WorldWideScience

Sample records for genome database curators

  1. Matching curated genome databases: a non trivial task

    Directory of Open Access Journals (Sweden)

    Labedan Bernard

    2008-10-01

    Full Text Available Abstract Background Curated databases of completely sequenced genomes have been designed independently at the NCBI (RefSeq and EBI (Genome Reviews to cope with non-standard annotation found in the version of the sequenced genome that has been published by databanks GenBank/EMBL/DDBJ. These curation attempts were expected to review the annotations and to improve their pertinence when using them to annotate newly released genome sequences by homology to previously annotated genomes. However, we observed that such an uncoordinated effort has two unwanted consequences. First, it is not trivial to map the protein identifiers of the same sequence in both databases. Secondly, the two reannotated versions of the same genome differ at the level of their structural annotation. Results Here, we propose CorBank, a program devised to provide cross-referencing protein identifiers no matter what the level of identity is found between their matching sequences. Approximately 98% of the 1,983,258 amino acid sequences are matching, allowing instantaneous retrieval of their respective cross-references. CorBank further allows detecting any differences between the independently curated versions of the same genome. We found that the RefSeq and Genome Reviews versions are perfectly matching for only 50 of the 641 complete genomes we have analyzed. In all other cases there are differences occurring at the level of the coding sequence (CDS, and/or in the total number of CDS in the respective version of the same genome. CorBank is freely accessible at http://www.corbank.u-psud.fr. The CorBank site contains also updated publication of the exhaustive results obtained by comparing RefSeq and Genome Reviews versions of each genome. Accordingly, this web site allows easy search of cross-references between RefSeq, Genome Reviews, and UniProt, for either a single CDS or a whole replicon. Conclusion CorBank is very efficient in rapid detection of the numerous differences existing

  2. The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community.

    Science.gov (United States)

    Arnaud, Martha B; Chibucos, Marcus C; Costanzo, Maria C; Crabtree, Jonathan; Inglis, Diane O; Lotia, Adil; Orvis, Joshua; Shah, Prachi; Skrzypek, Marek S; Binkley, Gail; Miyasato, Stuart R; Wortman, Jennifer R; Sherlock, Gavin

    2010-01-01

    The Aspergillus Genome Database (AspGD) is an online genomics resource for researchers studying the genetics and molecular biology of the Aspergilli. AspGD combines high-quality manual curation of the experimental scientific literature examining the genetics and molecular biology of Aspergilli, cutting-edge comparative genomics approaches to iteratively refine and improve structural gene annotations across multiple Aspergillus species, and web-based research tools for accessing and exploring the data. All of these data are freely available at http://www.aspgd.org. We welcome feedback from users and the research community at aspergillus-curator@genome.stanford.edu.

  3. The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources.

    Science.gov (United States)

    Arnaud, Martha B; Cerqueira, Gustavo C; Inglis, Diane O; Skrzypek, Marek S; Binkley, Jonathan; Chibucos, Marcus C; Crabtree, Jonathan; Howarth, Clinton; Orvis, Joshua; Shah, Prachi; Wymore, Farrell; Binkley, Gail; Miyasato, Stuart R; Simison, Matt; Sherlock, Gavin; Wortman, Jennifer R

    2012-01-01

    The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available, web-based resource for researchers studying fungi of the genus Aspergillus, which includes organisms of clinical, agricultural and industrial importance. AspGD curators have now completed comprehensive review of the entire published literature about Aspergillus nidulans and Aspergillus fumigatus, and this annotation is provided with streamlined, ortholog-based navigation of the multispecies information. AspGD facilitates comparative genomics by providing a full-featured genomics viewer, as well as matched and standardized sets of genomic information for the sequenced aspergilli. AspGD also provides resources to foster interaction and dissemination of community information and resources. We welcome and encourage feedback at aspergillus-curator@lists.stanford.edu.

  4. Genome databases

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  5. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins.

    Science.gov (United States)

    Pruitt, Kim D; Tatusova, Tatiana; Maglott, Donna R

    2005-01-01

    The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) provides a non-redundant collection of sequences representing genomic data, transcripts and proteins. Although the goal is to provide a comprehensive dataset representing the complete sequence information for any given species, the database pragmatically includes sequence data that are currently publicly available in the archival databases. The database incorporates data from over 2400 organisms and includes over one million proteins representing significant taxonomic diversity spanning prokaryotes, eukaryotes and viruses. Nucleotide and protein sequences are explicitly linked, and the sequences are linked to other resources including the NCBI Map Viewer and Gene. Sequences are annotated to include coding regions, conserved domains, variation, references, names, database cross-references, and other features using a combined approach of collaboration and other input from the scientific community, automated annotation, propagation from GenBank and curation by NCBI staff.

  6. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins.

    Science.gov (United States)

    Pruitt, Kim D; Tatusova, Tatiana; Maglott, Donna R

    2007-01-01

    NCBI's reference sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) is a curated non-redundant collection of sequences representing genomes, transcripts and proteins. The database includes 3774 organisms spanning prokaryotes, eukaryotes and viruses, and has records for 2,879,860 proteins (RefSeq release 19). RefSeq records integrate information from multiple sources, when additional data are available from those sources and therefore represent a current description of the sequence and its features. Annotations include coding regions, conserved domains, tRNAs, sequence tagged sites (STS), variation, references, gene and protein product names, and database cross-references. Sequence is reviewed and features are added using a combined approach of collaboration and other input from the scientific community, prediction, propagation from GenBank and curation by NCBI staff. The format of all RefSeq records is validated, and an increasing number of tests are being applied to evaluate the quality of sequence and annotation, especially in the context of complete genomic sequence.

  7. 1-CMDb: A Curated Database of Genomic Variations of the One-Carbon Metabolism Pathway.

    Science.gov (United States)

    Bhat, Manoj K; Gadekar, Veerendra P; Jain, Aditya; Paul, Bobby; Rai, Padmalatha S; Satyamoorthy, Kapaettu

    2017-01-01

    The one-carbon metabolism pathway is vital in maintaining tissue homeostasis by driving the critical reactions of folate and methionine cycles. A myriad of genetic and epigenetic events mark the rate of reactions in a tissue-specific manner. Integration of these to predict and provide personalized health management requires robust computational tools that can process multiomics data. The DNA sequences that may determine the chain of biological events and the endpoint reactions within one-carbon metabolism genes remain to be comprehensively recorded. Hence, we designed the one-carbon metabolism database (1-CMDb) as a platform to interrogate its association with a host of human disorders. DNA sequence and network information of a total of 48 genes were extracted from a literature survey and KEGG pathway that are involved in the one-carbon folate-mediated pathway. The information generated, collected, and compiled for all these genes from the UCSC genome browser included the single nucleotide polymorphisms (SNPs), CpGs, copy number variations (CNVs), and miRNAs, and a comprehensive database was created. Furthermore, a significant correlation analysis was performed for SNPs in the pathway genes. Detailed data of SNPs, CNVs, CpG islands, and miRNAs for 48 folate pathway genes were compiled. The SNPs in CNVs (9670), CpGs (984), and miRNAs (14) were also compiled for all pathway genes. The SIFT score, the prediction and PolyPhen score, as well as the prediction for each of the SNPs were tabulated and represented for folate pathway genes. Also included in the database for folate pathway genes were the links to 124 various phenotypes and disease associations as reported in the literature and from publicly available information. A comprehensive database was generated consisting of genomic elements within and among SNPs, CNVs, CpGs, and miRNAs of one-carbon metabolism pathways to facilitate (a) single source of information and (b) integration into large-genome scale network

  8. Curation accuracy of model organism databases.

    Science.gov (United States)

    Keseler, Ingrid M; Skrzypek, Marek; Weerasinghe, Deepika; Chen, Albert Y; Fulcher, Carol; Li, Gene-Wei; Lemmer, Kimberly C; Mladinich, Katherine M; Chow, Edmond D; Sherlock, Gavin; Karp, Peter D

    2014-01-01

    Manual extraction of information from the biomedical literature-or biocuration-is the central methodology used to construct many biological databases. For example, the UniProt protein database, the EcoCyc Escherichia coli database and the Candida Genome Database (CGD) are all based on biocuration. Biological databases are used extensively by life science researchers, as online encyclopedias, as aids in the interpretation of new experimental data and as golden standards for the development of new bioinformatics algorithms. Although manual curation has been assumed to be highly accurate, we are aware of only one previous study of biocuration accuracy. We assessed the accuracy of EcoCyc and CGD by manually selecting curated assertions within randomly chosen EcoCyc and CGD gene pages and by then validating that the data found in the referenced publications supported those assertions. A database assertion is considered to be in error if that assertion could not be found in the publication cited for that assertion. We identified 10 errors in the 633 facts that we validated across the two databases, for an overall error rate of 1.58%, and individual error rates of 1.82% for CGD and 1.40% for EcoCyc. These data suggest that manual curation of the experimental literature by Ph.D-level scientists is highly accurate. Database URL: http://ecocyc.org/, http://www.candidagenome.org//

  9. The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata.

    Science.gov (United States)

    Inglis, Diane O; Arnaud, Martha B; Binkley, Jonathan; Shah, Prachi; Skrzypek, Marek S; Wymore, Farrell; Binkley, Gail; Miyasato, Stuart R; Simison, Matt; Sherlock, Gavin

    2012-01-01

    The Candida Genome Database (CGD, http://www.candidagenome.org/) is an internet-based resource that provides centralized access to genomic sequence data and manually curated functional information about genes and proteins of the fungal pathogen Candida albicans and other Candida species. As the scope of Candida research, and the number of sequenced strains and related species, has grown in recent years, the need for expanded genomic resources has also grown. To answer this need, CGD has expanded beyond storing data solely for C. albicans, now integrating data from multiple species. Herein we describe the incorporation of this multispecies information, which includes curated gene information and the reference sequence for C. glabrata, as well as orthology relationships that interconnect Locus Summary pages, allowing easy navigation between genes of C. albicans and C. glabrata. These orthology relationships are also used to predict GO annotations of their products. We have also added protein information pages that display domains, structural information and physicochemical properties; bibliographic pages highlighting important topic areas in Candida biology; and a laboratory strain lineage page that describes the lineage of commonly used laboratory strains. All of these data are freely available at http://www.candidagenome.org/. We welcome feedback from the research community at candida-curator@lists.stanford.edu.

  10. Genomic Databases for Crop Improvement

    Directory of Open Access Journals (Sweden)

    David Edwards

    2012-03-01

    Full Text Available Genomics is playing an increasing role in plant breeding and this is accelerating with the rapid advances in genome technology. Translating the vast abundance of data being produced by genome technologies requires the development of custom bioinformatics tools and advanced databases. These range from large generic databases which hold specific data types for a broad range of species, to carefully integrated and curated databases which act as a resource for the improvement of specific crops. In this review, we outline some of the features of plant genome databases, identify specific resources for the improvement of individual crops and comment on the potential future direction of crop genome databases.

  11. MIPS: curated databases and comprehensive secondary data resources in 2010.

    Science.gov (United States)

    Mewes, H Werner; Ruepp, Andreas; Theis, Fabian; Rattei, Thomas; Walter, Mathias; Frishman, Dmitrij; Suhre, Karsten; Spannagl, Manuel; Mayer, Klaus F X; Stümpflen, Volker; Antonov, Alexey

    2011-01-01

    The Munich Information Center for Protein Sequences (MIPS at the Helmholtz Center for Environmental Health, Neuherberg, Germany) has many years of experience in providing annotated collections of biological data. Selected data sets of high relevance, such as model genomes, are subjected to careful manual curation, while the bulk of high-throughput data is annotated by automatic means. High-quality reference resources developed in the past and still actively maintained include Saccharomyces cerevisiae, Neurospora crassa and Arabidopsis thaliana genome databases as well as several protein interaction data sets (MPACT, MPPI and CORUM). More recent projects are PhenomiR, the database on microRNA-related phenotypes, and MIPS PlantsDB for integrative and comparative plant genome research. The interlinked resources SIMAP and PEDANT provide homology relationships as well as up-to-date and consistent annotation for 38,000,000 protein sequences. PPLIPS and CCancer are versatile tools for proteomics and functional genomics interfacing to a database of compilations from gene lists extracted from literature. A novel literature-mining tool, EXCERBT, gives access to structured information on classified relations between genes, proteins, phenotypes and diseases extracted from Medline abstracts by semantic analysis. All databases described here, as well as the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.helmholtz-muenchen.de).

  12. Plant Genome Duplication Database.

    Science.gov (United States)

    Lee, Tae-Ho; Kim, Junah; Robertson, Jon S; Paterson, Andrew H

    2017-01-01

    Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at http://chibba.agtec.uga.edu/duplication/.

  13. DAMPD: A manually curated antimicrobial peptide database

    KAUST Repository

    Seshadri Sundararajan, Vijayaraghava

    2011-11-21

    The demand for antimicrobial peptides (AMPs) is rising because of the increased occurrence of pathogens that are tolerant or resistant to conventional antibiotics. Since naturally occurring AMPs could serve as templates for the development of new anti-infectious agents to which pathogens are not resistant, a resource that contains relevant information on AMP is of great interest. To that extent, we developed the Dragon Antimicrobial Peptide Database (DAMPD, http://apps.sanbi.ac.za/dampd) that contains 1232 manually curated AMPs. DAMPD is an update and a replacement of the ANTIMIC database. In DAMPD an integrated interface allows in a simple fashion querying based on taxonomy, species, AMP family, citation, keywords and a combination of search terms and fields (Advanced Search). A number of tools such as Blast, ClustalW, HMMER, Hydrocalculator, SignalP, AMP predictor, as well as a number of other resources that provide additional information about the results are also provided and integrated into DAMPD to augment biological analysis of AMPs. The Author(s) 2011. Published by Oxford University Press.

  14. MouseCyc: a curated biochemical pathways database for the laboratory mouse

    OpenAIRE

    Evsikov, Alexei V.; Dolan, Mary E.; Genrich, Michael P; Patek, Emily; Bult, Carol J.

    2009-01-01

    Linking biochemical genetic data to the reference genome for the laboratory mouse is important for comparative physiology and for developing mouse models of human biology and disease. We describe here a new database of curated metabolic pathways for the laboratory mouse called MouseCyc . MouseCyc has been integrated with genetic and genomic data for the laboratory mouse available from the Mouse Genome Informatics database and with pathway data from other organisms, including human.

  15. Standards for Clinical Grade Genomic Databases.

    Science.gov (United States)

    Yohe, Sophia L; Carter, Alexis B; Pfeifer, John D; Crawford, James M; Cushman-Vokoun, Allison; Caughron, Samuel; Leonard, Debra G B

    2015-11-01

    Next-generation sequencing performed in a clinical environment must meet clinical standards, which requires reproducibility of all aspects of the testing. Clinical-grade genomic databases (CGGDs) are required to classify a variant and to assist in the professional interpretation of clinical next-generation sequencing. Applying quality laboratory standards to the reference databases used for sequence-variant interpretation presents a new challenge for validation and curation. To define CGGD and the categories of information contained in CGGDs and to frame recommendations for the structure and use of these databases in clinical patient care. Members of the College of American Pathologists Personalized Health Care Committee reviewed the literature and existing state of genomic databases and developed a framework for guiding CGGD development in the future. Clinical-grade genomic databases may provide different types of information. This work group defined 3 layers of information in CGGDs: clinical genomic variant repositories, genomic medical data repositories, and genomic medicine evidence databases. The layers are differentiated by the types of genomic and medical information contained and the utility in assisting with clinical interpretation of genomic variants. Clinical-grade genomic databases must meet specific standards regarding submission, curation, and retrieval of data, as well as the maintenance of privacy and security. These organizing principles for CGGDs should serve as a foundation for future development of specific standards that support the use of such databases for patient care.

  16. Rat Genome Database (RGD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Rat Genome Database (RGD) is a collaborative effort between leading research institutions involved in rat genetic and genomic research to collect, consolidate,...

  17. Querying genomic databases

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, A.; Hagstrom, R.; Joerg, D.; Overbeek, R.

    1991-09-01

    A natural-language interface has been developed that retrieves genomic information by using a simple subset of English. The interface spares the biologist from the task of learning database-specific query languages and computer programming. Currently, the interface deals with the E. coli genome. It can, however, be readily extended and shows promise as a means of easy access to other sequenced genomic databases as well.

  18. Mouse genome database 2016.

    Science.gov (United States)

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  19. Genomic Database Searching.

    Science.gov (United States)

    Hutchins, James R A

    2017-01-01

    The availability of reference genome sequences for virtually all species under active research has revolutionized biology. Analyses of genomic variations in many organisms have provided insights into phenotypic traits, evolution and disease, and are transforming medicine. All genomic data from publicly funded projects are freely available in Internet-based databases, for download or searching via genome browsers such as Ensembl, Vega, NCBI's Map Viewer, and the UCSC Genome Browser. These online tools generate interactive graphical outputs of relevant chromosomal regions, showing genes, transcripts, and other genomic landmarks, and epigenetic features mapped by projects such as ENCODE.This chapter provides a broad overview of the major genomic databases and browsers, and describes various approaches and the latest resources for searching them. Methods are provided for identifying genomic locus and sequence information using gene names or codes, identifiers for DNA and RNA molecules and proteins; also from karyotype bands, chromosomal coordinates, sequences, motifs, and matrix-based patterns. Approaches are also described for batch retrieval of genomic information, performing more complex queries, and analyzing larger sets of experimental data, for example from next-generation sequencing projects.

  20. Gramene database: Navigating plant comparative genomics resources

    Directory of Open Access Journals (Sweden)

    Parul Gupta

    2016-11-01

    Full Text Available Gramene (http://www.gramene.org is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationships to enrich the annotation of genomic data and provides tools to perform powerful comparative analyses across a wide spectrum of plant species. It consists of an integrated portal for querying, visualizing and analyzing data for 44 plant reference genomes, genetic variation data sets for 12 species, expression data for 16 species, curated rice pathways and orthology-based pathway projections for 66 plant species including various crops. Here we briefly describe the functions and uses of the Gramene database.

  1. Text mining facilitates database curation - extraction of mutation-disease associations from Bio-medical literature.

    Science.gov (United States)

    Ravikumar, Komandur Elayavilli; Wagholikar, Kavishwar B; Li, Dingcheng; Kocher, Jean-Pierre; Liu, Hongfang

    2015-06-06

    Advances in the next generation sequencing technology has accelerated the pace of individualized medicine (IM), which aims to incorporate genetic/genomic information into medicine. One immediate need in interpreting sequencing data is the assembly of information about genetic variants and their corresponding associations with other entities (e.g., diseases or medications). Even with dedicated effort to capture such information in biological databases, much of this information remains 'locked' in the unstructured text of biomedical publications. There is a substantial lag between the publication and the subsequent abstraction of such information into databases. Multiple text mining systems have been developed, but most of them focus on the sentence level association extraction with performance evaluation based on gold standard text annotations specifically prepared for text mining systems. We developed and evaluated a text mining system, MutD, which extracts protein mutation-disease associations from MEDLINE abstracts by incorporating discourse level analysis, using a benchmark data set extracted from curated database records. MutD achieves an F-measure of 64.3% for reconstructing protein mutation disease associations in curated database records. Discourse level analysis component of MutD contributed to a gain of more than 10% in F-measure when compared against the sentence level association extraction. Our error analysis indicates that 23 of the 64 precision errors are true associations that were not captured by database curators and 68 of the 113 recall errors are caused by the absence of associated disease entities in the abstract. After adjusting for the defects in the curated database, the revised F-measure of MutD in association detection reaches 81.5%. Our quantitative analysis reveals that MutD can effectively extract protein mutation disease associations when benchmarking based on curated database records. The analysis also demonstrates that incorporating

  2. Correcting Inconsistencies and Errors in Bacterial Genome Metadata Using an Automated Curation Tool in Excel (AutoCurE).

    Science.gov (United States)

    Schmedes, Sarah E; King, Jonathan L; Budowle, Bruce

    2015-01-01

    Whole-genome data are invaluable for large-scale comparative genomic studies. Current sequencing technologies have made it feasible to sequence entire bacterial genomes with relative ease and time with a substantially reduced cost per nucleotide, hence cost per genome. More than 3,000 bacterial genomes have been sequenced and are available at the finished status. Publically available genomes can be readily downloaded; however, there are challenges to verify the specific supporting data contained within the download and to identify errors and inconsistencies that may be present within the organizational data content and metadata. AutoCurE, an automated tool for bacterial genome database curation in Excel, was developed to facilitate local database curation of supporting data that accompany downloaded genomes from the National Center for Biotechnology Information. AutoCurE provides an automated approach to curate local genomic databases by flagging inconsistencies or errors by comparing the downloaded supporting data to the genome reports to verify genome name, RefSeq accession numbers, the presence of archaea, BioProject/UIDs, and sequence file descriptions. Flags are generated for nine metadata fields if there are inconsistencies between the downloaded genomes and genomes reports and if erroneous or missing data are evident. AutoCurE is an easy-to-use tool for local database curation for large-scale genome data prior to downstream analyses.

  3. A Manual Curation Strategy to Improve Genome Annotation: Application to a Set of Haloarchael Genomes

    Directory of Open Access Journals (Sweden)

    Friedhelm Pfeiffer

    2015-06-01

    Full Text Available Genome annotation errors are a persistent problem that impede research in the biosciences. A manual curation effort is described that attempts to produce high-quality genome annotations for a set of haloarchaeal genomes (Halobacterium salinarum and Hbt. hubeiense, Haloferax volcanii and Hfx. mediterranei, Natronomonas pharaonis and Nmn. moolapensis, Haloquadratum walsbyi strains HBSQ001 and C23, Natrialba magadii, Haloarcula marismortui and Har. hispanica, and Halohasta litchfieldiae. Genomes are checked for missing genes, start codon misassignments, and disrupted genes. Assignments of a specific function are preferably based on experimentally characterized homologs (Gold Standard Proteins. To avoid overannotation, which is a major source of database errors, we restrict annotation to only general function assignments when support for a specific substrate assignment is insufficient. This strategy results in annotations that are resistant to the plethora of errors that compromise public databases. Annotation consistency is rigorously validated for ortholog pairs from the genomes surveyed. The annotation is regularly crosschecked against the UniProt database to further improve annotations and increase the level of standardization. Enhanced genome annotations are submitted to public databases (EMBL/GenBank, UniProt, to the benefit of the scientific community. The enhanced annotations are also publically available via HaloLex.

  4. SPIKE: a database of highly curated human signaling pathways.

    Science.gov (United States)

    Paz, Arnon; Brownstein, Zippora; Ber, Yaara; Bialik, Shani; David, Eyal; Sagir, Dorit; Ulitsky, Igor; Elkon, Ran; Kimchi, Adi; Avraham, Karen B; Shiloh, Yosef; Shamir, Ron

    2011-01-01

    The rapid accumulation of knowledge on biological signaling pathways and their regulatory mechanisms has highlighted the need for specific repositories that can store, organize and allow retrieval of pathway information in a way that will be useful for the research community. SPIKE (Signaling Pathways Integrated Knowledge Engine; http://www.cs.tau.ac.il/&~spike/) is a database for achieving this goal, containing highly curated interactions for particular human pathways, along with literature-referenced information on the nature of each interaction. To make database population and pathway comprehension straightforward, a simple yet informative data model is used, and pathways are laid out as maps that reflect the curator’s understanding and make the utilization of the pathways easy. The database currently focuses primarily on pathways describing DNA damage response, cell cycle, programmed cell death and hearing related pathways. Pathways are regularly updated, and additional pathways are gradually added. The complete database and the individual maps are freely exportable in several formats. The database is accompanied by a stand-alone software tool for analysis and dynamic visualization of pathways.

  5. The UCSC Genome Browser Database

    DEFF Research Database (Denmark)

    Karolchik, D; Kuhn, R M; Baertsch, R

    2008-01-01

    The University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrat...

  6. Curating and Preserving the Big Canopy Database System: an Active Curation Approach using SEAD

    Science.gov (United States)

    Myers, J.; Cushing, J. B.; Lynn, P.; Weiner, N.; Ovchinnikova, A.; Nadkarni, N.; McIntosh, A.

    2015-12-01

    Modern research is increasingly dependent upon highly heterogeneous data and on the associated cyberinfrastructure developed to organize, analyze, and visualize that data. However, due to the complexity and custom nature of such combined data-software systems, it can be very challenging to curate and preserve them for the long term at reasonable cost and in a way that retains their scientific value. In this presentation, we describe how this challenge was met in preserving the Big Canopy Database (CanopyDB) system using an agile approach and leveraging the Sustainable Environment - Actionable Data (SEAD) DataNet project's hosted data services. The CanopyDB system was developed over more than a decade at Evergreen State College to address the needs of forest canopy researchers. It is an early yet sophisticated exemplar of the type of system that has become common in biological research and science in general, including multiple relational databases for different experiments, a custom database generation tool used to create them, an image repository, and desktop and web tools to access, analyze, and visualize this data. SEAD provides secure project spaces with a semantic content abstraction (typed content with arbitrary RDF metadata statements and relationships to other content), combined with a standards-based curation and publication pipeline resulting in packaged research objects with Digital Object Identifiers. Using SEAD, our cross-project team was able to incrementally ingest CanopyDB components (images, datasets, software source code, documentation, executables, and virtualized services) and to iteratively define and extend the metadata and relationships needed to document them. We believe that both the process, and the richness of the resultant standards-based (OAI-ORE) preservation object, hold lessons for the development of best-practice solutions for preserving scientific data in association with the tools and services needed to derive value from it.

  7. The UCSC genome browser database

    DEFF Research Database (Denmark)

    Kuhn, R M; Karolchik, D; Zweig, A S

    2007-01-01

    The University of California, Santa Cruz Genome Browser Database contains, as of September 2006, sequence and annotation data for the genomes of 13 vertebrate and 19 invertebrate species. The Genome Browser displays a wide variety of annotations at all scales from the single nucleotide level up t...

  8. The UCSC Genome Browser Database

    DEFF Research Database (Denmark)

    Hinrichs, A S; Karolchik, D; Baertsch, R

    2006-01-01

    The University of California Santa Cruz Genome Browser Database (GBD) contains sequence and annotation data for the genomes of about a dozen vertebrate species and several major model organisms. Genome annotations typically include assembly data, sequence composition, genes and gene predictions, ...

  9. Gramene database: navigating plant comparative genomics resources

    Science.gov (United States)

    Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationship...

  10. WikiGenomes: an open web application for community consumption and curation of gene annotation data in Wikidata.

    Science.gov (United States)

    Putman, Tim E; Lelong, Sebastien; Burgstaller-Muehlbacher, Sebastian; Waagmeester, Andra; Diesh, Colin; Dunn, Nathan; Munoz-Torres, Monica; Stupp, Gregory S; Wu, Chunlei; Su, Andrew I; Good, Benjamin M

    2017-01-01

    With the advancement of genome-sequencing technologies, new genomes are being sequenced daily. Although these sequences are deposited in publicly available data warehouses, their functional and genomic annotations (beyond genes which are predicted automatically) mostly reside in the text of primary publications. Professional curators are hard at work extracting those annotations from the literature for the most studied organisms and depositing them in structured databases. However, the resources don't exist to fund the comprehensive curation of the thousands of newly sequenced organisms in this manner. Here, we describe WikiGenomes (wikigenomes.org), a web application that facilitates the consumption and curation of genomic data by the entire scientific community. WikiGenomes is based on Wikidata, an openly editable knowledge graph with the goal of aggregating published knowledge into a free and open database. WikiGenomes empowers the individual genomic researcher to contribute their expertise to the curation effort and integrates the knowledge into Wikidata, enabling it to be accessed by anyone without restriction. www.wikigenomes.org.

  11. Curation of viral genomes: challenges, applications and the way forward

    Directory of Open Access Journals (Sweden)

    Joshi Manali

    2006-12-01

    Full Text Available Abstract Background Whole genome sequence data is a step towards generating the 'parts list' of life to understand the underlying principles of Biocomplexity. Genome sequencing initiatives of human and model organisms are targeted efforts towards understanding principles of evolution with an application envisaged to improve human health. These efforts culminated in the development of dedicated resources. Whereas a large number of viral genomes have been sequenced by groups or individuals with an interest to study antigenic variation amongst strains and species. These independent efforts enabled viruses to attain the status of 'best-represented taxa' with the highest number of genomes. However, due to lack of concerted efforts, viral genomic sequences merely remained as entries in the public repositories until recently. Results VirGen is a curated resource of viral genomes and their analyses. Since its first release, it has grown both in terms of coverage of viral families and development of new modules for annotation and analysis. The current release (2.0 includes data for twenty-five families with broad host range as against eight in the first release. The taxonomic description of viruses in VirGen is in accordance with the ICTV nomenclature. A well-characterised strain is identified as a 'representative entry' for every viral species. This non-redundant dataset is used for subsequent annotation and analyses using sequenced-based Bioinformatics approaches. VirGen archives precomputed data on genome and proteome comparisons. A new data module that provides structures of viral proteins available in PDB has been incorporated recently. One of the unique features of VirGen is predicted conformational and sequential epitopes of known antigenic proteins using in-house developed algorithms, a step towards reverse vaccinology. Conclusion Structured organization of genomic data facilitates use of data mining tools, which provides opportunities for

  12. Manually Curated Database of Rice Proteins (MCDRP, a database of digitized experimental data on rice

    Directory of Open Access Journals (Sweden)

    Saurabh Raghuvanshi

    2016-11-01

    Full Text Available MCDRP or ‘Manually Curated Database of Rice Proteins’ is a database of digitized experimental datasets on rice proteins. Every aspect of the experimental data published in peer-reviewed research articles on rice biology has been digitized with the help of novel data curation models. These models use a semantic and structured arrangement of alpha-numeric notation, including several well known ontologies, to represent various aspect of the data. As a result data from more than 15,000 different experiments pertaining to about 2400 rice proteins has been digitized from over 540 published and peer-reviewed research articles. The database portal provides access to the digitized experimental data via search or browse functions. In essence, one can instantly access data from even a single data-point from a collection of thousands of the experimental datasets. On the other hand, one can easily access the digitized experimental data from multiple research articles on a rice protein. Based on the analysis and integration of the digitized experimental data, more than 800 different traits (molecular, biochemical or phenotypic have been precisely mapped onto the rice proteins along with the underlying experimental evidences. Similarly, over 4370 associations, based on experimental evidence, have been established between the rice proteins and various gene ontology terms. The database is being continuously updated and is freely available at www.genomeindia.org.in/biocuration.

  13. Agile data management for curation of genomes to watershed datasets

    Science.gov (United States)

    Varadharajan, C.; Agarwal, D.; Faybishenko, B.; Versteeg, R.

    2015-12-01

    A software platform is being developed for data management and assimilation [DMA] as part of the U.S. Department of Energy's Genomes to Watershed Sustainable Systems Science Focus Area 2.0. The DMA components and capabilities are driven by the project science priorities and the development is based on agile development techniques. The goal of the DMA software platform is to enable users to integrate and synthesize diverse and disparate field, laboratory, and simulation datasets, including geological, geochemical, geophysical, microbiological, hydrological, and meteorological data across a range of spatial and temporal scales. The DMA objectives are (a) developing an integrated interface to the datasets, (b) storing field monitoring data, laboratory analytical results of water and sediments samples collected into a database, (c) providing automated QA/QC analysis of data and (d) working with data providers to modify high-priority field and laboratory data collection and reporting procedures as needed. The first three objectives are driven by user needs, while the last objective is driven by data management needs. The project needs and priorities are reassessed regularly with the users. After each user session we identify development priorities to match the identified user priorities. For instance, data QA/QC and collection activities have focused on the data and products needed for on-going scientific analyses (e.g. water level and geochemistry). We have also developed, tested and released a broker and portal that integrates diverse datasets from two different databases used for curation of project data. The development of the user interface was based on a user-centered design process involving several user interviews and constant interaction with data providers. The initial version focuses on the most requested feature - i.e. finding the data needed for analyses through an intuitive interface. Once the data is found, the user can immediately plot and download data

  14. Literature curation of protein interactions: measuring agreement across major public databases

    Science.gov (United States)

    Turinsky, Andrei L.; Razick, Sabry; Turner, Brian; Wodak, Shoshana J.

    2010-01-01

    Literature curation of protein interaction data faces a number of challenges. Although curators increasingly adhere to standard data representations, the data that various databases actually record from the same published information may differ significantly. Some of the reasons underlying these differences are well known, but their global impact on the interactions collectively curated by major public databases has not been evaluated. Here we quantify the agreement between curated interactions from 15 471 publications shared across nine major public databases. Results show that on average, two databases fully agree on 42% of the interactions and 62% of the proteins curated from the same publication. Furthermore, a sizable fraction of the measured differences can be attributed to divergent assignments of organism or splice isoforms, different organism focus and alternative representations of multi-protein complexes. Our findings highlight the impact of divergent curation policies across databases, and should be relevant to both curators and data consumers interested in analyzing protein-interaction data generated by the scientific community. Database URL: http://wodaklab.org/iRefWeb PMID:21183497

  15. MTGD: The Medicago truncatula genome database.

    Science.gov (United States)

    Krishnakumar, Vivek; Kim, Maria; Rosen, Benjamin D; Karamycheva, Svetlana; Bidwell, Shelby L; Tang, Haibao; Town, Christopher D

    2015-01-01

    Medicago truncatula, a close relative of alfalfa (Medicago sativa), is a model legume used for studying symbiotic nitrogen fixation, mycorrhizal interactions and legume genomics. J. Craig Venter Institute (JCVI; formerly TIGR) has been involved in M. truncatula genome sequencing and annotation since 2002 and has maintained a web-based resource providing data to the community for this entire period. The website (http://www.MedicagoGenome.org) has seen major updates in the past year, where it currently hosts the latest version of the genome (Mt4.0), associated data and legacy project information, presented to users via a rich set of open-source tools. A JBrowse-based genome browser interface exposes tracks for visualization. Mutant gene symbols originally assembled and curated by the Frugoli lab are now hosted at JCVI and tie into our community annotation interface, Medicago EuCAP (to be integrated soon with our implementation of WebApollo). Literature pertinent to M. truncatula is indexed and made searchable via the Textpresso search engine. The site also implements MedicMine, an instance of InterMine that offers interconnectivity with other plant 'mines' such as ThaleMine and PhytoMine, and other model organism databases (MODs). In addition to these new features, we continue to provide keyword- and locus identifier-based searches served via a Chado-backed Tripal Instance, a BLAST search interface and bulk downloads of data sets from the iPlant Data Store (iDS). Finally, we maintain an E-mail helpdesk, facilitated by a JIRA issue tracking system, where we receive and respond to questions about the website and requests for specific data sets from the community.

  16. wFleaBase: the Daphnia genome database

    Directory of Open Access Journals (Sweden)

    Singan Vasanth R

    2005-03-01

    Full Text Available Abstract Background wFleaBase is a database with the necessary infrastructure to curate, archive and share genetic, molecular and functional genomic data and protocols for an emerging model organism, the microcrustacean Daphnia. Commonly known as the water-flea, Daphnia's ecological merit is unequaled among metazoans, largely because of its sentinel role within freshwater ecosystems and over 200 years of biological investigations. By consequence, the Daphnia Genomics Consortium (DGC has launched an interdisciplinary research program to create the resources needed to study genes that affect ecological and evolutionary success in natural environments. Discussion These tools include the genome database wFleaBase, which currently contains functions to search and extract information from expressed sequenced tags, genome survey sequences and full genome sequencing projects. This new database is built primarily from core components of the Generic Model Organism Database project, and related bioinformatics tools. Summary Over the coming year, preliminary genetic maps and the nearly complete genomic sequence of Daphnia pulex will be integrated into wFleaBase, including gene predictions and ortholog assignments based on sequence similarities with eukaryote genes of known function. wFleaBase aims to serve a large ecological and evolutionary research community. Our challenge is to rapidly expand its content and to ultimately integrate genetic and functional genomic information with population-level responses to environmental challenges. URL: http://wfleabase.org/.

  17. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption.

    Science.gov (United States)

    Hu, Quanjun; Ma, Tao; Wang, Kun; Xu, Ting; Liu, Jianquan; Qiu, Qiang

    2012-11-07

    The yak (Bos grunniens) is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. The Yak Genome Database (YGD) is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. A new yak genome database (YGD) has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  18. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption

    Directory of Open Access Journals (Sweden)

    Hu Quanjun

    2012-11-01

    Full Text Available Abstract Background The yak (Bos grunniens is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. Description The Yak Genome Database (YGD is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. Conclusions A new yak genome database (YGD has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  19. The YH database: the first Asian diploid genome database

    DEFF Research Database (Denmark)

    Li, Guoqing; Ma, Lijia; Song, Chao

    2009-01-01

    The YH database is a server that allows the user to easily browse and download data from the first Asian diploid genome. The aim of this platform is to facilitate the study of this Asian genome and to enable improved organization and presentation large-scale personal genome data. Powered by GBrowse......, we illustrate here the genome sequences, SNPs, and sequencing reads in the MapView. The relationships between phenotype and genotype can be searched by location, dbSNP ID, HGMD ID, gene symbol and disease name. A BLAST web service is also provided for the purpose of aligning query sequence against YH...... genome consensus. The YH database is currently one of the three personal genome database, organizing the original data and analysis results in a user-friendly interface, which is an endeavor to achieve fundamental goals for establishing personal medicine. The database is available at http://yh.genomics.org.cn....

  20. The YH database: the first Asian diploid genome database.

    Science.gov (United States)

    Li, Guoqing; Ma, Lijia; Song, Chao; Yang, Zhentao; Wang, Xiulan; Huang, Hui; Li, Yingrui; Li, Ruiqiang; Zhang, Xiuqing; Yang, Huanming; Wang, Jian; Wang, Jun

    2009-01-01

    The YH database is a server that allows the user to easily browse and download data from the first Asian diploid genome. The aim of this platform is to facilitate the study of this Asian genome and to enable improved organization and presentation large-scale personal genome data. Powered by GBrowse, we illustrate here the genome sequences, SNPs, and sequencing reads in the MapView. The relationships between phenotype and genotype can be searched by location, dbSNP ID, HGMD ID, gene symbol and disease name. A BLAST web service is also provided for the purpose of aligning query sequence against YH genome consensus. The YH database is currently one of the three personal genome database, organizing the original data and analysis results in a user-friendly interface, which is an endeavor to achieve fundamental goals for establishing personal medicine. The database is available at http://yh.genomics.org.cn.

  1. AtlasT4SS: A curated database for type IV secretion systems

    Directory of Open Access Journals (Sweden)

    Souza Rangel C

    2012-08-01

    Full Text Available Abstract Background The type IV secretion system (T4SS can be classified as a large family of macromolecule transporter systems, divided into three recognized sub-families, according to the well-known functions. The major sub-family is the conjugation system, which allows transfer of genetic material, such as a nucleoprotein, via cell contact among bacteria. Also, the conjugation system can transfer genetic material from bacteria to eukaryotic cells; such is the case with the T-DNA transfer of Agrobacterium tumefaciens to host plant cells. The system of effector protein transport constitutes the second sub-family, and the third one corresponds to the DNA uptake/release system. Genome analyses have revealed numerous T4SS in Bacteria and Archaea. The purpose of this work was to organize, classify, and integrate the T4SS data into a single database, called AtlasT4SS - the first public database devoted exclusively to this prokaryotic secretion system. Description The AtlasT4SS is a manual curated database that describes a large number of proteins related to the type IV secretion system reported so far in Gram-negative and Gram-positive bacteria, as well as in Archaea. The database was created using the RDBMS MySQL and the Catalyst Framework based in the Perl programming language and using the Model-View-Controller (MVC design pattern for Web. The current version holds a comprehensive collection of 1,617 T4SS proteins from 58 Bacteria (49 Gram-negative and 9 Gram-Positive, one Archaea and 11 plasmids. By applying the bi-directional best hit (BBH relationship in pairwise genome comparison, it was possible to obtain a core set of 134 clusters of orthologous genes encoding T4SS proteins. Conclusions In our database we present one way of classifying orthologous groups of T4SSs in a hierarchical classification scheme with three levels. The first level comprises four classes that are based on the organization of genetic determinants, shared homologies, and

  2. GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data.

    Science.gov (United States)

    Jung, Sook; Staton, Margaret; Lee, Taein; Blenda, Anna; Svancara, Randall; Abbott, Albert; Main, Dorrie

    2008-01-01

    The Genome Database for Rosaceae (GDR) is a central repository of curated and integrated genetics and genomics data of Rosaceae, an economically important family which includes apple, cherry, peach, pear, raspberry, rose and strawberry. GDR contains annotated databases of all publicly available Rosaceae ESTs, the genetically anchored peach physical map, Rosaceae genetic maps and comprehensively annotated markers and traits. The ESTs are assembled to produce unigene sets of each genus and the entire Rosaceae. Other annotations include putative function, microsatellites, open reading frames, single nucleotide polymorphisms, gene ontology terms and anchored map position where applicable. Most of the published Rosaceae genetic maps can be viewed and compared through CMap, the comparative map viewer. The peach physical map can be viewed using WebFPC/WebChrom, and also through our integrated GDR map viewer, which serves as a portal to the combined genetic, transcriptome and physical mapping information. ESTs, BACs, markers and traits can be queried by various categories and the search result sites are linked to the mapping visualization tools. GDR also provides online analysis tools such as a batch BLAST/FASTA server for the GDR datasets, a sequence assembly server and microsatellite and primer detection tools. GDR is available at http://www.rosaceae.org.

  3. Ontology searching and browsing at the Rat Genome Database

    Science.gov (United States)

    Laulederkind, Stanley J. F.; Tutaj, Marek; Shimoyama, Mary; Hayman, G. Thomas; Lowry, Timothy F.; Nigam, Rajni; Petri, Victoria; Smith, Jennifer R.; Wang, Shur-Jen; de Pons, Jeff; Dwinell, Melinda R.; Jacob, Howard J.

    2012-01-01

    The Rat Genome Database (RGD) is the premier repository of rat genomic and genetic data and currently houses over 40 000 rat gene records, as well as human and mouse orthologs, 1857 rat and 1912 human quantitative trait loci (QTLs) and 2347 rat strains. Biological information curated for these data objects includes disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components. RGD uses more than a dozen different ontologies to standardize annotation information for genes, QTLs and strains. That means a lot of time can be spent searching and browsing ontologies for the appropriate terms needed both for curating and mining the data. RGD has upgraded its ontology term search to make it more versatile and more robust. A term search result is connected to a term browser so the user can fine-tune the search by viewing parent and children terms. Most publicly available term browsers display a hierarchical organization of terms in an expandable tree format. RGD has replaced its old tree browser format with a ‘driller’ type of browser that allows quicker drilling up and down through the term branches, which has been confirmed by testing. The RGD ontology report pages have also been upgraded. Expanded functionality allows more choice in how annotations are displayed and what subsets of annotations are displayed. The new ontology search, browser and report features have been designed to enhance both manual data curation and manual data extraction. Database URL: http://rgd.mcw.edu/rgdweb/ontology/search.html PMID:22434847

  4. MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data

    Science.gov (United States)

    Vallenet, David; Belda, Eugeni; Calteau, Alexandra; Cruveiller, Stéphane; Engelen, Stefan; Lajus, Aurélie; Le Fèvre, François; Longin, Cyrille; Mornico, Damien; Roche, David; Rouy, Zoé; Salvignol, Gregory; Scarpelli, Claude; Thil Smith, Adam Alexander; Weiman, Marion; Médigue, Claudine

    2013-01-01

    MicroScope is an integrated platform dedicated to both the methodical updating of microbial genome annotation and to comparative analysis. The resource provides data from completed and ongoing genome projects (automatic and expert annotations), together with data sources from post-genomic experiments (i.e. transcriptomics, mutant collections) allowing users to perfect and improve the understanding of gene functions. MicroScope (http://www.genoscope.cns.fr/agc/microscope) combines tools and graphical interfaces to analyse genomes and to perform the manual curation of gene annotations in a comparative context. Since its first publication in January 2006, the system (previously named MaGe for Magnifying Genomes) has been continuously extended both in terms of data content and analysis tools. The last update of MicroScope was published in 2009 in the Database journal. Today, the resource contains data for >1600 microbial genomes, of which ∼300 are manually curated and maintained by biologists (1200 personal accounts today). Expert annotations are continuously gathered in the MicroScope database (∼50 000 a year), contributing to the improvement of the quality of microbial genomes annotations. Improved data browsing and searching tools have been added, original tools useful in the context of expert annotation have been developed and integrated and the website has been significantly redesigned to be more user-friendly. Furthermore, in the context of the European project Microme (Framework Program 7 Collaborative Project), MicroScope is becoming a resource providing for the curation and analysis of both genomic and metabolic data. An increasing number of projects are related to the study of environmental bacterial (meta)genomes that are able to metabolize a large variety of chemical compounds that may be of high industrial interest. PMID:23193269

  5. MicroScope--an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data.

    Science.gov (United States)

    Vallenet, David; Belda, Eugeni; Calteau, Alexandra; Cruveiller, Stéphane; Engelen, Stefan; Lajus, Aurélie; Le Fèvre, François; Longin, Cyrille; Mornico, Damien; Roche, David; Rouy, Zoé; Salvignol, Gregory; Scarpelli, Claude; Thil Smith, Adam Alexander; Weiman, Marion; Médigue, Claudine

    2013-01-01

    MicroScope is an integrated platform dedicated to both the methodical updating of microbial genome annotation and to comparative analysis. The resource provides data from completed and ongoing genome projects (automatic and expert annotations), together with data sources from post-genomic experiments (i.e. transcriptomics, mutant collections) allowing users to perfect and improve the understanding of gene functions. MicroScope (http://www.genoscope.cns.fr/agc/microscope) combines tools and graphical interfaces to analyse genomes and to perform the manual curation of gene annotations in a comparative context. Since its first publication in January 2006, the system (previously named MaGe for Magnifying Genomes) has been continuously extended both in terms of data content and analysis tools. The last update of MicroScope was published in 2009 in the Database journal. Today, the resource contains data for >1600 microbial genomes, of which ∼300 are manually curated and maintained by biologists (1200 personal accounts today). Expert annotations are continuously gathered in the MicroScope database (∼50 000 a year), contributing to the improvement of the quality of microbial genomes annotations. Improved data browsing and searching tools have been added, original tools useful in the context of expert annotation have been developed and integrated and the website has been significantly redesigned to be more user-friendly. Furthermore, in the context of the European project Microme (Framework Program 7 Collaborative Project), MicroScope is becoming a resource providing for the curation and analysis of both genomic and metabolic data. An increasing number of projects are related to the study of environmental bacterial (meta)genomes that are able to metabolize a large variety of chemical compounds that may be of high industrial interest.

  6. Searching and Indexing Genomic Databases via Kernelization

    Directory of Open Access Journals (Sweden)

    Travis eGagie

    2015-02-01

    Full Text Available The rapid advance of DNA sequencing technologies has yielded databases of thousands of genomes. To search and index these databases effectively, it is important that we take advantage of the similarity between those genomes. Several authors have recently suggested searching or indexing only one reference genome and the parts of the other genomes where they differ. In this paper we survey the twenty-year history of this idea and discuss its relation to kernelization in parameterized complexity.

  7. A Human-Curated Annotation of the Candida albicans Genome.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.

  8. CARD 2017: expansion and model-centric curation of the Comprehensive Antibiotic Resistance Database

    Science.gov (United States)

    The Comprehensive Antibiotic Resistance Database (CARD; http://arpcard.mcmaster.ca) is a manually curated resource containing high quality reference data on the molecular basis of antimicrobial resistance (AMR), with an emphasis on the genes, proteins, and mutations involved in AMR. CARD is ontologi...

  9. : a database of ciliate genome rearrangements.

    Science.gov (United States)

    Burns, Jonathan; Kukushkin, Denys; Lindblad, Kelsi; Chen, Xiao; Jonoska, Nataša; Landweber, Laura F

    2016-01-01

    Ciliated protists exhibit nuclear dimorphism through the presence of somatic macronuclei (MAC) and germline micronuclei (MIC). In some ciliates, DNA from precursor segments in the MIC genome rearranges to form transcriptionally active genes in the mature MAC genome, making these ciliates model organisms to study the process of somatic genome rearrangement. Similar broad scale, somatic rearrangement events occur in many eukaryotic cells and tumors. The (http://oxytricha.princeton.edu/mds_ies_db) is a database of genome recombination and rearrangement annotations, and it provides tools for visualization and comparative analysis of precursor and product genomes. The database currently contains annotations for two completely sequenced ciliate genomes: Oxytricha trifallax and Tetrahymena thermophila.

  10. HSC-explorer: a curated database for hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Corinna Montrone

    Full Text Available HSC-Explorer (http://mips.helmholtz-muenchen.de/HSC/ is a publicly available, integrative database containing detailed information about the early steps of hematopoiesis. The resource aims at providing fast and easy access to relevant information, in particular to the complex network of interacting cell types and molecules, from the wealth of publications in the field through visualization interfaces. It provides structured information on more than 7000 experimentally validated interactions between molecules, bioprocesses and environmental factors. Information is manually derived by critical reading of the scientific literature from expert annotators. Hematopoiesis-relevant interactions are accompanied with context information such as model organisms and experimental methods for enabling assessment of reliability and relevance of experimental results. Usage of established vocabularies facilitates downstream bioinformatics applications and to convert the results into complex networks. Several predefined datasets (Selected topics offer insights into stem cell behavior, the stem cell niche and signaling processes supporting hematopoietic stem cell maintenance. HSC-Explorer provides a versatile web-based resource for scientists entering the field of hematopoiesis enabling users to inspect the associated biological processes through interactive graphical presentation.

  11. The Genome Database for Rosaceae (GDR): year 10 update.

    Science.gov (United States)

    Jung, Sook; Ficklin, Stephen P; Lee, Taein; Cheng, Chun-Huai; Blenda, Anna; Zheng, Ping; Yu, Jing; Bombarely, Aureliano; Cho, Ilhyung; Ru, Sushan; Evans, Kate; Peace, Cameron; Abbott, Albert G; Mueller, Lukas A; Olmstead, Mercy A; Main, Dorrie

    2014-01-01

    The Genome Database for Rosaceae (GDR, http:/www.rosaceae.org), the long-standing central repository and data mining resource for Rosaceae research, has been enhanced with new genomic, genetic and breeding data, and improved functionality. Whole genome sequences of apple, peach and strawberry are available to browse or download with a range of annotations, including gene model predictions, aligned transcripts, repetitive elements, polymorphisms, mapped genetic markers, mapped NCBI Rosaceae genes, gene homologs and association of InterPro protein domains, GO terms and Kyoto Encyclopedia of Genes and Genomes pathway terms. Annotated sequences can be queried using search interfaces and visualized using GBrowse. New expressed sequence tag unigene sets are available for major genera, and Pathway data are available through FragariaCyc, AppleCyc and PeachCyc databases. Synteny among the three sequenced genomes can be viewed using GBrowse_Syn. New markers, genetic maps and extensively curated qualitative/Mendelian and quantitative trait loci are available. Phenotype and genotype data from breeding projects and genetic diversity projects are also included. Improved search pages are available for marker, trait locus, genetic diversity and publication data. New search tools for breeders enable selection comparison and assistance with breeding decision making.

  12. The Genome Database for Rosaceae (GDR): year 10 update

    Science.gov (United States)

    Jung, Sook; Ficklin, Stephen P.; Lee, Taein; Cheng, Chun-Huai; Blenda, Anna; Zheng, Ping; Yu, Jing; Bombarely, Aureliano; Cho, Ilhyung; Ru, Sushan; Evans, Kate; Peace, Cameron; Abbott, Albert G.; Mueller, Lukas A.; Olmstead, Mercy A.; Main, Dorrie

    2014-01-01

    The Genome Database for Rosaceae (GDR, http:/www.rosaceae.org), the long-standing central repository and data mining resource for Rosaceae research, has been enhanced with new genomic, genetic and breeding data, and improved functionality. Whole genome sequences of apple, peach and strawberry are available to browse or download with a range of annotations, including gene model predictions, aligned transcripts, repetitive elements, polymorphisms, mapped genetic markers, mapped NCBI Rosaceae genes, gene homologs and association of InterPro protein domains, GO terms and Kyoto Encyclopedia of Genes and Genomes pathway terms. Annotated sequences can be queried using search interfaces and visualized using GBrowse. New expressed sequence tag unigene sets are available for major genera, and Pathway data are available through FragariaCyc, AppleCyc and PeachCyc databases. Synteny among the three sequenced genomes can be viewed using GBrowse_Syn. New markers, genetic maps and extensively curated qualitative/Mendelian and quantitative trait loci are available. Phenotype and genotype data from breeding projects and genetic diversity projects are also included. Improved search pages are available for marker, trait locus, genetic diversity and publication data. New search tools for breeders enable selection comparison and assistance with breeding decision making. PMID:24225320

  13. Plant cytogenetics in genome databases

    Science.gov (United States)

    Cytogenetic maps provide an integrated representation of genetic and cytological information that can be used to enhance genome and chromosome research. As genome analysis technologies become more affordable, the density of markers on cytogenetic maps increases, making these resources more useful a...

  14. Bovine Genome Database: new tools for gleaning function from the Bos taurus genome.

    Science.gov (United States)

    Elsik, Christine G; Unni, Deepak R; Diesh, Colin M; Tayal, Aditi; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Bovine Genome Database (BGD) (http://BovineGenome.org). The goal of BGD is to support bovine genomics research by providing genome annotation and data mining tools. We have developed new genome and annotation browsers using JBrowse and WebApollo for two Bos taurus genome assemblies, the reference genome assembly (UMD3.1.1) and the alternate genome assembly (Btau_4.6.1). Annotation tools have been customized to highlight priority genes for annotation, and to aid annotators in selecting gene evidence tracks from 91 tissue specific RNAseq datasets. We have also developed BovineMine, based on the InterMine data warehousing system, to integrate the bovine genome, annotation, QTL, SNP and expression data with external sources of orthology, gene ontology, gene interaction and pathway information. BovineMine provides powerful query building tools, as well as customized query templates, and allows users to analyze and download genome-wide datasets. With BovineMine, bovine researchers can use orthology to leverage the curated gene pathways of model organisms, such as human, mouse and rat. BovineMine will be especially useful for gene ontology and pathway analyses in conjunction with GWAS and QTL studies.

  15. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics.

    Science.gov (United States)

    Sakai, Hiroaki; Lee, Sung Shin; Tanaka, Tsuyoshi; Numa, Hisataka; Kim, Jungsok; Kawahara, Yoshihiro; Wakimoto, Hironobu; Yang, Ching-chia; Iwamoto, Masao; Abe, Takashi; Yamada, Yuko; Muto, Akira; Inokuchi, Hachiro; Ikemura, Toshimichi; Matsumoto, Takashi; Sasaki, Takuji; Itoh, Takeshi

    2013-02-01

    The Rice Annotation Project Database (RAP-DB, http://rapdb.dna.affrc.go.jp/) has been providing a comprehensive set of gene annotations for the genome sequence of rice, Oryza sativa (japonica group) cv. Nipponbare. Since the first release in 2005, RAP-DB has been updated several times along with the genome assembly updates. Here, we present our newest RAP-DB based on the latest genome assembly, Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0), which was released in 2011. We detected 37,869 loci by mapping transcript and protein sequences of 150 monocot species. To provide plant researchers with highly reliable and up to date rice gene annotations, we have been incorporating literature-based manually curated data, and 1,626 loci currently incorporate literature-based annotation data, including commonly used gene names or gene symbols. Transcriptional activities are shown at the nucleotide level by mapping RNA-Seq reads derived from 27 samples. We also mapped the Illumina reads of a Japanese leading japonica cultivar, Koshihikari, and a Chinese indica cultivar, Guangluai-4, to the genome and show alignments together with the single nucleotide polymorphisms (SNPs) and gene functional annotations through a newly developed browser, Short-Read Assembly Browser (S-RAB). We have developed two satellite databases, Plant Gene Family Database (PGFD) and Integrative Database of Cereal Gene Phylogeny (IDCGP), which display gene family and homologous gene relationships among diverse plant species. RAP-DB and the satellite databases offer simple and user-friendly web interfaces, enabling plant and genome researchers to access the data easily and facilitating a broad range of plant research topics.

  16. CPAD, Curated Protein Aggregation Database: A Repository of Manually Curated Experimental Data on Protein and Peptide Aggregation.

    Science.gov (United States)

    Thangakani, A Mary; Nagarajan, R; Kumar, Sandeep; Sakthivel, R; Velmurugan, D; Gromiha, M Michael

    2016-01-01

    Accurate distinction between peptide sequences that can form amyloid-fibrils or amorphous β-aggregates, identification of potential aggregation prone regions in proteins, and prediction of change in aggregation rate of a protein upon mutation(s) are critical to research on protein misfolding diseases, such as Alzheimer's and Parkinson's, as well as biotechnological production of protein based therapeutics. We have developed a Curated Protein Aggregation Database (CPAD), which has collected results from experimental studies performed by scientific community aimed at understanding protein/peptide aggregation. CPAD contains more than 2300 experimentally observed aggregation rates upon mutations in known amyloidogenic proteins. Each entry includes numerical values for the following parameters: change in rate of aggregation as measured by fluorescence intensity or turbidity, name and source of the protein, Uniprot and Protein Data Bank codes, single point as well as multiple mutations, and literature citation. The data in CPAD has been supplemented with five different types of additional information: (i) Amyloid fibril forming hexa-peptides, (ii) Amorphous β-aggregating hexa-peptides, (iii) Amyloid fibril forming peptides of different lengths, (iv) Amyloid fibril forming hexa-peptides whose crystal structures are available in the Protein Data Bank (PDB) and (v) Experimentally validated aggregation prone regions found in amyloidogenic proteins. Furthermore, CPAD is linked to other related databases and resources, such as Uniprot, Protein Data Bank, PUBMED, GAP, TANGO, WALTZ etc. We have set up a web interface with different search and display options so that users have the ability to get the data in multiple ways. CPAD is freely available at http://www.iitm.ac.in/bioinfo/CPAD/. The potential applications of CPAD have also been discussed.

  17. The Rice Genome Knowledgebase (RGKbase): an annotation database for rice comparative genomics and evolutionary biology.

    Science.gov (United States)

    Wang, Dapeng; Xia, Yan; Li, Xinna; Hou, Lixia; Yu, Jun

    2013-01-01

    Over the past 10 years, genomes of cultivated rice cultivars and their wild counterparts have been sequenced although most efforts are focused on genome assembly and annotation of two major cultivated rice (Oryza sativa L.) subspecies, 93-11 (indica) and Nipponbare (japonica). To integrate information from genome assemblies and annotations for better analysis and application, we now introduce a comparative rice genome database, the Rice Genome Knowledgebase (RGKbase, http://rgkbase.big.ac.cn/RGKbase/). RGKbase is built to have three major components: (i) integrated data curation for rice genomics and molecular biology, which includes genome sequence assemblies, transcriptomic and epigenomic data, genetic variations, quantitative trait loci (QTLs) and the relevant literature; (ii) User-friendly viewers, such as Gbrowse, GeneBrowse and Circos, for genome annotations and evolutionary dynamics and (iii) Bioinformatic tools for compositional and synteny analyses, gene family classifications, gene ontology terms and pathways and gene co-expression networks. RGKbase current includes data from five rice cultivars and species: Nipponbare (japonica), 93-11 (indica), PA64s (indica), the African rice (Oryza glaberrima) and a wild rice species (Oryza brachyantha). We are also constantly introducing new datasets from variety of public efforts, such as two recent releases-sequence data from ∼1000 rice varieties, which are mapped into the reference genome, yielding ample high-quality single-nucleotide polymorphisms and insertions-deletions.

  18. A site-specific curated database for the microorganisms of activated sludge and anaerobic digesters

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Kirkegaard, Rasmus Hansen; McIlroy, Bianca

    the composition and dynamics of the most abundant organisms. However, to understand the relationship between the population dynamics and operational parameters of the system, a functional role must be attributed to each organism. The Microbial Database for Activated Sludge (MiDAS) and Anaerobic Digesters (AD......) presented here provides a site specific curated taxonomy for abundant and important microorganisms and integrates it into a community knowledge web platform about the microbes in activated sludge (AS) and their associated ADs (www.midasfieldguide.org). The MiDAS taxonomy, a manual curation of the SILVA......, to improve the classification of unknown organisms and link these names to the wealth of present and future functional information about their ecology....

  19. BGD: a database of bat genomes.

    Directory of Open Access Journals (Sweden)

    Jianfei Fang

    Full Text Available Bats account for ~20% of mammalian species, and are the only mammals with true powered flight. For the sake of their specialized phenotypic traits, many researches have been devoted to examine the evolution of bats. Until now, some whole genome sequences of bats have been assembled and annotated, however, a uniform resource for the annotated bat genomes is still unavailable. To make the extensive data associated with the bat genomes accessible to the general biological communities, we established a Bat Genome Database (BGD. BGD is an open-access, web-available portal that integrates available data of bat genomes and genes. It hosts data from six bat species, including two megabats and four microbats. Users can query the gene annotations using efficient searching engine, and it offers browsable tracks of bat genomes. Furthermore, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of genes. To the best of our knowledge, BGD is the first database of bat genomes. It will extend our understanding of the bat evolution and be advantageous to the bat sequences analysis. BGD is freely available at: http://donglab.ecnu.edu.cn/databases/BatGenome/.

  20. The UCSC Genome Browser database: 2016 update.

    Science.gov (United States)

    Speir, Matthew L; Zweig, Ann S; Rosenbloom, Kate R; Raney, Brian J; Paten, Benedict; Nejad, Parisa; Lee, Brian T; Learned, Katrina; Karolchik, Donna; Hinrichs, Angie S; Heitner, Steve; Harte, Rachel A; Haeussler, Maximilian; Guruvadoo, Luvina; Fujita, Pauline A; Eisenhart, Christopher; Diekhans, Mark; Clawson, Hiram; Casper, Jonathan; Barber, Galt P; Haussler, David; Kuhn, Robert M; Kent, W James

    2016-01-01

    For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for various assemblies, including bonobo and zebrafish; new gene annotation sets; improvements to track and assembly hub support; and a new interactive tool, the "Data Integrator", for intersecting data from multiple tracks. We have greatly expanded the data sets available on the most recent human assembly, hg38/GRCh38, to include updated gene prediction sets from GENCODE, more phenotype- and disease-associated variants from ClinVar and ClinGen, more genomic regulatory data, and a new multiple genome alignment.

  1. Advancing Exposure Science through Chemical Data Curation and Integration in the Comparative Toxicogenomics Database

    Science.gov (United States)

    Grondin, Cynthia J.; Davis, Allan Peter; Wiegers, Thomas C.; King, Benjamin L.; Wiegers, Jolene A.; Reif, David M.; Hoppin, Jane A.; Mattingly, Carolyn J.

    2016-01-01

    Background: Exposure science studies the interactions and outcomes between environmental stressors and human or ecological receptors. To augment its role in understanding human health and the exposome, we aimed to centralize and integrate exposure science data into the broader biological framework of the Comparative Toxicogenomics Database (CTD), a public resource that promotes understanding of environmental chemicals and their effects on human health. Objectives: We integrated exposure data within the CTD to provide a centralized, freely available resource that facilitates identification of connections between real-world exposures, chemicals, genes/proteins, diseases, biological processes, and molecular pathways. Methods: We developed a manual curation paradigm that captures exposure data from the scientific literature using controlled vocabularies and free text within the context of four primary exposure concepts: stressor, receptor, exposure event, and exposure outcome. Using data from the Agricultural Health Study, we have illustrated the benefits of both centralization and integration of exposure information with CTD core data. Results: We have described our curation process, demonstrated how exposure data can be accessed and analyzed in the CTD, and shown how this integration provides a broad biological context for exposure data to promote mechanistic understanding of environmental influences on human health. Conclusions: Curation and integration of exposure data within the CTD provides researchers with new opportunities to correlate exposures with human health outcomes, to identify underlying potential molecular mechanisms, and to improve understanding about the exposome. Citation: Grondin CJ, Davis AP, Wiegers TC, King BL, Wiegers JA, Reif DM, Hoppin JA, Mattingly CJ. 2016. Advancing exposure science through chemical data curation and integration in the Comparative Toxicogenomics Database. Environ Health Perspect 124:1592–1599; http://dx.doi.org/10

  2. Database Description - TMBETA-GENOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available TMBETA-GENOME Database Description General information of database Database name TMBETA-GENOME Alternative n...oinfo/Gromiha/ Database classification Protein sequence databases - Protein prope...: Eukaryota Taxonomy ID: 2759 Database description TMBETA-GENOME is a database for transmembrane β-barrel pr...lgorithms and statistical methods have been perfumed and the annotation results are accumulated in the database.... Features and manner of utilization of database Users can download lists of sequences predicted as β-bar

  3. GAMOLA2, a Comprehensive Software Package for the Annotation and Curation of Draft and Complete Microbial Genomes.

    Science.gov (United States)

    Altermann, Eric; Lu, Jingli; McCulloch, Alan

    2017-01-01

    Expert curated annotation remains one of the critical steps in achieving a reliable biological relevant annotation. Here we announce the release of GAMOLA2, a user friendly and comprehensive software package to process, annotate and curate draft and complete bacterial, archaeal, and viral genomes. GAMOLA2 represents a wrapping tool to combine gene model determination, functional Blast, COG, Pfam, and TIGRfam analyses with structural predictions including detection of tRNAs, rRNA genes, non-coding RNAs, signal protein cleavage sites, transmembrane helices, CRISPR repeats and vector sequence contaminations. GAMOLA2 has already been validated in a wide range of bacterial and archaeal genomes, and its modular concept allows easy addition of further functionality in future releases. A modified and adapted version of the Artemis Genome Viewer (Sanger Institute) has been developed to leverage the additional features and underlying information provided by the GAMOLA2 analysis, and is part of the software distribution. In addition to genome annotations, GAMOLA2 features, among others, supplemental modules that assist in the creation of custom Blast databases, annotation transfers between genome versions, and the preparation of Genbank files for submission via the NCBI Sequin tool. GAMOLA2 is intended to be run under a Linux environment, whereas the subsequent visualization and manual curation in Artemis is mobile and platform independent. The development of GAMOLA2 is ongoing and community driven. New functionality can easily be added upon user requests, ensuring that GAMOLA2 provides information relevant to microbiologists. The software is available free of charge for academic use.

  4. Biological Database of Images and Genomes: tools for community annotations linking image and genomic information

    Science.gov (United States)

    Oberlin, Andrew T; Jurkovic, Dominika A; Balish, Mitchell F; Friedberg, Iddo

    2013-01-01

    Genomic data and biomedical imaging data are undergoing exponential growth. However, our understanding of the phenotype–genotype connection linking the two types of data is lagging behind. While there are many types of software that enable the manipulation and analysis of image data and genomic data as separate entities, there is no framework established for linking the two. We present a generic set of software tools, BioDIG, that allows linking of image data to genomic data. BioDIG tools can be applied to a wide range of research problems that require linking images to genomes. BioDIG features the following: rapid construction of web-based workbenches, community-based annotation, user management and web services. By using BioDIG to create websites, researchers and curators can rapidly annotate a large number of images with genomic information. Here we present the BioDIG software tools that include an image module, a genome module and a user management module. We also introduce a BioDIG-based website, MyDIG, which is being used to annotate images of mycoplasmas. Database URL: BioDIG website: http://biodig.org BioDIG source code repository: http://github.com/FriedbergLab/BioDIG The MyDIG database: http://mydig.biodig.org/ PMID:23550062

  5. The Mouse Genome Database (MGD): from genes to mice--a community resource for mouse biology.

    Science.gov (United States)

    Eppig, Janan T; Bult, Carol J; Kadin, James A; Richardson, Joel E; Blake, Judith A; Anagnostopoulos, A; Baldarelli, R M; Baya, M; Beal, J S; Bello, S M; Boddy, W J; Bradt, D W; Burkart, D L; Butler, N E; Campbell, J; Cassell, M A; Corbani, L E; Cousins, S L; Dahmen, D J; Dene, H; Diehl, A D; Drabkin, H J; Frazer, K S; Frost, P; Glass, L H; Goldsmith, C W; Grant, P L; Lennon-Pierce, M; Lewis, J; Lu, I; Maltais, L J; McAndrews-Hill, M; McClellan, L; Miers, D B; Miller, L A; Ni, L; Ormsby, J E; Qi, D; Reddy, T B K; Reed, D J; Richards-Smith, B; Shaw, D R; Sinclair, R; Smith, C L; Szauter, P; Walker, M B; Walton, D O; Washburn, L L; Witham, I T; Zhu, Y

    2005-01-01

    The Mouse Genome Database (MGD) forms the core of the Mouse Genome Informatics (MGI) system (http://www.informatics.jax.org), a model organism database resource for the laboratory mouse. MGD provides essential integration of experimental knowledge for the mouse system with information annotated from both literature and online sources. MGD curates and presents consensus and experimental data representations of genotype (sequence) through phenotype information, including highly detailed reports about genes and gene products. Primary foci of integration are through representations of relationships among genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse and to build and implement the data and semantic standards that are essential for comparative genome analysis. Recent improvements in MGD discussed here include the enhancement of phenotype resources, the re-development of the International Mouse Strain Resource, IMSR, the update of mammalian orthology datasets and the electronic publication of classic books in mouse genetics.

  6. GDR (Genome Database for Rosaceae: integrated web resources for Rosaceae genomics and genetics research

    Directory of Open Access Journals (Sweden)

    Ficklin Stephen

    2004-09-01

    Full Text Available Abstract Background Peach is being developed as a model organism for Rosaceae, an economically important family that includes fruits and ornamental plants such as apple, pear, strawberry, cherry, almond and rose. The genomics and genetics data of peach can play a significant role in the gene discovery and the genetic understanding of related species. The effective utilization of these peach resources, however, requires the development of an integrated and centralized database with associated analysis tools. Description The Genome Database for Rosaceae (GDR is a curated and integrated web-based relational database. GDR contains comprehensive data of the genetically anchored peach physical map, an annotated peach EST database, Rosaceae maps and markers and all publicly available Rosaceae sequences. Annotations of ESTs include contig assembly, putative function, simple sequence repeats, and anchored position to the peach physical map where applicable. Our integrated map viewer provides graphical interface to the genetic, transcriptome and physical mapping information. ESTs, BACs and markers can be queried by various categories and the search result sites are linked to the integrated map viewer or to the WebFPC physical map sites. In addition to browsing and querying the database, users can compare their sequences with the annotated GDR sequences via a dedicated sequence similarity server running either the BLAST or FASTA algorithm. To demonstrate the utility of the integrated and fully annotated database and analysis tools, we describe a case study where we anchored Rosaceae sequences to the peach physical and genetic map by sequence similarity. Conclusions The GDR has been initiated to meet the major deficiency in Rosaceae genomics and genetics research, namely a centralized web database and bioinformatics tools for data storage, analysis and exchange. GDR can be accessed at http://www.genome.clemson.edu/gdr/.

  7. Sentra : a database of signal transduction proteins for comparative genome analysis.

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, M.; Glass, E. M.; Syed, M. H.; Zhang, Y.; Rodriguez, A.; Maltsev, N.; Galerpin, M. Y.; Mathematics and Computer Science; Univ. of Chicago; NIH

    2007-01-01

    Sentra (http://compbio.mcs.anl.gov/sentra), a database of signal transduction proteins encoded in completely sequenced prokaryotic genomes, has been updated to reflect recent advances in understanding signal transduction events on a whole-genome scale. Sentra consists of two principal components, a manually curated list of signal transduction proteins in 202 completely sequenced prokaryotic genomes and an automatically generated listing of predicted signaling proteins in 235 sequenced genomes that are awaiting manual curation. In addition to two-component histidine kinases and response regulators, the database now lists manually curated Ser/Thr/Tyr protein kinases and protein phosphatases, as well as adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases, as defined in several recent reviews. All entries in Sentra are extensively annotated with relevant information from public databases (e.g. UniProt, KEGG, PDB and NCBI). Sentra's infrastructure was redesigned to support interactive cross-genome comparisons of signal transduction capabilities of prokaryotic organisms from a taxonomic and phenotypic perspective and in the framework of signal transduction pathways from KEGG. Sentra leverages the PUMA2 system to support interactive analysis and annotation of signal transduction proteins by the users.

  8. PHYMYCO-DB: a curated database for analyses of fungal diversity and evolution.

    Directory of Open Access Journals (Sweden)

    Stéphane Mahé

    Full Text Available BACKGROUND: In environmental sequencing studies, fungi can be identified based on nucleic acid sequences, using either highly variable sequences as species barcodes or conserved sequences containing a high-quality phylogenetic signal. For the latter, identification relies on phylogenetic analyses and the adoption of the phylogenetic species concept. Such analysis requires that the reference sequences are well identified and deposited in public-access databases. However, many entries in the public sequence databases are problematic in terms of quality and reliability and these data require screening to ensure correct phylogenetic interpretation. METHODS AND PRINCIPAL FINDINGS: To facilitate phylogenetic inferences and phylogenetic assignment, we introduce a fungal sequence database. The database PHYMYCO-DB comprises fungal sequences from GenBank that have been filtered to satisfy stringent sequence quality criteria. For the first release, two widely used molecular taxonomic markers were chosen: the nuclear SSU rRNA and EF1-α gene sequences. Following the automatic extraction and filtration, a manual curation is performed to remove problematic sequences while preserving relevant sequences useful for phylogenetic studies. As a result of curation, ~20% of the automatically filtered sequences have been removed from the database. To demonstrate how PHYMYCO-DB can be employed, we test a set of environmental Chytridiomycota sequences obtained from deep sea samples. CONCLUSION: PHYMYCO-DB offers the tools necessary to: (i extract high quality fungal sequences for each of the 5 fungal phyla, at all taxonomic levels, (ii extract already performed alignments, to act as 'reference alignments', (iii launch alignments of personal sequences along with stored data. A total of 9120 SSU rRNA and 672 EF1-α high-quality fungal sequences are now available. The PHYMYCO-DB is accessible through the URL http://phymycodb.genouest.org/.

  9. PHYMYCO-DB: A Curated Database for Analyses of Fungal Diversity and Evolution

    Science.gov (United States)

    Mahé, Stéphane; Duhamel, Marie; Le Calvez, Thomas; Guillot, Laetitia; Sarbu, Ludmila; Bretaudeau, Anthony; Collin, Olivier; Dufresne, Alexis; Kiers, E. Toby; Vandenkoornhuyse, Philippe

    2012-01-01

    Background In environmental sequencing studies, fungi can be identified based on nucleic acid sequences, using either highly variable sequences as species barcodes or conserved sequences containing a high-quality phylogenetic signal. For the latter, identification relies on phylogenetic analyses and the adoption of the phylogenetic species concept. Such analysis requires that the reference sequences are well identified and deposited in public-access databases. However, many entries in the public sequence databases are problematic in terms of quality and reliability and these data require screening to ensure correct phylogenetic interpretation. Methods and Principal Findings To facilitate phylogenetic inferences and phylogenetic assignment, we introduce a fungal sequence database. The database PHYMYCO-DB comprises fungal sequences from GenBank that have been filtered to satisfy stringent sequence quality criteria. For the first release, two widely used molecular taxonomic markers were chosen: the nuclear SSU rRNA and EF1-α gene sequences. Following the automatic extraction and filtration, a manual curation is performed to remove problematic sequences while preserving relevant sequences useful for phylogenetic studies. As a result of curation, ∼20% of the automatically filtered sequences have been removed from the database. To demonstrate how PHYMYCO-DB can be employed, we test a set of environmental Chytridiomycota sequences obtained from deep sea samples. Conclusion PHYMYCO-DB offers the tools necessary to: (i) extract high quality fungal sequences for each of the 5 fungal phyla, at all taxonomic levels, (ii) extract already performed alignments, to act as ‘reference alignments’, (iii) launch alignments of personal sequences along with stored data. A total of 9120 SSU rRNA and 672 EF1-α high-quality fungal sequences are now available. The PHYMYCO-DB is accessible through the URL http://phymycodb.genouest.org/. PMID:23028445

  10. Text Mining Genotype-Phenotype Relationships from Biomedical Literature for Database Curation and Precision Medicine.

    Science.gov (United States)

    Singhal, Ayush; Simmons, Michael; Lu, Zhiyong

    2016-11-01

    The practice of precision medicine will ultimately require databases of genes and mutations for healthcare providers to reference in order to understand the clinical implications of each patient's genetic makeup. Although the highest quality databases require manual curation, text mining tools can facilitate the curation process, increasing accuracy, coverage, and productivity. However, to date there are no available text mining tools that offer high-accuracy performance for extracting such triplets from biomedical literature. In this paper we propose a high-performance machine learning approach to automate the extraction of disease-gene-variant triplets from biomedical literature. Our approach is unique because we identify the genes and protein products associated with each mutation from not just the local text content, but from a global context as well (from the Internet and from all literature in PubMed). Our approach also incorporates protein sequence validation and disease association using a novel text-mining-based machine learning approach. We extract disease-gene-variant triplets from all abstracts in PubMed related to a set of ten important diseases (breast cancer, prostate cancer, pancreatic cancer, lung cancer, acute myeloid leukemia, Alzheimer's disease, hemochromatosis, age-related macular degeneration (AMD), diabetes mellitus, and cystic fibrosis). We then evaluate our approach in two ways: (1) a direct comparison with the state of the art using benchmark datasets; (2) a validation study comparing the results of our approach with entries in a popular human-curated database (UniProt) for each of the previously mentioned diseases. In the benchmark comparison, our full approach achieves a 28% improvement in F1-measure (from 0.62 to 0.79) over the state-of-the-art results. For the validation study with UniProt Knowledgebase (KB), we present a thorough analysis of the results and errors. Across all diseases, our approach returned 272 triplets (disease

  11. Text Mining Genotype-Phenotype Relationships from Biomedical Literature for Database Curation and Precision Medicine.

    Directory of Open Access Journals (Sweden)

    Ayush Singhal

    2016-11-01

    Full Text Available The practice of precision medicine will ultimately require databases of genes and mutations for healthcare providers to reference in order to understand the clinical implications of each patient's genetic makeup. Although the highest quality databases require manual curation, text mining tools can facilitate the curation process, increasing accuracy, coverage, and productivity. However, to date there are no available text mining tools that offer high-accuracy performance for extracting such triplets from biomedical literature. In this paper we propose a high-performance machine learning approach to automate the extraction of disease-gene-variant triplets from biomedical literature. Our approach is unique because we identify the genes and protein products associated with each mutation from not just the local text content, but from a global context as well (from the Internet and from all literature in PubMed. Our approach also incorporates protein sequence validation and disease association using a novel text-mining-based machine learning approach. We extract disease-gene-variant triplets from all abstracts in PubMed related to a set of ten important diseases (breast cancer, prostate cancer, pancreatic cancer, lung cancer, acute myeloid leukemia, Alzheimer's disease, hemochromatosis, age-related macular degeneration (AMD, diabetes mellitus, and cystic fibrosis. We then evaluate our approach in two ways: (1 a direct comparison with the state of the art using benchmark datasets; (2 a validation study comparing the results of our approach with entries in a popular human-curated database (UniProt for each of the previously mentioned diseases. In the benchmark comparison, our full approach achieves a 28% improvement in F1-measure (from 0.62 to 0.79 over the state-of-the-art results. For the validation study with UniProt Knowledgebase (KB, we present a thorough analysis of the results and errors. Across all diseases, our approach returned 272 triplets

  12. Laminin database: a tool to retrieve high-throughput and curated data for studies on laminins.

    Science.gov (United States)

    Golbert, Daiane C F; Linhares-Lacerda, Leandra; Almeida, Luiz G; Correa-de-Santana, Eliane; de Oliveira, Alice R; Mundstein, Alex S; Savino, Wilson; de Vasconcelos, Ana T R

    2011-01-01

    The Laminin(LM)-database, hosted at http://www.lm.lncc.br, is the first database focusing a non-collagenous extracellular matrix protein family, the LMs. Part of the knowledge available in this website is automatically retrieved, whereas a significant amount of information is curated and annotated, thus placing LM-database beyond a simple repository of data. In its home page, an overview of the rationale for the database is seen and readers can access a tutorial to facilitate navigation in the website, which in turn is presented with tabs subdivided into LMs, receptors, extracellular binding and other related proteins. Each tab opens into a given LM or LM-related molecule, where the reader finds a series of further tabs for 'protein', 'gene structure', 'gene expression' and 'tissue distribution' and 'therapy'. Data are separated as a function of species, comprising Homo sapiens, Mus musculus and Rattus novergicus. Furthermore, there is specific tab displaying the LM nomenclatures. In another tab, a direct link to PubMed, which can be then consulted in a specific way, in terms of the biological functions of each molecule, knockout animals and genetic diseases, immune response and lymphomas/leukemias. LM-database will hopefully be a relevant tool for retrieving information concerning LMs in health and disease, particularly regarding the hemopoietic system.

  13. Benchmarking database performance for genomic data.

    Science.gov (United States)

    Khushi, Matloob

    2015-06-01

    Genomic regions represent features such as gene annotations, transcription factor binding sites and epigenetic modifications. Performing various genomic operations such as identifying overlapping/non-overlapping regions or nearest gene annotations are common research needs. The data can be saved in a database system for easy management, however, there is no comprehensive database built-in algorithm at present to identify overlapping regions. Therefore I have developed a novel region-mapping (RegMap) SQL-based algorithm to perform genomic operations and have benchmarked the performance of different databases. Benchmarking identified that PostgreSQL extracts overlapping regions much faster than MySQL. Insertion and data uploads in PostgreSQL were also better, although general searching capability of both databases was almost equivalent. In addition, using the algorithm pair-wise, overlaps of >1000 datasets of transcription factor binding sites and histone marks, collected from previous publications, were reported and it was found that HNF4G significantly co-locates with cohesin subunit STAG1 (SA1).Inc.

  14. Text mining and manual curation of chemical-gene-disease networks for the comparative toxicogenomics database (CTD).

    Science.gov (United States)

    Wiegers, Thomas C; Davis, Allan Peter; Cohen, K Bretonnel; Hirschman, Lynette; Mattingly, Carolyn J

    2009-10-08

    The Comparative Toxicogenomics Database (CTD) is a publicly available resource that promotes understanding about the etiology of environmental diseases. It provides manually curated chemical-gene/protein interactions and chemical- and gene-disease relationships from the peer-reviewed, published literature. The goals of the research reported here were to establish a baseline analysis of current CTD curation, develop a text-mining prototype from readily available open source components, and evaluate its potential value in augmenting curation efficiency and increasing data coverage. Prototype text-mining applications were developed and evaluated using a CTD data set consisting of manually curated molecular interactions and relationships from 1,600 documents. Preliminary results indicated that the prototype found 80% of the gene, chemical, and disease terms appearing in curated interactions. These terms were used to re-rank documents for curation, resulting in increases in mean average precision (63% for the baseline vs. 73% for a rule-based re-ranking), and in the correlation coefficient of rank vs. number of curatable interactions per document (baseline 0.14 vs. 0.38 for the rule-based re-ranking). This text-mining project is unique in its integration of existing tools into a single workflow with direct application to CTD. We performed a baseline assessment of the inter-curator consistency and coverage in CTD, which allowed us to measure the potential of these integrated tools to improve prioritization of journal articles for manual curation. Our study presents a feasible and cost-effective approach for developing a text mining solution to enhance manual curation throughput and efficiency.

  15. The Developmental Brain Disorders Database (DBDB): a curated neurogenetics knowledge base with clinical and research applications.

    Science.gov (United States)

    Mirzaa, Ghayda M; Millen, Kathleen J; Barkovich, A James; Dobyns, William B; Paciorkowski, Alex R

    2014-06-01

    The number of single genes associated with neurodevelopmental disorders has increased dramatically over the past decade. The identification of causative genes for these disorders is important to clinical outcome as it allows for accurate assessment of prognosis, genetic counseling, delineation of natural history, inclusion in clinical trials, and in some cases determines therapy. Clinicians face the challenge of correctly identifying neurodevelopmental phenotypes, recognizing syndromes, and prioritizing the best candidate genes for testing. However, there is no central repository of definitions for many phenotypes, leading to errors of diagnosis. Additionally, there is no system of levels of evidence linking genes to phenotypes, making it difficult for clinicians to know which genes are most strongly associated with a given condition. We have developed the Developmental Brain Disorders Database (DBDB: https://www.dbdb.urmc.rochester.edu/home), a publicly available, online-curated repository of genes, phenotypes, and syndromes associated with neurodevelopmental disorders. DBDB contains the first referenced ontology of developmental brain phenotypes, and uses a novel system of levels of evidence for gene-phenotype associations. It is intended to assist clinicians in arriving at the correct diagnosis, select the most appropriate genetic test for that phenotype, and improve the care of patients with developmental brain disorders. For researchers interested in the discovery of novel genes for developmental brain disorders, DBDB provides a well-curated source of important genes against which research sequencing results can be compared. Finally, DBDB allows novel observations about the landscape of the neurogenetics knowledge base.

  16. The UCSC Genome Browser database: 2017 update.

    Science.gov (United States)

    Tyner, Cath; Barber, Galt P; Casper, Jonathan; Clawson, Hiram; Diekhans, Mark; Eisenhart, Christopher; Fischer, Clayton M; Gibson, David; Gonzalez, Jairo Navarro; Guruvadoo, Luvina; Haeussler, Maximilian; Heitner, Steve; Hinrichs, Angie S; Karolchik, Donna; Lee, Brian T; Lee, Christopher M; Nejad, Parisa; Raney, Brian J; Rosenbloom, Kate R; Speir, Matthew L; Villarreal, Chris; Vivian, John; Zweig, Ann S; Haussler, David; Kuhn, Robert M; Kent, W James

    2017-01-04

    Since its 2001 debut, the University of California, Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/) team has provided continuous support to the international genomics and biomedical communities through a web-based, open source platform designed for the fast, scalable display of sequence alignments and annotations landscaped against a vast collection of quality reference genome assemblies. The browser's publicly accessible databases are the backbone of a rich, integrated bioinformatics tool suite that includes a graphical interface for data queries and downloads, alignment programs, command-line utilities and more. This year's highlights include newly designed home and gateway pages; a new 'multi-region' track display configuration for exon-only, gene-only and custom regions visualization; new genome browsers for three species (brown kiwi, crab-eating macaque and Malayan flying lemur); eight updated genome assemblies; extended support for new data types such as CRAM, RNA-seq expression data and long-range chromatin interaction pairs; and the unveiling of a new supported mirror site in Japan.

  17. The UCSC Genome Browser database: 2017 update

    Science.gov (United States)

    Tyner, Cath; Barber, Galt P.; Casper, Jonathan; Clawson, Hiram; Diekhans, Mark; Eisenhart, Christopher; Fischer, Clayton M.; Gibson, David; Gonzalez, Jairo Navarro; Guruvadoo, Luvina; Haeussler, Maximilian; Heitner, Steve; Hinrichs, Angie S.; Karolchik, Donna; Lee, Brian T.; Lee, Christopher M.; Nejad, Parisa; Raney, Brian J.; Rosenbloom, Kate R.; Speir, Matthew L.; Villarreal, Chris; Vivian, John; Zweig, Ann S.; Haussler, David; Kuhn, Robert M.; Kent, W. James

    2017-01-01

    Since its 2001 debut, the University of California, Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/) team has provided continuous support to the international genomics and biomedical communities through a web-based, open source platform designed for the fast, scalable display of sequence alignments and annotations landscaped against a vast collection of quality reference genome assemblies. The browser's publicly accessible databases are the backbone of a rich, integrated bioinformatics tool suite that includes a graphical interface for data queries and downloads, alignment programs, command-line utilities and more. This year's highlights include newly designed home and gateway pages; a new ‘multi-region’ track display configuration for exon-only, gene-only and custom regions visualization; new genome browsers for three species (brown kiwi, crab-eating macaque and Malayan flying lemur); eight updated genome assemblies; extended support for new data types such as CRAM, RNA-seq expression data and long-range chromatin interaction pairs; and the unveiling of a new supported mirror site in Japan. PMID:27899642

  18. How to Use the Candida Genome Database.

    Science.gov (United States)

    Skrzypek, Marek S; Binkley, Jonathan; Sherlock, Gavin

    2016-01-01

    Studying Candida biology requires access to genomic sequence data in conjunction with experimental information that provides functional context to genes and proteins. The Candida Genome Database (CGD) integrates functional information about Candida genes and their products with a set of analysis tools that facilitate searching for sets of genes and exploring their biological roles. This chapter describes how the various types of information available at CGD can be searched, retrieved, and analyzed. Starting with the guided tour of the CGD Home page and Locus Summary page, this unit shows how to navigate the various assemblies of the C. albicans genome, how to use Gene Ontology tools to make sense of large-scale data, and how to access the microarray data archived at CGD.

  19. Requirements and standards for organelle genome databases

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2006-01-09

    Mitochondria and plastids (collectively called organelles)descended from prokaryotes that adopted an intracellular, endosymbioticlifestyle within early eukaryotes. Comparisons of their remnant genomesaddress a wide variety of biological questions, especially when includingthe genomes of their prokaryotic relatives and the many genes transferredto the eukaryotic nucleus during the transitions from endosymbiont toorganelle. The pace of producing complete organellar genome sequences nowmakes it unfeasible to do broad comparisons using the primary literatureand, even if it were feasible, it is now becoming uncommon for journalsto accept detailed descriptions of genome-level features. Unfortunatelyno database is currently useful for this task, since they have littlestandardization and are riddled with error. Here I outline what iscurrently wrong and what must be done to make this data useful to thescientific community.

  20. How to use the Candida Genome Database

    Science.gov (United States)

    Skrzypek, Marek S.; Binkley, Jonathan; Sherlock, Gavin

    2016-01-01

    Summary Studying Candida biology requires access to genomic sequence data in conjunction with experimental information that provides functional context to genes and proteins. The Candida Genome Database (CGD) integrates functional information about Candida genes and their products with a set of analysis tools that facilitate searching for sets of genes and exploring their biological roles. This chapter describes how the various types of information available at CGD can be searched, retrieved, and analyzed. Starting with the guided tour of the CGD Home page and Locus Summary page, this unit shows how to navigate the various assemblies of the C. albicans genome, how to use Gene Ontology tools to make sense of large-scale data, and how to access the microarray data archived at CGD. PMID:26519061

  1. The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse.

    Science.gov (United States)

    Blake, Judith A; Bult, Carol J; Eppig, Janan T; Kadin, James A; Richardson, Joel E

    2014-01-01

    The Mouse Genome Database (MGD) (http://www.informatics.jax.org) is the community model organism database resource for the laboratory mouse, a premier animal model for the study of genetic and genomic systems relevant to human biology and disease. MGD maintains a comprehensive catalog of genes, functional RNAs and other genome features as well as heritable phenotypes and quantitative trait loci. The genome feature catalog is generated by the integration of computational and manual genome annotations generated by NCBI, Ensembl and Vega/HAVANA. MGD curates and maintains the comprehensive listing of functional annotations for mouse genes using the Gene Ontology, and MGD curates and integrates comprehensive phenotype annotations including associations of mouse models with human diseases. Recent improvements include integration of the latest mouse genome build (GRCm38), improved access to comparative and functional annotations for mouse genes with expanded representation of comparative vertebrate genomes and new loads of phenotype data from high-throughput phenotyping projects. All MGD resources are freely available to the research community.

  2. Online genetic databases informing human genome epidemiology

    Directory of Open Access Journals (Sweden)

    Higgins Julian PT

    2007-07-01

    Full Text Available Abstract Background With the advent of high throughput genotyping technology and the information available via projects such as the human genome sequencing and the HapMap project, more and more data relevant to the study of genetics and disease risk will be produced. Systematic reviews and meta-analyses of human genome epidemiology studies rely on the ability to identify relevant studies and to obtain suitable data from these studies. A first port of call for most such reviews is a search of MEDLINE. We examined whether this could be usefully supplemented by identifying databases on the World Wide Web that contain genetic epidemiological information. Methods We conducted a systematic search for online databases containing genetic epidemiological information on gene prevalence or gene-disease association. In those containing information on genetic association studies, we examined what additional information could be obtained to supplement a MEDLINE literature search. Results We identified 111 databases containing prevalence data, 67 databases specific to a single gene and only 13 that contained information on gene-disease associations. Most of the latter 13 databases were linked to MEDLINE, although five contained information that may not be available from other sources. Conclusion There is no single resource of structured data from genetic association studies covering multiple diseases, and in relation to the number of studies being conducted there is very little information specific to gene-disease association studies currently available on the World Wide Web. Until comprehensive data repositories are created and utilized regularly, new data will remain largely inaccessible to many systematic review authors and meta-analysts.

  3. Update History of This Database - TMBETA-GENOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us TMBETA-GENOME Up...date History of This Database Date Update contents 2015/03/09 TMBETA-GENOME English archive ...site is opened. Joomla SEF URLs by Artio About This Database Database Description Download License Update Hi...story of This Database Site Policy | Contact Us Update History of This Database - TMBETA-GENOME | LSDB Archive ...

  4. NRLiSt BDB, the manually curated nuclear receptors ligands and structures benchmarking database.

    Science.gov (United States)

    Lagarde, Nathalie; Ben Nasr, Nesrine; Jérémie, Aurore; Guillemain, Hélène; Laville, Vincent; Labib, Taoufik; Zagury, Jean-François; Montes, Matthieu

    2014-04-10

    Nuclear receptors (NRs) constitute an important class of drug targets. We created the most exhaustive NR-focused benchmarking database to date, the NRLiSt BDB (NRs ligands and structures benchmarking database). The 9905 compounds and 339 structures of the NRLiSt BDB are ready for structure-based and ligand-based virtual screening. In the present study, we detail the protocol used to generate the NRLiSt BDB and its features. We also give some examples of the errors that we found in ChEMBL that convinced us to manually review all original papers. Since extensive and manually curated experimental data about NR ligands and structures are provided in the NRLiSt BDB, it should become a powerful tool to assess the performance of virtual screening methods on NRs, to assist the understanding of NR's function and modulation, and to support the discovery of new drugs targeting NRs. NRLiSt BDB is freely available online at http://nrlist.drugdesign.fr .

  5. Text mining effectively scores and ranks the literature for improving chemical-gene-disease curation at the comparative toxicogenomics database.

    Science.gov (United States)

    Davis, Allan Peter; Wiegers, Thomas C; Johnson, Robin J; Lay, Jean M; Lennon-Hopkins, Kelley; Saraceni-Richards, Cynthia; Sciaky, Daniela; Murphy, Cynthia Grondin; Mattingly, Carolyn J

    2013-01-01

    The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) is a public resource that curates interactions between environmental chemicals and gene products, and their relationships to diseases, as a means of understanding the effects of environmental chemicals on human health. CTD provides a triad of core information in the form of chemical-gene, chemical-disease, and gene-disease interactions that are manually curated from scientific articles. To increase the efficiency, productivity, and data coverage of manual curation, we have leveraged text mining to help rank and prioritize the triaged literature. Here, we describe our text-mining process that computes and assigns each article a document relevancy score (DRS), wherein a high DRS suggests that an article is more likely to be relevant for curation at CTD. We evaluated our process by first text mining a corpus of 14,904 articles triaged for seven heavy metals (cadmium, cobalt, copper, lead, manganese, mercury, and nickel). Based upon initial analysis, a representative subset corpus of 3,583 articles was then selected from the 14,094 articles and sent to five CTD biocurators for review. The resulting curation of these 3,583 articles was analyzed for a variety of parameters, including article relevancy, novel data content, interaction yield rate, mean average precision, and biological and toxicological interpretability. We show that for all measured parameters, the DRS is an effective indicator for scoring and improving the ranking of literature for the curation of chemical-gene-disease information at CTD. Here, we demonstrate how fully incorporating text mining-based DRS scoring into our curation pipeline enhances manual curation by prioritizing more relevant articles, thereby increasing data content, productivity, and efficiency.

  6. Text mining effectively scores and ranks the literature for improving chemical-gene-disease curation at the comparative toxicogenomics database.

    Directory of Open Access Journals (Sweden)

    Allan Peter Davis

    Full Text Available The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/ is a public resource that curates interactions between environmental chemicals and gene products, and their relationships to diseases, as a means of understanding the effects of environmental chemicals on human health. CTD provides a triad of core information in the form of chemical-gene, chemical-disease, and gene-disease interactions that are manually curated from scientific articles. To increase the efficiency, productivity, and data coverage of manual curation, we have leveraged text mining to help rank and prioritize the triaged literature. Here, we describe our text-mining process that computes and assigns each article a document relevancy score (DRS, wherein a high DRS suggests that an article is more likely to be relevant for curation at CTD. We evaluated our process by first text mining a corpus of 14,904 articles triaged for seven heavy metals (cadmium, cobalt, copper, lead, manganese, mercury, and nickel. Based upon initial analysis, a representative subset corpus of 3,583 articles was then selected from the 14,094 articles and sent to five CTD biocurators for review. The resulting curation of these 3,583 articles was analyzed for a variety of parameters, including article relevancy, novel data content, interaction yield rate, mean average precision, and biological and toxicological interpretability. We show that for all measured parameters, the DRS is an effective indicator for scoring and improving the ranking of literature for the curation of chemical-gene-disease information at CTD. Here, we demonstrate how fully incorporating text mining-based DRS scoring into our curation pipeline enhances manual curation by prioritizing more relevant articles, thereby increasing data content, productivity, and efficiency.

  7. Exploring human disease using the Rat Genome Database

    Directory of Open Access Journals (Sweden)

    Mary Shimoyama

    2016-10-01

    Full Text Available Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases.

  8. Exploring human disease using the Rat Genome Database

    Science.gov (United States)

    Laulederkind, Stanley J. F.; De Pons, Jeff; Nigam, Rajni; Smith, Jennifer R.; Tutaj, Marek; Petri, Victoria; Hayman, G. Thomas; Wang, Shur-Jen; Ghiasvand, Omid; Thota, Jyothi; Dwinell, Melinda R.

    2016-01-01

    ABSTRACT Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu) has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases. PMID:27736745

  9. IMG ER: A System for Microbial Genome Annotation Expert Review and Curation

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M.; Mavromatis, Konstantinos; Ivanova, Natalia N.; Chen, I-Min A.; Chu, Ken; Kyrpides, Nikos C.

    2009-05-25

    A rapidly increasing number of microbial genomes are sequenced by organizations worldwide and are eventually included into various public genome data resources. The quality of the annotations depends largely on the original dataset providers, with erroneous or incomplete annotations often carried over into the public resources and difficult to correct. We have developed an Expert Review (ER) version of the Integrated Microbial Genomes (IMG) system, with the goal of supporting systematic and efficient revision of microbial genome annotations. IMG ER provides tools for the review and curation of annotations of both new and publicly available microbial genomes within IMG's rich integrated genome framework. New genome datasets are included into IMG ER prior to their public release either with their native annotations or with annotations generated by IMG ER's annotation pipeline. IMG ER tools allow addressing annotation problems detected with IMG's comparative analysis tools, such as genes missed by gene prediction pipelines or genes without an associated function. Over the past year, IMG ER was used for improving the annotations of about 150 microbial genomes.

  10. Using binary classification to prioritize and curate articles for the Comparative Toxicogenomics Database.

    Science.gov (United States)

    Vishnyakova, Dina; Pasche, Emilie; Ruch, Patrick

    2012-01-01

    We report on the original integration of an automatic text categorization pipeline, so-called ToxiCat (Toxicogenomic Categorizer), that we developed to perform biomedical documents classification and prioritization in order to speed up the curation of the Comparative Toxicogenomics Database (CTD). The task can be basically described as a binary classification task, where a scoring function is used to rank a selected set of articles. Then components of a question-answering system are used to extract CTD-specific annotations from the ranked list of articles. The ranking function is generated using a Support Vector Machine, which combines three main modules: an information retrieval engine for MEDLINE (EAGLi), a gene normalization service (NormaGene) developed for a previous BioCreative campaign and finally, a set of answering components and entity recognizer for diseases and chemicals. The main components of the pipeline are publicly available both as web application and web services. The specific integration performed for the BioCreative competition is available via a web user interface at http://pingu.unige.ch:8080/Toxicat.

  11. Library of Apicomplexan Metabolic Pathways: a manually curated database for metabolic pathways of apicomplexan parasites

    Science.gov (United States)

    Shanmugasundram, Achchuthan; Gonzalez-Galarza, Faviel F.; Wastling, Jonathan M.; Vasieva, Olga; Jones, Andrew R.

    2013-01-01

    The Library of Apicomplexan Metabolic Pathways (LAMP, http://www.llamp.net) is a web database that provides near complete mapping from genes to the central metabolic functions for some of the prominent intracellular parasites of the phylum Apicomplexa. This phylum includes the causative agents of malaria, toxoplasmosis and theileriosis—diseases with a huge economic and social impact. A number of apicomplexan genomes have been sequenced, but the accurate annotation of gene function remains challenging. We have adopted an approach called metabolic reconstruction, in which genes are systematically assigned to functions within pathways/networks for Toxoplasma gondii, Neospora caninum, Cryptosporidium and Theileria species, and Babesia bovis. Several functions missing from pathways have been identified, where the corresponding gene for an essential process appears to be absent from the current genome annotation. For each species, LAMP contains interactive diagrams of each pathway, hyperlinked to external resources and annotated with detailed information, including the sources of evidence used. We have also developed a section to highlight the overall metabolic capabilities of each species, such as the ability to synthesize or the dependence on the host for a particular metabolite. We expect this new database will become a valuable resource for fundamental and applied research on the Apicomplexa. PMID:23193253

  12. Mining clinical attributes of genomic variants through assisted literature curation in Egas.

    Science.gov (United States)

    Matos, Sérgio; Campos, David; Pinho, Renato; Silva, Raquel M; Mort, Matthew; Cooper, David N; Oliveira, José Luís

    2016-01-01

    The veritable deluge of biological data over recent years has led to the establishment of a considerable number of knowledge resources that compile curated information extracted from the literature and store it in structured form, facilitating its use and exploitation. In this article, we focus on the curation of inherited genetic variants and associated clinical attributes, such as zygosity, penetrance or inheritance mode, and describe the use of Egas for this task. Egas is a web-based platform for text-mining assisted literature curation that focuses on usability through modern design solutions and simple user interactions. Egas offers a flexible and customizable tool that allows defining the concept types and relations of interest for a given annotation task, as well as the ontologies used for normalizing each concept type. Further, annotations may be performed on raw documents or on the results of automated concept identification and relation extraction tools. Users can inspect, correct or remove automatic text-mining results, manually add new annotations, and export the results to standard formats. Egas is compatible with the most recent versions of Google Chrome, Mozilla Firefox, Internet Explorer and Safari and is available for use at https://demo.bmd-software.com/egas/Database URL: https://demo.bmd-software.com/egas/.

  13. Private and Efficient Query Processing on Outsourced Genomic Databases.

    Science.gov (United States)

    Ghasemi, Reza; Al Aziz, Md Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian

    2017-09-01

    Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time consuming and expensive process. Second, it requires large-scale computation and storage systems to process genomic sequences. Third, genomic databases are often owned by different organizations, and thus, not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 Single Nucleotide Polymorphisms (SNPs) in a database of 20 000 records takes around 100 and 150 s, respectively.

  14. CyanoBase: the cyanobacteria genome database update 2010.

    Science.gov (United States)

    Nakao, Mitsuteru; Okamoto, Shinobu; Kohara, Mitsuyo; Fujishiro, Tsunakazu; Fujisawa, Takatomo; Sato, Shusei; Tabata, Satoshi; Kaneko, Takakazu; Nakamura, Yasukazu

    2010-01-01

    CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in various formats with other tools, seamlessly.

  15. BioSharing: curated and crowd-sourced metadata standards, databases and data policies in the life sciences.

    Science.gov (United States)

    McQuilton, Peter; Gonzalez-Beltran, Alejandra; Rocca-Serra, Philippe; Thurston, Milo; Lister, Allyson; Maguire, Eamonn; Sansone, Susanna-Assunta

    2016-01-01

    BioSharing (http://www.biosharing.org) is a manually curated, searchable portal of three linked registries. These resources cover standards (terminologies, formats and models, and reporting guidelines), databases, and data policies in the life sciences, broadly encompassing the biological, environmental and biomedical sciences. Launched in 2011 and built by the same core team as the successful MIBBI portal, BioSharing harnesses community curation to collate and cross-reference resources across the life sciences from around the world. BioSharing makes these resources findable and accessible (the core of the FAIR principle). Every record is designed to be interlinked, providing a detailed description not only on the resource itself, but also on its relations with other life science infrastructures. Serving a variety of stakeholders, BioSharing cultivates a growing community, to which it offers diverse benefits. It is a resource for funding bodies and journal publishers to navigate the metadata landscape of the biological sciences; an educational resource for librarians and information advisors; a publicising platform for standard and database developers/curators; and a research tool for bench and computer scientists to plan their work. BioSharing is working with an increasing number of journals and other registries, for example linking standards and databases to training material and tools. Driven by an international Advisory Board, the BioSharing user-base has grown by over 40% (by unique IP address), in the last year thanks to successful engagement with researchers, publishers, librarians, developers and other stakeholders via several routes, including a joint RDA/Force11 working group and a collaboration with the International Society for Biocuration. In this article, we describe BioSharing, with a particular focus on community-led curation.Database URL: https://www.biosharing.org.

  16. MIPS: a database for genomes and protein sequences.

    Science.gov (United States)

    Mewes, H W; Frishman, D; Güldener, U; Mannhaupt, G; Mayer, K; Mokrejs, M; Morgenstern, B; Münsterkötter, M; Rudd, S; Weil, B

    2002-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz-Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91-93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155-158; Barker et al. (2001) Nucleic Acids Res., 29, 29-32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de).

  17. Expanded national database collection and data coverage in the FINDbase worldwide database for clinically relevant genomic variation allele frequencies.

    Science.gov (United States)

    Viennas, Emmanouil; Komianou, Angeliki; Mizzi, Clint; Stojiljkovic, Maja; Mitropoulou, Christina; Muilu, Juha; Vihinen, Mauno; Grypioti, Panagiota; Papadaki, Styliani; Pavlidis, Cristiana; Zukic, Branka; Katsila, Theodora; van der Spek, Peter J; Pavlovic, Sonja; Tzimas, Giannis; Patrinos, George P

    2017-01-04

    FINDbase (http://www.findbase.org) is a comprehensive data repository that records the prevalence of clinically relevant genomic variants in various populations worldwide, such as pathogenic variants leading mostly to monogenic disorders and pharmacogenomics biomarkers. The database also records the incidence of rare genetic diseases in various populations, all in well-distinct data modules. Here, we report extensive data content updates in all data modules, with direct implications to clinical pharmacogenomics. Also, we report significant new developments in FINDbase, namely (i) the release of a new version of the ETHNOS software that catalyzes development curation of national/ethnic genetic databases, (ii) the migration of all FINDbase data content into 90 distinct national/ethnic mutation databases, all built around Microsoft's PivotViewer (http://www.getpivot.com) software (iii) new data visualization tools and (iv) the interrelation of FINDbase with DruGeVar database with direct implications in clinical pharmacogenomics. The abovementioned updates further enhance the impact of FINDbase, as a key resource for Genomic Medicine applications.

  18. miRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs.

    Science.gov (United States)

    Wang, Peng; Zhi, Hui; Zhang, Yunpeng; Liu, Yue; Zhang, Jizhou; Gao, Yue; Guo, Maoni; Ning, Shangwei; Li, Xia

    2015-01-01

    In this study, we describe miRSponge, a manually curated database, which aims at providing an experimentally supported resource for microRNA (miRNA) sponges. Recent evidence suggests that miRNAs are themselves regulated by competing endogenous RNAs (ceRNAs) or 'miRNA sponges' that contain miRNA binding sites. These competitive molecules can sequester miRNAs to prevent them interacting with their natural targets to play critical roles in various biological and pathological processes. It has become increasingly important to develop a high quality database to record and store ceRNA data to support future studies. To this end, we have established the experimentally supported miRSponge database that contains data on 599 miRNA-sponge interactions and 463 ceRNA relationships from 11 species following manual curating from nearly 1200 published articles. Database classes include endogenously generated molecules including coding genes, pseudogenes, long non-coding RNAs and circular RNAs, along with exogenously introduced molecules including viral RNAs and artificial engineered sponges. Approximately 70% of the interactions were identified experimentally in disease states. miRSponge provides a user-friendly interface for convenient browsing, retrieval and downloading of dataset. A submission page is also included to allow researchers to submit newly validated miRNA sponge data. Database URL: http://www.bio-bigdata.net/miRSponge.

  19. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. 3CDB: a manually curated database of chromosome conformation capture data.

    Science.gov (United States)

    Yun, Xiaoxiao; Xia, Lili; Tang, Bixia; Zhang, Hui; Li, Feifei; Zhang, Zhihua

    2016-01-01

    Chromosome conformation capture (3C) is a biochemical technology to analyse contact frequencies between selected genomic sites in a cell population. Its recent genomic variants, e.g. Hi-C/ chromatin interaction analysis by paired-end tag (ChIA-PET), have enabled the study of nuclear organization at an unprecedented level. However, due to the inherent low resolution and ultrahigh cost of Hi-C/ChIA-PET, 3C is still the gold standard for determining interactions between given regulatory DNA elements, such as enhancers and promoters. Therefore, we developed a database of 3C determined functional chromatin interactions (3CDB;http://3cdb.big.ac.cn). To construct 3CDB, we searched PubMed and Google Scholar with carefully designed keyword combinations and retrieved more than 5000 articles from which we manually extracted 3319 interactions in 17 species. Moreover, we proposed a systematic evaluation scheme for data reliability and classified the interactions into four categories. Contact frequencies are not directly comparable as a result of various modified 3C protocols employed among laboratories. Our evaluation scheme provides a plausible solution to this long-standing problem in the field. A user-friendly web interface was designed to assist quick searches in 3CDB. We believe that 3CDB will provide fundamental information for experimental design and phylogenetic analysis, as well as bridge the gap between molecular and systems biologists who must now contend with noisy high-throughput data.Database URL:http://3cdb.big.ac.cn.

  1. Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers.

    Science.gov (United States)

    Ning, Shangwei; Zhang, Jizhou; Wang, Peng; Zhi, Hui; Wang, Jianjian; Liu, Yue; Gao, Yue; Guo, Maoni; Yue, Ming; Wang, Lihua; Li, Xia

    2016-01-04

    Lnc2Cancer (http://www.bio-bigdata.net/lnc2cancer) is a manually curated database of cancer-associated long non-coding RNAs (lncRNAs) with experimental support that aims to provide a high-quality and integrated resource for exploring lncRNA deregulation in various human cancers. LncRNAs represent a large category of functional RNA molecules that play a significant role in human cancers. A curated collection and summary of deregulated lncRNAs in cancer is essential to thoroughly understand the mechanisms and functions of lncRNAs. Here, we developed the Lnc2Cancer database, which contains 1057 manually curated associations between 531 lncRNAs and 86 human cancers. Each association includes lncRNA and cancer name, the lncRNA expression pattern, experimental techniques, a brief functional description, the original reference and additional annotation information. Lnc2Cancer provides a user-friendly interface to conveniently browse, retrieve and download data. Lnc2Cancer also offers a submission page for researchers to submit newly validated lncRNA-cancer associations. With the rapidly increasing interest in lncRNAs, Lnc2Cancer will significantly improve our understanding of lncRNA deregulation in cancer and has the potential to be a timely and valuable resource.

  2. submitter BioSharing: curated and crowd-sourced metadata standards, databases and data policies in the life sciences

    CERN Document Server

    McQuilton, Peter; Rocca-Serra, Philippe; Thurston, Milo; Lister, Allyson; Maguire, Eamonn; Sansone, Susanna-Assunta

    2016-01-01

    BioSharing (http://www.biosharing.org) is a manually curated, searchable portal of three linked registries. These resources cover standards (terminologies, formats and models, and reporting guidelines), databases, and data policies in the life sciences, broadly encompassing the biological, environmental and biomedical sciences. Launched in 2011 and built by the same core team as the successful MIBBI portal, BioSharing harnesses community curation to collate and cross-reference resources across the life sciences from around the world. BioSharing makes these resources findable and accessible (the core of the FAIR principle). Every record is designed to be interlinked, providing a detailed description not only on the resource itself, but also on its relations with other life science infrastructures. Serving a variety of stakeholders, BioSharing cultivates a growing community, to which it offers diverse benefits. It is a resource for funding bodies and journal publishers to navigate the metadata landscape of the ...

  3. Plant database resources at The Institute for Genomic Research.

    Science.gov (United States)

    Chan, Agnes P; Rabinowicz, Pablo D; Quackenbush, John; Buell, C Robin; Town, Chris D

    2007-01-01

    With the completion of the genome sequences of the model plants Arabidopsis and rice, and the continuing sequencing efforts of other economically important crop plants, an unprecedented amount of genome sequence data is now available for large-scale genomics studies and analyses, such as the identification and discovery of novel genes, comparative genomics, and functional genomics. Efficient utilization of these large data sets is critically dependent on the ease of access and organization of the data. The plant databases at The Institute for Genomic Research (TIGR) have been set up to maintain various data types including genomic sequence, annotation and analyses, expressed transcript assemblies and analyses, and gene expression profiles from microarray studies. We present here an overview of the TIGR database resources for plant genomics and describe methods to access the data.

  4. Recent updates and developments to plant genome size databases

    Science.gov (United States)

    Garcia, Sònia; Leitch, Ilia J.; Anadon-Rosell, Alba; Canela, Miguel Á.; Gálvez, Francisco; Garnatje, Teresa; Gras, Airy; Hidalgo, Oriane; Johnston, Emmeline; Mas de Xaxars, Gemma; Pellicer, Jaume; Siljak-Yakovlev, Sonja; Vallès, Joan; Vitales, Daniel; Bennett, Michael D.

    2014-01-01

    Two plant genome size databases have been recently updated and/or extended: the Plant DNA C-values database (http://data.kew.org/cvalues), and GSAD, the Genome Size in Asteraceae database (http://www.asteraceaegenomesize.com). While the first provides information on nuclear DNA contents across land plants and some algal groups, the second is focused on one of the largest and most economically important angiosperm families, Asteraceae. Genome size data have numerous applications: they can be used in comparative studies on genome evolution, or as a tool to appraise the cost of whole-genome sequencing programs. The growing interest in genome size and increasing rate of data accumulation has necessitated the continued update of these databases. Currently, the Plant DNA C-values database (Release 6.0, Dec. 2012) contains data for 8510 species, while GSAD has 1219 species (Release 2.0, June 2013), representing increases of 17 and 51%, respectively, in the number of species with genome size data, compared with previous releases. Here we provide overviews of the most recent releases of each database, and outline new features of GSAD. The latter include (i) a tool to visually compare genome size data between species, (ii) the option to export data and (iii) a webpage containing information about flow cytometry protocols. PMID:24288377

  5. StellaBase: The Nematostella vectensis Genomics Database

    OpenAIRE

    James C Sullivan; Ryan, Joseph F; Watson, James A.; Webb, Jeramy; Mullikin, James C; Rokhsar, Daniel; Finnerty, John R

    2005-01-01

    StellaBase, the Nematostella vectensis Genomics Database, is a web-based resource that will facilitate desktop and bench-top studies of the starlet sea anemone. Nematostella is an emerging model organism that has already proven useful for addressing fundamental questions in developmental evolution and evolutionary genomics. StellaBase allows users to query the assembled Nematostella genome, a confirmed gene library, and a predicted genome using both keyword and homology based search functions...

  6. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification.

    Science.gov (United States)

    Reddy, T B K; Thomas, Alex D; Stamatis, Dimitri; Bertsch, Jon; Isbandi, Michelle; Jansson, Jakob; Mallajosyula, Jyothi; Pagani, Ioanna; Lobos, Elizabeth A; Kyrpides, Nikos C

    2015-01-01

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Here we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19,200 studies, 56,000 Biosamples, 56,000 sequencing projects and 39,400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards.

  7. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification

    Science.gov (United States)

    Reddy, T.B.K.; Thomas, Alex D.; Stamatis, Dimitri; Bertsch, Jon; Isbandi, Michelle; Jansson, Jakob; Mallajosyula, Jyothi; Pagani, Ioanna; Lobos, Elizabeth A.; Kyrpides, Nikos C.

    2015-01-01

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Here we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencing projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards. PMID:25348402

  8. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Tatiparthi B. K. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Thomas, Alex D. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Stamatis, Dimitri [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Bertsch, Jon [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Isbandi, Michelle [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Jansson, Jakob [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Mallajosyula, Jyothi [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Pagani, Ioanna [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Lobos, Elizabeth A. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Kyrpides, Nikos C. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2014-10-27

    The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Within this paper, we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19 200 studies, 56 000 Biosamples, 56 000 sequencing projects and 39 400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. Lastly, GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards.

  9. A Compressed Self-Index for Genomic Databases

    CERN Document Server

    Gagie, Travis; Nekrich, Yakov; Puglisi, Simon J

    2011-01-01

    Advances in DNA sequencing technology will soon result in databases of thousands of genomes. Within a species, individuals' genomes are almost exact copies of each other; e.g., any two human genomes are 99.9% the same. Relative Lempel-Ziv (RLZ) compression takes advantage of this property: it stores the first genome uncompressed or as an FM-index, then compresses the other genomes with a variant of LZ77 that copies phrases only from the first genome. RLZ achieves good compression and supports fast random access; in this paper we show how to support fast search as well, thus obtaining an efficient compressed self-index.

  10. S2RSLDB: a comprehensive manually curated, internet-accessible database of the sigma-2 receptor selective ligands.

    Science.gov (United States)

    Nastasi, Giovanni; Miceli, Carla; Pittalà, Valeria; Modica, Maria N; Prezzavento, Orazio; Romeo, Giuseppe; Rescifina, Antonio; Marrazzo, Agostino; Amata, Emanuele

    2017-01-01

    Sigma (σ) receptors are accepted as a particular receptor class consisting of two subtypes: sigma-1 (σ1) and sigma-2 (σ2). The two receptor subtypes have specific drug actions, pharmacological profiles and molecular characteristics. The σ2 receptor is overexpressed in several tumor cell lines, and its ligands are currently under investigation for their role in tumor diagnosis and treatment. The σ2 receptor structure has not been disclosed, and researchers rely on σ2 receptor radioligand binding assay to understand the receptor's pharmacological behavior and design new lead compounds. Here we present the sigma-2 Receptor Selective Ligands Database (S2RSLDB) a manually curated database of the σ2 receptor selective ligands containing more than 650 compounds. The database is built with chemical structure information, radioligand binding affinity data, computed physicochemical properties, and experimental radioligand binding procedures. The S2RSLDB is freely available online without account login and having a powerful search engine the user may build complex queries, sort tabulated results, generate color coded 2D and 3D graphs and download the data for additional screening. The collection here reported is extremely useful for the development of new ligands endowed of σ2 receptor affinity, selectivity, and appropriate physicochemical properties. The database will be updated yearly and in the near future, an online submission form will be available to help with keeping the database widely spread in the research community and continually updated. The database is available at http://www.researchdsf.unict.it/S2RSLDB.

  11. SymbioGenomesDB: a database for the integration and access to knowledge on host-symbiont relationships.

    Science.gov (United States)

    Reyes-Prieto, Mariana; Vargas-Chávez, Carlos; Latorre, Amparo; Moya, Andrés

    2015-01-01

    Symbiotic relationships occur naturally throughout the tree of life, either in a commensal, mutualistic or pathogenic manner. The genomes of multiple organisms involved in symbiosis are rapidly being sequenced and becoming available, especially those from the microbial world. Currently, there are numerous databases that offer information on specific organisms or models, but none offer a global understanding on relationships between organisms, their interactions and capabilities within their niche, as well as their role as part of a system, in this case, their role in symbiosis. We have developed the SymbioGenomesDB as a community database resource for laboratories which intend to investigate and use information on the genetics and the genomics of organisms involved in these relationships. The ultimate goal of SymbioGenomesDB is to host and support the growing and vast symbiotic-host relationship information, to uncover the genetic basis of such associations. SymbioGenomesDB maintains a comprehensive organization of information on genomes of symbionts from diverse hosts throughout the Tree of Life, including their sequences, their metadata and their genomic features. This catalog of relationships was generated using computational tools, custom R scripts and manual integration of data available in public literature. As a highly curated and comprehensive systems database, SymbioGenomesDB provides web access to all the information of symbiotic organisms, their features and links to the central database NCBI. Three different tools can be found within the database to explore symbiosis-related organisms, their genes and their genomes. Also, we offer an orthology search for one or multiple genes in one or multiple organisms within symbiotic relationships, and every table, graph and output file is downloadable and easy to parse for further analysis. The robust SymbioGenomesDB will be constantly updated to cope with all the data being generated and included in major

  12. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    OpenAIRE

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10...

  13. Improving the Discoverability and Availability of Sample Data and Imagery in NASA's Astromaterials Curation Digital Repository Using a New Common Architecture for Sample Databases

    Science.gov (United States)

    Todd, N. S.; Evans, C.

    2015-01-01

    The Astromaterials Acquisition and Curation Office at NASA's Johnson Space Center (JSC) is the designated facility for curating all of NASA's extraterrestrial samples. The suite of collections includes the lunar samples from the Apollo missions, cosmic dust particles falling into the Earth's atmosphere, meteorites collected in Antarctica, comet and interstellar dust particles from the Stardust mission, asteroid particles from the Japanese Hayabusa mission, and solar wind atoms collected during the Genesis mission. To support planetary science research on these samples, NASA's Astromaterials Curation Office hosts the Astromaterials Curation Digital Repository, which provides descriptions of the missions and collections, and critical information about each individual sample. Our office is implementing several informatics initiatives with the goal of better serving the planetary research community. One of these initiatives aims to increase the availability and discoverability of sample data and images through the use of a newly designed common architecture for Astromaterials Curation databases.

  14. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy.

    Science.gov (United States)

    Decelle, Johan; Romac, Sarah; Stern, Rowena F; Bendif, El Mahdi; Zingone, Adriana; Audic, Stéphane; Guiry, Michael D; Guillou, Laure; Tessier, Désiré; Le Gall, Florence; Gourvil, Priscillia; Dos Santos, Adriana L; Probert, Ian; Vaulot, Daniel; de Vargas, Colomban; Christen, Richard

    2015-11-01

    Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.

  15. Network thermodynamic curation of human and yeast genome-scale metabolic models.

    Science.gov (United States)

    Martínez, Verónica S; Quek, Lake-Ee; Nielsen, Lars K

    2014-07-15

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties.

  16. Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease

    Science.gov (United States)

    Moskalev, Alexey; Chernyagina, Elizaveta; de Magalhães, João Pedro; Barardo, Diogo; Thoppil, Harikrishnan; Shaposhnikov, Mikhail; Budovsky, Arie; Fraifeld, Vadim E.; Garazha, Andrew; Tsvetkov, Vasily; Bronovitsky, Evgeny; Bogomolov, Vladislav; Scerbacov, Alexei; Kuryan, Oleg; Gurinovich, Roman; Jellen, Leslie C.; Kennedy, Brian; Mamoshina, Polina; Dobrovolskaya, Evgeniya; Aliper, Alex; Kaminsky, Dmitry; Zhavoronkov, Alex

    2015-01-01

    As the level of interest in aging research increases, there is a growing number of geroprotectors, or therapeutic interventions that aim to extend the healthy lifespan and repair or reduce aging-related damage in model organisms and, eventually, in humans. There is a clear need for a manually-curated database of geroprotectors to compile and index their effects on aging and age-related diseases and link these effects to relevant studies and multiple biochemical and drug databases. Here, we introduce the first such resource, Geroprotectors (http://geroprotectors.org). Geroprotectors is a public, rapidly explorable database that catalogs over 250 experiments involving over 200 known or candidate geroprotectors that extend lifespan in model organisms. Each compound has a comprehensive profile complete with biochemistry, mechanisms, and lifespan effects in various model organisms, along with information ranging from chemical structure, side effects, and toxicity to FDA drug status. These are presented in a visually intuitive, efficient framework fit for casual browsing or in-depth research alike. Data are linked to the source studies or databases, providing quick and convenient access to original data. The Geroprotectors database facilitates cross-study, cross-organism, and cross-discipline analysis and saves countless hours of inefficient literature and web searching. Geroprotectors is a one-stop, knowledge-sharing, time-saving resource for researchers seeking healthy aging solutions. PMID:26342919

  17. ONRLDB--manually curated database of experimentally validated ligands for orphan nuclear receptors: insights into new drug discovery.

    Science.gov (United States)

    Nanduri, Ravikanth; Bhutani, Isha; Somavarapu, Arun Kumar; Mahajan, Sahil; Parkesh, Raman; Gupta, Pawan

    2015-01-01

    Orphan nuclear receptors are potential therapeutic targets. The Orphan Nuclear Receptor Ligand Binding Database (ONRLDB) is an interactive, comprehensive and manually curated database of small molecule ligands targeting orphan nuclear receptors. Currently, ONRLDB consists of ∼11,000 ligands, of which ∼6500 are unique. All entries include information for the ligand, such as EC50 and IC50, number of aromatic rings and rotatable bonds, XlogP, hydrogen donor and acceptor count, molecular weight (MW) and structure. ONRLDB is a cross-platform database, where either the cognate small molecule modulators of a receptor or the cognate receptors to a ligand can be searched. The database can be searched using three methods: text search, advanced search or similarity search. Substructure search, cataloguing tools, and clustering tools can be used to perform advanced analysis of the ligand based on chemical similarity fingerprints, hierarchical clustering, binning partition and multidimensional scaling. These tools, together with the Tree function provided, deliver an interactive platform and a comprehensive resource for identification of common and unique scaffolds. As demonstrated, ONRLDB is designed to allow selection of ligands based on various properties and for designing novel ligands or to improve the existing ones. Database URL: http://www.onrldb.org/.

  18. viruSITE—integrated database for viral genomics

    Science.gov (United States)

    Stano, Matej; Beke, Gabor; Klucar, Lubos

    2016-01-01

    Viruses are the most abundant biological entities and the reservoir of most of the genetic diversity in the Earth's biosphere. Viral genomes are very diverse, generally short in length and compared to other organisms carry only few genes. viruSITE is a novel database which brings together high-value information compiled from various resources. viruSITE covers the whole universe of viruses and focuses on viral genomes, genes and proteins. The database contains information on virus taxonomy, host range, genome features, sequential relatedness as well as the properties and functions of viral genes and proteins. All entries in the database are linked to numerous information resources. The above-mentioned features make viruSITE a comprehensive knowledge hub in the field of viral genomics. The web interface of the database was designed so as to offer an easy-to-navigate, intuitive and user-friendly environment. It provides sophisticated text searching and a taxonomy-based browsing system. viruSITE also allows for an alternative approach based on sequence search. A proprietary genome browser generates a graphical representation of viral genomes. In addition to retrieving and visualising data, users can perform comparative genomics analyses using a variety of tools. Database URL: http://www.virusite.org/ PMID:28025349

  19. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  20. Uniform standards for genome databases in forest and fruit trees

    Science.gov (United States)

    TreeGenes and tfGDR serve the international forestry and fruit tree genomics research communities, respectively. These databases hold similar sequence data and provide resources for the submission and recovery of this information in order to enable comparative genomics research. Large-scale genotype...

  1. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing.

    Science.gov (United States)

    Tacutu, Robi; Craig, Thomas; Budovsky, Arie; Wuttke, Daniel; Lehmann, Gilad; Taranukha, Dmitri; Costa, Joana; Fraifeld, Vadim E; de Magalhães, João Pedro

    2013-01-01

    The Human Ageing Genomic Resources (HAGR, http://genomics.senescence.info) is a freely available online collection of research databases and tools for the biology and genetics of ageing. HAGR features now several databases with high-quality manually curated data: (i) GenAge, a database of genes associated with ageing in humans and model organisms; (ii) AnAge, an extensive collection of longevity records and complementary traits for >4000 vertebrate species; and (iii) GenDR, a newly incorporated database, containing both gene mutations that interfere with dietary restriction-mediated lifespan extension and consistent gene expression changes induced by dietary restriction. Since its creation about 10 years ago, major efforts have been undertaken to maintain the quality of data in HAGR, while further continuing to develop, improve and extend it. This article briefly describes the content of HAGR and details the major updates since its previous publications, in terms of both structure and content. The completely redesigned interface, more intuitive and more integrative of HAGR resources, is also presented. Altogether, we hope that through its improvements, the current version of HAGR will continue to provide users with the most comprehensive and accessible resources available today in the field of biogerontology.

  2. Human Ageing Genomic Resources: Integrated databases and tools for the biology and genetics of ageing

    Science.gov (United States)

    Tacutu, Robi; Craig, Thomas; Budovsky, Arie; Wuttke, Daniel; Lehmann, Gilad; Taranukha, Dmitri; Costa, Joana; Fraifeld, Vadim E.; de Magalhães, João Pedro

    2013-01-01

    The Human Ageing Genomic Resources (HAGR, http://genomics.senescence.info) is a freely available online collection of research databases and tools for the biology and genetics of ageing. HAGR features now several databases with high-quality manually curated data: (i) GenAge, a database of genes associated with ageing in humans and model organisms; (ii) AnAge, an extensive collection of longevity records and complementary traits for >4000 vertebrate species; and (iii) GenDR, a newly incorporated database, containing both gene mutations that interfere with dietary restriction-mediated lifespan extension and consistent gene expression changes induced by dietary restriction. Since its creation about 10 years ago, major efforts have been undertaken to maintain the quality of data in HAGR, while further continuing to develop, improve and extend it. This article briefly describes the content of HAGR and details the major updates since its previous publications, in terms of both structure and content. The completely redesigned interface, more intuitive and more integrative of HAGR resources, is also presented. Altogether, we hope that through its improvements, the current version of HAGR will continue to provide users with the most comprehensive and accessible resources available today in the field of biogerontology. PMID:23193293

  3. CMD: a Cotton Microsatellite Database resource for Gossypium genomics

    Directory of Open Access Journals (Sweden)

    Liu Shaolin

    2006-05-01

    Full Text Available Abstract Background The Cotton Microsatellite Database (CMD http://www.cottonssr.org is a curated and integrated web-based relational database providing centralized access to publicly available cotton microsatellites, an invaluable resource for basic and applied research in cotton breeding. Description At present CMD contains publication, sequence, primer, mapping and homology data for nine major cotton microsatellite projects, collectively representing 5,484 microsatellites. In addition, CMD displays data for three of the microsatellite projects that have been screened against a panel of core germplasm. The standardized panel consists of 12 diverse genotypes including genetic standards, mapping parents, BAC donors, subgenome representatives, unique breeding lines, exotic introgression sources, and contemporary Upland cottons with significant acreage. A suite of online microsatellite data mining tools are accessible at CMD. These include an SSR server which identifies microsatellites, primers, open reading frames, and GC-content of uploaded sequences; BLAST and FASTA servers providing sequence similarity searches against the existing cotton SSR sequences and primers, a CAP3 server to assemble EST sequences into longer transcripts prior to mining for SSRs, and CMap, a viewer for comparing cotton SSR maps. Conclusion The collection of publicly available cotton SSR markers in a centralized, readily accessible and curated web-enabled database provides a more efficient utilization of microsatellite resources and will help accelerate basic and applied research in molecular breeding and genetic mapping in Gossypium spp.

  4. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants.

    Science.gov (United States)

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-09-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops.

  5. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime

    2015-11-18

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a textbased browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  6. OryzaGenome: Genome Diversity Database of Wild Oryza Species.

    Science.gov (United States)

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  7. Development of a maize molecular evolutionary genomic database.

    Science.gov (United States)

    Du, Chunguang; Buckler, Edward; Muse, Spencer

    2003-01-01

    PANZEA is the first public database for studying maize genomic diversity. It was initiated as a repository of genomic diversity for an NSF Plant Genome project on 'Maize Evolutionary Genomics'. PANZEA is hosted at the Bioinformatics Research Center, North Carolina State University, and is open to the public (http://statgen.ncsu.edu/panzea). PANZEA is designed to capture the interrelationships between germplasm, molecular diversity, phenotypic diversity and genome structure. It has the ability to store, integrate and visualize DNA sequence, enzymatic, SSR (simple sequence repeat) marker, germplasm and phenotypic data. The relational data model is selected and implemented in Oracle. An automated DNA sequence data submission tool has been created that allows project researchers to remotely submit their DNA sequence data directly to PANZEA. On-line database search forms and reports have been created to allow users to search or download germplasm, DNA sequence, gene/locus data and much more, directly from the web.

  8. Microarray meta-analysis database (M2DB: a uniformly pre-processed, quality controlled, and manually curated human clinical microarray database

    Directory of Open Access Journals (Sweden)

    Cheng Wei-Chung

    2010-08-01

    Full Text Available Abstract Background Over the past decade, gene expression microarray studies have greatly expanded our knowledge of genetic mechanisms of human diseases. Meta-analysis of substantial amounts of accumulated data, by integrating valuable information from multiple studies, is becoming more important in microarray research. However, collecting data of special interest from public microarray repositories often present major practical problems. Moreover, including low-quality data may significantly reduce meta-analysis efficiency. Results M2DB is a human curated microarray database designed for easy querying, based on clinical information and for interactive retrieval of either raw or uniformly pre-processed data, along with a set of quality-control metrics. The database contains more than 10,000 previously published Affymetrix GeneChip arrays, performed using human clinical specimens. M2DB allows online querying according to a flexible combination of five clinical annotations describing disease state and sampling location. These annotations were manually curated by controlled vocabularies, based on information obtained from GEO, ArrayExpress, and published papers. For array-based assessment control, the online query provides sets of QC metrics, generated using three available QC algorithms. Arrays with poor data quality can easily be excluded from the query interface. The query provides values from two algorithms for gene-based filtering, and raw data and three kinds of pre-processed data for downloading. Conclusion M2DB utilizes a user-friendly interface for QC parameters, sample clinical annotations, and data formats to help users obtain clinical metadata. This database provides a lower entry threshold and an integrated process of meta-analysis. We hope that this research will promote further evolution of microarray meta-analysis.

  9. Specialized microbial databases for inductive exploration of microbial genome sequences

    Directory of Open Access Journals (Sweden)

    Cabau Cédric

    2005-02-01

    Full Text Available Abstract Background The enormous amount of genome sequence data asks for user-oriented databases to manage sequences and annotations. Queries must include search tools permitting function identification through exploration of related objects. Methods The GenoList package for collecting and mining microbial genome databases has been rewritten using MySQL as the database management system. Functions that were not available in MySQL, such as nested subquery, have been implemented. Results Inductive reasoning in the study of genomes starts from "islands of knowledge", centered around genes with some known background. With this concept of "neighborhood" in mind, a modified version of the GenoList structure has been used for organizing sequence data from prokaryotic genomes of particular interest in China. GenoChore http://bioinfo.hku.hk/genochore.html, a set of 17 specialized end-user-oriented microbial databases (including one instance of Microsporidia, Encephalitozoon cuniculi, a member of Eukarya has been made publicly available. These databases allow the user to browse genome sequence and annotation data using standard queries. In addition they provide a weekly update of searches against the world-wide protein sequences data libraries, allowing one to monitor annotation updates on genes of interest. Finally, they allow users to search for patterns in DNA or protein sequences, taking into account a clustering of genes into formal operons, as well as providing extra facilities to query sequences using predefined sequence patterns. Conclusion This growing set of specialized microbial databases organize data created by the first Chinese bacterial genome programs (ThermaList, Thermoanaerobacter tencongensis, LeptoList, with two different genomes of Leptospira interrogans and SepiList, Staphylococcus epidermidis associated to related organisms for comparison.

  10. NEMiD: a web-based curated microbial diversity database with geo-based plotting.

    Science.gov (United States)

    Bhattacharjee, Kaushik; Joshi, Santa Ram

    2014-01-01

    The majority of the Earth's microbes remain unknown, and that their potential utility cannot be exploited until they are discovered and characterized. They provide wide scope for the development of new strains as well as biotechnological uses. The documentation and bioprospection of microorganisms carry enormous significance considering their relevance to human welfare. This calls for an urgent need to develop a database with emphasis on the microbial diversity of the largest untapped reservoirs in the biosphere. The data annotated in the North-East India Microbial database (NEMiD) were obtained by the isolation and characterization of microbes from different parts of the Eastern Himalayan region. The database was constructed as a relational database management system (RDBMS) for data storage in MySQL in the back-end on a Linux server and implemented in an Apache/PHP environment. This database provides a base for understanding the soil microbial diversity pattern in this megabiodiversity hotspot and indicates the distribution patterns of various organisms along with identification. The NEMiD database is freely available at www.mblabnehu.info/nemid/.

  11. NEMiD: a web-based curated microbial diversity database with geo-based plotting.

    Directory of Open Access Journals (Sweden)

    Kaushik Bhattacharjee

    Full Text Available The majority of the Earth's microbes remain unknown, and that their potential utility cannot be exploited until they are discovered and characterized. They provide wide scope for the development of new strains as well as biotechnological uses. The documentation and bioprospection of microorganisms carry enormous significance considering their relevance to human welfare. This calls for an urgent need to develop a database with emphasis on the microbial diversity of the largest untapped reservoirs in the biosphere. The data annotated in the North-East India Microbial database (NEMiD were obtained by the isolation and characterization of microbes from different parts of the Eastern Himalayan region. The database was constructed as a relational database management system (RDBMS for data storage in MySQL in the back-end on a Linux server and implemented in an Apache/PHP environment. This database provides a base for understanding the soil microbial diversity pattern in this megabiodiversity hotspot and indicates the distribution patterns of various organisms along with identification. The NEMiD database is freely available at www.mblabnehu.info/nemid/.

  12. Rat Genome Database: a unique resource for rat, human, and mouse quantitative trait locus data.

    Science.gov (United States)

    Nigam, Rajni; Laulederkind, Stanley J F; Hayman, G Thomas; Smith, Jennifer R; Wang, Shur-Jen; Lowry, Timothy F; Petri, Victoria; De Pons, Jeff; Tutaj, Marek; Liu, Weisong; Jayaraman, Pushkala; Munzenmaier, Diane H; Worthey, Elizabeth A; Dwinell, Melinda R; Shimoyama, Mary; Jacob, Howard J

    2013-09-16

    The rat has been widely used as a disease model in a laboratory setting, resulting in an abundance of genetic and phenotype data from a wide variety of studies. These data can be found at the Rat Genome Database (RGD, http://rgd.mcw.edu/), which provides a platform for researchers interested in linking genomic variations to phenotypes. Quantitative trait loci (QTLs) form one of the earliest and core datasets, allowing researchers to identify loci harboring genes associated with disease. These QTLs are not only important for those using the rat to identify genes and regions associated with disease, but also for cross-organism analyses of syntenic regions on the mouse and the human genomes to identify potential regions for study in these organisms. Currently, RGD has data on >1,900 rat QTLs that include details about the methods and animals used to determine the respective QTL along with the genomic positions and markers that define the region. RGD also curates human QTLs (>1,900) and houses>4,000 mouse QTLs (imported from Mouse Genome Informatics). Multiple ontologies are used to standardize traits, phenotypes, diseases, and experimental methods to facilitate queries, analyses, and cross-organism comparisons. QTLs are visualized in tools such as GBrowse and GViewer, with additional tools for analysis of gene sets within QTL regions. The QTL data at RGD provide valuable information for the study of mapped phenotypes and identification of candidate genes for disease associations.

  13. StellaBase: the Nematostella vectensis Genomics Database.

    Science.gov (United States)

    Sullivan, James C; Ryan, Joseph F; Watson, James A; Webb, Jeramy; Mullikin, James C; Rokhsar, Daniel; Finnerty, John R

    2006-01-01

    StellaBase, the Nematostella vectensis Genomics Database, is a web-based resource that will facilitate desktop and bench-top studies of the starlet sea anemone. Nematostella is an emerging model organism that has already proven useful for addressing fundamental questions in developmental evolution and evolutionary genomics. StellaBase allows users to query the assembled Nematostella genome, a confirmed gene library, and a predicted genome using both keyword and homology based search functions. Data provided by these searches will elucidate gene family evolution in early animals. Unique research tools, including a Nematostella genetic stock library, a primer library, a literature repository and a gene expression library will provide support to the burgeoning Nematostella research community. The development of StellaBase accompanies significant upgrades to CnidBase, the Cnidarian Evolutionary Genomics Database. With the completion of the first sequenced cnidarian genome, genome comparison tools have been added to CnidBase. In addition, StellaBase provides a framework for the integration of additional species-specific databases into CnidBase. StellaBase is available at http://www.stellabase.org.

  14. GenColors-based comparative genome databases for small eukaryotic genomes.

    Science.gov (United States)

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.

  15. Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb).

    Science.gov (United States)

    Mikaelyan, Aram; Köhler, Tim; Lampert, Niclas; Rohland, Jeffrey; Boga, Hamadi; Meuser, Katja; Brune, Andreas

    2015-10-01

    Recent developments in sequencing technology have given rise to a large number of studies that assess bacterial diversity and community structure in termite and cockroach guts based on large amplicon libraries of 16S rRNA genes. Although these studies have revealed important ecological and evolutionary patterns in the gut microbiota, classification of the short sequence reads is limited by the taxonomic depth and resolution of the reference databases used in the respective studies. Here, we present a curated reference database for accurate taxonomic analysis of the bacterial gut microbiota of dictyopteran insects. The Dictyopteran gut microbiota reference Database (DictDb) is based on the Silva database but was significantly expanded by the addition of clones from 11 mostly unexplored termite and cockroach groups, which increased the inventory of bacterial sequences from dictyopteran guts by 26%. The taxonomic depth and resolution of DictDb was significantly improved by a general revision of the taxonomic guide tree for all important lineages, including a detailed phylogenetic analysis of the Treponema and Alistipes complexes, the Fibrobacteres, and the TG3 phylum. The performance of this first documented version of DictDb (v. 3.0) using the revised taxonomic guide tree in the classification of short-read libraries obtained from termites and cockroaches was highly superior to that of the current Silva and RDP databases. DictDb uses an informative nomenclature that is consistent with the literature also for clades of uncultured bacteria and provides an invaluable tool for anyone exploring the gut community structure of termites and cockroaches.

  16. The Coral Trait Database, a curated database of trait information for coral species from the global oceans

    Science.gov (United States)

    Madin, Joshua S.; Anderson, Kristen D.; Andreasen, Magnus Heide; Bridge, Tom C. L.; Cairns, Stephen D.; Connolly, Sean R.; Darling, Emily S.; Diaz, Marcela; Falster, Daniel S.; Franklin, Erik C.; Gates, Ruth D.; Hoogenboom, Mia O.; Huang, Danwei; Keith, Sally A.; Kosnik, Matthew A.; Kuo, Chao-Yang; Lough, Janice M.; Lovelock, Catherine E.; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M.; Pochon, Xavier; Pratchett, Morgan S.; Putnam, Hollie M.; Roberts, T. Edward; Stat, Michael; Wallace, Carden C.; Widman, Elizabeth; Baird, Andrew H.

    2016-03-01

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.

  17. The Coral Trait Database, a curated database of trait information for coral species from the global oceans

    Science.gov (United States)

    Madin, Joshua S.; Anderson, Kristen D.; Andreasen, Magnus Heide; Bridge, Tom C.L.; Cairns, Stephen D.; Connolly, Sean R.; Darling, Emily S.; Diaz, Marcela; Falster, Daniel S.; Franklin, Erik C.; Gates, Ruth D.; Hoogenboom, Mia O.; Huang, Danwei; Keith, Sally A.; Kosnik, Matthew A.; Kuo, Chao-Yang; Lough, Janice M.; Lovelock, Catherine E.; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M.; Pochon, Xavier; Pratchett, Morgan S.; Putnam, Hollie M.; Roberts, T. Edward; Stat, Michael; Wallace, Carden C.; Widman, Elizabeth; Baird, Andrew H.

    2016-01-01

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research. PMID:27023900

  18. SoyTEdb: a comprehensive database of transposable elements in the soybean genome

    Directory of Open Access Journals (Sweden)

    Zhu Liucun

    2010-02-01

    curated transposable element database for any individual plant genome completely sequenced to date. Transposable elements previously identified in legumes, the third largest family of flowering plants, are relatively scarce. Thus this database will facilitate structural, evolutionary, functional, and epigenetic analyses of transposable elements in soybean and other legume species.

  19. DREMECELS: A Curated Database for Base Excision and Mismatch Repair Mechanisms Associated Human Malignancies.

    Directory of Open Access Journals (Sweden)

    Ankita Shukla

    Full Text Available DNA repair mechanisms act as a warrior combating various damaging processes that ensue critical malignancies. DREMECELS was designed considering the malignancies with frequent alterations in DNA repair pathways, that is, colorectal and endometrial cancers, associated with Lynch syndrome (also known as HNPCC. Since lynch syndrome carries high risk (~40-60% for both cancers, therefore we decided to cover all three diseases in this portal. Although a large population is presently affected by these malignancies, many resources are available for various cancer types but no database archives information on the genes specifically for only these cancers and disorders. The database contains 156 genes and two repair mechanisms, base excision repair (BER and mismatch repair (MMR. Other parameters include some of the regulatory processes that have roles in these disease progressions due to incompetent repair mechanisms, specifically BER and MMR. However, our unique database mainly provides qualitative and quantitative information on these cancer types along with methylation, drug sensitivity, miRNAs, copy number variation (CNV and somatic mutations data. This database would serve the scientific community by providing integrated information on these disease types, thus sustaining diagnostic and therapeutic processes. This repository would serve as an excellent accompaniment for researchers and biomedical professionals and facilitate in understanding such critical diseases. DREMECELS is publicly available at http://www.bioinfoindia.org/dremecels.

  20. KAIKObase: An integrated silkworm genome database and data mining tool

    Directory of Open Access Journals (Sweden)

    Nagaraju Javaregowda

    2009-10-01

    Full Text Available Abstract Background The silkworm, Bombyx mori, is one of the most economically important insects in many developing countries owing to its large-scale cultivation for silk production. With the development of genomic and biotechnological tools, B. mori has also become an important bioreactor for production of various recombinant proteins of biomedical interest. In 2004, two genome sequencing projects for B. mori were reported independently by Chinese and Japanese teams; however, the datasets were insufficient for building long genomic scaffolds which are essential for unambiguous annotation of the genome. Now, both the datasets have been merged and assembled through a joint collaboration between the two groups. Description Integration of the two data sets of silkworm whole-genome-shotgun sequencing by the Japanese and Chinese groups together with newly obtained fosmid- and BAC-end sequences produced the best continuity (~3.7 Mb in N50 scaffold size among the sequenced insect genomes and provided a high degree of nucleotide coverage (88% of all 28 chromosomes. In addition, a physical map of BAC contigs constructed by fingerprinting BAC clones and a SNP linkage map constructed using BAC-end sequences were available. In parallel, proteomic data from two-dimensional polyacrylamide gel electrophoresis in various tissues and developmental stages were compiled into a silkworm proteome database. Finally, a Bombyx trap database was constructed for documenting insertion positions and expression data of transposon insertion lines. Conclusion For efficient usage of genome information for functional studies, genomic sequences, physical and genetic map information and EST data were compiled into KAIKObase, an integrated silkworm genome database which consists of 4 map viewers, a gene viewer, and sequence, keyword and position search systems to display results and data at the level of nucleotide sequence, gene, scaffold and chromosome. Integration of the

  1. i-Genome: A database to summarize oligonucleotide data in genomes

    Directory of Open Access Journals (Sweden)

    Chang Yu-Chung

    2004-10-01

    Full Text Available Abstract Background Information on the occurrence of sequence features in genomes is crucial to comparative genomics, evolutionary analysis, the analyses of regulatory sequences and the quantitative evaluation of sequences. Computing the frequencies and the occurrences of a pattern in complete genomes is time-consuming. Results The proposed database provides information about sequence features generated by exhaustively computing the sequences of the complete genome. The repetitive elements in the eukaryotic genomes, such as LINEs, SINEs, Alu and LTR, are obtained from Repbase. The database supports various complete genomes including human, yeast, worm, and 128 microbial genomes. Conclusions This investigation presents and implements an efficiently computational approach to accumulate the occurrences of the oligonucleotides or patterns in complete genomes. A database is established to maintain the information of the sequence features, including the distributions of oligonucleotide, the gene distribution, the distribution of repetitive elements in genomes and the occurrences of the oligonucleotides. The database can provide more effective and efficient way to access the repetitive features in genomes.

  2. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.

    Science.gov (United States)

    Roberts, Richard J; Vincze, Tamas; Posfai, Janos; Macelis, Dana

    2015-01-01

    REBASE is a comprehensive and fully curated database of information about the components of restriction-modification (RM) systems. It contains fully referenced information about recognition and cleavage sites for both restriction enzymes and methyltransferases as well as commercial availability, methylation sensitivity, crystal and sequence data. All genomes that are completely sequenced are analyzed for RM system components, and with the advent of PacBio sequencing, the recognition sequences of DNA methyltransferases (MTases) are appearing rapidly. Thus, Type I and Type III systems can now be characterized in terms of recognition specificity merely by DNA sequencing. The contents of REBASE may be browsed from the web http://rebase.neb.com and selected compilations can be downloaded by FTP (ftp.neb.com). Monthly updates are also available via email.

  3. BBGD: an online database for blueberry genomic data

    Directory of Open Access Journals (Sweden)

    Matthews Benjamin F

    2007-01-01

    Full Text Available Abstract Background Blueberry is a member of the Ericaceae family, which also includes closely related cranberry and more distantly related rhododendron, azalea, and mountain laurel. Blueberry is a major berry crop in the United States, and one that has great nutritional and economical value. Extreme low temperatures, however, reduce crop yield and cause major losses to US farmers. A better understanding of the genes and biochemical pathways that are up- or down-regulated during cold acclimation is needed to produce blueberry cultivars with enhanced cold hardiness. To that end, the blueberry genomics database (BBDG was developed. Along with the analysis tools and web-based query interfaces, the database serves both the broader Ericaceae research community and the blueberry research community specifically by making available ESTs and gene expression data in searchable formats and in elucidating the underlying mechanisms of cold acclimation and freeze tolerance in blueberry. Description BBGD is the world's first database for blueberry genomics. BBGD is both a sequence and gene expression database. It stores both EST and microarray data and allows scientists to correlate expression profiles with gene function. BBGD is a public online database. Presently, the main focus of the database is the identification of genes in blueberry that are significantly induced or suppressed after low temperature exposure. Conclusion By using the database, researchers have developed EST-based markers for mapping and have identified a number of "candidate" cold tolerance genes that are highly expressed in blueberry flower buds after exposure to low temperatures.

  4. BBGD: an online database for blueberry genomic data.

    Science.gov (United States)

    Alkharouf, Nadim W; Dhanaraj, Anik L; Naik, Dhananjay; Overall, Chris; Matthews, Benjamin F; Rowland, Lisa J

    2007-01-30

    Blueberry is a member of the Ericaceae family, which also includes closely related cranberry and more distantly related rhododendron, azalea, and mountain laurel. Blueberry is a major berry crop in the United States, and one that has great nutritional and economical value. Extreme low temperatures, however, reduce crop yield and cause major losses to US farmers. A better understanding of the genes and biochemical pathways that are up- or down-regulated during cold acclimation is needed to produce blueberry cultivars with enhanced cold hardiness. To that end, the blueberry genomics database (BBDG) was developed. Along with the analysis tools and web-based query interfaces, the database serves both the broader Ericaceae research community and the blueberry research community specifically by making available ESTs and gene expression data in searchable formats and in elucidating the underlying mechanisms of cold acclimation and freeze tolerance in blueberry. BBGD is the world's first database for blueberry genomics. BBGD is both a sequence and gene expression database. It stores both EST and microarray data and allows scientists to correlate expression profiles with gene function. BBGD is a public online database. Presently, the main focus of the database is the identification of genes in blueberry that are significantly induced or suppressed after low temperature exposure. By using the database, researchers have developed EST-based markers for mapping and have identified a number of "candidate" cold tolerance genes that are highly expressed in blueberry flower buds after exposure to low temperatures.

  5. BRAD, the genetics and genomics database for Brassica plants

    Directory of Open Access Journals (Sweden)

    Li Pingxia

    2011-10-01

    Full Text Available Abstract Background Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data. Description BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42. It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE, B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker. Conclusion BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.

  6. A primer on rapid prototyping of genomic databases in Prolog

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kaoru; Smith, C.L. [Lawrence Berkeley Lab., CA (United States); Overbeek, R. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1992-01-01

    This report presents a tutorial on how one might create an integrated database of genomic information. We outline the required steps for implementation, give a brief introduction to Prolog, and discuss the query facility supported by our system. Our goal is to enable researchers to being constructing their own biological information system.

  7. Tripal: a construction toolkit for online genome databases.

    Science.gov (United States)

    Ficklin, Stephen P; Sanderson, Lacey-Anne; Cheng, Chun-Huai; Staton, Margaret E; Lee, Taein; Cho, Il-Hyung; Jung, Sook; Bett, Kirstin E; Main, Doreen

    2011-01-01

    As the availability, affordability and magnitude of genomics and genetics research increases so does the need to provide online access to resulting data and analyses. Availability of a tailored online database is the desire for many investigators or research communities; however, managing the Information Technology infrastructure needed to create such a database can be an undesired distraction from primary research or potentially cost prohibitive. Tripal provides simplified site development by merging the power of Drupal, a popular web Content Management System with that of Chado, a community-derived database schema for storage of genomic, genetic and other related biological data. Tripal provides an interface that extends the content management features of Drupal to the data housed in Chado. Furthermore, Tripal provides a web-based Chado installer, genomic data loaders, web-based editing of data for organisms, genomic features, biological libraries, controlled vocabularies and stock collections. Also available are Tripal extensions that support loading and visualizations of NCBI BLAST, InterPro, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses, as well as an extension that provides integration of Tripal with GBrowse, a popular GMOD tool. An Application Programming Interface is available to allow creation of custom extensions by site developers, and the look-and-feel of the site is completely customizable through Drupal-based PHP template files. Addition of non-biological content and user-management is afforded through Drupal. Tripal is an open source and freely available software package found at http://tripal.sourceforge.net.

  8. DemaDb: an integrated dematiaceous fungal genomes database.

    Science.gov (United States)

    Kuan, Chee Sian; Yew, Su Mei; Chan, Chai Ling; Toh, Yue Fen; Lee, Kok Wei; Cheong, Wei-Hien; Yee, Wai-Yan; Hoh, Chee-Choong; Yap, Soon-Joo; Ng, Kee Peng

    2016-01-01

    Many species of dematiaceous fungi are associated with allergic reactions and potentially fatal diseases in human, especially in tropical climates. Over the past 10 years, we have isolated more than 400 dematiaceous fungi from various clinical samples. In this study, DemaDb, an integrated database was designed to support the integration and analysis of dematiaceous fungal genomes. A total of 92 072 putative genes and 6527 pathways that identified in eight dematiaceous fungi (Bipolaris papendorfii UM 226, Daldinia eschscholtzii UM 1400, D. eschscholtzii UM 1020, Pyrenochaeta unguis-hominis UM 256, Ochroconis mirabilis UM 578, Cladosporium sphaerospermum UM 843, Herpotrichiellaceae sp. UM 238 and Pleosporales sp. UM 1110) were deposited in DemaDb. DemaDb includes functional annotations for all predicted gene models in all genomes, such as Gene Ontology, EuKaryotic Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes (KEGG), Pfam and InterProScan. All predicted protein models were further functionally annotated to Carbohydrate-Active enzymes, peptidases, secondary metabolites and virulence factors. DemaDb Genome Browser enables users to browse and visualize entire genomes with annotation data including gene prediction, structure, orientation and custom feature tracks. The Pathway Browser based on the KEGG pathway database allows users to look into molecular interaction and reaction networks for all KEGG annotated genes. The availability of downloadable files containing assembly, nucleic acid, as well as protein data allows the direct retrieval for further downstream works. DemaDb is a useful resource for fungal research community especially those involved in genome-scale analysis, functional genomics, genetics and disease studies of dematiaceous fungi. Database URL: http://fungaldb.um.edu.my.

  9. EuPathDB: the eukaryotic pathogen genomics database resource

    Science.gov (United States)

    Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y.; Brestelli, John; Brunk, Brian P.; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S.; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C.; Lawrence, Cris; Li, Wei; Pinney, Deborah F.; Pulman, Jane A.; Roos, David S.; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J.; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie

    2017-01-01

    The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host–pathogen interactions. PMID:27903906

  10. EuPathDB: the eukaryotic pathogen genomics database resource.

    Science.gov (United States)

    Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y; Brestelli, John; Brunk, Brian P; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C; Lawrence, Cris; Li, Wei; Pinney, Deborah F; Pulman, Jane A; Roos, David S; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie

    2017-01-04

    The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host-pathogen interactions.

  11. ICDS database: interrupted CoDing sequences in prokaryotic genomes.

    Science.gov (United States)

    Perrodou, Emmanuel; Deshayes, Caroline; Muller, Jean; Schaeffer, Christine; Van Dorsselaer, Alain; Ripp, Raymond; Poch, Olivier; Reyrat, Jean-Marc; Lecompte, Odile

    2006-01-01

    Unrecognized frameshifts, in-frame stop codons and sequencing errors lead to Interrupted CoDing Sequence (ICDS) that can seriously affect all subsequent steps of functional characterization, from in silico analysis to high-throughput proteomic projects. Here, we describe the Interrupted CoDing Sequence database containing ICDS detected by a similarity-based approach in 80 complete prokaryotic genomes. ICDS can be retrieved by species browsing or similarity searches via a web interface (http://www-bio3d-igbmc.u-strasbg.fr/ICDS/). The definition of each interrupted gene is provided as well as the ICDS genomic localization with the surrounding sequence. Furthermore, to facilitate the experimental characterization of ICDS, we propose optimized primers for re-sequencing purposes. The database will be regularly updated with additional data from ongoing sequenced genomes. Our strategy has been validated by three independent tests: (i) ICDS prediction on a benchmark of artificially created frameshifts, (ii) comparison of predicted ICDS and results obtained from the comparison of the two genomic sequences of Bacillus licheniformis strain ATCC 14580 and (iii) re-sequencing of 25 predicted ICDS of the recently sequenced genome of Mycobacterium smegmatis. This allows us to estimate the specificity and sensitivity (95 and 82%, respectively) of our program and the efficiency of primer determination.

  12. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases.

    Science.gov (United States)

    Caspi, Ron; Billington, Richard; Ferrer, Luciana; Foerster, Hartmut; Fulcher, Carol A; Keseler, Ingrid M; Kothari, Anamika; Krummenacker, Markus; Latendresse, Mario; Mueller, Lukas A; Ong, Quang; Paley, Suzanne; Subhraveti, Pallavi; Weaver, Daniel S; Karp, Peter D

    2016-01-01

    The MetaCyc database (MetaCyc.org) is a freely accessible comprehensive database describing metabolic pathways and enzymes from all domains of life. The majority of MetaCyc pathways are small-molecule metabolic pathways that have been experimentally determined. MetaCyc contains more than 2400 pathways derived from >46,000 publications, and is the largest curated collection of metabolic pathways. BioCyc (BioCyc.org) is a collection of 5700 organism-specific Pathway/Genome Databases (PGDBs), each containing the full genome and predicted metabolic network of one organism, including metabolites, enzymes, reactions, metabolic pathways, predicted operons, transport systems, and pathway-hole fillers. The BioCyc website offers a variety of tools for querying and analyzing PGDBs, including Omics Viewers and tools for comparative analysis. This article provides an update of new developments in MetaCyc and BioCyc during the last two years, including addition of Gibbs free energy values for compounds and reactions; redesign of the primary gene/protein page; addition of a tool for creating diagrams containing multiple linked pathways; several new search capabilities, including searching for genes based on sequence patterns, searching for databases based on an organism's phenotypes, and a cross-organism search; and a metabolite identifier translation service.

  13. Construction of an integrated database to support genomic sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.; Overbeek, R.

    1994-11-01

    The central goal of this project is to develop an integrated database to support comparative analysis of genomes including DNA sequence data, protein sequence data, gene expression data and metabolism data. In developing the logic-based system GenoBase, a broader integration of available data was achieved due to assistance from collaborators. Current goals are to easily include new forms of data as they become available and to easily navigate through the ensemble of objects described within the database. This report comments on progress made in these areas.

  14. Sinbase: an integrated database to study genomics, genetics and comparative genomics in Sesamum indicum.

    Science.gov (United States)

    Wang, Linhai; Yu, Jingyin; Li, Donghua; Zhang, Xiurong

    2015-01-01

    Sesame (Sesamum indicum L.) is an ancient and important oilseed crop grown widely in tropical and subtropical areas. It belongs to the gigantic order Lamiales, which includes many well-known or economically important species, such as olive (Olea europaea), leonurus (Leonurus japonicus) and lavender (Lavandula spica), many of which have important pharmacological properties. Despite their importance, genetic and genomic analyses on these species have been insufficient due to a lack of reference genome information. The now available S. indicum genome will provide an unprecedented opportunity for studying both S. indicum genetic traits and comparative genomics. To deliver S. indicum genomic information to the worldwide research community, we designed Sinbase, a web-based database with comprehensive sesame genomic, genetic and comparative genomic information. Sinbase includes sequences of assembled sesame pseudomolecular chromosomes, protein-coding genes (27,148), transposable elements (372,167) and non-coding RNAs (1,748). In particular, Sinbase provides unique and valuable information on colinear regions with various plant genomes, including Arabidopsis thaliana, Glycine max, Vitis vinifera and Solanum lycopersicum. Sinbase also provides a useful search function and data mining tools, including a keyword search and local BLAST service. Sinbase will be updated regularly with new features, improvements to genome annotation and new genomic sequences, and is freely accessible at http://ocri-genomics.org/Sinbase/.

  15. Functional curation of the Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 complete genome sequences.

    Science.gov (United States)

    Esser, Domink; Kouril, Theresa; Zaparty, Melanie; Sierocinski, Pawel; Chan, Patricia P; Lowe, Todd; Van der Oost, John; Albers, Sonja-Verena; Schomburg, Dietmar; Makarova, Kira S; Siebers, Bettina

    2011-11-01

    The thermoacidophiles Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 are considered key model organisms representing a major phylum of the Crenarchaeota. Because maintaining current, accurate genome information is indispensable for modern biology, we have updated gene function annotation using the arCOGs database, plus other available functional, structural and phylogenetic information. The goal of this initiative is continuous improvement of genome annotation with the support of the Sulfolobus research community.

  16. Addition of a breeding database in the Genome Database for Rosaceae.

    Science.gov (United States)

    Evans, Kate; Jung, Sook; Lee, Taein; Brutcher, Lisa; Cho, Ilhyung; Peace, Cameron; Main, Dorrie

    2013-01-01

    Breeding programs produce large datasets that require efficient management systems to keep track of performance, pedigree, geographical and image-based data. With the development of DNA-based screening technologies, more breeding programs perform genotyping in addition to phenotyping for performance evaluation. The integration of breeding data with other genomic and genetic data is instrumental for the refinement of marker-assisted breeding tools, enhances genetic understanding of important crop traits and maximizes access and utility by crop breeders and allied scientists. Development of new infrastructure in the Genome Database for Rosaceae (GDR) was designed and implemented to enable secure and efficient storage, management and analysis of large datasets from the Washington State University apple breeding program and subsequently expanded to fit datasets from other Rosaceae breeders. The infrastructure was built using the software Chado and Drupal, making use of the Natural Diversity module to accommodate large-scale phenotypic and genotypic data. Breeders can search accessions within the GDR to identify individuals with specific trait combinations. Results from Search by Parentage lists individuals with parents in common and results from Individual Variety pages link to all data available on each chosen individual including pedigree, phenotypic and genotypic information. Genotypic data are searchable by markers and alleles; results are linked to other pages in the GDR to enable the user to access tools such as GBrowse and CMap. This breeding database provides users with the opportunity to search datasets in a fully targeted manner and retrieve and compare performance data from multiple selections, years and sites, and to output the data needed for variety release publications and patent applications. The breeding database facilitates efficient program management. Storing publicly available breeding data in a database together with genomic and genetic data will

  17. A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods.

    Science.gov (United States)

    Bromilow, Sophie; Gethings, Lee A; Buckley, Mike; Bromley, Mike; Shewry, Peter R; Langridge, James I; Clare Mills, E N

    2017-04-03

    The unique physiochemical properties of wheat gluten enable a diverse range of food products to be manufactured. However, gluten triggers coeliac disease, a condition which is treated using a gluten-free diet. Analytical methods are required to confirm if foods are gluten-free, but current immunoassay-based methods can unreliable and proteomic methods offer an alternative. However, proteomic methods require comprehensive and well annotated sequence databases which are lacking for gluten. A manually a curated database (GluPro V1.0) of gluten proteins, comprising 630 discrete unique full length protein sequences has been compiled. It is representative of the different types of gliadin and glutenin components found in gluten. An in silico comparison of their coeliac toxicity was undertaken by analysing the distribution of coeliac toxic motifs. This demonstrated that whilst the α-gliadin proteins contained more toxic motifs, these were distributed across all gluten protein sub-types. Comparison of annotations observed using a discovery proteomics dataset acquired using ion mobility MS/MS showed that more reliable identifications were obtained using the GluPro V1.0 database compared to the complete reviewed Viridiplantae database. This highlights the value of a curated sequence database specifically designed to support the proteomic workflows and the development of methods to detect and quantify gluten.

  18. Exploring Protein Function Using the Saccharomyces Genome Database.

    Science.gov (United States)

    Wong, Edith D

    2017-01-01

    Elucidating the function of individual proteins will help to create a comprehensive picture of cell biology, as well as shed light on human disease mechanisms, possible treatments, and cures. Due to its compact genome, and extensive history of experimentation and annotation, the budding yeast Saccharomyces cerevisiae is an ideal model organism in which to determine protein function. This information can then be leveraged to infer functions of human homologs. Despite the large amount of research and biological data about S. cerevisiae, many proteins' functions remain unknown. Here, we explore ways to use the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org ) to predict the function of proteins and gain insight into their roles in various cellular processes.

  19. The integrated web service and genome database for agricultural plants with biotechnology information

    Science.gov (United States)

    Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015

  20. A curated public database for multilocus sequence typing (MLST) and analysis of Haemophilus parasuis based on an optimized typing scheme.

    Science.gov (United States)

    Mullins, Michael A; Register, Karen B; Brunelle, Brian W; Aragon, Virginia; Galofré-Mila, Nuria; Bayles, Darrell O; Jolley, Keith A

    2013-03-23

    Haemophilus parasuis causes Glässer's disease and pneumonia in swine. Serotyping is often used to classify isolates but requires reagents that are costly to produce and not standardized or widely available. Sequence-based methods, such as multilocus sequence typing (MLST), offer many advantages over serotyping. An MLST scheme was previously proposed for H. parasuis but genome sequence data only recently available reveals the primers recommended, based on sequences of related bacteria, are not optimal. Here we report modifications to enhance the original method, including primer redesign to eliminate mismatches with H. parasuis sequences and to avoid regions of high sequence heterogeneity, standardization of primer T(m)s and identification of universal PCR conditions that result in robust and reproducible amplification of all targets. The modified typing method was applied to a collection of 127 isolates from North and South America, Europe and Asia. An alignment of the concatenated sequences obtained from seven target housekeeping genes identified 278 variable nucleotide sites that define 116 unique sequence types. A comparison of the original and modified methods using a subset of 86 isolates indicates little difference in overall locus diversity, discriminatory power or in the clustering of strains within Neighbor-Joining trees. Data from the optimized MLST were used to populate a newly created and publicly available H. parasuis database. An accompanying database designed to capture provenance and epidemiological information for each isolate was also created. The modified MLST scheme is highly discriminatory but more robust, reproducible and user-friendly than the original. The MLST database provides a novel resource for investigation of H. parasuis outbreaks and for tracking strain evolution.

  1. MaizeGDB: The Maize Genetics and Genomics Database.

    Science.gov (United States)

    Harper, Lisa; Gardiner, Jack; Andorf, Carson; Lawrence, Carolyn J

    2016-01-01

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.

  2. TOPSAN: a dynamic web database for structural genomics.

    Science.gov (United States)

    Ellrott, Kyle; Zmasek, Christian M; Weekes, Dana; Sri Krishna, S; Bakolitsa, Constantina; Godzik, Adam; Wooley, John

    2011-01-01

    The Open Protein Structure Annotation Network (TOPSAN) is a web-based collaboration platform for exploring and annotating structures determined by structural genomics efforts. Characterization of those structures presents a challenge since the majority of the proteins themselves have not yet been characterized. Responding to this challenge, the TOPSAN platform facilitates collaborative annotation and investigation via a user-friendly web-based interface pre-populated with automatically generated information. Semantic web technologies expand and enrich TOPSAN's content through links to larger sets of related databases, and thus, enable data integration from disparate sources and data mining via conventional query languages. TOPSAN can be found at http://www.topsan.org.

  3. The catfish genome database cBARBEL: an informatic platform for genome biology of ictalurid catfish.

    Science.gov (United States)

    Lu, Jianguo; Peatman, Eric; Yang, Qing; Wang, Shaolin; Hu, Zhiliang; Reecy, James; Kucuktas, Huseyin; Liu, Zhanjiang

    2011-01-01

    The catfish genome database, cBARBEL (abbreviated from catfish Breeder And Researcher Bioinformatics Entry Location) is an online open-access database for genome biology of ictalurid catfish (Ictalurus spp.). It serves as a comprehensive, integrative platform for all aspects of catfish genetics, genomics and related data resources. cBARBEL provides BLAST-based, fuzzy and specific search functions, visualization of catfish linkage, physical and integrated maps, a catfish EST contig viewer with SNP information overlay, and GBrowse-based organization of catfish genomic data based on sequence similarity with zebrafish chromosomes. Subsections of the database are tightly related, allowing a user with a sequence or search string of interest to navigate seamlessly from one area to another. As catfish genome sequencing proceeds and ongoing quantitative trait loci (QTL) projects bear fruit, cBARBEL will allow rapid data integration and dissemination within the catfish research community and to interested stakeholders. cBARBEL can be accessed at http://catfishgenome.org.

  4. CeCaFDB: a curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics.

    Science.gov (United States)

    Zhang, Zhengdong; Shen, Tie; Rui, Bin; Zhou, Wenwei; Zhou, Xiangfei; Shang, Chuanyu; Xin, Chenwei; Liu, Xiaoguang; Li, Gang; Jiang, Jiansi; Li, Chao; Li, Ruiyuan; Han, Mengshu; You, Shanping; Yu, Guojun; Yi, Yin; Wen, Han; Liu, Zhijie; Xie, Xiaoyao

    2015-01-01

    The Central Carbon Metabolic Flux Database (CeCaFDB, available at http://www.cecafdb.org) is a manually curated, multipurpose and open-access database for the documentation, visualization and comparative analysis of the quantitative flux results of central carbon metabolism among microbes and animal cells. It encompasses records for more than 500 flux distributions among 36 organisms and includes information regarding the genotype, culture medium, growth conditions and other specific information gathered from hundreds of journal articles. In addition to its comprehensive literature-derived data, the CeCaFDB supports a common text search function among the data and interactive visualization of the curated flux distributions with compartmentation information based on the Cytoscape Web API, which facilitates data interpretation. The CeCaFDB offers four modules to calculate a similarity score or to perform an alignment between the flux distributions. One of the modules was built using an inter programming algorithm for flux distribution alignment that was specifically designed for this study. Based on these modules, the CeCaFDB also supports an extensive flux distribution comparison function among the curated data. The CeCaFDB is strenuously designed to address the broad demands of biochemists, metabolic engineers, systems biologists and members of the -omics community.

  5. A new database (GCD) on genome composition for eukaryote and prokaryote genome sequences and their initial analyses.

    Science.gov (United States)

    Kryukov, Kirill; Sumiyama, Kenta; Ikeo, Kazuho; Gojobori, Takashi; Saitou, Naruya

    2012-01-01

    Eukaryote genomes contain many noncoding regions, and they are quite complex. To understand these complexities, we constructed a database, Genome Composition Database, for the whole genome composition statistics for 101 eukaryote genome data, as well as more than 1,000 prokaryote genomes. Frequencies of all possible one to ten oligonucleotides were counted for each genome, and these observed values were compared with expected values computed under observed oligonucleotide frequencies of length 1-4. Deviations from expected values were much larger for eukaryotes than prokaryotes, except for fungal genomes. Mammalian genomes showed the largest deviation among animals. The results of comparison are available online at http://esper.lab.nig.ac.jp/genome-composition-database/.

  6. Bovine Genome Database: supporting community annotation and analysis of the Bos taurus genome

    Directory of Open Access Journals (Sweden)

    Childs Kevin L

    2010-11-01

    Full Text Available Abstract Background A goal of the Bovine Genome Database (BGD; http://BovineGenome.org has been to support the Bovine Genome Sequencing and Analysis Consortium (BGSAC in the annotation and analysis of the bovine genome. We were faced with several challenges, including the need to maintain consistent quality despite diversity in annotation expertise in the research community, the need to maintain consistent data formats, and the need to minimize the potential duplication of annotation effort. With new sequencing technologies allowing many more eukaryotic genomes to be sequenced, the demand for collaborative annotation is likely to increase. Here we present our approach, challenges and solutions facilitating a large distributed annotation project. Results and Discussion BGD has provided annotation tools that supported 147 members of the BGSAC in contributing 3,871 gene models over a fifteen-week period, and these annotations have been integrated into the bovine Official Gene Set. Our approach has been to provide an annotation system, which includes a BLAST site, multiple genome browsers, an annotation portal, and the Apollo Annotation Editor configured to connect directly to our Chado database. In addition to implementing and integrating components of the annotation system, we have performed computational analyses to create gene evidence tracks and a consensus gene set, which can be viewed on individual gene pages at BGD. Conclusions We have provided annotation tools that alleviate challenges associated with distributed annotation. Our system provides a consistent set of data to all annotators and eliminates the need for annotators to format data. Involving the bovine research community in genome annotation has allowed us to leverage expertise in various areas of bovine biology to provide biological insight into the genome sequence.

  7. Nuclear-like Seq in mt Genome - RMG | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us RMG Nuclear...-like Seq in mt Genome Data detail Data name Nuclear-like Seq in mt Genome Description of data co...t This Database Database Description Download License Update History of This Database Site Policy | Contact Us Nuclear-like Seq in mt Genome - RMG | LSDB Archive ...

  8. Accessing the SEED genome databases via Web services API: tools for programmers

    National Research Council Canada - National Science Library

    Disz, Terry; Akhter, Sajia; Cuevas, Daniel; Olson, Robert; Overbeek, Ross; Vonstein, Veronika; Stevens, Rick; Edwards, Robert A

    2010-01-01

    .... The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes...

  9. Genomics and Public Health Research: Can the State Allow Access to Genomic Databases?

    Directory of Open Access Journals (Sweden)

    M Stanton Jean

    2012-04-01

    Full Text Available Because many diseases are multifactorial disorders,the scientific progress in genomics and genetics should be taken into consideration in public health research. In this context, genomic databases will constitute an important source of information. Consequently, it is important to identify and characterize the State's role and authority on matters related to public health,in order to verify whether it has access to such databases while engaging in public health genomic research. We first consider the evolution of the concept of public health, as well as its core functions, using a comparative approach (e.g. WHO, PAHO, CDC and the Canadian province of Quebec. Following an analysis of relevant Quebec legislation, the precautionary principle is examined as a possible avenue to justify State access to and use of genomic databases for research purposes. Finally, we consider the Influenza pandemic plans developed by WHO, Canada, and Quebec,as examples of key tools framing public health decision-making process.We observed that State powers in public health, are not,in Quebec,well adapted to the expansion of genomics research.We propose that the scope of the concept of research in public health should be clear and include the following characteristics:a commitment to the health and well-being of the population and to their determinants; the inclusion of both applied research and basic research; and, an appropriate model of governance (authorization, follow-up,consent, etc..We also suggest that the strategic approach version of the precautionary principle could guide collective choices in these matters.

  10. Sequence modelling and an extensible data model for genomic database

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peter Wei-Der [California Univ., San Francisco, CA (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1992-01-01

    The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS`s do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the ``Extensible Object Model``, to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

  11. Sequence modelling and an extensible data model for genomic database

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peter Wei-Der (California Univ., San Francisco, CA (United States) Lawrence Berkeley Lab., CA (United States))

    1992-01-01

    The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS's do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the Extensible Object Model'', to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

  12. From field to database : a user-oriented approche to promote cyber-curating of scientific drilling cores

    Science.gov (United States)

    Pignol, C.; Arnaud, F.; Godinho, E.; Galabertier, B.; Caillo, A.; Billy, I.; Augustin, L.; Calzas, M.; Rousseau, D. D.; Crosta, X.

    2016-12-01

    Managing scientific data is probably one the most challenging issues in modern science. In plaeosciences the question is made even more sensitive with the need of preserving and managing high value fragile geological samples: cores. Large international scientific programs, such as IODP or ICDP led intense effort to solve this problem and proposed detailed high standard work- and dataflows thorough core handling and curating. However many paleoscience results derived from small-scale research programs in which data and sample management is too often managed only locally - when it is… In this paper we present a national effort leads in France to develop an integrated system to curate ice and sediment cores. Under the umbrella of the national excellence equipment program CLIMCOR, we launched a reflexion about core curating and the management of associated fieldwork data. Our aim was then to conserve all data from fieldwork in an integrated cyber-environment which will evolve toward laboratory-acquired data storage in a near future. To do so, our demarche was conducted through an intimate relationship with field operators as well laboratory core curators in order to propose user-oriented solutions. The national core curating initiative proposes a single web portal in which all teams can store their fieldwork data. This portal is used as a national hub to attribute IGSNs. For legacy samples, this requires the establishment of a dedicated core list with associated metadata. However, for forthcoming core data, we developed a mobile application to capture technical and scientific data directly on the field. This application is linked with a unique coring-tools library and is adapted to most coring devices (gravity, drilling, percussion etc.) including multiple sections and holes coring operations. Those field data can be uploaded automatically to the national portal, but also referenced through international standards (IGSN and INSPIRE) and displayed in international

  13. Tripal v1.1: a standards-based toolkit for construction of online genetic and genomic databases.

    Science.gov (United States)

    Sanderson, Lacey-Anne; Ficklin, Stephen P; Cheng, Chun-Huai; Jung, Sook; Feltus, Frank A; Bett, Kirstin E; Main, Dorrie

    2013-01-01

    Tripal is an open-source freely available toolkit for construction of online genomic and genetic databases. It aims to facilitate development of community-driven biological websites by integrating the GMOD Chado database schema with Drupal, a popular website creation and content management software. Tripal provides a suite of tools for interaction with a Chado database and display of content therein. The tools are designed to be generic to support the various ways in which data may be stored in Chado. Previous releases of Tripal have supported organisms, genomic libraries, biological stocks, stock collections and genomic features, their alignments and annotations. Also, Tripal and its extension modules provided loaders for commonly used file formats such as FASTA, GFF, OBO, GAF, BLAST XML, KEGG heir files and InterProScan XML. Default generic templates were provided for common views of biological data, which could be customized using an open Application Programming Interface to change the way data are displayed. Here, we report additional tools and functionality that are part of release v1.1 of Tripal. These include (i) a new bulk loader that allows a site curator to import data stored in a custom tab delimited format; (ii) full support of every Chado table for Drupal Views (a powerful tool allowing site developers to construct novel displays and search pages); (iii) new modules including 'Feature Map', 'Genetic', 'Publication', 'Project', 'Contact' and the 'Natural Diversity' modules. Tutorials, mailing lists, download and set-up instructions, extension modules and other documentation can be found at the Tripal website located at http://tripal.info. DATABASE URL: http://tripal.info/.

  14. Database Description - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available d and funding Name: Database Integration Coordination Program (FY2011-FY2013) Integration of plant databases...ency (JST) Reference(s) Article title: Plant Genome DataBase Japan (PGDBj): A Portal Website for the Integ...ration of Plant Genome-Related Databases Author name(s): Erika Asamizu, Hisako Ichi

  15. License - TMBETA-GENOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available TMBETA-GENOME License License to Use This Database Last updated : 2015/03/09 You may use this database in co...ms regarding the use of this database and the requirements you must follow in using this database.... The license for this database is specified in the Creative Commons Attribution-Share Alike... 2.1 Japan . If you use data from this database, please be sure attribute this database as follows: TMBETA-G...ummary of the Creative Commons Attribution-Share Alike 2.1 Japan is found here . With regard to this database

  16. Genome analysis methods - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us PGDBj Registered...ear Year of genome analysis Sequencing method Sequencing method Read counts Read counts Covered genome region Covered...otation method Number of predicted genes Number of predicted genes Genome database Genome database informati... License Update History of This Database Site Policy | Contact Us Genome analysis... methods - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  17. Where in the genome are we? A cautionary tale of database use in genomics research.

    Directory of Open Access Journals (Sweden)

    Laura Kelly eVaughan

    2013-03-01

    Full Text Available With the advent of high throughput data genomic technologies the volume of available data is now staggering. In addition databases that provide resources to annotate, translate and connect biological data have grown exponentially in content and use. The availability of such data emphasizes the importance of bioinformatics and computational biology in genomics research and has led to the development of thousands of tools to integrate and utilize these resources. When utilizing such resources, the principles of reproducible research are often overlooked. In this manuscript we provide selected case studies illustrating issues that may arise while working with genes and genetic polymorphisms. These case studies illustrate potential sources of error which can be introduced if the practices of reproducible research are not employed and non-concurrent databases are used. We also show examples of a lack of transparency when these databases are concerned when using popular bioinformatics tools. These examples highlight that resources are constantly evolving, and in order to provide reproducible results, research should be aware of and connected to the correct release of the data, particularly when implementing computational tools.

  18. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata

    Energy Technology Data Exchange (ETDEWEB)

    Fenner, Marsha W; Liolios, Konstantinos; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Kyrpides, Nikos C.

    2007-12-31

    The Genomes On Line Database (GOLD) is a comprehensive resource of information for genome and metagenome projects world-wide. GOLD provides access to complete and ongoing projects and their associated metadata through pre-computed lists and a search page. The database currently incorporates information for more than 2900 sequencing projects, of which 639 have been completed and the data deposited in the public databases. GOLD is constantly expanding to provide metadata information related to the project and the organism and is compliant with the Minimum Information about a Genome Sequence (MIGS) specifications.

  19. MELOGEN: an EST database for melon functional genomics

    Directory of Open Access Journals (Sweden)

    Puigdomènech Pere

    2007-09-01

    Full Text Available Abstract Background Melon (Cucumis melo L. is one of the most important fleshy fruits for fresh consumption. Despite this, few genomic resources exist for this species. To facilitate the discovery of genes involved in essential traits, such as fruit development, fruit maturation and disease resistance, and to speed up the process of breeding new and better adapted melon varieties, we have produced a large collection of expressed sequence tags (ESTs from eight normalized cDNA libraries from different tissues in different physiological conditions. Results We determined over 30,000 ESTs that were clustered into 16,637 non-redundant sequences or unigenes, comprising 6,023 tentative consensus sequences (contigs and 10,614 unclustered sequences (singletons. Many potential molecular markers were identified in the melon dataset: 1,052 potential simple sequence repeats (SSRs and 356 single nucleotide polymorphisms (SNPs were found. Sixty-nine percent of the melon unigenes showed a significant similarity with proteins in databases. Functional classification of the unigenes was carried out following the Gene Ontology scheme. In total, 9,402 unigenes were mapped to one or more ontology. Remarkably, the distributions of melon and Arabidopsis unigenes followed similar tendencies, suggesting that the melon dataset is representative of the whole melon transcriptome. Bioinformatic analyses primarily focused on potential precursors of melon micro RNAs (miRNAs in the melon dataset, but many other genes potentially controlling disease resistance and fruit quality traits were also identified. Patterns of transcript accumulation were characterised by Real-Time-qPCR for 20 of these genes. Conclusion The collection of ESTs characterised here represents a substantial increase on the genetic information available for melon. A database (MELOGEN which contains all EST sequences, contig images and several tools for analysis and data mining has been created. This set of

  20. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Loots, G; Ovcharenko, I

    2006-08-08

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. We have created a database of evolutionary conserved regions (ECRs) in vertebrate genomes entitled ECRbase that is constructed from a collection of pairwise vertebrate genome alignments produced by the ECR Browser database. ECRbase features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a collection of promoters in all vertebrate genomes presented in the database. The database also contains a collection of annotated transcription factor binding sites (TFBS) in all ECRs and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and two pufferfish genomes. It is freely accessible at http://ECRbase.dcode.org.

  1. PFR²: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution.

    Science.gov (United States)

    Morard, Raphaël; Darling, Kate F; Mahé, Frédéric; Audic, Stéphane; Ujiié, Yurika; Weiner, Agnes K M; André, Aurore; Seears, Heidi A; Wade, Christopher M; Quillévéré, Frédéric; Douady, Christophe J; Escarguel, Gilles; de Garidel-Thoron, Thibault; Siccha, Michael; Kucera, Michal; de Vargas, Colomban

    2015-11-01

    Planktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with conspicuous morphology. They play an important role in the marine carbon cycle, and their exceptional fossil record serves as the basis for biochronostratigraphy and past climate reconstructions. A major worldwide sampling effort over the last two decades has resulted in the establishment of multiple large collections of cryopreserved individual planktonic foraminifera samples. Thousands of 18S rDNA partial sequences have been generated, representing all major known morphological taxa across their worldwide oceanic range. This comprehensive data coverage provides an opportunity to assess patterns of molecular ecology and evolution in a holistic way for an entire group of planktonic protists. We combined all available published and unpublished genetic data to build PFR(2), the Planktonic foraminifera Ribosomal Reference database. The first version of the database includes 3322 reference 18S rDNA sequences belonging to 32 of the 47 known morphospecies of extant planktonic foraminifera, collected from 460 oceanic stations. All sequences have been rigorously taxonomically curated using a six-rank annotation system fully resolved to the morphological species level and linked to a series of metadata. The PFR(2) website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire database or specific sections, as well as the identification of new planktonic foraminiferal sequences. Its novel, fully documented curation process integrates advances in morphological and molecular taxonomy. It allows for an increase in its taxonomic resolution and assures that integrity is maintained by including a complete contingency tracking of annotations and assuring that the annotations remain internally consistent.

  2. The needs for chemistry standards, database tools and data curation at the chemical-biology interface (SLAS meeting)

    Science.gov (United States)

    This presentation will highlight known challenges with the production of high quality chemical databases and outline recent efforts made to address these challenges. Specific examples will be provided illustrating these challenges within the U.S. Environmental Protection Agency ...

  3. Genome annotations - KOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available English ]; } else { document.getElementById(lang).innerHTML= '[ Japanese | English ]'; } } window.onload = ...e entry and the word BAC, PAC, chromosome Genomic, or Genomic sequence is included in the entry. Number of d

  4. pico-PLAZA, a genome database of microbial photosynthetic eukaryotes.

    Science.gov (United States)

    Vandepoele, Klaas; Van Bel, Michiel; Richard, Guilhem; Van Landeghem, Sofie; Verhelst, Bram; Moreau, Hervé; Van de Peer, Yves; Grimsley, Nigel; Piganeau, Gwenael

    2013-08-01

    With the advent of next generation genome sequencing, the number of sequenced algal genomes and transcriptomes is rapidly growing. Although a few genome portals exist to browse individual genome sequences, exploring complete genome information from multiple species for the analysis of user-defined sequences or gene lists remains a major challenge. pico-PLAZA is a web-based resource (http://bioinformatics.psb.ugent.be/pico-plaza/) for algal genomics that combines different data types with intuitive tools to explore genomic diversity, perform integrative evolutionary sequence analysis and study gene functions. Apart from homologous gene families, multiple sequence alignments, phylogenetic trees, Gene Ontology, InterPro and text-mining functional annotations, different interactive viewers are available to study genome organization using gene collinearity and synteny information. Different search functions, documentation pages, export functions and an extensive glossary are available to guide non-expert scientists. To illustrate the versatility of the platform, different case studies are presented demonstrating how pico-PLAZA can be used to functionally characterize large-scale EST/RNA-Seq data sets and to perform environmental genomics. Functional enrichments analysis of 16 Phaeodactylum tricornutum transcriptome libraries offers a molecular view on diatom adaptation to different environments of ecological relevance. Furthermore, we show how complementary genomic data sources can easily be combined to identify marker genes to study the diversity and distribution of algal species, for example in metagenomes, or to quantify intraspecific diversity from environmental strains.

  5. EuMicroSatdb: A database for microsatellites in the sequenced genomes of eukaryotes

    Directory of Open Access Journals (Sweden)

    Grover Atul

    2007-07-01

    Full Text Available Abstract Background Microsatellites have immense utility as molecular markers in different fields like genome characterization and mapping, phylogeny and evolutionary biology. Existing microsatellite databases are of limited utility for experimental and computational biologists with regard to their content and information output. EuMicroSatdb (Eukaryotic MicroSatellite database http://ipu.ac.in/usbt/EuMicroSatdb.htm is a web based relational database for easy and efficient positional mining of microsatellites from sequenced eukaryotic genomes. Description A user friendly web interface has been developed for microsatellite data retrieval using Active Server Pages (ASP. The backend database codes for data extraction and assembly have been written using Perl based scripts and C++. Precise need based microsatellites data retrieval is possible using different input parameters like microsatellite type (simple perfect or compound perfect, repeat unit length (mono- to hexa-nucleotide, repeat number, microsatellite length and chromosomal location in the genome. Furthermore, information about clustering of different microsatellites in the genome can also be retrieved. Finally, to facilitate primer designing for PCR amplification of any desired microsatellite locus, 200 bp upstream and downstream sequences are provided. Conclusion The database allows easy systematic retrieval of comprehensive information about simple and compound microsatellites, microsatellite clusters and their locus coordinates in 31 sequenced eukaryotic genomes. The information content of the database is useful in different areas of research like gene tagging, genome mapping, population genetics, germplasm characterization and in understanding microsatellite dynamics in eukaryotic genomes.

  6. Download - TMBETA-GENOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us TMBETA...Update History of This Database Site Policy | Contact Us Download - TMBETA-GENOME | LSDB Archive ...

  7. Rapid storage and retrieval of genomic intervals from a relational database system using nested containment lists.

    Science.gov (United States)

    Wiley, Laura K; Sivley, R Michael; Bush, William S

    2013-01-01

    Efficient storage and retrieval of genomic annotations based on range intervals is necessary, given the amount of data produced by next-generation sequencing studies. The indexing strategies of relational database systems (such as MySQL) greatly inhibit their use in genomic annotation tasks. This has led to the development of stand-alone applications that are dependent on flat-file libraries. In this work, we introduce MyNCList, an implementation of the NCList data structure within a MySQL database. MyNCList enables the storage, update and rapid retrieval of genomic annotations from the convenience of a relational database system. Range-based annotations of 1 million variants are retrieved in under a minute, making this approach feasible for whole-genome annotation tasks. Database URL: https://github.com/bushlab/mynclist.

  8. Data Curation

    Science.gov (United States)

    Mallon, Melissa, Ed.

    2012-01-01

    In their Top Trends of 2012, the Association of College and Research Libraries (ACRL) named data curation as one of the issues to watch in academic libraries in the near future (ACRL, 2012, p. 312). Data curation can be summarized as "the active and ongoing management of data through its life cycle of interest and usefulness to scholarship,…

  9. Data Curation

    Science.gov (United States)

    Mallon, Melissa, Ed.

    2012-01-01

    In their Top Trends of 2012, the Association of College and Research Libraries (ACRL) named data curation as one of the issues to watch in academic libraries in the near future (ACRL, 2012, p. 312). Data curation can be summarized as "the active and ongoing management of data through its life cycle of interest and usefulness to scholarship,…

  10. Improving microbial genome annotations in an integrated database context.

    Directory of Open Access Journals (Sweden)

    I-Min A Chen

    Full Text Available Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/.

  11. Tripartite ATP-independent periplasmic transporters: application of a relational database for genome-wide analysis of transporter gene frequency and organization.

    Science.gov (United States)

    Mulligan, Christopher; Kelly, David J; Thomas, Gavin H

    2007-01-01

    Tripartite ATP-independent periplasmic (TRAP) transporters are a family of extracytoplasmic solute receptor-dependent secondary transporters that are widespread in the prokaryotic world but which have not been extensively studied. Here, we present results of a genome-wide analysis of TRAP sequences and genome organization from application of TRAPDb, a relational database created for the collection, curation and analysis of TRAP sequences. This has revealed a specific enrichment in the number of TRAP transporters in several bacteria which is consistent with increased use of TRAP transporters in saline environments. Additionally, we report a number of new organizations of TRAP transporter genes and proteins which suggest the recruitment of TRAP transporter components for use in other biological contexts.

  12. Exposome-Explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors

    Science.gov (United States)

    Neveu, Vanessa; Moussy, Alice; Rouaix, Héloïse; Wedekind, Roland; Pon, Allison; Knox, Craig; Wishart, David S.; Scalbert, Augustin

    2017-01-01

    Exposome-Explorer (http://exposome-explorer.iarc.fr) is the first database dedicated to biomarkers of exposure to environmental risk factors. It contains detailed information on the nature of biomarkers, their concentrations in various human biospecimens, the study population where measured and the analytical techniques used for measurement. It also contains correlations with external exposure measurements and data on biological reproducibility over time. The data in Exposome-Explorer was manually collected from peer-reviewed publications and organized to make it easily accessible through a web interface for in-depth analyses. The database and the web interface were developed using the Ruby on Rails framework. A total of 480 publications were analyzed and 10 510 concentration values in blood, urine and other biospecimens for 692 dietary and pollutant biomarkers were collected. Over 8000 correlation values between dietary biomarker levels and food intake as well as 536 values of biological reproducibility over time were also compiled. Exposome-Explorer makes it easy to compare the performance between biomarkers and their fields of application. It should be particularly useful for epidemiologists and clinicians wishing to select panels of biomarkers that can be used in biomonitoring studies or in exposome-wide association studies, thereby allowing them to better understand the etiology of chronic diseases. PMID:27924041

  13. Use of Genomic Databases for Inquiry-Based Learning about Influenza

    Science.gov (United States)

    Ledley, Fred; Ndung'u, Eric

    2011-01-01

    The genome projects of the past decades have created extensive databases of biological information with applications in both research and education. We describe an inquiry-based exercise that uses one such database, the National Center for Biotechnology Information Influenza Virus Resource, to advance learning about influenza. This database…

  14. Use of Genomic Databases for Inquiry-Based Learning about Influenza

    Science.gov (United States)

    Ledley, Fred; Ndung'u, Eric

    2011-01-01

    The genome projects of the past decades have created extensive databases of biological information with applications in both research and education. We describe an inquiry-based exercise that uses one such database, the National Center for Biotechnology Information Influenza Virus Resource, to advance learning about influenza. This database…

  15. Database of Periodic DNA Regions in Major Genomes

    Directory of Open Access Journals (Sweden)

    Felix E. Frenkel

    2017-01-01

    Full Text Available Summary. We analyzed several prokaryotic and eukaryotic genomes looking for the periodicity sequences availability and employing a new mathematical method. The method envisaged using the random position weight matrices and dynamic programming. Insertions and deletions were allowed inside periodicities, thus adding a novelty to the results we obtained. A periodicity length, one of the key periodicity features, varied from 2 to 50 nt. Totally over 60,000 periodicity sequences were found in 15 genomes including some chromosomes of the H. sapiens (partial, C. elegans, D. melanogaster, and A. thaliana genomes.

  16. Database of Periodic DNA Regions in Major Genomes

    Science.gov (United States)

    2017-01-01

    Summary. We analyzed several prokaryotic and eukaryotic genomes looking for the periodicity sequences availability and employing a new mathematical method. The method envisaged using the random position weight matrices and dynamic programming. Insertions and deletions were allowed inside periodicities, thus adding a novelty to the results we obtained. A periodicity length, one of the key periodicity features, varied from 2 to 50 nt. Totally over 60,000 periodicity sequences were found in 15 genomes including some chromosomes of the H. sapiens (partial), C. elegans, D. melanogaster, and A. thaliana genomes. PMID:28182099

  17. The Ruby UCSC API: accessing the UCSC genome database using Ruby

    Directory of Open Access Journals (Sweden)

    Mishima Hiroyuki

    2012-09-01

    Full Text Available Abstract Background The University of California, Santa Cruz (UCSC genome database is among the most used sources of genomic annotation in human and other organisms. The database offers an excellent web-based graphical user interface (the UCSC genome browser and several means for programmatic queries. A simple application programming interface (API in a scripting language aimed at the biologist was however not yet available. Here, we present the Ruby UCSC API, a library to access the UCSC genome database using Ruby. Results The API is designed as a BioRuby plug-in and built on the ActiveRecord 3 framework for the object-relational mapping, making writing SQL statements unnecessary. The current version of the API supports databases of all organisms in the UCSC genome database including human, mammals, vertebrates, deuterostomes, insects, nematodes, and yeast. The API uses the bin index—if available—when querying for genomic intervals. The API also supports genomic sequence queries using locally downloaded *.2bit files that are not stored in the official MySQL database. The API is implemented in pure Ruby and is therefore available in different environments and with different Ruby interpreters (including JRuby. Conclusions Assisted by the straightforward object-oriented design of Ruby and ActiveRecord, the Ruby UCSC API will facilitate biologists to query the UCSC genome database programmatically. The API is available through the RubyGem system. Source code and documentation are available at https://github.com/misshie/bioruby-ucsc-api/ under the Ruby license. Feedback and help is provided via the website at http://rubyucscapi.userecho.com/.

  18. An integrated computational pipeline and database to support whole-genome sequence annotation.

    Science.gov (United States)

    Mungall, C J; Misra, S; Berman, B P; Carlson, J; Frise, E; Harris, N; Marshall, B; Shu, S; Kaminker, J S; Prochnik, S E; Smith, C D; Smith, E; Tupy, J L; Wiel, C; Rubin, G M; Lewis, S E

    2002-01-01

    We describe here our experience in annotating the Drosophila melanogaster genome sequence, in the course of which we developed several new open-source software tools and a database schema to support large-scale genome annotation. We have developed these into an integrated and reusable software system for whole-genome annotation. The key contributions to overall annotation quality are the marshalling of high-quality sequences for alignments and the design of a system with an adaptable and expandable flexible architecture.

  19. Sputnik: a database platform for comparative plant genomics.

    Science.gov (United States)

    Rudd, Stephen; Mewes, Hans-Werner; Mayer, Klaus F X

    2003-01-01

    Two million plant ESTs, from 20 different plant species, and totalling more than one 1000 Mbp of DNA sequence, represents a formidable transcriptomic resource. Sputnik uses the potential of this sequence resource to fill some of the information gap in the un-sequenced plant genomes and to serve as the foundation for in silicio comparative plant genomics. The complexity of the individual EST collections has been reduced using optimised EST clustering techniques. Annotation of cluster sequences is performed by exploiting and transferring information from the comprehensive knowledgebase already produced for the completed model plant genome (Arabidopsis thaliana) and by performing additional state of-the-art sequence analyses relevant to today's plant biologist. Functional predictions, comparative analyses and associative annotations for 500 000 plant EST derived peptides make Sputnik (http://mips.gsf.de/proj/sputnik/) a valid platform for contemporary plant genomics.

  20. How much does curation cost?

    Science.gov (United States)

    Karp, Peter D

    2016-01-01

    NIH administrators have recently expressed concerns about the cost of curation for biological databases. However, they did not articulate the exact costs of curation. Here we calculate the cost of biocuration of articles for the EcoCyc database as $219 per article over a 5-year period. That cost is 6-15% of the cost of open-access publication fees for publishing biomedical articles, and we estimate that cost is 0.088% of the cost of the overall research project that generated the experimental results. Thus, curation costs are small in an absolute sense, and represent a miniscule fraction of the cost of the research.

  1. MIPS PlantsDB: a database framework for comparative plant genome research.

    Science.gov (United States)

    Nussbaumer, Thomas; Martis, Mihaela M; Roessner, Stephan K; Pfeifer, Matthias; Bader, Kai C; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel

    2013-01-01

    The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB-plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834-D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB.

  2. Databases and web tools for cancer genomics study.

    Science.gov (United States)

    Yang, Yadong; Dong, Xunong; Xie, Bingbing; Ding, Nan; Chen, Juan; Li, Yongjun; Zhang, Qian; Qu, Hongzhu; Fang, Xiangdong

    2015-02-01

    Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data comprehensiveness, and user experience. The resources reviewed include data repository and analysis tools; and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community.

  3. Databases and Web Tools for Cancer Genomics Study

    Institute of Scientific and Technical Information of China (English)

    Yadong Yang; Xunong Dong; Bingbing Xie; Nan Ding; Juan Chen; Yongjun Li; Qian Zhang; Hongzhu Qu; Xiangdong Fang

    2015-01-01

    Publicly-accessible resources have promoted the advance of scientific discovery. The era of genomics and big data has brought the need for collaboration and data sharing in order to make effective use of this new knowledge. Here, we describe the web resources for cancer genomics research and rate them on the basis of the diversity of cancer types, sample size, omics data com-prehensiveness, and user experience. The resources reviewed include data repository and analysis tools;and we hope such introduction will promote the awareness and facilitate the usage of these resources in the cancer research community.

  4. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata

    Energy Technology Data Exchange (ETDEWEB)

    Liolios, Konstantinos; Chen, Amy; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Hugenholtz, Phil; Markowitz, Victor; Kyrpides, Nikos C.

    2009-09-01

    The Genomes On Line Database (GOLD) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2009, GOLD contains information for more than 5800 sequencing projects, of which 1100 have been completed and their sequence data deposited in a public repository. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about a (Meta)Genome Sequence (MIGS/MIMS) specification.

  5. Biological Databases for Human Research

    Institute of Scientific and Technical Information of China (English)

    Dong Zou; Lina Ma; Jun Yu; Zhang Zhang

    2015-01-01

    The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases. With the explosive growth of biological data, there is an increasing number of biological databases that have been developed in aid of human-related research. Here we present a collection of human-related biological databases and provide a mini-review by classifying them into different categories according to their data types. As human-related databases continue to grow not only in count but also in volume, challenges are ahead in big data storage, processing, exchange and curation.

  6. Biological Databases for Human Research

    Science.gov (United States)

    Zou, Dong; Ma, Lina; Yu, Jun; Zhang, Zhang

    2015-01-01

    The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases. With the explosive growth of biological data, there is an increasing number of biological databases that have been developed in aid of human-related research. Here we present a collection of human-related biological databases and provide a mini-review by classifying them into different categories according to their data types. As human-related databases continue to grow not only in count but also in volume, challenges are ahead in big data storage, processing, exchange and curation. PMID:25712261

  7. Evaluating the Cassandra NoSQL Database Approach for Genomic Data Persistency.

    Science.gov (United States)

    Aniceto, Rodrigo; Xavier, Rene; Guimarães, Valeria; Hondo, Fernanda; Holanda, Maristela; Walter, Maria Emilia; Lifschitz, Sérgio

    2015-01-01

    Rapid advances in high-throughput sequencing techniques have created interesting computational challenges in bioinformatics. One of them refers to management of massive amounts of data generated by automatic sequencers. We need to deal with the persistency of genomic data, particularly storing and analyzing these large-scale processed data. To find an alternative to the frequently considered relational database model becomes a compelling task. Other data models may be more effective when dealing with a very large amount of nonconventional data, especially for writing and retrieving operations. In this paper, we discuss the Cassandra NoSQL database approach for storing genomic data. We perform an analysis of persistency and I/O operations with real data, using the Cassandra database system. We also compare the results obtained with a classical relational database system and another NoSQL database approach, MongoDB.

  8. Evaluating the Cassandra NoSQL Database Approach for Genomic Data Persistency

    Directory of Open Access Journals (Sweden)

    Rodrigo Aniceto

    2015-01-01

    Full Text Available Rapid advances in high-throughput sequencing techniques have created interesting computational challenges in bioinformatics. One of them refers to management of massive amounts of data generated by automatic sequencers. We need to deal with the persistency of genomic data, particularly storing and analyzing these large-scale processed data. To find an alternative to the frequently considered relational database model becomes a compelling task. Other data models may be more effective when dealing with a very large amount of nonconventional data, especially for writing and retrieving operations. In this paper, we discuss the Cassandra NoSQL database approach for storing genomic data. We perform an analysis of persistency and I/O operations with real data, using the Cassandra database system. We also compare the results obtained with a classical relational database system and another NoSQL database approach, MongoDB.

  9. Preventive and curative effects of Apple latent spherical virus vectors harboring part of the target virus genome against potyvirus and cucumovirus infections.

    Science.gov (United States)

    Tamura, Akihiro; Kato, Takahiro; Taki, Ayano; Sone, Mikako; Satoh, Nozomi; Yamagishi, Noriko; Takahashi, Tsubasa; Ryo, Bo-Song; Natsuaki, Tomohide; Yoshikawa, Nobuyuki

    2013-11-01

    Apple latent spherical virus (ALSV)-based vectors experimentally infect a broad range of plant species without causing symptoms and can effectively induce stable virus-induced gene silencing in plants. Here, we show that pre-infection of ALSV vectors harboring part of a target viral genome (we called ALSV vector vaccines here) inhibits the multiplication and spread of the corresponding challenge viruses [Bean yellow mosaic virus, Zucchini yellow mosaic virus (ZYMV), and Cucumber mosaic virus (CMV)] by a homology-dependent resistance. Further, the plants pre-infected with an ALSV vector having genome sequences of both ZYMV and CMV were protected against double inoculation of ZYMV and CMV. More interestingly, a curative effect of an ALSV vector vaccine could also be expected in ZYMV-infected cucumber plants, because the symptoms subsided on subsequent inoculation with an ALSV vector vaccine. This may be due to the invasion of ALSV, but not ZYMV, in the shoot apical meristem of cucumber.

  10. Linking Virus Genomes with Host Taxonomy.

    Science.gov (United States)

    Mihara, Tomoko; Nishimura, Yosuke; Shimizu, Yugo; Nishiyama, Hiroki; Yoshikawa, Genki; Uehara, Hideya; Hingamp, Pascal; Goto, Susumu; Ogata, Hiroyuki

    2016-03-01

    Environmental genomics can describe all forms of organisms--cellular and viral--present in a community. The analysis of such eco-systems biology data relies heavily on reference databases, e.g., taxonomy or gene function databases. Reference databases of symbiosis sensu lato, although essential for the analysis of organism interaction networks, are lacking. By mining existing databases and literature, we here provide a comprehensive and manually curated database of taxonomic links between viruses and their cellular hosts.

  11. Databases, models, and algorithms for functional genomics: a bioinformatics perspective.

    Science.gov (United States)

    Singh, Gautam B; Singh, Harkirat

    2005-02-01

    A variety of patterns have been observed on the DNA and protein sequences that serve as control points for gene expression and cellular functions. Owing to the vital role of such patterns discovered on biological sequences, they are generally cataloged and maintained within internationally shared databases. Furthermore,the variability in a family of observed patterns is often represented using computational models in order to facilitate their search within an uncharacterized biological sequence. As the biological data is comprised of a mosaic of sequence-levels motifs, it is significant to unravel the synergies of macromolecular coordination utilized in cell-specific differential synthesis of proteins. This article provides an overview of the various pattern representation methodologies and the surveys the pattern databases available for use to the molecular biologists. Our aim is to describe the principles behind the computational modeling and analysis techniques utilized in bioinformatics research, with the objective of providing insight necessary to better understand and effectively utilize the available databases and analysis tools. We also provide a detailed review of DNA sequence level patterns responsible for structural conformations within the Scaffold or Matrix Attachment Regions (S/MARs).

  12. BambooGDB: a bamboo genome database with functional annotation and an analysis platform.

    Science.gov (United States)

    Zhao, Hansheng; Peng, Zhenhua; Fei, Benhua; Li, Lubin; Hu, Tao; Gao, Zhimin; Jiang, Zehui

    2014-01-01

    Bamboo, as one of the most important non-timber forest products and fastest-growing plants in the world, represents the only major lineage of grasses that is native to forests. Recent success on the first high-quality draft genome sequence of moso bamboo (Phyllostachys edulis) provides new insights on bamboo genetics and evolution. To further extend our understanding on bamboo genome and facilitate future studies on the basis of previous achievements, here we have developed BambooGDB, a bamboo genome database with functional annotation and analysis platform. The de novo sequencing data, together with the full-length complementary DNA and RNA-seq data of moso bamboo composed the main contents of this database. Based on these sequence data, a comprehensively functional annotation for bamboo genome was made. Besides, an analytical platform composed of comparative genomic analysis, protein-protein interactions network, pathway analysis and visualization of genomic data was also constructed. As discovery tools to understand and identify biological mechanisms of bamboo, the platform can be used as a systematic framework for helping and designing experiments for further validation. Moreover, diverse and powerful search tools and a convenient browser were incorporated to facilitate the navigation of these data. As far as we know, this is the first genome database for bamboo. Through integrating high-throughput sequencing data, a full functional annotation and several analysis modules, BambooGDB aims to provide worldwide researchers with a central genomic resource and an extensible analysis platform for bamboo genome. BambooGDB is freely available at http://www.bamboogdb.org/. Database URL: http://www.bamboogdb.org.

  13. Accessing the SEED Genome Databases via Web Services API: Tools for Programmers

    Directory of Open Access Journals (Sweden)

    Vonstein Veronika

    2010-06-01

    Full Text Available Abstract Background The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups. Results The currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java. Conclusions We present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online.

  14. Bioinformatics tools and databases for whole genome sequence analysis of Mycobacterium tuberculosis.

    Science.gov (United States)

    Faksri, Kiatichai; Tan, Jun Hao; Chaiprasert, Angkana; Teo, Yik-Ying; Ong, Rick Twee-Hee

    2016-11-01

    Tuberculosis (TB) is an infectious disease of global public health importance caused by Mycobacterium tuberculosis complex (MTC) in which M. tuberculosis (Mtb) is the major causative agent. Recent advancements in genomic technologies such as next generation sequencing have enabled high throughput cost-effective generation of whole genome sequence information from Mtb clinical isolates, providing new insights into the evolution, genomic diversity and transmission of the Mtb bacteria, including molecular mechanisms of antibiotic resistance. The large volume of sequencing data generated however necessitated effective and efficient management, storage, analysis and visualization of the data and results through development of novel and customized bioinformatics software tools and databases. In this review, we aim to provide a comprehensive survey of the current freely available bioinformatics software tools and publicly accessible databases for genomic analysis of Mtb for identifying disease transmission in molecular epidemiology and in rapid determination of the antibiotic profiles of clinical isolates for prompt and optimal patient treatment.

  15. Semi-automated curation of protein subcellular localization: a text mining-based approach to Gene Ontology (GO Cellular Component curation

    Directory of Open Access Journals (Sweden)

    Chan Juancarlos

    2009-07-01

    differences in individual curatorial speed. Conclusion Textpresso is an effective tool for improving the efficiency of manual, experimentally based curation. Incorporating a Textpresso-based Cellular Component curation pipeline at WormBase has allowed us to transition from strictly manual curation of this data type to a more efficient pipeline of computer-assisted validation. Continued development of curation task-specific Textpresso categories will provide an invaluable resource for genomics databases that rely heavily on manual curation.

  16. VibrioBase: A Model for Next-Generation Genome and Annotation Database Development

    Directory of Open Access Journals (Sweden)

    Siew Woh Choo

    2014-01-01

    Full Text Available To facilitate the ongoing research of Vibrio spp., a dedicated platform for the Vibrio research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. We present VibrioBase, a useful resource platform, providing all basic features of a sequence database with the addition of unique analysis tools which could be valuable for the Vibrio research community. VibrioBase currently houses a total of 252 Vibrio genomes developed in a user-friendly manner and useful to enable the analysis of these genomic data, particularly in the field of comparative genomics. Besides general data browsing features, VibrioBase offers analysis tools such as BLAST interfaces and JBrowse genome browser. Other important features of this platform include our newly developed in-house tools, the pairwise genome comparison (PGC tool, and pathogenomics profiling tool (PathoProT. The PGC tool is useful in the identification and comparative analysis of two genomes, whereas PathoProT is designed for comparative pathogenomics analysis of Vibrio strains. Both of these tools will enable researchers with little experience in bioinformatics to get meaningful information from Vibrio genomes with ease. We have tested the validity and suitability of these tools and features for use in the next-generation database development.

  17. Choosing a genome browser for a Model Organism Database: surveying the maize community.

    Science.gov (United States)

    Sen, Taner Z; Harper, Lisa C; Schaeffer, Mary L; Andorf, Carson M; Seigfried, Trent E; Campbell, Darwin A; Lawrence, Carolyn J

    2010-01-01

    As the B73 maize genome sequencing project neared completion, MaizeGDB began to integrate a graphical genome browser with its existing web interface and database. To ensure that maize researchers would optimally benefit from the potential addition of a genome browser to the existing MaizeGDB resource, personnel at MaizeGDB surveyed researchers' needs. Collected data indicate that existing genome browsers for maize were inadequate and suggest implementation of a browser with quick interface and intuitive tools would meet most researchers' needs. Here, we document the survey's outcomes, review functionalities of available genome browser software platforms and offer our rationale for choosing the GBrowse software suite for MaizeGDB. Because the genome as represented within the MaizeGDB Genome Browser is tied to detailed phenotypic data, molecular marker information, available stocks, etc., the MaizeGDB Genome Browser represents a novel mechanism by which the researchers can leverage maize sequence information toward crop improvement directly. Database URL: http://gbrowse.maizegdb.org/

  18. MaizeGDB, the community database for maize genetics and genomics

    OpenAIRE

    2004-01-01

    The Maize Genetics and Genomics Database (MaizeGDB) is a central repository for maize sequence, stock, phenotype, genotypic and karyotypic variation, and chromosomal mapping data. In addition, MaizeGDB provides contact information for over 2400 maize cooperative researchers, facilitating interactions between members of the rapidly expanding maize community. MaizeGDB represents the synthesis of all data available previously from ZmDB and from MaizeDB—databases that have been superseded by Maiz...

  19. RICD: A rice indica cDNA database resource for rice functional genomics

    Directory of Open Access Journals (Sweden)

    Zhang Qifa

    2008-11-01

    Full Text Available Abstract Background The Oryza sativa L. indica subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two indica varieties Guangluai 4 and Minghui 63. A database of the rice indica cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the indica cDNA clones. Results Rice Indica cDNA Database (RICD is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA. Conclusion The online rice indica cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of indica subspecies and for comparative genomics. The RICD database is available through our website http://www.ncgr.ac.cn/ricd.

  20. From manual curation to visualization of gene families and networks across Solanaceae plant species

    Science.gov (United States)

    Pujar, Anuradha; Menda, Naama; Bombarely, Aureliano; Edwards, Jeremy D.; Strickler, Susan R.; Mueller, Lukas A.

    2013-01-01

    High-quality manual annotation methods and practices need to be scaled to the increased rate of genomic data production. Curation based on gene families and gene networks is one approach that can significantly increase both curation efficiency and quality. The Sol Genomics Network (SGN; http://solgenomics.net) is a comparative genomics platform, with genetic, genomic and phenotypic information of the Solanaceae family and its closely related species that incorporates a community-based gene and phenotype curation system. In this article, we describe a manual curation system for gene families aimed at facilitating curation, querying and visualization of gene interaction patterns underlying complex biological processes, including an interface for efficiently capturing information from experiments with large data sets reported in the literature. Well-annotated multigene families are useful for further exploration of genome organization and gene evolution across species. As an example, we illustrate the system with the multigene transcription factor families, WRKY and Small Auxin Up-regulated RNA (SAUR), which both play important roles in responding to abiotic stresses in plants. Database URL: http://solgenomics.net/ PMID:23681907

  1. Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments

    LENUS (Irish Health Repository)

    OhEigeartaigh, Sean S

    2011-07-26

    Abstract Background In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically. Results We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in Saccharomyces cerevisiae. We found additional genes for the mating pheromone a-factor in six species including Kluyveromyces lactis. Conclusions SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external

  2. Integrating multiple genome annotation databases improves the interpretation of microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Kennedy Breandan

    2010-01-01

    Full Text Available Abstract Background The Affymetrix GeneChip is a widely used gene expression profiling platform. Since the chips were originally designed, the genome databases and gene definitions have been considerably updated. Thus, more accurate interpretation of microarray data requires parallel updating of the specificity of GeneChip probes. We propose a new probe remapping protocol, using the zebrafish GeneChips as an example, by removing nonspecific probes, and grouping the probes into transcript level probe sets using an integrated zebrafish genome annotation. This genome annotation is based on combining transcript information from multiple databases. This new remapping protocol, especially the new genome annotation, is shown here to be an important factor in improving the interpretation of gene expression microarray data. Results Transcript data from the RefSeq, GenBank and Ensembl databases were downloaded from the UCSC genome browser, and integrated to generate a combined zebrafish genome annotation. Affymetrix probes were filtered and remapped according to the new annotation. The influence of transcript collection and gene definition methods was tested using two microarray data sets. Compared to remapping using a single database, this new remapping protocol results in up to 20% more probes being retained in the remapping, leading to approximately 1,000 more genes being detected. The differentially expressed gene lists are consequently increased by up to 30%. We are also able to detect up to three times more alternative splicing events. A small number of the bioinformatics predictions were confirmed using real-time PCR validation. Conclusions By combining gene definitions from multiple databases, it is possible to greatly increase the numbers of genes and splice variants that can be detected in microarray gene expression experiments.

  3. Semantically enabling a genome-wide association study database

    Directory of Open Access Journals (Sweden)

    Beck Tim

    2012-12-01

    Full Text Available Abstract Background The amount of data generated from genome-wide association studies (GWAS has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits, and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. Results A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH terminology suitable for describing all traits (diseases and medical signs and symptoms at various levels of granularity and the Human Phenotype Ontology (HPO most suitable for describing phenotypic abnormalities (medical signs and symptoms at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. Conclusions We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic

  4. ChickVD: a sequence variation database for the chicken genome

    DEFF Research Database (Denmark)

    Wang, Jing; He, Ximiao; Ruan, Jue

    2005-01-01

    Working in parallel with the efforts to sequence the chicken (Gallus gallus) genome, the Beijing Genomics Institute led an international team of scientists from China, USA, UK, Sweden, The Netherlands and Germany to map extensive DNA sequence variation throughout the chicken genome by sampling DNA...... from domestic breeds. Using the Red Jungle Fowl genome sequence as a reference, we identified 3.1 million non-redundant DNA sequence variants. To facilitate the application of our data to avian genetics and to provide a foundation for functional and evolutionary studies, we created the 'Chicken...... Variation Database' (ChickVD). A graphical MapView shows variants mapped onto the chicken genome in the context of gene annotations and other features, including genetic markers, trait loci, cDNAs, chicken orthologs of human disease genes and raw sequence traces. ChickVD also stores information...

  5. A Comprehensively Curated Genome-Scale Two-Cell Model for the Heterocystous Cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Malatinszky, David; Steuer, Ralf; Jones, Patrik R

    2017-01-01

    Anabaena sp. PCC 7120 is a nitrogen-fixing filamentous cyanobacterium. Under nitrogen-limiting conditions, a fraction of the vegetative cells in each filament terminally differentiate to nongrowing heterocysts. Heterocysts are metabolically and structurally specialized to enable O2-sensitive nitrogen fixation. The functionality of the filament, as an association of vegetative cells and heterocysts, is postulated to depend on metabolic exchange of electrons, carbon, and fixed nitrogen. In this study, we compile and evaluate a comprehensive curated stoichiometric model of this two-cell system, with the objective function based on the growth of the filament under diazotrophic conditions. The predicted growth rate under nitrogen-replete and -deplete conditions, as well as the effect of external carbon and nitrogen sources, was thereafter verified. Furthermore, the model was utilized to comprehensively evaluate the optimality of putative metabolic exchange reactions between heterocysts and vegetative cells. The model suggested that optimal growth requires at least four exchange metabolites. Several combinations of exchange metabolites resulted in predicted growth rates that are higher than growth rates achieved by only considering exchange of metabolites previously suggested in the literature. The curated model of the metabolic network of Anabaena sp. PCC 7120 enhances our ability to understand the metabolic organization of multicellular cyanobacteria and provides a platform for further study and engineering of their metabolism.

  6. LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes.

    Science.gov (United States)

    Li, Jun; Dai, Xinbin; Liu, Tingsong; Zhao, Patrick Xuechun

    2012-01-01

    Legumes play a vital role in maintaining the nitrogen cycle of the biosphere. They conduct symbiotic nitrogen fixation through endosymbiotic relationships with bacteria in root nodules. However, this and other characteristics of legumes, including mycorrhization, compound leaf development and profuse secondary metabolism, are absent in the typical model plant Arabidopsis thaliana. We present LegumeIP (http://plantgrn.noble.org/LegumeIP/), an integrative database for comparative genomics and transcriptomics of model legumes, for studying gene function and genome evolution in legumes. LegumeIP compiles gene and gene family information, syntenic and phylogenetic context and tissue-specific transcriptomic profiles. The database holds the genomic sequences of three model legumes, Medicago truncatula, Glycine max and Lotus japonicus plus two reference plant species, A. thaliana and Populus trichocarpa, with annotations based on UniProt, InterProScan, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases. LegumeIP also contains large-scale microarray and RNA-Seq-based gene expression data. Our new database is capable of systematic synteny analysis across M. truncatula, G. max, L. japonicas and A. thaliana, as well as construction and phylogenetic analysis of gene families across the five hosted species. Finally, LegumeIP provides comprehensive search and visualization tools that enable flexible queries based on gene annotation, gene family, synteny and relative gene expression.

  7. VitisExpDB: A database resource for grape functional genomics

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2008-02-01

    Full Text Available Abstract Background The family Vitaceae consists of many different grape species that grow in a range of climatic conditions. In the past few years, several studies have generated functional genomic information on different Vitis species and cultivars, including the European grape vine, Vitis vinifera. Our goal is to develop a comprehensive web data source for Vitaceae. Description VitisExpDB is an online MySQL-PHP driven relational database that houses annotated EST and gene expression data for V. vinifera and non-vinifera grape species and varieties. Currently, the database stores ~320,000 EST sequences derived from 8 species/hybrids, their annotation (BLAST top match details and Gene Ontology based structured vocabulary. Putative homologs for each EST in other species and varieties along with information on their percent nucleotide identities, phylogenetic relationship and common primers can be retrieved. The database also includes information on probe sequence and annotation features of the high density 60-mer gene expression chip consisting of ~20,000 non-redundant set of ESTs. Finally, the database includes 14 processed global microarray expression profile sets. Data from 12 of these expression profile sets have been mapped onto metabolic pathways. A user-friendly web interface with multiple search indices and extensively hyperlinked result features that permit efficient data retrieval has been developed. Several online bioinformatics tools that interact with the database along with other sequence analysis tools have been added. In addition, users can submit their ESTs to the database. Conclusion The developed database provides genomic resource to grape community for functional analysis of genes in the collection and for the grape genome annotation and gene function identification. The VitisExpDB database is available through our website http://cropdisease.ars.usda.gov/vitis_at/main-page.htm.

  8. RadishBase: a database for genomics and genetics of radish.

    Science.gov (United States)

    Shen, Di; Sun, Honghe; Huang, Mingyun; Zheng, Yi; Li, Xixiang; Fei, Zhangjun

    2013-02-01

    Radish is an economically important vegetable crop. During the past several years, large-scale genomics and genetics resources have been accumulated for this species. To store, query, analyze and integrate these radish resources efficiently, we have developed RadishBase (http://bioinfo.bti.cornell.edu/radish), a genomics and genetics database of radish. Currently the database contains radish mitochondrial genome sequences, expressed sequence tag (EST) and unigene sequences and annotations, biochemical pathways, EST-derived single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers, and genetic maps. RadishBase is designed to enable users easily to retrieve and visualize biologically important information through a set of efficient query interfaces and analysis tools, including the BLAST search and unigene annotation query interfaces, and tools to classify unigenes functionally, to identify enriched gene ontology (GO) terms and to visualize genetic maps. A database containing radish pathways predicted from unigene sequences is also included in RadishBase. The tools and interfaces in RadishBase allow efficient mining of recently released and continually expanding large-scale radish genomics and genetics data sets, including the radish genome sequences and RNA-seq data sets.

  9. PSSRdb: a relational database of polymorphic simple sequence repeats extracted from prokaryotic genomes.

    Science.gov (United States)

    Kumar, Pankaj; Chaitanya, Pasumarthy S; Nagarajaram, Hampapathalu A

    2011-01-01

    PSSRdb (Polymorphic Simple Sequence Repeats database) (http://www.cdfd.org.in/PSSRdb/) is a relational database of polymorphic simple sequence repeats (PSSRs) extracted from 85 different species of prokaryotes. Simple sequence repeats (SSRs) are the tandem repeats of nucleotide motifs of the sizes 1-6 bp and are highly polymorphic. SSR mutations in and around coding regions affect transcription and translation of genes. Such changes underpin phase variations and antigenic variations seen in some bacteria. Although SSR-mediated phase variation and antigenic variations have been well-studied in some bacteria there seems a lot of other species of prokaryotes yet to be investigated for SSR mediated adaptive and other evolutionary advantages. As a part of our on-going studies on SSR polymorphism in prokaryotes we compared the genome sequences of various strains and isolates available for 85 different species of prokaryotes and extracted a number of SSRs showing length variations and created a relational database called PSSRdb. This database gives useful information such as location of PSSRs in genomes, length variation across genomes, the regions harboring PSSRs, etc. The information provided in this database is very useful for further research and analysis of SSRs in prokaryotes.

  10. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics.

    Directory of Open Access Journals (Sweden)

    Mohit Verma

    Full Text Available Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB, which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database features many tools for similarity search, functional annotation (putative function, PFAM domain and gene ontology search and comparative gene expression analysis. The current release of CTDB (v2.0 hosts transcriptome datasets with high quality functional annotation from cultivated (desi and kabuli types and wild chickpea. A catalog of transcription factor families and their expression profiles in chickpea are available in the database. The gene expression data have been integrated to study the expression profiles of chickpea transcripts in major tissues/organs and various stages of flower development. The utilities, such as similarity search, ortholog identification and comparative gene expression have also been implemented in the database to facilitate comparative genomic studies among different legumes and Arabidopsis. Furthermore, the CTDB represents a resource for the discovery of functional molecular markers (microsatellites and single nucleotide polymorphisms between different chickpea types. We anticipate that integrated information content of this database will accelerate the functional and applied genomic research for improvement of chickpea. The CTDB web service is freely available at http://nipgr.res.in/ctdb.html.

  11. Integrated Database And Knowledge Base For Genomic Prospective Cohort Study In Tohoku Medical Megabank Toward Personalized Prevention And Medicine.

    Science.gov (United States)

    Ogishima, Soichi; Takai, Takako; Shimokawa, Kazuro; Nagaie, Satoshi; Tanaka, Hiroshi; Nakaya, Jun

    2015-01-01

    The Tohoku Medical Megabank project is a national project to revitalization of the disaster area in the Tohoku region by the Great East Japan Earthquake, and have conducted large-scale prospective genome-cohort study. Along with prospective genome-cohort study, we have developed integrated database and knowledge base which will be key database for realizing personalized prevention and medicine.

  12. PairWise Neighbours database: overlaps and spacers among prokaryote genomes

    Directory of Open Access Journals (Sweden)

    Garcia-Vallvé Santiago

    2009-06-01

    Full Text Available Abstract Background Although prokaryotes live in a variety of habitats and possess different metabolic and genomic complexity, they have several genomic architectural features in common. The overlapping genes are a common feature of the prokaryote genomes. The overlapping lengths tend to be short because as the overlaps become longer they have more risk of deleterious mutations. The spacers between genes tend to be short too because of the tendency to reduce the non coding DNA among prokaryotes. However they must be long enough to maintain essential regulatory signals such as the Shine-Dalgarno (SD sequence, which is responsible of an efficient translation. Description PairWise Neighbours is an interactive and intuitive database used for retrieving information about the spacers and overlapping genes among bacterial and archaeal genomes. It contains 1,956,294 gene pairs from 678 fully sequenced prokaryote genomes and is freely available at the URL http://genomes.urv.cat/pwneigh. This database provides information about the overlaps and their conservation across species. Furthermore, it allows the wide analysis of the intergenic regions providing useful information such as the location and strength of the SD sequence. Conclusion There are experiments and bioinformatic analysis that rely on correct annotations of the initiation site. Therefore, a database that studies the overlaps and spacers among prokaryotes appears to be desirable. PairWise Neighbours database permits the reliability analysis of the overlapping structures and the study of the SD presence and location among the adjacent genes, which may help to check the annotation of the initiation sites.

  13. Design and implementation of a database for Brucella melitensis genome annotation.

    Science.gov (United States)

    De Hertogh, Benoît; Lahlimi, Leïla; Lambert, Christophe; Letesson, Jean-Jacques; Depiereux, Eric

    2008-03-18

    The genome sequences of three Brucella biovars and of some species close to Brucella sp. have become available, leading to new relationship analysis. Moreover, the automatic genome annotation of the pathogenic bacteria Brucella melitensis has been manually corrected by a consortium of experts, leading to 899 modifications of start sites predictions among the 3198 open reading frames (ORFs) examined. This new annotation, coupled with the results of automatic annotation tools of the complete genome sequences of the B. melitensis genome (including BLASTs to 9 genomes close to Brucella), provides numerous data sets related to predicted functions, biochemical properties and phylogenic comparisons. To made these results available, alphaPAGe, a functional auto-updatable database of the corrected sequence genome of B. melitensis, has been built, using the entity-relationship (ER) approach and a multi-purpose database structure. A friendly graphical user interface has been designed, and users can carry out different kinds of information by three levels of queries: (1) the basic search use the classical keywords or sequence identifiers; (2) the original advanced search engine allows to combine (by using logical operators) numerous criteria: (a) keywords (textual comparison) related to the pCDS's function, family domains and cellular localization; (b) physico-chemical characteristics (numerical comparison) such as isoelectric point or molecular weight and structural criteria such as the nucleic length or the number of transmembrane helix (TMH); (c) similarity scores with Escherichia coli and 10 species phylogenetically close to B. melitensis; (3) complex queries can be performed by using a SQL field, which allows all queries respecting the database's structure. The database is publicly available through a Web server at the following url: http://www.fundp.ac.be/urbm/bioinfo/aPAGe.

  14. The mouse genome database: genotypes, phenotypes, and models of human disease.

    Science.gov (United States)

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2013-01-01

    The laboratory mouse is the premier animal model for studying human biology because all life stages can be accessed experimentally, a completely sequenced reference genome is publicly available and there exists a myriad of genomic tools for comparative and experimental research. In the current era of genome scale, data-driven biomedical research, the integration of genetic, genomic and biological data are essential for realizing the full potential of the mouse as an experimental model. The Mouse Genome Database (MGD; http://www.informatics.jax.org), the community model organism database for the laboratory mouse, is designed to facilitate the use of the laboratory mouse as a model system for understanding human biology and disease. To achieve this goal, MGD integrates genetic and genomic data related to the functional and phenotypic characterization of mouse genes and alleles and serves as a comprehensive catalog for mouse models of human disease. Recent enhancements to MGD include the addition of human ortholog details to mouse Gene Detail pages, the inclusion of microRNA knockouts to MGD's catalog of alleles and phenotypes, the addition of video clips to phenotype images, providing access to genotype and phenotype data associated with quantitative trait loci (QTL) and improvements to the layout and display of Gene Ontology annotations.

  15. OperomeDB: A Database of Condition-Specific Transcription Units in Prokaryotic Genomes.

    Science.gov (United States)

    Chetal, Kashish; Janga, Sarath Chandra

    2015-01-01

    Background. In prokaryotic organisms, a substantial fraction of adjacent genes are organized into operons-codirectionally organized genes in prokaryotic genomes with the presence of a common promoter and terminator. Although several available operon databases provide information with varying levels of reliability, very few resources provide experimentally supported results. Therefore, we believe that the biological community could benefit from having a new operon prediction database with operons predicted using next-generation RNA-seq datasets. Description. We present operomeDB, a database which provides an ensemble of all the predicted operons for bacterial genomes using available RNA-sequencing datasets across a wide range of experimental conditions. Although several studies have recently confirmed that prokaryotic operon structure is dynamic with significant alterations across environmental and experimental conditions, there are no comprehensive databases for studying such variations across prokaryotic transcriptomes. Currently our database contains nine bacterial organisms and 168 transcriptomes for which we predicted operons. User interface is simple and easy to use, in terms of visualization, downloading, and querying of data. In addition, because of its ability to load custom datasets, users can also compare their datasets with publicly available transcriptomic data of an organism. Conclusion. OperomeDB as a database should not only aid experimental groups working on transcriptome analysis of specific organisms but also enable studies related to computational and comparative operomics.

  16. VaProS: a database-integration approach for protein/genome information retrieval

    KAUST Repository

    Gojobori, Takashi

    2016-12-24

    Life science research now heavily relies on all sorts of databases for genome sequences, transcription, protein three-dimensional (3D) structures, protein–protein interactions, phenotypes and so forth. The knowledge accumulated by all the omics research is so vast that a computer-aided search of data is now a prerequisite for starting a new study. In addition, a combinatory search throughout these databases has a chance to extract new ideas and new hypotheses that can be examined by wet-lab experiments. By virtually integrating the related databases on the Internet, we have built a new web application that facilitates life science researchers for retrieving experts’ knowledge stored in the databases and for building a new hypothesis of the research target. This web application, named VaProS, puts stress on the interconnection between the functional information of genome sequences and protein 3D structures, such as structural effect of the gene mutation. In this manuscript, we present the notion of VaProS, the databases and tools that can be accessed without any knowledge of database locations and data formats, and the power of search exemplified in quest of the molecular mechanisms of lysosomal storage disease. VaProS can be freely accessed at http://p4d-info.nig.ac.jp/vapros/.

  17. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    Science.gov (United States)

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  18. Curating the CIA World Factbook

    Directory of Open Access Journals (Sweden)

    Peter Buneman

    2009-12-01

    Full Text Available The CIA World Factbook is a prime example of a curated database – a database that is constructed and maintained with a great deal of human effort in collecting, verifying, and annotating data. Preservation of old versions of the Factbook is important for verification of citations; it is also essential for anyone interested in the history of the data such as demographic change. Although the Factbook has been published, both physically and electronically, only for the past 30 years, we appear in danger of losing this history. This paper investigates the issues involved in capturing the history of an evolving database and its application to the CIA World Factbook. In particular it shows that there is substantial added value to be gained by preserving databases in such a way that questions about the change in data, (longitudinal queries can be readily answered. Within this paper, we describe techniques for recording change in a curated database and we describe novel techniques for querying the change. Using the example of this archived curated database, we discuss the extent to which the accepted practices and terminology of archiving, curation and digital preservation apply to this important class of digital artefacts.

  19. Canto: an online tool for community literature curation

    Science.gov (United States)

    Rutherford, Kim M.; Harris, Midori A.; Lock, Antonia; Oliver, Stephen G.; Wood, Valerie

    2014-01-01

    Motivation: Detailed curation of published molecular data is essential for any model organism database. Community curation enables researchers to contribute data from their papers directly to databases, supplementing the activity of professional curators and improving coverage of a growing body of literature. We have developed Canto, a web-based tool that provides an intuitive curation interface for both curators and researchers, to support community curation in the fission yeast database, PomBase. Canto supports curation using OBO ontologies, and can be easily configured for use with any species. Availability: Canto code and documentation are available under an Open Source license from http://curation.pombase.org/. Canto is a component of the Generic Model Organism Database (GMOD) project (http://www.gmod.org/). Contact: helpdesk@pombase.org PMID:24574118

  20. Surveying the maize community for their diversity and pedigree visualization needs to prioritize tool development and curation

    Science.gov (United States)

    The Maize Genetics and Genomics Database (MaizeGDB) team prepared a survey to identify breeders’ needs for visualizing pedigrees, diversity data, and haplotypes in order to prioritize tool development and curation efforts at MaizeGDB. The survey was distributed to the maize research community on beh...

  1. PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data.

    Science.gov (United States)

    Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai; Gundlach, Heidrun; Mayer, Klaus F X

    2017-01-01

    Plant Genome and Systems Biology (PGSB), formerly Munich Institute for Protein Sequences (MIPS) PlantsDB, is a database framework for the integration and analysis of plant genome data, developed and maintained for more than a decade now. Major components of that framework are genome databases and analysis resources focusing on individual (reference) genomes providing flexible and intuitive access to data. Another main focus is the integration of genomes from both model and crop plants to form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny). Data exchange and integrated search functionality with/over many plant genome databases is provided within the transPLANT project.

  2. ProtRepeatsDB: a database of amino acid repeats in genomes

    Directory of Open Access Journals (Sweden)

    Chauhan Virander S

    2006-07-01

    Full Text Available Abstract Background Genome wide and cross species comparisons of amino acid repeats is an intriguing problem in biology mainly due to the highly polymorphic nature and diverse functions of amino acid repeats. Innate protein repeats constitute vital functional and structural regions in proteins. Repeats are of great consequence in evolution of proteins, as evident from analysis of repeats in different organisms. In the post genomic era, availability of protein sequences encoded in different genomes provides a unique opportunity to perform large scale comparative studies of amino acid repeats. ProtRepeatsDB http://bioinfo.icgeb.res.in/repeats/ is a relational database of perfect and mismatch repeats, access to which is designed as a resource and collection of tools for detection and cross species comparisons of different types of amino acid repeats. Description ProtRepeatsDB (v1.2 consists of perfect as well as mismatch amino acid repeats in the protein sequences of 141 organisms, the genomes of which are now available. The web interface of ProtRepeatsDB consists of different tools to perform repeat s; based on protein IDs, organism name, repeat sequences, and keywords as in FASTA headers, size, frequency, gene ontology (GO annotation IDs and regular expressions (REGEXP describing repeats. These tools also allow formulation of a variety of simple, complex and logical queries to facilitate mining and large-scale cross-species comparisons of amino acid repeats. In addition to this, the database also contains sequence analysis tools to determine repeats in user input sequences. Conclusion ProtRepeatsDB is a multi-organism database of different types of amino acid repeats present in proteins. It integrates useful tools to perform genome wide queries for rapid screening and identification of amino acid repeats and facilitates comparative and evolutionary studies of the repeats. The database is useful for identification of species or organism specific

  3. Unlimited Thirst for Genome Sequencing, Data Interpretation, and Database Usage in Genomic Era: The Road towards Fast-Track Crop Plant Improvement.

    Science.gov (United States)

    Dhanapal, Arun Prabhu; Govindaraj, Mahalingam

    2015-01-01

    The number of sequenced crop genomes and associated genomic resources is growing rapidly with the advent of inexpensive next generation sequencing methods. Databases have become an integral part of all aspects of science research, including basic and applied plant and animal sciences. The importance of databases keeps increasing as the volume of datasets from direct and indirect genomics, as well as other omics approaches, keeps expanding in recent years. The databases and associated web portals provide at a minimum a uniform set of tools and automated analysis across a wide range of crop plant genomes. This paper reviews some basic terms and considerations in dealing with crop plant databases utilization in advancing genomic era. The utilization of databases for variation analysis with other comparative genomics tools, and data interpretation platforms are well described. The major focus of this review is to provide knowledge on platforms and databases for genome-based investigations of agriculturally important crop plants. The utilization of these databases in applied crop improvement program is still being achieved widely; otherwise, the end for sequencing is not far away.

  4. SinEx DB: a database for single exon coding sequences in mammalian genomes.

    Science.gov (United States)

    Jorquera, Roddy; Ortiz, Rodrigo; Ossandon, F; Cárdenas, Juan Pablo; Sepúlveda, Rene; González, Carolina; Holmes, David S

    2016-01-01

    Eukaryotic genes are typically interrupted by intragenic, noncoding sequences termed introns. However, some genes lack introns in their coding sequence (CDS) and are generally known as 'single exon genes' (SEGs). In this work, a SEG is defined as a nuclear, protein-coding gene that lacks introns in its CDS. Whereas, many public databases of Eukaryotic multi-exon genes are available, there are only two specialized databases for SEGs. The present work addresses the need for a more extensive and diverse database by creating SinEx DB, a publicly available, searchable database of predicted SEGs from 10 completely sequenced mammalian genomes including human. SinEx DB houses the DNA and protein sequence information of these SEGs and includes their functional predictions (KOG) and the relative distribution of these functions within species. The information is stored in a relational database built with My SQL Server 5.1.33 and the complete dataset of SEG sequences and their functional predictions are available for downloading. SinEx DB can be interrogated by: (i) a browsable phylogenetic schema, (ii) carrying out BLAST searches to the in-house SinEx DB of SEGs and (iii) via an advanced search mode in which the database can be searched by key words and any combination of searches by species and predicted functions. SinEx DB provides a rich source of information for advancing our understanding of the evolution and function of SEGs.Database URL: www.sinex.cl.

  5. The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species.

    Science.gov (United States)

    Dang, Ha X; Pryor, Barry; Peever, Tobin; Lawrence, Christopher B

    2015-03-25

    Alternaria is considered one of the most common saprophytic fungal genera on the planet. It is comprised of many species that exhibit a necrotrophic phytopathogenic lifestyle. Several species are clinically associated with allergic respiratory disorders although rarely found to cause invasive infections in humans. Finally, Alternaria spp. are among the most well known producers of diverse fungal secondary metabolites, especially toxins. We have recently sequenced and annotated the genomes of 25 Alternaria spp. including but not limited to many necrotrophic plant pathogens such as A. brassicicola (a pathogen of Brassicaceous crops like cabbage and canola) and A. solani (a major pathogen of Solanaceous plants like potato and tomato), and several saprophytes that cause allergy in human such as A. alternata isolates. These genomes were annotated and compared. Multiple genetic differences were found in the context of plant and human pathogenicity, notably the pro-inflammatory potential of A. alternata. The Alternaria genomes database was built to provide a public platform to access the whole genome sequences, genome annotations, and comparative genomics data of these species. Genome annotation and comparison were performed using a pipeline that integrated multiple computational and comparative genomics tools. Alternaria genome sequences together with their annotation and comparison data were ported to Ensembl database schemas using a self-developed tool (EnsImport). Collectively, data are currently hosted using a customized installation of the Ensembl genome browser platform. Recent efforts in fungal genome sequencing have facilitated the studies of the molecular basis of fungal pathogenicity as a whole system. The Alternaria genomes database provides a comprehensive resource of genomics and comparative data of an important saprophytic and plant/human pathogenic fungal genus. The database will be updated regularly with new genomes when they become available. The

  6. Functional curation of the Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 complete genome sequences

    NARCIS (Netherlands)

    Esser, D.; Kouril, T.; Zaparty, M.; Sierocinski, P.; Oost, van der J.; Makarova, K.S.; Siebers, B.

    2011-01-01

    The thermoacidophiles Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 are considered key model organisms representing a major phylum of the Crenarchaeota. Because maintaining current, accurate genome information is indispensable for modern biology, we have updated gene function annotation usin

  7. Databases

    Data.gov (United States)

    National Aeronautics and Space Administration — The databases of computational and experimental data from the first Aeroelastic Prediction Workshop are located here. The databases file names tell their contents by...

  8. Importance of databases of nucleic acids for bioinformatic analysis focused to genomics

    Science.gov (United States)

    Jimenez-Gutierrez, L. R.; Barrios-Hernández, C. J.; Pedraza-Ferreira, G. R.; Vera-Cala, L.; Martinez-Perez, F.

    2016-08-01

    Recently, bioinformatics has become a new field of science, indispensable in the analysis of millions of nucleic acids sequences, which are currently deposited in international databases (public or private); these databases contain information of genes, RNA, ORF, proteins, intergenic regions, including entire genomes from some species. The analysis of this information requires computer programs; which were renewed in the use of new mathematical methods, and the introduction of the use of artificial intelligence. In addition to the constant creation of supercomputing units trained to withstand the heavy workload of sequence analysis. However, it is still necessary the innovation on platforms that allow genomic analyses, faster and more effectively, with a technological understanding of all biological processes.

  9. The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community.

    Science.gov (United States)

    Rhee, Seung Yon; Beavis, William; Berardini, Tanya Z; Chen, Guanghong; Dixon, David; Doyle, Aisling; Garcia-Hernandez, Margarita; Huala, Eva; Lander, Gabriel; Montoya, Mary; Miller, Neil; Mueller, Lukas A; Mundodi, Suparna; Reiser, Leonore; Tacklind, Julie; Weems, Dan C; Wu, Yihe; Xu, Iris; Yoo, Daniel; Yoon, Jungwon; Zhang, Peifen

    2003-01-01

    Arabidopsis thaliana is the most widely-studied plant today. The concerted efforts of over 11 000 researchers and 4000 organizations around the world are generating a rich diversity and quantity of information and materials. This information is made available through a comprehensive on-line resource called the Arabidopsis Information Resource (TAIR) (http://arabidopsis.org), which is accessible via commonly used web browsers and can be searched and downloaded in a number of ways. In the last two years, efforts have been focused on increasing data content and diversity, functionally annotating genes and gene products with controlled vocabularies, and improving data retrieval, analysis and visualization tools. New information include sequence polymorphisms including alleles, germplasms and phenotypes, Gene Ontology annotations, gene families, protein information, metabolic pathways, gene expression data from microarray experiments and seed and DNA stocks. New data visualization and analysis tools include SeqViewer, which interactively displays the genome from the whole chromosome down to 10 kb of nucleotide sequence and AraCyc, a metabolic pathway database and map tool that allows overlaying expression data onto the pathway diagrams. Finally, we have recently incorporated seed and DNA stock information from the Arabidopsis Biological Resource Center (ABRC) and implemented a shopping-cart style on-line ordering system.

  10. The MiST2 database: a comprehensive genomics resource on microbial signal transduction

    OpenAIRE

    Ulrich, Luke E.; Igor B Zhulin

    2009-01-01

    The MiST2 database (http://mistdb.com) identifies and catalogs the repertoire of signal transduction proteins in microbial genomes. Signal transduction systems regulate the majority of cellular activities including the metabolism, development, host-recognition, biofilm production, virulence, and antibiotic resistance of human pathogens. Thus, knowledge of the proteins and interactions that comprise these communication networks is an essential component to furthering biomedical discovery. Thes...

  11. HGD-Chn: The Database of Genome Diversity and Variation for Chinese Populations.

    Science.gov (United States)

    Hong-Sheng, Gui; Peng, Zhou; Cheng-Bo, Yang; Sheng-Bin, Li

    2009-04-01

    The Database of Genome Diversity and Variation for Chinese Populations is toward a more efficient utilization and sharing of the valuable yet diminishing genetic resources in China (including sample information of healthy populations, healthy pedigrees, disease population and disease pedigrees; genomic diversity data; disease-related allelic and haplotype data). Organization of the database can be divided into two parts: (1) Genetic resources of healthy people--Organizing genetic resources of healthy people. A variety of genetic markers (VNTR, STR, SNP, HLA, and enzyme markers, etc.) are chosen for their diversity among populations, with their distribution among different ethnic groups in China stored in the form of allelic frequency. A further analysis as well as an overall description of the Chinese population genetic structure is also being made possible. (2) Disease genetic resources--Four categories are mainly concerned: chromosomal diseases, monogenic diseases, polygenic diseases, and birth defects. For each kind of disease, the basic introduction and description, sample information, and allelic data of related gene are involved. Aside from research-oriented information, introductory courses oriented at general public covering fields of genomic diversity and variation, the related experimental techniques, standards and specifications could also be accessed in our website. Further more, flexible query and submit system with user-friendly interfaces are also integrated in our website to simplify the process of user-query and administrators' database maintenance work. Online data analyzing and managing tools are developed using bioinformatics algorithm and programming language for a better interpretation of the biological data.

  12. EcoGene: a genome sequence database for Escherichia coli K-12.

    Science.gov (United States)

    Rudd, K E

    2000-01-01

    The EcoGene database provides a set of gene and protein sequences derived from the genome sequence of Escherichia coli K-12. EcoGene is a source of re-annotated sequences for the SWISS-PROT and Colibri databases. EcoGene is used for genetic and physical map compilations in collaboration with the Coli Genetic Stock Center. The EcoGene12 release includes 4293 genes. EcoGene12 differs from the GenBank annotation of the complete genome sequence in several ways, including (i) the revision of 706 predicted or confirmed gene start sites, (ii) the correction or hypothetical reconstruction of 61 frame-shifts caused by either sequence error or mutation, (iii) the reconstruction of 14 protein sequences interrupted by the insertion of IS elements, and (iv) pre-dictions that 92 genes are partially deleted gene fragments. A literature survey identified 717 proteins whose N-terminal amino acids have been verified by sequencing. 12 446 cross-references to 6835 literature citations and s are provided. EcoGene is accessible at a new website: http://bmb.med.miami.edu/EcoGene/EcoWeb. Users can search and retrieve individual EcoGene GenePages or they can download large datasets for incorporation into database management systems, facilitating various genome-scale computational and functional analyses.

  13. GeneTack database: genes with frameshifts in prokaryotic genomes and eukaryotic mRNA sequences.

    Science.gov (United States)

    Antonov, Ivan; Baranov, Pavel; Borodovsky, Mark

    2013-01-01

    Database annotations of prokaryotic genomes and eukaryotic mRNA sequences pay relatively low attention to frame transitions that disrupt protein-coding genes. Frame transitions (frameshifts) could be caused by sequencing errors or indel mutations inside protein-coding regions. Other observed frameshifts are related to recoding events (that evolved to control expression of some genes). Earlier, we have developed an algorithm and software program GeneTack for ab initio frameshift finding in intronless genes. Here, we describe a database (freely available at http://topaz.gatech.edu/GeneTack/db.html) containing genes with frameshifts (fs-genes) predicted by GeneTack. The database includes 206 991 fs-genes from 1106 complete prokaryotic genomes and 45 295 frameshifts predicted in mRNA sequences from 100 eukaryotic genomes. The whole set of fs-genes was grouped into clusters based on sequence similarity between fs-proteins (conceptually translated fs-genes), conservation of the frameshift position and frameshift direction (-1, +1). The fs-genes can be retrieved by similarity search to a given query sequence via a web interface, by fs-gene cluster browsing, etc. Clusters of fs-genes are characterized with respect to their likely origin, such as pseudogenization, phase variation, etc. The largest clusters contain fs-genes with programed frameshifts (related to recoding events).

  14. Evaluation of relational and NoSQL database architectures to manage genomic annotations.

    Science.gov (United States)

    Schulz, Wade L; Nelson, Brent G; Felker, Donn K; Durant, Thomas J S; Torres, Richard

    2016-12-01

    While the adoption of next generation sequencing has rapidly expanded, the informatics infrastructure used to manage the data generated by this technology has not kept pace. Historically, relational databases have provided much of the framework for data storage and retrieval. Newer technologies based on NoSQL architectures may provide significant advantages in storage and query efficiency, thereby reducing the cost of data management. But their relative advantage when applied to biomedical data sets, such as genetic data, has not been characterized. To this end, we compared the storage, indexing, and query efficiency of a common relational database (MySQL), a document-oriented NoSQL database (MongoDB), and a relational database with NoSQL support (PostgreSQL). When used to store genomic annotations from the dbSNP database, we found the NoSQL architectures to outperform traditional, relational models for speed of data storage, indexing, and query retrieval in nearly every operation. These findings strongly support the use of novel database technologies to improve the efficiency of data management within the biological sciences.

  15. PATtyFams: Protein families for the microbial genomes in the PATRIC database

    Directory of Open Access Journals (Sweden)

    James J Davis

    2016-02-01

    Full Text Available The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org in order to drive many of the comparative analysis tools that are available through the PATRIC website. However, due to the burgeoning number of genomes, traditional approaches for generating protein families are becoming prohibitive. In this report, we describe a new approach for generating protein families, which we call PATtyFams. This method uses the k-mer-based function assignments available through RAST (Rapid Annotation using Subsystem Technology to rapidly guide family formation, and then differentiates the function-based groups into families using a Markov Cluster algorithm (MCL. This new approach for generating protein families is rapid, scalable and has properties that are consistent with alignment-based methods.

  16. ReplicationDomain: a visualization tool and comparative database for genome-wide replication timing data

    Directory of Open Access Journals (Sweden)

    Yokochi Tomoki

    2008-12-01

    Full Text Available Abstract Background Eukaryotic DNA replication is regulated at the level of large chromosomal domains (0.5–5 megabases in mammals within which replicons are activated relatively synchronously. These domains replicate in a specific temporal order during S-phase and our genome-wide analyses of replication timing have demonstrated that this temporal order of domain replication is a stable property of specific cell types. Results We have developed ReplicationDomain http://www.replicationdomain.org as a web-based database for analysis of genome-wide replication timing maps (replication profiles from various cell lines and species. This database also provides comparative information of transcriptional expression and is configured to display any genome-wide property (for instance, ChIP-Chip or ChIP-Seq data via an interactive web interface. Our published microarray data sets are publicly available. Users may graphically display these data sets for a selected genomic region and download the data displayed as text files, or alternatively, download complete genome-wide data sets. Furthermore, we have implemented a user registration system that allows registered users to upload their own data sets. Upon uploading, registered users may choose to: (1 view their data sets privately without sharing; (2 share with other registered users; or (3 make their published or "in press" data sets publicly available, which can fulfill journal and funding agencies' requirements for data sharing. Conclusion ReplicationDomain is a novel and powerful tool to facilitate the comparative visualization of replication timing in various cell types as well as other genome-wide chromatin features and is considerably faster and more convenient than existing browsers when viewing multi-megabase segments of chromosomes. Furthermore, the data upload function with the option of private viewing or sharing of data sets between registered users should be a valuable resource for the

  17. Affiliation to the work market after curative treatment of head-and-neck cancer: a population-based study from the DAHANCA database

    DEFF Research Database (Denmark)

    Kjær, Trille; Bøje, Charlotte Rotbøl; Olsen, Maja Halgren

    2013-01-01

    Survivors of squamous cell carcinoma of the head and neck (HNSCC) are more severely affected in regard to affiliation to the work market than other cancer survivors. Few studies have investigated associations between socioeconomic and disease-related factors and work market affiliation after cura...... curative treatment of HNSCC. We investigated the factors for early retirement pension due to disability and unemployment in patients who had been available for work one year before diagnosis....

  18. Databases

    Directory of Open Access Journals (Sweden)

    Nick Ryan

    2004-01-01

    Full Text Available Databases are deeply embedded in archaeology, underpinning and supporting many aspects of the subject. However, as well as providing a means for storing, retrieving and modifying data, databases themselves must be a result of a detailed analysis and design process. This article looks at this process, and shows how the characteristics of data models affect the process of database design and implementation. The impact of the Internet on the development of databases is examined, and the article concludes with a discussion of a range of issues associated with the recording and management of archaeological data.

  19. Construction of an ortholog database using the semantic web technology for integrative analysis of genomic data.

    Science.gov (United States)

    Chiba, Hirokazu; Nishide, Hiroyo; Uchiyama, Ikuo

    2015-01-01

    Recently, various types of biological data, including genomic sequences, have been rapidly accumulating. To discover biological knowledge from such growing heterogeneous data, a flexible framework for data integration is necessary. Ortholog information is a central resource for interlinking corresponding genes among different organisms, and the Semantic Web provides a key technology for the flexible integration of heterogeneous data. We have constructed an ortholog database using the Semantic Web technology, aiming at the integration of numerous genomic data and various types of biological information. To formalize the structure of the ortholog information in the Semantic Web, we have constructed the Ortholog Ontology (OrthO). While the OrthO is a compact ontology for general use, it is designed to be extended to the description of database-specific concepts. On the basis of OrthO, we described the ortholog information from our Microbial Genome Database for Comparative Analysis (MBGD) in the form of Resource Description Framework (RDF) and made it available through the SPARQL endpoint, which accepts arbitrary queries specified by users. In this framework based on the OrthO, the biological data of different organisms can be integrated using the ortholog information as a hub. Besides, the ortholog information from different data sources can be compared with each other using the OrthO as a shared ontology. Here we show some examples demonstrating that the ortholog information described in RDF can be used to link various biological data such as taxonomy information and Gene Ontology. Thus, the ortholog database using the Semantic Web technology can contribute to biological knowledge discovery through integrative data analysis.

  20. ATGC: a database of orthologous genes from closely related prokaryotic genomes and a research platform for microevolution of prokaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Novichkov, Pavel S.; Ratnere, Igor; Wolf, Yuri I.; Koonin, Eugene V.; Dubchak, Inna

    2009-07-23

    The database of Alignable Tight Genomic Clusters (ATGCs) consists of closely related genomes of archaea and bacteria, and is a resource for research into prokaryotic microevolution. Construction of a data set with appropriate characteristics is a major hurdle for this type of studies. With the current rate of genome sequencing, it is difficult to follow the progress of the field and to determine which of the available genome sets meet the requirements of a given research project, in particular, with respect to the minimum and maximum levels of similarity between the included genomes. Additionally, extraction of specific content, such as genomic alignments or families of orthologs, from a selected set of genomes is a complicated and time-consuming process. The database addresses these problems by providing an intuitive and efficient web interface to browse precomputed ATGCs, select appropriate ones and access ATGC-derived data such as multiple alignments of orthologous proteins, matrices of pairwise intergenomic distances based on genome-wide analysis of synonymous and nonsynonymous substitution rates and others. The ATGC database will be regularly updated following new releases of the NCBI RefSeq. The database is hosted by the Genomics Division at Lawrence Berkeley National laboratory and is publicly available at http://atgc.lbl.gov.

  1. Rhea--a manually curated resource of biochemical reactions.

    Science.gov (United States)

    Alcántara, Rafael; Axelsen, Kristian B; Morgat, Anne; Belda, Eugeni; Coudert, Elisabeth; Bridge, Alan; Cao, Hong; de Matos, Paula; Ennis, Marcus; Turner, Steve; Owen, Gareth; Bougueleret, Lydie; Xenarios, Ioannis; Steinbeck, Christoph

    2012-01-01

    Rhea (http://www.ebi.ac.uk/rhea) is a comprehensive resource of expert-curated biochemical reactions. Rhea provides a non-redundant set of chemical transformations for use in a broad spectrum of applications, including metabolic network reconstruction and pathway inference. Rhea includes enzyme-catalyzed reactions (covering the IUBMB Enzyme Nomenclature list), transport reactions and spontaneously occurring reactions. Rhea reactions are described using chemical species from the Chemical Entities of Biological Interest ontology (ChEBI) and are stoichiometrically balanced for mass and charge. They are extensively manually curated with links to source literature and other public resources on metabolism including enzyme and pathway databases. This cross-referencing facilitates the mapping and reconciliation of common reactions and compounds between distinct resources, which is a common first step in the reconstruction of genome scale metabolic networks and models.

  2. Update History of This Database - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us PGDBj Registered...f This Database Date Update contents 2014/10/10 PGDBj Registered plant list, Marker list, QTL list, Plant DB... link & Genome analysis methods English archive site is opened. 2012/08/08 PGDBj Registered... Policy | Contact Us Update History of This Database - PGDBj Registered plant lis

  3. Overview of the Integrated Genomic Data system (IGD)

    Energy Technology Data Exchange (ETDEWEB)

    Hagstrom, R.; Overbeek, R.; Price, M. [Argonne National Lab., IL (United States); Micheals, G.S.; Taylor, R. [National Insts. of Health, Bethesda, MD (United States). Div. of Computer Resources and Technology

    1992-12-01

    In previous work, we developed a database system to support analysis of the E. coli genome. That system provided a pidgin-English query facility, rudimentary pattern-matching capabilities, and the ability to rapidly extract answers to a wide variety of questions about the organization of the E. coli genome. To enable the comparative analysis of the genomes from different species, we have designed and implemented a new prototype database system, called the Integrated Genomic Database (IGD). IGD extends our earlier effort by incorporating a set of curator`s tools that facilitate the incorporation of physical and genetic data, together with the results of genome organization analysis, into a common database system. Additional tools for extracting, manipulating, and analyzing data are planned.

  4. Developing genomic knowledge bases and databases to support clinical management: current perspectives.

    Science.gov (United States)

    Huser, Vojtech; Sincan, Murat; Cimino, James J

    2014-01-01

    Personalized medicine, the ability to tailor diagnostic and treatment decisions for individual patients, is seen as the evolution of modern medicine. We characterize here the informatics resources available today or envisioned in the near future that can support clinical interpretation of genomic test results. We assume a clinical sequencing scenario (germline whole-exome sequencing) in which a clinical specialist, such as an endocrinologist, needs to tailor patient management decisions within his or her specialty (targeted findings) but relies on a genetic counselor to interpret off-target incidental findings. We characterize the genomic input data and list various types of knowledge bases that provide genomic knowledge for generating clinical decision support. We highlight the need for patient-level databases with detailed lifelong phenotype content in addition to genotype data and provide a list of recommendations for personalized medicine knowledge bases and databases. We conclude that no single knowledge base can currently support all aspects of personalized recommendations and that consolidation of several current resources into larger, more dynamic and collaborative knowledge bases may offer a future path forward.

  5. Tree shrew database (TreeshrewDB): a genomic knowledge base for the Chinese tree shrew.

    Science.gov (United States)

    Fan, Yu; Yu, Dandan; Yao, Yong-Gang

    2014-11-21

    The tree shrew (Tupaia belangeri) is a small mammal with a close relationship to primates and it has been proposed as an alternative experimental animal to primates in biomedical research. The recent release of a high-quality Chinese tree shrew genome enables more researchers to use this species as the model animal in their studies. With the aim to making the access to an extensively annotated genome database straightforward and easy, we have created the Tree shrew Database (TreeshrewDB). This is a web-based platform that integrates the currently available data from the tree shrew genome, including an updated gene set, with a systematic functional annotation and a mRNA expression pattern. In addition, to assist with automatic gene sequence analysis, we have integrated the common programs Blast, Muscle, GBrowse, GeneWise and codeml, into TreeshrewDB. We have also developed a pipeline for the analysis of positive selection. The user-friendly interface of TreeshrewDB, which is available at http://www.treeshrewdb.org, will undoubtedly help in many areas of biological research into the tree shrew.

  6. The Strategies WDK: a graphical search interface and web development kit for functional genomics databases.

    Science.gov (United States)

    Fischer, Steve; Aurrecoechea, Cristina; Brunk, Brian P; Gao, Xin; Harb, Omar S; Kraemer, Eileen T; Pennington, Cary; Treatman, Charles; Kissinger, Jessica C; Roos, David S; Stoeckert, Christian J

    2011-01-01

    Web sites associated with the Eukaryotic Pathogen Bioinformatics Resource Center (EuPathDB.org) have recently introduced a graphical user interface, the Strategies WDK, intended to make advanced searching and set and interval operations easy and accessible to all users. With a design guided by usability studies, the system helps motivate researchers to perform dynamic computational experiments and explore relationships across data sets. For example, PlasmoDB users seeking novel therapeutic targets may wish to locate putative enzymes that distinguish pathogens from their hosts, and that are expressed during appropriate developmental stages. When a researcher runs one of the approximately 100 searches available on the site, the search is presented as a first step in a strategy. The strategy is extended by running additional searches, which are combined with set operators (union, intersect or minus), or genomic interval operators (overlap, contains). A graphical display uses Venn diagrams to make the strategy's flow obvious. The interface facilitates interactive adjustment of the component searches with changes propagating forward through the strategy. Users may save their strategies, creating protocols that can be shared with colleagues. The strategy system has now been deployed on all EuPathDB databases, and successfully deployed by other projects. The Strategies WDK uses a configurable MVC architecture that is compatible with most genomics and biological warehouse databases, and is available for download at code.google.com/p/strategies-wdk. Database URL: www.eupathdb.org.

  7. DNA Lossless Differential Compression Algorithm based on Similarity of Genomic Sequence Database

    CERN Document Server

    Afify, Heba; Wahed, Manal Abdel

    2011-01-01

    Modern biological science produces vast amounts of genomic sequence data. This is fuelling the need for efficient algorithms for sequence compression and analysis. Data compression and the associated techniques coming from information theory are often perceived as being of interest for data communication and storage. In recent years, a substantial effort has been made for the application of textual data compression techniques to various computational biology tasks, ranging from storage and indexing of large datasets to comparison of genomic databases. This paper presents a differential compression algorithm that is based on production of difference sequences according to op-code table in order to optimize the compression of homologous sequences in dataset. Therefore, the stored data are composed of reference sequence, the set of differences, and differences locations, instead of storing each sequence individually. This algorithm does not require a priori knowledge about the statistics of the sequence set. The...

  8. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics.

    Science.gov (United States)

    Schoof, Heiko; Ernst, Rebecca; Nazarov, Vladimir; Pfeifer, Lukas; Mewes, Hans-Werner; Mayer, Klaus F X

    2004-01-01

    Arabidopsis thaliana is the most widely studied model plant. Functional genomics is intensively underway in many laboratories worldwide. Beyond the basic annotation of the primary sequence data, the annotated genetic elements of Arabidopsis must be linked to diverse biological data and higher order information such as metabolic or regulatory pathways. The MIPS Arabidopsis thaliana database MAtDB aims to provide a comprehensive resource for Arabidopsis as a genome model that serves as a primary reference for research in plants and is suitable for transfer of knowledge to other plants, especially crops. The genome sequence as a common backbone serves as a scaffold for the integration of data, while, in a complementary effort, these data are enhanced through the application of state-of-the-art bioinformatics tools. This information is visualized on a genome-wide and a gene-by-gene basis with access both for web users and applications. This report updates the information given in a previous report and provides an outlook on further developments. The MAtDB web interface can be accessed at http://mips.gsf.de/proj/thal/db.

  9. Research Update: The materials genome initiative: Data sharing and the impact of collaborative ab initio databases

    Science.gov (United States)

    Jain, Anubhav; Persson, Kristin A.; Ceder, Gerbrand

    2016-05-01

    Materials innovations enable new technological capabilities and drive major societal advancements but have historically required long and costly development cycles. The Materials Genome Initiative (MGI) aims to greatly reduce this time and cost. In this paper, we focus on data reuse in the MGI and, in particular, discuss the impact of three different computational databases based on density functional theory methods to the research community. We also discuss and provide recommendations on technical aspects of data reuse, outline remaining fundamental challenges, and present an outlook on the future of MGI's vision of data sharing.

  10. The STRING database in 2017

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Morris, John H; Cook, Helen

    2017-01-01

    pathways and protein complexes from curated databases, interaction predictions are derived from the following sources: (i) systematic co-expression analysis, (ii) detection of shared selective signals across genomes, (iii) automated text-mining of the scientific literature and (iv) computational transfer...... of interaction knowledge between organisms based on gene orthology. In the latest version 10.5 of STRING, the biggest changes are concerned with data dissemination: the web frontend has been completely redesigned to reduce dependency on outdated browser technologies, and the database can now also be queried from...

  11. The FunGenES database: a genomics resource for mouse embryonic stem cell differentiation.

    Science.gov (United States)

    Schulz, Herbert; Kolde, Raivo; Adler, Priit; Aksoy, Irène; Anastassiadis, Konstantinos; Bader, Michael; Billon, Nathalie; Boeuf, Hélène; Bourillot, Pierre-Yves; Buchholz, Frank; Dani, Christian; Doss, Michael Xavier; Forrester, Lesley; Gitton, Murielle; Henrique, Domingos; Hescheler, Jürgen; Himmelbauer, Heinz; Hübner, Norbert; Karantzali, Efthimia; Kretsovali, Androniki; Lubitz, Sandra; Pradier, Laurent; Rai, Meena; Reimand, Jüri; Rolletschek, Alexandra; Sachinidis, Agapios; Savatier, Pierre; Stewart, Francis; Storm, Mike P; Trouillas, Marina; Vilo, Jaak; Welham, Melanie J; Winkler, Johannes; Wobus, Anna M; Hatzopoulos, Antonis K

    2009-09-03

    Embryonic stem (ES) cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the "Functional Genomics in Embryonic Stem Cells" consortium (FunGenES) has analyzed the transcriptome of mouse ES cells in eleven diverse settings representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have organized the results in an interactive database with a number of features and tools. Specifically, we have generated clusters of transcripts that behave the same way under the entire spectrum of the sixty-seven experimental conditions; we have assembled genes in groups according to their time of expression during successive days of ES cell differentiation; we have included expression profiles of specific gene classes such as transcription regulatory factors and Expressed Sequence Tags; transcripts have been arranged in "Expression Waves" and juxtaposed to genes with opposite or complementary expression patterns; we have designed search engines to display the expression profile of any transcript during ES cell differentiation; gene expression data have been organized in animated graphs of KEGG signaling and metabolic pathways; and finally, we have incorporated advanced functional annotations for individual genes or gene clusters of interest and links to microarray and genomic resources. The FunGenES database provides a comprehensive resource for studies into the biology of ES cells.

  12. The FunGenES database: a genomics resource for mouse embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Herbert Schulz

    Full Text Available Embryonic stem (ES cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the "Functional Genomics in Embryonic Stem Cells" consortium (FunGenES has analyzed the transcriptome of mouse ES cells in eleven diverse settings representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have organized the results in an interactive database with a number of features and tools. Specifically, we have generated clusters of transcripts that behave the same way under the entire spectrum of the sixty-seven experimental conditions; we have assembled genes in groups according to their time of expression during successive days of ES cell differentiation; we have included expression profiles of specific gene classes such as transcription regulatory factors and Expressed Sequence Tags; transcripts have been arranged in "Expression Waves" and juxtaposed to genes with opposite or complementary expression patterns; we have designed search engines to display the expression profile of any transcript during ES cell differentiation; gene expression data have been organized in animated graphs of KEGG signaling and metabolic pathways; and finally, we have incorporated advanced functional annotations for individual genes or gene clusters of interest and links to microarray and genomic resources. The FunGenES database provides a comprehensive resource for studies into the biology of ES cells.

  13. Curating the innate immunity interactome

    Science.gov (United States)

    2010-01-01

    Background The innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http://www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity. Results Here, we describe the InnateDB curation project, which is manually annotating the human and mouse innate immunity interactome in rich contextual detail, and present our novel curation software system, which has been developed to ensure interactions are curated in a highly accurate and data-standards compliant manner. To date, over 13,000 interactions (protein, DNA and RNA) have been curated from the biomedical literature. Here, we present data, illustrating how InnateDB curation of the innate immunity interactome has greatly enhanced network and pathway annotation available for systems-level analysis and discuss the challenges that face such curation efforts. Significantly, we provide several lines of evidence that analysis of the innate immunity interactome has the potential to identify novel signalling, transcriptional and post-transcriptional regulators of innate immunity. Additionally, these analyses also provide insight into the cross-talk between innate immunity pathways and other biological processes, such as adaptive immunity, cancer and diabetes, and intriguingly, suggests links to other pathways, which as yet, have not been implicated in the innate immune response. Conclusions In summary, curation of the InnateDB interactome provides a wealth of information to enable systems-level analysis of innate immunity. PMID:20727158

  14. tRNA sequence data, annotation data and curation data - tRNADB-CE | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available o Comment 1 (Dr. Muto) Comment of Dr. Inokuchi Comment 2 (Dr. Inokuchi) Comment of Dr. Yamada Comment 3 (Dr. Yamada) Final... decision Final Determination Comments Comment Original database Ge

  15. SNPpy--database management for SNP data from genome wide association studies.

    Directory of Open Access Journals (Sweden)

    Faheem Mitha

    Full Text Available BACKGROUND: We describe SNPpy, a hybrid script database system using the Python SQLAlchemy library coupled with the PostgreSQL database to manage genotype data from Genome-Wide Association Studies (GWAS. This system makes it possible to merge study data with HapMap data and merge across studies for meta-analyses, including data filtering based on the values of phenotype and Single-Nucleotide Polymorphism (SNP data. SNPpy and its dependencies are open source software. RESULTS: The current version of SNPpy offers utility functions to import genotype and annotation data from two commercial platforms. We use these to import data from two GWAS studies and the HapMap Project. We then export these individual datasets to standard data format files that can be imported into statistical software for downstream analyses. CONCLUSIONS: By leveraging the power of relational databases, SNPpy offers integrated management and manipulation of genotype and phenotype data from GWAS studies. The analysis of these studies requires merging across GWAS datasets as well as patient and marker selection. To this end, SNPpy enables the user to filter the data and output the results as standardized GWAS file formats. It does low level and flexible data validation, including validation of patient data. SNPpy is a practical and extensible solution for investigators who seek to deploy central management of their GWAS data.

  16. Large Scale Explorative Oligonucleotide Probe Selection for Thousands of Genetic Groups on a Computing Grid: Application to Phylogenetic Probe Design Using a Curated Small Subunit Ribosomal RNA Gene Database

    Directory of Open Access Journals (Sweden)

    Faouzi Jaziri

    2014-01-01

    Full Text Available Phylogenetic Oligonucleotide Arrays (POAs were recently adapted for studying the huge microbial communities in a flexible and easy-to-use way. POA coupled with the use of explorative probes to detect the unknown part is now one of the most powerful approaches for a better understanding of microbial community functioning. However, the selection of probes remains a very difficult task. The rapid growth of environmental databases has led to an exponential increase of data to be managed for an efficient design. Consequently, the use of high performance computing facilities is mandatory. In this paper, we present an efficient parallelization method to select known and explorative oligonucleotide probes at large scale using computing grids. We implemented a software that generates and monitors thousands of jobs over the European Computing Grid Infrastructure (EGI. We also developed a new algorithm for the construction of a high-quality curated phylogenetic database to avoid erroneous design due to bad sequence affiliation. We present here the performance and statistics of our method on real biological datasets based on a phylogenetic prokaryotic database at the genus level and a complete design of about 20,000 probes for 2,069 genera of prokaryotes.

  17. Construction of a Pan-Genome Allele Database of Salmonella enterica Serovar Enteritidis for Molecular Subtyping and Disease Cluster Identification

    Directory of Open Access Journals (Sweden)

    Yen-Yi Liu

    2016-12-01

    Full Text Available We built a pan-genome allele database with 395 genomes of Salmonella enterica serovar Enteritidis and developed computer tools for analysis of whole genome sequencing (WGS data of bacterial isolates for disease cluster identification. A web server (http://wgmlst.imst.nsysu.edu.tw was set up with the database and the tools, allowing users to upload WGS data to generate whole genome multilocus sequence typing (wgMLST profiles and to perform cluster analysis of wgMLST profiles. The usefulness of the database in disease cluster identification was demonstrated by analyzing a panel of genomes from 55 epidemiologically well-defined S. Enteritidis isolates provided by the Minnesota Department of Health. The wgMLST-based cluster analysis revealed distinct clades that were concordant with the epidemiologically defined outbreaks. Thus, using a common pan-genome allele database, wgMLST can be a promising WGS-based subtyping approach for disease surveillance and outbreak investigation across laboratories.

  18. Utilizing linkage disequilibrium information from Indian Genome Variation Database for mapping mutations: SCA12 case study

    Indian Academy of Sciences (India)

    Samira Bahl; Ikhlak Ahmed; The Indian Genome Variation Consortium; Mitali Mukerji

    2009-04-01

    Stratification in heterogeneous populations poses an enormous challenge in linkage disequilibrium (LD) based identification of causal loci using surrogate markers. In this study, we demonstrate the enormous potential of endogamous Indian populations for mapping mutations in candidate genes using minimal SNPs, mainly due to larger regions of LD. We show this by a case study of the PPP2R2B gene (∼400 kb) that harbours a CAG repeat, expansion of which has been implicated in spinocerebellar ataxia type 12 (SCA12). Using LD information derived from Indian Genome Variation database (IGVdb) on populations which share similar ethnic and linguistic backgrounds as the SCA12 study population, we could map the causal loci using a minimal set of three SNPs, without the generation of additional basal data from the ethnically matched population. We could also demonstrate transferability of tagSNPs from a related HapMap population for mapping the mutation.

  19. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data.

    Science.gov (United States)

    Bouaoun, Liacine; Sonkin, Dmitriy; Ardin, Maude; Hollstein, Monica; Byrnes, Graham; Zavadil, Jiri; Olivier, Magali

    2016-09-01

    TP53 gene mutations are one of the most frequent somatic events in cancer. The IARC TP53 Database (http://p53.iarc.fr) is a popular resource that compiles occurrence and phenotype data on TP53 germline and somatic variations linked to human cancer. The deluge of data coming from cancer genomic studies generates new data on TP53 variations and attracts a growing number of database users for the interpretation of TP53 variants. Here, we present the current contents and functionalities of the IARC TP53 Database and perform a systematic analysis of TP53 somatic mutation data extracted from this database and from genomic data repositories. This analysis showed that IARC has more TP53 somatic mutation data than genomic repositories (29,000 vs. 4,000). However, the more complete screening achieved by genomic studies highlighted some overlooked facts about TP53 mutations, such as the presence of a significant number of mutations occurring outside the DNA-binding domain in specific cancer types. We also provide an update on TP53 inherited variants including the ones that should be considered as neutral frequent variations. We thus provide an update of current knowledge on TP53 variations in human cancer as well as inform users on the efficient use of the IARC TP53 Database.

  20. Development of Database and Genomic Medicine for von Hippel-Lindau Disease in Japan

    Science.gov (United States)

    TAKAYANAGI, Shunsaku; MUKASA, Akitake; NAKATOMI, Hirofumi; KANNO, Hiroshi; KURATSU, Jun-ichi; NISHIKAWA, Ryo; MISHIMA, Kazuhiko; NATSUME, Atushi; WAKABAYASHI, Toshihiko; HOUKIN, Kiyohiro; TERASAKA, Shunsuke; YAO, Masahiro; SHINOHARA, Nobuo; SHUIN, Taro; SAITO, Nobuhito

    2017-01-01

    von Hippel-Lindau (VHL) disease is a hereditary tumor disease in which tumors develop in multiple organs, not only as hemangioblastomas (HBs) in the central nervous system, but also as kidney tumors, pheochromocytomas, and so on. Much about the epidemiology of VHL disease remained unknown until fairly recently in Japan, leading to calls for the establishment of a VHL disease epidemiological database in Japanese. To elucidate its epidemiology in Japan, the Japanese Ministry of Health, Labour and Welfare created the VHL Disease Study Group, which was put in charge of carrying out a nationwide epidemiological survey. The survey found close to 400 Japanese VHL disease patients throughout the country. Based on those results, the VHL Disease Study Group created the VHL Disease Treatment Guideline and also a severity classification. It is thought that the prognosis of VHL disease patients can be improved by performing genetic diagnosis and careful follow-up. Accordingly, the University of Tokyo Hospital put in place an in-hospital system for implementing genomic medicine for VHL disease based on genetic diagnosis. For that system, it was especially important to establish (I) accurate genetic diagnostic techniques, (II) genetic counseling capabilities for the patients and their families, and (III) a system of cooperation among multiple departments, including urology departments, and so on. Further elucidation of the epidemiology and the development of genomic medicine are needed to improve the treatment results of VHL disease in Japan. PMID:28070114

  1. dbSUPER: a database of super-enhancers in mouse and human genome.

    Science.gov (United States)

    Khan, Aziz; Zhang, Xuegong

    2016-01-04

    Super-enhancers are clusters of transcriptional enhancers that drive cell-type-specific gene expression and are crucial to cell identity. Many disease-associated sequence variations are enriched in super-enhancer regions of disease-relevant cell types. Thus, super-enhancers can be used as potential biomarkers for disease diagnosis and therapeutics. Current studies have identified super-enhancers in more than 100 cell types and demonstrated their functional importance. However, a centralized resource to integrate all these findings is not currently available. We developed dbSUPER (http://bioinfo.au.tsinghua.edu.cn/dbsuper/), the first integrated and interactive database of super-enhancers, with the primary goal of providing a resource for assistance in further studies related to transcriptional control of cell identity and disease. dbSUPER provides a responsive and user-friendly web interface to facilitate efficient and comprehensive search and browsing. The data can be easily sent to Galaxy instances, GREAT and Cistrome web-servers for downstream analysis, and can also be visualized in the UCSC genome browser where custom tracks can be added automatically. The data can be downloaded and exported in variety of formats. Furthermore, dbSUPER lists genes associated with super-enhancers and also links to external databases such as GeneCards, UniProt and Entrez. dbSUPER also provides an overlap analysis tool to annotate user-defined regions. We believe dbSUPER is a valuable resource for the biology and genetic research communities.

  2. WormBase: network access to the genome and biology of Caenorhabditis elegans.

    Science.gov (United States)

    Stein, L; Sternberg, P; Durbin, R; Thierry-Mieg, J; Spieth, J

    2001-01-01

    WormBase (http://www.wormbase.org) is a web-based resource for the Caenorhabditis elegans genome and its biology. It builds upon the existing ACeDB database of the C.elegans genome by providing data curation services, a significantly expanded range of subject areas and a user-friendly front end.

  3. A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods

    OpenAIRE

    Bromilow, Sophie; Gethings, Lee A; Buckley, Michael; Bromley, Mike; Shewry, Peter R.; Langridge, James I.; Mills, Elizabeth Clare

    2017-01-01

    The unique physiochemical properties of wheat gluten enable a diverse range of food products to be manufactured. However, gluten triggers coeliac disease, a condition which is treated using a gluten-free diet. Analytical methods are required to confirm if foods are gluten-free, but current immunoassay-based methods can unreliable and proteomic methods offer an alternative. However, proteomic methods require comprehensive and well annotated sequence databases which are lacking for gluten. A ma...

  4. Novel LanT associated lantibiotic clusters identified by genome database mining.

    Directory of Open Access Journals (Sweden)

    Mangal Singh

    Full Text Available BACKGROUND: Frequent use of antibiotics has led to the emergence of antibiotic resistance in bacteria. Lantibiotic compounds are ribosomally synthesized antimicrobial peptides against which bacteria are not able to produce resistance, hence making them a good alternative to antibiotics. Nisin is the oldest and the most widely used lantibiotic, in food preservation, without having developed any significant resistance against it. Having their antimicrobial potential and a limited number, there is a need to identify novel lantibiotics. METHODOLOGY/FINDINGS: Identification of novel lantibiotic biosynthetic clusters from an ever increasing database of bacterial genomes, can provide a major lead in this direction. In order to achieve this, a strategy was adopted to identify novel lantibiotic biosynthetic clusters by screening the sequenced genomes for LanT homolog, which is a conserved lantibiotic transporter specific to type IB clusters. This strategy resulted in identification of 54 bacterial strains containing the LanT homologs, which are not the known lantibiotic producers. Of these, 24 strains were subjected to a detailed bioinformatic analysis to identify genes encoding for precursor peptides, modification enzyme, immunity and quorum sensing proteins. Eight clusters having two LanM determinants, similar to haloduracin and lichenicidin were identified, along with 13 clusters having a single LanM determinant as in mersacidin biosynthetic cluster. Besides these, orphan LanT homologs were also identified which might be associated with novel bacteriocins, encoded somewhere else in the genome. Three identified gene clusters had a C39 domain containing LanT transporter, associated with the LanBC proteins and double glycine type precursor peptides, the only known example of such a cluster is that of salivaricin. CONCLUSION: This study led to the identification of 8 novel putative two-component lantibiotic clusters along with 13 having a single LanM and

  5. Sexually transmitted diseases putative drug target database: A comprehensive database of putative drug targets of pathogens identified by comparative genomics

    Directory of Open Access Journals (Sweden)

    Vijayakumari Malipatil

    2013-01-01

    Conclusion: Diverse data merged in the common framework of this database is expected to be valuable not only for basic studies in clinical bioinformatics, but also for basic studies in immunological, biotechnological and clinical fields.

  6. Crowd-sourcing and author submission as alternatives to professional curation.

    Science.gov (United States)

    Karp, Peter D

    2016-01-01

    Can we decrease the costs of database curation by crowd-sourcing curation work or by offloading curation to publication authors? This perspective considers the significant experience accumulated by the bioinformatics community with these two alternatives to professional curation in the last 20 years; that experience should be carefully considered when formulating new strategies for biological databases. The vast weight of empirical evidence to date suggests that crowd-sourced curation is not a successful model for biological databases. Multiple approaches to crowd-sourced curation have been attempted by multiple groups, and extremely low participation rates by 'the crowd' are the overwhelming outcome. The author-curation model shows more promise for boosting curator efficiency. However, its limitations include that the quality of author-submitted annotations is uncertain, the response rate is low (but significant), and to date author curation has involved relatively simple forms of annotation involving one or a few types of data. Furthermore, shifting curation to authors may simply redistribute costs rather than decreasing costs; author curation may in fact increase costs because of the overhead involved in having every curating author learn what professional curators know: curation conventions, curation software and curation procedures. © The Author(s) 2016. Published by Oxford University Press.

  7. A computational platform to maintain and migrate manual functional annotations for BioCyc databases.

    Science.gov (United States)

    Walsh, Jesse R; Sen, Taner Z; Dickerson, Julie A

    2014-10-12

    BioCyc databases are an important resource for information on biological pathways and genomic data. Such databases represent the accumulation of biological data, some of which has been manually curated from literature. An essential feature of these databases is the continuing data integration as new knowledge is discovered. As functional annotations are improved, scalable methods are needed for curators to manage annotations without detailed knowledge of the specific design of the BioCyc database. We have developed CycTools, a software tool which allows curators to maintain functional annotations in a model organism database. This tool builds on existing software to improve and simplify annotation data imports of user provided data into BioCyc databases. Additionally, CycTools automatically resolves synonyms and alternate identifiers contained within the database into the appropriate internal identifiers. Automating steps in the manual data entry process can improve curation efforts for major biological databases. The functionality of CycTools is demonstrated by transferring GO term annotations from MaizeCyc to matching proteins in CornCyc, both maize metabolic pathway databases available at MaizeGDB, and by creating strain specific databases for metabolic engineering.

  8. PathwayBooster: a tool to support the curation of metabolic pathways.

    Science.gov (United States)

    Liberal, Rodrigo; Lisowska, Beata K; Leak, David J; Pinney, John W

    2015-03-15

    Despite several recent advances in the automated generation of draft metabolic reconstructions, the manual curation of these networks to produce high quality genome-scale metabolic models remains a labour-intensive and challenging task. We present PathwayBooster, an open-source software tool to support the manual comparison and curation of metabolic models. It combines gene annotations from GenBank files and other sources with information retrieved from the metabolic databases BRENDA and KEGG to produce a set of pathway diagrams and reports summarising the evidence for the presence of a reaction in a given organism's metabolic network. By comparing multiple sources of evidence within a common framework, PathwayBooster assists the curator in the identification of likely false positive (misannotated enzyme) and false negative (pathway hole) reactions. Reaction evidence may be taken from alternative annotations of the same genome and/or a set of closely related organisms. By integrating and visualising evidence from multiple sources, PathwayBooster reduces the manual effort required in the curation of a metabolic model. The software is available online at http://www.theosysbio.bio.ic.ac.uk/resources/pathwaybooster/ .

  9. How should the completeness and quality of curated nanomaterial data be evaluated?

    NARCIS (Netherlands)

    Marchese Robinson, Richard L.; Lynch, Iseult; Peijnenburg, Willie; Rumble, John; Klaessig, Frederick; Marquardt, Clarissa; Rauscher, Hubert; Puzyn, Tomasz; Purian, Ronit; Åberg, Christoffer; Karcher, Sandra; Vriens, Hanne; Hoet, Peter; Hoover, Mark; Hendren, Christine; Harper, Stacey

    2016-01-01

    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials’ behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be

  10. Towards the integration of mouse databases - definition and implementation of solutions to two use-cases in mouse functional genomics.

    Science.gov (United States)

    Gruenberger, Michael; Alberts, Rudi; Smedley, Damian; Swertz, Morris; Schofield, Paul; Schughart, Klaus

    2010-01-22

    The integration of information present in many disparate biological databases represents a major challenge in biomedical research. To define the problems and needs, and to explore strategies for database integration in mouse functional genomics, we consulted the biologist user community and implemented solutions to two user-defined use-cases. We organised workshops, meetings and used a questionnaire to identify the needs of biologist database users in mouse functional genomics. As a result, two use-cases were developed that can be used to drive future designs or extensions of mouse databases. Here, we present the use-cases and describe some initial computational solutions for them. The application for the gene-centric use-case, "MUSIG-Gen" starts from a list of gene names and collects a wide range of data types from several distributed databases in a "shopping cart"-like manner. The iterative user-driven approach is a response to strongly articulated requests from users, especially those without computational biology backgrounds. The application for the phenotype-centric use-case, "MUSIG-Phen", is based on a similar concept and starting from phenotype descriptions retrieves information for associated genes. The use-cases created, and their prototype software implementations should help to better define biologists' needs for database integration and may serve as a starting point for future bioinformatics solutions aimed at end-user biologists.

  11. Towards the integration of mouse databases - definition and implementation of solutions to two use-cases in mouse functional genomics

    Directory of Open Access Journals (Sweden)

    Schofield Paul

    2010-01-01

    Full Text Available Abstract Background The integration of information present in many disparate biological databases represents a major challenge in biomedical research. To define the problems and needs, and to explore strategies for database integration in mouse functional genomics, we consulted the biologist user community and implemented solutions to two user-defined use-cases. Results We organised workshops, meetings and used a questionnaire to identify the needs of biologist database users in mouse functional genomics. As a result, two use-cases were developed that can be used to drive future designs or extensions of mouse databases. Here, we present the use-cases and describe some initial computational solutions for them. The application for the gene-centric use-case, "MUSIG-Gen" starts from a list of gene names and collects a wide range of data types from several distributed databases in a "shopping cart"-like manner. The iterative user-driven approach is a response to strongly articulated requests from users, especially those without computational biology backgrounds. The application for the phenotype-centric use-case, "MUSIG-Phen", is based on a similar concept and starting from phenotype descriptions retrieves information for associated genes. Conclusion The use-cases created, and their prototype software implementations should help to better define biologists' needs for database integration and may serve as a starting point for future bioinformatics solutions aimed at end-user biologists.

  12. T4SP Database 2.0: An Improved Database for Type IV Secretion Systems in Bacterial Genomes with New Online Analysis Tools

    Directory of Open Access Journals (Sweden)

    Na Han

    2016-01-01

    Full Text Available Type IV secretion system (T4SS can mediate the passage of macromolecules across cellular membranes and is essential for virulent and genetic material exchange among bacterial species. The Type IV Secretion Project 2.0 (T4SP 2.0 database is an improved and extended version of the platform released in 2013 aimed at assisting with the detection of Type IV secretion systems (T4SS in bacterial genomes. This advanced version provides users with web server tools for detecting the existence and variations of T4SS genes online. The new interface for the genome browser provides a user-friendly access to the most complete and accurate resource of T4SS gene information (e.g., gene number, name, type, position, sequence, related articles, and quick links to other webs. Currently, this online database includes T4SS information of 5239 bacterial strains. Conclusions. T4SS is one of the most versatile secretion systems necessary for the virulence and survival of bacteria and the secretion of protein and/or DNA substrates from a donor to a recipient cell. This database on virB/D genes of the T4SS system will help scientists worldwide to improve their knowledge on secretion systems and also identify potential pathogenic mechanisms of various microbial species.

  13. T4SP Database 2.0: An Improved Database for Type IV Secretion Systems in Bacterial Genomes with New Online Analysis Tools

    Science.gov (United States)

    Han, Na; Yu, Weiwen; Qiang, Yujun

    2016-01-01

    Type IV secretion system (T4SS) can mediate the passage of macromolecules across cellular membranes and is essential for virulent and genetic material exchange among bacterial species. The Type IV Secretion Project 2.0 (T4SP 2.0) database is an improved and extended version of the platform released in 2013 aimed at assisting with the detection of Type IV secretion systems (T4SS) in bacterial genomes. This advanced version provides users with web server tools for detecting the existence and variations of T4SS genes online. The new interface for the genome browser provides a user-friendly access to the most complete and accurate resource of T4SS gene information (e.g., gene number, name, type, position, sequence, related articles, and quick links to other webs). Currently, this online database includes T4SS information of 5239 bacterial strains. Conclusions. T4SS is one of the most versatile secretion systems necessary for the virulence and survival of bacteria and the secretion of protein and/or DNA substrates from a donor to a recipient cell. This database on virB/D genes of the T4SS system will help scientists worldwide to improve their knowledge on secretion systems and also identify potential pathogenic mechanisms of various microbial species.

  14. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects

    Directory of Open Access Journals (Sweden)

    Holt Carson

    2011-12-01

    Full Text Available Abstract Background Second-generation sequencing technologies are precipitating major shifts with regards to what kinds of genomes are being sequenced and how they are annotated. While the first generation of genome projects focused on well-studied model organisms, many of today's projects involve exotic organisms whose genomes are largely terra incognita. This complicates their annotation, because unlike first-generation projects, there are no pre-existing 'gold-standard' gene-models with which to train gene-finders. Improvements in genome assembly and the wide availability of mRNA-seq data are also creating opportunities to update and re-annotate previously published genome annotations. Today's genome projects are thus in need of new genome annotation tools that can meet the challenges and opportunities presented by second-generation sequencing technologies. Results We present MAKER2, a genome annotation and data management tool designed for second-generation genome projects. MAKER2 is a multi-threaded, parallelized application that can process second-generation datasets of virtually any size. We show that MAKER2 can produce accurate annotations for novel genomes where training-data are limited, of low quality or even non-existent. MAKER2 also provides an easy means to use mRNA-seq data to improve annotation quality; and it can use these data to update legacy annotations, significantly improving their quality. We also show that MAKER2 can evaluate the quality of genome annotations, and identify and prioritize problematic annotations for manual review. Conclusions MAKER2 is the first annotation engine specifically designed for second-generation genome projects. MAKER2 scales to datasets of any size, requires little in the way of training data, and can use mRNA-seq data to improve annotation quality. It can also update and manage legacy genome annotation datasets.

  15. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects.

    Science.gov (United States)

    Holt, Carson; Yandell, Mark

    2011-12-22

    Second-generation sequencing technologies are precipitating major shifts with regards to what kinds of genomes are being sequenced and how they are annotated. While the first generation of genome projects focused on well-studied model organisms, many of today's projects involve exotic organisms whose genomes are largely terra incognita. This complicates their annotation, because unlike first-generation projects, there are no pre-existing 'gold-standard' gene-models with which to train gene-finders. Improvements in genome assembly and the wide availability of mRNA-seq data are also creating opportunities to update and re-annotate previously published genome annotations. Today's genome projects are thus in need of new genome annotation tools that can meet the challenges and opportunities presented by second-generation sequencing technologies. We present MAKER2, a genome annotation and data management tool designed for second-generation genome projects. MAKER2 is a multi-threaded, parallelized application that can process second-generation datasets of virtually any size. We show that MAKER2 can produce accurate annotations for novel genomes where training-data are limited, of low quality or even non-existent. MAKER2 also provides an easy means to use mRNA-seq data to improve annotation quality; and it can use these data to update legacy annotations, significantly improving their quality. We also show that MAKER2 can evaluate the quality of genome annotations, and identify and prioritize problematic annotations for manual review. MAKER2 is the first annotation engine specifically designed for second-generation genome projects. MAKER2 scales to datasets of any size, requires little in the way of training data, and can use mRNA-seq data to improve annotation quality. It can also update and manage legacy genome annotation datasets.

  16. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation

    Science.gov (United States)

    O'Leary, Nuala A.; Wright, Mathew W.; Brister, J. Rodney; Ciufo, Stacy; Haddad, Diana; McVeigh, Rich; Rajput, Bhanu; Robbertse, Barbara; Smith-White, Brian; Ako-Adjei, Danso; Astashyn, Alexander; Badretdin, Azat; Bao, Yiming; Blinkova, Olga; Brover, Vyacheslav; Chetvernin, Vyacheslav; Choi, Jinna; Cox, Eric; Ermolaeva, Olga; Farrell, Catherine M.; Goldfarb, Tamara; Gupta, Tripti; Haft, Daniel; Hatcher, Eneida; Hlavina, Wratko; Joardar, Vinita S.; Kodali, Vamsi K.; Li, Wenjun; Maglott, Donna; Masterson, Patrick; McGarvey, Kelly M.; Murphy, Michael R.; O'Neill, Kathleen; Pujar, Shashikant; Rangwala, Sanjida H.; Rausch, Daniel; Riddick, Lillian D.; Schoch, Conrad; Shkeda, Andrei; Storz, Susan S.; Sun, Hanzhen; Thibaud-Nissen, Francoise; Tolstoy, Igor; Tully, Raymond E.; Vatsan, Anjana R.; Wallin, Craig; Webb, David; Wu, Wendy; Landrum, Melissa J.; Kimchi, Avi; Tatusova, Tatiana; DiCuccio, Michael; Kitts, Paul; Murphy, Terence D.; Pruitt, Kim D.

    2016-01-01

    The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55 000 organisms (>4800 viruses, >40 000 prokaryotes and >10 000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management. PMID:26553804

  17. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.

    Science.gov (United States)

    O'Leary, Nuala A; Wright, Mathew W; Brister, J Rodney; Ciufo, Stacy; Haddad, Diana; McVeigh, Rich; Rajput, Bhanu; Robbertse, Barbara; Smith-White, Brian; Ako-Adjei, Danso; Astashyn, Alexander; Badretdin, Azat; Bao, Yiming; Blinkova, Olga; Brover, Vyacheslav; Chetvernin, Vyacheslav; Choi, Jinna; Cox, Eric; Ermolaeva, Olga; Farrell, Catherine M; Goldfarb, Tamara; Gupta, Tripti; Haft, Daniel; Hatcher, Eneida; Hlavina, Wratko; Joardar, Vinita S; Kodali, Vamsi K; Li, Wenjun; Maglott, Donna; Masterson, Patrick; McGarvey, Kelly M; Murphy, Michael R; O'Neill, Kathleen; Pujar, Shashikant; Rangwala, Sanjida H; Rausch, Daniel; Riddick, Lillian D; Schoch, Conrad; Shkeda, Andrei; Storz, Susan S; Sun, Hanzhen; Thibaud-Nissen, Francoise; Tolstoy, Igor; Tully, Raymond E; Vatsan, Anjana R; Wallin, Craig; Webb, David; Wu, Wendy; Landrum, Melissa J; Kimchi, Avi; Tatusova, Tatiana; DiCuccio, Michael; Kitts, Paul; Murphy, Terence D; Pruitt, Kim D

    2016-01-04

    The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

  18. A geographically-diverse collection of 418 human gut microbiome pathway genome databases

    KAUST Repository

    Hahn, Aria S.

    2017-04-11

    Advances in high-throughput sequencing are reshaping how we perceive microbial communities inhabiting the human body, with implications for therapeutic interventions. Several large-scale datasets derived from hundreds of human microbiome samples sourced from multiple studies are now publicly available. However, idiosyncratic data processing methods between studies introduce systematic differences that confound comparative analyses. To overcome these challenges, we developed GutCyc, a compendium of environmental pathway genome databases (ePGDBs) constructed from 418 assembled human microbiome datasets using MetaPathways, enabling reproducible functional metagenomic annotation. We also generated metabolic network reconstructions for each metagenome using the Pathway Tools software, empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways encoded by the human gut microbiome. For the first time, GutCyc provides consistent annotations and metabolic pathway predictions, making possible comparative community analyses between health and disease states in inflammatory bowel disease, Crohn’s disease, and type 2 diabetes. GutCyc data products are searchable online, or may be downloaded and explored locally using MetaPathways and Pathway Tools.

  19. FunCoup 3.0: database of genome-wide functional coupling networks.

    Science.gov (United States)

    Schmitt, Thomas; Ogris, Christoph; Sonnhammer, Erik L L

    2014-01-01

    We present an update of the FunCoup database (http://FunCoup.sbc.su.se) of functional couplings, or functional associations, between genes and gene products. Identifying these functional couplings is an important step in the understanding of higher level mechanisms performed by complex cellular processes. FunCoup distinguishes between four classes of couplings: participation in the same signaling cascade, participation in the same metabolic process, co-membership in a protein complex and physical interaction. For each of these four classes, several types of experimental and statistical evidence are combined by Bayesian integration to predict genome-wide functional coupling networks. The FunCoup framework has been completely re-implemented to allow for more frequent future updates. It contains many improvements, such as a regularization procedure to automatically downweight redundant evidences and a novel method to incorporate phylogenetic profile similarity. Several datasets have been updated and new data have been added in FunCoup 3.0. Furthermore, we have developed a new Web site, which provides powerful tools to explore the predicted networks and to retrieve detailed information about the data underlying each prediction.

  20. Curation of Frozen Samples

    Science.gov (United States)

    Fletcher, L. A.; Allen, C. C.; Bastien, R.

    2008-01-01

    NASA's Johnson Space Center (JSC) and the Astromaterials Curator are charged by NPD 7100.10D with the curation of all of NASA s extraterrestrial samples, including those from future missions. This responsibility includes the development of new sample handling and preparation techniques; therefore, the Astromaterials Curator must begin developing procedures to preserve, prepare and ship samples at sub-freezing temperatures in order to enable future sample return missions. Such missions might include the return of future frozen samples from permanently-shadowed lunar craters, the nuclei of comets, the surface of Mars, etc. We are demonstrating the ability to curate samples under cold conditions by designing, installing and testing a cold curation glovebox. This glovebox will allow us to store, document, manipulate and subdivide frozen samples while quantifying and minimizing contamination throughout the curation process.

  1. Updates in Rhea—a manually curated resource of biochemical reactions

    Science.gov (United States)

    Morgat, Anne; Axelsen, Kristian B.; Lombardot, Thierry; Alcántara, Rafael; Aimo, Lucila; Zerara, Mohamed; Niknejad, Anne; Belda, Eugeni; Hyka-Nouspikel, Nevila; Coudert, Elisabeth; Redaschi, Nicole; Bougueleret, Lydie; Steinbeck, Christoph; Xenarios, Ioannis; Bridge, Alan

    2015-01-01

    Rhea (http://www.ebi.ac.uk/rhea) is a comprehensive and non-redundant resource of expert-curated biochemical reactions described using species from the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Rhea has been designed for the functional annotation of enzymes and the description of genome-scale metabolic networks, providing stoichiometrically balanced enzyme-catalyzed reactions (covering the IUBMB Enzyme Nomenclature list and additional reactions), transport reactions and spontaneously occurring reactions. Rhea reactions are extensively curated with links to source literature and are mapped to other publicly available enzyme and pathway databases such as Reactome, BioCyc, KEGG and UniPathway, through manual curation and computational methods. Here we describe developments in Rhea since our last report in the 2012 database issue of Nucleic Acids Research. These include significant growth in the number of Rhea reactions and the inclusion of reactions involving complex macromolecules such as proteins, nucleic acids and other polymers that lie outside the scope of ChEBI. Together these developments will significantly increase the utility of Rhea as a tool for the description, analysis and reconciliation of genome-scale metabolic models. PMID:25332395

  2. Updates in Rhea--a manually curated resource of biochemical reactions.

    Science.gov (United States)

    Morgat, Anne; Axelsen, Kristian B; Lombardot, Thierry; Alcántara, Rafael; Aimo, Lucila; Zerara, Mohamed; Niknejad, Anne; Belda, Eugeni; Hyka-Nouspikel, Nevila; Coudert, Elisabeth; Redaschi, Nicole; Bougueleret, Lydie; Steinbeck, Christoph; Xenarios, Ioannis; Bridge, Alan

    2015-01-01

    Rhea (http://www.ebi.ac.uk/rhea) is a comprehensive and non-redundant resource of expert-curated biochemical reactions described using species from the ChEBI (Chemical Entities of Biological Interest) ontology of small molecules. Rhea has been designed for the functional annotation of enzymes and the description of genome-scale metabolic networks, providing stoichiometrically balanced enzyme-catalyzed reactions (covering the IUBMB Enzyme Nomenclature list and additional reactions), transport reactions and spontaneously occurring reactions. Rhea reactions are extensively curated with links to source literature and are mapped to other publicly available enzyme and pathway databases such as Reactome, BioCyc, KEGG and UniPathway, through manual curation and computational methods. Here we describe developments in Rhea since our last report in the 2012 database issue of Nucleic Acids Research. These include significant growth in the number of Rhea reactions and the inclusion of reactions involving complex macromolecules such as proteins, nucleic acids and other polymers that lie outside the scope of ChEBI. Together these developments will significantly increase the utility of Rhea as a tool for the description, analysis and reconciliation of genome-scale metabolic models. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes.

    Science.gov (United States)

    Chan, Patricia P; Lowe, Todd M

    2016-01-01

    Transfer RNAs represent the largest, most ubiquitous class of non-protein coding RNA genes found in all living organisms. The tRNAscan-SE search tool has become the de facto standard for annotating tRNA genes in genomes, and the Genomic tRNA Database (GtRNAdb) was created as a portal for interactive exploration of these gene predictions. Since its published description in 2009, the GtRNAdb has steadily grown in content, and remains the most commonly cited web-based source of tRNA gene information. In this update, we describe not only a major increase in the number of tRNA predictions (>367000) and genomes analyzed (>4370), but more importantly, the integration of new analytic and functional data to improve the quality and biological context of tRNA gene predictions. New information drawn from other sources includes tRNA modification data, epigenetic data, single nucleotide polymorphisms, gene expression and evolutionary conservation. A richer set of analytic data is also presented, including better tRNA functional prediction, non-canonical features, predicted structural impacts from sequence variants and minimum free energy structural predictions. Views of tRNA genes in genomic context are provided via direct links to the UCSC genome browsers. The database can be searched by sequence or gene features, and is available at http://gtrnadb.ucsc.edu/.

  4. TcruziDB, an Integrated Database, and the WWW Information Server for the Trypanosoma cruzi Genome Project

    Directory of Open Access Journals (Sweden)

    Degrave Wim

    1997-01-01

    Full Text Available Data analysis, presentation and distribution is of utmost importance to a genome project. A public domain software, ACeDB, has been chosen as the common basis for parasite genome databases, and a first release of TcruziDB, the Trypanosoma cruzi genome database, is available by ftp from ftp://iris.dbbm.fiocruz.br/pub/genomedb/TcruziDB as well as versions of the software for different operating systems (ftp://iris.dbbm.fiocruz.br/pub/unixsoft/. Moreover, data originated from the project are available from the WWW server at http://www.dbbm.fiocruz.br. It contains biological and parasitological data on CL Brener, its karyotype, all available T. cruzi sequences from Genbank, data on the EST-sequencing project and on available libraries, a T. cruzi codon table and a listing of activities and participating groups in the genome project, as well as meeting reports. T. cruzi discussion lists (tcruzi-l@iris.dbbm.fiocruz.br and tcgenics@iris.dbbm.fiocruz.br are being maintained for communication and to promote collaboration in the genome project

  5. A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm

    Directory of Open Access Journals (Sweden)

    Allen Eric E

    2008-10-01

    Full Text Available Abstract Background The process of horizontal gene transfer (HGT is believed to be widespread in Bacteria and Archaea, but little comparative data is available addressing its occurrence in complete microbial genomes. Collection of high-quality, automated HGT prediction data based on phylogenetic evidence has previously been impractical for large numbers of genomes at once, due to prohibitive computational demands. DarkHorse, a recently described statistical method for discovering phylogenetically atypical genes on a genome-wide basis, provides a means to solve this problem through lineage probability index (LPI ranking scores. LPI scores inversely reflect phylogenetic distance between a test amino acid sequence and its closest available database matches. Proteins with low LPI scores are good horizontal gene transfer candidates; those with high scores are not. Description The DarkHorse algorithm has been applied to 955 microbial genome sequences, and the results organized into a web-searchable relational database, called the DarkHorse HGT Candidate Resource http://darkhorse.ucsd.edu. Users can select individual genomes or groups of genomes to screen by LPI score, search for protein functions by descriptive annotation or amino acid sequence similarity, or select proteins with unusual G+C composition in their underlying coding sequences. The search engine reports LPI scores for match partners as well as query sequences, providing the opportunity to explore whether potential HGT donor sequences are phylogenetically typical or atypical within their own genomes. This information can be used to predict whether or not sufficient information is available to build a well-supported phylogenetic tree using the potential donor sequence. Conclusion The DarkHorse HGT Candidate database provides a powerful, flexible set of tools for identifying phylogenetically atypical proteins, allowing researchers to explore both individual HGT events in single genomes, and

  6. Design database for quantitative trait loci (QTL) data warehouse, data mining, and meta-analysis.

    Science.gov (United States)

    Hu, Zhi-Liang; Reecy, James M; Wu, Xiao-Lin

    2012-01-01

    A database can be used to warehouse quantitative trait loci (QTL) data from multiple sources for comparison, genomic data mining, and meta-analysis. A robust database design involves sound data structure logistics, meaningful data transformations, normalization, and proper user interface designs. This chapter starts with a brief review of relational database basics and concentrates on issues associated with curation of QTL data into a relational database, with emphasis on the principles of data normalization and structure optimization. In addition, some simple examples of QTL data mining and meta-analysis are included. These examples are provided to help readers better understand the potential and importance of sound database design.

  7. A Genome-Wide Survey of the Microsatellite Content of the Globe Artichoke Genome and the Development of a Web-Based Database.

    Science.gov (United States)

    Portis, Ezio; Portis, Flavio; Valente, Luisa; Moglia, Andrea; Barchi, Lorenzo; Lanteri, Sergio; Acquadro, Alberto

    2016-01-01

    The recently acquired genome sequence of globe artichoke (Cynara cardunculus var. scolymus) has been used to catalog the genome's content of simple sequence repeat (SSR) markers. More than 177,000 perfect SSRs were revealed, equivalent to an overall density across the genome of 244.5 SSRs/Mbp, but some 224,000 imperfect SSRs were also identified. About 21% of these SSRs were complex (two stretches of repeats separated by density across the gene space of 32,5 and 44,9 SSRs/Mbp for perfect and imperfect motifs, respectively. A putative function has been assigned, using the gene ontology approach, to the set of genes harboring at least one SSR. The same search parameters were applied to reveal the SSR content of 14 other plant species for which genome sequence is available. Certain species-specific SSR motifs were identified, along with a hexa-nucleotide motif shared only with the other two Compositae species (sunflower (Helianthus annuus) and horseweed (Conyza canadensis)) included in the study. Finally, a database, called "Cynara cardunculus MicroSatellite DataBase" (CyMSatDB) was developed to provide a searchable interface to the SSR data. CyMSatDB facilitates the retrieval of SSR markers, as well as suggested forward and reverse primers, on the basis of genomic location, genomic vs genic context, perfect vs imperfect repeat, motif type, motif sequence and repeat number. The SSR markers were validated via an in silico based PCR analysis adopting two available assembled transcriptomes, derived from contrasting globe artichoke accessions, as templates.

  8. Plastid-like Seq in mt Genome - RMG | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available erences for individual fragments is available. Data file...t were migrated from the plastid genome to the mitochondrial genome. Information on sizes, positions, gene names, homologies and diff

  9. Curating the Shelves

    Science.gov (United States)

    Schiano, Deborah

    2013-01-01

    Curation: to gather, organize, and present resources in a way that meets information needs and interests, makes sense for virtual as well as physical resources. A Northern New Jersey middle school library made the decision to curate its physical resources according to the needs of its users, and, in so doing, created a shelving system that is,…

  10. A Guide to the PLAZA 3.0 Plant Comparative Genomic Database.

    Science.gov (United States)

    Vandepoele, Klaas

    2017-01-01

    PLAZA 3.0 is an online resource for comparative genomics and offers a versatile platform to study gene functions and gene families or to analyze genome organization and evolution in the green plant lineage. Starting from genome sequence information for over 35 plant species, precomputed comparative genomic data sets cover homologous gene families, multiple sequence alignments, phylogenetic trees, and genomic colinearity information within and between species. Complementary functional data sets, a Workbench, and interactive visualization tools are available through a user-friendly web interface, making PLAZA an excellent starting point to translate sequence or omics data sets into biological knowledge. PLAZA is available at http://bioinformatics.psb.ugent.be/plaza/ .

  11. Overview of the Integrated Genomic Data system (IGD)

    Energy Technology Data Exchange (ETDEWEB)

    Hagstrom, R.; Overbeek, R.; Price, M. (Argonne National Lab., IL (United States)); Micheals, G.S.; Taylor, R. (National Insts. of Health, Bethesda, MD (United States). Div. of Computer Resources and Technology)

    1992-01-01

    In previous work, we developed a database system to support analysis of the E. coli genome. That system provided a pidgin-English query facility, rudimentary pattern-matching capabilities, and the ability to rapidly extract answers to a wide variety of questions about the organization of the E. coli genome. To enable the comparative analysis of the genomes from different species, we have designed and implemented a new prototype database system, called the Integrated Genomic Database (IGD). IGD extends our earlier effort by incorporating a set of curator's tools that facilitate the incorporation of physical and genetic data, together with the results of genome organization analysis, into a common database system. Additional tools for extracting, manipulating, and analyzing data are planned.

  12. The FlyBase database of the Drosophila genome projects andcommunity literature

    Energy Technology Data Exchange (ETDEWEB)

    Gelbart, William; Bayraktaroglu, Leyla; Bettencourt, Brian; Campbell, Kathy; Crosby, Madeline; Emmert, David; Hradecky, Pavel; Huang,Yanmei; Letovsky, Stan; Matthews, Beverly; Russo, Susan; Schroeder,Andrew; Smutniak, Frank; Zhou, Pinglei; Zytkovicz, Mark; Ashburner,Michael; Drysdale, Rachel; de Grey, Aubrey; Foulger, Rebecca; Millburn,Gillian; Yamada, Chihiro; Kaufman, Thomas; Matthews, Kathy; Gilbert, Don; Grumbling, Gary; Strelets, Victor; Shemen, C.; Rubin, Gerald; Berman,Brian; Frise, Erwin; Gibson, Mark; Harris, Nomi; Kaminker, Josh; Lewis,Suzanna; Marshall, Brad; Misra, Sima; Mungall, Christopher; Prochnik,Simon; Richter, John; Smith, Christopher; Shu, ShengQiang; Tupy,Jonathan; Wiel, Colin

    2002-09-16

    FlyBase (http://flybase.bio.indiana.edu/) provides an integrated view of the fundamental genomic and genetic data on the major genetic model Drosophila melanogaster and related species. FlyBase has primary responsibility for the continual reannotation of the D.melanogaster genome. The ultimate goal of the reannotation effort is to decorate the euchromatic sequence of the genome with as much biological information as is available from the community and from the major genome project centers. A complete revision of the annotations of the now-finished euchromatic genomic sequence has been completed. There are many points of entry to the genome within FlyBase, most notably through maps, gene products and ontologies, structured phenotypic and gene expression data, and anatomy.

  13. LocSigDB: a database of protein localization signals

    OpenAIRE

    Negi, Simarjeet; Pandey, Sanjit; Srinivasan, Satish M; Mohammed, Akram; Guda, Chittibabu

    2015-01-01

    LocSigDB (http://genome.unmc.edu/LocSigDB/) is a manually curated database of experimental protein localization signals for eight distinct subcellular locations; primarily in a eukaryotic cell with brief coverage of bacterial proteins. Proteins must be localized at their appropriate subcellular compartment to perform their desired function. Mislocalization of proteins to unintended locations is a causative factor for many human diseases; therefore, collection of known sorting signals will hel...

  14. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome.

    Science.gov (United States)

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle.

  15. Can we replace curation with information extraction software?

    Science.gov (United States)

    Karp, Peter D

    2016-01-01

    Can we use programs for automated or semi-automated information extraction from scientific texts as practical alternatives to professional curation? I show that error rates of current information extraction programs are too high to replace professional curation today. Furthermore, current IEP programs extract single narrow slivers of information, such as individual protein interactions; they cannot extract the large breadth of information extracted by professional curators for databases such as EcoCyc. They also cannot arbitrate among conflicting statements in the literature as curators can. Therefore, funding agencies should not hobble the curation efforts of existing databases on the assumption that a problem that has stymied Artificial Intelligence researchers for more than 60 years will be solved tomorrow. Semi-automated extraction techniques appear to have significantly more potential based on a review of recent tools that enhance curator productivity. But a full cost-benefit analysis for these tools is lacking. Without such analysis it is possible to expend significant effort developing information-extraction tools that automate small parts of the overall curation workflow without achieving a significant decrease in curation costs.Database URL.

  16. Curating the Poster

    DEFF Research Database (Denmark)

    Christensen, Line Hjorth

    2017-01-01

    structures can work as guidelines for curating posters and graphic design in a museum context. By applying an ecological view to design, specifically the semiotic notion “counter-ability”, it stresses the reciprocal relationship of humans and their built and product-designed environments. It further suggests...... the ecological approach to be viable for curatorial work, and demonstrates how this view inspired a recent poster event, the exhibition Spot on! British posters from the interwar years. The exhibition held at the Danish Poster Museum in 2015-2016 was initiated by the author and co-curated with graphic designer...... Michael Jensen. Keywords: poster, graphic design, environments, exhibition, curating...

  17. License - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available f you use data from this database, please be sure attribute this database as follows: ... PGDBj Registered plan... Policy | Contact Us License - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ... ...switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods

  18. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life.

    Science.gov (United States)

    Elbourne, Liam D H; Tetu, Sasha G; Hassan, Karl A; Paulsen, Ian T

    2017-01-04

    All cellular life contains an extensive array of membrane transport proteins. The vast majority of these transporters have not been experimentally characterized. We have developed a bioinformatic pipeline to identify and annotate complete sets of transporters in any sequenced genome. This pipeline is now fully automated enabling it to better keep pace with the accelerating rate of genome sequencing. This manuscript describes TransportDB 2.0 (http://www.membranetransport.org/transportDB2/), a completely updated version of TransportDB, which provides access to the large volumes of data generated by our automated transporter annotation pipeline. The TransportDB 2.0 web portal has been rebuilt to utilize contemporary JavaScript libraries, providing a highly interactive interface to the annotation information, and incorporates analysis tools that enable users to query the database on a number of levels. For example, TransportDB 2.0 includes tools that allow users to select annotated genomes of interest from the thousands of species held in the database and compare their complete transporter complements.

  19. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life

    Science.gov (United States)

    Elbourne, Liam D. H.; Tetu, Sasha G.; Hassan, Karl A.; Paulsen, Ian T.

    2017-01-01

    All cellular life contains an extensive array of membrane transport proteins. The vast majority of these transporters have not been experimentally characterized. We have developed a bioinformatic pipeline to identify and annotate complete sets of transporters in any sequenced genome. This pipeline is now fully automated enabling it to better keep pace with the accelerating rate of genome sequencing. This manuscript describes TransportDB 2.0 (http://www.membranetransport.org/transportDB2/), a completely updated version of TransportDB, which provides access to the large volumes of data generated by our automated transporter annotation pipeline. The TransportDB 2.0 web portal has been rebuilt to utilize contemporary JavaScript libraries, providing a highly interactive interface to the annotation information, and incorporates analysis tools that enable users to query the database on a number of levels. For example, TransportDB 2.0 includes tools that allow users to select annotated genomes of interest from the thousands of species held in the database and compare their complete transporter complements. PMID:27899676

  20. The Future for Curators

    Directory of Open Access Journals (Sweden)

    Elise Coralie Edwards

    2007-11-01

    Full Text Available The role of the curator has changed and is likely to change in the future. Current issues of postmodernism have affected their authority and status, by calling on new voices and narratives. Criticisms continue to be levelled at curators for failing to change communication through display and to maintain subject-based expertise, while new technology constantly increases both the demand for and the supply of information. A survey of curatorial jobs in the 'Museums Journal 'confirms that the level of skills and knowledge required of curators has decreased. These changes will continue, as in the future curators will be affected by changes in technology, new computerised applications and competition for funding.

  1. Curating a Mild Apocalypse

    DEFF Research Database (Denmark)

    Brichet, Nathalia Sofie; Hastrup, Frida

    2017-01-01

    On the basis of our exhibition “Mild Apocalypse. Feral Landscapes in Denmark” (2016) we discuss how we curated insights generated in a collaborative cross-disciplinary research project about a former mining site in Denmark. We approach this industrially disturbed and radically altered landscape......-based curating must follow suit by creating novel objects, thereby making exhibitions into provisional analyses and blurring conventional lines between art galleries and museums of cultural history....

  2. CBS Genome Atlas Database: a dynamic storage for bioinformatic results and sequence data

    DEFF Research Database (Denmark)

    Hallin, Peter Fischer; Ussery, David

    2004-01-01

    , these results counts to more than 220 pieces of information. The backbone of this solution consists of a program package written in Perl, which enables administrators to synchronize and update the database content. The MySQL database has been connected to the CBS web-server via PHP4, to present a dynamic web...... content for users outside the center. This solution is tightly fitted to existing server infrastructure and the solutions proposed here can perhaps serve as a template for other research groups to solve database issues....

  3. RegTransBase - A Database Of Regulatory Sequences and Interactionsin a Wide Range of Prokaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Alexei E.; Cipriano, Michael J.; Novichkov, Pavel S.; Minovitsky, Simon; Vinogradov, Dmitry V.; Arkin, Adam; Mironov, AndreyA.; Gelfand, Mikhail S.; Dubchak, Inna

    2006-07-01

    RegTransBase, a manually curated database of regulatoryinteractions in prokaryotes, captures the knowledge in publishedscientific literature using a controlled vocabulary. Although a number ofdatabases describing interactions between regulatory proteins and theirbinding sites are currently being maintained, they focus mostly on themodel organisms Escherichia coli and Bacillus subtilis, or are entirelycomputationally derived. RegTransBase describes a large number ofregulatory interactions reported in many organisms and contains varioustypes of experimental data, in particular: the activation or repressionof transcription by an identified direct regulator; determining thetranscriptional regulatory function of a protein (or RNA) directlybinding to DNA (RNA); mapping or prediction of binding site for aregulatory protein; characterization of regulatory mutations. Currently,the RegTransBase content is derived from about 3000 relevant articlesdescribing over 7000 experiments in relation to 128 microbes. It containsdata on the regulation of about 7500 genes and evidence for 6500interactions with 650 regulators. RegTransBase also contains manuallycreated position weight matrices (PWM) that can be used to identifycandidate regulatory sites in over 60 species. RegTransBase is availableat http://regtransbase.lbl.gov.

  4. Clarifying the biological significance of the CHK2 K373E somatic mutation discovered in The Cancer Genome Atlas database.

    Science.gov (United States)

    Higashiguchi, Masayoshi; Nagatomo, Izumi; Kijima, Takashi; Morimura, Osamu; Miyake, Kotaro; Minami, Toshiyuki; Koyama, Shohei; Hirata, Haruhiko; Iwahori, Kota; Takimoto, Takayuki; Takeda, Yoshito; Kida, Hiroshi; Kumanogoh, Atsushi

    2016-12-01

    We identified CHK2 K373E as a recurrent mutation in The Cancer Genome Atlas (TCGA) database. In this study, we demonstrate that the K373E mutation disrupts CHK2 autophosphorylation as well as kinase activity, thus leading to impairment of CHK2 functions in suppressing cell proliferation and promoting cell survival after ionizing radiation. We propose that K373E impairs p53-independent induction of p21(WAF)(1/)(CIP)(1) by CHK2. Our data implicate the K373E mutation of CHK2 in tumorigenesis. © 2016 Federation of European Biochemical Societies.

  5. PSSRdb: a relational database of polymorphic simple sequence repeats extracted from prokaryotic genomes

    OpenAIRE

    Kumar, Pankaj; Chaitanya, Pasumarthy S.; Nagarajaram, Hampapathalu A

    2010-01-01

    PSSRdb (Polymorphic Simple Sequence Repeats database) (http://www.cdfd.org.in/PSSRdb/) is a relational database of polymorphic simple sequence repeats (PSSRs) extracted from 85 different species of prokaryotes. Simple sequence repeats (SSRs) are the tandem repeats of nucleotide motifs of the sizes 1–6 bp and are highly polymorphic. SSR mutations in and around coding regions affect transcription and translation of genes. Such changes underpin phase variations and antigenic variations seen in s...

  6. A Genome-Wide Survey of the Microsatellite Content of the Globe Artichoke Genome and the Development of a Web-Based Database

    Science.gov (United States)

    Portis, Ezio; Portis, Flavio; Valente, Luisa; Moglia, Andrea; Barchi, Lorenzo; Lanteri, Sergio; Acquadro, Alberto

    2016-01-01

    The recently acquired genome sequence of globe artichoke (Cynara cardunculus var. scolymus) has been used to catalog the genome’s content of simple sequence repeat (SSR) markers. More than 177,000 perfect SSRs were revealed, equivalent to an overall density across the genome of 244.5 SSRs/Mbp, but some 224,000 imperfect SSRs were also identified. About 21% of these SSRs were complex (two stretches of repeats separated by <100 nt). Some 73% of the SSRs were composed of dinucleotide motifs. The SSRs were categorized for the numbers of repeats present, their overall length and were allocated to their linkage group. A total of 4,761 perfect and 6,583 imperfect SSRs were present in 3,781 genes (14.11% of the total), corresponding to an overall density across the gene space of 32,5 and 44,9 SSRs/Mbp for perfect and imperfect motifs, respectively. A putative function has been assigned, using the gene ontology approach, to the set of genes harboring at least one SSR. The same search parameters were applied to reveal the SSR content of 14 other plant species for which genome sequence is available. Certain species-specific SSR motifs were identified, along with a hexa-nucleotide motif shared only with the other two Compositae species (sunflower (Helianthus annuus) and horseweed (Conyza canadensis)) included in the study. Finally, a database, called “Cynara cardunculus MicroSatellite DataBase” (CyMSatDB) was developed to provide a searchable interface to the SSR data. CyMSatDB facilitates the retrieval of SSR markers, as well as suggested forward and reverse primers, on the basis of genomic location, genomic vs genic context, perfect vs imperfect repeat, motif type, motif sequence and repeat number. The SSR markers were validated via an in silico based PCR analysis adopting two available assembled transcriptomes, derived from contrasting globe artichoke accessions, as templates. PMID:27648830

  7. The Littorina sequence database (LSD)--an online resource for genomic data.

    Science.gov (United States)

    Canbäck, Björn; André, Carl; Galindo, Juan; Johannesson, Kerstin; Johansson, Tomas; Panova, Marina; Tunlid, Anders; Butlin, Roger

    2012-01-01

    We present an interactive, searchable expressed sequence tag database for the periwinkle snail Littorina saxatilis, an upcoming model species in evolutionary biology. The database is the result of a hybrid assembly between Sanger and 454 sequences, 1290 and 147,491 sequences respectively. Normalized and non-normalized cDNA was obtained from different ecotypes of L. saxatilis collected in the UK and Sweden. The Littorina sequence database (LSD) contains 26,537 different contigs, of which 2453 showed similarity with annotated proteins in UniProt. Querying the LSD permits the selection of the taxonomic origin of blast hits for each contig, and the search can be restricted to particular taxonomic groups. The database allows access to UniProt annotations, blast output, protein family domains (PFAM) and Gene Ontology. The database will allow users to search for genetic markers and identifying candidate genes or genes for expression analyses. It is open for additional deposition of sequence information for L. saxatilis and other species of the genus Littorina. The LSD is available at http://mbio-serv2.mbioekol.lu.se/Littorina/.

  8. Citrus sinensis annotation project (CAP): a comprehensive database for sweet orange genome.

    Science.gov (United States)

    Wang, Jia; Chen, Dijun; Lei, Yang; Chang, Ji-Wei; Hao, Bao-Hai; Xing, Feng; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Chen, Ling-Ling

    2014-01-01

    Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia), and constructed the Citrus sinensis annotation project (CAP) to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET) evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs) and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/.

  9. PREPACT 2.0: Predicting C-to-U and U-to-C RNA Editing in Organelle Genome Sequences with Multiple References and Curated RNA Editing Annotation

    OpenAIRE

    2013-01-01

    RNA editing is vast in some genetic systems, with up to thousands of targeted C-to-U and U-to-C substitutions in mitochondria and chloroplasts of certain plants. Efficient prognoses of RNA editing in organelle genomes will help to reveal overlooked cases of editing. We present PREPACT 2.0 (http://www.prepact.de) with numerous enhancements of our previously developed Plant RNA Editing Prediction & Analysis Computer Tool. Reference organelle transcriptomes for editing prediction have been exten...

  10. FGF: a web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) program...... to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF...... is freely available on a web server at http://fgf.genomics.org.cn/...

  11. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) program...... to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF...... is freely available on a web server at http://fgf.genomics.org.cn/...

  12. Constructing Data Curation Profiles

    Directory of Open Access Journals (Sweden)

    Michael Witt

    2009-12-01

    Full Text Available This paper presents a brief literature review and then introduces the methods, design, and construction of the Data Curation Profile, an instrument that can be used to provide detailed information on particular data forms that might be curated by an academic library. These data forms are presented in the context of the related sub-disciplinary research area, and they provide the flow of the research process from which these data are generated. The profiles also represent the needs for data curation from the perspective of the data producers, using their own language. As such, they support the exploration of data curation across different research domains in real and practical terms. With the sponsorship of the Institute of Museum and Library Services, investigators from Purdue University and the University of Illinois interviewed 19 faculty subjects to identify needs for discovery, access, preservation, and reuse of their research data. For each subject, a profile was constructed that includes information about his or her general research, data forms and stages, value of data, data ingest, intellectual property, organization and description of data, tools, interoperability, impact and prestige, data management, and preservation. Each profile also presents a specific dataset supplied by the subject to serve as a concrete example. The Data Curation Profiles are being published to a public wiki for questions and discussion, and a blank template will be disseminated with guidelines for others to create and share their own profiles. This study was conducted primarily from the viewpoint of librarians interacting with faculty researchers; however, it is expected that these findings will complement a wide variety of data curation research and practice outside of librarianship and the university environment.

  13. Sequence Collection - TMBETA-GENOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available English ]; } else { document.getElementById(lang).innerHTML= '[ Japanese | English ]'; } } window.onload = ...ane protein predictions. For a genome that have multiple chromosomes, the entry set for each chormosome is g...aryota) Organism Name Name of the organism. Chromosome number is added to the name if the organism has multiple chromo

  14. Bridging the gap between Big Genome Data Analysis and Database Management Systems

    NARCIS (Netherlands)

    Cijvat, C.P.

    2014-01-01

    The bioinformatics field has encountered a data deluge over the last years, due to in- creasing speed and decreasing cost of DNA sequencing technology. Today, sequencing the DNA of a single genome only takes about a week, and it can result in up to a ter- abyte of data. The sequencing data are usual

  15. Genome mapping data table of Drosophila GAL4 enhancer trap lines (Clone List) - GETDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available GETDB Genome mapping data table of Drosophila GAL4 enhancer trap lines (Clone List) Data detail Data name Ge...nome mapping data table of Drosophila GAL4 enhancer trap lines (Clone List) Description of data contents A t...able showing the insert position of the Drosophila GAL4 enhancer trap element and...iption Clone Name Name of the clone of the genome sequence adjacent to the 5'-end of the Drosophila GAL4 enhancer trap...date History of This Database Site Policy | Contact Us Genome mapping data table of Drosophila GAL4 enhancer trap lines (Clone List) - GETDB | LSDB Archive ...

  16. Citrus sinensis annotation project (CAP: a comprehensive database for sweet orange genome.

    Directory of Open Access Journals (Sweden)

    Jia Wang

    Full Text Available Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia, and constructed the Citrus sinensis annotation project (CAP to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/.

  17. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Denoeud France

    2001-03-01

    Full Text Available Abstract Background Some pathogenic bacteria are genetically very homogeneous, making strain discrimination difficult. In the last few years, tandem repeats have been increasingly recognized as markers of choice for genotyping a number of pathogens. The rapid evolution of these structures appears to contribute to the phenotypic flexibility of pathogens. The availability of whole-genome sequences has opened the way to the systematic evaluation of tandem repeats diversity and application to epidemiological studies. Results This report presents a database (http://minisatellites.u-psud.fr of tandem repeats from publicly available bacterial genomes which facilitates the identification and selection of tandem repeats. We illustrate the use of this database by the characterization of minisatellites from two important human pathogens, Yersinia pestis and Bacillus anthracis. In order to avoid simple sequence contingency loci which may be of limited value as epidemiological markers, and to provide genotyping tools amenable to ordinary agarose gel electrophoresis, only tandem repeats with repeat units at least 9 bp long were evaluated. Yersinia pestis contains 64 such minisatellites in which the unit is repeated at least 7 times. An additional collection of 12 loci with at least 6 units, and a high internal conservation were also evaluated. Forty-nine are polymorphic among five Yersinia strains (twenty-five among three Y. pestis strains. Bacillus anthracis contains 30 comparable structures in which the unit is repeated at least 10 times. Half of these tandem repeats show polymorphism among the strains tested. Conclusions Analysis of the currently available bacterial genome sequences classifies Bacillus anthracis and Yersinia pestis as having an average (approximately 30 per Mb density of tandem repeat arrays longer than 100 bp when compared to the other bacterial genomes analysed to date. In both cases, testing a fraction of these sequences for

  18. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF......Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) program...

  19. Large-scale compression of genomic sequence databases with the Burrows-Wheeler transform

    CERN Document Server

    Cox, Anthony J; Jakobi, Tobias; Rosone, Giovanna

    2012-01-01

    Motivation The Burrows-Wheeler transform (BWT) is the foundation of many algorithms for compression and indexing of text data, but the cost of computing the BWT of very large string collections has prevented these techniques from being widely applied to the large sets of sequences often encountered as the outcome of DNA sequencing experiments. In previous work, we presented a novel algorithm that allows the BWT of human genome scale data to be computed on very moderate hardware, thus enabling us to investigate the BWT as a tool for the compression of such datasets. Results We first used simulated reads to explore the relationship between the level of compression and the error rate, the length of the reads and the level of sampling of the underlying genome and compare choices of second-stage compression algorithm. We demonstrate that compression may be greatly improved by a particular reordering of the sequences in the collection and give a novel `implicit sorting' strategy that enables these benefits to be re...

  20. The New Genomics: What Molecular Databases Can Tell Us About Human Population Variation and Endocrine Disease.

    Science.gov (United States)

    Rotwein, Peter

    2017-07-01

    Major recent advances in genetics and genomics present unique opportunities for enhancing our understanding of human physiology and disease predisposition. Here I demonstrate how analysis of genomic information can provide new insights into endocrine systems, using the human growth hormone (GH) signaling pathway as an illustrative example. GH is essential for normal postnatal growth in children, and plays important roles in other biological processes throughout life. GH actions are mediated by the GH receptor, primarily via the JAK2 protein tyrosine kinase and the STAT5B transcription factor, and inactivating mutations in this pathway all lead to impaired somatic growth. Variation in GH signaling genes has been evaluated using DNA sequence data from the Exome Aggregation Consortium, a compendium of information from >60,000 individuals. Results reveal many potential missense and other alterations in the coding regions of GH1, GHR, JAK2, and STAT5B, with most changes being uncommon. The total number of different alleles per gene varied by ~threefold, from 101 for GH1 to 338 for JAK2. Several known disease-linked mutations in GH1, GHR, and JAK2 were present but infrequent in the population; however, three amino acid changes in GHR were sufficiently prevalent (~4% to 44% of chromosomes) to suggest that they are not disease causing. Collectively, these data provide new opportunities to understand how genetically driven variability in GH signaling and action may modify human physiology and disease. Copyright © 2017 Endocrine Society.

  1. Curating NASA's Past, Present, and Future Astromaterial Sample Collections

    Science.gov (United States)

    Zeigler, R. A.; Allton, J. H.; Evans, C. A.; Fries, M. D.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.; Zolensky, M.; Stansbery, E. K.

    2016-01-01

    The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (hereafter JSC curation) is responsible for curating all of NASA's extraterrestrial samples. JSC presently curates 9 different astromaterials collections in seven different clean-room suites: (1) Apollo Samples (ISO (International Standards Organization) class 6 + 7); (2) Antarctic Meteorites (ISO 6 + 7); (3) Cosmic Dust Particles (ISO 5); (4) Microparticle Impact Collection (ISO 7; formerly called Space-Exposed Hardware); (5) Genesis Solar Wind Atoms (ISO 4); (6) Stardust Comet Particles (ISO 5); (7) Stardust Interstellar Particles (ISO 5); (8) Hayabusa Asteroid Particles (ISO 5); (9) OSIRIS-REx Spacecraft Coupons and Witness Plates (ISO 7). Additional cleanrooms are currently being planned to house samples from two new collections, Hayabusa 2 (2021) and OSIRIS-REx (2023). In addition to the labs that house the samples, we maintain a wide variety of infra-structure facilities required to support the clean rooms: HEPA-filtered air-handling systems, ultrapure dry gaseous nitrogen systems, an ultrapure water system, and cleaning facilities to provide clean tools and equipment for the labs. We also have sample preparation facilities for making thin sections, microtome sections, and even focused ion-beam sections. We routinely monitor the cleanliness of our clean rooms and infrastructure systems, including measurements of inorganic or organic contamination, weekly airborne particle counts, compositional and isotopic monitoring of liquid N2 deliveries, and daily UPW system monitoring. In addition to the physical maintenance of the samples, we track within our databases the current and ever changing characteristics (weight, location, etc.) of more than 250,000 individually numbered samples across our various collections, as well as more than 100,000 images, and countless "analog" records that record the sample processing records of each individual sample. JSC Curation is co-located with JSC

  2. The BioGRID interaction database: 2013 update.

    Science.gov (United States)

    Chatr-Aryamontri, Andrew; Breitkreutz, Bobby-Joe; Heinicke, Sven; Boucher, Lorrie; Winter, Andrew; Stark, Chris; Nixon, Julie; Ramage, Lindsay; Kolas, Nadine; O'Donnell, Lara; Reguly, Teresa; Breitkreutz, Ashton; Sellam, Adnane; Chen, Daici; Chang, Christie; Rust, Jennifer; Livstone, Michael; Oughtred, Rose; Dolinski, Kara; Tyers, Mike

    2013-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: http//thebiogrid.org) is an open access archive of genetic and protein interactions that are curated from the primary biomedical literature for all major model organism species. As of September 2012, BioGRID houses more than 500 000 manually annotated interactions from more than 30 model organisms. BioGRID maintains complete curation coverage of the literature for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the model plant Arabidopsis thaliana. A number of themed curation projects in areas of biomedical importance are also supported. BioGRID has established collaborations and/or shares data records for the annotation of interactions and phenotypes with most major model organism databases, including Saccharomyces Genome Database, PomBase, WormBase, FlyBase and The Arabidopsis Information Resource. BioGRID also actively engages with the text-mining community to benchmark and deploy automated tools to expedite curation workflows. BioGRID data are freely accessible through both a user-defined interactive interface and in batch downloads in a wide variety of formats, including PSI-MI2.5 and tab-delimited files. BioGRID records can also be interrogated and analyzed with a series of new bioinformatics tools, which include a post-translational modification viewer, a graphical viewer, a REST service and a Cytoscape plugin.

  3. The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Teixeira, Miguel Cacho; Monteiro, Pedro Tiago; Guerreiro, Joana Fernandes; Gonçalves, Joana Pinho; Mira, Nuno Pereira; dos Santos, Sandra Costa; Cabrito, Tânia Rodrigues; Palma, Margarida; Costa, Catarina; Francisco, Alexandre Paulo; Madeira, Sara Cordeiro; Oliveira, Arlindo Limede; Freitas, Ana Teresa; Sá-Correia, Isabel

    2014-01-01

    The YEASTRACT (http://www.yeastract.com) information system is a tool for the analysis and prediction of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in June 2013, this database contains over 200,000 regulatory associations between transcription factors (TFs) and target genes, including 326 DNA binding sites for 113 TFs. All regulatory associations stored in YEASTRACT were revisited and new information was added on the experimental conditions in which those associations take place and on whether the TF is acting on its target genes as activator or repressor. Based on this information, new queries were developed allowing the selection of specific environmental conditions, experimental evidence or positive/negative regulatory effect. This release further offers tools to rank the TFs controlling a gene or genome-wide response by their relative importance, based on (i) the percentage of target genes in the data set; (ii) the enrichment of the TF regulon in the data set when compared with the genome; or (iii) the score computed using the TFRank system, which selects and prioritizes the relevant TFs by walking through the yeast regulatory network. We expect that with the new data and services made available, the system will continue to be instrumental for yeast biologists and systems biology researchers.

  4. Functional role of bacteriophage transfer RNAs: codon usage analysis of genomic sequences stored in the GENBANK/EMBL/DDBJ databases

    Directory of Open Access Journals (Sweden)

    T Kunisawa

    2006-01-01

    Full Text Available Complete genomic sequence data are stored in the public GenBank/EMBL/DDBJ databases so that any investigator can make use of the data. This report describes a comparative analysis of codon usage that is impossible without such a public and open data system. A limited number of bacteriophages harbor their own transfer RNAs. Based on a comparison between T4 phage-encoded tRNA species and the relative cellular amounts of host Escherichia coli tRNAs, it is hypothesized that T4 tRNAs could serve to supplement host isoacceptor tRNA species that are present in minor amounts and thus enhance the translational efficiency of phage proteins. When compared to their respective host bacteria, the codon usage data of bacteriophages D3, φC31, HP1, D29 and 933W all show an increased frequency of synonymous codons or amino acids that correspond to phage tRNA species, suggesting their supplemental role in the efficient production of phage proteins. The data-analysis presents an example in which the availability of an open and fully accessible database system would allow one to obtain comprehensive insights into a fundamental problem in molecular biology.

  5. The DCC Curation Lifecycle Model

    Directory of Open Access Journals (Sweden)

    Sarah Higgins

    2008-08-01

    Full Text Available Lifecycle management of digital materials is necessary to ensure their continuity. The DCC Curation Lifecycle Model has been developed as a generic, curation-specific, tool which can be used, in conjunction with relevant standards, to plan curation and preservation activities to different levels of granularity. The DCC will use the model: as a training tool for data creators, data curators and data users; to organise and plan their resources; and to help organisations identify risks to their digital assets and plan management strategies for their successful curation.

  6. Screen Practice in Curating

    DEFF Research Database (Denmark)

    Toft, Tanya Søndergaard

    2014-01-01

    During the past one and a half decade, a curatorial orientation towards "screen practice" has expanded the moving image and digital art into the public domain, exploring alternative artistic uses of the screen. The emergence of urban LED screens in the late 1990s provided a new venue that allowed...... for digital art to expand into public space. It also offered a political point of departure, inviting for confrontation with the Spectacle and with the politics and ideology of the screen as a mass communication medium that instrumentalized spectator positions. In this article I propose that screen practice...... to the dispositif of screen practice in curating, resulting in a medium-based curatorial discourse. With reference to the nomadic exhibition project Nordic Outbreak that I co-curated with Nina Colosi in 2013 and 2014, I suggest that the topos of the defined visual display area, frequently still known as "the screen...

  7. Curating Gothic Nightmares

    Directory of Open Access Journals (Sweden)

    Heather Tilley

    2007-10-01

    Full Text Available This review takes the occasion of a workshop given by Martin Myrone, curator of Gothic Nightmares: Fuseli, Blake, and the Romantic Imagination (Tate Britain, 2006 as a starting point to reflect on the practice of curating, and its relation to questions of the verbal and the visual in contemporary art historical practice. The exhibition prompted an engagement with questions of the genre of Gothic, through a dramatic display of the differences between ‘the Gothic' in literature and ‘the Gothic' in the visual arts within eighteenth- and early nineteenth-century culture. I also address the various ways in which 'the Gothic' was interpreted and reinscribed by visitors, especially those who dressed up for the exhibition. Finally, I consider some of the show's ‘marginalia' (specifically the catalogue, exploring the ways in which these extra events and texts shaped, and continue to shape, the cultural effect of the exhibition.

  8. Digital Curation and Doctoral Research

    Directory of Open Access Journals (Sweden)

    Daisy Abbott

    2015-02-01

    Full Text Available This article considers digital curation in doctoral study and the role of the doctoral supervisor and institution in facilitating students’ acquisition of digital curation skills, including some of the potentially problematic expectations of the supervisory relationship with regards to digital curation. Research took the form of an analysis of the current digital curation training landscape, focussing on doctoral study and supervision. This was followed by a survey (n=116 investigating attitudes towards importance, expertise, and responsibilities regarding digital curation. This research confirms that digital curation is considered to be very important within doctoral study but that doctoral supervisors and particularly students consider themselves to be largely unskilled at curation tasks. It provides a detailed picture of curation activity within doctoral study and identifies the areas of most concern. A detailed analysis demonstrates that most of the responsibility for curation is thought to lie with students and that institutions are perceived to have very low responsibility and that individuals tend to over-assign responsibility to themselves. Finally, the research identifies which types of support system for curation are most used and makes suggestions for ways in which students, supervisors, institutions, and others can effectively and efficiently address problematic areas and improve digital curation within doctoral study.

  9. Assisted curation of regulatory interactions and growth conditions of OxyR in E. coli K-12.

    Science.gov (United States)

    Gama-Castro, Socorro; Rinaldi, Fabio; López-Fuentes, Alejandra; Balderas-Martínez, Yalbi Itzel; Clematide, Simon; Ellendorff, Tilia Renate; Santos-Zavaleta, Alberto; Marques-Madeira, Hernani; Collado-Vides, Julio

    2014-01-01

    Given the current explosion of data within original publications generated in the field of genomics, a recognized bottleneck is the transfer of such knowledge into comprehensive databases. We have for years organized knowledge on transcriptional regulation reported in the original literature of Escherichia coli K-12 into RegulonDB (http://regulondb.ccg.unam.mx), our database that is currently supported by >5000 papers. Here, we report a first step towards the automatic biocuration of growth conditions in this corpus. Using the OntoGene text-mining system (http://www.ontogene.org), we extracted and manually validated regulatory interactions and growth conditions in a new approach based on filters that enable the curator to select informative sentences from preprocessed full papers. Based on a set of 48 papers dealing with oxidative stress by OxyR, we were able to retrieve 100% of the OxyR regulatory interactions present in RegulonDB, including the transcription factors and their effect on target genes. Our strategy was designed to extract, as we did, their growth conditions. This result provides a proof of concept for a more direct and efficient curation process, and enables us to define the strategy of the subsequent steps to be implemented for a semi-automatic curation of original literature dealing with regulation of gene expression in bacteria. This project will enhance the efficiency and quality of the curation of knowledge present in the literature of gene regulation, and contribute to a significant increase in the encoding of the regulatory network of E. coli. RegulonDB Database URL: http://regulondb.ccg.unam.mx OntoGene URL: http://www.ontogene.org.

  10. AgBase: a functional genomics resource for agriculture

    Directory of Open Access Journals (Sweden)

    Hill David P

    2006-09-01

    Full Text Available Abstract Background Many agricultural species and their pathogens have sequenced genomes and more are in progress. Agricultural species provide food, fiber, xenotransplant tissues, biopharmaceuticals and biomedical models. Moreover, many agricultural microorganisms are human zoonoses. However, systems biology from functional genomics data is hindered in agricultural species because agricultural genome sequences have relatively poor structural and functional annotation and agricultural research communities are smaller with limited funding compared to many model organism communities. Description To facilitate systems biology in these traditionally agricultural species we have established "AgBase", a curated, web-accessible, public resource http://www.agbase.msstate.edu for structural and functional annotation of agricultural genomes. The AgBase database includes a suite of computational tools to use GO annotations. We use standardized nomenclature following the Human Genome Organization Gene Nomenclature guidelines and are currently functionally annotating chicken, cow and sheep gene products using the Gene Ontology (GO. The computational tools we have developed accept and batch process data derived from different public databases (with different accession codes, return all existing GO annotations, provide a list of products without GO annotation, identify potential orthologs, model functional genomics data using GO and assist proteomics analysis of ESTs and EST assemblies. Our journal database helps prevent redundant manual GO curation. We encourage and publicly acknowledge GO annotations from researchers and provide a service for researchers interested in GO and analysis of functional genomics data. Conclusion The AgBase database is the first database dedicated to functional genomics and systems biology analysis for agriculturally important species and their pathogens. We use experimental data to improve structural annotation of genomes and to

  11. Curation of complex, context-dependent immunological data

    Directory of Open Access Journals (Sweden)

    Sidney John

    2006-07-01

    Full Text Available Abstract Background The Immune Epitope Database and Analysis Resource (IEDB is dedicated to capturing, housing and analyzing complex immune epitope related data http://www.immuneepitope.org. Description To identify and extract relevant data from the scientific literature in an efficient and accurate manner, novel processes were developed for manual and semi-automated annotation. Conclusion Formalized curation strategies enable the processing of a large volume of context-dependent data, which are now available to the scientific community in an accessible and transparent format. The experiences described herein are applicable to other databases housing complex biological data and requiring a high level of curation expertise.

  12. Text Mining to Support Gene Ontology Curation and Vice Versa.

    Science.gov (United States)

    Ruch, Patrick

    2017-01-01

    In this chapter, we explain how text mining can support the curation of molecular biology databases dealing with protein functions. We also show how curated data can play a disruptive role in the developments of text mining methods. We review a decade of efforts to improve the automatic assignment of Gene Ontology (GO) descriptors, the reference ontology for the characterization of genes and gene products. To illustrate the high potential of this approach, we compare the performances of an automatic text categorizer and show a large improvement of +225 % in both precision and recall on benchmarked data. We argue that automatic text categorization functions can ultimately be embedded into a Question-Answering (QA) system to answer questions related to protein functions. Because GO descriptors can be relatively long and specific, traditional QA systems cannot answer such questions. A new type of QA system, so-called Deep QA which uses machine learning methods trained with curated contents, is thus emerging. Finally, future advances of text mining instruments are directly dependent on the availability of high-quality annotated contents at every curation step. Databases workflows must start recording explicitly all the data they curate and ideally also some of the data they do not curate.

  13. The PIR integrated protein databases and data retrieval system

    Directory of Open Access Journals (Sweden)

    H Huang

    2006-01-01

    Full Text Available The Protein Information Resource (PIR provides many databases and tools to support genomic and proteomic research. PIR is a member of UniProt—Universal Protein Resource—the central repository of protein sequence and function, which maintains UniProt Knowledgebase with extensively curated annotation, UniProt Reference databases to speed sequence searches, and UniProt Archive to reflect sequence history. PIR also provides PIRSF family classification system based on evolutionary relationships of full-length proteins, and iProClass integrated database of protein family, function, and structure. These databases are easily accessible from PIR web site using a centralized data retrieval system for information retrieval and knowledge discovery.

  14. Reconstruction of metabolic pathways for the cattle genome.

    Science.gov (United States)

    Seo, Seongwon; Lewin, Harris A

    2009-03-12

    Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement. An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1) as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly. CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology.

  15. Reconstruction of metabolic pathways for the cattle genome

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2009-03-01

    Full Text Available Abstract Background Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement. Results An amalgamated cattle genome database was created using the NCBI and Ensembl cattle genome databases (based on build 3.1 as data sources. PathwayTools was used to create a cattle-specific pathway genome database, which was followed by comprehensive manual curation for the reconstruction of metabolic pathways. The curated database, CattleCyc 1.0, consists of 217 metabolic pathways. A total of 64 mammalian-specific metabolic pathways were modified from the reference pathways in MetaCyc, and two pathways previously identified but missing from MetaCyc were added. Comparative analysis of metabolic pathways revealed the absence of mammalian genes for 22 metabolic enzymes whose activity was reported in the literature. We also identified six human metabolic protein-coding genes for which the cattle ortholog is missing from the sequence assembly. Conclusion CattleCyc is a powerful tool for understanding the biology of ruminants and other cetartiodactyl species. In addition, the approach used to develop CattleCyc provides a framework for the metabolic reconstruction of other newly sequenced mammalian genomes. It is clear that metabolic pathway analysis strongly reflects the quality of the underlying genome annotations. Thus, having well-annotated genomes from many mammalian species hosted in BioCyc will facilitate the comparative analysis of metabolic pathways among different species and a systems approach to comparative physiology.

  16. Cas-Database: web-based genome-wide guide RNA library design for gene knockout screens using CRISPR-Cas9.

    Science.gov (United States)

    Park, Jeongbin; Kim, Jin-Soo; Bae, Sangsu

    2016-07-01

    CRISPR-derived RNA guided endonucleases (RGENs) have been widely used for both gene knockout and knock-in at the level of single or multiple genes. RGENs are now available for forward genetic screens at genome scale, but single guide RNA (sgRNA) selection at this scale is difficult. We develop an online tool, Cas-Database, a genome-wide gRNA library design tool for Cas9 nucleases from Streptococcus pyogenes (SpCas9). With an easy-to-use web interface, Cas-Database allows users to select optimal target sequences simply by changing the filtering conditions. Furthermore, it provides a powerful way to select multiple optimal target sequences from thousands of genes at once for the creation of a genome-wide library. Cas-Database also provides a web application programming interface (web API) for advanced bioinformatics users. Free access at http://www.rgenome.net/cas-database/ sangsubae@hanyang.ac.kr or jskim01@snu.ac.kr Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  17. Curation and Computational Design of Bioenergy-Related Metabolic Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Peter D. [SRI International, Menlo Park, CA (United States)

    2014-09-12

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manually curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds

  18. BGDB: a database of bivalent genes.

    Science.gov (United States)

    Li, Qingyan; Lian, Shuabin; Dai, Zhiming; Xiang, Qian; Dai, Xianhua

    2013-01-01

    Bivalent gene is a gene marked with both H3K4me3 and H3K27me3 epigenetic modification in the same area, and is proposed to play a pivotal role related to pluripotency in embryonic stem (ES) cells. Identification of these bivalent genes and understanding their functions are important for further research of lineage specification and embryo development. So far, lots of genome-wide histone modification data were generated in mouse and human ES cells. These valuable data make it possible to identify bivalent genes, but no comprehensive data repositories or analysis tools are available for bivalent genes currently. In this work, we develop BGDB, the database of bivalent genes. The database contains 6897 bivalent genes in human and mouse ES cells, which are manually collected from scientific literature. Each entry contains curated information, including genomic context, sequences, gene ontology and other relevant information. The web services of BGDB database were implemented with PHP + MySQL + JavaScript, and provide diverse query functions. Database URL: http://dailab.sysu.edu.cn/bgdb/

  19. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine.

    Science.gov (United States)

    Stenson, Peter D; Mort, Matthew; Ball, Edward V; Shaw, Katy; Phillips, Andrew; Cooper, David N

    2014-01-01

    The Human Gene Mutation Database (HGMD®) is a comprehensive collection of germline mutations in nuclear genes that underlie, or are associated with, human inherited disease. By June 2013, the database contained over 141,000 different lesions detected in over 5,700 different genes, with new mutation entries currently accumulating at a rate exceeding 10,000 per annum. HGMD was originally established in 1996 for the scientific study of mutational mechanisms in human genes. However, it has since acquired a much broader utility as a central unified disease-oriented mutation repository utilized by human molecular geneticists, genome scientists, molecular biologists, clinicians and genetic counsellors as well as by those specializing in biopharmaceuticals, bioinformatics and personalized genomics. The public version of HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions/non-profit organizations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via BIOBASE GmbH.

  20. DCC&U: An Extended Digital Curation Lifecycle Model

    Directory of Open Access Journals (Sweden)

    Panos Constantopoulos

    2009-06-01

    Full Text Available Normal 0 The proliferation of Web, database and social networking technologies has enabled us to produce, publish and exchange digital assets at an enormous rate. This vast amount of information that is either digitized or born-digital needs to be collected, organized and preserved in a way that ensures that our digital assets and the information they carry remain available for future use. Digital curation has emerged as a new inter-disciplinary practice that seeks to set guidelines for disciplined management of information. In this paper we review two recent models for digital curation introduced by the Digital Curation Centre (DCC and the Digital Curation Unit (DCU of the Athena Research Centre. We then propose a fusion of the two models that highlights the need to extend the digital curation lifecycle by adding (a provisions for the registration of usage experience, (b a stage for knowledge enhancement and (c controlled vocabularies used by convention to denote concepts, properties and relations. The objective of the proposed extensions is twofold: (i to provide a more complete lifecycle model for the digital curation domain; and (ii to provide a stimulus for a broader discussion on the research agenda.

  1. Natural Language Processing in aid of FlyBase curators

    Directory of Open Access Journals (Sweden)

    Karamanis Nikiforos

    2008-04-01

    Full Text Available Abstract Background Despite increasing interest in applying Natural Language Processing (NLP to biomedical text, whether this technology can facilitate tasks such as database curation remains unclear. Results PaperBrowser is the first NLP-powered interface that was developed under a user-centered approach to improve the way in which FlyBase curators navigate an article. In this paper, we first discuss how observing curators at work informed the design and evaluation of PaperBrowser. Then, we present how we appraise PaperBrowser's navigational functionalities in a user-based study using a text highlighting task and evaluation criteria of Human-Computer Interaction. Our results show that PaperBrowser reduces the amount of interactions between two highlighting events and therefore improves navigational efficiency by about 58% compared to the navigational mechanism that was previously available to the curators. Moreover, PaperBrowser is shown to provide curators with enhanced navigational utility by over 74% irrespective of the different ways in which they highlight text in the article. Conclusion We show that state-of-the-art performance in certain NLP tasks such as Named Entity Recognition and Anaphora Resolution can be combined with the navigational functionalities of PaperBrowser to support curation quite successfully.

  2. Characterization of new Schistosoma mansoni microsatellite loci in sequences obtained from public DNA databases and microsatellite enriched genomic libraries

    Directory of Open Access Journals (Sweden)

    Rodrigues NB

    2002-01-01

    Full Text Available In the last decade microsatellites have become one of the most useful genetic markers used in a large number of organisms due to their abundance and high level of polymorphism. Microsatellites have been used for individual identification, paternity tests, forensic studies and population genetics. Data on microsatellite abundance comes preferentially from microsatellite enriched libraries and DNA sequence databases. We have conducted a search in GenBank of more than 16,000 Schistosoma mansoni ESTs and 42,000 BAC sequences. In addition, we obtained 300 sequences from CA and AT microsatellite enriched genomic libraries. The sequences were searched for simple repeats using the RepeatMasker software. Of 16,022 ESTs, we detected 481 (3% sequences that contained 622 microsatellites (434 perfect, 164 imperfect and 24 compounds. Of the 481 ESTs, 194 were grouped in 63 clusters containing 2 to 15 ESTs per cluster. Polymorphisms were observed in 16 clusters. The 287 remaining ESTs were orphan sequences. Of the 42,017 BAC end sequences, 1,598 (3.8% contained microsatellites (2,335 perfect, 287 imperfect and 79 compounds. The 1,598 BAC end sequences 80 were grouped into 17 clusters containing 3 to 17 BAC end sequences per cluster. Microsatellites were present in 67 out of 300 sequences from microsatellite enriched libraries (55 perfect, 38 imperfect and 15 compounds. From all of the observed loci 55 were selected for having the longest perfect repeats and flanking regions that allowed the design of primers for PCR amplification. Additionally we describe two new polymorphic microsatellite loci.

  3. Characterization of new Schistosoma mansoni microsatellite loci in sequences obtained from public DNA databases and microsatellite enriched genomic libraries.

    Science.gov (United States)

    Rodrigues, N B; Loverde, P T; Romanha, A J; Oliveira, G

    2002-01-01

    In the last decade microsatellites have become one of the most useful genetic markers used in a large number of organisms due to their abundance and high level of polymorphism. Microsatellites have been used for individual identification, paternity tests, forensic studies and population genetics. Data on microsatellite abundance comes preferentially from microsatellite enriched libraries and DNA sequence databases. We have conducted a search in GenBank of more than 16,000 Schistosoma mansoni ESTs and 42,000 BAC sequences. In addition, we obtained 300 sequences from CA and AT microsatellite enriched genomic libraries. The sequences were searched for simple repeats using the RepeatMasker software. Of 16,022 ESTs, we detected 481 (3%) sequences that contained 622 microsatellites (434 perfect, 164 imperfect and 24 compounds). Of the 481 ESTs, 194 were grouped in 63 clusters containing 2 to 15 ESTs per cluster. Polymorphisms were observed in 16 clusters. The 287 remaining ESTs were orphan sequences. Of the 42,017 BAC end sequences, 1,598 (3.8%) contained microsatellites (2,335 perfect, 287 imperfect and 79 compounds). The 1,598 BAC end sequences 80 were grouped into 17 clusters containing 3 to 17 BAC end sequences per cluster. Microsatellites were present in 67 out of 300 sequences from microsatellite enriched libraries (55 perfect, 38 imperfect and 15 compounds). From all of the observed loci 55 were selected for having the longest perfect repeats and flanking regions that allowed the design of primers for PCR amplification. Additionally we describe two new polymorphic microsatellite loci.

  4. Final Technical Report on the Genome Sequence DataBase (GSDB): DE-FG03 95 ER 62062 September 1997-September 1999

    Energy Technology Data Exchange (ETDEWEB)

    Harger, Carol A.

    1999-10-28

    Since September 1997 NCGR has produced two web-based tools for researchers to use to access and analyze data in the Genome Sequence DataBase (GSDB). These tools are: Sequence Viewer, a nucleotide sequence and annotation visualization tool, and MAR-Finder, a tool that predicts, base upon statistical inferences, the location of matrix attachment regions (MARS) within a nucleotide sequence. [The annual report for June 1996 to August 1997 is included as an attachment to this final report.

  5. Strategies towards digital and semi-automated curation in RegulonDB.

    Science.gov (United States)

    Rinaldi, Fabio; Lithgow, Oscar; Gama-Castro, Socorro; Solano, Hilda; Lopez, Alejandra; Muñiz Rascado, Luis José; Ishida-Gutiérrez, Cecilia; Méndez-Cruz, Carlos-Francisco; Collado-Vides, Julio

    2017-01-01

    Experimentally generated biological information needs to be organized and structured in order to become meaningful knowledge. However, the rate at which new information is being published makes manual curation increasingly unable to cope. Devising new curation strategies that leverage upon data mining and text analysis is, therefore, a promising avenue to help life science databases to cope with the deluge of novel information. In this article, we describe the integration of text mining technologies in the curation pipeline of the RegulonDB database, and discuss how the process can enhance the productivity of the curators. Specifically, a named entity recognition approach is used to pre-annotate terms referring to a set of domain entities which are potentially relevant for the curation process. The annotated documents are presented to the curator, who, thanks to a custom-designed interface, can select sentences containing specific types of entities, thus restricting the amount of text that needs to be inspected. Additionally, a module capable of computing semantic similarity between sentences across the entire collection of articles to be curated is being integrated in the system. We tested the module using three sets of scientific articles and six domain experts. All these improvements are gradually enabling us to obtain a high throughput curation process with the same quality as manual curation. © The Author 2017. Published by Oxford University Press.

  6. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy.

    Science.gov (United States)

    Pruitt, Kim D; Tatusova, Tatiana; Brown, Garth R; Maglott, Donna R

    2012-01-01

    The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of genomic, transcript and protein sequence records. These records are selected and curated from public sequence archives and represent a significant reduction in redundancy compared to the volume of data archived by the International Nucleotide Sequence Database Collaboration. The database includes over 16,00 organisms, 2.4 × 0(6) genomic records, 13 × 10(6) proteins and 2 × 10(6) RNA records spanning prokaryotes, eukaryotes and viruses (RefSeq release 49, September 2011). The RefSeq database is maintained by a combined approach of automated analyses, collaboration and manual curation to generate an up-to-date representation of the sequence, its features, names and cross-links to related sources of information. We report here on recent growth, the status of curating the human RefSeq data set, more extensive feature annotation and current policy for eukaryotic genome annotation via the NCBI annotation pipeline. More information about the resource is available online (see http://www.ncbi.nlm.nih.gov/RefSeq/).

  7. HCVpro: Hepatitis C virus protein interaction database

    KAUST Repository

    Kwofie, Samuel K.

    2011-12-01

    It is essential to catalog characterized hepatitis C virus (HCV) protein-protein interaction (PPI) data and the associated plethora of vital functional information to augment the search for therapies, vaccines and diagnostic biomarkers. In furtherance of these goals, we have developed the hepatitis C virus protein interaction database (HCVpro) by integrating manually verified hepatitis C virus-virus and virus-human protein interactions curated from literature and databases. HCVpro is a comprehensive and integrated HCV-specific knowledgebase housing consolidated information on PPIs, functional genomics and molecular data obtained from a variety of virus databases (VirHostNet, VirusMint, HCVdb and euHCVdb), and from BIND and other relevant biology repositories. HCVpro is further populated with information on hepatocellular carcinoma (HCC) related genes that are mapped onto their encoded cellular proteins. Incorporated proteins have been mapped onto Gene Ontologies, canonical pathways, Online Mendelian Inheritance in Man (OMIM) and extensively cross-referenced to other essential annotations. The database is enriched with exhaustive reviews on structure and functions of HCV proteins, current state of drug and vaccine development and links to recommended journal articles. Users can query the database using specific protein identifiers (IDs), chromosomal locations of a gene, interaction detection methods, indexed PubMed sources as well as HCVpro, BIND and VirusMint IDs. The use of HCVpro is free and the resource can be accessed via http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/. © 2011 Elsevier B.V.

  8. The NCBI Taxonomy database.

    Science.gov (United States)

    Federhen, Scott

    2012-01-01

    The NCBI Taxonomy database (http://www.ncbi.nlm.nih.gov/taxonomy) is the standard nomenclature and classification repository for the International Nucleotide Sequence Database Collaboration (INSDC), comprising the GenBank, ENA (EMBL) and DDBJ databases. It includes organism names and taxonomic lineages for each of the sequences represented in the INSDC's nucleotide and protein sequence databases. The taxonomy database is manually curated by a small group of scientists at the NCBI who use the current taxonomic literature to maintain a phylogenetic taxonomy for the source organisms represented in the sequence databases. The taxonomy database is a central organizing hub for many of the resources at the NCBI, and provides a means for clustering elements within other domains of NCBI web site, for internal linking between domains of the Entrez system and for linking out to taxon-specific external resources on the web. Our primary purpose is to index the domain of sequences as conveniently as possible for our user community.

  9. Construction of an Ostrea edulis database from genomic and expressed sequence tags (ESTs) obtained from Bonamia ostreae infected haemocytes: Development of an immune-enriched oligo-microarray.

    Science.gov (United States)

    Pardo, Belén G; Álvarez-Dios, José Antonio; Cao, Asunción; Ramilo, Andrea; Gómez-Tato, Antonio; Planas, Josep V; Villalba, Antonio; Martínez, Paulino

    2016-12-01

    The flat oyster, Ostrea edulis, is one of the main farmed oysters, not only in Europe but also in the United States and Canada. Bonamiosis due to the parasite Bonamia ostreae has been associated with high mortality episodes in this species. This parasite is an intracellular protozoan that infects haemocytes, the main cells involved in oyster defence. Due to the economical and ecological importance of flat oyster, genomic data are badly needed for genetic improvement of the species, but they are still very scarce. The objective of this study is to develop a sequence database, OedulisDB, with new genomic and transcriptomic resources, providing new data and convenient tools to improve our knowledge of the oyster's immune mechanisms. Transcriptomic and genomic sequences were obtained using 454 pyrosequencing and compiled into an O. edulis database, OedulisDB, consisting of two sets of 10,318 and 7159 unique sequences that represent the oyster's genome (WG) and de novo haemocyte transcriptome (HT), respectively. The flat oyster transcriptome was obtained from two strains (naïve and tolerant) challenged with B. ostreae, and from their corresponding non-challenged controls. Approximately 78.5% of 5619 HT unique sequences were successfully annotated by Blast search using public databases. A total of 984 sequences were identified as being related to immune response and several key immune genes were identified for the first time in flat oyster. Additionally, transcriptome information was used to design and validate the first oligo-microarray in flat oyster enriched with immune sequences from haemocytes. Our transcriptomic and genomic sequencing and subsequent annotation have largely increased the scarce resources available for this economically important species and have enabled us to develop an OedulisDB database and accompanying tools for gene expression analysis. This study represents the first attempt to characterize in depth the O. edulis haemocyte transcriptome in

  10. Gene Name Thesaurus - Gene Name Thesaurus | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ts Curators who have expertize in biological research edit gene names found in various databases and article...tabases. 2. The curators who have expertise in biological research confirm the name variation for genes and

  11. RepPop: a database for repetitive elements in Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Xu Ying

    2009-01-01

    Full Text Available Abstract Background Populus trichocarpa is the first tree genome to be completed, and its whole genome is currently being assembled. No functional annotation about the repetitive elements in the Populus trichocarpa genome is currently available. Results We predicted 9,623 repetitive elements in the Populus trichocarpa genome, and assigned functions to 3,075 of them (31.95%. The 9,623 repetitive elements cover ~40% of the current (partially assembled genome. Among the 9,623 repetitive elements, 668 have copies only in the contigs that have not been assigned to one of the 19 chromosome while the rest all have copies in the partially assembled chromosomes. Conclusion All the predicted data are organized into an easy-to-use web-browsable database, RepPop. Various search capabilities are provided against the RepPop database. A Wiki system has been set up to facilitate functional annotation and curation of the repetitive elements by a community rather than just the database developer. The database RepPop will facilitate the assembling and functional characterization of the Populus trichocarpa genome.

  12. The Papillomavirus Episteme: a major update to the papillomavirus sequence database

    Science.gov (United States)

    Van Doorslaer, Koenraad; Li, Zhiwen; Xirasagar, Sandhya; Maes, Piet; Kaminsky, David; Liou, David; Sun, Qiang; Kaur, Ramandeep; Huyen, Yentram; McBride, Alison A.

    2017-01-01

    The Papillomavirus Episteme (PaVE) is a database of curated papillomavirus genomic sequences, accompanied by web-based sequence analysis tools. This update describes the addition of major new features. The papillomavirus genomes within PaVE have been further annotated, and now includes the major spliced mRNA transcripts. Viral genes and transcripts can be visualized on both linear and circular genome browsers. Evolutionary relationships among PaVE reference protein sequences can be analysed using multiple sequence alignments and phylogenetic trees. To assist in viral discovery, PaVE offers a typing tool; a simplified algorithm to determine whether a newly sequenced virus is novel. PaVE also now contains an image library containing gross clinical and histopathological images of papillomavirus infected lesions. Database URL: https://pave.niaid.nih.gov/. PMID:28053164

  13. DBD: a transcription factor prediction database.

    Science.gov (United States)

    Kummerfeld, Sarah K; Teichmann, Sarah A

    2006-01-01

    Regulation of gene expression influences almost all biological processes in an organism; sequence-specific DNA-binding transcription factors are critical to this control. For most genomes, the repertoire of transcription factors is only partially known. Hitherto transcription factor identification has been largely based on genome annotation pipelines that use pairwise sequence comparisons, which detect only those factors similar to known genes, or on functional classification schemes that amalgamate many types of proteins into the category of 'transcription factor'. Using a novel transcription factor identification method, the DBD transcription factor database fills this void, providing genome-wide transcription factor predictions for organisms from across the tree of life. The prediction method behind DBD identifies sequence-specific DNA-binding transcription factors through homology using profile hidden Markov models (HMMs) of domains. Thus, it is limited to factors that are homologus to those HMMs. The collection of HMMs is taken from two existing databases (Pfam and SUPERFAMILY), and is limited to models that exclusively detect transcription factors that specifically recognize DNA sequences. It does not include basal transcription factors or chromatin-associated proteins, for instance. Based on comparison with experimentally verified annotation, the prediction procedure is between 95% and 99% accurate. Between one quarter and one-half of our genome-wide predicted transcription factors represent previously uncharacterized proteins. The DBD (www.transcriptionfactor.org) consists of predicted transcription factor repertoires for 150 completely sequenced genomes, their domain assignments and the hand curated list of DNA-binding domain HMMs. Users can browse, search or download the predictions by genome, domain family or sequence identifier, view families of transcription factors based on domain architecture and receive predictions for a protein sequence.

  14. Database Description - RMG | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us RMG Database... Description General information of database Database name RMG Alternative name Rice Mitochondri...ational Institute of Agrobiological Sciences E-mail : Database classification Nucleotide Sequence Databases ...Organism Taxonomy Name: Oryza sativa Japonica Group Taxonomy ID: 39947 Database description This database co...e of rice mitochondrial genome and information on the analysis results. Features and manner of utilization of database

  15. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    Science.gov (United States)

    de Sá, Pablo H C G; Miranda, Fábio; Veras, Adonney; de Melo, Diego Magalhães; Soares, Siomar; Pinheiro, Kenny; Guimarães, Luis; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2016-01-01

    The advent of NGS (Next Generation Sequencing) technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  16. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.

    Directory of Open Access Journals (Sweden)

    Pablo H C G de Sá

    Full Text Available The advent of NGS (Next Generation Sequencing technologies has resulted in an exponential increase in the number of complete genomes available in biological databases. This advance has allowed the development of several computational tools enabling analyses of large amounts of data in each of the various steps, from processing and quality filtering to gap filling and manual curation. The tools developed for gap closure are very useful as they result in more complete genomes, which will influence downstream analyses of genomic plasticity and comparative genomics. However, the gap filling step remains a challenge for genome assembly, often requiring manual intervention. Here, we present GapBlaster, a graphical application to evaluate and close gaps. GapBlaster was developed via Java programming language. The software uses contigs obtained in the assembly of the genome to perform an alignment against a draft of the genome/scaffold, using BLAST or Mummer to close gaps. Then, all identified alignments of contigs that extend through the gaps in the draft sequence are presented to the user for further evaluation via the GapBlaster graphical interface. GapBlaster presents significant results compared to other similar software and has the advantage of offering a graphical interface for manual curation of the gaps. GapBlaster program, the user guide and the test datasets are freely available at https://sourceforge.net/projects/gapblaster2015/. It requires Sun JDK 8 and Blast or Mummer.

  17. Curating research data

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørn; Hjørland, Birger

    2014-01-01

    Purpose – A key issue in the literature about research libraries concerns their potential role in managing research data. The aim of this paper is to study the arguments for and against associating this task with libraries and the impact such an association would have on information professionals......, and consider the competitors to libraries in this field. Design/methodology/approach – This paper considers the nature of data and discusses data typologies, the kinds of data contained within databases and the implications of criticisms of the data-information-knowledge (DIK) hierarchy. It outlines the many...... data. It seems more likely that the qualifications of information professionals will come to be needed in such organizations and that the functions of research libraries will shift toward giving greater prevalence to their role as specialists in scholarly communication. In some cases, however, research...

  18. Curating research data

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørn; Hjørland, Birger

    2014-01-01

    Purpose – A key issue in the literature about research libraries concerns their potential role in managing research data. The aim of this paper is to study the arguments for and against associating this task with libraries and the impact such an association would have on information professionals...... libraries may be the best place to select, keep, organize and use research data. To prepare for this task, research libraries should be actively involved in domain-specific analytic studies of their respective domains. Originality/value – This paper offers a theoretical analysis and clarification......, and consider the competitors to libraries in this field. Design/methodology/approach – This paper considers the nature of data and discusses data typologies, the kinds of data contained within databases and the implications of criticisms of the data-information-knowledge (DIK) hierarchy. It outlines the many...

  19. Workflow Tools for Digital Curation

    Directory of Open Access Journals (Sweden)

    Andrew James Weidner

    2013-04-01

    Full Text Available Maintaining usable and sustainable digital collections requires a complex set of actions that address the many challenges at various stages of the digital object lifecycle. Digital curation activities enhance access and retrieval, maintain quality, add value, and facilitate use and re-use over time. Digital resource lifecycle management is becoming an increasingly important topic as digital curators actively explore software tools that perform metadata curation and file management tasks. Accordingly, the University of North Texas (UNT Libraries develop tools and workflows that streamline production and quality assurance activities. This article demonstrates two open source software tools, AutoHotkey and Selenium IDE, which the UNT Digital Libraries Division has adopted for use during the pre-ingest and post-ingest stages of the digital resource lifecycle.

  20. Data curation + process curation=data integration + science.

    Science.gov (United States)

    Goble, Carole; Stevens, Robert; Hull, Duncan; Wolstencroft, Katy; Lopez, Rodrigo

    2008-11-01

    In bioinformatics, we are familiar with the idea of curated data as a prerequisite for data integration. We neglect, often to our cost, the curation and cataloguing of the processes that we use to integrate and analyse our data. Programmatic access to services, for data and processes, means that compositions of services can be made that represent the in silico experiments or processes that bioinformaticians perform. Data integration through workflows depends on being able to know what services exist and where to find those services. The large number of services and the operations they perform, their arbitrary naming and lack of documentation, however, mean that they can be difficult to use. The workflows themselves are composite processes that could be pooled and reused but only if they too can be found and understood. Thus appropriate curation, including semantic mark-up, would enable processes to be found, maintained and consequently used more easily. This broader view on semantic annotation is vital for full data integration that is necessary for the modern scientific analyses in biology. This article will brief the community on the current state of the art and the current challenges for process curation, both within and without the Life Sciences.

  1. The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl

    Science.gov (United States)

    Bombarely, Aureliano; Menda, Naama; Tecle, Isaak Y.; Buels, Robert M.; Strickler, Susan; Fischer-York, Thomas; Pujar, Anuradha; Leto, Jonathan; Gosselin, Joseph; Mueller, Lukas A.

    2011-01-01

    The Sol Genomics Network (SGN; http://solgenomics.net/) is a clade-oriented database (COD) containing biological data for species in the Solanaceae and their close relatives, with data types ranging from chromosomes and genes to phenotypes and accessions. SGN hosts several genome maps and sequences, including a pre-release of the tomato (Solanum lycopersicum cv Heinz 1706) reference genome. A new transcriptome component has been added to store RNA-seq and microarray data. SGN is also an open source software project, continuously developing and improving a complex system for storing, integrating and analyzing data. All code and development work is publicly visible on GitHub (http://github.com). The database architecture combines SGN-specific schemas and the community-developed Chado schema (http://gmod.org/wiki/Chado) for compatibility with other genome databases. The SGN curation model is community-driven, allowing researchers to add and edit information using simple web tools. Currently, over a hundred community annotators help curate the database. SGN can be accessed at http://solgenomics.net/. PMID:20935049

  2. The mouse Gene Expression Database (GXD): 2017 update

    Science.gov (United States)

    Finger, Jacqueline H.; Smith, Constance M.; Hayamizu, Terry F.; McCright, Ingeborg J.; Xu, Jingxia; Law, Meiyee; Shaw, David R.; Baldarelli, Richard M.; Beal, Jon S.; Blodgett, Olin; Campbell, Jeff W.; Corbani, Lori E.; Lewis, Jill R.; Forthofer, Kim L.; Frost, Pete J.; Giannatto, Sharon C.; Hutchins, Lucie N.; Miers, Dave B.; Motenko, Howie; Stone, Kevin R.; Eppig, Janan T.; Kadin, James A.; Richardson, Joel E.; Ringwald, Martin

    2017-01-01

    The Gene Expression Database (GXD; www.informatics.jax.org/expression.shtml) is an extensive and well-curated community resource of mouse developmental expression information. Through curation of the scientific literature and by collaborations with large-scale expression projects, GXD collects and integrates data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments. Expression data from both wild-type and mutant mice are included. The expression data are combined with genetic and phenotypic data in Mouse Genome Informatics (MGI) and made readily accessible to many types of database searches. At present, GXD includes over 1.5 million expression results and more than 300 000 images, all annotated with detailed and standardized metadata. Since our last report in 2014, we have added a large amount of data, we have enhanced data and database infrastructure, and we have implemented many new search and display features. Interface enhancements include: a new Mouse Developmental Anatomy Browser; interactive tissue-by-developmental stage and tissue-by-gene matrix views; capabilities to filter and sort expression data summaries; a batch search utility; gene-based expression overviews; and links to expression data from other species. PMID:27899677

  3. MIPS: analysis and annotation of genome information in 2007.

    Science.gov (United States)

    Mewes, H W; Dietmann, S; Frishman, D; Gregory, R; Mannhaupt, G; Mayer, K F X; Münsterkötter, M; Ruepp, A; Spannagl, M; Stümpflen, V; Rattei, T

    2008-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) combines automatic processing of large amounts of sequences with manual annotation of selected model genomes. Due to the massive growth of the available data, the depth of annotation varies widely between independent databases. Also, the criteria for the transfer of information from known to orthologous sequences are diverse. To cope with the task of global in-depth genome annotation has become unfeasible. Therefore, our efforts are dedicated to three levels of annotation: (i) the curation of selected genomes, in particular from fungal and plant taxa (e.g. CYGD, MNCDB, MatDB), (ii) the comprehensive, consistent, automatic annotation employing exhaustive methods for the computation of sequence similarities and sequence-related attributes as well as the classification of individual sequences (SIMAP, PEDANT and FunCat) and (iii) the compilation of manually curated databases for protein interactions based on scrutinized information from the literature to serve as an accepted set of reliable annotated interaction data (MPACT, MPPI, CORUM). All databases and tools described as well as the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  4. IMGMD: A platform for the integration and standardisation of In silico Microbial Genome-scale Metabolic Models.

    Science.gov (United States)

    Ye, Chao; Xu, Nan; Dong, Chuan; Ye, Yuannong; Zou, Xuan; Chen, Xiulai; Guo, Fengbiao; Liu, Liming

    2017-04-07

    Genome-scale metabolic models (GSMMs) constitute a platform that combines genome sequences and detailed biochemical information to quantify microbial physiology at the system level. To improve the unity, integrity, correctness, and format of data in published GSMMs, a consensus IMGMD database was built in the LAMP (Linux + Apache + MySQL + PHP) system by integrating and standardizing 328 GSMMs constructed for 139 microorganisms. The IMGMD database can help microbial researchers download manually curated GSMMs, rapidly reconstruct standard GSMMs, design pathways, and identify metabolic targets for strategies on strain improvement. Moreover, the IMGMD database facilitates the integration of wet-lab and in silico data to gain an additional insight into microbial physiology. The IMGMD database is freely available, without any registration requirements, at http://imgmd.jiangnan.edu.cn/database.

  5. Genome-Wide Analysis of Microsatellite Markers Based on Sequenced Database in Chinese Spring Wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Bin Han

    Full Text Available Microsatellites or simple sequence repeats (SSRs are distributed across both prokaryotic and eukaryotic genomes and have been widely used for genetic studies and molecular marker-assisted breeding in crops. Though an ordered draft sequence of hexaploid bread wheat have been announced, the researches about systemic analysis of SSRs for wheat still have not been reported so far. In the present study, we identified 364,347 SSRs from among 10,603,760 sequences of the Chinese spring wheat (CSW genome, which were present at a density of 36.68 SSR/Mb. In total, we detected 488 types of motifs ranging from di- to hexanucleotides, among which dinucleotide repeats dominated, accounting for approximately 42.52% of the genome. The density of tri- to hexanucleotide repeats was 24.97%, 4.62%, 3.25% and 24.65%, respectively. AG/CT, AAG/CTT, AGAT/ATCT, AAAAG/CTTTT and AAAATT/AATTTT were the most frequent repeats among di- to hexanucleotide repeats. Among the 21 chromosomes of CSW, the density of repeats was highest on chromosome 2D and lowest on chromosome 3A. The proportions of di-, tri-, tetra-, penta- and hexanucleotide repeats on each chromosome, and even on the whole genome, were almost identical. In addition, 295,267 SSR markers were successfully developed from the 21 chromosomes of CSW, which cover the entire genome at a density of 29.73 per Mb. All of the SSR markers were validated by reverse electronic-Polymerase Chain Reaction (re-PCR; 70,564 (23.9% were found to be monomorphic and 224,703 (76.1% were found to be polymorphic. A total of 45 monomorphic markers were selected randomly for validation purposes; 24 (53.3% amplified one locus, 8 (17.8% amplified multiple identical loci, and 13 (28.9% did not amplify any fragments from the genomic DNA of CSW. Then a dendrogram was generated based on the 24 monomorphic SSR markers among 20 wheat cultivars and three species of its diploid ancestors showing that monomorphic SSR markers represented a promising

  6. Xanthusbase: adapting wikipedia principles to a model organism database.

    Science.gov (United States)

    Arshinoff, Bradley I; Suen, Garret; Just, Eric M; Merchant, Sohel M; Kibbe, Warren A; Chisholm, Rex L; Welch, Roy D

    2007-01-01

    xanthusBase (http://www.xanthusbase.org) is the official model organism database (MOD) for the social bacterium Myxococcus xanthus. In many respects, M.xanthus represents the pioneer model organism (MO) for studying the genetic, biochemical, and mechanistic basis of prokaryotic multicellularity, a topic that has garnered considerable attention due to the significance of biofilms in both basic and applied microbiology research. To facilitate its utility, the design of xanthusBase incorporates open-source software, leveraging the cumulative experience made available through the Generic Model Organism Database (GMOD) project, MediaWiki (http://www.mediawiki.org), and dictyBase (http://www.dictybase.org), to create a MOD that is both highly useful and easily navigable. In addition, we have incorporated a unique Wikipedia-style curation model which exploits the internet's inherent interactivity, thus enabling M.xanthus and other myxobacterial researchers to contribute directly toward the ongoing genome annotation.

  7. Cognitive Curations of Collaborative Curricula

    Science.gov (United States)

    Ackerman, Amy S.

    2015-01-01

    Assuming the role of learning curators, 22 graduate students (in-service teachers) addressed authentic problems (challenges) within their respective classrooms by selecting digital tools as part of implementation of interdisciplinary lesson plans. Students focused on formative assessment tools as a means to gather evidence to make improvements in…

  8. Teacher Training in Curative Education.

    Science.gov (United States)

    Juul, Kristen D.; Maier, Manfred

    1992-01-01

    This article considers the application of the philosophical and educational principles of Rudolf Steiner, called "anthroposophy," to the training of teachers and curative educators in the Waldorf schools. Special emphasis is on the Camphill movement which focuses on therapeutic schools and communities for children with special needs. (DB)

  9. A new single-nucleotide polymorphisms database for rainbow trout generated through whole genome resequencing of selected samples

    Science.gov (United States)

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  10. MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics.

    Science.gov (United States)

    Jeffryes, James G; Colastani, Ricardo L; Elbadawi-Sidhu, Mona; Kind, Tobias; Niehaus, Thomas D; Broadbelt, Linda J; Hanson, Andrew D; Fiehn, Oliver; Tyo, Keith E J; Henry, Christopher S

    2015-01-01

    In spite of its great promise, metabolomics has proven difficult to execute in an untargeted and generalizable manner. Liquid chromatography-mass spectrometry (LC-MS) has made it possible to gather data on thousands of cellular metabolites. However, matching metabolites to their spectral features continues to be a bottleneck, meaning that much of the collected information remains uninterpreted and that new metabolites are seldom discovered in untargeted studies. These challenges require new approaches that consider compounds beyond those available in curated biochemistry databases. Here we present Metabolic In silico Network Expansions (MINEs), an extension of known metabolite databases to include molecules that have not been observed, but are likely to occur based on known metabolites and common biochemical reactions. We utilize an algorithm called the Biochemical Network Integrated Computational Explorer (BNICE) and expert-curated reaction rules based on the Enzyme Commission classification system to propose the novel chemical structures and reactions that comprise MINE databases. Starting from the Kyoto Encyclopedia of Genes and Genomes (KEGG) COMPOUND database, the MINE contains over 571,000 compounds, of which 93% are not present in the PubChem database. However, these MINE compounds have on average higher structural similarity to natural products than compounds from KEGG or PubChem. MINE databases were able to propose annotations for 98.6% of a set of 667 MassBank spectra, 14% more than KEGG alone and equivalent to PubChem while returning far fewer candidates per spectra than PubChem (46 vs. 1715 median candidates). Application of MINEs to LC-MS accurate mass data enabled the identity of an unknown peak to be confidently predicted. MINE databases are freely accessible for non-commercial use via user-friendly web-tools at http://minedatabase.mcs.anl.gov and developer-friendly APIs. MINEs improve metabolomics peak identification as compared to general chemical

  11. Curation of OSIRIS-REx Asteroid Samples

    Science.gov (United States)

    Righter, K.; Nakamura-Messnger, K.; Lauretta, D. S.; Osiris-Rex Curation Working Group

    2013-09-01

    An overview of the mission curation plan will be given, including the main elements of contamination control, sample recovery, sample cleanroom construction, and curation support once the sample is returned to Earth.

  12. How should the completeness and quality of curated nanomaterial data be evaluated?†

    Science.gov (United States)

    Marchese Robinson, Richard L.; Lynch, Iseult; Peijnenburg, Willie; Rumble, John; Klaessig, Fred; Marquardt, Clarissa; Rauscher, Hubert; Puzyn, Tomasz; Purian, Ronit; Åberg, Christoffer; Karcher, Sandra; Vriens, Hanne; Hoet, Peter; Hoover, Mark D.; Hendren, Christine Ogilvie; Harper, Stacey L.

    2016-01-01

    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials’ behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated? PMID:27143028

  13. Toward an interactive article: integrating journals and biological databases

    Directory of Open Access Journals (Sweden)

    Marygold Steven J

    2011-05-01

    Full Text Available Abstract Background Journal articles and databases are two major modes of communication in the biological sciences, and thus integrating these critical resources is of urgent importance to increase the pace of discovery. Projects focused on bridging the gap between journals and databases have been on the rise over the last five years and have resulted in the development of automated tools that can recognize entities within a document and link those entities to a relevant database. Unfortunately, automated tools cannot resolve ambiguities that arise from one term being used to signify entities that are quite distinct from one another. Instead, resolving these ambiguities requires some manual oversight. Finding the right balance between the speed and portability of automation and the accuracy and flexibility of manual effort is a crucial goal to making text markup a successful venture. Results We have established a journal article mark-up pipeline that links GENETICS journal articles and the model organism database (MOD WormBase. This pipeline uses a lexicon built with entities from the database as a first step. The entity markup pipeline results in links from over nine classes of objects including genes, proteins, alleles, phenotypes and anatomical terms. New entities and ambiguities are discovered and resolved by a database curator through a manual quality control (QC step, along with help from authors via a web form that is provided to them by the journal. New entities discovered through this pipeline are immediately sent to an appropriate curator at the database. Ambiguous entities that do not automatically resolve to one link are resolved by hand ensuring an accurate link. This pipeline has been extended to other databases, namely Saccharomyces Genome Database (SGD and FlyBase, and has been implemented in marking up a paper with links to multiple databases. Conclusions Our semi-automated pipeline hyperlinks articles published in GENETICS to

  14. SpliceDisease database: linking RNA splicing and disease.

    Science.gov (United States)

    Wang, Juan; Zhang, Jie; Li, Kaibo; Zhao, Wei; Cui, Qinghua

    2012-01-01

    RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, we manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference Pubmed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. We standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, we give direct links of the entry to the respective position/region in the genome browser. The users can freely browse, search and download the data in SpliceDisease at http://cmbi.bjmu.edu.cn/sdisease.

  15. Data mining in the MetaCyc family of pathway databases.

    Science.gov (United States)

    Karp, Peter D; Paley, Suzanne; Altman, Tomer

    2013-01-01

    Pathway databases collect the bioreactions and molecular interactions that define the processes of life. The MetaCyc family of pathway databases consists of thousands of databases that were derived through computational inference of metabolic pathways from the MetaCyc pathway/genome database (PGDB). In some cases, these DBs underwent subsequent manual curation. Curated pathway DBs are now available for most of the major model organisms. Databases in the MetaCyc family are managed using the Pathway Tools software. This chapter presents methods for performing data mining on the MetaCyc family of pathway DBs. We discuss the major data access mechanisms for the family, which include data files in multiple formats; application programming interfaces (APIs) for the Lisp, Java, and Perl languages; and web services. We present an overview of the Pathway Tools schema, an understanding of which is needed to query the DBs. The chapter also presents several interactive data mining tools within Pathway Tools for performing omics data analysis.

  16. HistoneDB 2.0: a histone database with variants--an integrated resource to explore histones and their variants.

    Science.gov (United States)

    Draizen, Eli J; Shaytan, Alexey K; Mariño-Ramírez, Leonardo; Talbert, Paul B; Landsman, David; Panchenko, Anna R

    2016-01-01

    Compaction of DNA into chromatin is a characteristic feature of eukaryotic organisms. The core (H2A, H2B, H3, H4) and linker (H1) histone proteins are responsible for this compaction through the formation of nucleosomes and higher order chromatin aggregates. Moreover, histones are intricately involved in chromatin functioning and provide a means for genome dynamic regulation through specific histone variants and histone post-translational modifications. 'HistoneDB 2.0--with variants' is a comprehensive database of histone protein sequences, classified by histone types and variants. All entries in the database are supplemented by rich sequence and structural annotations with many interactive tools to explore and compare sequences of different variants from various organisms. The core of the database is a manually curated set of histone sequences grouped into 30 different variant subsets with variant-specific annotations. The curated set is supplemented by an automatically extracted set of histone sequences from the non-redundant protein database using algorithms trained on the curated set. The interactive web site supports various searching strategies in both datasets: browsing of phylogenetic trees; on-demand generation of multiple sequence alignments with feature annotations; classification of histone-like sequences and browsing of the taxonomic diversity for every histone variant. HistoneDB 2.0 is a resource for the interactive comparative analysis of histone protein sequences and their implications for chromatin function. Database URL: http://www.ncbi.nlm.nih.gov/projects/HistoneDB2.0.

  17. LocSigDB: a database of protein localization signals.

    Science.gov (United States)

    Negi, Simarjeet; Pandey, Sanjit; Srinivasan, Satish M; Mohammed, Akram; Guda, Chittibabu

    2015-01-01

    LocSigDB (http://genome.unmc.edu/LocSigDB/) is a manually curated database of experimental protein localization signals for eight distinct subcellular locations; primarily in a eukaryotic cell with brief coverage of bacterial proteins. Proteins must be localized at their appropriate subcellular compartment to perform their desired function. Mislocalization of proteins to unintended locations is a causative factor for many human diseases; therefore, collection of known sorting signals will help support many important areas of biomedical research. By performing an extensive literature study, we compiled a collection of 533 experimentally determined localization signals, along with the proteins that harbor such signals. Each signal in the LocSigDB is annotated with its localization, source, PubMed references and is linked to the proteins in UniProt database along with the organism information that contain the same amino acid pattern as the given signal. From LocSigDB webserver, users can download the whole database or browse/search for data using an intuitive query interface. To date, LocSigDB is the most comprehensive compendium of protein localization signals for eight distinct subcellular locations. Database URL: http://genome.unmc.edu/LocSigDB/

  18. Expert curation in UniProtKB: a case study on dealing with conflicting and erroneous data.

    Science.gov (United States)

    Poux, Sylvain; Magrane, Michele; Arighi, Cecilia N; Bridge, Alan; O'Donovan, Claire; Laiho, Kati

    2014-01-01

    UniProtKB/Swiss-Prot provides expert curation with information extracted from literature and curator-evaluated computational analysis. As knowledgebases continue to play an increasingly important role in scientific research, a number of studies have evaluated their accuracy and revealed various errors. While some are curation errors, others are the result of incorrect information published in the scientific literature. By taking the example of sirtuin-5, a complex annotation case, we will describe the curation procedure of UniProtKB/Swiss-Prot and detail how we report conflicting information in the database. We will demonstrate the importance of collaboration between resources to ensure curation consistency and the value of contributions from the user community in helping maintain error-free resources. Database URL: www.uniprot.org.

  19. MIPS: analysis and annotation of proteins from whole genomes in 2005.

    Science.gov (United States)

    Mewes, H W; Frishman, D; Mayer, K F X; Münsterkötter, M; Noubibou, O; Pagel, P; Rattei, T; Oesterheld, M; Ruepp, A; Stümpflen, V

    2006-01-01

    The Munich Information Center for Protein Sequences (MIPS at the GSF), Neuherberg, Germany, provides resources related to genome information. Manually curated databases for several reference organisms are maintained. Several of these databases are described elsewhere in this and other recent NAR database issues. In a complementary effort, a comprehensive set of >400 genomes automatically annotated with the PEDANT system are maintained. The main goal of our current work on creating and maintaining genome databases is to extend gene centered information to information on interactions within a generic comprehensive framework. We have concentrated our efforts along three lines (i) the development of suitable comprehensive data structures and database technology, communication and query tools to include a wide range of different types of information enabling the representation of complex information such as functional modules or networks Genome Research Environment System, (ii) the development of databases covering computable information such as the basic evolutionary relations among all genes, namely SIMAP, the sequence similarity matrix and the CABiNet network analysis framework and (iii) the compilation and manual annotation of information related to interactions such as protein-protein interactions or other types of relations (e.g. MPCDB, MPPI, CYGD). All databases described and the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.gsf.de).

  20. Digital curation theory and practice

    CERN Document Server

    Hedges, Mark

    2016-01-01

    Digital curation is a multi-skilled profession with a key role to play not only in domains traditionally associated with the management of information, such as libraries and archives, but in a broad range of market sectors. Digital information is a defining feature of our age. As individuals we increasingly communicate and record our lives and memories in digital form, whether consciously or as a by-product of broader social, cultural and business activities. Throughout government and industry, there is a pressing need to manage complex information assets and to exploit their social, cultural and commercial value. This book addresses the key strategic, technical and practical issues around digital curation, curatorial practice, and locating the discussions within an appropriate theoretical context.

  1. Automated alignment-based curation of gene models in filamentous fungi

    OpenAIRE

    2014-01-01

    Background Automated gene-calling is still an error-prone process, particularly for the highly plastic genomes of fungal species. Improvement through quality control and manual curation of gene models is a time-consuming process that requires skilled biologists and is only marginally performed. The wealth of available fungal genomes has not yet been exploited by an automated method that applies quality control of gene models in order to obtain more accurate genome annotations. Results We prov...

  2. CyanoLyase: a database of phycobilin lyase sequences, motifs and functions.

    Science.gov (United States)

    Bretaudeau, Anthony; Coste, François; Humily, Florian; Garczarek, Laurence; Le Corguillé, Gildas; Six, Christophe; Ratin, Morgane; Collin, Olivier; Schluchter, Wendy M; Partensky, Frédéric

    2013-01-01

    CyanoLyase (http://cyanolyase.genouest.org/) is a manually curated sequence and motif database of phycobilin lyases and related proteins. These enzymes catalyze the covalent ligation of chromophores (phycobilins) to specific binding sites of phycobiliproteins (PBPs). The latter constitute the building bricks of phycobilisomes, the major light-harvesting systems of cyanobacteria and red algae. Phycobilin lyases sequences are poorly annotated in public databases. Sequences included in CyanoLyase were retrieved from all available genomes of these organisms and a few others by similarity searches using biochemically characterized enzyme sequences and then classified into 3 clans and 32 families. Amino acid motifs were computed for each family using Protomata learner. CyanoLyase also includes BLAST and a novel pattern matching tool (Protomatch) that allow users to rapidly retrieve and annotate lyases from any new genome. In addition, it provides phylogenetic analyses of all phycobilin lyases families, describes their function, their presence/absence in all genomes of the database (phyletic profiles) and predicts the chromophorylation of PBPs in each strain. The site also includes a thorough bibliography about phycobilin lyases and genomes included in the database. This resource should be useful to scientists and companies interested in natural or artificial PBPs, which have a number of biotechnological applications, notably as fluorescent markers.

  3. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology

    Directory of Open Access Journals (Sweden)

    Mar Matarin

    2015-02-01

    Full Text Available We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of “amyloid” transgenic mice (mutant human APP, PSEN1, or APP/PSEN1 and “TAU” transgenic mice (mutant human MAPT gene. Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.

  4. Mining novel starch-converting Glycoside Hydrolase 70 enzymes from the Nestlé Culture Collection genome database: The Lactobacillus reuteri NCC 2613 GtfB.

    Science.gov (United States)

    Gangoiti, Joana; van Leeuwen, Sander S; Meng, Xiangfeng; Duboux, Stéphane; Vafiadi, Christina; Pijning, Tjaard; Dijkhuizen, Lubbert

    2017-08-30

    The Glycoside hydrolase (GH) family 70 originally was established for glucansucrases of lactic acid bacteria (LAB) converting sucrose into α-glucan polymers. In recent years we have identified 3 subfamilies of GH70 enzymes (designated GtfB, GtfC and GtfD) as 4,6-α-glucanotransferases, cleaving (α1 → 4)-linkages in maltodextrins/starch and synthesizing new (α1 → 6)-linkages. In this work, 106 putative GtfBs were identified in the Nestlé Culture Collection genome database with ~2700 genomes, and the L. reuteri NCC 2613 one was selected for further characterization based on variations in its conserved motifs. Using amylose the L. reuteri NCC 2613 GtfB synthesizes a low-molecular-mass reuteran-like polymer consisting of linear (α1 → 4) sequences interspersed with (α1 → 6) linkages, and (α1 → 4,6) branching points. This product specificity is novel within the GtfB subfamily, mostly comprising 4,6-α-glucanotransferases synthesizing consecutive (α1 → 6)-linkages. Instead, its activity resembles that of the GtfD 4,6-α-glucanotransferases identified in non-LAB strains. This study demonstrates the potential of large-scale genome sequence data for the discovery of enzymes of interest for the food industry. The L. reuteri NCC 2613 GtfB is a valuable addition to the starch-converting GH70 enzyme toolbox. It represents a new evolutionary intermediate between families GH13 and GH70, and provides further insights into the structure-function relationships of the GtfB subfamily enzymes.

  5. Linkage of cDNA expression profiles of mesencephalic dopaminergic neurons to a genome-wide in situ hybridization database

    Directory of Open Access Journals (Sweden)

    Simon Horst H

    2009-01-01

    Full Text Available Abstract Midbrain dopaminergic neurons are involved in control of emotion, motivation and motor behavior. The loss of one of the subpopulations, substantia nigra pars compacta, is the pathological hallmark of one of the most prominent neurological disorders, Parkinson's disease. Several groups have looked at the molecular identity of midbrain dopaminergic neurons and have suggested the gene expression profile of these neurons. Here, after determining the efficiency of each screen, we provide a linked database of the genes, expressed in this neuronal population, by combining and comparing the results of six previous studies and verification of expression of each gene in dopaminergic neurons, using the collection of in situ hybridization in the Allen Brain Atlas.

  6. Computational prediction of candidate miRNAs and their targets from the completed Linum ussitatissimum genome and EST database

    Directory of Open Access Journals (Sweden)

    Tiffanie Y. Moss

    2012-06-01

    Full Text Available Flax is an important agronomic crop grown for its fiber (linen and oil (linseed oil. In spite of many thousands of years of breeding some fiber varieties have been shown to rapidly respond to environmental stress with heritable changes to its genome. Many miRNAs appear to be induced by abiotic or biotic conditions experienced through the plant life cycle. Computational miRNA analysis of the flax genome provides a foundation for subsequent research on miRNA function in Linum usitatissimum and may also provide novel insight into any regulatory role the RNAi pathway may play in generating adaptive structural variation in response to environmental stress. Here a bioinformatics approach is used to screen for miRNAs previously identified in other plant species, as well as to predict putative miRNAs unique to a particular species which may not have been identified as they are less abundant or dependent upon a specific set of environmental conditions. Twelve miRNA genes were identified in flax on the basis of unique pre-miRNA positions with structural homology to plant pre-miRNAs and complete sequence homology to published plant miRNAs. These miRNAs were found to belong to 7 miRNA families, with an additional 2 matches corresponding to as yet unnamed poplar miRNAs and a parologous miRNA with partial sequence homology to mtr-miR4414b. An additional 649 novel and distinct flax miRNA genes were identified to form from canonical hairpin structures and to have putative targets among the ~30,000 flax Unigenes.

  7. The MetaboLights repository: curation challenges in metabolomics.

    Science.gov (United States)

    Salek, Reza M; Haug, Kenneth; Conesa, Pablo; Hastings, Janna; Williams, Mark; Mahendraker, Tejasvi; Maguire, Eamonn; González-Beltrán, Alejandra N; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Steinbeck, Christoph

    2013-01-01

    MetaboLights is the first general-purpose open-access curated repository for metabolomic studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Increases in the number of depositions, number of samples per study and the file size of data submitted to MetaboLights present a challenge for the objective of ensuring high-quality and standardized data in the context of diverse metabolomic workflows and data representations. Here, we describe the MetaboLights curation pipeline, its challenges and its practical application in quality control of complex data depositions. Database URL: http://www.ebi.ac.uk/metabolights.

  8. The MetaboLights repository: curation challenges in metabolomics

    Science.gov (United States)

    Salek, Reza M.; Haug, Kenneth; Conesa, Pablo; Hastings, Janna; Williams, Mark; Mahendraker, Tejasvi; Maguire, Eamonn; González-Beltrán, Alejandra N.; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Steinbeck, Christoph

    2013-01-01

    MetaboLights is the first general-purpose open-access curated repository for metabolomic studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Increases in the number of depositions, number of samples per study and the file size of data submitted to MetaboLights present a challenge for the objective of ensuring high-quality and standardized data in the context of diverse metabolomic workflows and data representations. Here, we describe the MetaboLights curation pipeline, its challenges and its practical application in quality control of complex data depositions. Database URL: http://www.ebi.ac.uk/metabolights PMID:23630246

  9. Sharing and community curation of mass spectrometry data with GNPS

    Science.gov (United States)

    Nguyen, Don Duy; Watrous, Jeramie; Kapono, Clifford A; Luzzatto-Knaan, Tal; Porto, Carla; Bouslimani, Amina; Melnik, Alexey V; Meehan, Michael J; Liu, Wei-Ting; Crüsemann, Max; Boudreau, Paul D; Esquenazi, Eduardo; Sandoval-Calderón, Mario; Kersten, Roland D; Pace, Laura A; Quinn, Robert A; Duncan, Katherine R; Hsu, Cheng-Chih; Floros, Dimitrios J; Gavilan, Ronnie G; Kleigrewe, Karin; Northen, Trent; Dutton, Rachel J; Parrot, Delphine; Carlson, Erin E; Aigle, Bertrand; Michelsen, Charlotte F; Jelsbak, Lars; Sohlenkamp, Christian; Pevzner, Pavel; Edlund, Anna; McLean, Jeffrey; Piel, Jörn; Murphy, Brian T; Gerwick, Lena; Liaw, Chih-Chuang; Yang, Yu-Liang; Humpf, Hans-Ulrich; Maansson, Maria; Keyzers, Robert A; Sims, Amy C; Johnson, Andrew R.; Sidebottom, Ashley M; Sedio, Brian E; Klitgaard, Andreas; Larson, Charles B; P., Cristopher A Boya; Torres-Mendoza, Daniel; Gonzalez, David J; Silva, Denise B; Marques, Lucas M; Demarque, Daniel P; Pociute, Egle; O'Neill, Ellis C; Briand, Enora; Helfrich, Eric J. N.; Granatosky, Eve A; Glukhov, Evgenia; Ryffel, Florian; Houson, Hailey; Mohimani, Hosein; Kharbush, Jenan J; Zeng, Yi; Vorholt, Julia A; Kurita, Kenji L; Charusanti, Pep; McPhail, Kerry L; Nielsen, Kristian Fog; Vuong, Lisa; Elfeki, Maryam; Traxler, Matthew F; Engene, Niclas; Koyama, Nobuhiro; Vining, Oliver B; Baric, Ralph; Silva, Ricardo R; Mascuch, Samantha J; Tomasi, Sophie; Jenkins, Stefan; Macherla, Venkat; Hoffman, Thomas; Agarwal, Vinayak; Williams, Philip G; Dai, Jingqui; Neupane, Ram; Gurr, Joshua; Rodríguez, Andrés M. C.; Lamsa, Anne; Zhang, Chen; Dorrestein, Kathleen; Duggan, Brendan M; Almaliti, Jehad; Allard, Pierre-Marie; Phapale, Prasad; Nothias, Louis-Felix; Alexandrov, Theodore; Litaudon, Marc; Wolfender, Jean-Luc; Kyle, Jennifer E; Metz, Thomas O; Peryea, Tyler; Nguyen, Dac-Trung; VanLeer, Danielle; Shinn, Paul; Jadhav, Ajit; Müller, Rolf; Waters, Katrina M; Shi, Wenyuan; Liu, Xueting; Zhang, Lixin; Knight, Rob; Jensen, Paul R; Palsson, Bernhard O; Pogliano, Kit; Linington, Roger G; Gutiérrez, Marcelino; Lopes, Norberto P; Gerwick, William H; Moore, Bradley S; Dorrestein, Pieter C; Bandeira, Nuno

    2017-01-01

    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data. PMID:27504778

  10. Ethical guideposts for allelic variation databases.

    Science.gov (United States)

    Knoppers, B M; Laberge, C M

    2000-01-01

    Basically, a mutation database (MDB) is a repository where allelic variations are described and assigned within a specific gene locus. The purposes of an MDB may vary greatly and have different content and structure. The curator of an electronic and computer-based MDB will provide expert feedback (clinical and research). This requires ethical guideposts. Going to direct on-line public access for the content of an MDB or to interactive communication also raises other considerations. Currently, HUGO's MDI (Mutation Database Initiative) is the only integrated effort supporting and guiding the coordinated deployment of MDBs devoted to genetic diversity. Thus, HUGO's ethical "Statements" are applicable. Among the ethical principles, the obligation of preserving the confidentiality of information transferred by a collaborator to the curator is particularly important. Thus, anonymization of such data prior to transmission is essential. The 1997 Universal Declaration on the Human Genome and Human Rights of UNESCO addresses the participation of vulnerable persons. Researchers in charge of MDBs should ensure that information received on the testing of children or incompetent adults is subject to ethical review and approval in the country of origin. Caution should be taken against the involuntary consequences of public disclosure of results without complete explanation. Clear and enforceable regulations must be developed to protect the public against misuse of genetic databanks. Interaction with a databank could be seen as creating a "virtual" physician-patient relationship. However, interactive public MDBs should not give medical advice. We have identified new social ethical principles to govern different levels of complexity of genetic information. They are: reciprocity, mutuality, solidarity, and universality. Finally, precaution and prudence at this early stage of the MDI may not only avoid ethically inextricable conundrums but also provide for the respect for the rights

  11. Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

    Science.gov (United States)

    Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T

    2015-01-01

    The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers.

  12. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models.

    Science.gov (United States)

    King, Zachary A; Lu, Justin; Dräger, Andreas; Miller, Philip; Federowicz, Stephen; Lerman, Joshua A; Ebrahim, Ali; Palsson, Bernhard O; Lewis, Nathan E

    2016-01-01

    Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized repositories of high-quality models must be established, models must adhere to established standards and model components must be linked to relevant databases. Tools for model visualization further enhance their utility. To meet these needs, we present BiGG Models (http://bigg.ucsd.edu), a completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models contains more than 75 high-quality, manually-curated genome-scale metabolic models. On the website, users can browse, search and visualize models. BiGG Models connects genome-scale models to genome annotations and external databases. Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data.

  13. Restauro-G: A Rapid Genome Re-Annotation System for Comparative Genomics

    Institute of Scientific and Technical Information of China (English)

    Satoshi Tamaki; Kazuharu Arakawa; Nobuaki Kono; Masaru Tomita

    2007-01-01

    Annotations of complete genome sequences submitted directly from sequencing projects are diverse in terms of annotation strategies and update frequencies. These inconsistencies make comparative studies difficult. To allow rapid data preparation of a large number of complete genomes, automation and speed are important for genome re-annotation. Here we introduce an open-source rapid genome re-annotation software system, Restauro-G, specialized for bacterial genomes. Restauro-G re-annotates a genome by similarity searches utilizing the BLAST-Like Alignment Tool, referring to protein databases such as UniProt KB, NCBI nr, NCBI COGs, Pfam, and PSORTb. Re-annotation by Restauro-G achieved over 98% accuracy for most bacterial chromosomes in comparison with the original manually curated annotation of EMBL releases. Restauro-G was developed in the generic bioinformatics workbench G-language Genome Analysis Environment and is distributed at http://restauro-g.iab.keio.ac.jp/ under the GNU General Public License.

  14. Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    NARCIS (Netherlands)

    M.J. Falk (Marni J.); L. Shen (Lishuang); M. Gonzalez (Michael); J. Leipzig (Jeremy); M.T. Lott (Marie T.); A.P.M. Stassen (Alphons P.M.); M.A. Diroma (Maria Angela); D. Navarro-Gomez (Daniel); P. Yeske (Philip); R. Bai (Renkui); R.G. Boles (Richard G.); V. Brilhante (Virginia); D. Ralph (David); J.T. DaRe (Jeana T.); R. Shelton (Robert); S.F. Terry (Sharon); Z. Zhang (Zhe); W.C. Copeland (William C.); M. van Oven (Mannis); H. Prokisch (Holger); D.C. Wallace; M. Attimonelli (Marcella); D. Krotoski (Danuta); S. Zuchner (Stephan); X. Gai (Xiaowu); S. Bale (Sherri); J. Bedoyan (Jirair); D.M. Behar (Doron); P. Bonnen (Penelope); L. Brooks (Lisa); C. Calabrese (Claudia); S. Calvo (Sarah); P.F. Chinnery (Patrick); J. Christodoulou (John); D. Church (Deanna); R. Clima (Rosanna); B.H. Cohen (Bruce H.); R.G.H. Cotton (Richard); I.F.M. de Coo (René); O. Derbenevoa (Olga); J.T. den Dunnen (Johan); D. Dimmock (David); G. Enns (Gregory); G. Gasparre (Giuseppe); A. Goldstein (Amy); I. Gonzalez (Iris); K. Gwinn (Katrina); S. Hahn (Sihoun); R.H. Haas (Richard H.); H. Hakonarson (Hakon); M. Hirano (Michio); D. Kerr (Douglas); D. Li (Dong); M. Lvova (Maria); F. Macrae (Finley); D. Maglott (Donna); E. McCormick (Elizabeth); G. Mitchell (Grant); V.K. Mootha (Vamsi K.); Y. Okazaki (Yasushi); A. Pujol (Aurora); M. Parisi (Melissa); J.C. Perin (Juan Carlos); E.A. Pierce (Eric A.); V. Procaccio (Vincent); S. Rahman (Shamima); H. Reddi (Honey); H. Rehm (Heidi); E. Riggs (Erin); R.J.T. Rodenburg (Richard); Y. Rubinstein (Yaffa); R. Saneto (Russell); M. Santorsola (Mariangela); C. Scharfe (Curt); C. Sheldon (Claire); E.A. Shoubridge (Eric); D. Simone (Domenico); B. Smeets (Bert); J.A.M. Smeitink (Jan); C. Stanley (Christine); A. Suomalainen (Anu); M.A. Tarnopolsky (Mark); I. Thiffault (Isabelle); D.R. Thorburn (David R.); J.V. Hove (Johan Van); L. Wolfe (Lynne); L.-J. Wong (Lee-Jun)

    2015-01-01

    textabstractSuccess rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires th

  15. Directly e-mailing authors of newly published papers encourages community curation.

    Science.gov (United States)

    Bunt, Stephanie M; Grumbling, Gary B; Field, Helen I; Marygold, Steven J; Brown, Nicholas H; Millburn, Gillian H

    2012-01-01

    Much of the data within Model Organism Databases (MODs) comes from manual curation of the primary research literature. Given limited funding and an increasing density of published material, a significant challenge facing all MODs is how to efficiently and effectively prioritize the most relevant research papers for detailed curation. Here, we report recent improvements to the triaging process used by FlyBase. We describe an automated method to directly e-mail corresponding authors of new papers, requesting that they list the genes studied and indicate ('flag') the types of data described in the paper using an online tool. Based on the author-assigned flags, papers are then prioritized for detailed curation and channelled to appropriate curator teams for full data extraction. The overall response rate has been 44% and the flagging of data types by authors is sufficiently accurate for effective prioritization of papers. In summary, we have established a sustainable community curation program, with the result that FlyBase curators now spend less time triaging and can devote more effort to the specialized task of detailed data extraction. Database URL: http://flybase.org/

  16. LncRNAWiki: harnessing community knowledge in collaborative curation of human long non-coding RNAs

    KAUST Repository

    Ma, L.

    2014-11-15

    Long non-coding RNAs (lncRNAs) perform a diversity of functions in numerous important biological processes and are implicated in many human diseases. In this report we present lncRNAWiki (http://lncrna.big.ac.cn), a wiki-based platform that is open-content and publicly editable and aimed at community-based curation and collection of information on human lncRNAs. Current related databases are dependent primarily on curation by experts, making it laborious to annotate the exponentially accumulated information on lncRNAs, which inevitably requires collective efforts in community-based curation of lncRNAs. Unlike existing databases, lncRNAWiki features comprehensive integration of information on human lncRNAs obtained from multiple different resources and allows not only existing lncRNAs to be edited, updated and curated by different users but also the addition of newly identified lncRNAs by any user. It harnesses community collective knowledge in collecting, editing and annotating human lncRNAs and rewards community-curated efforts by providing explicit authorship based on quantified contributions. LncRNAWiki relies on the underling knowledge of scientific community for collective and collaborative curation of human lncRNAs and thus has the potential to serve as an up-to-date and comprehensive knowledgebase for human lncRNAs.

  17. MET network in PubMed: a text-mined network visualization and curation system

    Science.gov (United States)

    Dai, Hong-Jie; Su, Chu-Hsien; Lai, Po-Ting; Huang, Ming-Siang; Jonnagaddala, Jitendra; Rose Jue, Toni; Rao, Shruti; Chou, Hui-Jou; Milacic, Marija; Singh, Onkar; Syed-Abdul, Shabbir; Hsu, Wen-Lian

    2016-01-01

    Metastasis is the dissemination of a cancer/tumor from one organ to another, and it is the most dangerous stage during cancer progression, causing more than 90% of cancer deaths. Improving the understanding of the complicated cellular mechanisms underlying metastasis requires investigations of the signaling pathways. To this end, we developed a METastasis (MET) network visualization and curation tool to assist metastasis researchers retrieve network information of interest while browsing through the large volume of studies in PubMed. MET can recognize relations among genes, cancers, tissues and organs of metastasis mentioned in the literature through text-mining techniques, and then produce a visualization of all mined relations in a metastasis network. To facilitate the curation process, MET is developed as a browser extension that allows curators to review and edit concepts and relations related to metastasis directly in PubMed. PubMed users can also view the metastatic networks integrated from the large collection of research papers directly through MET. For the BioCreative 2015 interactive track (IAT), a curation task was proposed to curate metastatic networks among PubMed abstracts. Six curators participated in the proposed task and a post-IAT task, curating 963 unique metastatic relations from 174 PubMed abstracts using MET. Database URL: http://btm.tmu.edu.tw/metastasisway PMID:27242035

  18. MET network in PubMed: a text-mined network visualization and curation system.

    Science.gov (United States)

    Dai, Hong-Jie; Su, Chu-Hsien; Lai, Po-Ting; Huang, Ming-Siang; Jonnagaddala, Jitendra; Rose Jue, Toni; Rao, Shruti; Chou, Hui-Jou; Milacic, Marija; Singh, Onkar; Syed-Abdul, Shabbir; Hsu, Wen-Lian

    2016-01-01

    Metastasis is the dissemination of a cancer/tumor from one organ to another, and it is the most dangerous stage during cancer progression, causing more than 90% of cancer deaths. Improving the understanding of the complicated cellular mechanisms underlying metastasis requires investigations of the signaling pathways. To this end, we developed a METastasis (MET) network visualization and curation tool to assist metastasis researchers retrieve network information of interest while browsing through the large volume of studies in PubMed. MET can recognize relations among genes, cancers, tissues and organs of metastasis mentioned in the literature through text-mining techniques, and then produce a visualization of all mined relations in a metastasis network. To facilitate the curation process, MET is developed as a browser extension that allows curators to review and edit concepts and relations related to metastasis directly in PubMed. PubMed users can also view the metastatic networks integrated from the large collection of research papers directly through MET. For the BioCreative 2015 interactive track (IAT), a curation task was proposed to curate metastatic networks among PubMed abstracts. Six curators participated in the proposed task and a post-IAT task, curating 963 unique metastatic relations from 174 PubMed abstracts using MET.Database URL: http://btm.tmu.edu.tw/metastasisway. © The Author(s) 2016. Published by Oxford University Press.

  19. RGST - Rat Gene Symbol Tracker, a database for defining official rat gene symbols

    Directory of Open Access Journals (Sweden)

    Ståhl Fredrik

    2008-01-01

    Full Text Available Abstract Background The names of genes are central in describing their function and relationship. However, gene symbols are often a subject of controversy. In addition, the discovery of mammalian genes is now so rapid that a proper use of gene symbol nomenclature rules tends to be overlooked. This is currently the situation in the rat and there is a need for a cohesive and unifying overview of all rat gene symbols in use. Based on the experiences in rat gene symbol curation that we have gained from running the "Ratmap" rat genome database, we have now developed a database that unifies different rat gene naming attempts with the accepted rat gene symbol nomenclature rules. Description This paper presents a newly developed database known as RGST (Rat Gene Symbol Tracker. The database contains rat gene symbols from three major sources: the Rat Genome Database (RGD, Ensembl, and NCBI-Gene. All rat symbols are compared with official symbols from orthologous human genes as specified by the Human Gene Nomenclature Committee (HGNC. Based on the outcome of the comparisons, a rat gene symbol may be selected. Rat symbols that do not match a human ortholog undergo a strict procedure of comparisons between the different rat gene sources as well as with the Mouse Genome Database (MGD. For each rat gene this procedure results in an unambiguous gene designation. The designation is presented as a status level that accompanies every rat gene symbol suggested in the database. The status level describes both how a rat symbol was selected, and its validity. Conclusion This database fulfils the important need of unifying rat gene symbols into an automatic and cohesive nomenclature system. The RGST database is available directly from the RatMap home page: http://ratmap.org.

  20. InterStoreDB: A Generic Integration Resource for Genetic and Genomic Data

    Institute of Scientific and Technical Information of China (English)

    Christopher G.Love; Ambrose E.Andongabo; Jun Wang; Pierre W.C.Carion; Christopher J.Rawlings; Graham J.King

    2012-01-01

    Associating phenotypic traits and quantitative trait loci (QTL) to causative regions of the underlying genome is a key goal in agricultural research.InterStoreDB is a suite of integrated databases designed to assist in this process.The individual databases are species independent and generic in design,providing access to curated datasets relating to plant populations,phenotypic traits,genetic maps,marker loci and QTL,with links to functional gene annotation and genomic sequence data.Each component database provides access to associated metadata,including data provenance and parameters used in analyses,thus providing users with information to evaluate the relative worth of any associations identified.The databases include CropStoreDB,for management of population,genetic map,QTL and trait measurement data,SeqStoreDB for sequence-related data and AlignStoreDB,which stores sequence alignment information,and allows navigation between genetic and genomic datasets.Genetic maps are visualized and compared using the CMAP tool,and functional annotation from sequenced genomes is provided via an EnsEMBL-based genome browser.This framework facilitates navigation of the multiple biological domains involved in genetics and genomics research in a transparent manner within a single portal.We demonstrate the value of InterStoreDB as a tool for Brassica research.InterStoreDB is available from:http:llwww.interstoredb.org

  1. RSSsite: a reference database and prediction tool for the identification of cryptic Recombination Signal Sequences in human and murine genomes.

    Science.gov (United States)

    Merelli, Ivan; Guffanti, Alessandro; Fabbri, Marco; Cocito, Andrea; Furia, Laura; Grazini, Ursula; Bonnal, Raoul J; Milanesi, Luciano; McBlane, Fraser

    2010-07-01

    Recombination signal sequences (RSSs) flanking V, D and J gene segments are recognized and cut by the VDJ recombinase during development of B and T lymphocytes. All RSSs are composed of seven conserved nucleotides, followed by a spacer (containing either 12 +/- 1 or 23 +/- 1 poorly conserved nucleotides) and a conserved nonamer. Errors in V(D)J recombination, including cleavage of cryptic RSS outside the immunoglobulin and T cell receptor loci, are associated with oncogenic translocations observed in some lymphoid malignancies. We present in this paper the RSSsite web server, which is available from the address http://www.itb.cnr.it/rss. RSSsite consists of a web-accessible database, RSSdb, for the identification of pre-computed potential RSSs, and of the related search tool, DnaGrab, which allows the scoring of potential RSSs in user-supplied sequences. This latter algorithm makes use of probability models, which can be recasted to Bayesian network, taking into account correlations between groups of positions of a sequence, developed starting from specific reference sets of RSSs. In validation laboratory experiments, we selected 33 predicted cryptic RSSs (cRSSs) from 11 chromosomal regions outside the immunoglobulin and TCR loci for functional testing.

  2. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Lo Fang-Yi

    2012-06-01

    Full Text Available Abstract Background Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods Array-comparative genomic hybridization (array-CGH was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR, chromogenic in situ hybridization (CISH, reverse transcriptase-qPCR (RT-qPCR, and immunohistochemistry (IHC in more patients. Results We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1 functioning in Rho activity control, FRAT2 (10q24.1 involved in Wnt signaling, PAFAH1B1 (17p13.3 functioning in motility control, and ZNF322A (6p22.1 involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (PP=0.06. In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of

  3. Curation of Osiris-REx Asteroid Samples

    Science.gov (United States)

    Righter, K.; Nakamura-Messenger, K.; Lauretta, D. S.

    2013-01-01

    The New Frontiers mission, OSIRIS-REx, will encounter carbonaceous asteroid 101955 Bennu (1999 RQ36; [1]) in 2018, collect a sample and return it to Earth and deliver it to NASA-JSC for curation in 2023. The mission curation plan is being developed and an overview will be given, including the main elements of contamination control, sample recovery, cleanroom construction, and curation support once the sample is returned to Earth.

  4. MASiVEdb: the Sirevirus Plant Retrotransposon Database

    Directory of Open Access Journals (Sweden)

    Bousios Alexandros

    2012-04-01

    Full Text Available Abstract Background Sireviruses are an ancient genus of the Copia superfamily of LTR retrotransposons, and the only one that has exclusively proliferated within plant genomes. Based on experimental data and phylogenetic analyses, Sireviruses have successfully infiltrated many branches of the plant kingdom, extensively colonizing the genomes of grass species. Notably, it was recently shown that they have been a major force in the make-up and evolution of the maize genome, where they currently occupy ~21% of the nuclear content and ~90% of the Copia population. It is highly likely, therefore, that their life dynamics have been fundamental in the genome composition and organization of a plethora of plant hosts. To assist studies into their impact on plant genome evolution and also facilitate accurate identification and annotation of transposable elements in sequencing projects, we developed MASiVEdb (Mapping and Analysis of SireVirus Elements Database, a collective and systematic resource of Sireviruses in plants. Description Taking advantage of the increasing availability of plant genomic sequences, and using an updated version of MASiVE, an algorithm specifically designed to identify Sireviruses based on their highly conserved genome structure, we populated MASiVEdb (http://bat.infspire.org/databases/masivedb/ with data on 16,243 intact Sireviruses (total length >158Mb discovered in 11 fully-sequenced plant genomes. MASiVEdb is unlike any other transposable element database, providing a multitude of highly curated and detailed information on a specific genus across its hosts, such as complete set of coordinates, insertion age, and an analytical breakdown of the structure and gene complement of each element. All data are readily available through basic and advanced query interfaces, batch retrieval, and downloadable files. A purpose-built system is also offered for detecting and visualizing similarity between user sequences and Sireviruses, as

  5. Analysis of SSRs in grape genome and development of SSR database%葡萄全基因组SSR分析和数据库构建

    Institute of Scientific and Technical Information of China (English)

    蔡斌; 李成慧; 姚泉洪; 周军; 陶建敏; 章镇

    2009-01-01

    We developed a Perl script-SSRFinder to detect SSRs in grape genome sequence. A total of 114 520 SSRs were isolated from publicly available Vitis vinifera L. ' Pinor Nori PN40024' genomic DNA sequence. Among them, 37 648 mononucleotide repeats, 30 123 dinucleotide repeats, 18 705 trinucleotide repeats, 14 566 tetranucleotide repeats, 3 492 pentanucleotide repeats, and 9 986 hexanucleotide repeats were found, accounting for 32. 9% , 26. 3% , 16. 3% , 12. 7% , 3. 0% , and 8. 7% of the total SSRs respectively. SSRs with poly ( A/T)_n repeats represented the most abundant type, whereas C/G-rich motifs were the rarest type. We also assessed the distribution of SSRs on genome fragment. The results showed that the SSRs distributed mainly in inter-genic region and were moderately abundant in UTRs. In coding region, the distribution of all repeat types was less frequent except tri- and hexa-nucleotide repeats. To make use of these SSRs, we developed a database on the Internet. The database of grape SSRs ( DGSSR) is a database comprehensively collecting and annotating grape SSRs. The DGSSR contains all the SSRs with their related information detected in the study. It provides flexible query interface and detailed annotations for individual SSR. It also contains SSRs detected from Vitis vinifera L. ESTs dataset. The DGSSR is available at http: //www. yaolab. sh. cn/ssr.%利用Perl语言开发了用于探寻基因组SSR的程序SSRFinder,并利用其从法国国家基因测序中心(Genoscope)公布的欧亚种葡萄(Vitis vinifera L.)黑比诺品系PN40024的基因组序列中检索到114 520个SSR.其中含单核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸和六核苷酸重复单元的SSR数目分别为37 648(329%)、30 123(263%)、18 705(163%)、14 566(127%)、3 492(30%)和9 986(87%)个.在各类SSR中,不同核苷酸组成的重复单元频率间存在较大的差异,其中富含A/T重复单元的SSR频率最高,而富含C/G重复单元的SSR频率

  6. Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the Cancer Genome Atlas database

    Science.gov (United States)

    Tian, Feng; Zhao, Jinlong; Kang, Zhenxing

    2017-01-01

    Background Lung squamous cell carcinoma (lung SCC) is a common type of malignancy. Its pathogenesis mechanism of tumor development is unclear. The aim of this study was to identify key genes for diagnosis biomarkers in lung SCC metastasis. Methods We searched and downloaded mRNA expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify differences in mRNA expression of primary tumor tissues from lung SCC with and without metastasis. Gene co-expression network analysis, protein-protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and quantitative real-time polymerase chain reactions (qRT-PCR) were used to explore the biological functions of the identified dysregulated genes. Results Four hundred and eighty-two differentially expressed genes (DEGs) were identified between lung SCC with and without metastasis. Nineteen modules were identified in lung SCC through weighted gene co-expression network analysis (WGCNA). Twenty-three DEGs and 26 DEGs were significantly enriched in the respective pink and black module. KEGG pathway analysis displayed that 26 DEGs in the black module were significantly enriched in bile secretion pathway. Forty-nine DEGs in the two gene co-expression module were used to construct PPI network. CFTR in the black module was the hub protein, had the connectivity with 182 genes. The results of qRT-PCR displayed that FIGF, SFTPD, DYNLRB2 were significantly down-regulated in the tumor samples of lung SCC with metastasis and CFTR, SCGB3A2, SSTR1, SCTR, ROPN1L had the down-regulation tendency in lung SCC with metastasis compared to lung SCC without metastasis. Conclusions The dysregulated genes including CFTR, SCTR and FIGF might be involved in the pathology of lung SCC metastasis and could be used as potential diagnosis biomarkers or therapeutic targets for lung SCC.

  7. Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the Cancer Genome Atlas database.

    Science.gov (United States)

    Tian, Feng; Zhao, Jinlong; Fan, Xinlei; Kang, Zhenxing

    2017-01-01

    Lung squamous cell carcinoma (lung SCC) is a common type of malignancy. Its pathogenesis mechanism of tumor development is unclear. The aim of this study was to identify key genes for diagnosis biomarkers in lung SCC metastasis. We searched and downloaded mRNA expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify differences in mRNA expression of primary tumor tissues from lung SCC with and without metastasis. Gene co-expression network analysis, protein-protein interaction (PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and quantitative real-time polymerase chain reactions (qRT-PCR) were used to explore the biological functions of the identified dysregulated genes. Four hundred and eighty-two differentially expressed genes (DEGs) were identified between lung SCC with and without metastasis. Nineteen modules were identified in lung SCC through weighted gene co-expression network analysis (WGCNA). Twenty-three DEGs and 26 DEGs were significantly enriched in the respective pink and black module. KEGG pathway analysis displayed that 26 DEGs in the black module were significantly enriched in bile secretion pathway. Forty-nine DEGs in the two gene co-expression module were used to construct PPI network. CFTR in the black module was the hub protein, had the connectivity with 182 genes. The results of qRT-PCR displayed that FIGF, SFTPD, DYNLRB2 were significantly down-regulated in the tumor samples of lung SCC with metastasis and CFTR, SCGB3A2, SSTR1, SCTR, ROPN1L had the down-regulation tendency in lung SCC with metastasis compared to lung SCC without metastasis. The dysregulated genes including CFTR, SCTR and FIGF might be involved in the pathology of lung SCC metastasis and could be used as potential diagnosis biomarkers or therapeutic targets for lung SCC.

  8. Development of an integrated genome informatics, data management and workflow infrastructure: A toolbox for the study of complex disease genetics

    Directory of Open Access Journals (Sweden)

    Burren Oliver S

    2004-01-01

    Full Text Available Abstract The genetic dissection of complex disease remains a significant challenge. Sample-tracking and the recording, processing and storage of high-throughput laboratory data with public domain data, require integration of databases, genome informatics and genetic analyses in an easily updated and scaleable format. To find genes involved in multifactorial diseases such as type 1 diabetes (T1D, chromosome regions are defined based on functional candidate gene content, linkage information from humans and animal model mapping information. For each region, genomic information is extracted from Ensembl, converted and loaded into ACeDB for manual gene annotation. Homology information is examined using ACeDB tools and the gene structure verified. Manually curated genes are extracted from ACeDB and read into the feature database, which holds relevant local genomic feature data and an audit trail of laboratory investigations. Public domain information, manually curated genes, polymorphisms, primers, linkage and association analyses, with links to our genotyping database, are shown in Gbrowse. This system scales to include genetic, statistical, quality control (QC and biological data such as expression analyses of RNA or protein, all linked from a genomics integrative display. Our system is applicable to any genetic study of complex disease, of either large or small scale.

  9. FmMDb: A Versatile Database of Foxtail Millet Markers for Millets and Bioenergy Grasses Research

    Science.gov (United States)

    Misra, Gopal; Prasad, Manoj

    2013-01-01

    The prominent attributes of foxtail millet (Setaria italica L.) including its small genome size, short life cycle, inbreeding nature, and phylogenetic proximity to various biofuel crops have made this crop an excellent model system to investigate various aspects of architectural, evolutionary and physiological significances in Panicoid bioenergy grasses. After release of its whole genome sequence, large-scale genomic resources in terms of molecular markers were generated for the improvement of both foxtail millet and its related species. Hence it is now essential to congregate, curate and make available these genomic resources for the benefit of researchers and breeders working towards crop improvement. In view of this, we have constructed the Foxtail millet Marker Database (FmMDb; http://www.nipgr.res.in/foxtail.html), a comprehensive online database for information retrieval, visualization and management of large-scale marker datasets with unrestricted public access. FmMDb is the first database which provides complete marker information to the plant science community attempting to produce elite cultivars of millet and bioenergy grass species, thus addressing global food insecurity. PMID:23951158

  10. The JWS online simulation database.

    Science.gov (United States)

    Peters, Martin; Eicher, Johann J; van Niekerk, David D; Waltemath, Dagmar; Snoep, Jacky L

    2017-05-15

    JWS Online is a web-based platform for construction, simulation and exchange of models in standard formats. We have extended the platform with a database for curated simulation experiments that can be accessed directly via a URL, allowing one-click reproduction of published results. Users can modify the simulation experiments and export them in standard formats. The Simulation database thus lowers the bar on exploring computational models, helps users create valid simulation descriptions and improves the reproducibility of published simulation experiments. The Simulation Database is available on line at https://jjj.bio.vu.nl/models/experiments/ . jls@sun.ac.za .

  11. Ranking relations between diseases, drugs and genes for a curation task

    Directory of Open Access Journals (Sweden)

    Clematide Simon

    2012-10-01

    Full Text Available Abstract Background One of the key pieces of information which biomedical text mining systems are expected to extract from the literature are interactions among different types of biomedical entities (proteins, genes, diseases, drugs, etc.. Several large resources of curated relations between biomedical entities are currently available, such as the Pharmacogenomics Knowledge Base (PharmGKB or the Comparative Toxicogenomics Database (CTD. Biomedical text mining systems, and in particular those which deal with the extraction of relationships among entities, could make better use of the wealth of already curated material. Results We propose a simple and effective method based on logistic regression (also known as maximum entropy modeling for an optimized ranking of relation candidates utilizing curated abstracts. Furthermore, we examine the effects and difficulties of using widely available metadata (i.e. MeSH terms and chemical substance index terms for relation extraction. Cross-validation experiments result in an improvement of the ranking quality in terms of AUCiP/R by 39% (PharmGKB and 116% (CTD against a frequency-based baseline of 0.39 (PharmGKB and 0.21 (CTD. For the TAP-10 metrics, we achieve an improvement of 53% (PharmGKB and 134% (CTD against the same baseline system (0.21 PharmGKB and 0.15 CTD. Conclusions Our experiments with the PharmGKB and the CTD database show a strong positive effect for the ranking of relation candidates utilizing the vast amount of curated relations covered by currently available knowledge databases. The tasks of concept identification and candidate relation generation profit from the adaptation to previously curated material. This presents an effective and practical method suitable for conservative extension and re-validation of biomedical relations from texts that has been successfully used for curation experiments with the PharmGKB and CTD database.

  12. Molecular marker databases.

    Science.gov (United States)

    Lai, Kaitao; Lorenc, Michał Tadeusz; Edwards, David

    2015-01-01

    The detection and analysis of genetic variation plays an important role in plant breeding and this role is increasing with the continued development of genome sequencing technologies. Molecular genetic markers are important tools to characterize genetic variation and assist with genomic breeding. Processing and storing the growing abundance of molecular marker data being produced requires the development of specific bioinformatics tools and advanced databases. Molecular marker databases range from species specific through to organism wide and often host a variety of additional related genetic, genomic, or phenotypic information. In this chapter, we will present some of the features of plant molecular genetic marker databases, highlight the various types of marker resources, and predict the potential future direction of crop marker databases.

  13. Appraisal and Selection for Digital Curation

    Directory of Open Access Journals (Sweden)

    Jinfang Niu

    2014-10-01

    Full Text Available Based on existing appraisal/selection policies in libraries, archives, museum, social science and science data centers, this paper presents a generic appraisal/selection framework for digital curation. In presenting this framework, the author discusses how archival appraisal theories, methods, and criteria adapt to the general digital curation context.

  14. EcoCyc: fusing model organism databases with systems biology.

    Science.gov (United States)

    Keseler, Ingrid M; Mackie, Amanda; Peralta-Gil, Martin; Santos-Zavaleta, Alberto; Gama-Castro, Socorro; Bonavides-Martínez, César; Fulcher, Carol; Huerta, Araceli M; Kothari, Anamika; Krummenacker, Markus; Latendresse, Mario; Muñiz-Rascado, Luis; Ong, Quang; Paley, Suzanne; Schröder, Imke; Shearer, Alexander G; Subhraveti, Pallavi; Travers, Mike; Weerasinghe, Deepika; Weiss, Verena; Collado-Vides, Julio; Gunsalus, Robert P; Paulsen, Ian; Karp, Peter D

    2013-01-01

    EcoCyc (http://EcoCyc.org) is a model organism database built on the genome sequence of Escherichia coli K-12 MG1655. Expert manual curation of the functions of individual E. coli gene products in EcoCyc has been based on information found in the experimental literature for E. coli K-12-derived strains. Updates to EcoCyc content continue to improve the comprehensive picture of E. coli biology. The utility of EcoCyc is enhanced by new tools available on the EcoCyc web site, and the development of EcoCyc as a teaching tool is increasing the impact of the knowledge collected in EcoCyc.

  15. MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells.

    Science.gov (United States)

    Taccioli, Cristian; Sorrentino, Giovanni; Zannini, Alessandro; Caroli, Jimmy; Beneventano, Domenico; Anderlucci, Laura; Lolli, Marco; Bicciato, Silvio; Del Sal, Giannino

    2015-11-17

    Targeted anticancer therapies represent the most effective pharmacological strategies in terms of clinical responses. In this context, genetic alteration of several oncogenes represents an optimal predictor of response to targeted therapy. Integration of large-scale molecular and pharmacological data from cancer cell lines promises to be effective in the discovery of new genetic markers of drug sensitivity and of clinically relevant anticancer compounds. To define novel pharmacogenomic dependencies in cancer, we created the Mutations and Drugs Portal (MDP, http://mdp.unimore.it), a web accessible database that combines the cell-based NCI60 screening of more than 50,000 compounds with genomic data extracted from the Cancer Cell Line Encyclopedia and the NCI60 DTP projects. MDP can be queried for drugs active in cancer cell lines carrying mutations in specific cancer genes or for genetic markers associated to sensitivity or resistance to a given compound. As proof of performance, we interrogated MDP to identify both known and novel pharmacogenomics associations and unveiled an unpredicted combination of two FDA-approved compounds, namely statins and Dasatinib, as an effective strategy to potently inhibit YAP/TAZ in cancer cells.

  16. Immunisation in a curative setting

    DEFF Research Database (Denmark)

    Kofoed, Poul-Erik; Nielsen, B; Rahman, A K

    1990-01-01

    OBJECTIVE: To study the uptake of vaccination offered to women and children attending a curative health facility. DESIGN: Prospective survey over eight months of the uptake of vaccination offered to unimmunised women and children attending a diarrhoeal treatment centre as patients or attendants...... of women and children who were unimmunised or incompletely immunised was calculated and the percentage of this target population accepting vaccination was recorded. RESULTS: 7530 (84.2%) Of 8944 eligible children and 7730 (40.4%) of 19,138 eligible women were vaccinated. Of the children, 63.8% were boys......, 75.9% were aged under 1 year, and 23.0% were aged 1 to 2 years. The estimated number of missed opportunities for vaccination was 716 among the children (8.0% of the target population) and 11,408 among the women (59.6% of those eligible). CONCLUSION: It is possible to establish immunisation services...

  17. Identification of conserved gene clusters in multiple genomes based on synteny and homology

    Directory of Open Access Journals (Sweden)

    Nikolski Macha

    2011-10-01

    Full Text Available Abstract Background Uncovering the relationship between the conserved chromosomal segments and the functional relatedness of elements within these segments is an important question in computational genomics. We build upon the series of works on gene teams and homology teams. Results Our primary contribution is a local sliding-window SYNS (SYNtenic teamS algorithm that refines an existing family structure into orthologous sub-families by analyzing the neighborhoods around the members of a given family with a locally sliding window. The neighborhood analysis is done by computing conserved gene clusters. We evaluate our algorithm on the existing homologous families from the Genolevures database over five genomes of the Hemyascomycete phylum. Conclusions The result is an efficient algorithm that works on multiple genomes, considers paralogous copies of genes and is able to uncover orthologous clusters even in distant genomes. Resulting orthologous clusters are comparable to those obtained by manual curation.

  18. Automated alignment-based curation of gene models in filamentous fungi

    NARCIS (Netherlands)

    Burgt, van der A.; Severing, E.I.; Collemare, J.A.R.; Wit, de P.J.G.M.

    2014-01-01

    Background Automated gene-calling is still an error-prone process, particularly for the highly plastic genomes of fungal species. Improvement through quality control and manual curation of gene models is a time-consuming process that requires skilled biologists and is only marginally performed. The

  19. Astromaterials Curation Online Resources for Principal Investigators

    Science.gov (United States)

    Todd, Nancy S.; Zeigler, Ryan A.; Mueller, Lina

    2017-01-01

    The Astromaterials Acquisition and Curation office at NASA Johnson Space Center curates all of NASA's extraterrestrial samples, the most extensive set of astromaterials samples available to the research community worldwide. The office allocates 1500 individual samples to researchers and students each year and has served the planetary research community for 45+ years. The Astromaterials Curation office provides access to its sample data repository and digital resources to support the research needs of sample investigators and to aid in the selection and request of samples for scientific study. These resources can be found on the Astromaterials Acquisition and Curation website at https://curator.jsc.nasa.gov. To better serve our users, we have engaged in several activities to enhance the data available for astromaterials samples, to improve the accessibility and performance of the website, and to address user feedback. We havealso put plans in place for continuing improvements to our existing data products.

  20. MediaDB: a database of microbial growth conditions in defined media.

    Science.gov (United States)

    Richards, Matthew A; Cassen, Victor; Heavner, Benjamin D; Ajami, Nassim E; Herrmann, Andrea; Simeonidis, Evangelos; Price, Nathan D

    2014-01-01

    Isolating pure microbial cultures and cultivating them in the laboratory on defined media is used to more fully characterize the metabolism and physiology of organisms. However, identifying an appropriate growth medium for a novel isolate remains a challenging task. Even organisms with sequenced and annotated genomes can be difficult to grow, despite our ability to build genome-scale metabolic networks that connect genomic data with metabolic function. The scientific literature is scattered with information about defined growth media used successfully for cultivating a wide variety of organisms, but to date there exists no centralized repository to inform efforts to cultivate less characterized organisms by bridging the gap between genomic data and compound composition for growth media. Here we present MediaDB, a manually curated database of defined media that have been used for cultivating organisms with sequenced genomes, with an emphasis on organisms with metabolic network models. The database is accessible online, can be queried by keyword searches or downloaded in its entirety, and can generate exportable individual media formulation files. The data assembled in MediaDB facilitate comparative studies of organism growth media, serve as a starting point for formulating novel growth media, and contribute to formulating media for in silico investigation of metabolic networks. MediaDB is freely available for public use at https://mediadb.systemsbiology.net.

  1. GlycomeDB – integration of open-access carbohydrate structure databases

    Directory of Open Access Journals (Sweden)

    von der Lieth Claus-Wilhelm

    2008-09-01

    Full Text Available Abstract Background Although carbohydrates are the third major class of biological macromolecules, after proteins and DNA, there is neither a comprehensive database for carbohydrate structures nor an established universal structure encoding scheme for computational purposes. Funding for further development of the Complex Carbohydrate Structure Database (CCSD or CarbBank ceased in 1997, and since then several initiatives have developed independent databases with partially overlapping foci. For each database, different encoding schemes for residues and sequence topology were designed. Therefore, it is virtually impossible to obtain an overview of all deposited structures or to compare the contents of the various databases. Results We have implemented procedures which download the structures contained in the seven major databases, e.g. GLYCOSCIENCES.de, the Consortium for Functional Glycomics (CFG, the Kyoto Encyclopedia of Genes and Genomes (KEGG and the Bacterial Carbohydrate Structure Database (BCSDB. We have created a new database called GlycomeDB, containing all structures, their taxonomic annotations and references (IDs for the original databases. More than 100000 datasets were imported, resulting in more than 33000 unique sequences now encoded in GlycomeDB using the universal format GlycoCT. Inconsistencies were found in all public databases, which were discussed and corrected in multiple feedback rounds with the responsible curators. Conclusion GlycomeDB is a new, publicly available database for carbohydrate sequences with a unified, all-encompassing structure encoding format and NCBI taxonomic referencing. The database is updated weekly and can be downloaded free of charge. The JAVA application GlycoUpdateDB is also available for establishing and updating a local installation of GlycomeDB. With the advent of GlycomeDB, the distributed islands of knowledge in glycomics are now bridged to form a single resource.

  2. Database Description - KOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us KOME Database... Description General information of database Database name Knowledge-based Oryza Molecular biol...baraki 305-8602, Japan National Institute of Agrobiological Sciences Plant Genome Research Unit Shoshi Kikuchi E-mail : Database... classification Plant databases - Rice Organism Taxonomy Name: Oryza sativa Taxonomy ID: 4530 Database...A clones that were completely sequenced in the Rice full-length cDNA project is shown in the database. The f

  3. Database Description - GETDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us GETDB Database Description General information of database Database name GETDB Alternative n...ame Gal4 Enhancer Trap Insertion Database DOI 10.18908/lsdba.nbdc00236-000 Creator Creator Name: Shigeo Haya... Chuo-ku, Kobe 650-0047 Tel: +81-78-306-3185 FAX: +81-78-306-3183 E-mail: Database classification Expression... Invertebrate genome database Organism Taxonomy Name: Drosophila melanogaster Taxonomy ID: 7227 Database des...cription About 4,600 insertion lines of enhancer trap lines based on the Gal4-UAS

  4. How should the completeness and quality of curated nanomaterial data be evaluated?

    Science.gov (United States)

    Marchese Robinson, Richard L.; Lynch, Iseult; Peijnenburg, Willie; Rumble, John; Klaessig, Fred; Marquardt, Clarissa; Rauscher, Hubert; Puzyn, Tomasz; Purian, Ronit; Åberg, Christoffer; Karcher, Sandra; Vriens, Hanne; Hoet, Peter; Hoover, Mark D.; Hendren, Christine Ogilvie; Harper, Stacey L.

    2016-05-01

    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials' behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated?Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict

  5. A hybrid human and machine resource curation pipeline for the Neuroscience Information Framework.

    Science.gov (United States)

    Bandrowski, A E; Cachat, J; Li, Y; Müller, H M; Sternberg, P W; Ciccarese, P; Clark, T; Marenco, L; Wang, R; Astakhov, V; Grethe, J S; Martone, M E

    2012-01-01

    The breadth of information resources available to researchers on the Internet continues to expand, particularly in light of recently implemented data-sharing policies required by funding agencies. However, the nature of dense, multifaceted neuroscience data and the design of contemporary search engine systems makes efficient, reliable and relevant discovery of such information a significant challenge. This challenge is specifically pertinent for online databases, whose dynamic content is 'hidden' from search engines. The Neuroscience Information Framework (NIF; http://www.neuinfo.org) was funded by the NIH Blueprint for Neuroscience Research to address the problem of finding and utilizing neuroscience-relevant resources such as software tools, data sets, experimental animals and antibodies across the Internet. From the outset, NIF sought to provide an accounting of available resources, whereas developing technical solutions to finding, accessing and utilizing them. The curators therefore, are tasked with identifying and registering resources, examining data, writing configuration files to index and display data and keeping the contents current. In the initial phases of the project, all aspects of the registration and curation processes were manual. However, as the number of resources grew, manual curation became impractical. This report describes our experiences and successes with developing automated resource discovery and semiautomated type characterization with text-mining scripts that facilitate curation team efforts to discover, integrate and display new content. We also describe the DISCO framework, a suite of automated web services that significantly reduce manual curation efforts to periodically check for resource updates. Lastly, we discuss DOMEO, a semi-automated annotation tool that improves the discovery and curation of resources that are not necessarily website-based (i.e. reagents, software tools). Although the ultimate goal of automation was to

  6. The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching

    Science.gov (United States)

    Howe, Douglas G.; Bradford, Yvonne M.; Eagle, Anne; Fashena, David; Frazer, Ken; Kalita, Patrick; Mani, Prita; Martin, Ryan; Moxon, Sierra Taylor; Paddock, Holly; Pich, Christian; Ramachandran, Sridhar; Ruzicka, Leyla; Schaper, Kevin; Shao, Xiang; Singer, Amy; Toro, Sabrina; Van Slyke, Ceri; Westerfield, Monte

    2017-01-01

    The Zebrafish Model Organism Database (ZFIN; http://zfin.org) is the central resource for zebrafish (Danio rerio) genetic, genomic, phenotypic and developmental data. ZFIN curators provide expert manual curation and integration of comprehensive data involving zebrafish genes, mutants, transgenic constructs and lines, phenotypes, genotypes, gene expressions, morpholinos, TALENs, CRISPRs, antibodies, anatomical structures, models of human disease and publications. We integrate curated, directly submitted, and collaboratively generated data, making these available to zebrafish research community. Among the vertebrate model organisms, zebrafish are superbly suited for rapid generation of sequence-targeted mutant lines, characterization of phenotypes including gene expression patterns, and generation of human disease models. The recent rapid adoption of zebrafish as human disease models is making management of these data particularly important to both the research and clinical communities. Here, we describe recent enhancements to ZFIN including use of the zebrafish experimental conditions ontology, ‘Fish’ records in the ZFIN database, support for gene expression phenotypes, models of human disease, mutation details at the DNA, RNA and protein levels, and updates to the ZFIN single box search. PMID:27899582

  7. Databases for Microbiologists

    Science.gov (United States)

    2015-01-01

    Databases play an increasingly important role in biology. They archive, store, maintain, and share information on genes, genomes, expression data, protein sequences and structures, metabolites and reactions, interactions, and pathways. All these data are critically important to microbiologists. Furthermore, microbiology has its own databases that deal with model microorganisms, microbial diversity, physiology, and pathogenesis. Thousands of biological databases are currently available, and it becomes increasingly difficult to keep up with their development. The purpose of this minireview is to provide a brief survey of current databases that are of interest to microbiologists. PMID:26013493

  8. Orthology prediction methods: a quality assessment using curated protein families.

    Science.gov (United States)

    Trachana, Kalliopi; Larsson, Tomas A; Powell, Sean; Chen, Wei-Hua; Doerks, Tobias; Muller, Jean; Bork, Peer

    2011-10-01

    The increasing number of sequenced genomes has prompted the development of several automated orthology prediction methods. Tests to evaluate the accuracy of predictions and to explore biases caused by biological and technical factors are therefore required. We used 70 manually curated families to analyze the performance of five public methods in Metazoa. We analyzed the strengths and weaknesses of the methods and quantified the impact of biological and technical challenges. From the latter part of the analysis, genome annotation emerged as the largest single influencer, affecting up to 30% of the performance. Generally, most methods did well in assigning orthologous group but they failed to assign the exact number of genes for half of the groups. The publicly available benchmark set (http://eggnog.embl.de/orthobench/) should facilitate the improvement of current orthology assignment protocols, which is of utmost importance for many fields of biology and should be tackled by a broad scientific community. Copyright © 2011 WILEY Periodicals, Inc.

  9. Renal cell tumors with clear cell histology and intact VHL and chromosome 3p: a histological review of tumors from the Cancer Genome Atlas database.

    Science.gov (United States)

    Favazza, Laura; Chitale, Dhananjay A; Barod, Ravi; Rogers, Craig G; Kalyana-Sundaram, Shanker; Palanisamy, Nallasivam; Gupta, Nilesh S; Williamson, Sean R

    2017-07-21

    Clear cell renal cell carcinoma is by far the most common form of kidney cancer; however, a number of histologically similar tumors are now recognized and considered distinct entities. The Cancer Genome Atlas published data set was queried (http://cbioportal.org) for clear cell renal cell carcinoma tumors lacking VHL gene mutation and chromosome 3p loss, for which whole-slide images were reviewed. Of the 418 tumors in the published Cancer Genome Atlas clear cell renal cell carcinoma database, 387 had VHL mutation, copy number loss for chromosome 3p, or both (93%). Of the remaining, 27/31 had whole-slide images for review. One had 3p loss based on karyotype but not sequencing, and three demonstrated VHL promoter hypermethylation. Nine could be reclassified as distinct or emerging entities: translocation renal cell carcinoma (n=3), TCEB1 mutant renal cell carcinoma (n=3), papillary renal cell carcinoma (n=2), and clear cell papillary renal cell carcinoma (n=1). Of the remaining, 6 had other clear cell renal cell carcinoma-associated gene alterations (PBRM1, SMARCA4, BAP1, SETD2), leaving 11 specimens, including 2 high-grade or sarcomatoid renal cell carcinomas and 2 with prominent fibromuscular stroma (not TCEB1 mutant). One of the remaining tumors exhibited gain of chromosome 7 but lacked histological features of papillary renal cell carcinoma. Two tumors previously reported to harbor TFE3 gene fusions also exhibited VHL mutation, chromosome 3p loss, and morphology indistinguishable from clear cell renal cell carcinoma, the significance of which is uncertain. In summary, almost all clear cell renal cell carcinomas harbor VHL mutation, 3p copy number loss, or both. Of tumors with clear cell histology that lack these alterations, a subset can now be reclassified as other entities. Further study will determine whether additional entities exist, based on distinct genetic pathways that may have implications for treatment.Modern Pathology advance online publication, 21

  10. HMMerThread: detecting remote, functional conserved domains in entire genomes by combining relaxed sequence-database searches with fold recognition.

    Directory of Open Access Journals (Sweden)

    Charles Richard Bradshaw

    Full Text Available Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10, a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in

  11. Curation of Samples from Mars

    Science.gov (United States)

    Lindstrom, D.; Allen, C.

    One of the strong scientific reasons for returning samples from Mars is to search for evidence of current or past life in the samples. Because of the remote possibility that the samples may contain life forms that are hazardous to the terrestrial biosphere, the National Research Council has recommended that all samples returned from Mars be kept under strict biological containment until tests show that they can safely be released to other laboratories. It is possible that Mars samples may contain only scarce or subtle traces of life or prebiotic chemistry that could readily be overwhelmed by terrestrial contamination. Thus, the facilities used to contain, process, and analyze samples from Mars must have a combination of high-level biocontainment and organic / inorganic chemical cleanliness that is unprecedented. We have been conducting feasibility studies and developing designs for a facility that would be at least as capable as current maximum containment BSL-4 (BioSafety Level 4) laboratories, while simultaneously maintaining cleanliness levels exceeding those of the cleanest electronics manufacturing labs. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samp les require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation

  12. A unified gene catalog for the laboratory mouse reference genome.

    Science.gov (United States)

    Zhu, Y; Richardson, J E; Hale, P; Baldarelli, R M; Reed, D J; Recla, J M; Sinclair, R; Reddy, T B K; Bult, C J

    2015-08-01

    We report here a semi-automated process by which mouse genome feature predictions and curated annotations (i.e., genes, pseudogenes, functional RNAs, etc.) from Ensembl, NCBI and Vertebrate Genome Annotation database (Vega) are reconciled with the genome features in the Mouse Genome Informatics (MGI) database (http://www.informatics.jax.org) into a comprehensive and non-redundant catalog. Our gene unification method employs an algorithm (fjoin--feature join) for efficient detection of genome coordinate overlaps among features represented in two annotation data sets. Following the analysis with fjoin, genome features are binned into six possible categories (1:1, 1:0, 0:1, 1:n, n:1, n:m) based on coordinate overlaps. These categories are subsequently prioritized for assessment of annotation equivalencies and differences. The version of the unified catalog reported here contains more than 59,000 entries, including 22,599 protein-coding coding genes, 12,455 pseudogenes, and 24,007 other feature types (e.g., microRNAs, lincRNAs, etc.). More than 23,000 of the entries in the MGI gene catalog have equivalent gene models in the annotation files obtained from NCBI, Vega, and Ensembl. 12,719 of the features are unique to NCBI relative to Ensembl/Vega; 11,957 are unique to Ensembl/Vega relative to NCBI, and 3095 are unique to MGI. More than 4000 genome features fall into categories that require manual inspection to resolve structural differences in the gene models from different annotation sources. Using the MGI unified gene catalog, researchers can easily generate a comprehensive report of mouse genome features from a single source and compare the details of gene and transcript structure using MGI's mouse genome browser.

  13. Establishment of a integrative multi-omics expression database CKDdb in the context of chronic kidney disease (CKD)

    Science.gov (United States)

    Fernandes, Marco; Husi, Holger

    2017-01-01

    Complex human traits such as chronic kidney disease (CKD) are a major health and financial burden in modern societies. Currently, the description of the CKD onset and progression at the molecular level is still not fully understood. Meanwhile, the prolific use of high-throughput omic technologies in disease biomarker discovery studies yielded a vast amount of disjointed data that cannot be easily collated. Therefore, we aimed to develop a molecule-centric database featuring CKD-related experiments from available literature publications. We established the Chronic Kidney Disease database CKDdb, an integrated and clustered information resource that covers multi-omic studies (microRNAs, genomics, peptidomics, proteomics and metabolomics) of CKD and related disorders by performing literature data mining and manual curation. The CKDdb database contains differential expression data from 49395 molecule entries (redundant), of which 16885 are unique molecules (non-redundant) from 377 manually curated studies of 230 publications. This database was intentionally built to allow disease pathway analysis through a systems approach in order to yield biological meaning by integrating all existing information and therefore has the potential to unravel and gain an in-depth understanding of the key molecular events that modulate CKD pathogenesis. PMID:28079125

  14. The Role of the Freelance Curator in an Art Exhibition

    Directory of Open Access Journals (Sweden)

    Ieva VITKAUSKAITĖ

    2015-12-01

    Full Text Available This article analyses the role of the freelance curator in an art exhibition. The first part of the article conceptualises the notion of the modern curator and surveys the categories of curators. The next part of the article surveys the potential models of curation. There are 7 models of curation distinguished: self- reflexive, “sampling”, traditional, decentralisation curation, virtual curation, art – curator, collaborative – curatorial platform. The third part analyses the activity of a freelance curator in the art exhibition, which is divided into five stages, namely preliminary work, preparation and completion of the organisation plan, realisation, operation, dismantling and evaluation. Each stage is described in great detail specifying what works should be carried out by the curator. The final part of the article analyses the remarks of the curators which are then used to derive the formula of successful curatorship.

  15. Clinical genomics information management software linking cancer genome sequence and clinical decisions.

    Science.gov (United States)

    Watt, Stuart; Jiao, Wei; Brown, Andrew M K; Petrocelli, Teresa; Tran, Ben; Zhang, Tong; McPherson, John D; Kamel-Reid, Suzanne; Bedard, Philippe L; Onetto, Nicole; Hudson, Thomas J; Dancey, Janet; Siu, Lillian L; Stein, Lincoln; Ferretti, Vincent

    2013-09-01

    Using sequencing information to guide clinical decision-making requires coordination of a diverse set of people and activities. In clinical genomics, the process typically includes sample acquisition, template preparation, genome data generation, analysis to identify and confirm variant alleles, interpretation of clinical significance, and reporting to clinicians. We describe a software application developed within a clinical genomics study, to support this entire process. The software application tracks patients, samples, genomic results, decisions and reports across the cohort, monitors progress and sends reminders, and works alongside an electronic data capture system for the trial's clinical and genomic data. It incorporates systems to read, store, analyze and consolidate sequencing results from multiple technologies, and provides a curated knowledge base of tumor mutation frequency (from the COSMIC database) annotated with clinical significance and drug sensitivity to generate reports for clinicians. By supporting the entire process, the application provides deep support for clinical decision making, enabling the generation of relevant guidance in reports for verification by an expert panel prior to forwarding to the treating physician.

  16. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog)

    Science.gov (United States)

    MacArthur, Jacqueline; Bowler, Emily; Cerezo, Maria; Gil, Laurent; Hall, Peggy; Hastings, Emma; Junkins, Heather; McMahon, Aoife; Milano, Annalisa; Morales, Joannella; Pendlington, Zoe May; Welter, Danielle; Burdett, Tony; Hindorff, Lucia; Flicek, Paul; Cunningham, Fiona; Parkinson, Helen

    2017-01-01

    The NHGRI-EBI GWAS Catalog has provided data from published genome-wide association studies since 2008. In 2015, the database was redesigned and relocated to EMBL-EBI. The new infrastructure includes a new graphical user interface (www.ebi.ac.uk/gwas/), ontology supported search functionality and an improved curation interface. These developments have improved the data release frequency by increasing automation of curation and providing scaling improvements. The range of available Catalog data has also been extended with structured ancestry and recruitment information added for all studies. The infrastructure improvements also support scaling for larger arrays, exome and sequencing studies, allowing the Catalog to adapt to the needs of evolving study design, genotyping technologies and user needs in the future. PMID:27899670

  17. Ontkenning vaderschap door bijzondere curator namens minderjarige

    NARCIS (Netherlands)

    A.J.M. Nuytinck (André)

    2004-01-01

    textabstractOntkenning vaderschap door minderjarig kind, vertegenwoordigd door een daartoe benoemde bijzondere curator; niet vereist dat kind in staat is tot redelijke waardering belangen; belang van zeer jeugdig kind kan anders meebrengen

  18. Ontkenning vaderschap door bijzondere curator namens minderjarige

    NARCIS (Netherlands)

    A.J.M. Nuytinck (André)

    2004-01-01

    textabstractOntkenning vaderschap door minderjarig kind, vertegenwoordigd door een daartoe benoemde bijzondere curator; niet vereist dat kind in staat is tot redelijke waardering belangen; belang van zeer jeugdig kind kan anders meebrengen

  19. ParameciumDB in 2011: new tools and new data for functional and comparative genomics of the model ciliate Paramecium tetraurelia.

    Science.gov (United States)

    Arnaiz, Olivier; Sperling, Linda

    2011-01-01

    ParameciumDB is a community model organism database built with the GMOD toolkit to integrate the genome and biology of the ciliate Paramecium tetraurelia. Over the last four years, post-genomic data from proteome and transcriptome studies has been incorporated along with predicted orthologs in 33 species, annotations from the community and publications from the scientific literature. Available tools include BioMart for complex queries, GBrowse2 for genome browsing, the Apollo genome editor for expert curation of gene models, a Blast server, a motif finder, and a wiki for protocols, nomenclature guidelines and other documentation. In-house tools have been developed for ontology browsing and evaluation of off-target RNAi matches. Now ready for next-generation deep sequencing data and the genomes of other Paramecium species, this open-access resource is available at http://paramecium.cgm.cnrs-gif.fr.

  20. Optimization based automated curation of metabolic reconstructions

    Directory of Open Access Journals (Sweden)

    Maranas Costas D

    2007-06-01

    Full Text Available Abstract Background Currently, there exists tens of different microbial and eukaryotic metabolic reconstructions (e.g., Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis with many more under development. All of these reconstructions are inherently incomplete with some functionalities missing due to the lack of experimental and/or homology information. A key challenge in the automated generation of genome-scale reconstructions is the elucidation of these gaps and the subsequent generation of hypotheses to bridge them. Results In this work, an optimization based procedure is proposed to identify and eliminate network gaps in these reconstructions. First we identify the metabolites in the metabolic network reconstruction which cannot be produced under any uptake conditions and subsequently we identify the reactions from a customized multi-organism database that restores the connectivity of these metabolites to the parent network using four mechanisms. This connectivity restoration is hypothesized to take place through four mechanisms: a reversing the directionality of one or more reactions in the existing model, b adding reaction from another organism to provide functionality absent in the existing model, c adding external transport mechanisms to allow for importation of metabolites in the existing model and d restore flow by adding intracellular transport reactions in multi-compartment models. We demonstrate this procedure for the genome- scale reconstruction of Escherichia coli and also Saccharomyces cerevisiae wherein compartmentalization of intra-cellular reactions results in a more complex topology of the metabolic network. We determine that about 10% of metabolites in E. coli and 30% of metabolites in S. cerevisiae cannot carry any flux. Interestingly, the dominant flow restoration mechanism is directionality reversals of existing reactions in the respective models. Conclusion We have proposed systematic methods to identify and

  1. Database Description - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available n accumulated, which is an indispensable resource to improve plant omics studies both on basic and applied research...mutant lines to the phenome to improve experimental research. Inconstancy among them however has inhibited t...s. One is the “RIKEN Phenome Integration of Arabidopsis Mutants”, that allows researchers to search mutants ...seful materials for their experimental research. The other, the “Database of Curated Plant Phenome” focusing

  2. Semi-automated curation of metabolic models via flux balance analysis: a case study with Mycoplasma gallisepticum.

    Directory of Open Access Journals (Sweden)

    Eddy J Bautista

    Full Text Available Primarily used for metabolic engineering and synthetic biology, genome-scale metabolic modeling shows tremendous potential as a tool for fundamental research and curation of metabolism. Through a novel integration of flux balance analysis and genetic algorithms, a strategy to curate metabolic networks and facilitate identification of metabolic pathways that may not be directly inferable solely from genome annotation was developed. Specifically, metabolites involved in unknown reactions can be determined, and potentially erroneous pathways can be identified. The procedure developed allows for new fundamental insight into metabolism, as well as acting as a semi-automated curation methodology for genome-scale metabolic modeling. To validate the methodology, a genome-scale metabolic model for the bacterium Mycoplasma gallisepticum was created. Several reactions not predicted by the genome annotation were postulated and validated via the literature. The model predicted an average growth rate of 0.358±0.12[Formula: see text], closely matching the experimentally determined growth rate of M. gallisepticum of 0.244±0.03[Formula: see text]. This work presents a powerful algorithm for facilitating the identification and curation of previously known and new metabolic pathways, as well as presenting the first genome-scale reconstruction of M. gallisepticum.

  3. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl

    2015-01-01

    of research are explored. Here we present an overview of the most widely used protein-protein interaction databases and the methods they employ to gather, combine, and predict interactions. We also point out the trade-off between comprehensiveness and accuracy and the main pitfall scientists have to be aware......Years of meticulous curation of scientific literature and increasingly reliable computational predictions have resulted in creation of vast databases of protein interaction data. Over the years, these repositories have become a basic framework in which experiments are analyzed and new directions...

  4. Clustering Table of the genome insert site of Drosophila GAL4 enhancer trap lines (Cluster List) - GETDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available GETDB Clustering Table of the genome insert site of Drosophila GAL4 enhancer trap lines (Cluster List) Data ...detail Data name Clustering Table of the genome insert site of Drosophila GAL4 enhancer trap lines (Cluster ...the Drosophila GAL4 enhancer trap element are clustered by the closeness of their positions from each other.... Us Clustering Table of the genome insert site of Drosophila GAL4 enhancer trap lines (Cluster List) - GETDB | LSDB Archive ...

  5. Legume and Lotus japonicus Databases

    DEFF Research Database (Denmark)

    Hirakawa, Hideki; Mun, Terry; Sato, Shusei

    2014-01-01

    Since the genome sequence of Lotus japonicus, a model plant of family Fabaceae, was determined in 2008 (Sato et al. 2008), the genomes of other members of the Fabaceae family, soybean (Glycine max) (Schmutz et al. 2010) and Medicago truncatula (Young et al. 2011), have been sequenced. In this sec....... In this section, we introduce representative, publicly accessible online resources related to plant materials, integrated databases containing legume genome information, and databases for genome sequence and derived marker information of legume species including L. japonicus...

  6. MetaBase—the wiki-database of biological databases

    Science.gov (United States)

    Bolser, Dan M.; Chibon, Pierre-Yves; Palopoli, Nicolas; Gong, Sungsam; Jacob, Daniel; Angel, Victoria Dominguez Del; Swan, Dan; Bassi, Sebastian; González, Virginia; Suravajhala, Prashanth; Hwang, Seungwoo; Romano, Paolo; Edwards, Rob; Bishop, Bryan; Eargle, John; Shtatland, Timur; Provart, Nicholas J.; Clements, Dave; Renfro, Daniel P.; Bhak, Daeui; Bhak, Jong

    2012-01-01

    Biology is generating more data than ever. As a result, there is an ever increasing number of publicly available databases that analyse, integrate and summarize the available data, providing an invaluable resource for the biological community. As this trend continues, there is a pressing need to organize, catalogue and rate these resources, so that the information they contain can be most effectively exploited. MetaBase (MB) (http://MetaDatabase.Org) is a community-curated database containing more than 2000 commonly used biological databases. Each entry is structured using templates and can carry various user comments and annotations. Entries can be searched, listed, browsed or queried. The database was created using the same MediaWiki technology that powers Wikipedia, allowing users to contribute on many different levels. The initial release of MB was derived from the content of the 2007 Nucleic Acids Research (NAR) Database Issue. Since then, approximately 100 databases have been manually collected from the literature, and users have added information for over 240 databases. MB is synchronized annually with the static Molecular Biology Database Collection provided by NAR. To date, there have been 19 significant contributors to the project; each one is listed as an author here to highlight the community aspect of the project. PMID:22139927

  7. LiverCancerMarkerRIF: a liver cancer biomarker interactive curation system combining text mining and expert annotations

    Science.gov (United States)

    Dai, Hong-Jie; Wu, Johnny Chi-Yang; Lin, Wei-San; Reyes, Aaron James F.; dela Rosa, Mira Anne C.; Syed-Abdul, Shabbir; Tsai, Richard Tzong-Han; Hsu, Wen-Lian

    2014-01-01

    Biomarkers are biomolecules in the human body that can indicate disease states and abnormal biological processes. Biomarkers are often used during clinical trials to identify patients with cancers. Although biomedical research related to biomarkers has increased over the years and substantial effort has been expended to obtain results in these studies, the specific results obtained often contain ambiguities, and the results might contradict each other. Therefore, the information gathered from these studies must be appropriately integrated and organized to facilitate experimentation on biomarkers. In this study, we used liver cancer as the target and developed a text-mining–based curation system named LiverCancerMarkerRIF, which allows users to retrieve biomarker-related narrations and curators to curate supporting evidence on liver cancer biomarkers directly while browsing PubMed. In contrast to most of the other curation tools that require curators to navigate away from PubMed and accommodate distinct user interfaces or Web sites to complete the curation process, our system provides a user-friendly method for accessing text-mining–aided information and a concise interface to assist curators while they remain at the PubMed Web site. Biomedical text-mining techniques are applied to automatically recognize biomedical concepts such as genes, microRNA, diseases and investigative technologies, which can be used to evaluate the potential of a certain gene as a biomarker. Through the participation in the BioCreative IV user-interactive task, we examined the feasibility of using this novel type of augmented browsing-based curation method, and collaborated with curators to curate biomarker evidential sentences related to liver cancer. The positive feedback received from curators indicates that the proposed method can be effectively used for curation. A publicly available online database containing all the aforementioned information has been constructed at http

  8. Curating the innate immunity interactome.

    LENUS (Irish Health Repository)

    Lynn, David J

    2010-01-01

    The innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http:\\/\\/www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity.

  9. MIPS plant genome information resources.

    Science.gov (United States)

    Spannagl, Manuel; Haberer, Georg; Ernst, Rebecca; Schoof, Heiko; Mayer, Klaus F X

    2007-01-01

    The Munich Institute for Protein Sequences (MIPS) has been involved in maintaining plant genome databases since the Arabidopsis thaliana genome project. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable data sets for model plant genomes as a backbone against which experimental data, for example from high-throughput functional genomics, can be organized and evaluated. In addition, model genomes also form a scaffold for comparative genomics, and much can be learned from genome-wide evolutionary studies.

  10. Meeting Curation Challenges in a Neuroimaging Group

    Directory of Open Access Journals (Sweden)

    Angus Whyte

    2008-08-01

    Full Text Available The SCARP project is a series of short studies with two aims; firstly to discover more about disciplinary approaches and attitudes to digital curation through ‘immersion’ in selected cases; secondly to apply known good practice, and where possible, identify new lessons from practice in the selected discipline areas. The study summarised here is of the Neuroimaging Group in the University of Edinburgh’s Division of Psychiatry, which plays a leading role in eScience collaborations to improve the infrastructure for neuroimaging data integration and reuse. The Group also aims to address growing data storage and curation needs, given the capabilities afforded by new infrastructure. The study briefly reviews the policy context and current challenges to data integration and sharing in the neuroimaging field. It then describes how curation and preservation risks and opportunities for change were identified throughout the curation lifecycle; and their context appreciated through field study in the research site. The results are consistent with studies of neuroimaging eInfrastructure that emphasise the role of local data sharing and reuse practices. These sustain mutual awareness of datasets and experimental protocols through sharing peer to peer, and among senior researchers and students, enabling continuity in research and flexibility in project work. This “human infrastructure” is taken into account in considering next steps for curation and preservation of the Group’s datasets and a phased approach to supporting data documentation.

  11. A comprehensive curated resource for follicle stimulating hormone signaling

    Directory of Open Access Journals (Sweden)

    Sharma Jyoti

    2011-10-01

    Full Text Available Abstract Background Follicle stimulating hormone (FSH is an important hormone responsible for growth, maturation and function of the human reproductive system. FSH regulates the synthesis of steroid hormones such as estrogen and progesterone, proliferation and maturation of follicles in the ovary and spermatogenesis in the testes. FSH is a glycoprotein heterodimer that binds and acts through the FSH receptor, a G-protein coupled receptor. Although online pathway repositories provide information about G-protein coupled receptor mediated signal transduction, the signaling events initiated specifically by FSH are not cataloged in any public database in a detailed fashion. Findings We performed comprehensive curation of the published literature to identify the components of FSH signaling pathway and the molecular interactions that occur upon FSH receptor activation. Our effort yielded 64 reactions comprising 35 enzyme-substrate reactions, 11 molecular association events, 11 activation events and 7 protein translocation events that occur in response to FSH receptor activation. We also cataloged 265 genes, which were differentially expressed upon FSH stimulation in normal human reproductive tissues. Conclusions We anticipate that the information provided in this resource will provide better insights into the physiological role of FSH in reproductive biology, its signaling mediators and aid in further research in this area. The curated FSH pathway data is freely available through NetPath (http://www.netpath.org, a pathway resource developed previously by our group.

  12. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.

    Science.gov (United States)

    Karp, Peter D; Latendresse, Mario; Paley, Suzanne M; Krummenacker, Markus; Ong, Quang D; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M; Caspi, Ron

    2016-09-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms.

  13. YeastIP: a database for identification and phylogeny of Saccharomycotina yeasts.

    Science.gov (United States)

    Weiss, Stéphanie; Samson, Franck; Navarro, David; Casaregola, Serge

    2013-02-01

    With the advances in sequencing techniques, identification of ascomycetous yeasts to the species level and phylogeny reconstruction increasingly require curated and updated taxonomic information. A specific database with nucleotide sequences of the most common markers used for yeast taxonomy and phylogeny and a user-friendly interface allowing identification, taxonomy and phylogeny of yeasts species was developed. By 1 September 2012, the YeastIP database contained all the described Saccharomycotina species for which sequences used for taxonomy and phylogeny, such as D1/D2 rDNA and ITS, are available. The database interface was developed to provide a maximum of relevant information and data mining tools, including the following features: (1) the blast n program for the sequences of the YeastIP database; (2) easy retrieval of selected sequences; (3) display of the available markers for each selected group of species; and (4) a tool to concatenate marker sequences, including those provided by the user. The concatenation tool allows phylogeny reconstruction through a direct link to the Phylogeny.fr platform. YeastIP is thus a unique database in that it provides taxonomic information and guides users in their taxonomic analyses. YeastIP facilitates multigenic analysis to encourage good practice in ascomycetous yeast phylogeny (URL: http://genome.jouy.inra.fr/yeastip.). © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. MSeqDR: A Centralized Knowledge Repository and Bioinformatics Web Resource to Facilitate Genomic Investigations in Mitochondrial Disease.

    Science.gov (United States)

    Shen, Lishuang; Diroma, Maria Angela; Gonzalez, Michael; Navarro-Gomez, Daniel; Leipzig, Jeremy; Lott, Marie T; van Oven, Mannis; Wallace, Douglas C; Muraresku, Colleen Clarke; Zolkipli-Cunningham, Zarazuela; Chinnery, Patrick F; Attimonelli, Marcella; Zuchner, Stephan; Falk, Marni J; Gai, Xiaowu

    2016-06-01

    MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse genome browser supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and mitochondrial disease. MSeqDR-LSDB is a locus-specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar compliant variant annotations. PhenoTips will be used for phenotypic data submission on deidentified patients using human phenotype ontology terminology. The development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources.

  15. DataShare: Empowering Researcher Data Curation

    Directory of Open Access Journals (Sweden)

    Stephen Abrams

    2014-07-01

    Full Text Available Researchers are increasingly being asked to ensure that all products of research activity – not just traditional publications – are preserved and made widely available for study and reuse as a precondition for publication or grant funding, or to conform to disciplinary best practices. In order to conform to these requirements, scholars need effective, easy-to-use tools and services for the long-term curation of their research data. The DataShare service, developed at the University of California, is being used by researchers to: (1 prepare for curation by reviewing best practice recommendations for the acquisition or creation of digital research data; (2 select datasets using intuitive file browsing and drag-and-drop interfaces; (3 describe their data for enhanced discoverability in terms of the DataCite metadata schema; (4 preserve their data by uploading to a public access collection in the UC3 Merritt curation repository; (5 cite their data in terms of persistent and globally-resolvable DOI identifiers; (6 expose their data through registration with well-known abstracting and indexing services and major internet search engines; (7 control the dissemination of their data through enforceable data use agreements; and (8 discover and retrieve datasets of interest through a faceted search and browse environment. Since the widespread adoption of effective data management practices is highly dependent on ease of use and integration into existing individual, institutional, and disciplinary workflows, the emphasis throughout the design and implementation of DataShare is to provide the highest level of curation service with the lowest possible technical barriers to entry by individual researchers. By enabling intuitive, self-service access to data curation functions, DataShare helps to contribute to more widespread adoption of good data curation practices that are critical to open scientific inquiry, discourse, and advancement.

  16. Astromaterials Acquisition and Curation Office (KT) Overview

    Science.gov (United States)

    Allen, Carlton

    2014-01-01

    The Astromaterials Acquisition and Curation Office has the unique responsibility to curate NASA's extraterrestrial samples - from past and forthcoming missions - into the indefinite future. Currently, curation includes documentation, preservation, physical security, preparation, and distribution of samples from the Moon, asteroids, comets, the solar wind, and the planet Mars. Each of these sample sets has a unique history and comes from a unique environment. The curation laboratories and procedures developed over 40 years have proven both necessary and sufficient to serve the evolving needs of a worldwide research community. A new generation of sample return missions to destinations across the solar system is being planned and proposed. The curators are developing the tools and techniques to meet the challenges of these new samples. Extraterrestrial samples pose unique curation requirements. These samples were formed and exist under conditions strikingly different from those on the Earth's surface. Terrestrial contamination would destroy much of the scientific significance of extraterrestrial materials. To preserve the research value of these precious samples, contamination must be minimized, understood, and documented. In addition, the samples must be preserved - as far as possible - from physical and chemical alteration. The elaborate curation facilities at JSC were designed and constructed, and have been operated for many years, to keep sample contamination and alteration to a minimum. Currently, JSC curates seven collections of extraterrestrial samples: (a)) Lunar rocks and soils collected by the Apollo astronauts, (b) Meteorites collected on dedicated expeditions to Antarctica, (c) Cosmic dust collected by high-altitude NASA aircraft,t (d) Solar wind atoms collected by the Genesis spacecraf