenomics of microorganisms from bioleaching heaps and related acidic mining environments. Bioleaching heaps used for copper recovery provide significant opportunities to study the processes and mechanisms underlying microbial successions and the influence of community composition on ecosystem functioning. Obtaining quantitative and process-level knowledge of these dynamics is pivotal for understanding how microorganisms contribute to the solubilization of copper for industrial recovery. Advances in DNA sequencing technology provide unprecedented opportunities to obtain information about the genomes of bioleaching microorganisms, allowing predictive models of metabolic potential and ecosystem-level interactions to be constructed. These approaches are enabling predictive phenotyping of organisms many of which are recalcitrant to genetic approaches or are unculturable. This mini-review describes current bioleaching genomic and metagenomic projects and addresses the use of genome information to: (i) build metabolic models; (ii) predict microbial interactions; (iii) estimate genetic diversity; and (iv) study microbial evolution. Key challenges and perspectives of bioleaching genomics/metagenomics are addressed. Copyright © 2016 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.

  16. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors

    Directory of Open Access Journals (Sweden)

    Raymond Kiu

    2017-12-01

    Full Text Available Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an “open” pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin (plc, enterotoxin (cpe, and Perfringolysin O (pfo or pfoA, although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56 of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes (tet and anti-defensins genes (mprF were consistently detected in silico (tet: 75%; mprF: 100%. However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.

  17. Understanding our genetic inheritance: The US Human Genome Project, The first five years FY 1991--1995

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-04-01

    The Human Genome Initiative is a worldwide research effort with the goal of analyzing the structure of human DNA and determining the location of the estimated 100,000 human genes. In parallel with this effort, the DNA of a set of model organisms will be studied to provide the comparative information necessary for understanding the functioning of the human genome. The information generated by the human genome project is expected to be the source book for biomedical science in the 21st century and will by of immense benefit to the field of medicine. It will help us to understand and eventually treat many of the more than 4000 genetic diseases that affect mankind, as well as the many multifactorial diseases in which genetic predisposition plays an important role. A centrally coordinated project focused on specific objectives is believed to be the most efficient and least expensive way of obtaining this information. The basic data produced will be collected in electronic databases that will make the information readily accessible on convenient form to all who need it. This report describes the plans for the U.S. human genome project and updates those originally prepared by the Office of Technology Assessment (OTA) and the National Research Council (NRC) in 1988. In the intervening two years, improvements in technology for almost every aspect of genomics research have taken place. As a result, more specific goals can now be set for the project.

  18. Genome-wide-analyses of Listeria monocytogenes from food-processing plants reveal clonal diversity and date the emergence of persisting sequence types.

    Science.gov (United States)

    Knudsen, Gitte M; Nielsen, Jesper Boye; Marvig, Rasmus L; Ng, Yin; Worning, Peder; Westh, Henrik; Gram, Lone

    2017-08-01

    Whole genome sequencing is increasing used in epidemiology, e.g. for tracing outbreaks of food-borne diseases. This requires in-depth understanding of pathogen emergence, persistence and genomic diversity along the food production chain including in food processing plants. We sequenced the genomes of 80 isolates of Listeria monocytogenes sampled from Danish food processing plants over a time-period of 20 years, and analysed the sequences together with 10 public available reference genomes to advance our understanding of interplant and intraplant genomic diversity of L. monocytogenes. Except for three persisting sequence types (ST) based on Multi Locus Sequence Typing being ST7, ST8 and ST121, long-term persistence of clonal groups was limited, and new clones were introduced continuously, potentially from raw materials. No particular gene could be linked to the persistence phenotype. Using time-based phylogenetic analyses of the persistent STs, we estimate the L. monocytogenes evolutionary rate to be 0.18-0.35 single nucleotide polymorphisms/year, suggesting that the persistent STs emerged approximately 100 years ago, which correlates with the onset of industrialization and globalization of the food market. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. O admirável Projeto Genoma Humano The brave New Human Genome Project

    Directory of Open Access Journals (Sweden)

    Marilena V. Corrêa

    2002-12-01

    research. These problems raise challenges in terms of possible inequality in access to the benefits of research. On the other hand, we have the issue of genetic information and safeguarding individual data concerning the risks and susceptibilities to human diseases and characteristics. Defining men and women as a function of genetic traits poses a clear discriminatory threat and becomes even more acute as a function of the genetic reductionism propagated by the mass media. Answers to these problems cannot be expected only from bioethics. The bioethical approach should be combined with political analyses concerning reproduction, sexuality, health, and medicine. Such a vast range of problems cannot be discussed in depth in a single article. The choice was thus made to map them in the sense of emphasizing to what extent, in reflecting on the Genome Project, genomics, and post-genomics, the challenge is met to link such diverse aspects.

  20. De novo assembly of highly diverse viral populations

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    2012-09-01

    Full Text Available Abstract Background Extensive genetic diversity in viral populations within infected hosts and the divergence of variants from existing reference genomes impede the analysis of deep viral sequencing data. A de novo population consensus assembly is valuable both as a single linear representation of the population and as a backbone on which intra-host variants can be accurately mapped. The availability of consensus assemblies and robustly mapped variants are crucial to the genetic study of viral disease progression, transmission dynamics, and viral evolution. Existing de novo assembly techniques fail to robustly assemble ultra-deep sequence data from genetically heterogeneous populations such as viruses into full-length genomes due to the presence of extensive genetic variability, contaminants, and variable sequence coverage. Results We present VICUNA, a de novo assembly algorithm suitable for generating consensus assemblies from genetically heterogeneous populations. We demonstrate its effectiveness on Dengue, Human Immunodeficiency and West Nile viral populations, representing a range of intra-host diversity. Compared to state-of-the-art assemblers designed for haploid or diploid systems, VICUNA recovers full-length consensus and captures insertion/deletion polymorphisms in diverse samples. Final assemblies maintain a high base calling accuracy. VICUNA program is publicly available at: http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/ viral-genomics-analysis-software. Conclusions We developed VICUNA, a publicly available software tool, that enables consensus assembly of ultra-deep sequence derived from diverse viral populations. While VICUNA was developed for the analysis of viral populations, its application to other heterogeneous sequence data sets such as metagenomic or tumor cell population samples may prove beneficial in these fields of research.

  1. Analysis of genotype diversity and evolution of Dengue virus serotype 2 using complete genomes

    Directory of Open Access Journals (Sweden)

    Vaishali P. Waman

    2016-08-01

    Full Text Available Background Dengue is one of the most common arboviral diseases prevalent worldwide and is caused by Dengue viruses (genus Flavivirus, family Flaviviridae. There are four serotypes of Dengue Virus (DENV-1 to DENV-4, each of which is further subdivided into distinct genotypes. DENV-2 is frequently associated with severe dengue infections and epidemics. DENV-2 consists of six genotypes such as Asian/American, Asian I, Asian II, Cosmopolitan, American and sylvatic. Comparative genomic study was carried out to infer population structure of DENV-2 and to analyze the role of evolutionary and spatiotemporal factors in emergence of diversifying lineages. Methods Complete genome sequences of 990 strains of DENV-2 were analyzed using Bayesian-based population genetics and phylogenetic approaches to infer genetically distinct lineages. The role of spatiotemporal factors, genetic recombination and selection pressure in the evolution of DENV-2 is examined using the sequence-based bioinformatics approaches. Results DENV-2 genetic structure is complex and consists of fifteen subpopulations/lineages. The Asian/American genotype is observed to be diversified into seven lineages. The Asian I, Cosmopolitan and sylvatic genotypes were found to be subdivided into two lineages, each. The populations of American and Asian II genotypes were observed to be homogeneous. Significant evidence of episodic positive selection was observed in all the genes, except NS4A. Positive selection operational on a few codons in envelope gene confers antigenic and lineage diversity in the American strains of Asian/American genotype. Selection on codons of non-structural genes was observed to impact diversification of lineages in Asian I, cosmopolitan and sylvatic genotypes. Evidence of intra/inter-genotype recombination was obtained and the uncertainty in classification of recombinant strains was resolved using the population genetics approach. Discussion Complete genome-based analysis

  2. Perspectives from the Avian Phylogenomics Project: Questions that Can Be Answered with Sequencing All Genomes of a Vertebrate Class.

    Science.gov (United States)

    Jarvis, Erich D

    2016-01-01

    The rapid pace of advances in genome technology, with concomitant reductions in cost, makes it feasible that one day in our lifetime we will have available extant genomes of entire classes of species, including vertebrates. I recently helped cocoordinate the large-scale Avian Phylogenomics Project, which collected and sequenced genomes of 48 bird species representing most currently classified orders to address a range of questions in phylogenomics and comparative genomics. The consortium was able to answer questions not previously possible with just a few genomes. This success spurred on the creation of a project to sequence the genomes of at least one individual of all extant ∼10,500 bird species. The initiation of this project has led us to consider what questions now impossible to answer could be answered with all genomes, and could drive new questions now unimaginable. These include the generation of a highly resolved family tree of extant species, genome-wide association studies across species to identify genetic substrates of many complex traits, redefinition of species and the species concept, reconstruction of the genomes of common ancestors, and generation of new computational tools to address these questions. Here I present visions for the future by posing and answering questions regarding what scientists could potentially do with available genomes of an entire vertebrate class.

  3. Genetic and genomic diversity studies of Acacia symbionts in Senegal reveal new species of Mesorhizobium with a putative geographical pattern.

    Science.gov (United States)

    Diouf, Fatou; Diouf, Diegane; Klonowska, Agnieszka; Le Queré, Antoine; Bakhoum, Niokhor; Fall, Dioumacor; Neyra, Marc; Parrinello, Hugues; Diouf, Mayecor; Ndoye, Ibrahima; Moulin, Lionel

    2015-01-01

    Acacia senegal (L) Willd. and Acacia seyal Del. are highly nitrogen-fixing and moderately salt tolerant species. In this study we focused on the genetic and genomic diversity of Acacia mesorhizobia symbionts from diverse origins in Senegal and investigated possible correlations between the genetic diversity of the strains, their soil of origin, and their tolerance to salinity. We first performed a multi-locus sequence analysis on five markers gene fragments on a collection of 47 mesorhizobia strains of A. senegal and A. seyal from 8 localities. Most of the strains (60%) clustered with the M. plurifarium type strain ORS 1032T, while the others form four new clades (MSP1 to MSP4). We sequenced and assembled seven draft genomes: four in the M. plurifarium clade (ORS3356, ORS3365, STM8773 and ORS1032T), one in MSP1 (STM8789), MSP2 (ORS3359) and MSP3 (ORS3324). The average nucleotide identities between these genomes together with the MLSA analysis reveal three new species of Mesorhizobium. A great variability of salt tolerance was found among the strains with a lack of correlation between the genetic diversity of mesorhizobia, their salt tolerance and the soils samples characteristics. A putative geographical pattern of A. senegal symbionts between the dryland north part and the center of Senegal was found, reflecting adaptations to specific local conditions such as the water regime. However, the presence of salt does not seem to be an important structuring factor of Mesorhizobium species.

  4. Deep whole-genome sequencing of 90 Han Chinese genomes.

    Science.gov (United States)

    Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen

    2017-09-01

    Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000

  5. High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon.

    Science.gov (United States)

    Reddy, Umesh K; Nimmakayala, Padma; Levi, Amnon; Abburi, Venkata Lakshmi; Saminathan, Thangasamy; Tomason, Yan R; Vajja, Gopinath; Reddy, Rishi; Abburi, Lavanya; Wehner, Todd C; Ronin, Yefim; Karol, Abraham

    2014-09-15

    We used genotyping by sequencing to identify a set of 10,480 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1096 cM for watermelon. We assessed the genome-wide variation in recombination rate (GWRR) across the map and found an association between GWRR and genome-wide nucleotide diversity. Collinearity between the map and the genome-wide reference sequence for watermelon was studied to identify inconsistency and chromosome rearrangements. We assessed genome-wide nucleotide diversity, linkage disequilibrium (LD), and selective sweep for wild, semi-wild, and domesticated accessions of Citrullus lanatus var. lanatus to track signals of domestication. Principal component analysis combined with chromosome-wide phylogenetic study based on 1563 SNPs obtained after LD pruning with minor allele frequency of 0.05 resolved the differences between semi-wild and wild accessions as well as relationships among worldwide sweet watermelon. Population structure analysis revealed predominant ancestries for wild, semi-wild, and domesticated watermelons as well as admixture of various ancestries that were important for domestication. Sliding window analysis of Tajima's D across various chromosomes was used to resolve selective sweep. LD decay was estimated for various chromosomes. We identified a strong selective sweep on chromosome 3 consisting of important genes that might have had a role in sweet watermelon domestication. Copyright © 2014 Reddy et al.

  6. Analysis of the a genome genetic diversity among brassica napus, b. rapa and b. juncea accessions using specific simple sequence repeat markers

    International Nuclear Information System (INIS)

    Tian, H.; Yan, J.; Zhang, R.; Guo, Y.; Hu, S.; Channa, S.A.

    2017-01-01

    This investigation was aimed at evaluating the genetic diversity of 127 accessions among Brassica napus, B. rapa, and B. juncea by using 15 pairs of the A genome specific simple sequence repeat primers. These 127 accessions could be clearly separated into three groups by cluster analysis, principal component analysis, and population structure analysis separately, and the results analyzed by the three methods were very similar. Group I comprised of mainly B. napus accessions and the most of B. juncea accessions formed Group II, Group III included nearly all of the B. rapa accessions. The result showed that 36.86% of the variance was due to significant differences among populations of species, indicated that abundance genetic diversity existed among the A genome of B. napus, B. rapa, and B. juncea accessions. B. napus, B. rapa, and B. juncea have the abundant genetic diversity in the A genome, and some elite genes can be used to broaden the genetic base of them, especially for B. napus, in future rapeseed breeding program. (author)

  7. An Action Learning Project on Diversity: Pitfalls and Possibilities.

    Science.gov (United States)

    Hite, Linda M.

    1997-01-01

    In a college course on diversity in the workplace, students' experiences with conducting a cultural audit of the university as a workplace illustrate the dilemmas that can arise when students conduct action research in a real client system. Despite the inherent problems, the project resulted in significant student learning about the subject and…

  8. Genome-wide analysis of the diversity and ancestry of Korean dogs.

    Science.gov (United States)

    Choi, Bong Hwan; Wijayananda, Hasini I; Lee, Soo Hyun; Lee, Doo Ho; Kim, Jong Seok; Oh, Seok Il; Park, Eung Woo; Lee, Cheul Koo; Lee, Seung Hwan

    2017-01-01

    There are various hypotheses on dog domestication based on archeological and genetic studies. Although many studies have been conducted on the origin of dogs, the existing literature about the ancestry, diversity, and population structure of Korean dogs is sparse. Therefore, this study is focused on the origin, diversity and population structure of Korean dogs. The study sample comprised four major categories, including non-dogs (coyotes and wolves), ancient, modern and Korean dogs. Selected samples were genotyped using an Illumina CanineHD array containing 173,662 single nucleotide polymorphisms. The genome-wide data were filtered using quality control parameters in PLINK 1.9. Only autosomal chromosomes were used for further analysis. The negative off-diagonal variance of the genetic relationship matrix analysis depicted, the variability of samples in each population. FIS (inbreeding rate within a population) values indicated, a low level of inbreeding within populations, and the patterns were in concordance with the results of Nei's genetic distance analysis. The lowest FST (inbreeding rate between populations) values among Korean and Chinese breeds, using a phylogenetic tree, multi-dimensional scaling, and a TreeMix likelihood tree showed Korean breeds are highly related to Chinese breeds. The Korean breeds possessed a unique and large diversity of admixtures compared with other breeds. The highest and lowest effective population sizes were observed in Korean Jindo Black (485) and Korean Donggyeong White (109), respectively. The historical effective population size of all Korean dogs showed declining trend from the past to present. It is important to take immediate action to protect the Korean dog population while conserving their diversity. Furthermore, this study suggests that Korean dogs have unique diversity and are one of the basal lineages of East Asian dogs, originating from China.

  9. Genome-wide analysis of the diversity and ancestry of Korean dogs.

    Directory of Open Access Journals (Sweden)

    Bong Hwan Choi

    Full Text Available There are various hypotheses on dog domestication based on archeological and genetic studies. Although many studies have been conducted on the origin of dogs, the existing literature about the ancestry, diversity, and population structure of Korean dogs is sparse. Therefore, this study is focused on the origin, diversity and population structure of Korean dogs. The study sample comprised four major categories, including non-dogs (coyotes and wolves, ancient, modern and Korean dogs. Selected samples were genotyped using an Illumina CanineHD array containing 173,662 single nucleotide polymorphisms. The genome-wide data were filtered using quality control parameters in PLINK 1.9. Only autosomal chromosomes were used for further analysis. The negative off-diagonal variance of the genetic relationship matrix analysis depicted, the variability of samples in each population. FIS (inbreeding rate within a population values indicated, a low level of inbreeding within populations, and the patterns were in concordance with the results of Nei's genetic distance analysis. The lowest FST (inbreeding rate between populations values among Korean and Chinese breeds, using a phylogenetic tree, multi-dimensional scaling, and a TreeMix likelihood tree showed Korean breeds are highly related to Chinese breeds. The Korean breeds possessed a unique and large diversity of admixtures compared with other breeds. The highest and lowest effective population sizes were observed in Korean Jindo Black (485 and Korean Donggyeong White (109, respectively. The historical effective population size of all Korean dogs showed declining trend from the past to present. It is important to take immediate action to protect the Korean dog population while conserving their diversity. Furthermore, this study suggests that Korean dogs have unique diversity and are one of the basal lineages of East Asian dogs, originating from China.

  10. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: a snapshot of its genetic diversity and evolution.

    Directory of Open Access Journals (Sweden)

    Zhihong Sun

    Full Text Available Bifidobacteria are well known for their human health-promoting effects and are therefore widely applied in the food industry. Members of the Bifidobacterium genus were first identified from the human gastrointestinal tract and were then found to be widely distributed across various ecological niches. Although the genetic diversity of Bifidobacterium has been determined based on several marker genes or a few genomes, the global diversity and evolution scenario for the entire genus remain unresolved. The present study comparatively analyzed the genomes of 45 type strains. We built a robust genealogy for Bifidobacterium based on 402 core genes and defined its root according to the phylogeny of the tree of bacteria. Our results support that all human isolates are of younger lineages, and although species isolated from bees dominate the more ancient lineages, the bee was not necessarily the original host for bifidobacteria. Moreover, the species isolated from different hosts are enriched with specific gene sets, suggesting host-specific adaptation. Notably, bee-specific genes are strongly associated with respiratory metabolism and are potential in helping those bacteria adapt to the oxygen-rich gut environment in bees. This study provides a snapshot of the genetic diversity and evolution of Bifidobacterium, paving the way for future studies on the taxonomy and functional genomics of the genus.

  11. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project.

    Science.gov (United States)

    Higgins, Anne W; Alkuraya, Fowzan S; Bosco, Amy F; Brown, Kerry K; Bruns, Gail A P; Donovan, Diana J; Eisenman, Robert; Fan, Yanli; Farra, Chantal G; Ferguson, Heather L; Gusella, James F; Harris, David J; Herrick, Steven R; Kelly, Chantal; Kim, Hyung-Goo; Kishikawa, Shotaro; Korf, Bruce R; Kulkarni, Shashikant; Lally, Eric; Leach, Natalia T; Lemyre, Emma; Lewis, Janine; Ligon, Azra H; Lu, Weining; Maas, Richard L; MacDonald, Marcy E; Moore, Steven D P; Peters, Roxanna E; Quade, Bradley J; Quintero-Rivera, Fabiola; Saadi, Irfan; Shen, Yiping; Shendure, Jay; Williamson, Robin E; Morton, Cynthia C

    2008-03-01

    Apparently balanced chromosomal rearrangements in individuals with major congenital anomalies represent natural experiments of gene disruption and dysregulation. These individuals can be studied to identify novel genes critical in human development and to annotate further the function of known genes. Identification and characterization of these genes is the goal of the Developmental Genome Anatomy Project (DGAP). DGAP is a multidisciplinary effort that leverages the recent advances resulting from the Human Genome Project to increase our understanding of birth defects and the process of human development. Clinically significant phenotypes of individuals enrolled in DGAP are varied and, in most cases, involve multiple organ systems. Study of these individuals' chromosomal rearrangements has resulted in the mapping of 77 breakpoints from 40 chromosomal rearrangements by FISH with BACs and fosmids, array CGH, Southern-blot hybridization, MLPA, RT-PCR, and suppression PCR. Eighteen chromosomal breakpoints have been cloned and sequenced. Unsuspected genomic imbalances and cryptic rearrangements were detected, but less frequently than has been reported previously. Chromosomal rearrangements, both balanced and unbalanced, in individuals with multiple congenital anomalies continue to be a valuable resource for gene discovery and annotation.

  12. The highly heterogeneous methylated genomes and diverse restriction-modification systems of bloom-forming Microcystis.

    Science.gov (United States)

    Zhao, Liang; Song, Yulong; Li, Lin; Gan, Nanqin; Brand, Jerry J; Song, Lirong

    2018-05-01

    The occurrence of harmful Microcystis blooms is increasing in frequency in a myriad of freshwater ecosystems. Despite considerable research pertaining to the cause and nature of these blooms, the molecular mechanisms behind the cosmopolitan distribution and phenotypic diversity in Microcystis are still unclear. We compared the patterns and extent of DNA methylation in three strains of Microcystis, PCC 7806SL, NIES-2549 and FACHB-1757, using Single Molecule Real-Time (SMRT) sequencing technology. Intact restriction-modification (R-M) systems were identified from the genomes of these strains, and from two previously sequenced strains of Microcystis, NIES-843 and TAIHU98. A large number of methylation motifs and R-M genes were identified in these strains, which differ substantially among different strains. Of the 35 motifs identified, eighteen had not previously been reported. Strain NIES-843 contains a larger number of total putative methyltransferase genes than have been reported previously from any bacterial genome. Genomic comparisons reveal that methyltransferases (some partial) may have been acquired from the environment through horizontal gene transfer. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon, Portugal, a highly drug resistant setting

    KAUST Repository

    Perdigão, João

    2014-11-18

    Background Multidrug- (MDR) and extensively drug resistant (XDR) tuberculosis (TB) presents a challenge to disease control and elimination goals. In Lisbon, Portugal, specific and successful XDR-TB strains have been found in circulation for almost two decades. Results In the present study we have genotyped and sequenced the genomes of 56 Mycobacterium tuberculosis isolates recovered mostly from Lisbon. The genotyping data revealed three major clusters associated with MDR-TB, two of which are associated with XDR-TB. Whilst the genomic data contributed to elucidate the phylogenetic positioning of circulating MDR-TB strains, showing a high predominance of a single SNP cluster group 5. Furthermore, a genome-wide phylogeny analysis from these strains, together with 19 publicly available genomes of Mycobacterium tuberculosis clinical isolates, revealed two major clades responsible for M/XDR-TB in the region: Lisboa3 and Q1 (LAM). The data presented by this study yielded insights on microevolution and identification of novel compensatory mutations associated with rifampicin resistance in rpoB and rpoC. The screening for other structural variations revealed putative clade-defining variants. One deletion in PPE41, found among Lisboa3 isolates, is proposed to contribute to immune evasion and as a selective advantage. Insertion sequence (IS) mapping has also demonstrated the role of IS6110 as a major driver in mycobacterial evolution by affecting gene integrity and regulation. Conclusions Globally, this study contributes with novel genome-wide phylogenetic data and has led to the identification of new genomic variants that support the notion of a growing genomic diversity facing both setting and host adaptation.

  14. Selection on Optimal Haploid Value Increases Genetic Gain and Preserves More Genetic Diversity Relative to Genomic Selection.

    Science.gov (United States)

    Daetwyler, Hans D; Hayden, Matthew J; Spangenberg, German C; Hayes, Ben J

    2015-08-01

    Doubled haploids are routinely created and phenotypically selected in plant breeding programs to accelerate the breeding cycle. Genomic selection, which makes use of both phenotypes and genotypes, has been shown to further improve genetic gain through prediction of performance before or without phenotypic characterization of novel germplasm. Additional opportunities exist to combine genomic prediction methods with the creation of doubled haploids. Here we propose an extension to genomic selection, optimal haploid value (OHV) selection, which predicts the best doubled haploid that can be produced from a segregating plant. This method focuses selection on the haplotype and optimizes the breeding program toward its end goal of generating an elite fixed line. We rigorously tested OHV selection breeding programs, using computer simulation, and show that it results in up to 0.6 standard deviations more genetic gain than genomic selection. At the same time, OHV selection preserved a substantially greater amount of genetic diversity in the population than genomic selection, which is important to achieve long-term genetic gain in breeding populations. Copyright © 2015 by the Genetics Society of America.

  15. Relationship between Deleterious Variation, Genomic Autozygosity, and Disease Risk: Insights from The 1000 Genomes Project.

    Science.gov (United States)

    Pemberton, Trevor J; Szpiech, Zachary A

    2018-04-05

    Genomic regions of autozygosity (ROAs) represent segments of individual genomes that are homozygous for haplotypes inherited identical-by-descent (IBD) from a common ancestor. ROAs are nonuniformly distributed across the genome, and increased ROA levels are a reported risk factor for numerous complex diseases. Previously, we hypothesized that long ROAs are enriched for deleterious homozygotes as a result of young haplotypes with recent deleterious mutations-relatively untouched by purifying selection-being paired IBD as a consequence of recent parental relatedness, a pattern supported by ROA and whole-exome sequence data on 27 individuals. Here, we significantly bolster support for our hypothesis and expand upon our original analyses using ROA and whole-genome sequence data on 2,436 individuals from The 1000 Genomes Project. Considering CADD deleteriousness scores, we reaffirm our previous observation that long ROAs are enriched for damaging homozygotes worldwide. We show that strongly damaging homozygotes experience greater enrichment than weaker damaging homozygotes, while overall enrichment varies appreciably among populations. Mendelian disease genes and those encoding FDA-approved drug targets have significantly increased rates of gain in damaging homozygotes with increasing ROA coverage relative to all other genes. In genes implicated in eight complex phenotypes for which ROA levels have been identified as a risk factor, rates of gain in damaging homozygotes vary across phenotypes and populations but frequently differ significantly from non-disease genes. These findings highlight the potential confounding effects of population background in the assessment of associations between ROA levels and complex disease risk, which might underlie reported inconsistencies in ROA-phenotype associations. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Cloning, production, and purification of proteins for a medium-scale structural genomics project.

    Science.gov (United States)

    Quevillon-Cheruel, Sophie; Collinet, Bruno; Trésaugues, Lionel; Minard, Philippe; Henckes, Gilles; Aufrère, Robert; Blondeau, Karine; Zhou, Cong-Zhao; Liger, Dominique; Bettache, Nabila; Poupon, Anne; Aboulfath, Ilham; Leulliot, Nicolas; Janin, Joël; van Tilbeurgh, Herman

    2007-01-01

    The South-Paris Yeast Structural Genomics Pilot Project (http://www.genomics.eu.org) aims at systematically expressing, purifying, and determining the three-dimensional structures of Saccharomyces cerevisiae proteins. We have already cloned 240 yeast open reading frames in the Escherichia coli pET system. Eighty-two percent of the targets can be expressed in E. coli, and 61% yield soluble protein. We have currently purified 58 proteins. Twelve X-ray structures have been solved, six are in progress, and six other proteins gave crystals. In this chapter, we present the general experimental flowchart applied for this project. One of the main difficulties encountered in this pilot project was the low solubility of a great number of target proteins. We have developed parallel strategies to recover these proteins from inclusion bodies, including refolding, coexpression with chaperones, and an in vitro expression system. A limited proteolysis protocol, developed to localize flexible regions in proteins that could hinder crystallization, is also described.

  17. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function

    Directory of Open Access Journals (Sweden)

    Antommattei Frances M

    2008-10-01

    Full Text Available Abstract Background Geobacter species are δ-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. Results The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (~70 homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively. Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors

  18. As Clear as Mud? Determining the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates of Clostridium difficile.

    Science.gov (United States)

    Hargreaves, Katherine R; Otieno, James R; Thanki, Anisha; Blades, Matthew J; Millard, Andrew D; Browne, Hilary P; Lawley, Trevor D; Clokie, Martha R J

    2015-05-27

    The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile "mobilome," which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Targeted genomic enrichment and sequencing of CyHV-3 from carp tissues confirms low nucleotide diversity and mixed genotype infections

    Directory of Open Access Journals (Sweden)

    Saliha Hammoumi

    2016-09-01

    Full Text Available Koi herpesvirus disease (KHVD is an emerging disease that causes mass mortality in koi and common carp, Cyprinus carpio L. Its causative agent is Cyprinid herpesvirus 3 (CyHV-3, also known as koi herpesvirus (KHV. Although data on the pathogenesis of this deadly virus is relatively abundant in the literature, still little is known about its genomic diversity and about the molecular mechanisms that lead to such a high virulence. In this context, we developed a new strategy for sequencing full-length CyHV-3 genomes directly from infected fish tissues. Total genomic DNA extracted from carp gill tissue was specifically enriched with CyHV-3 sequences through hybridization to a set of nearly 2 million overlapping probes designed to cover the entire genome length, using KHV-J sequence (GenBank accession number AP008984 as reference. Applied to 7 CyHV-3 specimens from Poland and Indonesia, this targeted genomic enrichment enabled recovery of the full genomes with >99.9% reference coverage. The enrichment rate was directly correlated to the estimated number of viral copies contained in the DNA extracts used for library preparation, which varied between ∼5000 and ∼2×107. The average sequencing depth was >200 for all samples, thus allowing the search for variants with high confidence. Sequence analyses highlighted a significant proportion of intra-specimen sequence heterogeneity, suggesting the presence of mixed infections in all investigated fish. They also showed that inter-specimen genetic diversity at the genome scale was very low (>99.95% of sequence identity. By enabling full genome comparisons directly from infected fish tissues, this new method will be valuable to trace outbreaks rapidly and at a reasonable cost, and in turn to understand the transmission routes of CyHV-3.

  20. Using Project-Based Learning and Google Docs to Support Diversity

    Science.gov (United States)

    Leh, Amy

    2014-01-01

    A graduate course, ETEC543 ("Technology and Learning I"), was revised to better serve increasing new student population, international students, in an academic program. Project-based learning, Google Docs, and instructional strategies fostering diversity and critical thinking were incorporated into the course redesign. Observations,…

  1. Genetic and genomic diversity studies of Acacia symbionts in Senegal reveal new species of Mesorhizobium with a putative geographical pattern.

    Directory of Open Access Journals (Sweden)

    Fatou Diouf

    Full Text Available Acacia senegal (L Willd. and Acacia seyal Del. are highly nitrogen-fixing and moderately salt tolerant species. In this study we focused on the genetic and genomic diversity of Acacia mesorhizobia symbionts from diverse origins in Senegal and investigated possible correlations between the genetic diversity of the strains, their soil of origin, and their tolerance to salinity. We first performed a multi-locus sequence analysis on five markers gene fragments on a collection of 47 mesorhizobia strains of A. senegal and A. seyal from 8 localities. Most of the strains (60% clustered with the M. plurifarium type strain ORS 1032T, while the others form four new clades (MSP1 to MSP4. We sequenced and assembled seven draft genomes: four in the M. plurifarium clade (ORS3356, ORS3365, STM8773 and ORS1032T, one in MSP1 (STM8789, MSP2 (ORS3359 and MSP3 (ORS3324. The average nucleotide identities between these genomes together with the MLSA analysis reveal three new species of Mesorhizobium. A great variability of salt tolerance was found among the strains with a lack of correlation between the genetic diversity of mesorhizobia, their salt tolerance and the soils samples characteristics. A putative geographical pattern of A. senegal symbionts between the dryland north part and the center of Senegal was found, reflecting adaptations to specific local conditions such as the water regime. However, the presence of salt does not seem to be an important structuring factor of Mesorhizobium species.

  2. Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity.

    Directory of Open Access Journals (Sweden)

    Tamara Smokvina

    Full Text Available Lactobacillus paracasei is a member of the normal human and animal gut microbiota and is used extensively in the food industry in starter cultures for dairy products or as probiotics. With the development of low-cost, high-throughput sequencing techniques it has become feasible to sequence many different strains of one species and to determine its "pan-genome". We have sequenced the genomes of 34 different L. paracasei strains, and performed a comparative genomics analysis. We analysed genome synteny and content, focussing on the pan-genome, core genome and variable genome. Each genome was shown to contain around 2800-3100 protein-coding genes, and comparative analysis identified over 4200 ortholog groups that comprise the pan-genome of this species, of which about 1800 ortholog groups make up the conserved core. Several factors previously associated with host-microbe interactions such as pili, cell-envelope proteinase, hydrolases p40 and p75 or the capacity to produce short branched-chain fatty acids (bkd operon are part of the L. paracasei core genome present in all analysed strains. The variome consists mainly of hypothetical proteins, phages, plasmids, transposon/conjugative elements, and known functions such as sugar metabolism, cell-surface proteins, transporters, CRISPR-associated proteins, and EPS biosynthesis proteins. An enormous variety and variability of sugar utilization gene cassettes were identified, with each strain harbouring between 25-53 cassettes, reflecting the high adaptability of L. paracasei to different niches. A phylogenomic tree was constructed based on total genome contents, and together with an analysis of horizontal gene transfer events we conclude that evolution of these L. paracasei strains is complex and not always related to niche adaptation. The results of this genome content comparison was used, together with high-throughput growth experiments on various carbohydrates, to perform gene-trait matching analysis

  3. The human noncoding genome defined by genetic diversity.

    Science.gov (United States)

    di Iulio, Julia; Bartha, Istvan; Wong, Emily H M; Yu, Hung-Chun; Lavrenko, Victor; Yang, Dongchan; Jung, Inkyung; Hicks, Michael A; Shah, Naisha; Kirkness, Ewen F; Fabani, Martin M; Biggs, William H; Ren, Bing; Venter, J Craig; Telenti, Amalio

    2018-03-01

    Understanding the significance of genetic variants in the noncoding genome is emerging as the next challenge in human genomics. We used the power of 11,257 whole-genome sequences and 16,384 heptamers (7-nt motifs) to build a map of sequence constraint for the human species. This build differed substantially from traditional maps of interspecies conservation and identified regulatory elements among the most constrained regions of the genome. Using new Hi-C experimental data, we describe a strong pattern of coordination over 2 Mb where the most constrained regulatory elements associate with the most essential genes. Constrained regions of the noncoding genome are up to 52-fold enriched for known pathogenic variants as compared to unconstrained regions (21-fold when compared to the genome average). This map of sequence constraint across thousands of individuals is an asset to help interpret noncoding elements in the human genome, prioritize variants and reconsider gene units at a larger scale.

  4. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

    Directory of Open Access Journals (Sweden)

    Lippold Sebastian

    2011-11-01

    Full Text Available Abstract Background DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region were investigated for larger sample sets. Results In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73% already existed before the beginning of domestication about 5,000 years ago. Conclusions Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the

  5. Genomic dissection of anthracnose resistant response in sorghum [Sorghum bicolor (L.)

    Science.gov (United States)

    The goal of this project is to use a genomics-based approaches to identify anthracnose resistance loci from diverse sorghum germplasm as an effort to the disease resistance mechanism of at least one of these genes. This information will provide plant breeders with a tool kit that can be used to maxi...

  6. Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

    Energy Technology Data Exchange (ETDEWEB)

    Margaret Riley; Merry Buckley

    2009-01-01

    Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin

  7. Genomic diversity guides conservation strategies among rare terrestrial orchid species when taxonomy remains uncertain.

    Science.gov (United States)

    Ahrens, Collin W; Supple, Megan A; Aitken, Nicola C; Cantrill, David J; Borevitz, Justin O; James, Elizabeth A

    2017-06-01

    Species are often used as the unit for conservation, but may not be suitable for species complexes where taxa are difficult to distinguish. Under such circumstances, it may be more appropriate to consider species groups or populations as evolutionarily significant units (ESUs). A population genomic approach was employed to investigate the diversity within and among closely related species to create a more robust, lineage-specific conservation strategy for a nationally endangered terrestrial orchid and its relatives from south-eastern Australia. Four putative species were sampled from a total of 16 populations in the Victorian Volcanic Plain (VVP) bioregion and one population of a sub-alpine outgroup in south-eastern Australia. Morphological measurements were taken in situ along with leaf material for genotyping by sequencing (GBS) and microsatellite analyses. Species could not be differentiated using morphological measurements. Microsatellite and GBS markers confirmed the outgroup as distinct, but only GBS markers provided resolution of population genetic structure. The nationally endangered Diuris basaltica was indistinguishable from two related species ( D. chryseopsis and D. behrii ), while the state-protected D. gregaria showed genomic differentiation. Genomic diversity identified among the four Diuris species suggests that conservation of this taxonomically complex group will be best served by considering them as one ESU rather than separately aligned with species as currently recognized. This approach will maximize evolutionary potential among all species during increased isolation and environmental change. The methods used here can be applied generally to conserve evolutionary processes for groups where taxonomic uncertainty hinders the use of species as conservation units. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Hunting for genes for hypertension: the Millennium Genome Project for Hypertension.

    Science.gov (United States)

    Tabara, Yasuharu; Kohara, Katsuhiko; Miki, Tetsuro

    2012-06-01

    The Millennium Genome Project for Hypertension was started in 2000 to identify genetic variants conferring susceptibility to hypertension, with the aim of furthering the understanding of the pathogenesis of this condition and realizing genome-based personalized medical care. Two different approaches were launched, genome-wide association analysis using single-nucleotide polymorphisms (SNPs) and microsatellite markers, and systematic candidate gene analysis, under the hypothesis that common variants have an important role in the etiology of common diseases. These multilateral approaches identified ATP2B1 as a gene responsible for hypertension in not only Japanese but also Caucasians. The high blood pressure susceptibility conferred by certain alleles of ATP2B1 has been widely replicated in various populations. Ex vivo mRNA expression analysis in umbilical artery smooth muscle cells indicated that reduced expression of this gene associated with the risk allele may be an underlying mechanism relating the ATP2B1 variant to hypertension. However, the effect size of a SNP was too small to clarify the entire picture of the genetic basis of hypertension. Further, dense genome analysis with accurate phenotype data may be required.

  9. A Collection of Algal Genomes from the JGI

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2012-03-19

    Algae, defined as photosynthetic eukaryotes other than plants, constitute a major component of fundamental eukaryotic diversity. Acquisition of the ability to conduct oxygenic photosynthesis through endosymbiotic events has been a principal driver of eukaryotic evolution, and today algae continue to underpin aquatic food chains as primary producers. Algae play profound roles in the carbon cycle, can impose health and economic costs through toxic blooms, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE?s Joint Genome Institute (JGI). A collection of algal projects ongoing at JGI contributes to each of these areas and illustrates analyses employed in their genome exploration.

  10. Assessing genetic diversity among Brettanomyces yeasts by DNA fingerprinting and whole-genome sequencing.

    Science.gov (United States)

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A; Verstrepen, Kevin J; Lievens, Bart

    2014-07-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Structural and sequence diversity of the transposon Galileo in the Drosophila willistoni genome.

    Science.gov (United States)

    Gonçalves, Juliana W; Valiati, Victor Hugo; Delprat, Alejandra; Valente, Vera L S; Ruiz, Alfredo

    2014-09-13

    Galileo is one of three members of the P superfamily of DNA transposons. It was originally discovered in Drosophila buzzatii, in which three segregating chromosomal inversions were shown to have been generated by ectopic recombination between Galileo copies. Subsequently, Galileo was identified in six of 12 sequenced Drosophila genomes, indicating its widespread distribution within this genus. Galileo is strikingly abundant in Drosophila willistoni, a neotropical species that is highly polymorphic for chromosomal inversions, suggesting a role for this transposon in the evolution of its genome. We carried out a detailed characterization of all Galileo copies present in the D. willistoni genome. A total of 191 copies, including 133 with two terminal inverted repeats (TIRs), were classified according to structure in six groups. The TIRs exhibited remarkable variation in their length and structure compared to the most complete copy. Three copies showed extended TIRs due to internal tandem repeats, the insertion of other transposable elements (TEs), or the incorporation of non-TIR sequences into the TIRs. Phylogenetic analyses of the transposase (TPase)-encoding and TIR segments yielded two divergent clades, which we termed Galileo subfamilies V and W. Target-site duplications (TSDs) in D. willistoni Galileo copies were 7- or 8-bp in length, with the consensus sequence GTATTAC. Analysis of the region around the TSDs revealed a target site motif (TSM) with a 15-bp palindrome that may give rise to a stem-loop secondary structure. There is a remarkable abundance and diversity of Galileo copies in the D. willistoni genome, although no functional copies were found. The TIRs in particular have a dynamic structure and extend in different ways, but their ends (required for transposition) are more conserved than the rest of the element. The D. willistoni genome harbors two Galileo subfamilies (V and W) that diverged ~9 million years ago and may have descended from an ancestral

  12. Diversity of layer 5 projection neurons in the mouse motor cortex

    Science.gov (United States)

    Oswald, Manfred J.; Tantirigama, Malinda L. S.; Sonntag, Ivo; Hughes, Stephanie M.; Empson, Ruth M.

    2013-01-01

    In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labeled M1 corticospinal (CSp), corticothalamic (CTh), and commissural projecting corticostriatal (CStr) and corticocortical (CC) neurons. An unsupervised cluster analysis established at least four phenotypes with additional differences between lumbar and cervical projecting CSp neurons. Distinguishing parameters included the action potential (AP) waveform, firing behavior, the hyperpolarisation-activated sag potential, sublayer position, and soma and dendrite size. CTh neurons differed from CSp neurons in showing spike frequency acceleration and a greater sag potential. CStr neurons had the lowest AP amplitude and maximum rise rate of all neurons. Temperature influenced spike train behavior in corticofugal neurons. At 26°C CTh neurons fired bursts of APs more often than CSp neurons, but at 36°C both groups fired regular APs. Our findings provide reliable phenotypic fingerprints to identify distinct M1 projection neuron classes as a tool to understand their unique contributions to motor function. PMID:24137110

  13. Diversity of Layer 5 Projection Neurons in the Mouse Motor Cortex

    Directory of Open Access Journals (Sweden)

    Manfred J Oswald

    2013-10-01

    Full Text Available In the primary motor cortex (M1, layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labelled M1 corticospinal (CSp, corticothalamic (CTh, and commissural projecting corticostriatal (CStr and corticocortical (CC neurons. An unsupervised cluster analysis established at least four phenotypes with additional differences between lumbar and cervical projecting CSp neurons. Distinguishing parameters included the action potential (AP waveform, firing behaviour, the hyperpolarisation-activated sag potential, sublayer position, and soma and dendrite size. CTh neurons differed from CSp neurons in showing spike frequency acceleration and a greater sag potential. CStr neurons had the lowest AP amplitude and maximum rise rate of all neurons. Temperature influenced spike train behaviour in corticofugal neurons. At 26 ºC CTh neurons fired bursts of APs more often than CSp neurons, but at 36 ºC both groups fired regular APs. Our findings provide reliable phenotypic fingerprints to identify distinct M1 projection neuron classes as a tool to understand their unique contributions to motor function.

  14. Diversity of chloroplast genome among local clones of cocoa (Theobroma cacao, L.) from Central Sulawesi

    Science.gov (United States)

    Suwastika, I. Nengah; Pakawaru, Nurul Aisyah; Rifka, Rahmansyah, Muslimin, Ishizaki, Yoko; Cruz, André Freire; Basri, Zainuddin; Shiina, Takashi

    2017-02-01

    Chloroplast genomes typically range in size from 120 to 170 kilo base pairs (kb), which relatively conserved among plant species. Recent evaluation on several species, certain unique regions showed high variability which can be utilized in the phylogenetic analysis. Many fragments of coding regions, introns, and intergenic spacers, such as atpB-rbcL, ndhF, rbcL, rpl16, trnH-psbA, trnL-F, trnS-G, etc., have been used for phylogenetic reconstructions at various taxonomic levels. Based on that status, we would like to analysis the diversity of chloroplast genome within species of local cacao (Theobroma cacao L.) from Central Sulawesi. Our recent data showed, there were more than 20 clones from local farming in Central Sulawesi, and it can be detected based on phenotypic and nuclear-genome-based characterization (RAPD- Random Amplified Polymorphic DNA and SSR- Simple Sequences Repeat) markers. In developing DNA marker for this local cacao, here we also included analysis based on the variation of chloroplast genome. At least several regions such as rpl32-TurnL, it can be considered as chloroplast markers on our local clone of cocoa. Furthermore, we could develop phylogenetic analysis in between clones of cocoa.

  15. Complete genome sequence of Coraliomargarita akajimensis type strain (04OKA010-24T)

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Abt, Birte; Brambilla, Evelyne; Lapidus, Alla; Copeland, Alex; Desphande, Shweta; Nolan, Matt; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Han, Cliff; Detter, John C.; Woyke, Tanja; Goodwin, Lynne; Pitluck, Sam; Held, Brittany; Brettin, Thomas; Tapia, Roxanne; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Liolios, Konstantinos; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Rohde, Manfred; G& #246; ker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Klenk, Hans-Peter; Kyrpides, Nikos C.

    2010-06-25

    Coraliomargarita akajimensis Yoon et al. 2007 the type species of the genus Coraliomargarita. C. akajimensis is an obligately aerobic, Gram-negative, non-spore-forming, non-motile, spherical bacterium which was isolated from seawater surrounding the hard coral Galaxea fascicularis. C. akajimensis organism is of special interest because of its phylogenetic position in a genomically purely studied area in the bacterial diversity. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Puniceicoccaceae. The 3,750,771 bp long genome with its 3,137 protein-coding and 55 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  16. Small RNA pathways and diversity in model legumes: lessons from genomics.

    Directory of Open Access Journals (Sweden)

    Pilar eBustos-Sanmamed

    2013-07-01

    Full Text Available Small non coding RNAs (smRNA participate in the regulation of development, cell differentiation, adaptation to environmental constraints and defense responses in plants. They negatively regulate gene expression by degrading specific mRNA targets, repressing their translation or modifying chromatin conformation through homologous interaction with target loci. MicroRNAs (miRNA and short-interfering RNAs (siRNA are generated from long double stranded RNA (dsRNA that are cleaved into 20- to 24-nucleotide dsRNAs by RNase III proteins called DICERs (DCL. One strand of the duplex is then loaded onto effective complexes containing different ARGONAUTE (AGO proteins. In this review, we explored smRNA diversity in model legumes and compiled available data from miRBAse, the miRNA database, and from 22 reports of smRNA deep sequencing or miRNA identification genome-wide in Medicago truncatula, Glycine max and Lotus japonicus. In addition to conserved miRNAs present in other plant species, 229, 179 and 35 novel miRNA families were identified respectively in these 3 legumes, among which several seems legume-specific. New potential functions of several miRNAs in the legume-specific nodulation process are discussed. Furthermore, a new category of siRNA, the phased siRNAs, which seems to mainly regulate disease-resistance genes, was recently discovered in legumes. Despite that the genome sequence of model legumes are not yet fully completed, further analysis was performed by database mining of gene families and protein characteristics of DCLs and AGOs in these genomes. Although most components of the smRNA pathways are conserved, identifiable homologs of key smRNA players from non-legumes could not yet be detected in M. truncatula available genomic and expressed sequence databases. In addition, an important gene diversification was observed in the three legumes. Functional significance of these variant isoforms may reflect peculiarities of smRNA biogenesis in

  17. Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8 locus.

    Directory of Open Access Journals (Sweden)

    Sophie Bouchet

    Full Text Available The migration of maize from tropical to temperate climates was accompanied by a dramatic evolution in flowering time. To gain insight into the genetic architecture of this adaptive trait, we conducted a 50K SNP-based genome-wide association and diversity investigation on a panel of tropical and temperate American and European representatives. Eighteen genomic regions were associated with flowering time. The number of early alleles cumulated along these regions was highly correlated with flowering time. Polymorphism in the vicinity of the ZCN8 gene, which is the closest maize homologue to Arabidopsis major flowering time (FT gene, had the strongest effect. This polymorphism is in the vicinity of the causal factor of Vgt2 QTL. Diversity was lower, whereas differentiation and LD were higher for associated loci compared to the rest of the genome, which is consistent with selection acting on flowering time during maize migration. Selection tests also revealed supplementary loci that were highly differentiated among groups and not associated with flowering time in our panel, whereas they were in other linkage-based studies. This suggests that allele fixation led to a lack of statistical power when structure and relatedness were taken into account in a linear mixed model. Complementary designs and analysis methods are necessary to unravel the architecture of complex traits. Based on linkage disequilibrium (LD estimates corrected for population structure, we concluded that the number of SNPs genotyped should be at least doubled to capture all QTLs contributing to the genetic architecture of polygenic traits in this panel. These results show that maize flowering time is controlled by numerous QTLs of small additive effect and that strong polygenic selection occurred under cool climatic conditions. They should contribute to more efficient genomic predictions of flowering time and facilitate the dissemination of diverse maize genetic resources under a wide

  18. A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria.

    Directory of Open Access Journals (Sweden)

    Lisa C Crossman

    2008-07-01

    Full Text Available This work centres on the genomic comparisons of two closely-related nitrogen-fixing symbiotic bacteria, Rhizobium leguminosarum biovar viciae 3841 and Rhizobium etli CFN42. These strains maintain a stable genomic core that is also common to other rhizobia species plus a very variable and significant accessory component. The chromosomes are highly syntenic, whereas plasmids are related by fewer syntenic blocks and have mosaic structures. The pairs of plasmids p42f-pRL12, p42e-pRL11 and p42b-pRL9 as well large parts of p42c with pRL10 are shown to be similar, whereas the symbiotic plasmids (p42d and pRL10 are structurally unrelated and seem to follow distinct evolutionary paths. Even though purifying selection is acting on the whole genome, the accessory component is evolving more rapidly. This component is constituted largely for proteins for transport of diverse metabolites and elements of external origin. The present analysis allows us to conclude that a heterogeneous and quickly diversifying group of plasmids co-exists in a common genomic framework.

  19. From Mendel to the Human Genome Project: The Implications for Nurse Education.

    Science.gov (United States)

    Burton, Hilary; Stewart, Alison

    2003-01-01

    The Human Genome Project is brining new opportunities to predict and prevent diseases. Although pediatric nurses are the closest to these developments, most nurses will encounter genetic aspects of practice and must understand the basic science and its ethical, legal, and social dimensions. (Includes commentary by Peter Birchenall.) (SK)

  20. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi Xuan; Han, Bin; Kurata, Nori

    2015-01-01

    . Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all

  1. Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains

    KAUST Repository

    Kyrpides, Nikos C.; Hugenholtz, Philip; Eisen, Jonathan A.; Woyke, Tanja; Gö ker, Markus; Parker, Charles T.; Amann, Rudolf; Beck, Brian J.; Chain, Patrick S. G.; Chun, Jongsik; Colwell, Rita R.; Danchin, Antoine; Dawyndt, Peter; Dedeurwaerdere, Tom; DeLong, Edward F.; Detter, John C.; De Vos, Paul; Donohue, Timothy J.; Dong, Xiu-Zhu; Ehrlich, Dusko S.; Fraser, Claire; Gibbs, Richard; Gilbert, Jack; Gilna, Paul; Glö ckner, Frank Oliver; Jansson, Janet K.; Keasling, Jay D.; Knight, Rob; Labeda, David; Lapidus, Alla; Lee, Jung-Sook; Li, Wen-Jun; MA, Juncai; Markowitz, Victor; Moore, Edward R. B.; Morrison, Mark; Meyer, Folker; Nelson, Karen E.; Ohkuma, Moriya; Ouzounis, Christos A.; Pace, Norman; Parkhill, Julian; Qin, Nan; Rossello-Mora, Ramon; Sikorski, Johannes; Smith, David; Sogin, Mitch; Stevens, Rick; Stingl, Ulrich; Suzuki, Ken-ichiro; Taylor, Dorothea; Tiedje, Jim M.; Tindall, Brian; Wagner, Michael; Weinstock, George; Weissenbach, Jean; White, Owen; Wang, Jun; Zhang, Lixin; Zhou, Yu-Guang; Field, Dawn; Whitman, William B.; Garrity, George M.; Klenk, Hans Peter

    2014-01-01

    Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.

  2. Genomic Characterization of Dairy Associated Leuconostoc Species and Diversity of Leuconostocs in Undefined Mixed Mesophilic Starter Cultures.

    Science.gov (United States)

    Frantzen, Cyril A; Kot, Witold; Pedersen, Thomas B; Ardö, Ylva M; Broadbent, Jeff R; Neve, Horst; Hansen, Lars H; Dal Bello, Fabio; Østlie, Hilde M; Kleppen, Hans P; Vogensen, Finn K; Holo, Helge

    2017-01-01

    Undefined mesophilic mixed (DL-type) starter cultures are composed of predominantly Lactococcus lactis subspecies and 1-10% Leuconostoc spp. The composition of the Leuconostoc population in the starter culture ultimately affects the characteristics and the quality of the final product. The scientific basis for the taxonomy of dairy relevant leuconostocs can be traced back 50 years, and no documentation on the genomic diversity of leuconostocs in starter cultures exists. We present data on the Leuconostoc population in five DL-type starter cultures commonly used by the dairy industry. The analyses were performed using traditional cultivation methods, and further augmented by next-generation DNA sequencing methods. Bacterial counts for starter cultures cultivated on two different media, MRS and MPCA, revealed large differences in the relative abundance of leuconostocs. Most of the leuconostocs in two of the starter cultures were unable to grow on MRS, emphasizing the limitations of culture-based methods and the importance of careful media selection or use of culture independent methods. Pan-genomic analysis of 59 Leuconostoc genomes enabled differentiation into twelve robust lineages. The genomic analyses show that the dairy-associated leuconostocs are highly adapted to their environment, characterized by the acquisition of genotype traits, such as the ability to metabolize citrate. In particular, Leuconostoc mesenteroides subsp. cremoris display telltale signs of a degenerative evolution, likely resulting from a long period of growth in milk in association with lactococci. Great differences in the metabolic potential between Leuconostoc species and subspecies were revealed. Using targeted amplicon sequencing, the composition of the Leuconostoc population in the five commercial starter cultures was shown to be significantly different. Three of the cultures were dominated by Ln. mesenteroides subspecies cremoris. Leuconostoc pseudomesenteroides dominated in two of the

  3. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics Project: one size fits all?

    Science.gov (United States)

    Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman

    2005-06-01

    Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.

  4. Gender and Diversity in a Problem and Project Based Learning Environment

    DEFF Research Database (Denmark)

    Du, Xiangyun

    Problem and Project Based Learning (PBL) has been well used as an educational philosophy and methodology in the construction of student centered and contextualized learning environment. PBL is also regarded as an effective method in producing engineering graduates who can not only meet the needs...... on the learning experiences of engineering students in the PBL environment in Denmark. This book also attempts to question the issue of diversity in engineering education via the exploration of whether or in which ways the PBL environment is friendly to diverse groups of learners such as women....

  5. Global Implementation of Genomic Medicine: We Are Not Alone

    Science.gov (United States)

    Manolio, Teri A.; Abramowicz, Marc; Al-Mulla, Fahd; Anderson, Warwick; Balling, Rudi; Berger, Adam C.; Bleyl, Steven; Chakravarti, Aravinda; Chantratita, Wasun; Chisholm, Rex L.; Dissanayake, Vajira H. W.; Dunn, Michael; Dzau, Victor J.; Han, Bok-Ghee; Hubbard, Tim; Kolbe, Anne; Korf, Bruce; Kubo, Michiaki; Lasko, Paul; Leego, Erkki; Mahasirimongkol, Surakameth; Majumdar, Partha P.; Matthijs, Gert; McLeod, Howard L.; Metspalu, Andres; Meulien, Pierre; Miyano, Satoru; Naparstek, Yaakov; O’Rourke, P. Pearl; Patrinos, George P.; Rehm, Heidi L.; Relling, Mary V.; Rennert, Gad; Rodriguez, Laura Lyman; Roden, Dan M.; Shuldiner, Alan R.; Sinha, Sukdev; Tan, Patrick; Ulfendahl, Mats; Ward, Robyn; Williams, Marc S.; Wong, John E.L.; Green, Eric D.; Ginsburg, Geoffrey S.

    2016-01-01

    Advances in high-throughput genomic technologies coupled with a growing number of genomic results potentially useful in clinical care have led to ground-breaking genomic medicine implementation programs in various nations. Many of these innovative programs capitalize on unique local capabilities arising from the structure of their health care systems or their cultural or political milieu, as well as from unusual burdens of disease or risk alleles. Many such programs are being conducted in relative isolation and might benefit from sharing of approaches and lessons learned in other nations. The National Human Genome Research Institute recently brought together 25 of these groups from around the world to describe and compare projects, examine the current state of implementation and desired near-term capabilities, and identify opportunities for collaboration to promote the responsible implementation of genomic medicine. The wide variety of nascent programs in diverse settings demonstrates that implementation of genomic medicine is expanding globally in varied and highly innovative ways. Opportunities for collaboration abound in the areas of evidence generation, health information technology, education, workforce development, pharmacogenomics, and policy and regulatory issues. Several international organizations that are already facilitating effective research collaborations should engage to ensure implementation proceeds collaboratively without potentially wasteful duplication. Efforts to coalesce these groups around concrete but compelling signature projects, such as global eradication of genetically-mediated drug reactions or developing a truly global genomic variant data resource across a wide number of ethnicities, would accelerate appropriate implementation of genomics to improve clinical care world-wide. PMID:26041702

  6. Reconstruction of a Bacterial Genome from DNA Cassettes

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Dupont; John Glass; Laura Sheahan; Shibu Yooseph; Lisa Zeigler Allen; Mathangi Thiagarajan; Andrew Allen; Robert Friedman; J. Craig Venter

    2011-12-31

    This basic research program comprised two major areas: (1) acquisition and analysis of marine microbial metagenomic data and development of genomic analysis tools for broad, external community use; (2) development of a minimal bacterial genome. Our Marine Metagenomic Diversity effort generated and analyzed shotgun sequencing data from microbial communities sampled from over 250 sites around the world. About 40% of the 26 Gbp of sequence data has been made publicly available to date with a complete release anticipated in six months. Our results and those mining the deposited data have revealed a vast diversity of genes coding for critical metabolic processes whose phylogenetic and geographic distributions will enable a deeper understanding of carbon and nutrient cycling, microbial ecology, and rapid rate evolutionary processes such as horizontal gene transfer by viruses and plasmids. A global assembly of the generated dataset resulted in a massive set (5Gbp) of genome fragments that provide context to the majority of the generated data that originated from uncultivated organisms. Our Synthetic Biology team has made significant progress towards the goal of synthesizing a minimal mycoplasma genome that will have all of the machinery for independent life. This project, once completed, will provide fundamentally new knowledge about requirements for microbial life and help to lay a basic research foundation for developing microbiological approaches to bioenergy.

  7. The genomes and comparative genomics of Lactobacillus delbrueckii phages.

    Science.gov (United States)

    Riipinen, Katja-Anneli; Forsman, Päivi; Alatossava, Tapani

    2011-07-01

    Lactobacillus delbrueckii phages are a great source of genetic diversity. Here, the genome sequences of Lb. delbrueckii phages LL-Ku, c5 and JCL1032 were analyzed in detail, and the genetic diversity of Lb. delbrueckii phages belonging to different taxonomic groups was explored. The lytic isometric group b phages LL-Ku (31,080 bp) and c5 (31,841 bp) showed a minimum nucleotide sequence identity of 90% over about three-fourths of their genomes. The genomic locations of their lysis modules were unique, and the genomes featured several putative overlapping transcription units of genes. LL-Ku and c5 virions displayed peptidoglycan hydrolytic activity associated with a ~36-kDa protein similar in size to the endolysin. Unexpectedly, the 49,433-bp genome of the prolate phage JCL1032 (temperate, group c) revealed a conserved gene order within its structural genes. Lb. delbrueckii phages representing groups a (a phage LL-H), b and c possessed only limited protein sequence homology. Genomic comparison of LL-Ku and c5 suggested that diversification of Lb. delbrueckii phages is mainly due to insertions, deletions and recombination. For the first time, the complete genome sequences of group b and c Lb. delbrueckii phages are reported.

  8. Ethical issues and best practice in clinically based genomic research: Exeter Stakeholders Meeting Report.

    Science.gov (United States)

    Carrieri, D; Bewshea, C; Walker, G; Ahmad, T; Bowen, W; Hall, A; Kelly, S

    2016-09-27

    Current guidelines on consenting individuals to participate in genomic research are diverse. This creates problems for participants and also for researchers, particularly for clinicians who provide both clinical care and research to their patients. A group of 14 stakeholders met on 7 October 2015 in Exeter to discuss the ethical issues and the best practice arising in clinically based genomic research, with particular emphasis on the issue of returning results to study participants/patients in light of research findings affecting research and clinical practices. The group was deliberately multidisciplinary to ensure that a diversity of views was represented. This report outlines the main ethical issues, areas of best practice and principles underlying ethical clinically based genomic research discussed during the meeting. The main point emerging from the discussion is that ethical principles, rather than being formulaic, should guide researchers/clinicians to identify who the main stakeholders are to consult with for a specific project and to incorporate their voices/views strategically throughout the lifecycle of each project. We believe that the mix of principles and practical guidelines outlined in this report can contribute to current debates on how to conduct ethical clinically based genomic research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Public trust and 'ethics review' as a commodity: the case of Genomics England Limited and the UK's 100,000 genomes project.

    Science.gov (United States)

    Samuel, Gabrielle Natalie; Farsides, Bobbie

    2018-06-01

    The UK Chief Medical Officer's 2016 Annual Report, Generation Genome, focused on a vision to fully integrate genomics into all aspects of the UK's National Health Service (NHS). This process of integration, which has now already begun, raises a wide range of social and ethical concerns, many of which were discussed in the final Chapter of the report. This paper explores how the UK's 100,000 Genomes Project (100 kGP)-the catalyst for Generation Genome, and for bringing genomics into the NHS-is negotiating these ethical concerns. The UK's 100 kGP, promoted and delivered by Genomics England Limited (GEL), is an innovative venture aiming to sequence 100,000 genomes from NHS patients who have a rare disease, cancer, or an infectious disease. GEL has emphasised the importance of ethical governance and decision-making. However, some sociological critique argues that biomedical/technological organisations presenting themselves as 'ethical' entities do not necessarily reflect a space within which moral thinking occurs. Rather, the 'ethical work' conducted (and displayed) by organisations is more strategic, relating to the politics of the organisation and the need to build public confidence. We set out to explore whether GEL's ethical framework was reflective of this critique, and what this tells us more broadly about how genomics is being integrated into the NHS in response to the ethical and social concerns raised in Generation Genome. We do this by drawing on a series of 20 interviews with individuals associated with or working at GEL.

  10. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.

    Science.gov (United States)

    Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario

    2011-01-01

    Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.

  11. Field of genes: the politics of science and identity in the Estonian Genome Project.

    Science.gov (United States)

    Fletcher, Amy L

    2004-04-01

    This case study of the Estonian Genome Project (EGP) analyses the Estonian policy decision to construct a national human gene bank. Drawing upon qualitative data from newspaper articles and public policy documents, it focuses on how proponents use discourse to link the EGP to the broader political goal of securing Estonia's position within the Western/European scientific and cultural space. This dominant narrative is then situated within the analytical notion of the "brand state", which raises potentially negative political consequences for this type of market-driven genomic research. Considered against the increasing number of countries engaging in gene bank and/or gene database projects, this analysis of Estonia elucidates issues that cross national boundaries, while also illuminating factors specific to this small, post-Soviet state as it enters the global biocybernetic economy.

  12. The GenABEL Project for statistical genomics.

    Science.gov (United States)

    Karssen, Lennart C; van Duijn, Cornelia M; Aulchenko, Yurii S

    2016-01-01

    Development of free/libre open source software is usually done by a community of people with an interest in the tool. For scientific software, however, this is less often the case. Most scientific software is written by only a few authors, often a student working on a thesis. Once the paper describing the tool has been published, the tool is no longer developed further and is left to its own device. Here we describe the broad, multidisciplinary community we formed around a set of tools for statistical genomics. The GenABEL project for statistical omics actively promotes open interdisciplinary development of statistical methodology and its implementation in efficient and user-friendly software under an open source licence. The software tools developed withing the project collectively make up the GenABEL suite, which currently consists of eleven tools. The open framework of the project actively encourages involvement of the community in all stages, from formulation of methodological ideas to application of software to specific data sets. A web forum is used to channel user questions and discussions, further promoting the use of the GenABEL suite. Developer discussions take place on a dedicated mailing list, and development is further supported by robust development practices including use of public version control, code review and continuous integration. Use of this open science model attracts contributions from users and developers outside the "core team", facilitating agile statistical omics methodology development and fast dissemination.

  13. Understanding the Human Genome Project — A Fact Sheet | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... The Human Genome Project spurred a revolution in biotechnology innovation around the world and played a key ... the U.S. the global leader in the new biotechnology sector. In April 2003, researchers successfully completed the ...

  14. Comprehensive genomic characterization of campylobacter genus reveals some underlying mechanisms for its genomic diversification.

    Directory of Open Access Journals (Sweden)

    Yizhuang Zhou

    Full Text Available Campylobacter species.are phenotypically diverse in many aspects including host habitats and pathogenicities, which demands comprehensive characterization of the entire Campylobacter genus to study their underlying genetic diversification. Up to now, 34 Campylobacter strains have been sequenced and published in public databases, providing good opportunity to systemically analyze their genomic diversities. In this study, we first conducted genomic characterization, which includes genome-wide alignments, pan-genome analysis, and phylogenetic identification, to depict the genetic diversity of Campylobacter genus. Afterward, we improved the tetranucleotide usage pattern-based naïve Bayesian classifier to identify the abnormal composition fragments (ACFs, fragments with significantly different tetranucleotide frequency profiles from its genomic tetranucleotide frequency profiles including horizontal gene transfers (HGTs to explore the mechanisms for the genetic diversity of this organism. Finally, we analyzed the HGTs transferred via bacteriophage transductions. To our knowledge, this study is the first to use single nucleotide polymorphism information to construct liable microevolution phylogeny of 21 Campylobacter jejuni strains. Combined with the phylogeny of all the collected Campylobacter species based on genome-wide core gene information, comprehensive phylogenetic inference of all 34 Campylobacter organisms was determined. It was found that C. jejuni harbors a high fraction of ACFs possibly through intraspecies recombination, whereas other Campylobacter members possess numerous ACFs possibly via intragenus recombination. Furthermore, some Campylobacter strains have undergone significant ancient viral integration during their evolution process. The improved method is a powerful tool for bacterial genomic analysis. Moreover, the findings would provide useful information for future research on Campylobacter genus.

  15. A standard MIGS/MIMS compliant XML Schema: toward the development of the Genomic Contextual Data Markup Language (GCDML).

    Science.gov (United States)

    Kottmann, Renzo; Gray, Tanya; Murphy, Sean; Kagan, Leonid; Kravitz, Saul; Lombardot, Thierry; Field, Dawn; Glöckner, Frank Oliver

    2008-06-01

    The Genomic Contextual Data Markup Language (GCDML) is a core project of the Genomic Standards Consortium (GSC) that implements the "Minimum Information about a Genome Sequence" (MIGS) specification and its extension, the "Minimum Information about a Metagenome Sequence" (MIMS). GCDML is an XML Schema for generating MIGS/MIMS compliant reports for data entry, exchange, and storage. When mature, this sample-centric, strongly-typed schema will provide a diverse set of descriptors for describing the exact origin and processing of a biological sample, from sampling to sequencing, and subsequent analysis. Here we describe the need for such a project, outline design principles required to support the project, and make an open call for participation in defining the future content of GCDML. GCDML is freely available, and can be downloaded, along with documentation, from the GSC Web site (http://gensc.org).

  16. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    Science.gov (United States)

    Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal

  17. Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India

    Science.gov (United States)

    S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali

    2014-01-01

    Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic

  18. Microbial diversity: a bonanza of phyla.

    Science.gov (United States)

    Eme, Laura; Doolittle, W Ford

    2015-03-16

    Metagenomics and single-cell genomics are now the gold standard for exploring microbial diversity. A new study focusing on enigmatic ultra-small archaea greatly expands known genetic diversity within Archaea, and reports the first complete archaeal genomes reconstructed from metagenomic data only. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations.

    Science.gov (United States)

    Balao, Francisco; Casimiro-Soriguer, Ramón; Talavera, María; Herrera, Javier; Talavera, Salvador

    2009-10-01

    Studying the spatial distribution of cytotypes and genome size in plants can provide valuable information about the evolution of polyploid complexes. Here, the spatial distribution of cytological races and the amount of DNA in Dianthus broteri, an Iberian carnation with several ploidy levels, is investigated. Sample chromosome counts and flow cytometry (using propidium iodide) were used to determine overall genome size (2C value) and ploidy level in 244 individuals of 25 populations. Both fresh and dried samples were investigated. Differences in 2C and 1Cx values among ploidy levels within biogeographical provinces were tested using ANOVA. Geographical correlations of genome size were also explored. Extensive variation in chromosomes numbers (2n = 2x = 30, 2n = 4x = 60, 2n = 6x = 90 and 2n = 12x =180) was detected, and the dodecaploid cytotype is reported for the first time in this genus. As regards cytotype distribution, six populations were diploid, 11 were tetraploid, three were hexaploid and five were dodecaploid. Except for one diploid population containing some triploid plants (2n = 45), the remaining populations showed a single cytotype. Diploids appeared in two disjunct areas (south-east and south-west), and so did tetraploids (although with a considerably wider geographic range). Dehydrated leaf samples provided reliable measurements of DNA content. Genome size varied significantly among some cytotypes, and also extensively within diploid (up to 1.17-fold) and tetraploid (1.22-fold) populations. Nevertheless, variations were not straightforwardly congruent with ecology and geographical distribution. Dianthus broteri shows the highest diversity of cytotypes known to date in the genus Dianthus. Moreover, some cytotypes present remarkable internal genome size variation. The evolution of the complex is discussed in terms of autopolyploidy, with primary and secondary contact zones.

  20. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.

    Science.gov (United States)

    Collins, Ryan L; Brand, Harrison; Redin, Claire E; Hanscom, Carrie; Antolik, Caroline; Stone, Matthew R; Glessner, Joseph T; Mason, Tamara; Pregno, Giulia; Dorrani, Naghmeh; Mandrile, Giorgia; Giachino, Daniela; Perrin, Danielle; Walsh, Cole; Cipicchio, Michelle; Costello, Maura; Stortchevoi, Alexei; An, Joon-Yong; Currall, Benjamin B; Seabra, Catarina M; Ragavendran, Ashok; Margolin, Lauren; Martinez-Agosto, Julian A; Lucente, Diane; Levy, Brynn; Sanders, Stephan J; Wapner, Ronald J; Quintero-Rivera, Fabiola; Kloosterman, Wigard; Talkowski, Michael E

    2017-03-06

    Structural variation (SV) influences genome organization and contributes to human disease. However, the complete mutational spectrum of SV has not been routinely captured in disease association studies. We sequenced 689 participants with autism spectrum disorder (ASD) and other developmental abnormalities to construct a genome-wide map of large SV. Using long-insert jumping libraries at 105X mean physical coverage and linked-read whole-genome sequencing from 10X Genomics, we document seven major SV classes at ~5 kb SV resolution. Our results encompass 11,735 distinct large SV sites, 38.1% of which are novel and 16.8% of which are balanced or complex. We characterize 16 recurrent subclasses of complex SV (cxSV), revealing that: (1) cxSV are larger and rarer than canonical SV; (2) each genome harbors 14 large cxSV on average; (3) 84.4% of large cxSVs involve inversion; and (4) most large cxSV (93.8%) have not been delineated in previous studies. Rare SVs are more likely to disrupt coding and regulatory non-coding loci, particularly when truncating constrained and disease-associated genes. We also identify multiple cases of catastrophic chromosomal rearrangements known as chromoanagenesis, including somatic chromoanasynthesis, and extreme balanced germline chromothripsis events involving up to 65 breakpoints and 60.6 Mb across four chromosomes, further defining rare categories of extreme cxSV. These data provide a foundational map of large SV in the morbid human genome and demonstrate a previously underappreciated abundance and diversity of cxSV that should be considered in genomic studies of human disease.

  1. Exploration of genetic diversity among medicinally important genus Epimedium species based on genomic and EST-SSR marker.

    Science.gov (United States)

    Yousaf, Zubaida; Hu, Weiming; Zhang, Yanjun; Zeng, Shaohua; Wang, Ying

    2015-01-01

    Epimedium species has gained prime importance due to their medicinal and economic values. Therefore, in this study, 26 genomic SSR and 10 EST-SSR markers were developed for 13 medicinal species of the Epimedium genus and one out-group species Vancouveria hexandra W. J. Hooker to explore the existing genetic diversity. A total of 100 alleles by genomic SSR and 65 by EST-SSR were detected. The genomic SSR markers were presented between 2-7 alleles per locus. The observed heterozygosity (Ho) and expected heterozygosity (He) ranged from 0.00 to 4.5 and 0.0254 to 2.8108, respectively. Similarly, for EST-SSR, these values were ranged from 3.00 to 4.00 and 1.9650 to 2.7142. The number of alleles for EST-SSR markers ranged from 3 to 10 with an average of 3.51 per loci. It has been concluded that medicinally important species of the genus Epimedium possesses lower intraspecific genetic variation.

  2. Diverse circovirus-like genome architectures revealed by environmental metagenomics.

    Science.gov (United States)

    Rosario, Karyna; Duffy, Siobain; Breitbart, Mya

    2009-10-01

    Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water and three different marine environments (Chesapeake Bay, British Columbia coastal waters and Sargasso Sea). All the genomes have similarities to the replication (Rep) protein of circoviruses; however, only half have genomic features consistent with known circoviruses. Some of the genomes exhibit a mixture of genomic features associated with different families of ssDNA viruses (i.e. circoviruses, geminiviruses and parvoviruses). Unique genome architectures and phylogenetic analysis of the Rep protein suggest that these viruses belong to novel genera and/or families. Investigating the complex community of ssDNA viruses in the environment can lead to the discovery of divergent species and help elucidate evolutionary links between ssDNA viruses.

  3. Analysis of genetic diversity in Brown Swiss, Jersey and Holstein populations using genome-wide single nucleotide polymorphism markers

    Directory of Open Access Journals (Sweden)

    Melka Melkaye G

    2012-03-01

    Full Text Available Abstract Background Studies of genetic diversity are essential in understanding the extent of differentiation between breeds, and in designing successful diversity conservation strategies. The objective of this study was to evaluate the level of genetic diversity within and between North American Brown Swiss (BS, n = 900, Jersey (JE, n = 2,922 and Holstein (HO, n = 3,535 cattle, using genotyped bulls. GENEPOP and FSTAT software were used to evaluate the level of genetic diversity within each breed and between each pair of the three breeds based on genome-wide SNP markers (n = 50,972. Results Hardy-Weinberg equilibrium (HWE exact test within breeds showed a significant deviation from equilibrium within each population (P st indicated that the combination of BS and HO in an ideally amalgamated population had higher genetic diversity than the other pairs of breeds. Conclusion Results suggest that the three bull populations have substantially different gene pools. BS and HO show the largest gene differentiation and jointly the highest total expected gene diversity compared to when JE is considered. If the loss of genetic diversity within breeds worsens in the future, the use of crossbreeding might be an option to recover genetic diversity, especially for the breeds with small population size.

  4. Planning the Human Variome Project: The Spain Report†

    Science.gov (United States)

    Kaput, Jim; Cotton, Richard G. H.; Hardman, Lauren; Al Aqeel, Aida I.; Al-Aama, Jumana Y.; Al-Mulla, Fahd; Aretz, Stefan; Auerbach, Arleen D.; Axton, Myles; Bapat, Bharati; Bernstein, Inge T.; Bhak, Jong; Bleoo, Stacey L.; Blöcker, Helmut; Brenner, Steven E.; Burn, John; Bustamante, Mariona; Calzone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T.; Díaz, Carlos; Dobrowolski, Steven; dos Santos, M. Rosário N.; Ekong, Rosemary; Flanagan, Simon B.; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V.; Greenblatt, Marc S.; Hamosh, Ada; Hancock, John M.; Hardison, Ross; Harrison, Terence M.; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J.; Barash, Carol Isaacson; Izagirre, Neskuts; Jung, Jongsun; Kojima, Toshio; Laradi, Sandrine; Lee, Yeon-Su; Lee, Jong-Young; Gil-da-Silva-Lopes, Vera L.; Macrae, Finlay A.; Maglott, Donna; Marafie, Makia J.; Marsh, Steven G.E.; Matsubara, Yoichi; Messiaen, Ludwine M.; Möslein, Gabriela; Netea, Mihai G.; Norton, Melissa L.; Oefner, Peter J.; Oetting, William S.; O’Leary, James C.; de Ramirez, Ana Maria Oller; Paalman, Mark H.; Parboosingh, Jillian; Patrinos, George P.; Perozzi, Giuditta; Phillips, Ian R.; Povey, Sue; Prasad, Suyash; Qi, Ming; Quin, David J.; Ramesar, Rajkumar S.; Richards, C. Sue; Savige, Judith; Scheible, Dagmar G.; Scott, Rodney J.; Seminara, Daniela; Shephard, Elizabeth A.; Sijmons, Rolf H.; Smith, Timothy D.; Sobrido, María-Jesús; Tanaka, Toshihiro; Tavtigian, Sean V.; Taylor, Graham R.; Teague, Jon; Töpel, Thoralf; Ullman-Cullere, Mollie; Utsunomiya, Joji; van Kranen, Henk J.; Vihinen, Mauno; Watson, Michael; Webb, Elizabeth; Weber, Thomas K.; Yeager, Meredith; Yeom, Young I.; Yim, Seon-Hee; Yoo, Hyang-Sook

    2018-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Since variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008. PMID:19306394

  5. Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites

    DEFF Research Database (Denmark)

    Grijseels, Sietske; Nielsen, Jens Christian; Randelovic, Milica

    2016-01-01

    A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes...... confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted...... of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential...

  6. Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics

    DEFF Research Database (Denmark)

    Quaiser, Achim; Ochsenreiter, Torsten; Lanz, Christa

    2003-01-01

    fragments differed between 2.3% and 19.9% and were placed into two different subgroups of Acidobacteria (groups III and V). Although partial co-linearity was found between genomic fragments, the gene content around the rRNA operons was generally not conserved. Phylogenetic reconstructions with orthologues......Acidobacteria have been established as a novel phylum of Bacteria that is consistently detected in many different habitats around the globe by 16S rDNA-based molecular surveys. The phylogenetic diversity, ubiquity and abundance of this group, particularly in soil habitats, suggest an important...... palustris and Bradyrhizobium japonicum, including a conserved two-component system. Phylogenetic analysis of the putative response regulator confirmed that this similarity between Rhizobiales and Acidobacteria might be due to a horizontal gene transfer. In total, our data give first insight into the genome...

  7. Citrus sinensis annotation project (CAP): a comprehensive database for sweet orange genome.

    Science.gov (United States)

    Wang, Jia; Chen, Dijun; Lei, Yang; Chang, Ji-Wei; Hao, Bao-Hai; Xing, Feng; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Chen, Ling-Ling

    2014-01-01

    Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia), and constructed the Citrus sinensis annotation project (CAP) to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET) evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs) and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/.

  8. Using Whole Genome Analysis to Examine Recombination across Diverse Sequence Types of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Driebe

    Full Text Available Staphylococcus aureus is an important clinical pathogen worldwide and understanding this organism's phylogeny and, in particular, the role of recombination, is important both to understand the overall spread of virulent lineages and to characterize outbreaks. To further elucidate the phylogeny of S. aureus, 35 diverse strains were sequenced using whole genome sequencing. In addition, 29 publicly available whole genome sequences were included to create a single nucleotide polymorphism (SNP-based phylogenetic tree encompassing 11 distinct lineages. All strains of a particular sequence type fell into the same clade with clear groupings of the major clonal complexes of CC8, CC5, CC30, CC45 and CC1. Using a novel analysis method, we plotted the homoplasy density and SNP density across the whole genome and found evidence of recombination throughout the entire chromosome, but when we examined individual clonal lineages we found very little recombination. However, when we analyzed three branches of multiple lineages, we saw intermediate and differing levels of recombination between them. These data demonstrate that in S. aureus, recombination occurs across major lineages that subsequently expand in a clonal manner. Estimated mutation rates for the CC8 and CC5 lineages were different from each other. While the CC8 lineage rate was similar to previous studies, the CC5 lineage was 100-fold greater. Fifty known virulence genes were screened in all genomes in silico to determine their distribution across major clades. Thirty-three genes were present variably across clades, most of which were not constrained by ancestry, indicating horizontal gene transfer or gene loss.

  9. Evolution of sociality in spiders leads to depleted genomic diversity at both population and species levels.

    Science.gov (United States)

    Settepani, V; Schou, M F; Greve, M; Grinsted, L; Bechsgaard, J; Bilde, T

    2017-08-01

    Across several animal taxa, the evolution of sociality involves a suite of characteristics, a "social syndrome," that includes cooperative breeding, reproductive skew, primary female-biased sex ratio, and the transition from outcrossing to inbreeding mating system, factors that are expected to reduce effective population size (Ne). This social syndrome may be favoured by short-term benefits but come with long-term costs, because the reduction in Ne amplifies loss of genetic diversity by genetic drift, ultimately restricting the potential of populations to respond to environmental change. To investigate the consequences of this social life form on genetic diversity, we used a comparative RAD-sequencing approach to estimate genomewide diversity in spider species that differ in level of sociality, reproductive skew and mating system. We analysed multiple populations of three independent sister-species pairs of social inbreeding and subsocial outcrossing Stegodyphus spiders, and a subsocial outgroup. Heterozygosity and within-population diversity were sixfold to 10-fold lower in social compared to subsocial species, and demographic modelling revealed a tenfold reduction in Ne of social populations. Species-wide genetic diversity depends on population divergence and the viability of genetic lineages. Population genomic patterns were consistent with high lineage turnover, which homogenizes the genetic structure that builds up between inbreeding populations, ultimately depleting genetic diversity at the species level. Indeed, species-wide genetic diversity of social species was 5-8 times lower than that of subsocial species. The repeated evolution of species with this social syndrome is associated with severe loss of genomewide diversity, likely to limit their evolutionary potential. © 2017 John Wiley & Sons Ltd.

  10. New insights into Prevotella diversity and medical microbiology.

    Science.gov (United States)

    Alauzet, Corentine; Marchandin, Hélène; Lozniewski, Alain

    2010-11-01

    In light of recent studies based on cultivation-independent methods, it appears that the diversity of Prevotella in human microbiota is greater than was previously assumed from cultivation-based studies, and that the implication of these bacteria in several human diseases was unrecognized. While some Prevotella taxa were found during opportunistic infections, changes in Prevotella abundance and diversity were discovered during dysbiosis-associated diseases. As member of the microbiota, Prevotella may also be considered as a reservoir for resistance genes. Greater knowledge on Prevotella diversity, as well as new insights into its pathogenic potential and implication in dysbiosis are expected from the use of human microbe identification microarrays, from whole-genome sequence analyse, and from the NIH Human Microbiome Project data. New approaches, including molecular-based methods, could contribute to improve the diagnosis of Prevotella infections.

  11. The MedSeq Project: a randomized trial of integrating whole genome sequencing into clinical medicine.

    Science.gov (United States)

    Vassy, Jason L; Lautenbach, Denise M; McLaughlin, Heather M; Kong, Sek Won; Christensen, Kurt D; Krier, Joel; Kohane, Isaac S; Feuerman, Lindsay Z; Blumenthal-Barby, Jennifer; Roberts, J Scott; Lehmann, Lisa Soleymani; Ho, Carolyn Y; Ubel, Peter A; MacRae, Calum A; Seidman, Christine E; Murray, Michael F; McGuire, Amy L; Rehm, Heidi L; Green, Robert C

    2014-03-20

    Whole genome sequencing (WGS) is already being used in certain clinical and research settings, but its impact on patient well-being, health-care utilization, and clinical decision-making remains largely unstudied. It is also unknown how best to communicate sequencing results to physicians and patients to improve health. We describe the design of the MedSeq Project: the first randomized trials of WGS in clinical care. This pair of randomized controlled trials compares WGS to standard of care in two clinical contexts: (a) disease-specific genomic medicine in a cardiomyopathy clinic and (b) general genomic medicine in primary care. We are recruiting 8 to 12 cardiologists, 8 to 12 primary care physicians, and approximately 200 of their patients. Patient participants in both the cardiology and primary care trials are randomly assigned to receive a family history assessment with or without WGS. Our laboratory delivers a genome report to physician participants that balances the needs to enhance understandability of genomic information and to convey its complexity. We provide an educational curriculum for physician participants and offer them a hotline to genetics professionals for guidance in interpreting and managing their patients' genome reports. Using varied data sources, including surveys, semi-structured interviews, and review of clinical data, we measure the attitudes, behaviors and outcomes of physician and patient participants at multiple time points before and after the disclosure of these results. The impact of emerging sequencing technologies on patient care is unclear. We have designed a process of interpreting WGS results and delivering them to physicians in a way that anticipates how we envision genomic medicine will evolve in the near future. That is, our WGS report provides clinically relevant information while communicating the complexity and uncertainty of WGS results to physicians and, through physicians, to their patients. This project will not only

  12. The Great Migration and African-American Genomic Diversity.

    Directory of Open Access Journals (Sweden)

    Soheil Baharian

    2016-05-01

    Full Text Available We present a comprehensive assessment of genomic diversity in the African-American population by studying three genotyped cohorts comprising 3,726 African-Americans from across the United States that provide a representative description of the population across all US states and socioeconomic status. An estimated 82.1% of ancestors to African-Americans lived in Africa prior to the advent of transatlantic travel, 16.7% in Europe, and 1.2% in the Americas, with increased African ancestry in the southern United States compared to the North and West. Combining demographic models of ancestry and those of relatedness suggests that admixture occurred predominantly in the South prior to the Civil War and that ancestry-biased migration is responsible for regional differences in ancestry. We find that recent migrations also caused a strong increase in genetic relatedness among geographically distant African-Americans. Long-range relatedness among African-Americans and between African-Americans and European-Americans thus track north- and west-bound migration routes followed during the Great Migration of the twentieth century. By contrast, short-range relatedness patterns suggest comparable mobility of ∼15-16km per generation for African-Americans and European-Americans, as estimated using a novel analytical model of isolation-by-distance.

  13. Genome-wide prediction methods in highly diverse and heterozygous species: proof-of-concept through simulation in grapevine.

    Directory of Open Access Journals (Sweden)

    Agota Fodor

    Full Text Available Nowadays, genome-wide association studies (GWAS and genomic selection (GS methods which use genome-wide marker data for phenotype prediction are of much potential interest in plant breeding. However, to our knowledge, no studies have been performed yet on the predictive ability of these methods for structured traits when using training populations with high levels of genetic diversity. Such an example of a highly heterozygous, perennial species is grapevine. The present study compares the accuracy of models based on GWAS or GS alone, or in combination, for predicting simple or complex traits, linked or not with population structure. In order to explore the relevance of these methods in this context, we performed simulations using approx 90,000 SNPs on a population of 3,000 individuals structured into three groups and corresponding to published diversity grapevine data. To estimate the parameters of the prediction models, we defined four training populations of 1,000 individuals, corresponding to these three groups and a core collection. Finally, to estimate the accuracy of the models, we also simulated four breeding populations of 200 individuals. Although prediction accuracy was low when breeding populations were too distant from the training populations, high accuracy levels were obtained using the sole core-collection as training population. The highest prediction accuracy was obtained (up to 0.9 using the combined GWAS-GS model. We thus recommend using the combined prediction model and a core-collection as training population for grapevine breeding or for other important economic crops with the same characteristics.

  14. Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: Development of novel SSR markers and genetic diversity in Pistacia species.

    Science.gov (United States)

    Ziya Motalebipour, Elmira; Kafkas, Salih; Khodaeiaminjan, Mortaza; Çoban, Nergiz; Gözel, Hatice

    2016-12-07

    Pistachio (Pistacia vera L.) is one of the most important nut crops in the world. There are about 11 wild species in the genus Pistacia, and they have importance as rootstock seed sources for cultivated P. vera and forest trees. Published information on the pistachio genome is limited. Therefore, a genome survey is necessary to obtain knowledge on the genome structure of pistachio by next generation sequencing. Simple sequence repeat (SSR) markers are useful tools for germplasm characterization, genetic diversity analysis, and genetic linkage mapping, and may help to elucidate genetic relationships among pistachio cultivars and species. To explore the genome structure of pistachio, a genome survey was performed using the Illumina platform at approximately 40× coverage depth in the P. vera cv. Siirt. The K-mer analysis indicated that pistachio has a genome that is about 600 Mb in size and is highly heterozygous. The assembly of 26.77 Gb Illumina data produced 27,069 scaffolds at N50 = 3.4 kb with a total of 513.5 Mb. A total of 59,280 SSR motifs were detected with a frequency of 8.67 kb. A total of 206 SSRs were used to characterize 24 P. vera cultivars and 20 wild Pistacia genotypes (four genotypes from each five wild Pistacia species) belonging to P. atlantica, P. integerrima, P. chinenesis, P. terebinthus, and P. lentiscus genotypes. Overall 135 SSR loci amplified in all 44 cultivars and genotypes, 41 were polymorphic in six Pistacia species. The novel SSR loci developed from cultivated pistachio were highly transferable to wild Pistacia species. The results from a genome survey of pistachio suggest that the genome size of pistachio is about 600 Mb with a high heterozygosity rate. This information will help to design whole genome sequencing strategies for pistachio. The newly developed novel polymorphic SSRs in this study may help germplasm characterization, genetic diversity, and genetic linkage mapping studies in the genus Pistacia.

  15. What can we learn about lyssavirus genomes using 454 sequencing?

    Science.gov (United States)

    Höper, Dirk; Finke, Stefan; Freuling, Conrad M; Hoffmann, Bernd; Beer, Martin

    2012-01-01

    The main task of the individual project number four"Whole genome sequencing, virus-host adaptation, and molecular epidemiological analyses of lyssaviruses "within the network" Lyssaviruses--a potential re-emerging public health threat" is to provide high quality complete genome sequences from lyssaviruses. These sequences are analysed in-depth with regard to the diversity of the viral populations as to both quasi-species and so-called defective interfering RNAs. Moreover, the sequence data will facilitate further epidemiological analyses, will provide insight into the evolution of lyssaviruses and will be the basis for the design of novel nucleic acid based diagnostics. The first results presented here indicate that not only high quality full-length lyssavirus genome sequences can be generated, but indeed efficient analysis of the viral population gets feasible.

  16. A tutorial of diverse genome analysis tools found in the CoGe web-platform using Plasmodium spp. as a model

    Science.gov (United States)

    Castillo, Andreina I; Nelson, Andrew D L; Haug-Baltzell, Asher K; Lyons, Eric

    2018-01-01

    Abstract Integrated platforms for storage, management, analysis and sharing of large quantities of omics data have become fundamental to comparative genomics. CoGe (https://genomevolution.org/coge/) is an online platform designed to manage and study genomic data, enabling both data- and hypothesis-driven comparative genomics. CoGe’s tools and resources can be used to organize and analyse both publicly available and private genomic data from any species. Here, we demonstrate the capabilities of CoGe through three example workflows using 17 Plasmodium genomes as a model. Plasmodium genomes present unique challenges for comparative genomics due to their rapidly evolving and highly variable genomic AT/GC content. These example workflows are intended to serve as templates to help guide researchers who would like to use CoGe to examine diverse aspects of genome evolution. In the first workflow, trends in genome composition and amino acid usage are explored. In the second, changes in genome structure and the distribution of synonymous (Ks) and non-synonymous (Kn) substitution values are evaluated across species with different levels of evolutionary relatedness. In the third workflow, microsyntenic analyses of multigene families’ genomic organization are conducted using two Plasmodium-specific gene families—serine repeat antigen, and cytoadherence-linked asexual gene—as models. In general, these example workflows show how to achieve quick, reproducible and shareable results using the CoGe platform. We were able to replicate previously published results, as well as leverage CoGe’s tools and resources to gain additional insight into various aspects of Plasmodium genome evolution. Our results highlight the usefulness of the CoGe platform, particularly in understanding complex features of genome evolution. Database URL: https://genomevolution.org/coge/

  17. “Freedom from Jobs” or learning to love to labor? Diversity advocacy and working imaginaries in Open Technology Projects

    Directory of Open Access Journals (Sweden)

    Christina Dunbar-Hester

    2016-12-01

    Full Text Available This paper examines imaginaries of work and labor in “open technology” projects (especially open source software and hackerspaces, based on ethnographic research in North America. It zeroes in on “diversity initiatives” within open technology projects. These initiatives are important because they expose many of the assumptions and tensions that surround participatory cultures. On the one hand, these projects and spaces are organized around voluntarism; in theory, everyone who wishes to participate is welcome to do so. On the other hand, diversity initiatives form in order to address the “problem” of imbalance in the ranks of participants. Technology is a unique domain for the discharge of political energies. In collective imagination, it has been vested with the power to initiate change (even as this belief obscures the role of social and economic relations. Multiple ideas circulate about the relationships between diversity in open technology projects and paid labor. This paper argues that in part due to the legacy of technical hobbies as training grounds for technical employment for much of the twentieth century, as documented by historians of radio (Douglas, 1987; Haring, 2006, voluntaristic technology projects are vexed sites for imagining political emancipation. To a large degree, diversity initiatives in open technology projects are consistent with corporate values of diversity as a marketplace value.  At the same time, collectivity formations around technology that incorporate feminist, antiracist, or social justice framings may begin to generate connections between diversity advocacy in tech fields and social justice movements or policy changes in order to effect deep social change. 

  18. Impact of Sample Type and DNA Isolation Procedure on Genomic Inference of Microbiome Composition

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær; Bergmark, Lasse; Munk, Patrick

    2016-01-01

    that in standard protocols. Based on this insight, we designed an improved DNA isolation procedure optimized for microbiome genomics that can be used for the three examined specimen types and potentially also for other biological specimens. A standard operating procedure is available from https://dx.doi.org/10......Explorations of complex microbiomes using genomics greatly enhance our understanding about their diversity, biogeography, and function. The isolation of DNA from microbiome specimens is a key prerequisite for such examinations, but challenges remain in obtaining sufficient DNA quantities required...... for certain sequencing approaches, achieving accurate genomic inference of microbiome composition, and facilitating comparability of findings across specimen types and sequencing projects. These aspects are particularly relevant for the genomics-based global surveillance of infectious agents and antimicrobial...

  19. Genome‐scale diversity and niche adaptation analysis of Lactococcus lactis by comparative genome hybridization using multi‐strain arrays

    Science.gov (United States)

    Siezen, Roland J.; Bayjanov, Jumamurat R.; Felis, Giovanna E.; van der Sijde, Marijke R.; Starrenburg, Marjo; Molenaar, Douwe; Wels, Michiel; van Hijum, Sacha A. F. T.; van Hylckama Vlieg, Johan E. T.

    2011-01-01

    Summary Lactococcus lactis produces lactic acid and is widely used in the manufacturing of various fermented dairy products. However, the species is also frequently isolated from non‐dairy niches, such as fermented plant material. Recently, these non‐dairy strains have gained increasing interest, as they have been described to possess flavour‐forming activities that are rarely found in dairy isolates and have diverse metabolic properties. We performed an extensive whole‐genome diversity analysis on 39 L. lactis strains, isolated from dairy and plant sources. Comparative genome hybridization analysis with multi‐strain microarrays was used to assess presence or absence of genes and gene clusters in these strains, relative to all L. lactis sequences in public databases, whereby chromosomal and plasmid‐encoded genes were computationally analysed separately. Nearly 3900 chromosomal orthologous groups (chrOGs) were defined on basis of four sequenced chromosomes of L. lactis strains (IL1403, KF147, SK11, MG1363). Of these, 1268 chrOGs are present in at least 35 strains and represent the presently known core genome of L. lactis, and 72 chrOGs appear to be unique for L. lactis. Nearly 600 and 400 chrOGs were found to be specific for either the subspecies lactis or subspecies cremoris respectively. Strain variability was found in presence or absence of gene clusters related to growth on plant substrates, such as genes involved in the consumption of arabinose, xylan, α‐galactosides and galacturonate. Further niche‐specific differences were found in gene clusters for exopolysaccharides biosynthesis, stress response (iron transport, osmotolerance) and bacterial defence mechanisms (nisin biosynthesis). Strain variability of functions encoded on known plasmids included proteolysis, lactose fermentation, citrate uptake, metal ion resistance and exopolysaccharides biosynthesis. The present study supports the view of L. lactis as a species with a very flexible

  20. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains.

    Directory of Open Access Journals (Sweden)

    Nikos C Kyrpides

    2014-08-01

    Full Text Available Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance. However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000. This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.

  1. Genomic Encyclopedia of Bacteria and Archaea: Sequencing a Myriad of Type Strains

    KAUST Repository

    Kyrpides, Nikos C.

    2014-08-05

    Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet\\'s most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet\\'s genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.

  2. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    OpenAIRE

    Hudson, LN; Newbold, T; Contu, S; Hill, SLL; Lysenko, I; De Palma, A; Phillips, HRP; Alhusseini, TI; Bedford, FE; Bennett, DJ; Booth, H; Burton, VJ; Chng, CWT; Choimes, A; Correia, DLP

    2017-01-01

    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make free...

  3. Ecology and genomics of Bacillus subtilis.

    Science.gov (United States)

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2008-06-01

    Bacillus subtilis is a remarkably diverse bacterial species that is capable of growth within many environments. Recent microarray-based comparative genomic analyses have revealed that members of this species also exhibit considerable genomic diversity. The identification of strain-specific genes might explain how B. subtilis has become so broadly adapted. The goal of identifying ecologically adaptive genes could soon be realized with the imminent release of several new B. subtilis genome sequences. As we embark upon this exciting new era of B. subtilis comparative genomics we review what is currently known about the ecology and evolution of this species.

  4. Human Genome Project discoveries: Dialectics and rhetoric in the science of genetics

    Science.gov (United States)

    Robidoux, Charlotte A.

    The Human Genome Project (HGP), a $437 million effort that began in 1990 to chart the chemical sequence of our three billion base pairs of DNA, was completed in 2003, marking the 50th anniversary that proved the definitive structure of the molecule. This study considered how dialectical and rhetorical arguments functioned in the science, political, and public forums over a 20-year period, from 1980 to 2000, to advance human genome research and to establish the official project. I argue that Aristotle's continuum of knowledge--which ranges from the probable on one end to certified or demonstrated knowledge on the other--provides useful distinctions for analyzing scientific reasoning. While contemporary scientific research seeks to discover certified knowledge, investigators generally employ the hypothetico-deductive or scientific method, which often yields probable rather than certain findings, making these dialectical in nature. Analysis of the discourse describing human genome research revealed the use of numerous rhetorical figures and topics. Persuasive and probable reasoning were necessary for scientists to characterize unknown genetic phenomena, to secure interest in and funding for large-scale human genome research, to solve scientific problems, to issue probable findings, to convince colleagues and government officials that the findings were sound and to disseminate information to the public. Both government and private venture scientists drew on these tools of reasoning to promote their methods of mapping and sequencing the genome. The debate over how to carry out sequencing was rooted in conflicting values. Scientists representing the academic tradition valued a more conservative method that would establish high quality results, and those supporting private industry valued an unconventional approach that would yield products and profits more quickly. Values in turn influenced political and public forum arguments. Agency representatives and investors sided

  5. Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change.

    Science.gov (United States)

    Supple, Megan Ann; Bragg, Jason G; Broadhurst, Linda M; Nicotra, Adrienne B; Byrne, Margaret; Andrew, Rose L; Widdup, Abigail; Aitken, Nicola C; Borevitz, Justin O

    2018-04-24

    As species face rapid environmental change, we can build resilient populations through restoration projects that incorporate predicted future climates into seed sourcing decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in Australia that is a target for restoration. We examined genomic and phenotypic variation to make empirical based recommendations for seed sourcing. We examined isolation by distance and isolation by environment, determining high levels of gene flow extending for 500 km and correlations with climate and soil variables. Growth experiments revealed extensive phenotypic variation both within and among sampling sites, but no site-specific differentiation in phenotypic plasticity. Model predictions suggest that seed can be sourced broadly across the landscape, providing ample diversity for adaptation to environmental change. Application of our landscape genomic model to E. melliodora restoration projects can identify genomic variation suitable for predicted future climates, thereby increasing the long term probability of successful restoration. © 2018, Supple et al.

  6. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history

    Energy Technology Data Exchange (ETDEWEB)

    Yuhki, Naoya; O' Brien, S.J. (National Cancer Institute, Frederick, MD (USA))

    1990-01-01

    The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations.

  7. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history

    International Nuclear Information System (INIS)

    Yuhki, Naoya; O'Brien, S.J.

    1990-01-01

    The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations

  8. Ethical challenges and innovations in the dissemination of genomic data: the experience of the PERSPECTIVE project

    Directory of Open Access Journals (Sweden)

    Lévesque E

    2015-08-01

    Full Text Available Emmanuelle Lévesque,1 Bartha Maria Knoppers,1 Jacques Simard,2 1Department of Human Genetics, Centre for Genomics and Policy, McGill University, Montréal, 2Genomics Centre, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec City, QC, Canada Abstract: The importance of making genomic data available for future research is now widely recognized among the scientific community and policymakers. In this era of shared responsibility for data dissemination, improved patient care through research depends on the development of powerful and secure data-sharing systems. As part of the concerted effort to share research resources, the project entitled Personalized Risk Stratification for Prevention and Early Detection of Breast Cancer (PERSPECTIVE makes effective data sharing through the development of a data-sharing framework, one of its goals. The secondary uses of data from PERSPECTIVE for future research promise to enhance our knowledge of breast cancer etiologies without duplicating data-gathering efforts. Despite its benefit for research, we recognize the ethical challenges of data sharing on the local, national, and international levels. The effective management of ethical approvals for projects spanning across jurisdictions, the return of results to research participants, and research incentives and recognition for data production, are but a few pressing issues that need to be properly addressed. We discuss how we managed these issues and suggest how ongoing innovations might help to facilitate data sharing in future genomic research projects. Keywords: data sharing, research ethics, cancer

  9. Genome sequence of the moderately thermophilic, amino-acid-degrading and sulfur-reducing bacterium Thermovirga lienii type strain (Cas60314(T)).

    Science.gov (United States)

    Göker, Markus; Saunders, Elisabeth; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Chang, Yun-Juan; Jeffries, Cynthia D; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2012-05-25

    Thermovirga lienii Dahle and Birkeland 2006 is a member of the genus Thermovirga in the genomically moderately well characterized phylum 'Synergistetes'. Members of this relatively recently proposed phylum 'Synergistetes' are of interest because of their isolated phylogenetic position and their diverse habitats, e.g. from humans to oil wells. The genome of T. lienii Cas60314(T) is the fifth genome sequence (third completed) from this phylum to be published. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,999,646 bp long genome (including one plasmid) with its 1,914 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  10. Genetic diversity and population structure inferred from the partially duplicated genome of domesticated carp, Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Feldman Marcus W

    2007-04-01

    Full Text Available Abstract Genetic relationships among eight populations of domesticated carp (Cyprinus carpio L., a species with a partially duplicated genome, were studied using 12 microsatellites and 505 AFLP bands. The populations included three aquacultured carp strains and five ornamental carp (koi variants. Grass carp (Ctenopharyngodon idella was used as an outgroup. AFLP-based gene diversity varied from 5% (grass carp to 32% (koi and reflected the reasonably well understood histories and breeding practices of the populations. A large fraction of the molecular variance was due to differences between aquacultured and ornamental carps. Further analyses based on microsatellite data, including cluster analysis and neighbor-joining trees, supported the genetic distinctiveness of aquacultured and ornamental carps, despite the recent divergence of the two groups. In contrast to what was observed for AFLP-based diversity, the frequency of heterozygotes based on microsatellites was comparable among all populations. This discrepancy can potentially be explained by duplication of some loci in Cyprinus carpio L., and a model that shows how duplication can increase heterozygosity estimates for microsatellites but not for AFLP loci is discussed. Our analyses in carp can help in understanding the consequences of genotyping duplicated loci and in interpreting discrepancies between dominant and co-dominant markers in species with recent genome duplication.

  11. The fishes of Genome 10K

    KAUST Repository

    Bernardi, Giacomo

    2012-09-01

    The Genome 10K project aims to sequence the genomes of 10,000 vertebrates, representing approximately one genome for each vertebrate genus. Since fishes (cartilaginous fishes, ray-finned fishes and lobe-finned fishes) represent more than 50% of extant vertebrates, it is planned to target 4,000 fish genomes. At present, nearly 60 fish genomes are being sequenced at various public funded labs, and under a Genome 10K and BGI pilot project. An additional 100 fishes have been identified for sequencing in the next phase of Genome 10K project. © 2012 Elsevier B.V.

  12. The fishes of Genome 10K

    KAUST Repository

    Bernardi, Giacomo; Wiley, Edward O.; Mansour, Hicham; Miller, Michael R.; Ortí , Guillermo; Haussler, David H.; O'Brien, Stephen J O; Ryder, Oliver A.; Venkatesh, Byrappa

    2012-01-01

    The Genome 10K project aims to sequence the genomes of 10,000 vertebrates, representing approximately one genome for each vertebrate genus. Since fishes (cartilaginous fishes, ray-finned fishes and lobe-finned fishes) represent more than 50% of extant vertebrates, it is planned to target 4,000 fish genomes. At present, nearly 60 fish genomes are being sequenced at various public funded labs, and under a Genome 10K and BGI pilot project. An additional 100 fishes have been identified for sequencing in the next phase of Genome 10K project. © 2012 Elsevier B.V.

  13. Comparative Genomics Reveals the Origins and Diversity of Arthropod Immune Systems.

    Science.gov (United States)

    Palmer, William J; Jiggins, Francis M

    2015-08-01

    Insects are an important model for the study of innate immune systems, but remarkably little is known about the immune system of other arthropod groups despite their importance as disease vectors, pests, and components of biological diversity. Using comparative genomics, we have characterized the immune system of all the major groups of arthropods beyond insects for the first time--studying five chelicerates, a myriapod, and a crustacean. We found clear traces of an ancient origin of innate immunity, with some arthropods having Toll-like receptors and C3-complement factors that are more closely related in sequence or structure to vertebrates than other arthropods. Across the arthropods some components of the immune system, such as the Toll signaling pathway, are highly conserved. However, there is also remarkable diversity. The chelicerates apparently lack the Imd signaling pathway and beta-1,3 glucan binding proteins--a key class of pathogen recognition receptors. Many genes have large copy number variation across species, and this may sometimes be accompanied by changes in function. For example, we find that peptidoglycan recognition proteins have frequently lost their catalytic activity and switch between secreted and intracellular forms. We also find that there has been widespread and extensive duplication of the cellular immune receptor Dscam (Down syndrome cell adhesion molecule), which may be an alternative way to generate the high diversity produced by alternative splicing in insects. In the antiviral short interfering RNAi pathway Argonaute 2 evolves rapidly and is frequently duplicated, with a highly variable copy number. Our results provide a detailed analysis of the immune systems of several important groups of animals for the first time and lay the foundations for functional work on these groups. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Insight into the genomic diversity and relationship of Astragalus glycyphyllos symbionts by RAPD, ERIC-PCR, and AFLP fingerprinting.

    Science.gov (United States)

    Gnat, Sebastian; Małek, Wanda; Oleńska, Ewa; Trościańczyk, Aleksandra; Wdowiak-Wróbel, Sylwia; Kalita, Michał; Wójcik, Magdalena

    2015-11-01

    We assessed the genomic diversity and genomic relationship of 28 Astragalus glycyphyllos symbionts by three methodologies based on PCR reaction, i.e., RAPD, ERIC-PCR, and AFLP. The AFLP method with one PstI restriction enzyme and selective PstI-GC primer pair had a comparable discriminatory power as ERIC-PCR one and these fingerprinting techniques distinguished among the studied 28 A. glycyphyllos symbionts 18 and 17 genomotypes, respectively. RAPD method was less discriminatory in the genomotyping of rhizobia analyzed and it efficiently resolved nine genomotypes. The cluster analysis of RAPD, ERIC-PCR, and AFLP profiles resulted in a generally similar grouping of the test strains on generated dendrograms supporting a great potential of these DNA fingerprinting techniques for study of genomic polymorphism and evolutionary relationship of A. glycyphyllos nodulators. The RAPD, ERIC-PCR, and AFLP pattern similarity coefficients between A. glycyphyllos symbionts studied was in the ranges 8-100, 18-100, and 23-100%, respectively.

  15. Genome Structural Diversity among 31 Bordetella pertussis Isolates from Two Recent U.S. Whooping Cough Statewide Epidemics.

    Science.gov (United States)

    Bowden, Katherine E; Weigand, Michael R; Peng, Yanhui; Cassiday, Pamela K; Sammons, Scott; Knipe, Kristen; Rowe, Lori A; Loparev, Vladimir; Sheth, Mili; Weening, Keeley; Tondella, M Lucia; Williams, Margaret M

    2016-01-01

    During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural

  16. Genome Improvement at JGI-HAGSC

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.

    2012-03-03

    Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence. For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.

  17. Using diverse U.S. beef cattle genomes to identify missense mutations in EPAS1, a gene associated with pulmonary hypertension

    Science.gov (United States)

    The availability of whole genome sequence (WGS) data has made it possible to discover protein variants in silico. However, existing bovine WGS databases do not show data in a form conducive to protein variant analysis, and tend to under represent the breadth of genetic diversity in U.S. beef cattle...

  18. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts.

    Science.gov (United States)

    Alex, Anoop; Antunes, Agostinho

    2018-01-01

    Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts.

  19. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA

    2015-10-24

    Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. Methods Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. Results Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30 % to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. Conclusions Our study demonstrated true levels of genetic diversity

  20. Importing statistical measures into Artemis enhances gene identification in the Leishmania genome project

    Directory of Open Access Journals (Sweden)

    McDonagh Paul D

    2003-06-01

    Full Text Available Abstract Background Seattle Biomedical Research Institute (SBRI as part of the Leishmania Genome Network (LGN is sequencing chromosomes of the trypanosomatid protozoan species Leishmania major. At SBRI, chromosomal sequence is annotated using a combination of trained and untrained non-consensus gene-prediction algorithms with ARTEMIS, an annotation platform with rich and user-friendly interfaces. Results Here we describe a methodology used to import results from three different protein-coding gene-prediction algorithms (GLIMMER, TESTCODE and GENESCAN into the ARTEMIS sequence viewer and annotation tool. Comparison of these methods, along with the CODONUSAGE algorithm built into ARTEMIS, shows the importance of combining methods to more accurately annotate the L. major genomic sequence. Conclusion An improvised and powerful tool for gene prediction has been developed by importing data from widely-used algorithms into an existing annotation platform. This approach is especially fruitful in the Leishmania genome project where there is large proportion of novel genes requiring manual annotation.

  1. Conservation of gene cassettes among diverse viruses of the human gut.

    Directory of Open Access Journals (Sweden)

    Samuel Minot

    Full Text Available Viruses are a crucial component of the human microbiome, but large population sizes, high sequence diversity, and high frequencies of novel genes have hindered genomic analysis by high-throughput sequencing. Here we investigate approaches to metagenomic assembly to probe genome structure in a sample of 5.6 Gb of gut viral DNA sequence from six individuals. Tests showed that a new pipeline based on DeBruijn graph assembly yielded longer contigs that were able to recruit more reads than the equivalent non-optimized, single-pass approach. To characterize gene content, the database of viral RefSeq proteins was compared to the assembled viral contigs, generating a bipartite graph with functional cassettes linking together viral contigs, which revealed a high degree of connectivity between diverse genomes involving multiple genes of the same functional class. In a second step, open reading frames were grouped by their co-occurrence on contigs in a database-independent manner, revealing conserved cassettes of co-oriented ORFs. These methods reveal that free-living bacteriophages, while usually dissimilar at the nucleotide level, often have significant similarity at the level of encoded amino acid motifs, gene order, and gene orientation. These findings thus connect contemporary metagenomic analysis with classical studies of bacteriophage genomic cassettes. Software is available at https://sourceforge.net/projects/optitdba/.

  2. The Human Genome Project and Eugenics: Identifying the Impact on Individuals with Mental Retardation.

    Science.gov (United States)

    Kuna, Jason

    2001-01-01

    This article explores the impact of the mapping work of the Human Genome Project on individuals with mental retardation and the negative effects of genetic testing. The potential to identify disabilities and the concept of eugenics are discussed, along with ethical issues surrounding potential genetic therapies. (Contains references.) (CR)

  3. Genome-Wide Diversity and Phylogeography of Mycobacterium avium subsp. paratuberculosis in Canadian Dairy Cattle.

    Directory of Open Access Journals (Sweden)

    Christina Ahlstrom

    Full Text Available Mycobacterium avium subsp. paratuberculosis (MAP is the causative bacterium of Johne's disease (JD in ruminants. The control of JD in the dairy industry is challenging, but can be improved with a better understanding of the diversity and distribution of MAP subtypes. Previously established molecular typing techniques used to differentiate MAP have not been sufficiently discriminatory and/or reliable to accurately assess the population structure. In this study, the genetic diversity of 182 MAP isolates representing all Canadian provinces was compared to the known global diversity, using single nucleotide polymorphisms identified through whole genome sequencing. MAP isolates from Canada represented a subset of the known global diversity, as there were global isolates intermingled with Canadian isolates, as well as multiple global subtypes that were not found in Canada. One Type III and six "Bison type" isolates were found in Canada as well as one Type II subtype that represented 86% of all Canadian isolates. Rarefaction estimated larger subtype richness in Québec than in other Canadian provinces using a strict definition of MAP subtypes and lower subtype richness in the Atlantic region using a relaxed definition. Significant phylogeographic clustering was observed at the inter-provincial but not at the intra-provincial level, although most major clades were found in all provinces. The large number of shared subtypes among provinces suggests that cattle movement is a major driver of MAP transmission at the herd level, which is further supported by the lack of spatial clustering on an intra-provincial scale.

  4. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions.

    Directory of Open Access Journals (Sweden)

    Joyce E Loper

    2012-07-01

    Full Text Available We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring

  5. Genome-wide detection of copy number variations among diverse horse breeds by array CGH.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Recent studies have found that copy number variations (CNVs are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs. The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO, genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.

  6. Planning the human variome project: the Spain report.

    Science.gov (United States)

    Kaput, Jim; Cotton, Richard G H; Hardman, Lauren; Watson, Michael; Al Aqeel, Aida I; Al-Aama, Jumana Y; Al-Mulla, Fahd; Alonso, Santos; Aretz, Stefan; Auerbach, Arleen D; Bapat, Bharati; Bernstein, Inge T; Bhak, Jong; Bleoo, Stacey L; Blöcker, Helmut; Brenner, Steven E; Burn, John; Bustamante, Mariona; Calzone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T; Díaz, Carlos; Dobrowolski, Steven; dos Santos, M Rosário N; Ekong, Rosemary; Flanagan, Simon B; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V; Greenblatt, Marc S; Hamosh, Ada; Hancock, John M; Hardison, Ross; Harrison, Terence M; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J; Barash, Carol Isaacson; Izagirre, Neskuts; Jung, Jongsun; Kojima, Toshio; Laradi, Sandrine; Lee, Yeon-Su; Lee, Jong-Young; Gil-da-Silva-Lopes, Vera L; Macrae, Finlay A; Maglott, Donna; Marafie, Makia J; Marsh, Steven G E; Matsubara, Yoichi; Messiaen, Ludwine M; Möslein, Gabriela; Netea, Mihai G; Norton, Melissa L; Oefner, Peter J; Oetting, William S; O'Leary, James C; de Ramirez, Ana Maria Oller; Paalman, Mark H; Parboosingh, Jillian; Patrinos, George P; Perozzi, Giuditta; Phillips, Ian R; Povey, Sue; Prasad, Suyash; Qi, Ming; Quin, David J; Ramesar, Rajkumar S; Richards, C Sue; Savige, Judith; Scheible, Dagmar G; Scott, Rodney J; Seminara, Daniela; Shephard, Elizabeth A; Sijmons, Rolf H; Smith, Timothy D; Sobrido, María-Jesús; Tanaka, Toshihiro; Tavtigian, Sean V; Taylor, Graham R; Teague, Jon; Töpel, Thoralf; Ullman-Cullere, Mollie; Utsunomiya, Joji; van Kranen, Henk J; Vihinen, Mauno; Webb, Elizabeth; Weber, Thomas K; Yeager, Meredith; Yeom, Young I; Yim, Seon-Hee; Yoo, Hyang-Sook

    2009-04-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008. (c) 2009 Wiley-Liss, Inc.

  7. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    KAUST Repository

    Bracken-Grissom, Heather; Collins, Allen G.; Collins, Timothy; Crandall, Keith; Distel, Daniel; Dunn, Casey; Giribet, Gonzalo; Haddock, Steven; Knowlton, Nancy; Martindale, Mark; Medina, Monica; Messing, Charles; O'Brien, Stephen J.; Paulay, Gustav; Putnam, Nicolas; Ravasi, Timothy; Rouse, Greg W.; Ryan, Joseph F.; Schulze, Anja; Worheide, Gert; Adamska, Maja; Bailly, Xavier; Breinholt, Jesse; Browne, William E.; Diaz, M. Christina; Evans, Nathaniel; Flot, Jean-Francois; Fogarty, Nicole; Johnston, Matthew; Kamel, Bishoy; Kawahara, Akito Y.; Laberge, Tammy; Lavrov, Dennis; Michonneau, Francois; Moroz, Leonid L.; Oakley, Todd; Osborne, Karen; Pomponi, Shirley A.; Rhodes, Adelaide; Rodriguez-Lanetty, Mauricio; Santos, Scott R.; Satoh, Nori; Thacker, Robert W.; Van de Peer, Yves; Voolstra, Christian R.; Welch, David Mark; Winston, Judith; Zhou, Xin

    2013-01-01

    Over 95% of all metazoan (animal) species comprise the invertebrates, but very few genomes from these organisms have been sequenced. We have, therefore, formed a Global Invertebrate Genomics Alliance (GIGA). Our intent is to build a collaborative

  8. Patterns of cross-contamination in a multispecies population genomic project: detection, quantification, impact, and solutions.

    Science.gov (United States)

    Ballenghien, Marion; Faivre, Nicolas; Galtier, Nicolas

    2017-03-29

    Contamination is a well-known but often neglected problem in molecular biology. Here, we investigated the prevalence of cross-contamination among 446 samples from 116 distinct species of animals, which were processed in the same laboratory and subjected to subcontracted transcriptome sequencing. Using cytochrome oxidase 1 as a barcode, we identified a minimum of 782 events of between-species contamination, with approximately 80% of our samples being affected. An analysis of laboratory metadata revealed a strong effect of the sequencing center: nearly all the detected events of between-species contamination involved species that were sent the same day to the same company. We introduce new methods to address the amount of within-species, between-individual contamination, and to correct for this problem when calling genotypes from base read counts. We report evidence for pervasive within-species contamination in this data set, and show that classical population genomic statistics, such as synonymous diversity, the ratio of non-synonymous to synonymous diversity, inbreeding coefficient F IT , and Tajima's D, are sensitive to this problem to various extents. Control analyses suggest that our published results are probably robust to the problem of contamination. Recommendations on how to prevent or avoid contamination in large-scale population genomics/molecular ecology are provided based on this analysis.

  9. Genome diversity and divergence in Drosophila mauritiana: multiple signatures of faster X evolution.

    Science.gov (United States)

    Garrigan, Daniel; Kingan, Sarah B; Geneva, Anthony J; Vedanayagam, Jeffrey P; Presgraves, Daven C

    2014-09-04

    Drosophila mauritiana is an Indian Ocean island endemic species that diverged from its two sister species, Drosophila simulans and Drosophila sechellia, approximately 240,000 years ago. Multiple forms of incomplete reproductive isolation have evolved among these species, including sexual, gametic, ecological, and intrinsic postzygotic barriers, with crosses among all three species conforming to Haldane's rule: F(1) hybrid males are sterile and F(1) hybrid females are fertile. Extensive genetic resources and the fertility of hybrid females have made D. mauritiana, in particular, an important model for speciation genetics. Analyses between D. mauritiana and both of its siblings have shown that the X chromosome makes a disproportionate contribution to hybrid male sterility. But why the X plays a special role in the evolution of hybrid sterility in these, and other, species remains an unsolved problem. To complement functional genetic analyses, we have investigated the population genomics of D. mauritiana, giving special attention to differences between the X and the autosomes. We present a de novo genome assembly of D. mauritiana annotated with RNAseq data and a whole-genome analysis of polymorphism and divergence from ten individuals. Our analyses show that, relative to the autosomes, the X chromosome has reduced nucleotide diversity but elevated nucleotide divergence; an excess of recurrent adaptive evolution at its protein-coding genes; an excess of recent, strong selective sweeps; and a large excess of satellite DNA. Interestingly, one of two centimorgan-scale selective sweeps on the D. mauritiana X chromosome spans a region containing two sex-ratio meiotic drive elements and a high concentration of satellite DNA. Furthermore, genes with roles in reproduction and chromosome biology are enriched among genes that have histories of recurrent adaptive protein evolution. Together, these genome-wide analyses suggest that genetic conflict and frequent positive natural

  10. The Human Genome Project and Mental Retardation: An Educational Program. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Sharon

    1999-05-03

    The Arc, a national organization on mental retardation, conducted an educational program for members, many of whom have a family member with a genetic condition causing mental retardation. The project informed members about the Human Genome scientific efforts, conducted training regarding ethical, legal and social implications and involved members in issue discussions. Short reports and fact sheets on genetic and ELSI topics were disseminated to 2,200 of the Arc's leaders across the country and to other interested individuals. Materials produced by the project can e found on the Arc's web site, TheArc.org.

  11. Genome sequence of the moderately thermophilic, amino-acid-degrading and sulfur-reducing bacterium Thermovirga lienii type strain (Cas60314T)

    Energy Technology Data Exchange (ETDEWEB)

    Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Hammon, Nancy [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2012-01-01

    Thermovirga lienii Dahle and Birkeland 2006 is a member to the genomically so far uncharacterized genus Thermovirga in the phylum 'Synergistetes'. Members of the only recently (2007) proposed phylum 'Synergistetes' are of interest because of their isolated phylogenetic position and their diverse habitats, e.g. from man to oil well. The genome of T. lienii Cas60314T is only the 5th genome sequence (3rd completed) from this phylum to be published. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,999,646 bp long genome (including one plasmid) with its 1,914 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  12. Unlocking the diversity of genebanks: whole-genome marker analysis of Swiss bread wheat and spelt

    KAUST Repository

    Mü ller, Thomas; Schierscher-Viret, Beate; Fossati, Dario; Brabant, Cé cile; Schori, Arnold; Keller, Beat; Krattinger, Simon G.

    2017-01-01

    Genebanks play a pivotal role in preserving the genetic diversity present among old landraces and wild progenitors of modern crops and they represent sources of agriculturally important genes that were lost during domestication and in modern breeding. However, undesirable genes that negatively affect crop performance are often co-introduced when landraces and wild crop progenitors are crossed with elite cultivars, which often limit the use of genebank material in modern breeding programs. A detailed genetic characterization is an important prerequisite to solve this problem and to make genebank material more accessible to breeding. Here, we genotyped 502 bread wheat and 293 spelt accessions held in the Swiss National Genebank using a 15K wheat SNP array. The material included both spring and winter wheats and consisted of old landraces and modern cultivars. Genome- and sub-genome-wide analyses revealed that spelt and bread wheat form two distinct gene pools. In addition, we identified bread wheat landraces that were genetically distinct from modern cultivars. Such accessions were possibly missed in the early Swiss wheat breeding program and are promising targets for the identification of novel genes. The genetic information obtained in this study is appropriate to perform genome-wide association studies, which will facilitate the identification and transfer of agriculturally important genes from the genebank into modern cultivars through marker-assisted selection.

  13. Unlocking the diversity of genebanks: whole-genome marker analysis of Swiss bread wheat and spelt

    KAUST Repository

    Müller, Thomas

    2017-11-04

    Genebanks play a pivotal role in preserving the genetic diversity present among old landraces and wild progenitors of modern crops and they represent sources of agriculturally important genes that were lost during domestication and in modern breeding. However, undesirable genes that negatively affect crop performance are often co-introduced when landraces and wild crop progenitors are crossed with elite cultivars, which often limit the use of genebank material in modern breeding programs. A detailed genetic characterization is an important prerequisite to solve this problem and to make genebank material more accessible to breeding. Here, we genotyped 502 bread wheat and 293 spelt accessions held in the Swiss National Genebank using a 15K wheat SNP array. The material included both spring and winter wheats and consisted of old landraces and modern cultivars. Genome- and sub-genome-wide analyses revealed that spelt and bread wheat form two distinct gene pools. In addition, we identified bread wheat landraces that were genetically distinct from modern cultivars. Such accessions were possibly missed in the early Swiss wheat breeding program and are promising targets for the identification of novel genes. The genetic information obtained in this study is appropriate to perform genome-wide association studies, which will facilitate the identification and transfer of agriculturally important genes from the genebank into modern cultivars through marker-assisted selection.

  14. Functional food ingredients against colorectal cancer. An example project integrating functional genomics, nutrition and health

    NARCIS (Netherlands)

    Stierum, R.; Burgemeister, R.; Helvoort, van A.; Peijnenburg, A.; Schütze, K.; Seidelin, M.; Vang, O.; Ommen, van B.

    2001-01-01

    Functional Food Ingredients Against Colorectal Cancer is one of the first European Union funded Research Projects at the cross-road of functional genomics [comprising transcriptomics, the measurement of the expression of all messengers RNA (mRNAs) and proteomics, the measurement of expression/state

  15. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation

    Directory of Open Access Journals (Sweden)

    Anubhav Jain

    2013-07-01

    Full Text Available Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org, a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design.

  16. Complete genome sequence of Dyadobacter fermentans type strain (NS114T)

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Elke; Lapidus, Alla; Chertkov, Olga; Brettin, Thomas; Detter, John C.; Han, Cliff; Copeland, Alex; Glavina Del Rio, Tijana; Nolan, Matt; Chen, Feng; Lucas, Susan; Tice, Hope; Cheng, Jan-Fang; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ovchinnikova, Galina; Pati, Amrita; Ivanova, Natalia; Mavromatis, Konstantinos; Chen, Amy; Chain, Patrick; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Goker, Markus; Rohde, Manfred; Kyrpides, Nikos C; Klenk, Hans-Peter

    2009-05-20

    Dyadobacter fermentans (Chelius MK and Triplett EW, 2000) is the type species of the genus Dyadobacter. It is of phylogenetic interest because of its location in the Cytophagaceae, a very diverse family within the order 'Sphingobacteriales'. D. fermentans has a mainly respiratory metabolism, stains Gram-negative, is non-motile and oxidase and catalase positive. It is characterized by the production of cell filaments in ageing cultures, a flexirubin-like pigment and its ability to ferment glucose, which is almost unique in the aerobically living members of this taxonomically difficult family. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the 'sphingobacterial' genus Dyadobacter, and this 6,967,790 bp long single replicon genome with its 5804 protein-coding and 50 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  17. MBGD update 2015: microbial genome database for flexible ortholog analysis utilizing a diverse set of genomic data.

    Science.gov (United States)

    Uchiyama, Ikuo; Mihara, Motohiro; Nishide, Hiroyo; Chiba, Hirokazu

    2015-01-01

    The microbial genome database for comparative analysis (MBGD) (available at http://mbgd.genome.ad.jp/) is a comprehensive ortholog database for flexible comparative analysis of microbial genomes, where the users are allowed to create an ortholog table among any specified set of organisms. Because of the rapid increase in microbial genome data owing to the next-generation sequencing technology, it becomes increasingly challenging to maintain high-quality orthology relationships while allowing the users to incorporate the latest genomic data available into an analysis. Because many of the recently accumulating genomic data are draft genome sequences for which some complete genome sequences of the same or closely related species are available, MBGD now stores draft genome data and allows the users to incorporate them into a user-specific ortholog database using the MyMBGD functionality. In this function, draft genome data are incorporated into an existing ortholog table created only from the complete genome data in an incremental manner to prevent low-quality draft data from affecting clustering results. In addition, to provide high-quality orthology relationships, the standard ortholog table containing all the representative genomes, which is first created by the rapid classification program DomClust, is now refined using DomRefine, a recently developed program for improving domain-level clustering using multiple sequence alignment information. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Cyanobacterial life at low O(2): community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat.

    Science.gov (United States)

    Voorhies, A A; Biddanda, B A; Kendall, S T; Jain, S; Marcus, D N; Nold, S C; Sheldon, N D; Dick, G J

    2012-05-01

    Cyanobacteria are renowned as the mediators of Earth's oxygenation. However, little is known about the cyanobacterial communities that flourished under the low-O(2) conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low-O(2) conditions. Here, venting groundwater rich in sulfate and low in O(2) supports a unique benthic ecosystem of purple-colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O(2), suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, (14)C-bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low-diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale, for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria. Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low-O(2) cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history.

  19. Genomic and transcriptomic analyses reveal differential regulation of diverse terpenoid and polyketides secondary metabolites in Hericium erinaceus.

    Science.gov (United States)

    Chen, Juan; Zeng, Xu; Yang, Yan Long; Xing, Yong Mei; Zhang, Qi; Li, Jia Mei; Ma, Ke; Liu, Hong Wei; Guo, Shun Xing

    2017-08-31

    The lion's mane mushroom Hericium erinaceus is a famous traditional medicinal fungus credited with anti-dementia activity and a producer of cyathane diterpenoid natural products (erinacines) useful against nervous system diseases. To date, few studies have explored the biosynthesis of these compounds, although their chemical synthesis is known. Here, we report the first genome and tanscriptome sequence of the medicinal fungus H. erinaceus. The size of the genome is 39.35 Mb, containing 9895 gene models. The genome of H. erinaceus reveals diverse enzymes and a large family of cytochrome P450 (CYP) proteins involved in the biosynthesis of terpenoid backbones, diterpenoids, sesquiterpenes and polyketides. Three gene clusters related to terpene biosynthesis and one gene cluster for polyketides biosynthesis (PKS) were predicted. Genes involved in terpenoid biosynthesis were generally upregulated in mycelia, while the PKS gene was upregulated in the fruiting body. Comparative genome analysis of 42 fungal species of Basidiomycota revealed that most edible and medicinal mushroom show many more gene clusters involved in terpenoid and polyketide biosynthesis compared to the pathogenic fungi. None of the gene clusters for terpenoid or polyketide biosynthesis were predicted in the poisonous mushroom Amanita muscaria. Our findings may facilitate future discovery and biosynthesis of bioactive secondary metabolites from H. erinaceus and provide fundamental information for exploring the secondary metabolites in other Basidiomycetes.

  20. Big Data Analytics for Genomic Medicine.

    Science.gov (United States)

    He, Karen Y; Ge, Dongliang; He, Max M

    2017-02-15

    Genomic medicine attempts to build individualized strategies for diagnostic or therapeutic decision-making by utilizing patients' genomic information. Big Data analytics uncovers hidden patterns, unknown correlations, and other insights through examining large-scale various data sets. While integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a Big Data infrastructure exhibit challenges, they also provide a feasible opportunity to develop an efficient and effective approach to identify clinically actionable genetic variants for individualized diagnosis and therapy. In this paper, we review the challenges of manipulating large-scale next-generation sequencing (NGS) data and diverse clinical data derived from the EHRs for genomic medicine. We introduce possible solutions for different challenges in manipulating, managing, and analyzing genomic and clinical data to implement genomic medicine. Additionally, we also present a practical Big Data toolset for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs.

  1. The Epilepsy Phenome/Genome Project (EPGP) informatics platform.

    Science.gov (United States)

    Nesbitt, Gerry; McKenna, Kevin; Mays, Vickie; Carpenter, Alan; Miller, Kevin; Williams, Michael

    2013-04-01

    The Epilepsy Phenome/Genome Project (EPGP) is a large-scale, multi-institutional, collaborative network of 27 epilepsy centers throughout the U.S., Australia, and Argentina, with the objective of collecting detailed phenotypic and genetic data on a large number of epilepsy participants. The goals of EPGP are (1) to perform detailed phenotyping on 3750 participants with specific forms of non-acquired epilepsy and 1500 parents without epilepsy, (2) to obtain DNA samples on these individuals, and (3) to ultimately genotype the samples in order to discover novel genes that cause epilepsy. To carry out the project, a reliable and robust informatics platform was needed for standardized electronic data collection and storage, data quality review, and phenotypic analysis involving cases from multiple sites. EPGP developed its own suite of web-based informatics applications for participant tracking, electronic data collection (using electronic case report forms/surveys), data management, phenotypic data review and validation, specimen tracking, electroencephalograph and neuroimaging storage, and issue tracking. We implemented procedures to train and support end-users at each clinical site. Thus far, 3780 study participants have been enrolled and 20,957 web-based study activities have been completed using this informatics platform. Over 95% of respondents to an end-user satisfaction survey felt that the informatics platform was successful almost always or most of the time. The EPGP informatics platform has successfully and effectively allowed study management and efficient and reliable collection of phenotypic data. Our novel informatics platform met the requirements of a large, multicenter research project. The platform has had a high level of end-user acceptance by principal investigators and study coordinators, and can serve as a model for new tools to support future large scale, collaborative research projects collecting extensive phenotypic data. Copyright © 2012

  2. Informing the Design of Direct-to-Consumer Interactive Personal Genomics Reports.

    Science.gov (United States)

    Shaer, Orit; Nov, Oded; Okerlund, Johanna; Balestra, Martina; Stowell, Elizabeth; Ascher, Laura; Bi, Joanna; Schlenker, Claire; Ball, Madeleine

    2015-06-12

    In recent years, people who sought direct-to-consumer genetic testing services have been increasingly confronted with an unprecedented amount of personal genomic information, which influences their decisions, emotional state, and well-being. However, these users of direct-to-consumer genetic services, who vary in their education and interests, frequently have little relevant experience or tools for understanding, reasoning about, and interacting with their personal genomic data. Online interactive techniques can play a central role in making personal genomic data useful for these users. We sought to (1) identify the needs of diverse users as they make sense of their personal genomic data, (2) consequently develop effective interactive visualizations of genomic trait data to address these users' needs, and (3) evaluate the effectiveness of the developed visualizations in facilitating comprehension. The first two user studies, conducted with 63 volunteers in the Personal Genome Project and with 36 personal genomic users who participated in a design workshop, respectively, employed surveys and interviews to identify the needs and expectations of diverse users. Building on the two initial studies, the third study was conducted with 730 Amazon Mechanical Turk users and employed a controlled experimental design to examine the effectiveness of different design interventions on user comprehension. The first two studies identified searching, comparing, sharing, and organizing data as fundamental to users' understanding of personal genomic data. The third study demonstrated that interactive and visual design interventions could improve the understandability of personal genomic reports for consumers. In particular, results showed that a new interactive bubble chart visualization designed for the study resulted in the highest comprehension scores, as well as the highest perceived comprehension scores. These scores were significantly higher than scores received using the

  3. Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites

    Science.gov (United States)

    Grijseels, Sietske; Nielsen, Jens Christian; Randelovic, Milica; Nielsen, Jens; Nielsen, Kristian Fog; Workman, Mhairi; Frisvad, Jens Christian

    2016-01-01

    A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted in the identification of 62 putative biosynthetic gene clusters. Extracts of P. arizonense were analysed for secondary metabolites and austalides, pyripyropenes, tryptoquivalines, fumagillin, pseurotin A, curvulinic acid and xanthoepocin were detected. A comparative analysis against known pathways enabled the proposal of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential industrial applications for the new species P. arizonense. The description and availability of the genome sequence of P. arizonense, further provides the basis for biotechnological exploitation of this species. PMID:27739446

  4. Genome Variation Map: a data repository of genome variations in BIG Data Center.

    Science.gov (United States)

    Song, Shuhui; Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang; Zhang, Zhang

    2018-01-04

    The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Genome Variation Map: a data repository of genome variations in BIG Data Center

    Science.gov (United States)

    Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang

    2018-01-01

    Abstract The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. PMID:29069473

  6. Genome update: the 1000th genome - a cautionary tale

    DEFF Research Database (Denmark)

    Lagesen, Karin; Ussery, David; Wassenaar, Gertrude Maria

    2010-01-01

    conclusions for example about the largest bacterial genome sequenced. Biological diversity is far greater than many have thought. For example, analysis of multiple Escherichia coli genomes has led to an estimate of around 45 000 gene families more genes than are recognized in the human genome. Moreover......There are now more than 1000 sequenced prokaryotic genomes deposited in public databases and available for analysis. Currently, although the sequence databases GenBank, DNA Database of Japan and EMBL are synchronized continually, there are slight differences in content at the genomes level...... for a variety of logistical reasons, including differences in format and loading errors, such as those caused by file transfer protocol interruptions. This means that the 1000th genome will be different in the various databases. Some of the data on the highly accessed web pages are inaccurate, leading to false...

  7. Genome Size Dynamics and Evolution in Monocots

    Directory of Open Access Journals (Sweden)

    Ilia J. Leitch

    2010-01-01

    Full Text Available Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small (1C=1.9 pg, there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.

  8. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs.

    Science.gov (United States)

    Swain, Martin T; Tsai, Isheng J; Assefa, Samual A; Newbold, Chris; Berriman, Matthew; Otto, Thomas D

    2012-06-07

    Genome projects now produce draft assemblies within weeks owing to advanced high-throughput sequencing technologies. For milestone projects such as Escherichia coli or Homo sapiens, teams of scientists were employed to manually curate and finish these genomes to a high standard. Nowadays, this is not feasible for most projects, and the quality of genomes is generally of a much lower standard. This protocol describes software (PAGIT) that is used to improve the quality of draft genomes. It offers flexible functionality to close gaps in scaffolds, correct base errors in the consensus sequence and exploit reference genomes (if available) in order to improve scaffolding and generating annotations. The protocol is most accessible for bacterial and small eukaryotic genomes (up to 300 Mb), such as pathogenic bacteria, malaria and parasitic worms. Applying PAGIT to an E. coli assembly takes ∼24 h: it doubles the average contig size and annotates over 4,300 gene models.

  9. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses

    DEFF Research Database (Denmark)

    Prangishvili, D; Garrett, R A

    2004-01-01

    and Rudiviridae. They all have double-stranded DNA genomes and infect hyperthermophilic crenarchaea of the orders Sulfolobales and Thermoproteales. Representatives of the different viral families share a few homologous ORFs (open reading frames). However, about 90% of all ORFs in the seven sequenced genomes show...... no significant matches to sequences in public databases. This suggests that these hyperthermophilic viruses have exceptional biochemical solutions for biological functions. Specific features of genome organization, as well as strategies for DNA replication, suggest that phylogenetic relationships exist between...... crenarchaeal rudiviruses and the large eukaryal DNA viruses: poxviruses, the African swine fever virus and Chlorella viruses. Sequence patterns at the ends of the linear genome of the lipothrixvirus AFV1 are reminiscent of the telomeric ends of linear eukaryal chromosomes and suggest that a primitive telomeric...

  10. Population genetic inference from personal genome data: impact of ancestry and admixture on human genomic variation.

    Science.gov (United States)

    Kidd, Jeffrey M; Gravel, Simon; Byrnes, Jake; Moreno-Estrada, Andres; Musharoff, Shaila; Bryc, Katarzyna; Degenhardt, Jeremiah D; Brisbin, Abra; Sheth, Vrunda; Chen, Rong; McLaughlin, Stephen F; Peckham, Heather E; Omberg, Larsson; Bormann Chung, Christina A; Stanley, Sarah; Pearlstein, Kevin; Levandowsky, Elizabeth; Acevedo-Acevedo, Suehelay; Auton, Adam; Keinan, Alon; Acuña-Alonzo, Victor; Barquera-Lozano, Rodrigo; Canizales-Quinteros, Samuel; Eng, Celeste; Burchard, Esteban G; Russell, Archie; Reynolds, Andy; Clark, Andrew G; Reese, Martin G; Lincoln, Stephen E; Butte, Atul J; De La Vega, Francisco M; Bustamante, Carlos D

    2012-10-05

    Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas-70% of the European ancestry in today's African Americans dates back to European gene flow happening only 7-8 generations ago. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Comparative RNA genomics

    DEFF Research Database (Denmark)

    Backofen, Rolf; Gorodkin, Jan; Hofacker, Ivo L.

    2018-01-01

    Over the last two decades it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly...... small RNAs is their reliance of conserved secondary structures. Large scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible noncoding RNAs...... that exert a vastly diverse array of molecule functions. In this chapter we provide a—necessarily incomplete—overview of the current state of comparative analysis of noncoding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world....

  12. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset.

    Science.gov (United States)

    Ignatieva, Elena V; Levitsky, Victor G; Yudin, Nikolay S; Moshkin, Mikhail P; Kolchanov, Nikolay A

    2014-01-01

    The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100-1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  13. Using diverse U.S. beef cattle genomes to identify missense mutations in EPAS1, a gene associated with high-altitude pulmonary hypertension

    Science.gov (United States)

    The availability of whole genome sequence (WGS) data has made it possible to discover protein variants in silico. However, bovine WGS databases comprised of related influential sires from relatively few breeds tend to under represent the breadth of genetic diversity in U.S. beef cattle. Thus, our ...

  14. The human genome project: Information management, access, and regulation. Technical progress report, 1 April--31 August 1993

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.; Micikas, L.B.

    1993-09-10

    Efforts are described to prepare educational materials including computer based as well as conventional type teaching materials for training interested high school and elementary students in aspects of Human Genome Project.

  15. Toward genome-enabled mycology.

    Science.gov (United States)

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.

  16. HGVA: the Human Genome Variation Archive

    OpenAIRE

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gr?f, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-01-01

    Abstract High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic...

  17. Big Data Analytics for Genomic Medicine

    Science.gov (United States)

    He, Karen Y.; Ge, Dongliang; He, Max M.

    2017-01-01

    Genomic medicine attempts to build individualized strategies for diagnostic or therapeutic decision-making by utilizing patients’ genomic information. Big Data analytics uncovers hidden patterns, unknown correlations, and other insights through examining large-scale various data sets. While integration and manipulation of diverse genomic data and comprehensive electronic health records (EHRs) on a Big Data infrastructure exhibit challenges, they also provide a feasible opportunity to develop an efficient and effective approach to identify clinically actionable genetic variants for individualized diagnosis and therapy. In this paper, we review the challenges of manipulating large-scale next-generation sequencing (NGS) data and diverse clinical data derived from the EHRs for genomic medicine. We introduce possible solutions for different challenges in manipulating, managing, and analyzing genomic and clinical data to implement genomic medicine. Additionally, we also present a practical Big Data toolset for identifying clinically actionable genetic variants using high-throughput NGS data and EHRs. PMID:28212287

  18. Genomics and the making of yeast biodiversity.

    Science.gov (United States)

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-12-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. HGVA: the Human Genome Variation Archive.

    Science.gov (United States)

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gräf, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-07-03

    High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic data for key reference projects in a clean, fast and integrated fashion. HGVA provides an efficient and intuitive web-interface for easy data mining, a comprehensive RESTful API and client libraries in Python, Java and JavaScript for fast programmatic access to its knowledge base. HGVA calculates population frequencies for these projects and enriches their data with variant annotation provided by CellBase, a rich and fast annotation solution. HGVA serves as a proof-of-concept of the genome analysis developments being carried out by the University of Cambridge together with UK's 100 000 genomes project and the National Institute for Health Research BioResource Rare-Diseases, in particular, deploying open-source for Computational Biology (OpenCB) software platform for storing and analyzing massive genomic datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. The whole genome sequences and experimentally phased haplotypes of over 100 personal genomes.

    Science.gov (United States)

    Mao, Qing; Ciotlos, Serban; Zhang, Rebecca Yu; Ball, Madeleine P; Chin, Robert; Carnevali, Paolo; Barua, Nina; Nguyen, Staci; Agarwal, Misha R; Clegg, Tom; Connelly, Abram; Vandewege, Ward; Zaranek, Alexander Wait; Estep, Preston W; Church, George M; Drmanac, Radoje; Peters, Brock A

    2016-10-11

    Since the completion of the Human Genome Project in 2003, it is estimated that more than 200,000 individual whole human genomes have been sequenced. A stunning accomplishment in such a short period of time. However, most of these were sequenced without experimental haplotype data and are therefore missing an important aspect of genome biology. In addition, much of the genomic data is not available to the public and lacks phenotypic information. As part of the Personal Genome Project, blood samples from 184 participants were collected and processed using Complete Genomics' Long Fragment Read technology. Here, we present the experimental whole genome haplotyping and sequencing of these samples to an average read coverage depth of 100X. This is approximately three-fold higher than the read coverage applied to most whole human genome assemblies and ensures the highest quality results. Currently, 114 genomes from this dataset are freely available in the GigaDB repository and are associated with rich phenotypic data; the remaining 70 should be added in the near future as they are approved through the PGP data release process. For reproducibility analyses, 20 genomes were sequenced at least twice using independent LFR barcoded libraries. Seven genomes were also sequenced using Complete Genomics' standard non-barcoded library process. In addition, we report 2.6 million high-quality, rare variants not previously identified in the Single Nucleotide Polymorphisms database or the 1000 Genomes Project Phase 3 data. These genomes represent a unique source of haplotype and phenotype data for the scientific community and should help to expand our understanding of human genome evolution and function.

  1. Mitochondrial genome diversity in dagger and needle nematodes (Nematoda: Longidoridae).

    Science.gov (United States)

    Palomares-Rius, J E; Cantalapiedra-Navarrete, C; Archidona-Yuste, A; Blok, V C; Castillo, P

    2017-02-02

    Dagger and needle nematodes included in the family Longidoridae (viz. Longidorus, Paralongidorus, and Xiphinema) are highly polyphagous plant-parasitic nematodes in wild and cultivated plants and some of them are plant-virus vectors (nepovirus). The mitochondrial (mt) genomes of the dagger and needle nematodes, Xiphinema rivesi, Xiphinema pachtaicum, Longidorus vineacola and Paralongidorus litoralis were sequenced in this study. The four circular mt genomes have an estimated size of 12.6, 12.5, 13.5 and 12.7 kb, respectively. Up to date, the mt genome of X. pachtaicum is the smallest genome found in Nematoda. The four mt genomes contain 12 protein-coding genes (viz. cox1-3, nad1-6, nad4L, atp6 and cob) and two ribosomal RNA genes (rrnL and rrnS), but the atp8 gene was not detected. These mt genomes showed a gene arrangement very different within the Longidoridae species sequenced, with the exception of very closely related species (X. americanum and X. rivesi). The sizes of non-coding regions in the Longidoridae nematodes were very small and were present in a few places in the mt genome. Phylogenetic analysis of all coding genes showed a closer relationship between Longidorus and Paralongidorus and different phylogenetic possibilities for the three Xiphinema species.

  2. Exploring Other Genomes: Bacteria.

    Science.gov (United States)

    Flannery, Maura C.

    2001-01-01

    Points out the importance of genomes other than the human genome project and provides information on the identified bacterial genomes Pseudomonas aeuroginosa, Leprosy, Cholera, Meningitis, Tuberculosis, Bubonic Plague, and plant pathogens. Considers the computer's use in genome studies. (Contains 14 references.) (YDS)

  3. Genomic diversity within the Enterobacter cloacae complex.

    Directory of Open Access Journals (Sweden)

    Armand Paauw

    Full Text Available BACKGROUND: Isolates of the Enterobacter cloacae complex have been increasingly isolated as nosocomial pathogens, but phenotypic identification of the E. cloacae complex is unreliable and irreproducible. Identification of species based on currently available genotyping tools is already superior to phenotypic identification, but the taxonomy of isolates belonging to this complex is cumbersome. METHODOLOGY/PRINCIPAL FINDINGS: This study shows that multilocus sequence analysis and comparative genomic hybridization based on a mixed genome array is a powerful method for studying species assignment within the E. cloacae complex. The E. cloacae complex is shown to be evolutionarily divided into two clades that are genetically distinct from each other. The younger first clade is genetically more homogenous, contains the Enterobacter hormaechei species and is the most frequently cultured Enterobacter species in hospitals. The second and older clade consists of several (subspecies that are genetically more heterogeneous. Genetic markers were identified that could discriminate between the two clades and cluster 1. CONCLUSIONS/SIGNIFICANCE: Based on genomic differences it is concluded that some previously defined (clonal and heterogenic (subspecies of the E. cloacae complex have to be redefined because of disagreements with known or proposed nomenclature. However, further improved identification of the redefined species will be possible based on novel markers presented here.

  4. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  5. Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints.

    Directory of Open Access Journals (Sweden)

    Stefan Niemann

    2009-10-01

    Full Text Available Mycobacterium tuberculosis complex (MTBC, the causative agent of tuberculosis (TB, is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients.Here we further investigated this assumption and used massively parallel whole-genome sequencing to compare one drug-susceptible (K-1 and one multidrug resistant (MDR isolate (K-2 of a rapidly spreading M. tuberculosis Beijing genotype clone from a high incidence region (Karakalpakstan, Uzbekistan. Both isolates shared the same IS6110 RFLP pattern and the same allele at 23 out of 24 MIRU-VNTR loci. We generated 23.9 million (K-1 and 33.0 million (K-2 paired 50 bp purity filtered reads corresponding to a mean coverage of 483.5 fold and 656.1 fold respectively. Compared with the laboratory strain H37Rv both Beijing isolates shared 1,209 SNPs. The two Beijing isolates differed by 130 SNPs and one large deletion. The susceptible isolate had 55 specific SNPs, while the MDR variant had 75 specific SNPs, including the five known resistance-conferring mutations.Our results suggest that M. tuberculosis isolates exhibiting identical DNA fingerprinting patterns can harbour substantial genomic diversity. Because this heterogeneity is not captured by traditional genotyping of MTBC, some aspects of the transmission dynamics of tuberculosis could be missed or misinterpreted. Furthermore, a valid differentiation between disease relapse and exogenous reinfection might be impossible using

  6. Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints.

    Science.gov (United States)

    Niemann, Stefan; Köser, Claudio U; Gagneux, Sebastien; Plinke, Claudia; Homolka, Susanne; Bignell, Helen; Carter, Richard J; Cheetham, R Keira; Cox, Anthony; Gormley, Niall A; Kokko-Gonzales, Paula; Murray, Lisa J; Rigatti, Roberto; Smith, Vincent P; Arends, Felix P M; Cox, Helen S; Smith, Geoff; Archer, John A C

    2009-10-12

    Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis (TB), is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients. Here we further investigated this assumption and used massively parallel whole-genome sequencing to compare one drug-susceptible (K-1) and one multidrug resistant (MDR) isolate (K-2) of a rapidly spreading M. tuberculosis Beijing genotype clone from a high incidence region (Karakalpakstan, Uzbekistan). Both isolates shared the same IS6110 RFLP pattern and the same allele at 23 out of 24 MIRU-VNTR loci. We generated 23.9 million (K-1) and 33.0 million (K-2) paired 50 bp purity filtered reads corresponding to a mean coverage of 483.5 fold and 656.1 fold respectively. Compared with the laboratory strain H37Rv both Beijing isolates shared 1,209 SNPs. The two Beijing isolates differed by 130 SNPs and one large deletion. The susceptible isolate had 55 specific SNPs, while the MDR variant had 75 specific SNPs, including the five known resistance-conferring mutations. Our results suggest that M. tuberculosis isolates exhibiting identical DNA fingerprinting patterns can harbour substantial genomic diversity. Because this heterogeneity is not captured by traditional genotyping of MTBC, some aspects of the transmission dynamics of tuberculosis could be missed or misinterpreted. Furthermore, a valid differentiation between disease relapse and exogenous reinfection might be impossible using standard

  7. Lactococcus lactis Diversity in Undefined Mixed Dairy Starter Cultures as Revealed by Comparative Genome Analyses and Targeted Amplicon Sequencing of epsD.

    Science.gov (United States)

    Frantzen, Cyril A; Kleppen, Hans Petter; Holo, Helge

    2018-02-01

    Undefined mesophilic mixed (DL) starter cultures are used in the production of continental cheeses and contain unknown strain mixtures of Lactococcus lactis and leuconostocs. The choice of starter culture affects the taste, aroma, and quality of the final product. To gain insight into the diversity of Lactococcus lactis strains in starter cultures, we whole-genome sequenced 95 isolates from three different starter cultures. Pan-genomic analyses, which included 30 publically available complete genomes, grouped the strains into 21 L. lactis subsp . lactis and 28 L. lactis subsp. cremoris lineages. Only one of the 95 isolates grouped with previously sequenced strains, and the three starter cultures showed no overlap in lineage distributions. The culture diversity was assessed by targeted amplicon sequencing using purR , a core gene, and epsD , present in 93 of the 95 starter culture isolates but absent in most of the reference strains. This enabled an unprecedented discrimination of starter culture Lactococcus lactis and revealed substantial differences between the three starter cultures and compositional shifts during the cultivation of cultures in milk. IMPORTANCE In contemporary cheese production, standardized frozen seed stock starter cultures are used to ensure production stability, reproducibility, and quality control of the product. The dairy industry experiences significant disruptions of cheese production due to phage attacks, and one commonly used countermeasure to phage attack is to employ a starter rotation strategy, in which two or more starters with minimal overlap in phage sensitivity are used alternately. A culture-independent analysis of the lactococcal diversity in complex undefined starter cultures revealed large differences between the three starter cultures and temporal shifts in lactococcal composition during the production of bulk starters. A better understanding of the lactococcal diversity in starter cultures will enable the development of

  8. Genomic Diversity and Evolution of the Fish Pathogen Flavobacterium psychrophilum

    DEFF Research Database (Denmark)

    Duchaud, Eric; Rochat, Tatiana; Habib, Christophe

    2018-01-01

    genome accounting for similar to 80% of the genes in each genome. The pan-genome seems nevertheless "open" according to the scaling exponent of a power-law fitted on the rate of new gene discovery when genomes are added one-by-one. Recombination is a key component of the evolutionary process...... of recombination and mutations to nucleotide-level differentiation (r/m) was estimated to similar to 13. Within CC-ST10, evolutionary distances computed on non-recombined regions and comparisons between 22 isolates sampled up to 27 years apart suggest a most recent common ancestor in the second half...

  9. Genome sequence and genetic diversity of European ash trees

    DEFF Research Database (Denmark)

    Sollars, Elizabeth S A; Harper, Andrea L; Kelly, Laura J

    2017-01-01

    -heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re...

  10. Assessment of genetic diversity among sixty bread wheat (Triticum ...

    African Journals Online (AJOL)

    Mwale

    2016-05-25

    May 25, 2016 ... the highest genetic diversity followed by genome B while genome D was the lowest diverse. Cluster ... and 95% of people in the developing countries eat wheat or maize in ... area for wheat production in China due to pressure from ...... hypertension in the stroke-prone spontaneously hypertensive rat. Cell.

  11. The human genome project and the Catholic Church (1)

    Science.gov (United States)

    Moraczewski, Albert S

    1991-12-01

    The Cathlic Church has not made any formal statements about the Human Genome Project as such. But the present Pope, John Paul II, has commented, albeit very briefly, on various aspects of genetic manipulation. Genetic interventions which are therapeutic (e.g. gene therapy), namely, directed to the correction or amelioration of a disorder are acceptable, in principle, provided they promote the personal well being of the individual being so treated. Genetic interventions which are not therapeutic for the specific individual involved but are experimental and directed primarily to improving humans as biological entities are of dubious moral probity, but are not necessarily to be totally rejected out of hand. To be morally acceptable such genetic intervention should meet certain conditions which include due respect for the given psychological nature of each individual human being. In addition, no harm should be inflicted on the process of human generation, and its fundamental design should not be altered. Any genetic manipulation which results in, or tends to, the creation of groups with different qualities such that there would result a fresh marginalization of these people must be avoided. It has been also suggested by a few that because the Son of God took on a human nature in Jesus Christ, one may not so alter the human genome that a new distinct species would be created....

  12. A quantitative account of genomic island acquisitions in prokaryotes

    Directory of Open Access Journals (Sweden)

    Roos Tom E

    2011-08-01

    Full Text Available Abstract Background Microbial genomes do not merely evolve through the slow accumulation of mutations, but also, and often more dramatically, by taking up new DNA in a process called horizontal gene transfer. These innovation leaps in the acquisition of new traits can take place via the introgression of single genes, but also through the acquisition of large gene clusters, which are termed Genomic Islands. Since only a small proportion of all the DNA diversity has been sequenced, it can be hard to find the appropriate donors for acquired genes via sequence alignments from databases. In contrast, relative oligonucleotide frequencies represent a remarkably stable genomic signature in prokaryotes, which facilitates compositional comparisons as an alignment-free alternative for phylogenetic relatedness. In this project, we test whether Genomic Islands identified in individual bacterial genomes have a similar genomic signature, in terms of relative dinucleotide frequencies, and can therefore be expected to originate from a common donor species. Results When multiple Genomic Islands are present within a single genome, we find that up to 28% of these are compositionally very similar to each other, indicative of frequent recurring acquisitions from the same donor to the same acceptor. Conclusions This represents the first quantitative assessment of common directional transfer events in prokaryotic evolutionary history. We suggest that many of the resident Genomic Islands per prokaryotic genome originated from the same source, which may have implications with respect to their regulatory interactions, and for the elucidation of the common origins of these acquired gene clusters.

  13. Quantifying Temporal Genomic Erosion in Endangered Species.

    Science.gov (United States)

    Díez-Del-Molino, David; Sánchez-Barreiro, Fatima; Barnes, Ian; Gilbert, M Thomas P; Dalén, Love

    2018-03-01

    Many species have undergone dramatic population size declines over the past centuries. Although stochastic genetic processes during and after such declines are thought to elevate the risk of extinction, comparative analyses of genomic data from several endangered species suggest little concordance between genome-wide diversity and current population sizes. This is likely because species-specific life-history traits and ancient bottlenecks overshadow the genetic effect of recent demographic declines. Therefore, we advocate that temporal sampling of genomic data provides a more accurate approach to quantify genetic threats in endangered species. Specifically, genomic data from predecline museum specimens will provide valuable baseline data that enable accurate estimation of recent decreases in genome-wide diversity, increases in inbreeding levels, and accumulation of deleterious genetic variation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Supplementary Material for: Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA

    2015-01-01

    Abstract Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. Methods Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. Results Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30 % to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. Conclusions Our study demonstrated true levels of genetic

  15. Population diversity of Diaphorina citri (Hemiptera: Liviidae) in China based on whole mitochondrial genome sequences.

    Science.gov (United States)

    Wu, Fengnian; Jiang, Hongyan; Beattie, G Andrew C; Holford, Paul; Chen, Jianchi; Wallis, Christopher M; Zheng, Zheng; Deng, Xiaoling; Cen, Yijing

    2018-04-24

    Diaphorina citri (Asian citrus psyllid; ACP) transmits 'Candidatus Liberibacter asiaticus' associated with citrus Huanglongbing (HLB). ACP has been reported in 11 provinces/regions in China, yet its population diversity remains unclear. In this study, we evaluated ACP population diversity in China using representative whole mitochondrial genome (mitogenome) sequences. Additional mitogenome sequences outside China were also acquired and evaluated. The sizes of the 27 ACP mitogenome sequences ranged from 14 986 to 15 030 bp. Along with three previously published mitogenome sequences, the 30 sequences formed three major mitochondrial groups (MGs): MG1, present in southwestern China and occurring at elevations above 1000 m; MG2, present in southeastern China and Southeast Asia (Cambodia, Indonesia, Malaysia, and Vietnam) and occurring at elevations below 180 m; and MG3, present in the USA and Pakistan. Single nucleotide polymorphisms in five genes (cox2, atp8, nad3, nad1 and rrnL) contributed mostly in the ACP diversity. Among these genes, rrnL had the most variation. Mitogenome sequences analyses revealed two major phylogenetic groups of ACP present in China as well as a possible unique group present currently in Pakistan and the USA. The information could have significant implications for current ACP control and HLB management. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  16. Human genetics and genomics a decade after the release of the draft sequence of the human genome

    Science.gov (United States)

    2011-01-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

  17. Lawrence Livermore National Laboratory- Completing the Human Genome Project and Triggering Nearly $1 Trillion in U.S. Economic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Jeffrey S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-28

    The success of the Human Genome project is already nearing $1 Trillion dollars of U.S. economic activity. Lawrence Livermore National Laboratory (LLNL) was a co-leader in one of the biggest biological research effort in history, sequencing the Human Genome Project. This ambitious research effort set out to sequence the approximately 3 billion nucleotides in the human genome, an effort many thought was nearly impossible. Deoxyribonucleic acid (DNA) was discovered in 1869, and by 1943 came the discovery that DNA was a molecule that encodes the genetic instructions used in the development and functioning of living organisms and many viruses. To make full use of the information, scientists needed to first sequence the billions of nucleotides to begin linking them to genetic traits and illnesses, and eventually more effective treatments. New medical discoveries and improved agriculture productivity were some of the expected benefits. While the potential benefits were vast, the timeline (over a decade) and cost ($3.8 Billion) exceeded what the private sector would normally attempt, especially when this would only be the first phase toward the path to new discoveries and market opportunities. The Department of Energy believed its best research laboratories could meet this Grand Challenge and soon convinced the National Institute of Health to formally propose the Human Genome project to the federal government. The U.S. government accepted the risk and challenge to potentially create new healthcare and food discoveries that could benefit the world and the U.S. Industry.

  18. Genome sequence and genetic diversity of the common carp, Cyprinus carpio.

    Science.gov (United States)

    Xu, Peng; Zhang, Xiaofeng; Wang, Xumin; Li, Jiongtang; Liu, Guiming; Kuang, Youyi; Xu, Jian; Zheng, Xianhu; Ren, Lufeng; Wang, Guoliang; Zhang, Yan; Huo, Linhe; Zhao, Zixia; Cao, Dingchen; Lu, Cuiyun; Li, Chao; Zhou, Yi; Liu, Zhanjiang; Fan, Zhonghua; Shan, Guangle; Li, Xingang; Wu, Shuangxiu; Song, Lipu; Hou, Guangyuan; Jiang, Yanliang; Jeney, Zsigmond; Yu, Dan; Wang, Li; Shao, Changjun; Song, Lai; Sun, Jing; Ji, Peifeng; Wang, Jian; Li, Qiang; Xu, Liming; Sun, Fanyue; Feng, Jianxin; Wang, Chenghui; Wang, Shaolin; Wang, Baosen; Li, Yan; Zhu, Yaping; Xue, Wei; Zhao, Lan; Wang, Jintu; Gu, Ying; Lv, Weihua; Wu, Kejing; Xiao, Jingfa; Wu, Jiayan; Zhang, Zhang; Yu, Jun; Sun, Xiaowen

    2014-11-01

    The common carp, Cyprinus carpio, is one of the most important cyprinid species and globally accounts for 10% of freshwater aquaculture production. Here we present a draft genome of domesticated C. carpio (strain Songpu), whose current assembly contains 52,610 protein-coding genes and approximately 92.3% coverage of its paleotetraploidized genome (2n = 100). The latest round of whole-genome duplication has been estimated to have occurred approximately 8.2 million years ago. Genome resequencing of 33 representative individuals from worldwide populations demonstrates a single origin for C. carpio in 2 subspecies (C. carpio Haematopterus and C. carpio carpio). Integrative genomic and transcriptomic analyses were used to identify loci potentially associated with traits including scaling patterns and skin color. In combination with the high-resolution genetic map, the draft genome paves the way for better molecular studies and improved genome-assisted breeding of C. carpio and other closely related species.

  19. Observing copepods through a genomic lens

    Directory of Open Access Journals (Sweden)

    Johnson Stewart C

    2011-09-01

    Full Text Available Abstract Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to

  20. Observing copepods through a genomic lens

    Science.gov (United States)

    2011-01-01

    Background Copepods outnumber every other multicellular animal group. They are critical components of the world's freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored. Genome-wide and EST studies of parasitic copepods of salmon and large EST studies of selected free-living copepods have demonstrated the potential utility of modern genomics approaches for the study of copepods and have generated resources such as EST libraries, shotgun genome sequences, BAC libraries, genome maps and inbred lines that will be invaluable in assisting further efforts to provide genomics tools for