WorldWideScience

Sample records for genome annotation databases

  1. Bovine Genome Database: supporting community annotation and analysis of the Bos taurus genome

    Directory of Open Access Journals (Sweden)

    Childs Kevin L

    2010-11-01

    Full Text Available Abstract Background A goal of the Bovine Genome Database (BGD; http://BovineGenome.org has been to support the Bovine Genome Sequencing and Analysis Consortium (BGSAC in the annotation and analysis of the bovine genome. We were faced with several challenges, including the need to maintain consistent quality despite diversity in annotation expertise in the research community, the need to maintain consistent data formats, and the need to minimize the potential duplication of annotation effort. With new sequencing technologies allowing many more eukaryotic genomes to be sequenced, the demand for collaborative annotation is likely to increase. Here we present our approach, challenges and solutions facilitating a large distributed annotation project. Results and Discussion BGD has provided annotation tools that supported 147 members of the BGSAC in contributing 3,871 gene models over a fifteen-week period, and these annotations have been integrated into the bovine Official Gene Set. Our approach has been to provide an annotation system, which includes a BLAST site, multiple genome browsers, an annotation portal, and the Apollo Annotation Editor configured to connect directly to our Chado database. In addition to implementing and integrating components of the annotation system, we have performed computational analyses to create gene evidence tracks and a consensus gene set, which can be viewed on individual gene pages at BGD. Conclusions We have provided annotation tools that alleviate challenges associated with distributed annotation. Our system provides a consistent set of data to all annotators and eliminates the need for annotators to format data. Involving the bovine research community in genome annotation has allowed us to leverage expertise in various areas of bovine biology to provide biological insight into the genome sequence.

  2. Improving microbial genome annotations in an integrated database context.

    Directory of Open Access Journals (Sweden)

    I-Min A Chen

    Full Text Available Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/.

  3. An integrated computational pipeline and database to support whole-genome sequence annotation.

    Science.gov (United States)

    Mungall, C J; Misra, S; Berman, B P; Carlson, J; Frise, E; Harris, N; Marshall, B; Shu, S; Kaminker, J S; Prochnik, S E; Smith, C D; Smith, E; Tupy, J L; Wiel, C; Rubin, G M; Lewis, S E

    2002-01-01

    We describe here our experience in annotating the Drosophila melanogaster genome sequence, in the course of which we developed several new open-source software tools and a database schema to support large-scale genome annotation. We have developed these into an integrated and reusable software system for whole-genome annotation. The key contributions to overall annotation quality are the marshalling of high-quality sequences for alignments and the design of a system with an adaptable and expandable flexible architecture.

  4. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics.

    Science.gov (United States)

    Sakai, Hiroaki; Lee, Sung Shin; Tanaka, Tsuyoshi; Numa, Hisataka; Kim, Jungsok; Kawahara, Yoshihiro; Wakimoto, Hironobu; Yang, Ching-chia; Iwamoto, Masao; Abe, Takashi; Yamada, Yuko; Muto, Akira; Inokuchi, Hachiro; Ikemura, Toshimichi; Matsumoto, Takashi; Sasaki, Takuji; Itoh, Takeshi

    2013-02-01

    The Rice Annotation Project Database (RAP-DB, http://rapdb.dna.affrc.go.jp/) has been providing a comprehensive set of gene annotations for the genome sequence of rice, Oryza sativa (japonica group) cv. Nipponbare. Since the first release in 2005, RAP-DB has been updated several times along with the genome assembly updates. Here, we present our newest RAP-DB based on the latest genome assembly, Os-Nipponbare-Reference-IRGSP-1.0 (IRGSP-1.0), which was released in 2011. We detected 37,869 loci by mapping transcript and protein sequences of 150 monocot species. To provide plant researchers with highly reliable and up to date rice gene annotations, we have been incorporating literature-based manually curated data, and 1,626 loci currently incorporate literature-based annotation data, including commonly used gene names or gene symbols. Transcriptional activities are shown at the nucleotide level by mapping RNA-Seq reads derived from 27 samples. We also mapped the Illumina reads of a Japanese leading japonica cultivar, Koshihikari, and a Chinese indica cultivar, Guangluai-4, to the genome and show alignments together with the single nucleotide polymorphisms (SNPs) and gene functional annotations through a newly developed browser, Short-Read Assembly Browser (S-RAB). We have developed two satellite databases, Plant Gene Family Database (PGFD) and Integrative Database of Cereal Gene Phylogeny (IDCGP), which display gene family and homologous gene relationships among diverse plant species. RAP-DB and the satellite databases offer simple and user-friendly web interfaces, enabling plant and genome researchers to access the data easily and facilitating a broad range of plant research topics.

  5. Maize microarray annotation database

    Directory of Open Access Journals (Sweden)

    Berger Dave K

    2011-10-01

    Full Text Available Abstract Background Microarray technology has matured over the past fifteen years into a cost-effective solution with established data analysis protocols for global gene expression profiling. The Agilent-016047 maize 44 K microarray was custom-designed from EST sequences, but only reporter sequences with EST accession numbers are publicly available. The following information is lacking: (a reporter - gene model match, (b number of reporters per gene model, (c potential for cross hybridization, (d sense/antisense orientation of reporters, (e position of reporter on B73 genome sequence (for eQTL studies, and (f functional annotations of genes represented by reporters. To address this, we developed a strategy to annotate the Agilent-016047 maize microarray, and built a publicly accessible annotation database. Description Genomic annotation of the 42,034 reporters on the Agilent-016047 maize microarray was based on BLASTN results of the 60-mer reporter sequences and their corresponding ESTs against the maize B73 RefGen v2 "Working Gene Set" (WGS predicted transcripts and the genome sequence. The agreement between the EST, WGS transcript and gDNA BLASTN results were used to assign the reporters into six genomic annotation groups. These annotation groups were: (i "annotation by sense gene model" (23,668 reporters, (ii "annotation by antisense gene model" (4,330; (iii "annotation by gDNA" without a WGS transcript hit (1,549; (iv "annotation by EST", in which case the EST from which the reporter was designed, but not the reporter itself, has a WGS transcript hit (3,390; (v "ambiguous annotation" (2,608; and (vi "inconclusive annotation" (6,489. Functional annotations of reporters were obtained by BLASTX and Blast2GO analysis of corresponding WGS transcripts against GenBank. The annotations are available in the Maize Microarray Annotation Database http://MaizeArrayAnnot.bi.up.ac.za/, as well as through a GBrowse annotation file that can be uploaded to

  6. The Rice Genome Knowledgebase (RGKbase): an annotation database for rice comparative genomics and evolutionary biology.

    Science.gov (United States)

    Wang, Dapeng; Xia, Yan; Li, Xinna; Hou, Lixia; Yu, Jun

    2013-01-01

    Over the past 10 years, genomes of cultivated rice cultivars and their wild counterparts have been sequenced although most efforts are focused on genome assembly and annotation of two major cultivated rice (Oryza sativa L.) subspecies, 93-11 (indica) and Nipponbare (japonica). To integrate information from genome assemblies and annotations for better analysis and application, we now introduce a comparative rice genome database, the Rice Genome Knowledgebase (RGKbase, http://rgkbase.big.ac.cn/RGKbase/). RGKbase is built to have three major components: (i) integrated data curation for rice genomics and molecular biology, which includes genome sequence assemblies, transcriptomic and epigenomic data, genetic variations, quantitative trait loci (QTLs) and the relevant literature; (ii) User-friendly viewers, such as Gbrowse, GeneBrowse and Circos, for genome annotations and evolutionary dynamics and (iii) Bioinformatic tools for compositional and synteny analyses, gene family classifications, gene ontology terms and pathways and gene co-expression networks. RGKbase current includes data from five rice cultivars and species: Nipponbare (japonica), 93-11 (indica), PA64s (indica), the African rice (Oryza glaberrima) and a wild rice species (Oryza brachyantha). We are also constantly introducing new datasets from variety of public efforts, such as two recent releases-sequence data from ∼1000 rice varieties, which are mapped into the reference genome, yielding ample high-quality single-nucleotide polymorphisms and insertions-deletions.

  7. Biological Database of Images and Genomes: tools for community annotations linking image and genomic information

    Science.gov (United States)

    Oberlin, Andrew T; Jurkovic, Dominika A; Balish, Mitchell F; Friedberg, Iddo

    2013-01-01

    Genomic data and biomedical imaging data are undergoing exponential growth. However, our understanding of the phenotype–genotype connection linking the two types of data is lagging behind. While there are many types of software that enable the manipulation and analysis of image data and genomic data as separate entities, there is no framework established for linking the two. We present a generic set of software tools, BioDIG, that allows linking of image data to genomic data. BioDIG tools can be applied to a wide range of research problems that require linking images to genomes. BioDIG features the following: rapid construction of web-based workbenches, community-based annotation, user management and web services. By using BioDIG to create websites, researchers and curators can rapidly annotate a large number of images with genomic information. Here we present the BioDIG software tools that include an image module, a genome module and a user management module. We also introduce a BioDIG-based website, MyDIG, which is being used to annotate images of mycoplasmas. Database URL: BioDIG website: http://biodig.org BioDIG source code repository: http://github.com/FriedbergLab/BioDIG The MyDIG database: http://mydig.biodig.org/ PMID:23550062

  8. Integrating multiple genome annotation databases improves the interpretation of microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Kennedy Breandan

    2010-01-01

    Full Text Available Abstract Background The Affymetrix GeneChip is a widely used gene expression profiling platform. Since the chips were originally designed, the genome databases and gene definitions have been considerably updated. Thus, more accurate interpretation of microarray data requires parallel updating of the specificity of GeneChip probes. We propose a new probe remapping protocol, using the zebrafish GeneChips as an example, by removing nonspecific probes, and grouping the probes into transcript level probe sets using an integrated zebrafish genome annotation. This genome annotation is based on combining transcript information from multiple databases. This new remapping protocol, especially the new genome annotation, is shown here to be an important factor in improving the interpretation of gene expression microarray data. Results Transcript data from the RefSeq, GenBank and Ensembl databases were downloaded from the UCSC genome browser, and integrated to generate a combined zebrafish genome annotation. Affymetrix probes were filtered and remapped according to the new annotation. The influence of transcript collection and gene definition methods was tested using two microarray data sets. Compared to remapping using a single database, this new remapping protocol results in up to 20% more probes being retained in the remapping, leading to approximately 1,000 more genes being detected. The differentially expressed gene lists are consequently increased by up to 30%. We are also able to detect up to three times more alternative splicing events. A small number of the bioinformatics predictions were confirmed using real-time PCR validation. Conclusions By combining gene definitions from multiple databases, it is possible to greatly increase the numbers of genes and splice variants that can be detected in microarray gene expression experiments.

  9. Genome annotations - KOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available English ]; } else { document.getElementById(lang).innerHTML= '[ Japanese | English ]'; } } window.onload = ...e entry and the word BAC, PAC, chromosome Genomic, or Genomic sequence is included in the entry. Number of d

  10. BambooGDB: a bamboo genome database with functional annotation and an analysis platform.

    Science.gov (United States)

    Zhao, Hansheng; Peng, Zhenhua; Fei, Benhua; Li, Lubin; Hu, Tao; Gao, Zhimin; Jiang, Zehui

    2014-01-01

    Bamboo, as one of the most important non-timber forest products and fastest-growing plants in the world, represents the only major lineage of grasses that is native to forests. Recent success on the first high-quality draft genome sequence of moso bamboo (Phyllostachys edulis) provides new insights on bamboo genetics and evolution. To further extend our understanding on bamboo genome and facilitate future studies on the basis of previous achievements, here we have developed BambooGDB, a bamboo genome database with functional annotation and analysis platform. The de novo sequencing data, together with the full-length complementary DNA and RNA-seq data of moso bamboo composed the main contents of this database. Based on these sequence data, a comprehensively functional annotation for bamboo genome was made. Besides, an analytical platform composed of comparative genomic analysis, protein-protein interactions network, pathway analysis and visualization of genomic data was also constructed. As discovery tools to understand and identify biological mechanisms of bamboo, the platform can be used as a systematic framework for helping and designing experiments for further validation. Moreover, diverse and powerful search tools and a convenient browser were incorporated to facilitate the navigation of these data. As far as we know, this is the first genome database for bamboo. Through integrating high-throughput sequencing data, a full functional annotation and several analysis modules, BambooGDB aims to provide worldwide researchers with a central genomic resource and an extensible analysis platform for bamboo genome. BambooGDB is freely available at http://www.bamboogdb.org/. Database URL: http://www.bamboogdb.org.

  11. Design and implementation of a database for Brucella melitensis genome annotation.

    Science.gov (United States)

    De Hertogh, Benoît; Lahlimi, Leïla; Lambert, Christophe; Letesson, Jean-Jacques; Depiereux, Eric

    2008-03-18

    The genome sequences of three Brucella biovars and of some species close to Brucella sp. have become available, leading to new relationship analysis. Moreover, the automatic genome annotation of the pathogenic bacteria Brucella melitensis has been manually corrected by a consortium of experts, leading to 899 modifications of start sites predictions among the 3198 open reading frames (ORFs) examined. This new annotation, coupled with the results of automatic annotation tools of the complete genome sequences of the B. melitensis genome (including BLASTs to 9 genomes close to Brucella), provides numerous data sets related to predicted functions, biochemical properties and phylogenic comparisons. To made these results available, alphaPAGe, a functional auto-updatable database of the corrected sequence genome of B. melitensis, has been built, using the entity-relationship (ER) approach and a multi-purpose database structure. A friendly graphical user interface has been designed, and users can carry out different kinds of information by three levels of queries: (1) the basic search use the classical keywords or sequence identifiers; (2) the original advanced search engine allows to combine (by using logical operators) numerous criteria: (a) keywords (textual comparison) related to the pCDS's function, family domains and cellular localization; (b) physico-chemical characteristics (numerical comparison) such as isoelectric point or molecular weight and structural criteria such as the nucleic length or the number of transmembrane helix (TMH); (c) similarity scores with Escherichia coli and 10 species phylogenetically close to B. melitensis; (3) complex queries can be performed by using a SQL field, which allows all queries respecting the database's structure. The database is publicly available through a Web server at the following url: http://www.fundp.ac.be/urbm/bioinfo/aPAGe.

  12. Evaluation of relational and NoSQL database architectures to manage genomic annotations.

    Science.gov (United States)

    Schulz, Wade L; Nelson, Brent G; Felker, Donn K; Durant, Thomas J S; Torres, Richard

    2016-12-01

    While the adoption of next generation sequencing has rapidly expanded, the informatics infrastructure used to manage the data generated by this technology has not kept pace. Historically, relational databases have provided much of the framework for data storage and retrieval. Newer technologies based on NoSQL architectures may provide significant advantages in storage and query efficiency, thereby reducing the cost of data management. But their relative advantage when applied to biomedical data sets, such as genetic data, has not been characterized. To this end, we compared the storage, indexing, and query efficiency of a common relational database (MySQL), a document-oriented NoSQL database (MongoDB), and a relational database with NoSQL support (PostgreSQL). When used to store genomic annotations from the dbSNP database, we found the NoSQL architectures to outperform traditional, relational models for speed of data storage, indexing, and query retrieval in nearly every operation. These findings strongly support the use of novel database technologies to improve the efficiency of data management within the biological sciences.

  13. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects

    Directory of Open Access Journals (Sweden)

    Holt Carson

    2011-12-01

    Full Text Available Abstract Background Second-generation sequencing technologies are precipitating major shifts with regards to what kinds of genomes are being sequenced and how they are annotated. While the first generation of genome projects focused on well-studied model organisms, many of today's projects involve exotic organisms whose genomes are largely terra incognita. This complicates their annotation, because unlike first-generation projects, there are no pre-existing 'gold-standard' gene-models with which to train gene-finders. Improvements in genome assembly and the wide availability of mRNA-seq data are also creating opportunities to update and re-annotate previously published genome annotations. Today's genome projects are thus in need of new genome annotation tools that can meet the challenges and opportunities presented by second-generation sequencing technologies. Results We present MAKER2, a genome annotation and data management tool designed for second-generation genome projects. MAKER2 is a multi-threaded, parallelized application that can process second-generation datasets of virtually any size. We show that MAKER2 can produce accurate annotations for novel genomes where training-data are limited, of low quality or even non-existent. MAKER2 also provides an easy means to use mRNA-seq data to improve annotation quality; and it can use these data to update legacy annotations, significantly improving their quality. We also show that MAKER2 can evaluate the quality of genome annotations, and identify and prioritize problematic annotations for manual review. Conclusions MAKER2 is the first annotation engine specifically designed for second-generation genome projects. MAKER2 scales to datasets of any size, requires little in the way of training data, and can use mRNA-seq data to improve annotation quality. It can also update and manage legacy genome annotation datasets.

  14. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects.

    Science.gov (United States)

    Holt, Carson; Yandell, Mark

    2011-12-22

    Second-generation sequencing technologies are precipitating major shifts with regards to what kinds of genomes are being sequenced and how they are annotated. While the first generation of genome projects focused on well-studied model organisms, many of today's projects involve exotic organisms whose genomes are largely terra incognita. This complicates their annotation, because unlike first-generation projects, there are no pre-existing 'gold-standard' gene-models with which to train gene-finders. Improvements in genome assembly and the wide availability of mRNA-seq data are also creating opportunities to update and re-annotate previously published genome annotations. Today's genome projects are thus in need of new genome annotation tools that can meet the challenges and opportunities presented by second-generation sequencing technologies. We present MAKER2, a genome annotation and data management tool designed for second-generation genome projects. MAKER2 is a multi-threaded, parallelized application that can process second-generation datasets of virtually any size. We show that MAKER2 can produce accurate annotations for novel genomes where training-data are limited, of low quality or even non-existent. MAKER2 also provides an easy means to use mRNA-seq data to improve annotation quality; and it can use these data to update legacy annotations, significantly improving their quality. We also show that MAKER2 can evaluate the quality of genome annotations, and identify and prioritize problematic annotations for manual review. MAKER2 is the first annotation engine specifically designed for second-generation genome projects. MAKER2 scales to datasets of any size, requires little in the way of training data, and can use mRNA-seq data to improve annotation quality. It can also update and manage legacy genome annotation datasets.

  15. Citrus sinensis annotation project (CAP): a comprehensive database for sweet orange genome.

    Science.gov (United States)

    Wang, Jia; Chen, Dijun; Lei, Yang; Chang, Ji-Wei; Hao, Bao-Hai; Xing, Feng; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Chen, Ling-Ling

    2014-01-01

    Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia), and constructed the Citrus sinensis annotation project (CAP) to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET) evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs) and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/.

  16. Citrus sinensis annotation project (CAP: a comprehensive database for sweet orange genome.

    Directory of Open Access Journals (Sweden)

    Jia Wang

    Full Text Available Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia, and constructed the Citrus sinensis annotation project (CAP to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/.

  17. VibrioBase: A Model for Next-Generation Genome and Annotation Database Development

    Directory of Open Access Journals (Sweden)

    Siew Woh Choo

    2014-01-01

    Full Text Available To facilitate the ongoing research of Vibrio spp., a dedicated platform for the Vibrio research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. We present VibrioBase, a useful resource platform, providing all basic features of a sequence database with the addition of unique analysis tools which could be valuable for the Vibrio research community. VibrioBase currently houses a total of 252 Vibrio genomes developed in a user-friendly manner and useful to enable the analysis of these genomic data, particularly in the field of comparative genomics. Besides general data browsing features, VibrioBase offers analysis tools such as BLAST interfaces and JBrowse genome browser. Other important features of this platform include our newly developed in-house tools, the pairwise genome comparison (PGC tool, and pathogenomics profiling tool (PathoProT. The PGC tool is useful in the identification and comparative analysis of two genomes, whereas PathoProT is designed for comparative pathogenomics analysis of Vibrio strains. Both of these tools will enable researchers with little experience in bioinformatics to get meaningful information from Vibrio genomes with ease. We have tested the validity and suitability of these tools and features for use in the next-generation database development.

  18. An Introduction to Genome Annotation.

    Science.gov (United States)

    Campbell, Michael S; Yandell, Mark

    2015-12-17

    Genome projects have evolved from large international undertakings to tractable endeavors for a single lab. Accurate genome annotation is critical for successful genomic, genetic, and molecular biology experiments. These annotations can be generated using a number of approaches and available software tools. This unit describes methods for genome annotation and a number of software tools commonly used in gene annotation.

  19. The UCSC genome browser database

    DEFF Research Database (Denmark)

    Kuhn, R M; Karolchik, D; Zweig, A S

    2007-01-01

    The University of California, Santa Cruz Genome Browser Database contains, as of September 2006, sequence and annotation data for the genomes of 13 vertebrate and 19 invertebrate species. The Genome Browser displays a wide variety of annotations at all scales from the single nucleotide level up t...

  20. The UCSC Genome Browser Database

    DEFF Research Database (Denmark)

    Hinrichs, A S; Karolchik, D; Baertsch, R

    2006-01-01

    The University of California Santa Cruz Genome Browser Database (GBD) contains sequence and annotation data for the genomes of about a dozen vertebrate species and several major model organisms. Genome annotations typically include assembly data, sequence composition, genes and gene predictions, ...

  1. Genome databases

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, J.

    1991-10-11

    Since the Genome Project began several years ago, a plethora of databases have been developed or are in the works. They range from the massive Genome Data Base at Johns Hopkins University, the central repository of all gene mapping information, to small databases focusing on single chromosomes or organisms. Some are publicly available, others are essentially private electronic lab notebooks. Still others limit access to a consortium of researchers working on, say, a single human chromosome. An increasing number incorporate sophisticated search and analytical software, while others operate as little more than data lists. In consultation with numerous experts in the field, a list has been compiled of some key genome-related databases. The list was not limited to map and sequence databases but also included the tools investigators use to interpret and elucidate genetic data, such as protein sequence and protein structure databases. Because a major goal of the Genome Project is to map and sequence the genomes of several experimental animals, including E. coli, yeast, fruit fly, nematode, and mouse, the available databases for those organisms are listed as well. The author also includes several databases that are still under development - including some ambitious efforts that go beyond data compilation to create what are being called electronic research communities, enabling many users, rather than just one or a few curators, to add or edit the data and tag it as raw or confirmed.

  2. Mouse genome database 2016.

    Science.gov (United States)

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  3. Genome Annotation Transfer Utility (GATU: rapid annotation of viral genomes using a closely related reference genome

    Directory of Open Access Journals (Sweden)

    Upton Chris

    2006-06-01

    Full Text Available Abstract Background Since DNA sequencing has become easier and cheaper, an increasing number of closely related viral genomes have been sequenced. However, many of these have been deposited in GenBank without annotations, severely limiting their value to researchers. While maintaining comprehensive genomic databases for a set of virus families at the Viral Bioinformatics Resource Center http://www.biovirus.org and Viral Bioinformatics – Canada http://www.virology.ca, we found that researchers were unnecessarily spending time annotating viral genomes that were close relatives of already annotated viruses. We have therefore designed and implemented a novel tool, Genome Annotation Transfer Utility (GATU, to transfer annotations from a previously annotated reference genome to a new target genome, thereby greatly reducing this laborious task. Results GATU transfers annotations from a reference genome to a closely related target genome, while still giving the user final control over which annotations should be included. GATU also detects open reading frames present in the target but not the reference genome and provides the user with a variety of bioinformatics tools to quickly determine if these ORFs should also be included in the annotation. After this process is complete, GATU saves the newly annotated genome as a GenBank, EMBL or XML-format file. The software is coded in Java and runs on a variety of computer platforms. Its user-friendly Graphical User Interface is specifically designed for users trained in the biological sciences. Conclusion GATU greatly simplifies the initial stages of genome annotation by using a closely related genome as a reference. It is not intended to be a gene prediction tool or a "complete" annotation system, but we have found that it significantly reduces the time required for annotation of genes and mature peptides as well as helping to standardize gene names between related organisms by transferring reference genome

  4. Genome Annotation Transfer Utility (GATU): rapid annotation of viral genomes using a closely related reference genome.

    Science.gov (United States)

    Tcherepanov, Vasily; Ehlers, Angelika; Upton, Chris

    2006-06-13

    Since DNA sequencing has become easier and cheaper, an increasing number of closely related viral genomes have been sequenced. However, many of these have been deposited in GenBank without annotations, severely limiting their value to researchers. While maintaining comprehensive genomic databases for a set of virus families at the Viral Bioinformatics Resource Center http://www.biovirus.org and Viral Bioinformatics - Canada http://www.virology.ca, we found that researchers were unnecessarily spending time annotating viral genomes that were close relatives of already annotated viruses. We have therefore designed and implemented a novel tool, Genome Annotation Transfer Utility (GATU), to transfer annotations from a previously annotated reference genome to a new target genome, thereby greatly reducing this laborious task. GATU transfers annotations from a reference genome to a closely related target genome, while still giving the user final control over which annotations should be included. GATU also detects open reading frames present in the target but not the reference genome and provides the user with a variety of bioinformatics tools to quickly determine if these ORFs should also be included in the annotation. After this process is complete, GATU saves the newly annotated genome as a GenBank, EMBL or XML-format file. The software is coded in Java and runs on a variety of computer platforms. Its user-friendly Graphical User Interface is specifically designed for users trained in the biological sciences. GATU greatly simplifies the initial stages of genome annotation by using a closely related genome as a reference. It is not intended to be a gene prediction tool or a "complete" annotation system, but we have found that it significantly reduces the time required for annotation of genes and mature peptides as well as helping to standardize gene names between related organisms by transferring reference genome annotations to the target genome. The program is freely

  5. Towards a Library of Standard Operating Procedures (SOPs) for (meta)genomic annotation

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Angiuoli, Samuel V.; Cochrane, Guy; Field, Dawn; Garrity, George; Gussman, Aaron; Kodira, Chinnappa D.; Klimke, William; Kyrpides, Nikos; Madupu, Ramana; Markowitz, Victor; Tatusova, Tatiana; Thomson, Nick; White, Owen

    2008-04-01

    Genome annotations describe the features of genomes and accompany sequences in genome databases. The methodologies used to generate genome annotation are diverse and typically vary amongst groups. Descriptions of the annotation procedure are helpful in interpreting genome annotation data. Standard Operating Procedures (SOPs) for genome annotation describe the processes that generate genome annotations. Some groups are currently documenting procedures but standards are lacking for structure and content of annotation SOPs. In addition, there is no central repository to store and disseminate procedures and protocols for genome annotation. We highlight the importance of SOPs for genome annotation and endorse a central online repository of SOPs.

  6. Towards a Library of Standard Operating Procedures (SOPs) for (meta)genomic annotation

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Angiuoli, Samuel V.; Cochrane, Guy; Field, Dawn; Garrity, George; Gussman, Aaron; Kodira, Chinnappa D.; Klimke, William; Kyrpides, Nikos; Madupu, Ramana; Markowitz, Victor; Tatusova, Tatiana; Thomson, Nick; White, Owen

    2008-04-01

    Genome annotations describe the features of genomes and accompany sequences in genome databases. The methodologies used to generate genome annotation are diverse and typically vary amongst groups. Descriptions of the annotation procedure are helpful in interpreting genome annotation data. Standard Operating Procedures (SOPs) for genome annotation describe the processes that generate genome annotations. Some groups are currently documenting procedures but standards are lacking for structure and content of annotation SOPs. In addition, there is no central repository to store and disseminate procedures and protocols for genome annotation. We highlight the importance of SOPs for genome annotation and endorse a central online repository of SOPs.

  7. Towards Viral Genome Annotation Standards, Report from the 2010 NCBI Annotation Workshop.

    Science.gov (United States)

    Brister, James Rodney; Bao, Yiming; Kuiken, Carla; Lefkowitz, Elliot J; Le Mercier, Philippe; Leplae, Raphael; Madupu, Ramana; Scheuermann, Richard H; Schobel, Seth; Seto, Donald; Shrivastava, Susmita; Sterk, Peter; Zeng, Qiandong; Klimke, William; Tatusova, Tatiana

    2010-10-01

    Improvements in DNA sequencing technologies portend a new era in virology and could possibly lead to a giant leap in our understanding of viral evolution and ecology. Yet, as viral genome sequences begin to fill the world's biological databases, it is critically important to recognize that the scientific promise of this era is dependent on consistent and comprehensive genome annotation. With this in mind, the NCBI Genome Annotation Workshop recently hosted a study group tasked with developing sequence, function, and metadata annotation standards for viral genomes. This report describes the issues involved in viral genome annotation and reviews policy recommendations presented at the NCBI Annotation Workshop.

  8. Annotation-Based Whole Genomic Prediction and Selection

    DEFF Research Database (Denmark)

    Kadarmideen, Haja; Do, Duy Ngoc; Janss, Luc;

    in their contribution to estimated genomic variances and in prediction of genomic breeding values by applying SNP annotation approaches to feed efficiency. Ensembl Variant Predictor (EVP) and Pig QTL database were used as the source of genomic annotation for 60K chip. Genomic prediction was performed using the Bayes...... prove useful for less heritable traits such as diseases and fertility...

  9. The UCSC Genome Browser Database

    DEFF Research Database (Denmark)

    Karolchik, D; Kuhn, R M; Baertsch, R

    2008-01-01

    The University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrat...

  10. NCBI prokaryotic genome annotation pipeline.

    Science.gov (United States)

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/.

  11. Bioinformatics for plant genome annotation

    NARCIS (Netherlands)

    Fiers, M.W.E.J.

    2006-01-01

    Large amounts of genome sequence data are available and much more will become available in the near future. A DNA sequence alone has, however, limited use. Genome annotation is required to assign biological interpretation to the DNA sequence. This thesis describ

  12. Annotation and retrieval in protein interaction databases

    Science.gov (United States)

    Cannataro, Mario; Hiram Guzzi, Pietro; Veltri, Pierangelo

    2014-06-01

    Biological databases have been developed with a special focus on the efficient retrieval of single records or the efficient computation of specialized bioinformatics algorithms against the overall database, such as in sequence alignment. The continuos production of biological knowledge spread on several biological databases and ontologies, such as Gene Ontology, and the availability of efficient techniques to handle such knowledge, such as annotation and semantic similarity measures, enable the development on novel bioinformatics applications that explicitly use and integrate such knowledge. After introducing the annotation process and the main semantic similarity measures, this paper shows how annotations and semantic similarity can be exploited to improve the extraction and analysis of biologically relevant data from protein interaction databases. As case studies, the paper presents two novel software tools, OntoPIN and CytoSeVis, both based on the use of Gene Ontology annotations, for the advanced querying of protein interaction databases and for the enhanced visualization of protein interaction networks.

  13. Improving pan-genome annotation using whole genome multiple alignment

    Directory of Open Access Journals (Sweden)

    Salzberg Steven L

    2011-06-01

    Full Text Available Abstract Background Rapid annotation and comparisons of genomes from multiple isolates (pan-genomes is becoming commonplace due to advances in sequencing technology. Genome annotations can contain inconsistencies and errors that hinder comparative analysis even within a single species. Tools are needed to compare and improve annotation quality across sets of closely related genomes. Results We introduce a new tool, Mugsy-Annotator, that identifies orthologs and evaluates annotation quality in prokaryotic genomes using whole genome multiple alignment. Mugsy-Annotator identifies anomalies in annotated gene structures, including inconsistently located translation initiation sites and disrupted genes due to draft genome sequencing or pseudogenes. An evaluation of species pan-genomes using the tool indicates that such anomalies are common, especially at translation initiation sites. Mugsy-Annotator reports alternate annotations that improve consistency and are candidates for further review. Conclusions Whole genome multiple alignment can be used to efficiently identify orthologs and annotation problem areas in a bacterial pan-genome. Comparisons of annotated gene structures within a species may show more variation than is actually present in the genome, indicating errors in genome annotation. Our new tool Mugsy-Annotator assists re-annotation efforts by highlighting edits that improve annotation consistency.

  14. Correction of the Caulobacter crescentus NA1000 genome annotation.

    Directory of Open Access Journals (Sweden)

    Bert Ely

    Full Text Available Bacterial genome annotations are accumulating rapidly in the GenBank database and the use of automated annotation technologies to create these annotations has become the norm. However, these automated methods commonly result in a small, but significant percentage of genome annotation errors. To improve accuracy and reliability, we analyzed the Caulobacter crescentus NA1000 genome utilizing computer programs Artemis and MICheck to manually examine the third codon position GC content, alignment to a third codon position GC frame plot peak, and matches in the GenBank database. We identified 11 new genes, modified the start site of 113 genes, and changed the reading frame of 38 genes that had been incorrectly annotated. Furthermore, our manual method of identifying protein-coding genes allowed us to remove 112 non-coding regions that had been designated as coding regions. The improved NA1000 genome annotation resulted in a reduction in the use of rare codons since noncoding regions with atypical codon usage were removed from the annotation and 49 new coding regions were added to the annotation. Thus, a more accurate codon usage table was generated as well. These results demonstrate that a comparison of the location of peaks third codon position GC content to the location of protein coding regions could be used to verify the annotation of any genome that has a GC content that is greater than 60%.

  15. Correction of the Caulobacter crescentus NA1000 genome annotation.

    Science.gov (United States)

    Ely, Bert; Scott, LaTia Etheredge

    2014-01-01

    Bacterial genome annotations are accumulating rapidly in the GenBank database and the use of automated annotation technologies to create these annotations has become the norm. However, these automated methods commonly result in a small, but significant percentage of genome annotation errors. To improve accuracy and reliability, we analyzed the Caulobacter crescentus NA1000 genome utilizing computer programs Artemis and MICheck to manually examine the third codon position GC content, alignment to a third codon position GC frame plot peak, and matches in the GenBank database. We identified 11 new genes, modified the start site of 113 genes, and changed the reading frame of 38 genes that had been incorrectly annotated. Furthermore, our manual method of identifying protein-coding genes allowed us to remove 112 non-coding regions that had been designated as coding regions. The improved NA1000 genome annotation resulted in a reduction in the use of rare codons since noncoding regions with atypical codon usage were removed from the annotation and 49 new coding regions were added to the annotation. Thus, a more accurate codon usage table was generated as well. These results demonstrate that a comparison of the location of peaks third codon position GC content to the location of protein coding regions could be used to verify the annotation of any genome that has a GC content that is greater than 60%.

  16. Annotation-Based Whole Genomic Prediction and Selection

    DEFF Research Database (Denmark)

    Kadarmideen, Haja; Do, Duy Ngoc; Janss, Luc

    Cπ method and applied to 1,272 Duroc pigs with both genotypic and phenotypic records including residual (RFI) and daily feed intake (DFI), average daily gain (ADG) and back fat (BF)). Records were split into a training (968 pigs) and a validation dataset (304 pigs). SNPs were annotated by 14 different...... groups. Genomic prediction has accuracy comparable to an own phenotype and use of genomic prediction can be cost effective by replacing feed intake measurement. Use of genomic annotation of SNPs and QTL information had no largely significant impact on predictive accuracy for the current traits but may...... in their contribution to estimated genomic variances and in prediction of genomic breeding values by applying SNP annotation approaches to feed efficiency. Ensembl Variant Predictor (EVP) and Pig QTL database were used as the source of genomic annotation for 60K chip. Genomic prediction was performed using the Bayes...

  17. : a database of ciliate genome rearrangements.

    Science.gov (United States)

    Burns, Jonathan; Kukushkin, Denys; Lindblad, Kelsi; Chen, Xiao; Jonoska, Nataša; Landweber, Laura F

    2016-01-01

    Ciliated protists exhibit nuclear dimorphism through the presence of somatic macronuclei (MAC) and germline micronuclei (MIC). In some ciliates, DNA from precursor segments in the MIC genome rearranges to form transcriptionally active genes in the mature MAC genome, making these ciliates model organisms to study the process of somatic genome rearrangement. Similar broad scale, somatic rearrangement events occur in many eukaryotic cells and tumors. The (http://oxytricha.princeton.edu/mds_ies_db) is a database of genome recombination and rearrangement annotations, and it provides tools for visualization and comparative analysis of precursor and product genomes. The database currently contains annotations for two completely sequenced ciliate genomes: Oxytricha trifallax and Tetrahymena thermophila.

  18. Solving the Problem: Genome Annotation Standards before the Data Deluge

    Science.gov (United States)

    Klimke, William; O'Donovan, Claire; White, Owen; Brister, J. Rodney; Clark, Karen; Fedorov, Boris; Mizrachi, Ilene; Pruitt, Kim D.; Tatusova, Tatiana

    2011-01-01

    The promise of genome sequencing was that the vast undiscovered country would be mapped out by comparison of the multitude of sequences available and would aid researchers in deciphering the role of each gene in every organism. Researchers recognize that there is a need for high quality data. However, different annotation procedures, numerous databases, and a diminishing percentage of experimentally determined gene functions have resulted in a spectrum of annotation quality. NCBI in collaboration with sequencing centers, archival databases, and researchers, has developed the first international annotation standards, a fundamental step in ensuring that high quality complete prokaryotic genomes are available as gold standard references. Highlights include the development of annotation assessment tools, community acceptance of protein naming standards, comparison of annotation resources to provide consistent annotation, and improved tracking of the evidence used to generate a particular annotation. The development of a set of minimal standards, including the requirement for annotated complete prokaryotic genomes to contain a full set of ribosomal RNAs, transfer RNAs, and proteins encoding core conserved functions, is an historic milestone. The use of these standards in existing genomes and future submissions will increase the quality of databases, enabling researchers to make accurate biological discoveries. PMID:22180819

  19. Automatic annotation of organellar genomes with DOGMA

    Energy Technology Data Exchange (ETDEWEB)

    Wyman, Stacia; Jansen, Robert K.; Boore, Jeffrey L.

    2004-06-01

    Dual Organellar GenoMe Annotator (DOGMA) automates the annotation of extra-nuclear organellar (chloroplast and animal mitochondrial) genomes. It is a web-based package that allows the use of comparative BLAST searches to identify and annotate genes in a genome. DOGMA presents a list of putative genes to the user in a graphical format for viewing and editing. Annotations are stored on our password-protected server. Complete annotations can be extracted for direct submission to GenBank. Furthermore, intergenic regions of specified length can be extracted, as well the nucleotide sequences and amino acid sequences of the genes.

  20. Discovering gene annotations in biomedical text databases

    Directory of Open Access Journals (Sweden)

    Ozsoyoglu Gultekin

    2008-03-01

    Full Text Available Abstract Background Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data. Results In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general. Conclusion GEANN is useful for two distinct purposes: (i automating the annotation of genomic entities with Gene Ontology concepts, and (ii providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate

  1. A Manual Curation Strategy to Improve Genome Annotation: Application to a Set of Haloarchael Genomes

    Directory of Open Access Journals (Sweden)

    Friedhelm Pfeiffer

    2015-06-01

    Full Text Available Genome annotation errors are a persistent problem that impede research in the biosciences. A manual curation effort is described that attempts to produce high-quality genome annotations for a set of haloarchaeal genomes (Halobacterium salinarum and Hbt. hubeiense, Haloferax volcanii and Hfx. mediterranei, Natronomonas pharaonis and Nmn. moolapensis, Haloquadratum walsbyi strains HBSQ001 and C23, Natrialba magadii, Haloarcula marismortui and Har. hispanica, and Halohasta litchfieldiae. Genomes are checked for missing genes, start codon misassignments, and disrupted genes. Assignments of a specific function are preferably based on experimentally characterized homologs (Gold Standard Proteins. To avoid overannotation, which is a major source of database errors, we restrict annotation to only general function assignments when support for a specific substrate assignment is insufficient. This strategy results in annotations that are resistant to the plethora of errors that compromise public databases. Annotation consistency is rigorously validated for ortholog pairs from the genomes surveyed. The annotation is regularly crosschecked against the UniProt database to further improve annotations and increase the level of standardization. Enhanced genome annotations are submitted to public databases (EMBL/GenBank, UniProt, to the benefit of the scientific community. The enhanced annotations are also publically available via HaloLex.

  2. Plant Genome Duplication Database.

    Science.gov (United States)

    Lee, Tae-Ho; Kim, Junah; Robertson, Jon S; Paterson, Andrew H

    2017-01-01

    Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at http://chibba.agtec.uga.edu/duplication/.

  3. MIPS: analysis and annotation of proteins from whole genomes.

    Science.gov (United States)

    Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A

    2004-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  4. Database Description - TMBETA-GENOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available TMBETA-GENOME Database Description General information of database Database name TMBETA-GENOME Alternative n...oinfo/Gromiha/ Database classification Protein sequence databases - Protein prope...: Eukaryota Taxonomy ID: 2759 Database description TMBETA-GENOME is a database for transmembrane β-barrel pr...lgorithms and statistical methods have been perfumed and the annotation results are accumulated in the database.... Features and manner of utilization of database Users can download lists of sequences predicted as β-bar

  5. Rat Genome Database (RGD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Rat Genome Database (RGD) is a collaborative effort between leading research institutions involved in rat genetic and genomic research to collect, consolidate,...

  6. MIPS: analysis and annotation of genome information in 2007.

    Science.gov (United States)

    Mewes, H W; Dietmann, S; Frishman, D; Gregory, R; Mannhaupt, G; Mayer, K F X; Münsterkötter, M; Ruepp, A; Spannagl, M; Stümpflen, V; Rattei, T

    2008-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) combines automatic processing of large amounts of sequences with manual annotation of selected model genomes. Due to the massive growth of the available data, the depth of annotation varies widely between independent databases. Also, the criteria for the transfer of information from known to orthologous sequences are diverse. To cope with the task of global in-depth genome annotation has become unfeasible. Therefore, our efforts are dedicated to three levels of annotation: (i) the curation of selected genomes, in particular from fungal and plant taxa (e.g. CYGD, MNCDB, MatDB), (ii) the comprehensive, consistent, automatic annotation employing exhaustive methods for the computation of sequence similarities and sequence-related attributes as well as the classification of individual sequences (SIMAP, PEDANT and FunCat) and (iii) the compilation of manually curated databases for protein interactions based on scrutinized information from the literature to serve as an accepted set of reliable annotated interaction data (MPACT, MPPI, CORUM). All databases and tools described as well as the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  7. Software for computing and annotating genomic ranges.

    Directory of Open Access Journals (Sweden)

    Michael Lawrence

    Full Text Available We describe Bioconductor infrastructure for representing and computing on annotated genomic ranges and integrating genomic data with the statistical computing features of R and its extensions. At the core of the infrastructure are three packages: IRanges, GenomicRanges, and GenomicFeatures. These packages provide scalable data structures for representing annotated ranges on the genome, with special support for transcript structures, read alignments and coverage vectors. Computational facilities include efficient algorithms for overlap and nearest neighbor detection, coverage calculation and other range operations. This infrastructure directly supports more than 80 other Bioconductor packages, including those for sequence analysis, differential expression analysis and visualization.

  8. Scripps Genome ADVISER: Annotation and Distributed Variant Interpretation SERver.

    Directory of Open Access Journals (Sweden)

    Phillip H Pham

    Full Text Available Interpretation of human genomes is a major challenge. We present the Scripps Genome ADVISER (SG-ADVISER suite, which aims to fill the gap between data generation and genome interpretation by performing holistic, in-depth, annotations and functional predictions on all variant types and effects. The SG-ADVISER suite includes a de-identification tool, a variant annotation web-server, and a user interface for inheritance and annotation-based filtration. SG-ADVISER allows users with no bioinformatics expertise to manipulate large volumes of variant data with ease--without the need to download large reference databases, install software, or use a command line interface. SG-ADVISER is freely available at genomics.scripps.edu/ADVISER.

  9. Querying genomic databases

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, A.; Hagstrom, R.; Joerg, D.; Overbeek, R.

    1991-09-01

    A natural-language interface has been developed that retrieves genomic information by using a simple subset of English. The interface spares the biologist from the task of learning database-specific query languages and computer programming. Currently, the interface deals with the E. coli genome. It can, however, be readily extended and shows promise as a means of easy access to other sequenced genomic databases as well.

  10. JGI Plant Genomics Gene Annotation Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David; Hayes, David; Mitros, Therese

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward this aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.

  11. Apollo2Go: a web service adapter for the Apollo genome viewer to enable distributed genome annotation

    Directory of Open Access Journals (Sweden)

    Mayer Klaus FX

    2007-08-01

    Full Text Available Abstract Background Apollo, a genome annotation viewer and editor, has become a widely used genome annotation and visualization tool for distributed genome annotation projects. When using Apollo for annotation, database updates are carried out by uploading intermediate annotation files into the respective database. This non-direct database upload is laborious and evokes problems of data synchronicity. Results To overcome these limitations we extended the Apollo data adapter with a generic, configurable web service client that is able to retrieve annotation data in a GAME-XML-formatted string and pass it on to Apollo's internal input routine. Conclusion This Apollo web service adapter, Apollo2Go, simplifies the data exchange in distributed projects and aims to render the annotation process more comfortable. The Apollo2Go software is freely available from ftp://ftpmips.gsf.de/plants/apollo_webservice.

  12. How well are protein structures annotated in secondary databases?

    Science.gov (United States)

    Rother, Kristian; Michalsky, Elke; Leser, Ulf

    2005-09-01

    We investigated to what extent Protein Data Bank (PDB) entries are annotated with second-party information based on existing cross-references between PDB and 15 other databases. We report 2 interesting findings. First, there is a clear "annotation gap" for structures less than 7 years old for secondary databases that are manually curated. Second, the examined databases overlap with each other quite well, dividing the PDB into 2 well-annotated thirds and one poorly annotated third. Both observations should be taken into account in any study depending on the selection of protein structures by their annotation.

  13. Restauro-G: A Rapid Genome Re-Annotation System for Comparative Genomics

    Institute of Scientific and Technical Information of China (English)

    Satoshi Tamaki; Kazuharu Arakawa; Nobuaki Kono; Masaru Tomita

    2007-01-01

    Annotations of complete genome sequences submitted directly from sequencing projects are diverse in terms of annotation strategies and update frequencies. These inconsistencies make comparative studies difficult. To allow rapid data preparation of a large number of complete genomes, automation and speed are important for genome re-annotation. Here we introduce an open-source rapid genome re-annotation software system, Restauro-G, specialized for bacterial genomes. Restauro-G re-annotates a genome by similarity searches utilizing the BLAST-Like Alignment Tool, referring to protein databases such as UniProt KB, NCBI nr, NCBI COGs, Pfam, and PSORTb. Re-annotation by Restauro-G achieved over 98% accuracy for most bacterial chromosomes in comparison with the original manually curated annotation of EMBL releases. Restauro-G was developed in the generic bioinformatics workbench G-language Genome Analysis Environment and is distributed at http://restauro-g.iab.keio.ac.jp/ under the GNU General Public License.

  14. Accessing the SEED genome databases via Web services API: tools for programmers

    National Research Council Canada - National Science Library

    Disz, Terry; Akhter, Sajia; Cuevas, Daniel; Olson, Robert; Overbeek, Ross; Vonstein, Veronika; Stevens, Rick; Edwards, Robert A

    2010-01-01

    .... The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes...

  15. EuCAP, a Eukaryotic Community Annotation Package, and its application to the rice genome

    Directory of Open Access Journals (Sweden)

    Hamilton John P

    2007-10-01

    Full Text Available Abstract Background Despite the improvements of tools for automated annotation of genome sequences, manual curation at the structural and functional level can provide an increased level of refinement to genome annotation. The Institute for Genomic Research Rice Genome Annotation (hereafter named the Osa1 Genome Annotation is the product of an automated pipeline and, for this reason, will benefit from the input of biologists with expertise in rice and/or particular gene families. Leveraging knowledge from a dispersed community of scientists is a demonstrated way of improving a genome annotation. This requires tools that facilitate 1 the submission of gene annotation to an annotation project, 2 the review of the submitted models by project annotators, and 3 the incorporation of the submitted models in the ongoing annotation effort. Results We have developed the Eukaryotic Community Annotation Package (EuCAP, an annotation tool, and have applied it to the rice genome. The primary level of curation by community annotators (CA has been the annotation of gene families. Annotation can be submitted by email or through the EuCAP Web Tool. The CA models are aligned to the rice pseudomolecules and the coordinates of these alignments, along with functional annotation, are stored in the MySQL EuCAP Gene Model database. Web pages displaying the alignments of the CA models to the Osa1 Genome models are automatically generated from the EuCAP Gene Model database. The alignments are reviewed by the project annotators (PAs in the context of experimental evidence. Upon approval by the PAs, the CA models, along with the corresponding functional annotations, are integrated into the Osa1 Genome Annotation. The CA annotations, grouped by family, are displayed on the Community Annotation pages of the project website http://rice.tigr.org, as well as in the Community Annotation track of the Genome Browser. Conclusion We have applied EuCAP to rice. As of July 2007, the

  16. The UCSC Genome Browser database: 2016 update.

    Science.gov (United States)

    Speir, Matthew L; Zweig, Ann S; Rosenbloom, Kate R; Raney, Brian J; Paten, Benedict; Nejad, Parisa; Lee, Brian T; Learned, Katrina; Karolchik, Donna; Hinrichs, Angie S; Heitner, Steve; Harte, Rachel A; Haeussler, Maximilian; Guruvadoo, Luvina; Fujita, Pauline A; Eisenhart, Christopher; Diekhans, Mark; Clawson, Hiram; Casper, Jonathan; Barber, Galt P; Haussler, David; Kuhn, Robert M; Kent, W James

    2016-01-01

    For the past 15 years, the UCSC Genome Browser (http://genome.ucsc.edu/) has served the international research community by offering an integrated platform for viewing and analyzing information from a large database of genome assemblies and their associated annotations. The UCSC Genome Browser has been under continuous development since its inception with new data sets and software features added frequently. Some release highlights of this year include new and updated genome browsers for various assemblies, including bonobo and zebrafish; new gene annotation sets; improvements to track and assembly hub support; and a new interactive tool, the "Data Integrator", for intersecting data from multiple tracks. We have greatly expanded the data sets available on the most recent human assembly, hg38/GRCh38, to include updated gene prediction sets from GENCODE, more phenotype- and disease-associated variants from ClinVar and ClinGen, more genomic regulatory data, and a new multiple genome alignment.

  17. CycADS: an annotation database system to ease the development and update of BioCyc databases.

    Science.gov (United States)

    Vellozo, Augusto F; Véron, Amélie S; Baa-Puyoulet, Patrice; Huerta-Cepas, Jaime; Cottret, Ludovic; Febvay, Gérard; Calevro, Federica; Rahbé, Yvan; Douglas, Angela E; Gabaldón, Toni; Sagot, Marie-France; Charles, Hubert; Colella, Stefano

    2011-01-01

    In recent years, genomes from an increasing number of organisms have been sequenced, but their annotation remains a time-consuming process. The BioCyc databases offer a framework for the integrated analysis of metabolic networks. The Pathway tool software suite allows the automated construction of a database starting from an annotated genome, but it requires prior integration of all annotations into a specific summary file or into a GenBank file. To allow the easy creation and update of a BioCyc database starting from the multiple genome annotation resources available over time, we have developed an ad hoc data management system that we called Cyc Annotation Database System (CycADS). CycADS is centred on a specific database model and on a set of Java programs to import, filter and export relevant information. Data from GenBank and other annotation sources (including for example: KAAS, PRIAM, Blast2GO and PhylomeDB) are collected into a database to be subsequently filtered and extracted to generate a complete annotation file. This file is then used to build an enriched BioCyc database using the PathoLogic program of Pathway Tools. The CycADS pipeline for annotation management was used to build the AcypiCyc database for the pea aphid (Acyrthosiphon pisum) whose genome was recently sequenced. The AcypiCyc database webpage includes also, for comparative analyses, two other metabolic reconstruction BioCyc databases generated using CycADS: TricaCyc for Tribolium castaneum and DromeCyc for Drosophila melanogaster. Linked to its flexible design, CycADS offers a powerful software tool for the generation and regular updating of enriched BioCyc databases. The CycADS system is particularly suited for metabolic gene annotation and network reconstruction in newly sequenced genomes. Because of the uniform annotation used for metabolic network reconstruction, CycADS is particularly useful for comparative analysis of the metabolism of different organisms. Database URL: http://www.cycadsys.org.

  18. BGD: a database of bat genomes.

    Directory of Open Access Journals (Sweden)

    Jianfei Fang

    Full Text Available Bats account for ~20% of mammalian species, and are the only mammals with true powered flight. For the sake of their specialized phenotypic traits, many researches have been devoted to examine the evolution of bats. Until now, some whole genome sequences of bats have been assembled and annotated, however, a uniform resource for the annotated bat genomes is still unavailable. To make the extensive data associated with the bat genomes accessible to the general biological communities, we established a Bat Genome Database (BGD. BGD is an open-access, web-available portal that integrates available data of bat genomes and genes. It hosts data from six bat species, including two megabats and four microbats. Users can query the gene annotations using efficient searching engine, and it offers browsable tracks of bat genomes. Furthermore, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of genes. To the best of our knowledge, BGD is the first database of bat genomes. It will extend our understanding of the bat evolution and be advantageous to the bat sequences analysis. BGD is freely available at: http://donglab.ecnu.edu.cn/databases/BatGenome/.

  19. Evaluation of Three Automated Genome Annotations for Halorhabdus utahensis

    DEFF Research Database (Denmark)

    Bakke, Peter; Carney, Nick; DeLoache, Will

    2009-01-01

    in databases such as NCBI and used to validate subsequent annotation errors. We submitted the genome sequence of halophilic archaeon Halorhabdus utahensis to be analyzed by three genome annotation services. We have examined the output from each service in a variety of ways in order to compare the methodology...

  20. Genomic Database Searching.

    Science.gov (United States)

    Hutchins, James R A

    2017-01-01

    The availability of reference genome sequences for virtually all species under active research has revolutionized biology. Analyses of genomic variations in many organisms have provided insights into phenotypic traits, evolution and disease, and are transforming medicine. All genomic data from publicly funded projects are freely available in Internet-based databases, for download or searching via genome browsers such as Ensembl, Vega, NCBI's Map Viewer, and the UCSC Genome Browser. These online tools generate interactive graphical outputs of relevant chromosomal regions, showing genes, transcripts, and other genomic landmarks, and epigenetic features mapped by projects such as ENCODE.This chapter provides a broad overview of the major genomic databases and browsers, and describes various approaches and the latest resources for searching them. Methods are provided for identifying genomic locus and sequence information using gene names or codes, identifiers for DNA and RNA molecules and proteins; also from karyotype bands, chromosomal coordinates, sequences, motifs, and matrix-based patterns. Approaches are also described for batch retrieval of genomic information, performing more complex queries, and analyzing larger sets of experimental data, for example from next-generation sequencing projects.

  1. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  2. Genepi: a blackboard framework for genome annotation.

    Science.gov (United States)

    Descorps-Declère, Stéphane; Ziébelin, Danielle; Rechenmann, François; Viari, Alain

    2006-10-12

    Genome annotation can be viewed as an incremental, cooperative, data-driven, knowledge-based process that involves multiple methods to predict gene locations and structures. This process might have to be executed more than once and might be subjected to several revisions as the biological (new data) or methodological (new methods) knowledge evolves. In this context, although a lot of annotation platforms already exist, there is still a strong need for computer systems which take in charge, not only the primary annotation, but also the update and advance of the associated knowledge. In this paper, we propose to adopt a blackboard architecture for designing such a system We have implemented a blackboard framework (called Genepi) for developing automatic annotation systems. The system is not bound to any specific annotation strategy. Instead, the user will specify a blackboard structure in a configuration file and the system will instantiate and run this particular annotation strategy. The characteristics of this framework are presented and discussed. Specific adaptations to the classical blackboard architecture have been required, such as the description of the activation patterns of the knowledge sources by using an extended set of Allen's temporal relations. Although the system is robust enough to be used on real-size applications, it is of primary use to bioinformatics researchers who want to experiment with blackboard architectures. In the context of genome annotation, blackboards have several interesting features related to the way methodological and biological knowledge can be updated. They can readily handle the cooperative (several methods are implied) and opportunistic (the flow of execution depends on the state of our knowledge) aspects of the annotation process.

  3. Genepi: a blackboard framework for genome annotation

    Directory of Open Access Journals (Sweden)

    Ziébelin Danielle

    2006-10-01

    Full Text Available Abstract Background Genome annotation can be viewed as an incremental, cooperative, data-driven, knowledge-based process that involves multiple methods to predict gene locations and structures. This process might have to be executed more than once and might be subjected to several revisions as the biological (new data or methodological (new methods knowledge evolves. In this context, although a lot of annotation platforms already exist, there is still a strong need for computer systems which take in charge, not only the primary annotation, but also the update and advance of the associated knowledge. In this paper, we propose to adopt a blackboard architecture for designing such a system Results We have implemented a blackboard framework (called Genepi for developing automatic annotation systems. The system is not bound to any specific annotation strategy. Instead, the user will specify a blackboard structure in a configuration file and the system will instantiate and run this particular annotation strategy. The characteristics of this framework are presented and discussed. Specific adaptations to the classical blackboard architecture have been required, such as the description of the activation patterns of the knowledge sources by using an extended set of Allen's temporal relations. Although the system is robust enough to be used on real-size applications, it is of primary use to bioinformatics researchers who want to experiment with blackboard architectures. Conclusion In the context of genome annotation, blackboards have several interesting features related to the way methodological and biological knowledge can be updated. They can readily handle the cooperative (several methods are implied and opportunistic (the flow of execution depends on the state of our knowledge aspects of the annotation process.

  4. DNAVis: interactive visualization of comparative genome annotations

    NARCIS (Netherlands)

    Fiers, M.W.E.J.; Wetering, van de H.; Peeters, T.H.J.M.; Wijk, van J.J.; Nap, J.P.H.

    2006-01-01

    The software package DNAVis offers a fast, interactive and real-time visualization of DNA sequences and their comparative genome annotations. DNAVis implements advanced methods of information visualization such as linked views, perspective walls and semantic zooming, in addition to the display of he

  5. Missing genes in the annotation of prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Feng Wu-chun

    2010-03-01

    Full Text Available Abstract Background Protein-coding gene detection in prokaryotic genomes is considered a much simpler problem than in intron-containing eukaryotic genomes. However there have been reports that prokaryotic gene finder programs have problems with small genes (either over-predicting or under-predicting. Therefore the question arises as to whether current genome annotations have systematically missing, small genes. Results We have developed a high-performance computing methodology to investigate this problem. In this methodology we compare all ORFs larger than or equal to 33 aa from all fully-sequenced prokaryotic replicons. Based on that comparison, and using conservative criteria requiring a minimum taxonomic diversity between conserved ORFs in different genomes, we have discovered 1,153 candidate genes that are missing from current genome annotations. These missing genes are similar only to each other and do not have any strong similarity to gene sequences in public databases, with the implication that these ORFs belong to missing gene families. We also uncovered 38,895 intergenic ORFs, readily identified as putative genes by similarity to currently annotated genes (we call these absent annotations. The vast majority of the missing genes found are small (less than 100 aa. A comparison of select examples with GeneMark, EasyGene and Glimmer predictions yields evidence that some of these genes are escaping detection by these programs. Conclusions Prokaryotic gene finders and prokaryotic genome annotations require improvement for accurate prediction of small genes. The number of missing gene families found is likely a lower bound on the actual number, due to the conservative criteria used to determine whether an ORF corresponds to a real gene.

  6. AGeS: a software system for microbial genome sequence annotation.

    Directory of Open Access Journals (Sweden)

    Kamal Kumar

    Full Text Available BACKGROUND: The annotation of genomes from next-generation sequencing platforms needs to be rapid, high-throughput, and fully integrated and automated. Although a few Web-based annotation services have recently become available, they may not be the best solution for researchers that need to annotate a large number of genomes, possibly including proprietary data, and store them locally for further analysis. To address this need, we developed a standalone software application, the Annotation of microbial Genome Sequences (AGeS system, which incorporates publicly available and in-house-developed bioinformatics tools and databases, many of which are parallelized for high-throughput performance. METHODOLOGY: The AGeS system supports three main capabilities. The first is the storage of input contig sequences and the resulting annotation data in a central, customized database. The second is the annotation of microbial genomes using an integrated software pipeline, which first analyzes contigs from high-throughput sequencing by locating genomic regions that code for proteins, RNA, and other genomic elements through the Do-It-Yourself Annotation (DIYA framework. The identified protein-coding regions are then functionally annotated using the in-house-developed Pipeline for Protein Annotation (PIPA. The third capability is the visualization of annotated sequences using GBrowse. To date, we have implemented these capabilities for bacterial genomes. AGeS was evaluated by comparing its genome annotations with those provided by three other methods. Our results indicate that the software tools integrated into AGeS provide annotations that are in general agreement with those provided by the compared methods. This is demonstrated by a >94% overlap in the number of identified genes, a significant number of identical annotated features, and a >90% agreement in enzyme function predictions.

  7. A computational platform to maintain and migrate manual functional annotations for BioCyc databases.

    Science.gov (United States)

    Walsh, Jesse R; Sen, Taner Z; Dickerson, Julie A

    2014-10-12

    BioCyc databases are an important resource for information on biological pathways and genomic data. Such databases represent the accumulation of biological data, some of which has been manually curated from literature. An essential feature of these databases is the continuing data integration as new knowledge is discovered. As functional annotations are improved, scalable methods are needed for curators to manage annotations without detailed knowledge of the specific design of the BioCyc database. We have developed CycTools, a software tool which allows curators to maintain functional annotations in a model organism database. This tool builds on existing software to improve and simplify annotation data imports of user provided data into BioCyc databases. Additionally, CycTools automatically resolves synonyms and alternate identifiers contained within the database into the appropriate internal identifiers. Automating steps in the manual data entry process can improve curation efforts for major biological databases. The functionality of CycTools is demonstrated by transferring GO term annotations from MaizeCyc to matching proteins in CornCyc, both maize metabolic pathway databases available at MaizeGDB, and by creating strain specific databases for metabolic engineering.

  8. Genome cartography through domain annotation.

    Science.gov (United States)

    Ponting, C P; Dickens, N J

    2001-01-01

    The evolutionary history of eukaryotic proteins involves rapid sequence divergence, addition and deletion of domains, and fusion and fission of genes. Although the protein repertoires of distantly related species differ greatly, their domain repertoires do not. To account for the great diversity of domain contexts and an unexpected paucity of ortholog conservation, we must categorize the coding regions of completely sequenced genomes into domain families, as well as protein families.

  9. GLANET: genomic loci annotation and enrichment tool.

    Science.gov (United States)

    Otlu, Burçak; Firtina, Can; Keles, Sündüz; Tastan, Oznur

    2017-09-15

    Genomic studies identify genomic loci representing genetic variations, transcription factor (TF) occupancy, or histone modification through next generation sequencing (NGS) technologies. Interpreting these loci requires evaluating them with known genomic and epigenomic annotations. We present GLANET as a comprehensive annotation and enrichment analysis tool which implements a sampling-based enrichment test that accounts for GC content and/or mappability biases, jointly or separately. GLANET annotates and performs enrichment analysis on these loci with a rich library. We introduce and perform novel data-driven computational experiments for assessing the power and Type-I error of its enrichment procedure which show that GLANET has attained high statistical power and well-controlled Type-I error rate. As a key feature, users can easily extend its library with new gene sets and genomic intervals. Other key features include assessment of impact of single nucleotide variants (SNPs) on TF binding sites and regulation based pathway enrichment analysis. GLANET can be run using its GUI or on command line. GLANET's source code is available at https://github.com/burcakotlu/GLANET . Tutorials are provided at https://glanet.readthedocs.org . burcak@ceng.metu.edu.tr or oznur.tastan@cs.bilkent.edu.tr. Supplementary data are available at Bioinformatics online.

  10. Product annotations - KOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us ...ile name: kome_product_annotation.zip File URL: ftp://ftp.biosciencedbc.jp/archiv...ate History of This Database Site Policy | Contact Us Product annotations - KOME | LSDB Archive ...

  11. Annotation of selection strengths in viral genomes

    DEFF Research Database (Denmark)

    McCauley, Stephen; de Groot, Saskia; Mailund, Thomas

    2007-01-01

    Motivation: Viral genomes tend to code in overlapping reading frames to maximize information content. This may result in atypical codon bias and particular evolutionary constraints. Due to the fast mutation rate of viruses, there is additional strong evidence for varying selection between intra......- and intergenomic regions. The presence of multiple coding regions complicates the concept of Ka/Ks ratio, and thus begs for an alternative approach when investigating selection strengths. Building on the paper by McCauley & Hein (2006), we develop a method for annotating a viral genome coding in overlapping...... may thus achieve an annotation both of coding regions as well as selection strengths, allowing us to investigate different selection patterns and hypotheses. Results: We illustrate our method by applying it to a multiple alignment of four HIV2 sequences, as well as four Hepatitis B sequences. We...

  12. Applied bioinformatics: Genome annotation and transcriptome analysis

    DEFF Research Database (Denmark)

    Gupta, Vikas

    and dhurrin, which have not previously been characterized in blueberries. There are more than 44,500 spider species with distinct habitats and unique characteristics. Spiders are masters of producing silk webs to catch prey and using venom to neutralize. The exploration of the genetics behind these properties...... japonicus (Lotus), Vaccinium corymbosum (blueberry), Stegodyphus mimosarum (spider) and Trifolium occidentale (clover). From a bioinformatics data analysis perspective, my work can be divided into three parts; genome annotation, small RNA, and gene expression analysis. Lotus is a legume of significant...... has just started. We have assembled and annotated the first two spider genomes to facilitate our understanding of spiders at the molecular level. The need for analyzing the large and increasing amount of sequencing data has increased the demand for efficient, user friendly, and broadly applicable...

  13. CyanoBase: the cyanobacteria genome database update 2010.

    Science.gov (United States)

    Nakao, Mitsuteru; Okamoto, Shinobu; Kohara, Mitsuyo; Fujishiro, Tsunakazu; Fujisawa, Takatomo; Sato, Shusei; Tabata, Satoshi; Kaneko, Takakazu; Nakamura, Yasukazu

    2010-01-01

    CyanoBase (http://genome.kazusa.or.jp/cyanobase) is the genome database for cyanobacteria, which are model organisms for photosynthesis. The database houses cyanobacteria species information, complete genome sequences, genome-scale experiment data, gene information, gene annotations and mutant information. In this version, we updated these datasets and improved the navigation and the visual display of the data views. In addition, a web service API now enables users to retrieve the data in various formats with other tools, seamlessly.

  14. Genomic Databases for Crop Improvement

    Directory of Open Access Journals (Sweden)

    David Edwards

    2012-03-01

    Full Text Available Genomics is playing an increasing role in plant breeding and this is accelerating with the rapid advances in genome technology. Translating the vast abundance of data being produced by genome technologies requires the development of custom bioinformatics tools and advanced databases. These range from large generic databases which hold specific data types for a broad range of species, to carefully integrated and curated databases which act as a resource for the improvement of specific crops. In this review, we outline some of the features of plant genome databases, identify specific resources for the improvement of individual crops and comment on the potential future direction of crop genome databases.

  15. BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal Matoq Saeed

    2015-08-18

    Background Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). Results The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON’s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced. Conclusions We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/

  16. BEACON: automated tool for Bacterial GEnome Annotation ComparisON.

    Science.gov (United States)

    Kalkatawi, Manal; Alam, Intikhab; Bajic, Vladimir B

    2015-08-18

    Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON's utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27%, while the number of genes without any function assignment is reduced. We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  17. Expressed Peptide Tags: An additional layer of data for genome annotation

    Energy Technology Data Exchange (ETDEWEB)

    Savidor, Alon [ORNL; Donahoo, Ryan S [ORNL; Hurtado-Gonzales, Oscar [University of Tennessee, Knoxville (UTK); Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Lamour, Kurt H [ORNL; McDonald, W Hayes [ORNL

    2006-01-01

    While genome sequencing is becoming ever more routine, genome annotation remains a challenging process. Identification of the coding sequences within the genomic milieu presents a tremendous challenge, especially for eukaryotes with their complex gene architectures. Here we present a method to assist the annotation process through the use of proteomic data and bioinformatics. Mass spectra of digested protein preparations of the organism of interest were acquired and searched against a protein database created by a six frame translation of the genome. The identified peptides were mapped back to the genome, compared to the current annotation, and then categorized as supporting or extending the current genome annotation. We named the classified peptides Expressed Peptide Tags (EPTs). The well annotated bacterium Rhodopseudomonas palustris was used as a control for the method and showed high degree of correlation between EPT mapping and the current annotation, with 86% of the EPTs confirming existing gene calls and less than 1% of the EPTs expanding on the current annotation. The eukaryotic plant pathogens Phytophthora ramorum and Phytophthora sojae, whose genomes have been recently sequenced and are much less well annotated, were also subjected to this method. A series of algorithmic steps were taken to increase the confidence of EPT identification for these organisms, including generation of smaller sub-databases to be searched against, and definition of EPT criteria that accommodates the more complex eukaryotic gene architecture. As expected, the analysis of the Phytophthora species showed less correlation between EPT mapping and their current annotation. While ~77% of Phytophthora EPTs supported the current annotation, a portion of them (7.2% and 12.6% for P. ramorum and P. sojae, respectively) suggested modification to current gene calls or identified novel genes that were missed by the current genome annotation of these organisms.

  18. MIPS: a database for genomes and protein sequences.

    Science.gov (United States)

    Mewes, H W; Frishman, D; Güldener, U; Mannhaupt, G; Mayer, K; Mokrejs, M; Morgenstern, B; Münsterkötter, M; Rudd, S; Weil, B

    2002-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz-Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91-93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155-158; Barker et al. (2001) Nucleic Acids Res., 29, 29-32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de).

  19. MannDB: A microbial annotation database for protein characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C; Lam, M; Smith, J; Zemla, A; Dyer, M; Kuczmarski, T; Vitalis, E; Slezak, T

    2006-05-19

    MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-source tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins) are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. MannDB comprises a large number of genomes and comprehensive protein sequence analyses representing organisms listed as high

  20. Bioinformatics Assisted Gene Discovery and Annotation of Human Genome

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the sequencing stage of human genome project is near the end, the work has begun for discovering novel genes from genome sequences and annotating their biological functions. Here are reviewed current major bioinformatics tools and technologies available for large scale gene discovery and annotation from human genome sequences. Some ideas about possible future development are also provided.

  1. Large-scale annotation of small-molecule libraries using public databases.

    Science.gov (United States)

    Zhou, Yingyao; Zhou, Bin; Chen, Kaisheng; Yan, S Frank; King, Frederick J; Jiang, Shumei; Winzeler, Elizabeth A

    2007-01-01

    While many large publicly accessible databases provide excellent annotation for biological macromolecules, the same is not true for small chemical compounds. Commercial data sources also fail to encompass an annotation interface for large numbers of compounds and tend to be cost prohibitive to be widely available to biomedical researchers. Therefore, using annotation information for the selection of lead compounds from a modern day high-throughput screening (HTS) campaign presently occurs only under a very limited scale. The recent rapid expansion of the NIH PubChem database provides an opportunity to link existing biological databases with compound catalogs and provides relevant information that potentially could improve the information garnered from large-scale screening efforts. Using the 2.5 million compound collection at the Genomics Institute of the Novartis Research Foundation (GNF) as a model, we determined that approximately 4% of the library contained compounds with potential annotation in such databases as PubChem and the World Drug Index (WDI) as well as related databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and ChemIDplus. Furthermore, the exact structure match analysis showed 32% of GNF compounds can be linked to third party databases via PubChem. We also showed annotations such as MeSH (medical subject headings) terms can be applied to in-house HTS databases in identifying signature biological inhibition profiles of interest as well as expediting the assay validation process. The automated annotation of thousands of screening hits in batch is becoming feasible and has the potential to play an essential role in the hit-to-lead decision making process.

  2. Benchmarking database performance for genomic data.

    Science.gov (United States)

    Khushi, Matloob

    2015-06-01

    Genomic regions represent features such as gene annotations, transcription factor binding sites and epigenetic modifications. Performing various genomic operations such as identifying overlapping/non-overlapping regions or nearest gene annotations are common research needs. The data can be saved in a database system for easy management, however, there is no comprehensive database built-in algorithm at present to identify overlapping regions. Therefore I have developed a novel region-mapping (RegMap) SQL-based algorithm to perform genomic operations and have benchmarked the performance of different databases. Benchmarking identified that PostgreSQL extracts overlapping regions much faster than MySQL. Insertion and data uploads in PostgreSQL were also better, although general searching capability of both databases was almost equivalent. In addition, using the algorithm pair-wise, overlaps of >1000 datasets of transcription factor binding sites and histone marks, collected from previous publications, were reported and it was found that HNF4G significantly co-locates with cohesin subunit STAG1 (SA1).Inc.

  3. Believe It or Not: Adding Belief Annotations to Databases

    CERN Document Server

    Gatterbauer, Wolfgang; Khoussainova, Nodira; Suciu, Dan

    2009-01-01

    We propose a database model that allows users to annotate data with belief statements. Our motivation comes from scientific database applications where a community of users is working together to assemble, revise, and curate a shared data repository. As the community accumulates knowledge and the database content evolves over time, it may contain conflicting information and members can disagree on the information it should store. For example, Alice may believe that a tuple should be in the database, whereas Bob disagrees. He may also insert the reason why he thinks Alice believes the tuple should be in the database, and explain what he thinks the correct tuple should be instead. We propose a formal model for Belief Databases that interprets users' annotations as belief statements. These annotations can refer both to the base data and to other annotations. We give a formal semantics based on a fragment of multi-agent epistemic logic and define a query language over belief databases. We then prove a key technic...

  4. Annotation of the protein coding regions of the equine genome

    DEFF Research Database (Denmark)

    Hestand, Matthew S.; Kalbfleisch, Theodore S.; Coleman, Stephen J.;

    2015-01-01

    Current gene annotation of the horse genome is largely derived from in silico predictions and cross-species alignments. Only a small number of genes are annotated based on equine EST and mRNA sequences. To expand the number of equine genes annotated from equine experimental evidence, we sequenced...

  5. Gene calling and bacterial genome annotation with BG7.

    Science.gov (United States)

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).

  6. Gramene database: Navigating plant comparative genomics resources

    Directory of Open Access Journals (Sweden)

    Parul Gupta

    2016-11-01

    Full Text Available Gramene (http://www.gramene.org is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationships to enrich the annotation of genomic data and provides tools to perform powerful comparative analyses across a wide spectrum of plant species. It consists of an integrated portal for querying, visualizing and analyzing data for 44 plant reference genomes, genetic variation data sets for 12 species, expression data for 16 species, curated rice pathways and orthology-based pathway projections for 66 plant species including various crops. Here we briefly describe the functions and uses of the Gramene database.

  7. OntoPIN: an ontology-annotated PPI database.

    Science.gov (United States)

    Guzzi, Pietro Hiram; Veltri, Pierangelo; Cannataro, Mario

    2013-09-01

    Protein-protein interaction (PPI) data stored in publicly available databases are queried by the use of simple query interfaces allowing only key-based queries. A typical query on such databases is based on the use of protein identifiers and enables the retrieval of one or more proteins. Nevertheless, a lot of biological information is available and is spread on different sources and encoded in different ontologies such as Gene Ontology. The integration of existing PPI databases and biological information may result in richer querying interfaces and successively could enable the development of novel algorithms that may use biological information. The OntoPIN project showed the effectiveness of the introduction of a framework for the ontology-based management and querying of Protein-Protein Interaction Data. The OntoPIN framework first merges PPI data with annotations extracted from existing ontologies (e.g. Gene Ontology) and stores annotated data into a database. Then, a semantic-based query interface enables users to query these data by using biological concepts. OntoPIN allows: (a) to extend existing PPI databases by using ontologies, (b) to enable a key-based querying of annotated data, and (c) to offer a novel query interface based on semantic similarity among annotations.

  8. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence

    Directory of Open Access Journals (Sweden)

    Dorrell Nick

    2007-06-01

    Full Text Available Abstract Background Campylobacter jejuni is the leading bacterial cause of human gastroenteritis in the developed world. To improve our understanding of this important human pathogen, the C. jejuni NCTC11168 genome was sequenced and published in 2000. The original annotation was a milestone in Campylobacter research, but is outdated. We now describe the complete re-annotation and re-analysis of the C. jejuni NCTC11168 genome using current database information, novel tools and annotation techniques not used during the original annotation. Results Re-annotation was carried out using sequence database searches such as FASTA, along with programs such as TMHMM for additional support. The re-annotation also utilises sequence data from additional Campylobacter strains and species not available during the original annotation. Re-annotation was accompanied by a full literature search that was incorporated into the updated EMBL file [EMBL: AL111168]. The C. jejuni NCTC11168 re-annotation reduced the total number of coding sequences from 1654 to 1643, of which 90.0% have additional information regarding the identification of new motifs and/or relevant literature. Re-annotation has led to 18.2% of coding sequence product functions being revised. Conclusions Major updates were made to genes involved in the biosynthesis of important surface structures such as lipooligosaccharide, capsule and both O- and N-linked glycosylation. This re-annotation will be a key resource for Campylobacter research and will also provide a prototype for the re-annotation and re-interpretation of other bacterial genomes.

  9. A Human-Curated Annotation of the Candida albicans Genome.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.

  10. Bovine Genome Database: new tools for gleaning function from the Bos taurus genome.

    Science.gov (United States)

    Elsik, Christine G; Unni, Deepak R; Diesh, Colin M; Tayal, Aditi; Emery, Marianne L; Nguyen, Hung N; Hagen, Darren E

    2016-01-01

    We report an update of the Bovine Genome Database (BGD) (http://BovineGenome.org). The goal of BGD is to support bovine genomics research by providing genome annotation and data mining tools. We have developed new genome and annotation browsers using JBrowse and WebApollo for two Bos taurus genome assemblies, the reference genome assembly (UMD3.1.1) and the alternate genome assembly (Btau_4.6.1). Annotation tools have been customized to highlight priority genes for annotation, and to aid annotators in selecting gene evidence tracks from 91 tissue specific RNAseq datasets. We have also developed BovineMine, based on the InterMine data warehousing system, to integrate the bovine genome, annotation, QTL, SNP and expression data with external sources of orthology, gene ontology, gene interaction and pathway information. BovineMine provides powerful query building tools, as well as customized query templates, and allows users to analyze and download genome-wide datasets. With BovineMine, bovine researchers can use orthology to leverage the curated gene pathways of model organisms, such as human, mouse and rat. BovineMine will be especially useful for gene ontology and pathway analyses in conjunction with GWAS and QTL studies.

  11. BG7: A New Approach for Bacterial Genome Annotation Designed for Next Generation Sequencing Data

    Science.gov (United States)

    Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Pareja, Eduardo; Tobes, Raquel

    2012-01-01

    BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version – which is developed in Java, takes advantage of Amazon Web Services (AWS) cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future. PMID:23185310

  12. Annotation of the protein coding regions of the equine genome

    DEFF Research Database (Denmark)

    Hestand, Matthew S.; Kalbfleisch, Theodore S.; Coleman, Stephen J.

    2015-01-01

    Current gene annotation of the horse genome is largely derived from in silico predictions and cross-species alignments. Only a small number of genes are annotated based on equine EST and mRNA sequences. To expand the number of equine genes annotated from equine experimental evidence, we sequenced m...... and appear to be small errors in the equine reference genome, since they are also identified as homozygous variants by genomic DNA resequencing of the reference horse. Taken together, we provide a resource of equine mRNA structures and protein coding variants that will enhance equine and cross...

  13. Rapid storage and retrieval of genomic intervals from a relational database system using nested containment lists.

    Science.gov (United States)

    Wiley, Laura K; Sivley, R Michael; Bush, William S

    2013-01-01

    Efficient storage and retrieval of genomic annotations based on range intervals is necessary, given the amount of data produced by next-generation sequencing studies. The indexing strategies of relational database systems (such as MySQL) greatly inhibit their use in genomic annotation tasks. This has led to the development of stand-alone applications that are dependent on flat-file libraries. In this work, we introduce MyNCList, an implementation of the NCList data structure within a MySQL database. MyNCList enables the storage, update and rapid retrieval of genomic annotations from the convenience of a relational database system. Range-based annotations of 1 million variants are retrieved in under a minute, making this approach feasible for whole-genome annotation tasks. Database URL: https://github.com/bushlab/mynclist.

  14. TOPSAN: a dynamic web database for structural genomics.

    Science.gov (United States)

    Ellrott, Kyle; Zmasek, Christian M; Weekes, Dana; Sri Krishna, S; Bakolitsa, Constantina; Godzik, Adam; Wooley, John

    2011-01-01

    The Open Protein Structure Annotation Network (TOPSAN) is a web-based collaboration platform for exploring and annotating structures determined by structural genomics efforts. Characterization of those structures presents a challenge since the majority of the proteins themselves have not yet been characterized. Responding to this challenge, the TOPSAN platform facilitates collaborative annotation and investigation via a user-friendly web-based interface pre-populated with automatically generated information. Semantic web technologies expand and enrich TOPSAN's content through links to larger sets of related databases, and thus, enable data integration from disparate sources and data mining via conventional query languages. TOPSAN can be found at http://www.topsan.org.

  15. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation

    Science.gov (United States)

    O'Leary, Nuala A.; Wright, Mathew W.; Brister, J. Rodney; Ciufo, Stacy; Haddad, Diana; McVeigh, Rich; Rajput, Bhanu; Robbertse, Barbara; Smith-White, Brian; Ako-Adjei, Danso; Astashyn, Alexander; Badretdin, Azat; Bao, Yiming; Blinkova, Olga; Brover, Vyacheslav; Chetvernin, Vyacheslav; Choi, Jinna; Cox, Eric; Ermolaeva, Olga; Farrell, Catherine M.; Goldfarb, Tamara; Gupta, Tripti; Haft, Daniel; Hatcher, Eneida; Hlavina, Wratko; Joardar, Vinita S.; Kodali, Vamsi K.; Li, Wenjun; Maglott, Donna; Masterson, Patrick; McGarvey, Kelly M.; Murphy, Michael R.; O'Neill, Kathleen; Pujar, Shashikant; Rangwala, Sanjida H.; Rausch, Daniel; Riddick, Lillian D.; Schoch, Conrad; Shkeda, Andrei; Storz, Susan S.; Sun, Hanzhen; Thibaud-Nissen, Francoise; Tolstoy, Igor; Tully, Raymond E.; Vatsan, Anjana R.; Wallin, Craig; Webb, David; Wu, Wendy; Landrum, Melissa J.; Kimchi, Avi; Tatusova, Tatiana; DiCuccio, Michael; Kitts, Paul; Murphy, Terence D.; Pruitt, Kim D.

    2016-01-01

    The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55 000 organisms (>4800 viruses, >40 000 prokaryotes and >10 000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management. PMID:26553804

  16. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.

    Science.gov (United States)

    O'Leary, Nuala A; Wright, Mathew W; Brister, J Rodney; Ciufo, Stacy; Haddad, Diana; McVeigh, Rich; Rajput, Bhanu; Robbertse, Barbara; Smith-White, Brian; Ako-Adjei, Danso; Astashyn, Alexander; Badretdin, Azat; Bao, Yiming; Blinkova, Olga; Brover, Vyacheslav; Chetvernin, Vyacheslav; Choi, Jinna; Cox, Eric; Ermolaeva, Olga; Farrell, Catherine M; Goldfarb, Tamara; Gupta, Tripti; Haft, Daniel; Hatcher, Eneida; Hlavina, Wratko; Joardar, Vinita S; Kodali, Vamsi K; Li, Wenjun; Maglott, Donna; Masterson, Patrick; McGarvey, Kelly M; Murphy, Michael R; O'Neill, Kathleen; Pujar, Shashikant; Rangwala, Sanjida H; Rausch, Daniel; Riddick, Lillian D; Schoch, Conrad; Shkeda, Andrei; Storz, Susan S; Sun, Hanzhen; Thibaud-Nissen, Francoise; Tolstoy, Igor; Tully, Raymond E; Vatsan, Anjana R; Wallin, Craig; Webb, David; Wu, Wendy; Landrum, Melissa J; Kimchi, Avi; Tatusova, Tatiana; DiCuccio, Michael; Kitts, Paul; Murphy, Terence D; Pruitt, Kim D

    2016-01-04

    The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

  17. microRNAs Databases: Developmental Methodologies, Structural and Functional Annotations.

    Science.gov (United States)

    Singh, Nagendra Kumar

    2017-09-01

    microRNA (miRNA) is an endogenous and evolutionary conserved non-coding RNA, involved in post-transcriptional process as gene repressor and mRNA cleavage through RNA-induced silencing complex (RISC) formation. In RISC, miRNA binds in complementary base pair with targeted mRNA along with Argonaut proteins complex, causes gene repression or endonucleolytic cleavage of mRNAs and results in many diseases and syndromes. After the discovery of miRNA lin-4 and let-7, subsequently large numbers of miRNAs were discovered by low-throughput and high-throughput experimental techniques along with computational process in various biological and metabolic processes. The miRNAs are important non-coding RNA for understanding the complex biological phenomena of organism because it controls the gene regulation. This paper reviews miRNA databases with structural and functional annotations developed by various researchers. These databases contain structural and functional information of animal, plant and virus miRNAs including miRNAs-associated diseases, stress resistance in plant, miRNAs take part in various biological processes, effect of miRNAs interaction on drugs and environment, effect of variance on miRNAs, miRNAs gene expression analysis, sequence of miRNAs, structure of miRNAs. This review focuses on the developmental methodology of miRNA databases such as computational tools and methods used for extraction of miRNAs annotation from different resources or through experiment. This study also discusses the efficiency of user interface design of every database along with current entry and annotations of miRNA (pathways, gene ontology, disease ontology, etc.). Here, an integrated schematic diagram of construction process for databases is also drawn along with tabular and graphical comparison of various types of entries in different databases. Aim of this paper is to present the importance of miRNAs-related resources at a single place.

  18. DIYA: A Bacterial Annotation Pipeline for any Genomics Lab

    Science.gov (United States)

    2009-02-12

    microbial genomes overnight (Mardis, 2008). These technologies have created many new small ‘genome centers’ ( Zwick , 2005). DIYA (Do-It- Yourself...2008) The development of PIPA: an integrated and automated pipeline for genome-wide protein function annotation. BMC Bioinformatics, 9, 52. Zwick ,M.E

  19. DNApod: DNA polymorphism annotation database from next-generation sequence read archives

    Science.gov (United States)

    Mochizuki, Takako; Tanizawa, Yasuhiro; Fujisawa, Takatomo; Ohta, Tazro; Nikoh, Naruo; Shimizu, Tokurou; Toyoda, Atsushi; Fujiyama, Asao; Kurata, Nori; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu

    2017-01-01

    With the rapid advances in next-generation sequencing (NGS), datasets for DNA polymorphisms among various species and strains have been produced, stored, and distributed. However, reliability varies among these datasets because the experimental and analytical conditions used differ among assays. Furthermore, such datasets have been frequently distributed from the websites of individual sequencing projects. It is desirable to integrate DNA polymorphism data into one database featuring uniform quality control that is distributed from a single platform at a single place. DNA polymorphism annotation database (DNApod; http://tga.nig.ac.jp/dnapod/) is an integrated database that stores genome-wide DNA polymorphism datasets acquired under uniform analytical conditions, and this includes uniformity in the quality of the raw data, the reference genome version, and evaluation algorithms. DNApod genotypic data are re-analyzed whole-genome shotgun datasets extracted from sequence read archives, and DNApod distributes genome-wide DNA polymorphism datasets and known-gene annotations for each DNA polymorphism. This new database was developed for storing genome-wide DNA polymorphism datasets of plants, with crops being the first priority. Here, we describe our analyzed data for 679, 404, and 66 strains of rice, maize, and sorghum, respectively. The analytical methods are available as a DNApod workflow in an NGS annotation system of the DNA Data Bank of Japan and a virtual machine image. Furthermore, DNApod provides tables of links of identifiers between DNApod genotypic data and public phenotypic data. To advance the sharing of organism knowledge, DNApod offers basic and ubiquitous functions for multiple alignment and phylogenetic tree construction by using orthologous gene information. PMID:28234924

  20. Using Apollo to browse and edit genome annotations.

    Science.gov (United States)

    Misra, Sima; Harris, Nomi

    2006-01-01

    An annotation is any feature that can be tied to genomic sequence, such as an exon, transcript, promoter, or transposable element. As biological knowledge increases, annotations of different types need to be added and modified, and links to other sources of information need to be incorporated, to allow biologists to easily access all of the available sequence analysis data and design appropriate experiments. The Apollo genome browser and editor offers biologists these capabilities. Apollo can display many different types of computational evidence, such as alignments and similarities based on BLAST searches (UNITS 3.3 & 3.4), and enables biologists to utilize computational evidence to create and edit gene models and other genomic features, e.g., using experimental evidence to refine exon-intron structures predicted by gene prediction algorithms. This protocol describes simple ways to browse genome annotation data, as well as techniques for editing annotations and loading data from different sources.

  1. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  2. The UCSC Genome Browser database: 2017 update.

    Science.gov (United States)

    Tyner, Cath; Barber, Galt P; Casper, Jonathan; Clawson, Hiram; Diekhans, Mark; Eisenhart, Christopher; Fischer, Clayton M; Gibson, David; Gonzalez, Jairo Navarro; Guruvadoo, Luvina; Haeussler, Maximilian; Heitner, Steve; Hinrichs, Angie S; Karolchik, Donna; Lee, Brian T; Lee, Christopher M; Nejad, Parisa; Raney, Brian J; Rosenbloom, Kate R; Speir, Matthew L; Villarreal, Chris; Vivian, John; Zweig, Ann S; Haussler, David; Kuhn, Robert M; Kent, W James

    2017-01-04

    Since its 2001 debut, the University of California, Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/) team has provided continuous support to the international genomics and biomedical communities through a web-based, open source platform designed for the fast, scalable display of sequence alignments and annotations landscaped against a vast collection of quality reference genome assemblies. The browser's publicly accessible databases are the backbone of a rich, integrated bioinformatics tool suite that includes a graphical interface for data queries and downloads, alignment programs, command-line utilities and more. This year's highlights include newly designed home and gateway pages; a new 'multi-region' track display configuration for exon-only, gene-only and custom regions visualization; new genome browsers for three species (brown kiwi, crab-eating macaque and Malayan flying lemur); eight updated genome assemblies; extended support for new data types such as CRAM, RNA-seq expression data and long-range chromatin interaction pairs; and the unveiling of a new supported mirror site in Japan.

  3. The UCSC Genome Browser database: 2017 update

    Science.gov (United States)

    Tyner, Cath; Barber, Galt P.; Casper, Jonathan; Clawson, Hiram; Diekhans, Mark; Eisenhart, Christopher; Fischer, Clayton M.; Gibson, David; Gonzalez, Jairo Navarro; Guruvadoo, Luvina; Haeussler, Maximilian; Heitner, Steve; Hinrichs, Angie S.; Karolchik, Donna; Lee, Brian T.; Lee, Christopher M.; Nejad, Parisa; Raney, Brian J.; Rosenbloom, Kate R.; Speir, Matthew L.; Villarreal, Chris; Vivian, John; Zweig, Ann S.; Haussler, David; Kuhn, Robert M.; Kent, W. James

    2017-01-01

    Since its 2001 debut, the University of California, Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/) team has provided continuous support to the international genomics and biomedical communities through a web-based, open source platform designed for the fast, scalable display of sequence alignments and annotations landscaped against a vast collection of quality reference genome assemblies. The browser's publicly accessible databases are the backbone of a rich, integrated bioinformatics tool suite that includes a graphical interface for data queries and downloads, alignment programs, command-line utilities and more. This year's highlights include newly designed home and gateway pages; a new ‘multi-region’ track display configuration for exon-only, gene-only and custom regions visualization; new genome browsers for three species (brown kiwi, crab-eating macaque and Malayan flying lemur); eight updated genome assemblies; extended support for new data types such as CRAM, RNA-seq expression data and long-range chromatin interaction pairs; and the unveiling of a new supported mirror site in Japan. PMID:27899642

  4. Plant database resources at The Institute for Genomic Research.

    Science.gov (United States)

    Chan, Agnes P; Rabinowicz, Pablo D; Quackenbush, John; Buell, C Robin; Town, Chris D

    2007-01-01

    With the completion of the genome sequences of the model plants Arabidopsis and rice, and the continuing sequencing efforts of other economically important crop plants, an unprecedented amount of genome sequence data is now available for large-scale genomics studies and analyses, such as the identification and discovery of novel genes, comparative genomics, and functional genomics. Efficient utilization of these large data sets is critically dependent on the ease of access and organization of the data. The plant databases at The Institute for Genomic Research (TIGR) have been set up to maintain various data types including genomic sequence, annotation and analyses, expressed transcript assemblies and analyses, and gene expression profiles from microarray studies. We present here an overview of the TIGR database resources for plant genomics and describe methods to access the data.

  5. Matching curated genome databases: a non trivial task

    Directory of Open Access Journals (Sweden)

    Labedan Bernard

    2008-10-01

    Full Text Available Abstract Background Curated databases of completely sequenced genomes have been designed independently at the NCBI (RefSeq and EBI (Genome Reviews to cope with non-standard annotation found in the version of the sequenced genome that has been published by databanks GenBank/EMBL/DDBJ. These curation attempts were expected to review the annotations and to improve their pertinence when using them to annotate newly released genome sequences by homology to previously annotated genomes. However, we observed that such an uncoordinated effort has two unwanted consequences. First, it is not trivial to map the protein identifiers of the same sequence in both databases. Secondly, the two reannotated versions of the same genome differ at the level of their structural annotation. Results Here, we propose CorBank, a program devised to provide cross-referencing protein identifiers no matter what the level of identity is found between their matching sequences. Approximately 98% of the 1,983,258 amino acid sequences are matching, allowing instantaneous retrieval of their respective cross-references. CorBank further allows detecting any differences between the independently curated versions of the same genome. We found that the RefSeq and Genome Reviews versions are perfectly matching for only 50 of the 641 complete genomes we have analyzed. In all other cases there are differences occurring at the level of the coding sequence (CDS, and/or in the total number of CDS in the respective version of the same genome. CorBank is freely accessible at http://www.corbank.u-psud.fr. The CorBank site contains also updated publication of the exhaustive results obtained by comparing RefSeq and Genome Reviews versions of each genome. Accordingly, this web site allows easy search of cross-references between RefSeq, Genome Reviews, and UniProt, for either a single CDS or a whole replicon. Conclusion CorBank is very efficient in rapid detection of the numerous differences existing

  6. GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data.

    Science.gov (United States)

    Jung, Sook; Staton, Margaret; Lee, Taein; Blenda, Anna; Svancara, Randall; Abbott, Albert; Main, Dorrie

    2008-01-01

    The Genome Database for Rosaceae (GDR) is a central repository of curated and integrated genetics and genomics data of Rosaceae, an economically important family which includes apple, cherry, peach, pear, raspberry, rose and strawberry. GDR contains annotated databases of all publicly available Rosaceae ESTs, the genetically anchored peach physical map, Rosaceae genetic maps and comprehensively annotated markers and traits. The ESTs are assembled to produce unigene sets of each genus and the entire Rosaceae. Other annotations include putative function, microsatellites, open reading frames, single nucleotide polymorphisms, gene ontology terms and anchored map position where applicable. Most of the published Rosaceae genetic maps can be viewed and compared through CMap, the comparative map viewer. The peach physical map can be viewed using WebFPC/WebChrom, and also through our integrated GDR map viewer, which serves as a portal to the combined genetic, transcriptome and physical mapping information. ESTs, BACs, markers and traits can be queried by various categories and the search result sites are linked to the mapping visualization tools. GDR also provides online analysis tools such as a batch BLAST/FASTA server for the GDR datasets, a sequence assembly server and microsatellite and primer detection tools. GDR is available at http://www.rosaceae.org.

  7. Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, Alexandra C.; Jones, Marcus B.; Chauhan, Sadhana; Purvine, Samuel O.; Sanford, James; Monroe, Matthew E.; Brewer, Heather M.; Payne, Samuel H.; Ansong, Charles; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott; Motin, Vladimir L.; Adkins, Joshua N.

    2012-03-27

    Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation pipelines remain relatively stable or are even being abandoned. To date, the perceived value of manual curation for genome annotations is not offset by the real cost and time associated with the process. In order to balance the large number of sequences generated, the annotation process is now performed almost exclusively in an automated fashion for most genome sequencing projects. One possible way to reduce errors inherent to automated computational annotations is to apply data from 'omics' measurements (i.e. transcriptional and proteomic) to the un-annotated genome with a proteogenomic-based approach. This approach does require additional experimental and bioinformatics methods to include omics technologies; however, the approach is readily automatable and can benefit from rapid developments occurring in those research domains as well. The annotation process can be improved by experimental validation of transcription and translation and aid in the discovery of annotation errors. Here the concept of annotation refinement has been extended to include a comparative assessment of genomes across closely related species, as is becoming common in sequencing efforts. Transcriptomic and proteomic data derived from three highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis pestoides F, and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain's predicted proteome and revealed the identification of 28 novel and 68 previously incorrect protein-coding sequences (e.g., observed frameshifts, extended start sites, and translated pseudogenes) within the three current Yersinia genome annotations. Gene loss is presumed to play a major role in Y. pestis acquiring its niche as a virulent

  8. MTGD: The Medicago truncatula genome database.

    Science.gov (United States)

    Krishnakumar, Vivek; Kim, Maria; Rosen, Benjamin D; Karamycheva, Svetlana; Bidwell, Shelby L; Tang, Haibao; Town, Christopher D

    2015-01-01

    Medicago truncatula, a close relative of alfalfa (Medicago sativa), is a model legume used for studying symbiotic nitrogen fixation, mycorrhizal interactions and legume genomics. J. Craig Venter Institute (JCVI; formerly TIGR) has been involved in M. truncatula genome sequencing and annotation since 2002 and has maintained a web-based resource providing data to the community for this entire period. The website (http://www.MedicagoGenome.org) has seen major updates in the past year, where it currently hosts the latest version of the genome (Mt4.0), associated data and legacy project information, presented to users via a rich set of open-source tools. A JBrowse-based genome browser interface exposes tracks for visualization. Mutant gene symbols originally assembled and curated by the Frugoli lab are now hosted at JCVI and tie into our community annotation interface, Medicago EuCAP (to be integrated soon with our implementation of WebApollo). Literature pertinent to M. truncatula is indexed and made searchable via the Textpresso search engine. The site also implements MedicMine, an instance of InterMine that offers interconnectivity with other plant 'mines' such as ThaleMine and PhytoMine, and other model organism databases (MODs). In addition to these new features, we continue to provide keyword- and locus identifier-based searches served via a Chado-backed Tripal Instance, a BLAST search interface and bulk downloads of data sets from the iPlant Data Store (iDS). Finally, we maintain an E-mail helpdesk, facilitated by a JIRA issue tracking system, where we receive and respond to questions about the website and requests for specific data sets from the community.

  9. The integrated web service and genome database for agricultural plants with biotechnology information

    Science.gov (United States)

    Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015

  10. Predicting active site residue annotations in the Pfam database

    Directory of Open Access Journals (Sweden)

    Finn Robert D

    2007-08-01

    Full Text Available Abstract Background Approximately 5% of Pfam families are enzymatic, but only a small fraction of the sequences within these families ( Description We have created a large database of predicted active site residues. On comparing our active site predictions to those found in UniProtKB, Catalytic Site Atlas, PROSITE and MEROPS we find that we make many novel predictions. On investigating the small subset of predictions made by these databases that are not predicted by us, we found these sequences did not meet our strict criteria for prediction. We assessed the sensitivity and specificity of our methodology and estimate that only 3% of our predicted sequences are false positives. Conclusion We have predicted 606110 active site residues, of which 94% are not found in UniProtKB, and have increased the active site annotations in Pfam by more than 200 fold. Although implemented for Pfam, the tool we have developed for transferring the data can be applied to any alignment with associated experimental active site data and is available for download. Our active site predictions are re-calculated at each Pfam release to ensure they are comprehensive and up to date. They provide one of the largest available databases of active site annotation.

  11. CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L. methylation filtered genomic genespace sequences

    Directory of Open Access Journals (Sweden)

    Spraggins Thomas A

    2007-04-01

    Full Text Available Abstract Background Cowpea [Vigna unguiculata (L. Walp.] is one of the most important food and forage legumes in the semi-arid tropics because of its ability to tolerate drought and grow on poor soils. It is cultivated mostly by poor farmers in developing countries, with 80% of production taking place in the dry savannah of tropical West and Central Africa. Cowpea is largely an underexploited crop with relatively little genomic information available for use in applied plant breeding. The goal of the Cowpea Genomics Initiative (CGI, funded by the Kirkhouse Trust, a UK-based charitable organization, is to leverage modern molecular genetic tools for gene discovery and cowpea improvement. One aspect of the initiative is the sequencing of the gene-rich region of the cowpea genome (termed the genespace recovered using methylation filtration technology and providing annotation and analysis of the sequence data. Description CGKB, Cowpea Genespace/Genomics Knowledge Base, is an annotation knowledge base developed under the CGI. The database is based on information derived from 298,848 cowpea genespace sequences (GSS isolated by methylation filtering of genomic DNA. The CGKB consists of three knowledge bases: GSS annotation and comparative genomics knowledge base, GSS enzyme and metabolic pathway knowledge base, and GSS simple sequence repeats (SSRs knowledge base for molecular marker discovery. A homology-based approach was applied for annotations of the GSS, mainly using BLASTX against four public FASTA formatted protein databases (NCBI GenBank Proteins, UniProtKB-Swiss-Prot, UniprotKB-PIR (Protein Information Resource, and UniProtKB-TrEMBL. Comparative genome analysis was done by BLASTX searches of the cowpea GSS against four plant proteomes from Arabidopsis thaliana, Oryza sativa, Medicago truncatula, and Populus trichocarpa. The possible exons and introns on each cowpea GSS were predicted using the HMM-based Genscan gene predication program and the

  12. MIPS: analysis and annotation of proteins from whole genomes in 2005.

    Science.gov (United States)

    Mewes, H W; Frishman, D; Mayer, K F X; Münsterkötter, M; Noubibou, O; Pagel, P; Rattei, T; Oesterheld, M; Ruepp, A; Stümpflen, V

    2006-01-01

    The Munich Information Center for Protein Sequences (MIPS at the GSF), Neuherberg, Germany, provides resources related to genome information. Manually curated databases for several reference organisms are maintained. Several of these databases are described elsewhere in this and other recent NAR database issues. In a complementary effort, a comprehensive set of >400 genomes automatically annotated with the PEDANT system are maintained. The main goal of our current work on creating and maintaining genome databases is to extend gene centered information to information on interactions within a generic comprehensive framework. We have concentrated our efforts along three lines (i) the development of suitable comprehensive data structures and database technology, communication and query tools to include a wide range of different types of information enabling the representation of complex information such as functional modules or networks Genome Research Environment System, (ii) the development of databases covering computable information such as the basic evolutionary relations among all genes, namely SIMAP, the sequence similarity matrix and the CABiNet network analysis framework and (iii) the compilation and manual annotation of information related to interactions such as protein-protein interactions or other types of relations (e.g. MPCDB, MPPI, CYGD). All databases described and the detailed descriptions of our projects can be accessed through the MIPS WWW server (http://mips.gsf.de).

  13. Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters

    Directory of Open Access Journals (Sweden)

    Siddiqui Asim

    2005-10-01

    Full Text Available Abstract Background The sequencing and analysis of ESTs is for now the only practical approach for large-scale gene discovery and annotation in conifers because their very large genomes are unlikely to be sequenced in the near future. Our objective was to produce extensive collections of ESTs and cDNA clones to support manufacture of cDNA microarrays and gene discovery in white spruce (Picea glauca [Moench] Voss. Results We produced 16 cDNA libraries from different tissues and a variety of treatments, and partially sequenced 50,000 cDNA clones. High quality 3' and 5' reads were assembled into 16,578 consensus sequences, 45% of which represented full length inserts. Consensus sequences derived from 5' and 3' reads of the same cDNA clone were linked to define 14,471 transcripts. A large proportion (84% of the spruce sequences matched a pine sequence, but only 68% of the spruce transcripts had homologs in Arabidopsis or rice. Nearly all the sequences that matched the Populus trichocarpa genome (the only sequenced tree genome also matched rice or Arabidopsis genomes. We used several sequence similarity search approaches for assignment of putative functions, including blast searches against general and specialized databases (transcription factors, cell wall related proteins, Gene Ontology term assignation and Hidden Markov Model searches against PFAM protein families and domains. In total, 70% of the spruce transcripts displayed matches to proteins of known or unknown function in the Uniref100 database (blastx e-value Arabidopsis or rice genomes. Detailed analysis of translationally controlled tumour proteins and S-adenosylmethionine synthetase families confirmed a twofold size difference. Sequences and annotations were organized in a dedicated database, SpruceDB. Several search tools were developed to mine the data either based on their occurrence in the cDNA libraries or on functional annotations. Conclusion This report illustrates specific

  14. Specialized microbial databases for inductive exploration of microbial genome sequences

    Directory of Open Access Journals (Sweden)

    Cabau Cédric

    2005-02-01

    Full Text Available Abstract Background The enormous amount of genome sequence data asks for user-oriented databases to manage sequences and annotations. Queries must include search tools permitting function identification through exploration of related objects. Methods The GenoList package for collecting and mining microbial genome databases has been rewritten using MySQL as the database management system. Functions that were not available in MySQL, such as nested subquery, have been implemented. Results Inductive reasoning in the study of genomes starts from "islands of knowledge", centered around genes with some known background. With this concept of "neighborhood" in mind, a modified version of the GenoList structure has been used for organizing sequence data from prokaryotic genomes of particular interest in China. GenoChore http://bioinfo.hku.hk/genochore.html, a set of 17 specialized end-user-oriented microbial databases (including one instance of Microsporidia, Encephalitozoon cuniculi, a member of Eukarya has been made publicly available. These databases allow the user to browse genome sequence and annotation data using standard queries. In addition they provide a weekly update of searches against the world-wide protein sequences data libraries, allowing one to monitor annotation updates on genes of interest. Finally, they allow users to search for patterns in DNA or protein sequences, taking into account a clustering of genes into formal operons, as well as providing extra facilities to query sequences using predefined sequence patterns. Conclusion This growing set of specialized microbial databases organize data created by the first Chinese bacterial genome programs (ThermaList, Thermoanaerobacter tencongensis, LeptoList, with two different genomes of Leptospira interrogans and SepiList, Staphylococcus epidermidis associated to related organisms for comparison.

  15. Combined evidence annotation of transposable elements in genome sequences.

    Directory of Open Access Journals (Sweden)

    Hadi Quesneville

    2005-07-01

    Full Text Available Transposable elements (TEs are mobile, repetitive sequences that make up significant fractions of metazoan genomes. Despite their near ubiquity and importance in genome and chromosome biology, most efforts to annotate TEs in genome sequences rely on the results of a single computational program, RepeatMasker. In contrast, recent advances in gene annotation indicate that high-quality gene models can be produced from combining multiple independent sources of computational evidence. To elevate the quality of TE annotations to a level comparable to that of gene models, we have developed a combined evidence-model TE annotation pipeline, analogous to systems used for gene annotation, by integrating results from multiple homology-based and de novo TE identification methods. As proof of principle, we have annotated "TE models" in Drosophila melanogaster Release 4 genomic sequences using the combined computational evidence derived from RepeatMasker, BLASTER, TBLASTX, all-by-all BLASTN, RECON, TE-HMM and the previous Release 3.1 annotation. Our system is designed for use with the Apollo genome annotation tool, allowing automatic results to be curated manually to produce reliable annotations. The euchromatic TE fraction of D. melanogaster is now estimated at 5.3% (cf. 3.86% in Release 3.1, and we found a substantially higher number of TEs (n = 6,013 than previously identified (n = 1,572. Most of the new TEs derive from small fragments of a few hundred nucleotides long and highly abundant families not previously annotated (e.g., INE-1. We also estimated that 518 TE copies (8.6% are inserted into at least one other TE, forming a nest of elements. The pipeline allows rapid and thorough annotation of even the most complex TE models, including highly deleted and/or nested elements such as those often found in heterochromatic sequences. Our pipeline can be easily adapted to other genome sequences, such as those of the D. melanogaster heterochromatin or other

  16. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption.

    Science.gov (United States)

    Hu, Quanjun; Ma, Tao; Wang, Kun; Xu, Ting; Liu, Jianquan; Qiu, Qiang

    2012-11-07

    The yak (Bos grunniens) is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. The Yak Genome Database (YGD) is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. A new yak genome database (YGD) has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  17. The Yak genome database: an integrative database for studying yak biology and high-altitude adaption

    Directory of Open Access Journals (Sweden)

    Hu Quanjun

    2012-11-01

    Full Text Available Abstract Background The yak (Bos grunniens is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. Description The Yak Genome Database (YGD is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. Conclusions A new yak genome database (YGD has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak.

  18. Improving the Caenorhabditis elegans genome annotation using machine learning.

    Directory of Open Access Journals (Sweden)

    Gunnar Rätsch

    2007-02-01

    Full Text Available For modern biology, precise genome annotations are of prime importance, as they allow the accurate definition of genic regions. We employ state-of-the-art machine learning methods to assay and improve the accuracy of the genome annotation of the nematode Caenorhabditis elegans. The proposed machine learning system is trained to recognize exons and introns on the unspliced mRNA, utilizing recent advances in support vector machines and label sequence learning. In 87% (coding and untranslated regions and 95% (coding regions only of all genes tested in several out-of-sample evaluations, our method correctly identified all exons and introns. Notably, only 37% and 50%, respectively, of the presently unconfirmed genes in the C. elegans genome annotation agree with our predictions, thus we hypothesize that a sizable fraction of those genes are not correctly annotated. A retrospective evaluation of the Wormbase WS120 annotation [] of C. elegans reveals that splice form predictions on unconfirmed genes in WS120 are inaccurate in about 18% of the considered cases, while our predictions deviate from the truth only in 10%-13%. We experimentally analyzed 20 controversial genes on which our system and the annotation disagree, confirming the superiority of our predictions. While our method correctly predicted 75% of those cases, the standard annotation was never completely correct. The accuracy of our system is further corroborated by a comparison with two other recently proposed systems that can be used for splice form prediction: SNAP and ExonHunter. We conclude that the genome annotation of C. elegans and other organisms can be greatly enhanced using modern machine learning technology.

  19. miRNAs target databases: developmental methods and target identification techniques with functional annotations.

    Science.gov (United States)

    Singh, Nagendra Kumar

    2017-06-01

    microRNA (miRNA) regulates diverse biological mechanisms and metabolisms in plants and animals. Thus, the discoveries of miRNA has revolutionized the life sciences and medical research.The miRNA represses and cleaves the targeted mRNA by binding perfect or near perfect or imperfect complementary base pairs by RNA-induced silencing complex (RISC) formation during biogenesis process. One miRNA interacts with one or more mRNA genes and vice versa, hence takes part in causing various diseases. In this paper, the different microRNA target databases and their functional annotations developed by various researchers have been reviewed. The concurrent research review aims at comprehending the significance of miRNA and presenting the existing status of annotated miRNA target resources built by researchers henceforth discovering the knowledge for diagnosis and prognosis. This review discusses the applications and developmental methodologies for constructing target database as well as the utility of user interface design. An integrated architecture is drawn and a graphically comparative study of present status of miRNA targets in diverse diseases and various biological processes is performed. These databases comprise of information such as miRNA target-associated disease, transcription factor binding sites (TFBSs) in miRNA genomic locations, polymorphism in miRNA target, A-to-I edited target, Gene Ontology (GO), genome annotations, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, target expression analysis, TF-miRNA and miRNA-mRNA interaction networks, drugs-targets interactions, etc. miRNA target databases contain diverse experimentally and computationally predicted target through various algorithms. The comparison of various miRNA target database has been performed on various parameters. The computationally predicted target databases suffer from false positive information as there is no common theory for prediction of miRNA targets. The review conclusion emphasizes

  20. Comparative genomics in cyprinids: Common carp EST's help the annotation of the zebrafish genome

    NARCIS (Netherlands)

    Christoffels, A.; Bartfai, R.; Srinivasan, H.; Komen, J.

    2006-01-01

    Background - Automatic annotation of sequenced eukaryotic genomes integrates a combination of methodologies such as ab-initio methods and alignment of homologous genes and/or proteins. For example, annotation of the zebrafish genome within Ensembl relies heavily on available cDNA and protein sequenc

  1. Current challenges in genome annotation through structural biology and bioinformatics.

    Science.gov (United States)

    Furnham, Nicholas; de Beer, Tjaart A P; Thornton, Janet M

    2012-10-01

    With the huge volume in genomic sequences being generated from high-throughout sequencing projects the requirement for providing accurate and detailed annotations of gene products has never been greater. It is proving to be a huge challenge for computational biologists to use as much information as possible from experimental data to provide annotations for genome data of unknown function. A central component to this process is to use experimentally determined structures, which provide a means to detect homology that is not discernable from just the sequence and permit the consequences of genomic variation to be realized at the molecular level. In particular, structures also form the basis of many bioinformatics methods for improving the detailed functional annotations of enzymes in combination with similarities in sequence and chemistry. Copyright © 2012. Published by Elsevier Ltd.

  2. Prokaryotic Contig Annotation Pipeline Server: Web Application for a Prokaryotic Genome Annotation Pipeline Based on the Shiny App Package.

    Science.gov (United States)

    Park, Byeonghyeok; Baek, Min-Jeong; Min, Byoungnam; Choi, In-Geol

    2017-09-01

    Genome annotation is a primary step in genomic research. To establish a light and portable prokaryotic genome annotation pipeline for use in individual laboratories, we developed a Shiny app package designated as "P-CAPS" (Prokaryotic Contig Annotation Pipeline Server). The package is composed of R and Python scripts that integrate publicly available annotation programs into a server application. P-CAPS is not only a browser-based interactive application but also a distributable Shiny app package that can be installed on any personal computer. The final annotation is provided in various standard formats and is summarized in an R markdown document. Annotation can be visualized and examined with a public genome browser. A benchmark test showed that the annotation quality and completeness of P-CAPS were reliable and compatible with those of currently available public pipelines.

  3. DemaDb: an integrated dematiaceous fungal genomes database.

    Science.gov (United States)

    Kuan, Chee Sian; Yew, Su Mei; Chan, Chai Ling; Toh, Yue Fen; Lee, Kok Wei; Cheong, Wei-Hien; Yee, Wai-Yan; Hoh, Chee-Choong; Yap, Soon-Joo; Ng, Kee Peng

    2016-01-01

    Many species of dematiaceous fungi are associated with allergic reactions and potentially fatal diseases in human, especially in tropical climates. Over the past 10 years, we have isolated more than 400 dematiaceous fungi from various clinical samples. In this study, DemaDb, an integrated database was designed to support the integration and analysis of dematiaceous fungal genomes. A total of 92 072 putative genes and 6527 pathways that identified in eight dematiaceous fungi (Bipolaris papendorfii UM 226, Daldinia eschscholtzii UM 1400, D. eschscholtzii UM 1020, Pyrenochaeta unguis-hominis UM 256, Ochroconis mirabilis UM 578, Cladosporium sphaerospermum UM 843, Herpotrichiellaceae sp. UM 238 and Pleosporales sp. UM 1110) were deposited in DemaDb. DemaDb includes functional annotations for all predicted gene models in all genomes, such as Gene Ontology, EuKaryotic Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes (KEGG), Pfam and InterProScan. All predicted protein models were further functionally annotated to Carbohydrate-Active enzymes, peptidases, secondary metabolites and virulence factors. DemaDb Genome Browser enables users to browse and visualize entire genomes with annotation data including gene prediction, structure, orientation and custom feature tracks. The Pathway Browser based on the KEGG pathway database allows users to look into molecular interaction and reaction networks for all KEGG annotated genes. The availability of downloadable files containing assembly, nucleic acid, as well as protein data allows the direct retrieval for further downstream works. DemaDb is a useful resource for fungal research community especially those involved in genome-scale analysis, functional genomics, genetics and disease studies of dematiaceous fungi. Database URL: http://fungaldb.um.edu.my.

  4. Accessing the SEED Genome Databases via Web Services API: Tools for Programmers

    Directory of Open Access Journals (Sweden)

    Vonstein Veronika

    2010-06-01

    Full Text Available Abstract Background The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups. Results The currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java. Conclusions We present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online.

  5. The 2008 update of the Aspergillus nidulans genome annotation: a community effort

    Science.gov (United States)

    Wortman, Jennifer Russo; Gilsenan, Jane Mabey; Joardar, Vinita; Deegan, Jennifer; Clutterbuck, John; Andersen, Mikael R.; Archer, David; Bencina, Mojca; Braus, Gerhard; Coutinho, Pedro; von Döhren, Hans; Doonan, John; Driessen, Arnold J.M.; Durek, Pawel; Espeso, Eduardo; Fekete, Erzsébet; Flipphi, Michel; Estrada, Carlos Garcia; Geysens, Steven; Goldman, Gustavo; de Groot, Piet W.J.; Hansen, Kim; Harris, Steven D.; Heinekamp, Thorsten; Helmstaedt, Kerstin; Henrissat, Bernard; Hofmann, Gerald; Homan, Tim; Horio, Tetsuya; Horiuchi, Hiroyuki; James, Steve; Jones, Meriel; Karaffa, Levente; Karányi, Zsolt; Kato, Masashi; Keller, Nancy; Kelly, Diane E.; Kiel, Jan A.K.W.; Kim, Jung-Mi; van der Klei, Ida J.; Klis, Frans M.; Kovalchuk, Andriy; Kraševec, Nada; Kubicek, Christian P.; Liu, Bo; MacCabe, Andrew; Meyer, Vera; Mirabito, Pete; Miskei, Márton; Mos, Magdalena; Mullins, Jonathan; Nelson, David R.; Nielsen, Jens; Oakley, Berl R.; Osmani, Stephen A.; Pakula, Tiina; Paszewski, Andrzej; Paulsen, Ian; Pilsyk, Sebastian; Pócsi, István; Punt, Peter J.; Ram, Arthur F.J.; Ren, Qinghu; Robellet, Xavier; Robson, Geoff; Seiboth, Bernhard; Solingen, Piet van; Specht, Thomas; Sun, Jibin; Taheri-Talesh, Naimeh; Takeshita, Norio; Ussery, Dave; vanKuyk, Patricia A.; Visser, Hans; van de Vondervoort, Peter J.I.; de Vries, Ronald P.; Walton, Jonathan; Xiang, Xin; Xiong, Yi; Zeng, An Ping; Brandt, Bernd W.; Cornell, Michael J.; van den Hondel, Cees A.M.J.J.; Visser, Jacob; Oliver, Stephen G.; Turner, Geoffrey

    2010-01-01

    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology. PMID:19146970

  6. Genome annotation of a Saccharomyces sp. lager brewer's yeast

    Directory of Open Access Journals (Sweden)

    Patricia Marcela De León-Medina

    2016-09-01

    Full Text Available The genome of lager brewer's yeast is a hybrid, with Saccharomyces eubayanus and Saccharomyces cerevisiae as sub-genomes. Due to their specific use in the beer industry, relatively little information is available. The genome of brewing yeast was sequenced and annotated in this study. We obtained a genome size of 22.7 Mbp that consisted of 133 scaffolds, with 65 scaffolds larger than 10 kbp. With respect to the annotation, 9939 genes were obtained, and when they were submitted to a local alignment, we found that 53.93% of these genes corresponded to S. cerevisiae, while another 42.86% originated from S. eubayanus. Our results confirm that our strain is a hybrid of at least two different genomes.

  7. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy.

    Science.gov (United States)

    Pruitt, Kim D; Tatusova, Tatiana; Brown, Garth R; Maglott, Donna R

    2012-01-01

    The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of genomic, transcript and protein sequence records. These records are selected and curated from public sequence archives and represent a significant reduction in redundancy compared to the volume of data archived by the International Nucleotide Sequence Database Collaboration. The database includes over 16,00 organisms, 2.4 × 0(6) genomic records, 13 × 10(6) proteins and 2 × 10(6) RNA records spanning prokaryotes, eukaryotes and viruses (RefSeq release 49, September 2011). The RefSeq database is maintained by a combined approach of automated analyses, collaboration and manual curation to generate an up-to-date representation of the sequence, its features, names and cross-links to related sources of information. We report here on recent growth, the status of curating the human RefSeq data set, more extensive feature annotation and current policy for eukaryotic genome annotation via the NCBI annotation pipeline. More information about the resource is available online (see http://www.ncbi.nlm.nih.gov/RefSeq/).

  8. Intra-species sequence comparisons for annotating genomes

    Energy Technology Data Exchange (ETDEWEB)

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  9. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies.

    Directory of Open Access Journals (Sweden)

    Alexandra M Schnoes

    2009-12-01

    Full Text Available Due to the rapid release of new data from genome sequencing projects, the majority of protein sequences in public databases have not been experimentally characterized; rather, sequences are annotated using computational analysis. The level of misannotation and the types of misannotation in large public databases are currently unknown and have not been analyzed in depth. We have investigated the misannotation levels for molecular function in four public protein sequence databases (UniProtKB/Swiss-Prot, GenBank NR, UniProtKB/TrEMBL, and KEGG for a model set of 37 enzyme families for which extensive experimental information is available. The manually curated database Swiss-Prot shows the lowest annotation error levels (close to 0% for most families; the two other protein sequence databases (GenBank NR and TrEMBL and the protein sequences in the KEGG pathways database exhibit similar and surprisingly high levels of misannotation that average 5%-63% across the six superfamilies studied. For 10 of the 37 families examined, the level of misannotation in one or more of these databases is >80%. Examination of the NR database over time shows that misannotation has increased from 1993 to 2005. The types of misannotation that were found fall into several categories, most associated with "overprediction" of molecular function. These results suggest that misannotation in enzyme superfamilies containing multiple families that catalyze different reactions is a larger problem than has been recognized. Strategies are suggested for addressing some of the systematic problems contributing to these high levels of misannotation.

  10. A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach

    Directory of Open Access Journals (Sweden)

    Proux-Wéra Estelle

    2012-09-01

    Full Text Available Abstract Background Yeasts are a model system for exploring eukaryotic genome evolution. Next-generation sequencing technologies are poised to vastly increase the number of yeast genome sequences, both from resequencing projects (population studies and from de novo sequencing projects (new species. However, the annotation of genomes presents a major bottleneck for de novo projects, because it still relies on a process that is largely manual. Results Here we present the Yeast Genome Annotation Pipeline (YGAP, an automated system designed specifically for new yeast genome sequences lacking transcriptome data. YGAP does automatic de novo annotation, exploiting homology and synteny information from other yeast species stored in the Yeast Gene Order Browser (YGOB database. The basic premises underlying YGAP's approach are that data from other species already tells us what genes we should expect to find in any particular genomic region and that we should also expect that orthologous genes are likely to have similar intron/exon structures. Additionally, it is able to detect probable frameshift sequencing errors and can propose corrections for them. YGAP searches intelligently for introns, and detects tRNA genes and Ty-like elements. Conclusions In tests on Saccharomyces cerevisiae and on the genomes of Naumovozyma castellii and Tetrapisispora blattae newly sequenced with Roche-454 technology, YGAP outperformed another popular annotation program (AUGUSTUS. For S. cerevisiae and N. castellii, 91-93% of YGAP's predicted gene structures were identical to those in previous manually curated gene sets. YGAP has been implemented as a webserver with a user-friendly interface at http://wolfe.gen.tcd.ie/annotation.

  11. Annotation of the Clostridium Acetobutylicum Genome

    Energy Technology Data Exchange (ETDEWEB)

    Daly, M. J.

    2004-06-09

    The genome sequence of the solvent producing bacterium Clostridium acetobutylicum ATCC824, has been determined by the shotgun approach. The genome consists of a 3.94 Mb chromosome and a 192 kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases, closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria.

  12. Genome Annotation in a Community College Cell Biology Lab

    Science.gov (United States)

    Beagley, C. Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…

  13. MUTAGEN: Multi-user tool for annotating GENomes

    DEFF Research Database (Denmark)

    Brugger, K.; Redder, P.; Skovgaard, Marie

    2003-01-01

    MUTAGEN is a free prokaryotic annotation system. It offers the advantages of genome comparison, graphical sequence browsers, search facilities and open-source for user-specific adjustments. The web-interface allows several users to access the system from standard desktop computers. The Sulfolobus...

  14. Genome Annotation in a Community College Cell Biology Lab

    Science.gov (United States)

    Beagley, C. Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…

  15. Alga-PrAS (Algal Protein Annotation Suite): A Database of Comprehensive Annotation in Algal Proteomes

    Science.gov (United States)

    Kurotani, Atsushi; Yamada, Yutaka

    2017-01-01

    Algae are smaller organisms than land plants and offer clear advantages in research over terrestrial species in terms of rapid production, short generation time and varied commercial applications. Thus, studies investigating the practical development of effective algal production are important and will improve our understanding of both aquatic and terrestrial plants. In this study we estimated multiple physicochemical and secondary structural properties of protein sequences, the predicted presence of post-translational modification (PTM) sites, and subcellular localization using a total of 510,123 protein sequences from the proteomes of 31 algal and three plant species. Algal species were broadly selected from green and red algae, glaucophytes, oomycetes, diatoms and other microalgal groups. The results were deposited in the Algal Protein Annotation Suite database (Alga-PrAS; http://alga-pras.riken.jp/), which can be freely accessed online. PMID:28069893

  16. Large-scale prokaryotic gene prediction and comparison to genome annotation

    DEFF Research Database (Denmark)

    Nielsen, Pernille; Krogh, Anders Stærmose

    2005-01-01

    Motivation: Prokaryotic genomes are sequenced and annotated at an increasing rate. The methods of annotation vary between sequencing groups. It makes genome comparison difficult and may lead to propagation of errors when questionable assignments are adapted from one genome to another. Genome...... genefinder EasyGene. Comparison of the GenBank and RefSeq annotations with the EasyGene predictions reveals that in some genomes up to 60% of the genes may have been annotated with a wrong start codon, especially in the GC-rich genomes. The fractional difference between annotated and predicted confirms......-annotated. These results are based on the difference between the number of annotated genes not found by EasyGene and the number of predicted genes that are not annotated in GenBank. We argue that the average performance of our standardized and fully automated method is slightly better than the annotation....

  17. GDR (Genome Database for Rosaceae: integrated web resources for Rosaceae genomics and genetics research

    Directory of Open Access Journals (Sweden)

    Ficklin Stephen

    2004-09-01

    Full Text Available Abstract Background Peach is being developed as a model organism for Rosaceae, an economically important family that includes fruits and ornamental plants such as apple, pear, strawberry, cherry, almond and rose. The genomics and genetics data of peach can play a significant role in the gene discovery and the genetic understanding of related species. The effective utilization of these peach resources, however, requires the development of an integrated and centralized database with associated analysis tools. Description The Genome Database for Rosaceae (GDR is a curated and integrated web-based relational database. GDR contains comprehensive data of the genetically anchored peach physical map, an annotated peach EST database, Rosaceae maps and markers and all publicly available Rosaceae sequences. Annotations of ESTs include contig assembly, putative function, simple sequence repeats, and anchored position to the peach physical map where applicable. Our integrated map viewer provides graphical interface to the genetic, transcriptome and physical mapping information. ESTs, BACs and markers can be queried by various categories and the search result sites are linked to the integrated map viewer or to the WebFPC physical map sites. In addition to browsing and querying the database, users can compare their sequences with the annotated GDR sequences via a dedicated sequence similarity server running either the BLAST or FASTA algorithm. To demonstrate the utility of the integrated and fully annotated database and analysis tools, we describe a case study where we anchored Rosaceae sequences to the peach physical and genetic map by sequence similarity. Conclusions The GDR has been initiated to meet the major deficiency in Rosaceae genomics and genetics research, namely a centralized web database and bioinformatics tools for data storage, analysis and exchange. GDR can be accessed at http://www.genome.clemson.edu/gdr/.

  18. MITOS: improved de novo metazoan mitochondrial genome annotation.

    Science.gov (United States)

    Bernt, Matthias; Donath, Alexander; Jühling, Frank; Externbrink, Fabian; Florentz, Catherine; Fritzsch, Guido; Pütz, Joern; Middendorf, Martin; Stadler, Peter F

    2013-11-01

    About 2000 completely sequenced mitochondrial genomes are available from the NCBI RefSeq data base together with manually curated annotations of their protein-coding genes, rRNAs, and tRNAs. This annotation information, which has accumulated over two decades, has been obtained with a diverse set of computational tools and annotation strategies. Despite all efforts of manual curation it is still plagued by misassignments of reading directions, erroneous gene names, and missing as well as false positive annotations in particular for the RNA genes. Taken together, this causes substantial problems for fully automatic pipelines that aim to use these data comprehensively for studies of animal phylogenetics and the molecular evolution of mitogenomes. The MITOS pipeline is designed to compute a consistent de novo annotation of the mitogenomic sequences. We show that the results of MITOS match RefSeq and MitoZoa in terms of annotation coverage and quality. At the same time we avoid biases, inconsistencies of nomenclature, and typos originating from manual curation strategies. The MITOS pipeline is accessible online at http://mitos.bioinf.uni-leipzig.de. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The YH database: the first Asian diploid genome database

    DEFF Research Database (Denmark)

    Li, Guoqing; Ma, Lijia; Song, Chao

    2009-01-01

    The YH database is a server that allows the user to easily browse and download data from the first Asian diploid genome. The aim of this platform is to facilitate the study of this Asian genome and to enable improved organization and presentation large-scale personal genome data. Powered by GBrowse......, we illustrate here the genome sequences, SNPs, and sequencing reads in the MapView. The relationships between phenotype and genotype can be searched by location, dbSNP ID, HGMD ID, gene symbol and disease name. A BLAST web service is also provided for the purpose of aligning query sequence against YH...... genome consensus. The YH database is currently one of the three personal genome database, organizing the original data and analysis results in a user-friendly interface, which is an endeavor to achieve fundamental goals for establishing personal medicine. The database is available at http://yh.genomics.org.cn....

  20. The YH database: the first Asian diploid genome database.

    Science.gov (United States)

    Li, Guoqing; Ma, Lijia; Song, Chao; Yang, Zhentao; Wang, Xiulan; Huang, Hui; Li, Yingrui; Li, Ruiqiang; Zhang, Xiuqing; Yang, Huanming; Wang, Jian; Wang, Jun

    2009-01-01

    The YH database is a server that allows the user to easily browse and download data from the first Asian diploid genome. The aim of this platform is to facilitate the study of this Asian genome and to enable improved organization and presentation large-scale personal genome data. Powered by GBrowse, we illustrate here the genome sequences, SNPs, and sequencing reads in the MapView. The relationships between phenotype and genotype can be searched by location, dbSNP ID, HGMD ID, gene symbol and disease name. A BLAST web service is also provided for the purpose of aligning query sequence against YH genome consensus. The YH database is currently one of the three personal genome database, organizing the original data and analysis results in a user-friendly interface, which is an endeavor to achieve fundamental goals for establishing personal medicine. The database is available at http://yh.genomics.org.cn.

  1. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data.

    Science.gov (United States)

    Lohse, Marc; Nagel, Axel; Herter, Thomas; May, Patrick; Schroda, Michael; Zrenner, Rita; Tohge, Takayuki; Fernie, Alisdair R; Stitt, Mark; Usadel, Björn

    2014-05-01

    Next-generation technologies generate an overwhelming amount of gene sequence data. Efficient annotation tools are required to make these data amenable to functional genomics analyses. The Mercator pipeline automatically assigns functional terms to protein or nucleotide sequences. It uses the MapMan 'BIN' ontology, which is tailored for functional annotation of plant 'omics' data. The classification procedure performs parallel sequence searches against reference databases, compiles the results and computes the most likely MapMan BINs for each query. In the current version, the pipeline relies on manually curated reference classifications originating from the three reference organisms (Arabidopsis, Chlamydomonas, rice), various other plant species that have a reviewed SwissProt annotation, and more than 2000 protein domain and family profiles at InterPro, CDD and KOG. Functional annotations predicted by Mercator achieve accuracies above 90% when benchmarked against manual annotation. In addition to mapping files for direct use in the visualization software MapMan, Mercator provides graphical overview charts, detailed annotation information in a convenient web browser interface and a MapMan-to-GO translation table to export results as GO terms. Mercator is available free of charge via http://mapman.gabipd.org/web/guest/app/Mercator.

  2. GenColors-based comparative genome databases for small eukaryotic genomes.

    Science.gov (United States)

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.

  3. VIGOR, an annotation program for small viral genomes

    Directory of Open Access Journals (Sweden)

    Wang Shiliang

    2010-09-01

    Full Text Available Abstract Background The decrease in cost for sequencing and improvement in technologies has made it easier and more common for the re-sequencing of large genomes as well as parallel sequencing of small genomes. It is possible to completely sequence a small genome within days and this increases the number of publicly available genomes. Among the types of genomes being rapidly sequenced are those of microbial and viral genomes responsible for infectious diseases. However, accurate gene prediction is a challenge that persists for decoding a newly sequenced genome. Therefore, accurate and efficient gene prediction programs are highly desired for rapid and cost effective surveillance of RNA viruses through full genome sequencing. Results We have developed VIGOR (Viral Genome ORF Reader, a web application tool for gene prediction in influenza virus, rotavirus, rhinovirus and coronavirus subtypes. VIGOR detects protein coding regions based on sequence similarity searches and can accurately detect genome specific features such as frame shifts, overlapping genes, embedded genes, and can predict mature peptides within the context of a single polypeptide open reading frame. Genotyping capability for influenza and rotavirus is built into the program. We compared VIGOR to previously described gene prediction programs, ZCURVE_V, GeneMarkS and FLAN. The specificity and sensitivity of VIGOR are greater than 99% for the RNA viral genomes tested. Conclusions VIGOR is a user friendly web-based genome annotation program for five different viral agents, influenza, rotavirus, rhinovirus, coronavirus and SARS coronavirus. This is the first gene prediction program for rotavirus and rhinovirus for public access. VIGOR is able to accurately predict protein coding genes for the above five viral types and has the capability to assign function to the predicted open reading frames and genotype influenza virus. The prediction software was designed for performing high

  4. cDNA2Genome: A tool for mapping and annotating cDNAs

    Directory of Open Access Journals (Sweden)

    Suhai Sandor

    2003-09-01

    Full Text Available Abstract Background In the last years several high-throughput cDNA sequencing projects have been funded worldwide with the aim of identifying and characterizing the structure of complete novel human transcripts. However some of these cDNAs are error prone due to frameshifts and stop codon errors caused by low sequence quality, or to cloning of truncated inserts, among other reasons. Therefore, accurate CDS prediction from these sequences first require the identification of potentially problematic cDNAs in order to speed up the posterior annotation process. Results cDNA2Genome is an application for the automatic high-throughput mapping and characterization of cDNAs. It utilizes current annotation data and the most up to date databases, especially in the case of ESTs and mRNAs in conjunction with a vast number of approaches to gene prediction in order to perform a comprehensive assessment of the cDNA exon-intron structure. The final result of cDNA2Genome is an XML file containing all relevant information obtained in the process. This XML output can easily be used for further analysis such us program pipelines, or the integration of results into databases. The web interface to cDNA2Genome also presents this data in HTML, where the annotation is additionally shown in a graphical form. cDNA2Genome has been implemented under the W3H task framework which allows the combination of bioinformatics tools in tailor-made analysis task flows as well as the sequential or parallel computation of many sequences for large-scale analysis. Conclusions cDNA2Genome represents a new versatile and easily extensible approach to the automated mapping and annotation of human cDNAs. The underlying approach allows sequential or parallel computation of sequences for high-throughput analysis of cDNAs.

  5. nGASP - the nematode genome annotation assessment project

    Energy Technology Data Exchange (ETDEWEB)

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C

  6. CAGE_peaks_annotation - FANTOM5 | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us FANTOM5 CAGE_peaks_annotation Data detail Data name CAGE_peaks_annotation DOI 10.18908/lsdba....nbdc01389-010.V002 Version V2 10.18908/lsdba.nbdc01389-010.V002 Update History V1 - - Description of data contents Ann...file File name: CAGE_peaks_annotation File URL: ftp://ftp.biosciencedbc.jp/archiv...e/fantom5/datafiles/LATEST/extra/CAGE_peaks_annotation File size: 195 MB Simple search URL - Data acquisitio...on Download License Update History of This Database Site Policy | Contact Us CAGE_peaks_annotation - FANTOM5 | LSDB Archive ...

  7. Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor; Kohler, Annegret; Martin, Francis

    2013-03-08

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012 alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.

  8. SigmoID: a user-friendly tool for improving bacterial genome annotation through analysis of transcription control signals

    Directory of Open Access Journals (Sweden)

    Yevgeny Nikolaichik

    2016-05-01

    Full Text Available The majority of bacterial genome annotations are currently automated and based on a ‘gene by gene’ approach. Regulatory signals and operon structures are rarely taken into account which often results in incomplete and even incorrect gene function assignments. Here we present SigmoID, a cross-platform (OS X, Linux and Windows open-source application aiming at simplifying the identification of transcription regulatory sites (promoters, transcription factor binding sites and terminators in bacterial genomes and providing assistance in correcting annotations in accordance with regulatory information. SigmoID combines a user-friendly graphical interface to well known command line tools with a genome browser for visualising regulatory elements in genomic context. Integrated access to online databases with regulatory information (RegPrecise and RegulonDB and web-based search engines speeds up genome analysis and simplifies correction of genome annotation. We demonstrate some features of SigmoID by constructing a series of regulatory protein binding site profiles for two groups of bacteria: Soft Rot Enterobacteriaceae (Pectobacterium and Dickeya spp. and Pseudomonas spp. Furthermore, we inferred over 900 transcription factor binding sites and alternative sigma factor promoters in the annotated genome of Pectobacterium atrosepticum. These regulatory signals control putative transcription units covering about 40% of the P. atrosepticum chromosome. Reviewing the annotation in cases where it didn’t fit with regulatory information allowed us to correct product and gene names for over 300 loci.

  9. SigmoID: a user-friendly tool for improving bacterial genome annotation through analysis of transcription control signals.

    Science.gov (United States)

    Nikolaichik, Yevgeny; Damienikan, Aliaksandr U

    2016-01-01

    The majority of bacterial genome annotations are currently automated and based on a 'gene by gene' approach. Regulatory signals and operon structures are rarely taken into account which often results in incomplete and even incorrect gene function assignments. Here we present SigmoID, a cross-platform (OS X, Linux and Windows) open-source application aiming at simplifying the identification of transcription regulatory sites (promoters, transcription factor binding sites and terminators) in bacterial genomes and providing assistance in correcting annotations in accordance with regulatory information. SigmoID combines a user-friendly graphical interface to well known command line tools with a genome browser for visualising regulatory elements in genomic context. Integrated access to online databases with regulatory information (RegPrecise and RegulonDB) and web-based search engines speeds up genome analysis and simplifies correction of genome annotation. We demonstrate some features of SigmoID by constructing a series of regulatory protein binding site profiles for two groups of bacteria: Soft Rot Enterobacteriaceae (Pectobacterium and Dickeya spp.) and Pseudomonas spp. Furthermore, we inferred over 900 transcription factor binding sites and alternative sigma factor promoters in the annotated genome of Pectobacterium atrosepticum. These regulatory signals control putative transcription units covering about 40% of the P. atrosepticum chromosome. Reviewing the annotation in cases where it didn't fit with regulatory information allowed us to correct product and gene names for over 300 loci.

  10. Designing a Lexical Database for a Combined Use of Corpus Annotation and Dictionary Editing

    DEFF Research Database (Denmark)

    Kristoffersen, Jette Hedegaard; Troelsgård, Thomas; Langer, Gabriele

    2016-01-01

    In a combined corpus-dictionary project, you would need one lexical database that could serve as a shared “backbone” for both corpus annotation and dictionary editing, but it is not that easy to define a database structure that applies satisfactorily to both these purposes. In this paper, we...... will exemplify the problem and present ideas on how to model structures in a lexical database that facilitate corpus annotation as well as dictionary editing. The paper is a joint work between the DGS Corpus Project and the DTS Dictionary Project. The two projects come from opposite sides of the spectrum (one...... adjusting a lexical database grown from dictionary making for corpus annotating, one building a lexical database in parallel with corpus annotation and editing a corpus-based dictionary), and we will consider requirements and feasible structures for a database that can serve both corpus and dictionary....

  11. Searching and Indexing Genomic Databases via Kernelization

    Directory of Open Access Journals (Sweden)

    Travis eGagie

    2015-02-01

    Full Text Available The rapid advance of DNA sequencing technologies has yielded databases of thousands of genomes. To search and index these databases effectively, it is important that we take advantage of the similarity between those genomes. Several authors have recently suggested searching or indexing only one reference genome and the parts of the other genomes where they differ. In this paper we survey the twenty-year history of this idea and discuss its relation to kernelization in parameterized complexity.

  12. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Grigoriev Igor V

    2009-02-01

    Full Text Available Abstract Background Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS were acquired from 1d gel electrophoresis bands and searched against all available gene models using Average Peptide Scoring (APS and reverse database searching to produce confident identifications at an acceptable false discovery rate (FDR. Results 405 identified peptide sequences were mapped to 214 different A.niger genomic loci to which 4093 predicted gene models clustered, 2872 of which contained the mapped peptides. Interestingly, 13 (6% of these loci either had no preferred predicted gene model or the genome annotators' chosen "best" model for that genomic locus was not found to be the most parsimonious match to the identified peptides. The peptides identified also boosted confidence in predicted gene structures spanning 54 introns from different gene models. Conclusion This work highlights the potential of integrating experimental proteomics data into genomic annotation pipelines much as expressed sequence tag (EST data has been. A comparison of the published genome from another strain of A.niger sequenced by DSM showed that a number of the gene models or proteins with proteomics evidence did not occur in both genomes, further highlighting the utility of the method.

  13. Scaling up genome annotation using MAKER and work queue.

    Science.gov (United States)

    Thrasher, Andrew; Musgrave, Zachary; Kachmarck, Brian; Thain, Douglas; Emrich, Scott

    2014-01-01

    Next generation sequencing technologies have enabled sequencing many genomes. Because of the overall increasing demand and the inherent parallelism available in many required analyses, these bioinformatics applications should ideally run on clusters, clouds and/or grids. We present a modified annotation framework that achieves a speed-up of 45x using 50 workers using a Caenorhabditis japonica test case. We also evaluate these modifications within the Amazon EC2 cloud framework. The underlying genome annotation (MAKER) is parallelised as an MPI application. Our framework enables it to now run without MPI while utilising a wide variety of distributed computing resources. This parallel framework also allows easy explicit data transfer, which helps overcome a major limitation of bioinformatics tools that often rely on shared file systems. Combined, our proposed framework can be used, even during early stages of development, to easily run sequence analysis tools on clusters, grids and clouds.

  14. Metingear: a development environment for annotating genome-scale metabolic models.

    Science.gov (United States)

    May, John W; James, A Gordon; Steinbeck, Christoph

    2013-09-01

    Genome-scale metabolic models often lack annotations that would allow them to be used for further analysis. Previous efforts have focused on associating metabolites in the model with a cross reference, but this can be problematic if the reference is not freely available, multiple resources are used or the metabolite is added from a literature review. Associating each metabolite with chemical structure provides unambiguous identification of the components and a more detailed view of the metabolism. We have developed an open-source desktop application that simplifies the process of adding database cross references and chemical structures to genome-scale metabolic models. Annotated models can be exported to the Systems Biology Markup Language open interchange format. Source code, binaries, documentation and tutorials are freely available at http://johnmay.github.com/metingear. The application is implemented in Java with bundles available for MS Windows and Macintosh OS X.

  15. Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper

    DEFF Research Database (Denmark)

    Huerta-Cepas, Jaime; Forslund, Kristoffer; Coelho, Luis Pedro

    2017-01-01

    Orthology assignment is ideally suited for functional inference. However, because predicting orthology is computationally intensive at large scale, and most pipelines are relatively inaccessible (e.g., new assignments only available through database updates), less precise homology-based functional...... transfer is still the default for (meta-)genome annotation. We, therefore, developed eggNOG-mapper, a tool for functional annotation of large sets of sequences based on fast orthology assignments using precomputed clusters and phylogenies from the eggNOG database. To validate our method, we benchmarked...... Gene Ontology (GO) predictions against two widely used homology-based approaches: BLAST and InterProScan. Orthology filters applied to BLAST results reduced the rate of false positive assignments by 11%, and increased the ratio of experimentally validated terms recovered over all terms assigned per...

  16. BRAD, the genetics and genomics database for Brassica plants

    Directory of Open Access Journals (Sweden)

    Li Pingxia

    2011-10-01

    Full Text Available Abstract Background Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data. Description BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42. It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE, B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker. Conclusion BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.

  17. Identification and annotation of promoter regions in microbial genome sequences on the basis of DNA stability

    Indian Academy of Sciences (India)

    Vetriselvi Rangannan; Manju Bansal

    2007-08-01

    Analysis of various predicted structural properties of promoter regions in prokaryotic as well as eukaryotic genomes had earlier indicated that they have several common features, such as lower stability, higher curvature and less bendability, when compared with their neighboring regions. Based on the difference in stability between neighboring upstream and downstream regions in the vicinity of experimentally determined transcription start sites, a promoter prediction algorithm has been developed to identify prokaryotic promoter sequences in whole genomes. The average free energy (E) over known promoter sequences and the difference (D) between E and the average free energy over the entire genome (G) are used to search for promoters in the genomic sequences. Using these cutoff values to predict promoter regions across entire Escherichia coli genome, we achieved a reliability of 70% when the predicted promoters were cross verified against the 960 transcription start sites (TSSs) listed in the Ecocyc database. Annotation of the whole E. coli genome for promoter region could be carried out with 49% accuracy. The method is quite general and it can be used to annotate the promoter regions of other prokaryotic genomes.

  18. The Genome Database for Rosaceae (GDR): year 10 update.

    Science.gov (United States)

    Jung, Sook; Ficklin, Stephen P; Lee, Taein; Cheng, Chun-Huai; Blenda, Anna; Zheng, Ping; Yu, Jing; Bombarely, Aureliano; Cho, Ilhyung; Ru, Sushan; Evans, Kate; Peace, Cameron; Abbott, Albert G; Mueller, Lukas A; Olmstead, Mercy A; Main, Dorrie

    2014-01-01

    The Genome Database for Rosaceae (GDR, http:/www.rosaceae.org), the long-standing central repository and data mining resource for Rosaceae research, has been enhanced with new genomic, genetic and breeding data, and improved functionality. Whole genome sequences of apple, peach and strawberry are available to browse or download with a range of annotations, including gene model predictions, aligned transcripts, repetitive elements, polymorphisms, mapped genetic markers, mapped NCBI Rosaceae genes, gene homologs and association of InterPro protein domains, GO terms and Kyoto Encyclopedia of Genes and Genomes pathway terms. Annotated sequences can be queried using search interfaces and visualized using GBrowse. New expressed sequence tag unigene sets are available for major genera, and Pathway data are available through FragariaCyc, AppleCyc and PeachCyc databases. Synteny among the three sequenced genomes can be viewed using GBrowse_Syn. New markers, genetic maps and extensively curated qualitative/Mendelian and quantitative trait loci are available. Phenotype and genotype data from breeding projects and genetic diversity projects are also included. Improved search pages are available for marker, trait locus, genetic diversity and publication data. New search tools for breeders enable selection comparison and assistance with breeding decision making.

  19. The Genome Database for Rosaceae (GDR): year 10 update

    Science.gov (United States)

    Jung, Sook; Ficklin, Stephen P.; Lee, Taein; Cheng, Chun-Huai; Blenda, Anna; Zheng, Ping; Yu, Jing; Bombarely, Aureliano; Cho, Ilhyung; Ru, Sushan; Evans, Kate; Peace, Cameron; Abbott, Albert G.; Mueller, Lukas A.; Olmstead, Mercy A.; Main, Dorrie

    2014-01-01

    The Genome Database for Rosaceae (GDR, http:/www.rosaceae.org), the long-standing central repository and data mining resource for Rosaceae research, has been enhanced with new genomic, genetic and breeding data, and improved functionality. Whole genome sequences of apple, peach and strawberry are available to browse or download with a range of annotations, including gene model predictions, aligned transcripts, repetitive elements, polymorphisms, mapped genetic markers, mapped NCBI Rosaceae genes, gene homologs and association of InterPro protein domains, GO terms and Kyoto Encyclopedia of Genes and Genomes pathway terms. Annotated sequences can be queried using search interfaces and visualized using GBrowse. New expressed sequence tag unigene sets are available for major genera, and Pathway data are available through FragariaCyc, AppleCyc and PeachCyc databases. Synteny among the three sequenced genomes can be viewed using GBrowse_Syn. New markers, genetic maps and extensively curated qualitative/Mendelian and quantitative trait loci are available. Phenotype and genotype data from breeding projects and genetic diversity projects are also included. Improved search pages are available for marker, trait locus, genetic diversity and publication data. New search tools for breeders enable selection comparison and assistance with breeding decision making. PMID:24225320

  20. Sequencing and annotated analysis of an Estonian human genome.

    Science.gov (United States)

    Lilleoja, Rutt; Sarapik, Aili; Reimann, Ene; Reemann, Paula; Jaakma, Ülle; Vasar, Eero; Kõks, Sulev

    2012-02-01

    In present study we describe the sequencing and annotated analysis of the individual genome of Estonian. Using SOLID technology we generated 2,449,441,916 of 50-bp reads. The Bioscope version 1.3 was used for mapping and pairing of reads to the NCBI human genome reference (build 36, hg18). Bioscope enables also the annotation of the results of variant (tertiary) analysis. The average mapping of reads was 75.5% with total coverage of 107.72 Gb. resulting in mean fold coverage of 34.6. We found 3,482,975 SNPs out of which 352,492 were novel. 21,222 SNPs were in coding region: 10,649 were synonymous SNPs, 10,360 were nonsynonymous missense SNPs, 155 were nonsynonymous nonsense SNPs and 58 were nonsynonymous frameshifts. We identified 219 CNVs with total base pair coverage of 37,326,300 bp and 87,451 large insertion/deletion polymorphisms covering 10,152,256 bp of the genome. In addition, we found 285,864 small size insertion/deletion polymorphisms out of which 133,969 were novel. Finally, we identified 53 inversions, 19 overlapped genes and 2 overlapped exons. Interestingly, we found the region in chromosome 6 to be enriched with the coding SNPs and CNVs. This study confirms previous findings, that our genomes are more complex and variable as thought before. Therefore, sequencing of the personal genomes followed by annotation would improve the analysis of heritability of phenotypes and our understandings on the functions of genome.

  1. Standards for Clinical Grade Genomic Databases.

    Science.gov (United States)

    Yohe, Sophia L; Carter, Alexis B; Pfeifer, John D; Crawford, James M; Cushman-Vokoun, Allison; Caughron, Samuel; Leonard, Debra G B

    2015-11-01

    Next-generation sequencing performed in a clinical environment must meet clinical standards, which requires reproducibility of all aspects of the testing. Clinical-grade genomic databases (CGGDs) are required to classify a variant and to assist in the professional interpretation of clinical next-generation sequencing. Applying quality laboratory standards to the reference databases used for sequence-variant interpretation presents a new challenge for validation and curation. To define CGGD and the categories of information contained in CGGDs and to frame recommendations for the structure and use of these databases in clinical patient care. Members of the College of American Pathologists Personalized Health Care Committee reviewed the literature and existing state of genomic databases and developed a framework for guiding CGGD development in the future. Clinical-grade genomic databases may provide different types of information. This work group defined 3 layers of information in CGGDs: clinical genomic variant repositories, genomic medical data repositories, and genomic medicine evidence databases. The layers are differentiated by the types of genomic and medical information contained and the utility in assisting with clinical interpretation of genomic variants. Clinical-grade genomic databases must meet specific standards regarding submission, curation, and retrieval of data, as well as the maintenance of privacy and security. These organizing principles for CGGDs should serve as a foundation for future development of specific standards that support the use of such databases for patient care.

  2. Evidence-based gene models for structural and functional annotations of the oil palm genome.

    Science.gov (United States)

    Chan, Kuang-Lim; Tatarinova, Tatiana V; Rosli, Rozana; Amiruddin, Nadzirah; Azizi, Norazah; Halim, Mohd Amin Ab; Sanusi, Nik Shazana Nik Mohd; Jayanthi, Nagappan; Ponomarenko, Petr; Triska, Martin; Solovyev, Victor; Firdaus-Raih, Mohd; Sambanthamurthi, Ravigadevi; Murphy, Denis; Low, Eng-Ti Leslie

    2017-09-08

    Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA

  3. Tool for rapid annotation of microbial SNPs (TRAMS): a simple program for rapid annotation of genomic variation in prokaryotes.

    Science.gov (United States)

    Reumerman, Richard A; Tucker, Nicholas P; Herron, Paul R; Hoskisson, Paul A; Sangal, Vartul

    2013-09-01

    Next generation sequencing (NGS) has been widely used to study genomic variation in a variety of prokaryotes. Single nucleotide polymorphisms (SNPs) resulting from genomic comparisons need to be annotated for their functional impact on the coding sequences. We have developed a program, TRAMS, for functional annotation of genomic SNPs which is available to download as a single file executable for WINDOWS users with limited computational experience and as a Python script for Mac OS and Linux users. TRAMS needs a tab delimited text file containing SNP locations, reference nucleotide and SNPs in variant strains along with a reference genome sequence in GenBank or EMBL format. SNPs are annotated as synonymous, nonsynonymous or nonsense. Nonsynonymous SNPs in start and stop codons are separated as non-start and non-stop SNPs, respectively. SNPs in multiple overlapping features are annotated separately for each feature and multiple nucleotide polymorphisms within a codon are combined before annotation. We have also developed a workflow for Galaxy, a highly used tool for analysing NGS data, to map short reads to a reference genome and extract and annotate the SNPs. TRAMS is a simple program for rapid and accurate annotation of SNPs that will be very useful for microbiologists in analysing genomic diversity in microbial populations.

  4. Structuring osteosarcoma knowledge: an osteosarcoma-gene association database based on literature mining and manual annotation

    Science.gov (United States)

    Poos, Kathrin; Smida, Jan; Nathrath, Michaela; Maugg, Doris; Baumhoer, Daniel; Neumann, Anna; Korsching, Eberhard

    2014-01-01

    Osteosarcoma (OS) is the most common primary bone cancer exhibiting high genomic instability. This genomic instability affects multiple genes and microRNAs to a varying extent depending on patient and tumor subtype. Massive research is ongoing to identify genes including their gene products and microRNAs that correlate with disease progression and might be used as biomarkers for OS. However, the genomic complexity hampers the identification of reliable biomarkers. Up to now, clinico-pathological factors are the key determinants to guide prognosis and therapeutic treatments. Each day, new studies about OS are published and complicate the acquisition of information to support biomarker discovery and therapeutic improvements. Thus, it is necessary to provide a structured and annotated view on the current OS knowledge that is quick and easily accessible to researchers of the field. Therefore, we developed a publicly available database and Web interface that serves as resource for OS-associated genes and microRNAs. Genes and microRNAs were collected using an automated dictionary-based gene recognition procedure followed by manual review and annotation by experts of the field. In total, 911 genes and 81 microRNAs related to 1331 PubMed abstracts were collected (last update: 29 October 2013). Users can evaluate genes and microRNAs according to their potential prognostic and therapeutic impact, the experimental procedures, the sample types, the biological contexts and microRNA target gene interactions. Additionally, a pathway enrichment analysis of the collected genes highlights different aspects of OS progression. OS requires pathways commonly deregulated in cancer but also features OS-specific alterations like deregulated osteoclast differentiation. To our knowledge, this is the first effort of an OS database containing manual reviewed and annotated up-to-date OS knowledge. It might be a useful resource especially for the bone tumor research community, as specific

  5. Structuring osteosarcoma knowledge: an osteosarcoma-gene association database based on literature mining and manual annotation.

    Science.gov (United States)

    Poos, Kathrin; Smida, Jan; Nathrath, Michaela; Maugg, Doris; Baumhoer, Daniel; Neumann, Anna; Korsching, Eberhard

    2014-01-01

    Osteosarcoma (OS) is the most common primary bone cancer exhibiting high genomic instability. This genomic instability affects multiple genes and microRNAs to a varying extent depending on patient and tumor subtype. Massive research is ongoing to identify genes including their gene products and microRNAs that correlate with disease progression and might be used as biomarkers for OS. However, the genomic complexity hampers the identification of reliable biomarkers. Up to now, clinico-pathological factors are the key determinants to guide prognosis and therapeutic treatments. Each day, new studies about OS are published and complicate the acquisition of information to support biomarker discovery and therapeutic improvements. Thus, it is necessary to provide a structured and annotated view on the current OS knowledge that is quick and easily accessible to researchers of the field. Therefore, we developed a publicly available database and Web interface that serves as resource for OS-associated genes and microRNAs. Genes and microRNAs were collected using an automated dictionary-based gene recognition procedure followed by manual review and annotation by experts of the field. In total, 911 genes and 81 microRNAs related to 1331 PubMed abstracts were collected (last update: 29 October 2013). Users can evaluate genes and microRNAs according to their potential prognostic and therapeutic impact, the experimental procedures, the sample types, the biological contexts and microRNA target gene interactions. Additionally, a pathway enrichment analysis of the collected genes highlights different aspects of OS progression. OS requires pathways commonly deregulated in cancer but also features OS-specific alterations like deregulated osteoclast differentiation. To our knowledge, this is the first effort of an OS database containing manual reviewed and annotated up-to-date OS knowledge. It might be a useful resource especially for the bone tumor research community, as specific

  6. Supplementary Material for: BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal Matoq Saeed

    2015-01-01

    Abstract Background Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). Results The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACONâ s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced. Conclusions We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  7. Functional annotation by identification of local surface similarities: a novel tool for structural genomics

    Directory of Open Access Journals (Sweden)

    Zanzoni Andreas

    2005-08-01

    Full Text Available Abstract Background Protein function is often dependent on subsets of solvent-exposed residues that may exist in a similar three-dimensional configuration in non homologous proteins thus having different order and/or spacing in the sequence. Hence, functional annotation by means of sequence or fold similarity is not adequate for such cases. Results We describe a method for the function-related annotation of protein structures by means of the detection of local structural similarity with a library of annotated functional sites. An automatic procedure was used to annotate the function of local surface regions. Next, we employed a sequence-independent algorithm to compare exhaustively these functional patches with a larger collection of protein surface cavities. After tuning and validating the algorithm on a dataset of well annotated structures, we applied it to a list of protein structures that are classified as being of unknown function in the Protein Data Bank. By this strategy, we were able to provide functional clues to proteins that do not show any significant sequence or global structural similarity with proteins in the current databases. Conclusion This method is able to spot structural similarities associated to function-related similarities, independently on sequence or fold resemblance, therefore is a valuable tool for the functional analysis of uncharacterized proteins. Results are available at http://cbm.bio.uniroma2.it/surface/structuralGenomics.html

  8. Sequence ID and annotation information - Gclust Server | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Gclust Server Sequence ID and annotation information Data detail Data name Sequence ID and ann...e specifying the ID, length and annotation information of the amino acid sequences of the predicted proteins...f amino acid sequence (Sequence ID) Field 2 Length of amino acid sequence Field 3 Ann...of This Database Site Policy | Contact Us Sequence ID and annotation information - Gclust Server | LSDB Archive ...

  9. Experimental annotation of the human genome using microarray technology.

    Science.gov (United States)

    Shoemaker, D D; Schadt, E E; Armour, C D; He, Y D; Garrett-Engele, P; McDonagh, P D; Loerch, P M; Leonardson, A; Lum, P Y; Cavet, G; Wu, L F; Altschuler, S J; Edwards, S; King, J; Tsang, J S; Schimmack, G; Schelter, J M; Koch, J; Ziman, M; Marton, M J; Li, B; Cundiff, P; Ward, T; Castle, J; Krolewski, M; Meyer, M R; Mao, M; Burchard, J; Kidd, M J; Dai, H; Phillips, J W; Linsley, P S; Stoughton, R; Scherer, S; Boguski, M S

    2001-02-15

    The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.

  10. Ontology searching and browsing at the Rat Genome Database

    Science.gov (United States)

    Laulederkind, Stanley J. F.; Tutaj, Marek; Shimoyama, Mary; Hayman, G. Thomas; Lowry, Timothy F.; Nigam, Rajni; Petri, Victoria; Smith, Jennifer R.; Wang, Shur-Jen; de Pons, Jeff; Dwinell, Melinda R.; Jacob, Howard J.

    2012-01-01

    The Rat Genome Database (RGD) is the premier repository of rat genomic and genetic data and currently houses over 40 000 rat gene records, as well as human and mouse orthologs, 1857 rat and 1912 human quantitative trait loci (QTLs) and 2347 rat strains. Biological information curated for these data objects includes disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components. RGD uses more than a dozen different ontologies to standardize annotation information for genes, QTLs and strains. That means a lot of time can be spent searching and browsing ontologies for the appropriate terms needed both for curating and mining the data. RGD has upgraded its ontology term search to make it more versatile and more robust. A term search result is connected to a term browser so the user can fine-tune the search by viewing parent and children terms. Most publicly available term browsers display a hierarchical organization of terms in an expandable tree format. RGD has replaced its old tree browser format with a ‘driller’ type of browser that allows quicker drilling up and down through the term branches, which has been confirmed by testing. The RGD ontology report pages have also been upgraded. Expanded functionality allows more choice in how annotations are displayed and what subsets of annotations are displayed. The new ontology search, browser and report features have been designed to enhance both manual data curation and manual data extraction. Database URL: http://rgd.mcw.edu/rgdweb/ontology/search.html PMID:22434847

  11. The physics of DNA and the annotation of the Plasmodium falciparum genome.

    Science.gov (United States)

    Yeramian, E

    2000-09-19

    A gene identification procedure is formulated, based on large-scale structural analyses of genomic sequences. The structural property is the physical - thermal - stability of the DNA double-helix, as described by the classical helix-coil model. The analyses are detailed for the Plasmodium falciparum genome, which represents one of the most difficult cases for the gene identification problem (notably because of the extreme AT-richness of the genome). In this genome, the coding domains (either uninterrupted genes or exons in split genes) are accurately identified as regions of high thermal stability. The conclusion is based on the study of the available cloned genes, of which 17 examples are described in detail. These examples demonstrate that the physical criterion is valid for the detection of coding regions whose lengths extend from a few base pairs up to several thousand base pairs. Accordingly, the structural analyses can provide a powerful and convenient tool for the identification of complex genes in the P. falciparum genome. The limits of such a scheme are discussed. The gene identification procedure is applied to the completely sequenced chromosomes (2 and 3), and the results are compared with the database annotations. The structural analyses suggest more or less extensive revision to the annotations, and also allow new putative genes to be identified in the chromosome sequences. Several examples of such new genes are described in detail.

  12. Genomic analyses with biofilter 2.0: knowledge driven filtering, annotation, and model development.

    Science.gov (United States)

    Pendergrass, Sarah A; Frase, Alex; Wallace, John; Wolfe, Daniel; Katiyar, Neerja; Moore, Carrie; Ritchie, Marylyn D

    2013-12-30

    The ever-growing wealth of biological information available through multiple comprehensive database repositories can be leveraged for advanced analysis of data. We have now extensively revised and updated the multi-purpose software tool Biofilter that allows researchers to annotate and/or filter data as well as generate gene-gene interaction models based on existing biological knowledge. Biofilter now has the Library of Knowledge Integration (LOKI), for accessing and integrating existing comprehensive database information, including more flexibility for how ambiguity of gene identifiers are handled. We have also updated the way importance scores for interaction models are generated. In addition, Biofilter 2.0 now works with a range of types and formats of data, including single nucleotide polymorphism (SNP) identifiers, rare variant identifiers, base pair positions, gene symbols, genetic regions, and copy number variant (CNV) location information. Biofilter provides a convenient single interface for accessing multiple publicly available human genetic data sources that have been compiled in the supporting database of LOKI. Information within LOKI includes genomic locations of SNPs and genes, as well as known relationships among genes and proteins such as interaction pairs, pathways and ontological categories.Via Biofilter 2.0 researchers can:• Annotate genomic location or region based data, such as results from association studies, or CNV analyses, with relevant biological knowledge for deeper interpretation• Filter genomic location or region based data on biological criteria, such as filtering a series SNPs to retain only SNPs present in specific genes within specific pathways of interest• Generate Predictive Models for gene-gene, SNP-SNP, or CNV-CNV interactions based on biological information, with priority for models to be tested based on biological relevance, thus narrowing the search space and reducing multiple hypothesis-testing. Biofilter is a software

  13. High-throughput proteogenomics of Ruegeria pomeroyi: seeding a better genomic annotation for the whole marine Roseobacter clade

    Directory of Open Access Journals (Sweden)

    Christie-Oleza Joseph A

    2012-02-01

    Full Text Available Abstract Background The structural and functional annotation of genomes is now heavily based on data obtained using automated pipeline systems. The key for an accurate structural annotation consists of blending similarities between closely related genomes with biochemical evidence of the genome interpretation. In this work we applied high-throughput proteogenomics to Ruegeria pomeroyi, a member of the Roseobacter clade, an abundant group of marine bacteria, as a seed for the annotation of the whole clade. Results A large dataset of peptides from R. pomeroyi was obtained after searching over 1.1 million MS/MS spectra against a six-frame translated genome database. We identified 2006 polypeptides, of which thirty-four were encoded by open reading frames (ORFs that had not previously been annotated. From the pool of 'one-hit-wonders', i.e. those ORFs specified by only one peptide detected by tandem mass spectrometry, we could confirm the probable existence of five additional new genes after proving that the corresponding RNAs were transcribed. We also identified the most-N-terminal peptide of 486 polypeptides, of which sixty-four had originally been wrongly annotated. Conclusions By extending these re-annotations to the other thirty-six Roseobacter isolates sequenced to date (twenty different genera, we propose the correction of the assigned start codons of 1082 homologous genes in the clade. In addition, we also report the presence of novel genes within operons encoding determinants of the important tricarboxylic acid cycle, a feature that seems to be characteristic of some Roseobacter genomes. The detection of their corresponding products in large amounts raises the question of their function. Their discoveries point to a possible theory for protein evolution that will rely on high expression of orphans in bacteria: their putative poor efficiency could be counterbalanced by a higher level of expression. Our proteogenomic analysis will increase

  14. An automated annotation tool for genomic DNA sequences using GeneScan and BLAST

    Indian Academy of Sciences (India)

    Andrew M. Lynn; Chakresh Kumar Jain; K. Kosalai; Pranjan Barman; Nupur Thakur; Harish Batra; Alok Bhattacharya

    2001-04-01

    Genomic sequence data are often available well before the annotated sequence is published. We present a method for analysis of genomic DNA to identify coding sequences using the GeneScan algorithm and characterize these resultant sequences by BLAST. The routines are used to develop a system for automated annotation of genome DNA sequences.

  15. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis

    Directory of Open Access Journals (Sweden)

    Baseler Michael W

    2007-11-01

    Full Text Available Abstract Background Due to the complex and distributed nature of biological research, our current biological knowledge is spread over many redundant annotation databases maintained by many independent groups. Analysts usually need to visit many of these bioinformatics databases in order to integrate comprehensive annotation information for their genes, which becomes one of the bottlenecks, particularly for the analytic task associated with a large gene list. Thus, a highly centralized and ready-to-use gene-annotation knowledgebase is in demand for high throughput gene functional analysis. Description The DAVID Knowledgebase is built around the DAVID Gene Concept, a single-linkage method to agglomerate tens of millions of gene/protein identifiers from a variety of public genomic resources into DAVID gene clusters. The grouping of such identifiers improves the cross-reference capability, particularly across NCBI and UniProt systems, enabling more than 40 publicly available functional annotation sources to be comprehensively integrated and centralized by the DAVID gene clusters. The simple, pair-wise, text format files which make up the DAVID Knowledgebase are freely downloadable for various data analysis uses. In addition, a well organized web interface allows users to query different types of heterogeneous annotations in a high-throughput manner. Conclusion The DAVID Knowledgebase is designed to facilitate high throughput gene functional analysis. For a given gene list, it not only provides the quick accessibility to a wide range of heterogeneous annotation data in a centralized location, but also enriches the level of biological information for an individual gene. Moreover, the entire DAVID Knowledgebase is freely downloadable or searchable at http://david.abcc.ncifcrf.gov/knowledgebase/.

  16. Re-annotation of the genome sequence of Helicobacter pylori 26695.

    Science.gov (United States)

    Resende, Tiago; Correia, Daniela M; Rocha, Miguel; Rocha, Isabel

    2013-11-15

    Helicobacter pylori is a pathogenic bacterium that colonizes the human epithelia, causing duodenal and gastric ulcers, and gastric cancer. The genome of H. pylori 26695 has been previously sequenced and annotated. In addition, two genome-scale metabolic models have been developed. In order to maintain accurate and relevant information on coding sequences (CDS) and to retrieve new information, the assignment of new functions to Helicobacter pylori 26695s genes was performed in this work. The use of software tools, on-line databases and an annotation pipeline for inspecting each gene allowed the attribution of validated EC numbers and TC numbers to metabolic genes encoding enzymes and transport proteins, respectively. 1212 genes encoding proteins were identified in this annotation, being 712 metabolic genes and 500 non-metabolic, while 191 new functions were assignment to the CDS of this bacterium. This information provides relevant biological information for the scientific community dealing with this organism and can be used as the basis for a new metabolic model reconstruction.

  17. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System.

    Science.gov (United States)

    Arp, Alex P; Hunter, Wayne B; Pelz-Stelinski, Kirsten S

    2016-01-01

    Citrus production worldwide is currently facing significant losses due to citrus greening disease, also known as Huanglongbing. The citrus greening bacteria, Candidatus Liberibacter asiaticus (CLas), is a persistent propagative pathogen transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Hemipterans characterized to date lack a number of insect immune genes, including those associated with the Imd pathway targeting Gram-negative bacteria. The D. citri draft genome was used to characterize the immune defense genes present in D. citri. Predicted mRNAs identified by screening the published D. citri annotated draft genome were manually searched using a custom database of immune genes from previously annotated insect genomes. Toll and JAK/STAT pathways, general defense genes Dual oxidase, Nitric oxide synthase, prophenoloxidase, and cellular immune defense genes were present in D. citri. In contrast, D. citri lacked genes for the Imd pathway, most antimicrobial peptides, 1,3-β-glucan recognition proteins (GNBPs), and complete peptidoglycan recognition proteins. These data suggest that D. citri has a reduced immune capability similar to that observed in A. pisum, P. humanus, and R. prolixus. The absence of immune system genes from the D. citri genome may facilitate CLas infections, and is possibly compensated for by their relationship with their microbial endosymbionts.

  18. Plant cytogenetics in genome databases

    Science.gov (United States)

    Cytogenetic maps provide an integrated representation of genetic and cytological information that can be used to enhance genome and chromosome research. As genome analysis technologies become more affordable, the density of markers on cytogenetic maps increases, making these resources more useful a...

  19. IMG ER: A System for Microbial Genome Annotation Expert Review and Curation

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, Victor M.; Mavromatis, Konstantinos; Ivanova, Natalia N.; Chen, I-Min A.; Chu, Ken; Kyrpides, Nikos C.

    2009-05-25

    A rapidly increasing number of microbial genomes are sequenced by organizations worldwide and are eventually included into various public genome data resources. The quality of the annotations depends largely on the original dataset providers, with erroneous or incomplete annotations often carried over into the public resources and difficult to correct. We have developed an Expert Review (ER) version of the Integrated Microbial Genomes (IMG) system, with the goal of supporting systematic and efficient revision of microbial genome annotations. IMG ER provides tools for the review and curation of annotations of both new and publicly available microbial genomes within IMG's rich integrated genome framework. New genome datasets are included into IMG ER prior to their public release either with their native annotations or with annotations generated by IMG ER's annotation pipeline. IMG ER tools allow addressing annotation problems detected with IMG's comparative analysis tools, such as genes missed by gene prediction pipelines or genes without an associated function. Over the past year, IMG ER was used for improving the annotations of about 150 microbial genomes.

  20. Synergistic use of plant-prokaryote comparative genomics for functional annotations

    Directory of Open Access Journals (Sweden)

    Waller Jeffrey C

    2011-06-01

    Full Text Available Abstract Background Identifying functions for all gene products in all sequenced organisms is a central challenge of the post-genomic era. However, at least 30-50% of the proteins encoded by any given genome are of unknown or vaguely known function, and a large number are wrongly annotated. Many of these ‘unknown’ proteins are common to prokaryotes and plants. We set out to predict and experimentally test the functions of such proteins. Our approach to functional prediction integrates comparative genomics based mainly on microbial genomes with functional genomic data from model microorganisms and post-genomic data from plants. This approach bridges the gap between automated homology-based annotations and the classical gene discovery efforts of experimentalists, and is more powerful than purely computational approaches to identifying gene-function associations. Results Among Arabidopsis genes, we focused on those (2,325 in total that (i are unique or belong to families with no more than three members, (ii occur in prokaryotes, and (iii have unknown or poorly known functions. Computer-assisted selection of promising targets for deeper analysis was based on homology-independent characteristics associated in the SEED database with the prokaryotic members of each family. In-depth comparative genomic analysis was performed for 360 top candidate families. From this pool, 78 families were connected to general areas of metabolism and, of these families, specific functional predictions were made for 41. Twenty-one predicted functions have been experimentally tested or are currently under investigation by our group in at least one prokaryotic organism (nine of them have been validated, four invalidated, and eight are in progress. Ten additional predictions have been independently validated by other groups. Discovering the function of very widespread but hitherto enigmatic proteins such as the YrdC or YgfZ families illustrates the power of our approach

  1. KAIKObase: An integrated silkworm genome database and data mining tool

    Directory of Open Access Journals (Sweden)

    Nagaraju Javaregowda

    2009-10-01

    Full Text Available Abstract Background The silkworm, Bombyx mori, is one of the most economically important insects in many developing countries owing to its large-scale cultivation for silk production. With the development of genomic and biotechnological tools, B. mori has also become an important bioreactor for production of various recombinant proteins of biomedical interest. In 2004, two genome sequencing projects for B. mori were reported independently by Chinese and Japanese teams; however, the datasets were insufficient for building long genomic scaffolds which are essential for unambiguous annotation of the genome. Now, both the datasets have been merged and assembled through a joint collaboration between the two groups. Description Integration of the two data sets of silkworm whole-genome-shotgun sequencing by the Japanese and Chinese groups together with newly obtained fosmid- and BAC-end sequences produced the best continuity (~3.7 Mb in N50 scaffold size among the sequenced insect genomes and provided a high degree of nucleotide coverage (88% of all 28 chromosomes. In addition, a physical map of BAC contigs constructed by fingerprinting BAC clones and a SNP linkage map constructed using BAC-end sequences were available. In parallel, proteomic data from two-dimensional polyacrylamide gel electrophoresis in various tissues and developmental stages were compiled into a silkworm proteome database. Finally, a Bombyx trap database was constructed for documenting insertion positions and expression data of transposon insertion lines. Conclusion For efficient usage of genome information for functional studies, genomic sequences, physical and genetic map information and EST data were compiled into KAIKObase, an integrated silkworm genome database which consists of 4 map viewers, a gene viewer, and sequence, keyword and position search systems to display results and data at the level of nucleotide sequence, gene, scaffold and chromosome. Integration of the

  2. Clever generation of rich SPARQL queries from annotated relational schema: application to Semantic Web Service creation for biological databases.

    Science.gov (United States)

    Wollbrett, Julien; Larmande, Pierre; de Lamotte, Frédéric; Ruiz, Manuel

    2013-04-15

    In recent years, a large amount of "-omics" data have been produced. However, these data are stored in many different species-specific databases that are managed by different institutes and laboratories. Biologists often need to find and assemble data from disparate sources to perform certain analyses. Searching for these data and assembling them is a time-consuming task. The Semantic Web helps to facilitate interoperability across databases. A common approach involves the development of wrapper systems that map a relational database schema onto existing domain ontologies. However, few attempts have been made to automate the creation of such wrappers. We developed a framework, named BioSemantic, for the creation of Semantic Web Services that are applicable to relational biological databases. This framework makes use of both Semantic Web and Web Services technologies and can be divided into two main parts: (i) the generation and semi-automatic annotation of an RDF view; and (ii) the automatic generation of SPARQL queries and their integration into Semantic Web Services backbones. We have used our framework to integrate genomic data from different plant databases. BioSemantic is a framework that was designed to speed integration of relational databases. We present how it can be used to speed the development of Semantic Web Services for existing relational biological databases. Currently, it creates and annotates RDF views that enable the automatic generation of SPARQL queries. Web Services are also created and deployed automatically, and the semantic annotations of our Web Services are added automatically using SAWSDL attributes. BioSemantic is downloadable at http://southgreen.cirad.fr/?q=content/Biosemantic.

  3. Image retrieval and semiautomatic annotation scheme for large image databases on the Web

    Science.gov (United States)

    Zhu, Xingquan; Liu, Wenyin; Zhang, HongJiang; Wu, Lide

    2000-12-01

    Image annotation is used in traditional image database systems. However, without the help of human beings, it is very difficult to extract the semantic content of an image automatically. On the other hand, it is a tedious work to annotate images in large databases one by one manually. In this paper, we present a web based semi-automatic annotation and image retrieval scheme, which integrates image search and image annotation seamlessly and effectively. In this scheme, we use both low-level features and high-level semantics to measure similarity between images in an image database. A relevance feedback process at both levels is used to refine similarity assessment. The annotation process is activated when the user provides feedback on the retrieved images. With the help of the proposed similarity metrics and relevance feedback approach at these two levels, the system can find out those images that are relevant to the user's keyword or image query more efficiently. Experimental results have proved that our scheme is effective and efficient and can be used in large image databases for image annotation and retrieval.

  4. Designing a Lexical Database for a Combined Use of Corpus Annotation and Dictionary Editing

    DEFF Research Database (Denmark)

    Kristoffersen, Jette Hedegaard; Troelsgård, Thomas; Langer, Gabriele;

    2016-01-01

    In a combined corpus-dictionary project, you would need one lexical database that could serve as a shared “backbone” for both corpus annotation and dictionary editing, but it is not that easy to define a database structure that applies satisfactorily to both these purposes. In this paper, we will...

  5. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Loots, G; Ovcharenko, I

    2006-08-08

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. We have created a database of evolutionary conserved regions (ECRs) in vertebrate genomes entitled ECRbase that is constructed from a collection of pairwise vertebrate genome alignments produced by the ECR Browser database. ECRbase features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a collection of promoters in all vertebrate genomes presented in the database. The database also contains a collection of annotated transcription factor binding sites (TFBS) in all ECRs and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and two pufferfish genomes. It is freely accessible at http://ECRbase.dcode.org.

  6. RICD: A rice indica cDNA database resource for rice functional genomics

    Directory of Open Access Journals (Sweden)

    Zhang Qifa

    2008-11-01

    Full Text Available Abstract Background The Oryza sativa L. indica subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two indica varieties Guangluai 4 and Minghui 63. A database of the rice indica cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the indica cDNA clones. Results Rice Indica cDNA Database (RICD is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA. Conclusion The online rice indica cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of indica subspecies and for comparative genomics. The RICD database is available through our website http://www.ncgr.ac.cn/ricd.

  7. Sinbase: an integrated database to study genomics, genetics and comparative genomics in Sesamum indicum.

    Science.gov (United States)

    Wang, Linhai; Yu, Jingyin; Li, Donghua; Zhang, Xiurong

    2015-01-01

    Sesame (Sesamum indicum L.) is an ancient and important oilseed crop grown widely in tropical and subtropical areas. It belongs to the gigantic order Lamiales, which includes many well-known or economically important species, such as olive (Olea europaea), leonurus (Leonurus japonicus) and lavender (Lavandula spica), many of which have important pharmacological properties. Despite their importance, genetic and genomic analyses on these species have been insufficient due to a lack of reference genome information. The now available S. indicum genome will provide an unprecedented opportunity for studying both S. indicum genetic traits and comparative genomics. To deliver S. indicum genomic information to the worldwide research community, we designed Sinbase, a web-based database with comprehensive sesame genomic, genetic and comparative genomic information. Sinbase includes sequences of assembled sesame pseudomolecular chromosomes, protein-coding genes (27,148), transposable elements (372,167) and non-coding RNAs (1,748). In particular, Sinbase provides unique and valuable information on colinear regions with various plant genomes, including Arabidopsis thaliana, Glycine max, Vitis vinifera and Solanum lycopersicum. Sinbase also provides a useful search function and data mining tools, including a keyword search and local BLAST service. Sinbase will be updated regularly with new features, improvements to genome annotation and new genomic sequences, and is freely accessible at http://ocri-genomics.org/Sinbase/.

  8. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4).

    Science.gov (United States)

    Huntemann, Marcel; Ivanova, Natalia N; Mavromatis, Konstantinos; Tripp, H James; Paez-Espino, David; Palaniappan, Krishnaveni; Szeto, Ernest; Pillay, Manoj; Chen, I-Min A; Pati, Amrita; Nielsen, Torben; Markowitz, Victor M; Kyrpides, Nikos C

    2015-01-01

    The DOE-JGI Microbial Genome Annotation Pipeline performs structural and functional annotation of microbial genomes that are further included into the Integrated Microbial Genome comparative analysis system. MGAP is applied to assembled nucleotide sequence datasets that are provided via the IMG submission site. Dataset submission for annotation first requires project and associated metadata description in GOLD. The MGAP sequence data processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNA features, as well as CRISPR elements. Structural annotation is followed by assignment of protein product names and functions.

  9. The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species.

    Science.gov (United States)

    Dang, Ha X; Pryor, Barry; Peever, Tobin; Lawrence, Christopher B

    2015-03-25

    Alternaria is considered one of the most common saprophytic fungal genera on the planet. It is comprised of many species that exhibit a necrotrophic phytopathogenic lifestyle. Several species are clinically associated with allergic respiratory disorders although rarely found to cause invasive infections in humans. Finally, Alternaria spp. are among the most well known producers of diverse fungal secondary metabolites, especially toxins. We have recently sequenced and annotated the genomes of 25 Alternaria spp. including but not limited to many necrotrophic plant pathogens such as A. brassicicola (a pathogen of Brassicaceous crops like cabbage and canola) and A. solani (a major pathogen of Solanaceous plants like potato and tomato), and several saprophytes that cause allergy in human such as A. alternata isolates. These genomes were annotated and compared. Multiple genetic differences were found in the context of plant and human pathogenicity, notably the pro-inflammatory potential of A. alternata. The Alternaria genomes database was built to provide a public platform to access the whole genome sequences, genome annotations, and comparative genomics data of these species. Genome annotation and comparison were performed using a pipeline that integrated multiple computational and comparative genomics tools. Alternaria genome sequences together with their annotation and comparison data were ported to Ensembl database schemas using a self-developed tool (EnsImport). Collectively, data are currently hosted using a customized installation of the Ensembl genome browser platform. Recent efforts in fungal genome sequencing have facilitated the studies of the molecular basis of fungal pathogenicity as a whole system. The Alternaria genomes database provides a comprehensive resource of genomics and comparative data of an important saprophytic and plant/human pathogenic fungal genus. The database will be updated regularly with new genomes when they become available. The

  10. miRFANs: an integrated database for Arabidopsis thaliana microRNA function annotations

    Directory of Open Access Journals (Sweden)

    Liu Hui

    2012-05-01

    Full Text Available Abstract Background Plant microRNAs (miRNAs have been revealed to play important roles in developmental control, hormone secretion, cell differentiation and proliferation, and response to environmental stresses. However, our knowledge about the regulatory mechanisms and functions of miRNAs remains very limited. The main difficulties lie in two aspects. On one hand, the number of experimentally validated miRNA targets is very limited and the predicted targets often include many false positives, which constrains us to reveal the functions of miRNAs. On the other hand, the regulation of miRNAs is known to be spatio-temporally specific, which increases the difficulty for us to understand the regulatory mechanisms of miRNAs. Description In this paper we present miRFANs, an online database for Arabidopsis thalianamiRNA function annotations. We integrated various type of datasets, including miRNA-target interactions, transcription factor (TF and their targets, expression profiles, genomic annotations and pathways, into a comprehensive database, and developed various statistical and mining tools, together with a user-friendly web interface. For each miRNA target predicted by psRNATarget, TargetAlign and UEA target-finder, or recorded in TarBase and miRTarBase, the effect of its up-regulated or down-regulated miRNA on the expression level of the target gene is evaluated by carrying out differential expression analysis of both miRNA and targets expression profiles acquired under the same (or similar experimental condition and in the same tissue. Moreover, each miRNA target is associated with gene ontology and pathway terms, together with the target site information and regulating miRNAs predicted by different computational methods. These associated terms may provide valuable insight for the functions of each miRNA. Conclusion First, a comprehensive collection of miRNA targets for Arabidopsis thaliana provides valuable information about the functions of

  11. WikiGenomes: an open web application for community consumption and curation of gene annotation data in Wikidata.

    Science.gov (United States)

    Putman, Tim E; Lelong, Sebastien; Burgstaller-Muehlbacher, Sebastian; Waagmeester, Andra; Diesh, Colin; Dunn, Nathan; Munoz-Torres, Monica; Stupp, Gregory S; Wu, Chunlei; Su, Andrew I; Good, Benjamin M

    2017-01-01

    With the advancement of genome-sequencing technologies, new genomes are being sequenced daily. Although these sequences are deposited in publicly available data warehouses, their functional and genomic annotations (beyond genes which are predicted automatically) mostly reside in the text of primary publications. Professional curators are hard at work extracting those annotations from the literature for the most studied organisms and depositing them in structured databases. However, the resources don't exist to fund the comprehensive curation of the thousands of newly sequenced organisms in this manner. Here, we describe WikiGenomes (wikigenomes.org), a web application that facilitates the consumption and curation of genomic data by the entire scientific community. WikiGenomes is based on Wikidata, an openly editable knowledge graph with the goal of aggregating published knowledge into a free and open database. WikiGenomes empowers the individual genomic researcher to contribute their expertise to the curation effort and integrates the knowledge into Wikidata, enabling it to be accessed by anyone without restriction. www.wikigenomes.org.

  12. The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse.

    Science.gov (United States)

    Blake, Judith A; Bult, Carol J; Eppig, Janan T; Kadin, James A; Richardson, Joel E

    2014-01-01

    The Mouse Genome Database (MGD) (http://www.informatics.jax.org) is the community model organism database resource for the laboratory mouse, a premier animal model for the study of genetic and genomic systems relevant to human biology and disease. MGD maintains a comprehensive catalog of genes, functional RNAs and other genome features as well as heritable phenotypes and quantitative trait loci. The genome feature catalog is generated by the integration of computational and manual genome annotations generated by NCBI, Ensembl and Vega/HAVANA. MGD curates and maintains the comprehensive listing of functional annotations for mouse genes using the Gene Ontology, and MGD curates and integrates comprehensive phenotype annotations including associations of mouse models with human diseases. Recent improvements include integration of the latest mouse genome build (GRCm38), improved access to comparative and functional annotations for mouse genes with expanded representation of comparative vertebrate genomes and new loads of phenotype data from high-throughput phenotyping projects. All MGD resources are freely available to the research community.

  13. RiceDB: A Web-Based Integrated Database for Annotating Rice Microarray

    Institute of Scientific and Technical Information of China (English)

    HE Fei; SHI Qing-yun; CHEN Ming; WU Ping

    2007-01-01

    RiceDB, a web-based integrated database to annotate rice microarray in various biological contexts was developed. It is composed of eight modules. RiceMap module archives the process of Affymetrix probe sets mapping to different databases about rice, and aims to the genes represented by a microarray set by retrieving annotation information via the identifier or accession number of every database; RiceGO module indicates the association between a microarray set and gene ontology (GO) categories; RiceKO module is used to annotate a microarray set based on the KEGG biochemical pathways; RiceDO module indicates the information of domain associated with a microarray set; RiceUP module is used to obtain promoter sequences for all genes represented by a microarray set; RiceMR module lists potential microRNA which regulated the genes represented by a microarray set; RiceCD and RiceGF are used to annotate the genes represented by a microarray set in the context of chromosome distribution and rice paralogous family distribution. The results of automatic annotation are mostly consistent with manual annotation. Biological interpretation of the microarray data is quickened by the help of RiceDB.

  14. Exploring Protein Function Using the Saccharomyces Genome Database.

    Science.gov (United States)

    Wong, Edith D

    2017-01-01

    Elucidating the function of individual proteins will help to create a comprehensive picture of cell biology, as well as shed light on human disease mechanisms, possible treatments, and cures. Due to its compact genome, and extensive history of experimentation and annotation, the budding yeast Saccharomyces cerevisiae is an ideal model organism in which to determine protein function. This information can then be leveraged to infer functions of human homologs. Despite the large amount of research and biological data about S. cerevisiae, many proteins' functions remain unknown. Here, we explore ways to use the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org ) to predict the function of proteins and gain insight into their roles in various cellular processes.

  15. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  16. The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community.

    Science.gov (United States)

    Arnaud, Martha B; Chibucos, Marcus C; Costanzo, Maria C; Crabtree, Jonathan; Inglis, Diane O; Lotia, Adil; Orvis, Joshua; Shah, Prachi; Skrzypek, Marek S; Binkley, Gail; Miyasato, Stuart R; Wortman, Jennifer R; Sherlock, Gavin

    2010-01-01

    The Aspergillus Genome Database (AspGD) is an online genomics resource for researchers studying the genetics and molecular biology of the Aspergilli. AspGD combines high-quality manual curation of the experimental scientific literature examining the genetics and molecular biology of Aspergilli, cutting-edge comparative genomics approaches to iteratively refine and improve structural gene annotations across multiple Aspergillus species, and web-based research tools for accessing and exploring the data. All of these data are freely available at http://www.aspgd.org. We welcome feedback from users and the research community at aspergillus-curator@genome.stanford.edu.

  17. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Damte, Dereje; Suh, Joo-Won; Lee, Seung-Jin; Yohannes, Sileshi Belew; Hossain, Md Akil; Park, Seung-Chun

    2013-07-01

    In the present study, a computational comparative and subtractive genomic/proteomic analysis aimed at the identification of putative therapeutic target and vaccine candidate proteins from Kyoto Encyclopedia of Genes and Genomes (KEGG) annotated metabolic pathways of Mycoplasma hyopneumoniae was performed for drug design and vaccine production pipelines against M.hyopneumoniae. The employed comparative genomic and metabolic pathway analysis with a predefined computational systemic workflow extracted a total of 41 annotated metabolic pathways from KEGG among which five were unique to M. hyopneumoniae. A total of 234 proteins were identified to be involved in these metabolic pathways. Although 125 non homologous and predicted essential proteins were found from the total that could serve as potential drug targets and vaccine candidates, additional prioritizing parameters characterize 21 proteins as vaccine candidate while druggability of each of the identified proteins evaluated by the DrugBank database prioritized 42 proteins suitable for drug targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. VESPA: Software to Facilitate Genomic Annotation of Prokaryotic Organisms Through Integration of Proteomic and Transcriptomic Data

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.; Jensen, Jeffrey L.; Walker, Julia; Kobold, Mark A.; Webb, Samantha R.; Payne, Samuel H.; Ansong, Charles; Adkins, Joshua N.; Cannon, William R.; Webb-Robertson, Bobbie-Jo M.

    2012-04-25

    Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.

  19. A database of annotated promoters of genes associated with common respiratory and related diseases

    KAUST Repository

    Chowdhary, Rajesh

    2012-07-01

    Many genes have been implicated in the pathogenesis of common respiratory and related diseases (RRDs), yet the underlying mechanisms are largely unknown. Differential gene expression patterns in diseased and healthy individuals suggest that RRDs affect or are affected by modified transcription regulation programs. It is thus crucial to characterize implicated genes in terms of transcriptional regulation. For this purpose, we conducted a promoter analysis of genes associated with 11 common RRDs including allergic rhinitis, asthma, bronchiectasis, bronchiolitis, bronchitis, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, eczema, psoriasis, and urticaria, many of which are thought to be genetically related. The objective of the present study was to obtain deeper insight into the transcriptional regulation of these disease-associated genes by annotating their promoter regions with transcription factors (TFs) and TF binding sites (TFBSs). We discovered many TFs that are significantly enriched in the target disease groups including associations that have been documented in the literature. We also identified a number of putative TFs/TFBSs that appear to be novel. The results of our analysis are provided in an online database that is freely accessible to researchers at http://www.respiratorygenomics.com. Promoter-associated TFBS information and related genomic features, such as histone modification sites, microsatellites, CpG islands, and SNPs, are graphically summarized in the database. Users can compare and contrast underlying mechanisms of specific RRDs relative to candidate genes, TFs, gene ontology terms, micro-RNAs, and biological pathways for the conduct of metaanalyses. This database represents a novel, useful resource for RRD researchers. Copyright © 2012 by the American Thoracic Society.

  20. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production.

    Directory of Open Access Journals (Sweden)

    Nupoor Chowdhary

    Full Text Available Caldicellulosiruptor saccharolyticus has proven itself to be an excellent candidate for biological hydrogen (H2 production, but still it has major drawbacks like sensitivity to high osmotic pressure and low volumetric H2 productivity, which should be considered before it can be used industrially. A whole genome re-annotation work has been carried out as an attempt to update the incomplete genome information that causes gap in the knowledge especially in the area of metabolic engineering, to improve the H2 producing capabilities of C. saccharolyticus. Whole genome re-annotation was performed through manual means for 2,682 Coding Sequences (CDSs. Bioinformatics tools based on sequence similarity, motif search, phylogenetic analysis and fold recognition were employed for re-annotation. Our methodology could successfully add functions for 409 hypothetical proteins (HPs, 46 proteins previously annotated as putative and assigned more accurate functions for the known protein sequences. Homology based gene annotation has been used as a standard method for assigning function to novel proteins, but over the past few years many non-homology based methods such as genomic context approaches for protein function prediction have been developed. Using non-homology based functional prediction methods, we were able to assign cellular processes or physical complexes for 249 hypothetical sequences. Our re-annotation pipeline highlights the addition of 231 new CDSs generated from MicroScope Platform, to the original genome with functional prediction for 49 of them. The re-annotation of HPs and new CDSs is stored in the relational database that is available on the MicroScope web-based platform. In parallel, a comparative genome analyses were performed among the members of genus Caldicellulosiruptor to understand the function and evolutionary processes. Further, with results from integrated re-annotation studies (homology and genomic context approach, we strongly

  1. CEBS: a comprehensive annotated database of toxicological data

    Science.gov (United States)

    Lea, Isabel A.; Gong, Hui; Paleja, Anand; Rashid, Asif; Fostel, Jennifer

    2017-01-01

    The Chemical Effects in Biological Systems database (CEBS) is a comprehensive and unique toxicology resource that compiles individual and summary animal data from the National Toxicology Program (NTP) testing program and other depositors into a single electronic repository. CEBS has undergone significant updates in recent years and currently contains over 11 000 test articles (exposure agents) and over 8000 studies including all available NTP carcinogenicity, short-term toxicity and genetic toxicity studies. Study data provided to CEBS are manually curated, accessioned and subject to quality assurance review prior to release to ensure high quality. The CEBS database has two main components: data collection and data delivery. To accommodate the breadth of data produced by NTP, the CEBS data collection component is an integrated relational design that allows the flexibility to capture any type of electronic data (to date). The data delivery component of the database comprises a series of dedicated user interface tables containing pre-processed data that support each component of the user interface. The user interface has been updated to include a series of nine Guided Search tools that allow access to NTP summary and conclusion data and larger non-NTP datasets. The CEBS database can be accessed online at http://www.niehs.nih.gov/research/resources/databases/cebs/. PMID:27899660

  2. Re-annotation of the Saccharopolyspora erythraea genome using a systems biology approach.

    Science.gov (United States)

    Marcellin, Esteban; Licona-Cassani, Cuauhtemoc; Mercer, Tim R; Palfreyman, Robin W; Nielsen, Lars K

    2013-10-11

    Accurate bacterial genome annotations provide a framework to understanding cellular functions, behavior and pathogenicity and are essential for metabolic engineering. Annotations based only on in silico predictions are inaccurate, particularly for large, high G + C content genomes due to the lack of similarities in gene length and gene organization to model organisms. Here we describe a 2D systems biology driven re-annotation of the Saccharopolyspora erythraea genome using proteogenomics, a genome-scale metabolic reconstruction, RNA-sequencing and small-RNA-sequencing. We observed transcription of more than 300 intergenic regions, detected 59 peptides in intergenic regions, confirmed 164 open reading frames previously annotated as hypothetical proteins and reassigned function to open reading frames using the genome-scale metabolic reconstruction. Finally, we present a novel way of mapping ribosomal binding sites across the genome by sequencing small RNAs. The work presented here describes a novel framework for annotation of the Saccharopolyspora erythraea genome. Based on experimental observations, the 2D annotation framework greatly reduces errors that are commonly made when annotating large-high G + C content genomes using computational prediction algorithms.

  3. Gene discovery in the hamster: a comparative genomics approach for gene annotation by sequencing of hamster testis cDNAs

    Directory of Open Access Journals (Sweden)

    Khan Shafiq A

    2003-06-01

    Full Text Available Abstract Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells.

  4. The DOE-JGI Standard Operating Procedure for the Annotations of the Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Chen, I-Min A.; Szeto, Ernest; Markowitz, Victor; Kyrpides, Nikos C.

    2009-05-20

    The DOE-JGI Microbial Annotation Pipeline (DOE-JGI MAP) supports gene prediction and/or functional annotation of microbial genomes towards comparative analysis with the Integrated Microbial Genome (IMG) system. DOE-JGI MAP annotation is applied on nucleotide sequence datasets included in the IMG-ER (Expert Review) version of IMG via the IMG ER submission site. Users can submit the sequence datasets consisting of one or more contigs in a multi-fasta file. DOE-JGI MAP annotation includes prediction of protein coding and RNA genes, as well as repeats and assignment of product names to these genes.

  5. Experimental-confirmation and functional-annotation of predicted proteins in the chicken genome

    Directory of Open Access Journals (Sweden)

    McCarthy Fiona M

    2007-11-01

    Full Text Available Abstract Background The chicken genome was sequenced because of its phylogenetic position as a non-mammalian vertebrate, its use as a biomedical model especially to study embryology and development, its role as a source of human disease organisms and its importance as the major source of animal derived food protein. However, genomic sequence data is, in itself, of limited value; generally it is not equivalent to understanding biological function. The benefit of having a genome sequence is that it provides a basis for functional genomics. However, the sequence data currently available is poorly structurally and functionally annotated and many genes do not have standard nomenclature assigned. Results We analysed eight chicken tissues and improved the chicken genome structural annotation by providing experimental support for the in vivo expression of 7,809 computationally predicted proteins, including 30 chicken proteins that were only electronically predicted or hypothetical translations in human. To improve functional annotation (based on Gene Ontology, we mapped these identified proteins to their human and mouse orthologs and used this orthology to transfer Gene Ontology (GO functional annotations to the chicken proteins. The 8,213 orthology-based GO annotations that we produced represent an 8% increase in currently available chicken GO annotations. Orthologous chicken products were also assigned standardized nomenclature based on current chicken nomenclature guidelines. Conclusion We demonstrate the utility of high-throughput expression proteomics for rapid experimental structural annotation of a newly sequenced eukaryote genome. These experimentally-supported predicted proteins were further annotated by assigning the proteins with standardized nomenclature and functional annotation. This method is widely applicable to a diverse range of species. Moreover, information from one genome can be used to improve the annotation of other genomes and

  6. Metingear: a development environment for annotating genome-scale metabolic models

    Science.gov (United States)

    May, John W.; James, A. Gordon; Steinbeck, Christoph

    2013-01-01

    Summary: Genome-scale metabolic models often lack annotations that would allow them to be used for further analysis. Previous efforts have focused on associating metabolites in the model with a cross reference, but this can be problematic if the reference is not freely available, multiple resources are used or the metabolite is added from a literature review. Associating each metabolite with chemical structure provides unambiguous identification of the components and a more detailed view of the metabolism. We have developed an open-source desktop application that simplifies the process of adding database cross references and chemical structures to genome-scale metabolic models. Annotated models can be exported to the Systems Biology Markup Language open interchange format. Availability: Source code, binaries, documentation and tutorials are freely available at http://johnmay.github.com/metingear. The application is implemented in Java with bundles available for MS Windows and Macintosh OS X. Contact: johnmay@ebi.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23766418

  7. MODBASE: a database of annotated comparative protein structure models and associated resources

    OpenAIRE

    Pieper, Ursula; Eswar, Narayanan; Davis, Fred P.; Braberg, Hannes; Madhusudhan, M. S.; Rossi, Andrea; Marti-Renom, Marc; Karchin, Rachel; Webb, Ben M.; Eramian, David; Shen, Min-Yi; Kelly, Libusha; Melo, Francisco; Sali, Andrej

    2005-01-01

    MODBASE () is a database of annotated comparative protein structure models for all available protein sequences that can be matched to at least one known protein structure. The models are calculated by MODPIPE, an automated modeling pipeline that relies on MODELLER for fold assignment, sequence–structure alignment, model building and model assessment (). MODBASE is updated regularly to reflect the growth in protein sequence and structure databases, and improvements in the software for calculat...

  8. STANDARDIZATION AND STRUCTURAL ANNOTATION OF PUBLIC TOXICITY DATABASES: IMPROVING SAR CAPABILITIES AND LINKAGE TO 'OMICS DATA

    Science.gov (United States)

    Standardization and structural annotation of public toxicity databases: Improving SAR capabilities and linkage to 'omics data Ann M. Richard', ClarLynda Williams', Jamie Burch2'Nat Health & Environ Res Lab, US EPA, RTP, NC 27711; 2EPA/NC Central Univ Student COOP Trainee<...

  9. GAMOLA2, a Comprehensive Software Package for the Annotation and Curation of Draft and Complete Microbial Genomes.

    Science.gov (United States)

    Altermann, Eric; Lu, Jingli; McCulloch, Alan

    2017-01-01

    Expert curated annotation remains one of the critical steps in achieving a reliable biological relevant annotation. Here we announce the release of GAMOLA2, a user friendly and comprehensive software package to process, annotate and curate draft and complete bacterial, archaeal, and viral genomes. GAMOLA2 represents a wrapping tool to combine gene model determination, functional Blast, COG, Pfam, and TIGRfam analyses with structural predictions including detection of tRNAs, rRNA genes, non-coding RNAs, signal protein cleavage sites, transmembrane helices, CRISPR repeats and vector sequence contaminations. GAMOLA2 has already been validated in a wide range of bacterial and archaeal genomes, and its modular concept allows easy addition of further functionality in future releases. A modified and adapted version of the Artemis Genome Viewer (Sanger Institute) has been developed to leverage the additional features and underlying information provided by the GAMOLA2 analysis, and is part of the software distribution. In addition to genome annotations, GAMOLA2 features, among others, supplemental modules that assist in the creation of custom Blast databases, annotation transfers between genome versions, and the preparation of Genbank files for submission via the NCBI Sequin tool. GAMOLA2 is intended to be run under a Linux environment, whereas the subsequent visualization and manual curation in Artemis is mobile and platform independent. The development of GAMOLA2 is ongoing and community driven. New functionality can easily be added upon user requests, ensuring that GAMOLA2 provides information relevant to microbiologists. The software is available free of charge for academic use.

  10. Blobology: exploring raw genome data for contaminants, symbionts and parasites using taxon-annotated GC-coverage plots

    Directory of Open Access Journals (Sweden)

    Sujai eKumar

    2013-11-01

    Full Text Available Generating the raw data for a de novo genome assembly project for a target eukaryotic species is relatively easy. This democratisation of access to large-scale data has allowed many research teams to plan to assemble the genomes of non-model organisms. These new genome targets are very different from the traditional, inbred, laboratory reared model organisms. They are often small, and cannot be isolated free of their environment - whether ingested food, the surrounding host organism of parasites, or commensal and symbiotic organisms attached to or within the individuals sampled. Preparation of pure DNA originating from a single species can be technically impossible, but assembly of mixed-organism DNA can be difficult, as most genome assemblers perform poorly when faced with multiple genomes in different stoichiometries. This class of problem is common in metagenomic datasets that deliberately try to capture all the genomes present in an environment, but replicon assembly is not often the goal of such programmes. Here we present an approach to extracting from mixed DNA sequence data subsets that correspond to single species' genomes and thus improving genome assembly. We use both numerical (proportion of GC bases and read coverage and biological (best-matching sequence in annotated databases indicators to aid partitioning of draft assembly contigs, and the reads that contribute to those contigs, into distinct bins that can then be subjected to rigorous, optimised assembly, through the use of taxon-annotated GC-coverage plots (TAGC plots. We also present Blobsplorer, a tool that aids exploration and selection of subsets from TAGC annotated data. Partitioning the data in this way can rescue poorly assembled genomes, and reveal unexpected symbionts and commensals in eukaryotic genome projects. The TAGC plot pipeline script is available from http://github.com/blaxterlab/blobology, and the Blobsplorer tool from https://github.com/mojones/Blobsplorer.

  11. Proteomics-based confirmation of protein expression and correction of annotation errors in the Brucella abortus genome

    Directory of Open Access Journals (Sweden)

    Tomaki Fadi

    2010-05-01

    Full Text Available Abstract Background Brucellosis is a major bacterial zoonosis affecting domestic livestock and wild mammals, as well as humans around the globe. While conducting proteomics studies to better understand Brucella abortus virulence, we consolidated the proteomic data collected and compared it to publically available genomic data. Results The proteomic data was compiled from several independent comparative studies of Brucella abortus that used either outer membrane blebs, cytosols, or whole bacteria grown in media, as well as intracellular bacteria recovered at different times following macrophage infection. We identified a total of 621 bacterial proteins that were differentially expressed in a condition-specific manner. For 305 of these proteins we provide the first experimental evidence of their expression. Using a custom-built protein sequence database, we uncovered 7 annotation errors. We provide experimental evidence of expression of 5 genes that were originally annotated as non-expressed pseudogenes, as well as start site annotation errors for 2 other genes. Conclusions An essential element for ensuring correct functional studies is the correspondence between reported genome sequences and subsequent proteomics studies. In this study, we have used proteomics evidence to confirm expression of multiple proteins previously considered to be putative, as well as correct annotation errors in the genome of Brucella abortus strain 2308.

  12. VIGOR extended to annotate genomes for additional 12 different viruses.

    Science.gov (United States)

    Wang, Shiliang; Sundaram, Jaideep P; Stockwell, Timothy B

    2012-07-01

    A gene prediction program, VIGOR (Viral Genome ORF Reader), was developed at J. Craig Venter Institute in 2010 and has been successfully performing gene calling in coronavirus, influenza, rhinovirus and rotavirus for projects at the Genome Sequencing Center for Infectious Diseases. VIGOR uses sequence similarity search against custom protein databases to identify protein coding regions, start and stop codons and other gene features. Ribonucleicacid editing and other features are accurately identified based on sequence similarity and signature residues. VIGOR produces four output files: a gene prediction file, a complementary DNA file, an alignment file, and a gene feature table file. The gene feature table can be used to create GenBank submission. VIGOR takes a single input: viral genomic sequences in FASTA format. VIGOR has been extended to predict genes for 12 viruses: measles virus, mumps virus, rubella virus, respiratory syncytial virus, alphavirus and Venezuelan equine encephalitis virus, norovirus, metapneumovirus, yellow fever virus, Japanese encephalitis virus, parainfluenza virus and Sendai virus. VIGOR accurately detects the complex gene features like ribonucleicacid editing, stop codon leakage and ribosomal shunting. Precisely identifying the mat_peptide cleavage for some viruses is a built-in feature of VIGOR. The gene predictions for these viruses have been evaluated by testing from 27 to 240 genomes from GenBank.

  13. VitisExpDB: A database resource for grape functional genomics

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2008-02-01

    Full Text Available Abstract Background The family Vitaceae consists of many different grape species that grow in a range of climatic conditions. In the past few years, several studies have generated functional genomic information on different Vitis species and cultivars, including the European grape vine, Vitis vinifera. Our goal is to develop a comprehensive web data source for Vitaceae. Description VitisExpDB is an online MySQL-PHP driven relational database that houses annotated EST and gene expression data for V. vinifera and non-vinifera grape species and varieties. Currently, the database stores ~320,000 EST sequences derived from 8 species/hybrids, their annotation (BLAST top match details and Gene Ontology based structured vocabulary. Putative homologs for each EST in other species and varieties along with information on their percent nucleotide identities, phylogenetic relationship and common primers can be retrieved. The database also includes information on probe sequence and annotation features of the high density 60-mer gene expression chip consisting of ~20,000 non-redundant set of ESTs. Finally, the database includes 14 processed global microarray expression profile sets. Data from 12 of these expression profile sets have been mapped onto metabolic pathways. A user-friendly web interface with multiple search indices and extensively hyperlinked result features that permit efficient data retrieval has been developed. Several online bioinformatics tools that interact with the database along with other sequence analysis tools have been added. In addition, users can submit their ESTs to the database. Conclusion The developed database provides genomic resource to grape community for functional analysis of genes in the collection and for the grape genome annotation and gene function identification. The VitisExpDB database is available through our website http://cropdisease.ars.usda.gov/vitis_at/main-page.htm.

  14. Genomic variant annotation workflow for clinical applications [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Thomas Thurnherr

    2016-10-01

    Full Text Available Annotation and interpretation of DNA aberrations identified through next-generation sequencing is becoming an increasingly important task. Even more so in the context of data analysis pipelines for medical applications, where genomic aberrations are associated with phenotypic and clinical features. Here we describe a workflow to identify potential gene targets in aberrated genes or pathways and their corresponding drugs. To this end, we provide the R/Bioconductor package rDGIdb, an R wrapper to query the drug-gene interaction database (DGIdb. DGIdb accumulates drug-gene interaction data from 15 different resources and allows filtering on different levels. The rDGIdb package makes these resources and tools available to R users. Moreover, rDGIdb queries can be automated through incorporation of the rDGIdb package into NGS sequencing pipelines.

  15. Construction of customized sub-databases from NCBI-nr database for rapid annotation of huge metagenomic datasets using a combined BLAST and MEGAN approach

    OpenAIRE

    2013-01-01

    We developed a fast method to construct local sub-databases from the NCBI-nr database for the quick similarity search and annotation of huge metagenomic datasets based on BLAST-MEGAN approach. A three-step sub-database annotation pipeline (SAP) was further proposed to conduct the annotation in a much more time-efficient way which required far less computational capacity than the direct NCBI-nr database BLAST-MEGAN approach. The 1(st) BLAST of SAP was conducted using the original metagenomic d...

  16. Functional annotation from the genome sequence of the giant panda.

    Science.gov (United States)

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-08-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided into two groups: 20,179 proteins whose functions can be predicted by GeneScan formed the known-function group, whereas 822 proteins whose functions cannot be predicted by GeneScan comprised the unknown-function group. For the known-function group, we further classified the proteins by molecular function, biological process, cellular component, and tissue specificity. For the unknown-function group, we developed a strategy in which the proteins were filtered by cross-Blast to identify panda-specific proteins under the assumption that proteins related to the panda-specific traits in the unknown-function group exist. After this filtering procedure, we identified 32 proteins (2 of which are membrane proteins) specific to the giant panda genome as compared against the dog and horse genomes. Based on their amino acid sequences, these 32 proteins were further analyzed by functional classification using SVM-Prot, motif prediction using MyHits, and interacting protein prediction using the Database of Interacting Proteins. Nineteen proteins were predicted to be zinc-binding proteins, thus affecting the activities of nucleic acids. The 32 panda-specific proteins will be further investigated by structural and functional analysis.

  17. Comparative high-throughput transcriptome sequencing and development of SiESTa, the Silene EST annotation database

    Directory of Open Access Journals (Sweden)

    Marais Gabriel AB

    2011-07-01

    Full Text Available Abstract Background The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. Results A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO terms, and thousands of single-nucleotide polymorphisms (SNPs were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49% that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. Conclusion The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to

  18. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Vongsangnak, Wanwipa; Olsen, Peter; Hansen, Kim;

    2008-01-01

    to a genome scale metabolic model of A. oryzae. Results: Our assembled EST sequences we identified 1,046 newly predicted genes in the A. oryzae genome. Furthermore, it was possible to assign putative protein functions to 398 of the newly predicted genes. Noteworthy, our annotation strategy resulted......Background: Since ancient times the filamentous fungus Aspergillus oryzae has been used in the fermentation industry for the production of fermented sauces and the production of industrial enzymes. Recently, the genome sequence of A. oryzae with 12,074 annotated genes was released but the number...... of hypothetical proteins accounted for more than 50% of the annotated genes. Considering the industrial importance of this fungus, it is therefore valuable to improve the annotation and further integrate genomic information with biochemical and physiological information available for this microorganism and other...

  19. Non-redundant patent sequence databases with value-added annotations at two levels.

    Science.gov (United States)

    Li, Weizhong; McWilliam, Hamish; de la Torre, Ana Richart; Grodowski, Adam; Benediktovich, Irina; Goujon, Mickael; Nauche, Stephane; Lopez, Rodrigo

    2010-01-01

    The European Bioinformatics Institute (EMBL-EBI) provides public access to patent data, including abstracts, chemical compounds and sequences. Sequences can appear multiple times due to the filing of the same invention with multiple patent offices, or the use of the same sequence by different inventors in different contexts. Information relating to the source invention may be incomplete, and biological information available in patent documents elsewhere may not be reflected in the annotation of the sequence. Search and analysis of these data have become increasingly challenging for both the scientific and intellectual-property communities. Here, we report a collection of non-redundant patent sequence databases, which cover the EMBL-Bank nucleotides patent class and the patent protein databases and contain value-added annotations from patent documents. The databases were created at two levels by the use of sequence MD5 checksums. Sequences within a level-1 cluster are 100% identical over their whole length. Level-2 clusters were defined by sub-grouping level-1 clusters based on patent family information. Value-added annotations, such as publication number corrections, earliest publication dates and feature collations, significantly enhance the quality of the data, allowing for better tracking and cross-referencing. The databases are available format: http://www.ebi.ac.uk/patentdata/nr/.

  20. Non-redundant patent sequence databases with value-added annotations at two levels

    Science.gov (United States)

    Li, Weizhong; McWilliam, Hamish; de la Torre, Ana Richart; Grodowski, Adam; Benediktovich, Irina; Goujon, Mickael; Nauche, Stephane; Lopez, Rodrigo

    2010-01-01

    The European Bioinformatics Institute (EMBL-EBI) provides public access to patent data, including abstracts, chemical compounds and sequences. Sequences can appear multiple times due to the filing of the same invention with multiple patent offices, or the use of the same sequence by different inventors in different contexts. Information relating to the source invention may be incomplete, and biological information available in patent documents elsewhere may not be reflected in the annotation of the sequence. Search and analysis of these data have become increasingly challenging for both the scientific and intellectual-property communities. Here, we report a collection of non-redundant patent sequence databases, which cover the EMBL-Bank nucleotides patent class and the patent protein databases and contain value-added annotations from patent documents. The databases were created at two levels by the use of sequence MD5 checksums. Sequences within a level-1 cluster are 100% identical over their whole length. Level-2 clusters were defined by sub-grouping level-1 clusters based on patent family information. Value-added annotations, such as publication number corrections, earliest publication dates and feature collations, significantly enhance the quality of the data, allowing for better tracking and cross-referencing. The databases are available format: http://www.ebi.ac.uk/patentdata/nr/. PMID:19884134

  1. Semantic Assembly and Annotation of Draft RNAseq Transcripts without a Reference Genome.

    Science.gov (United States)

    Ptitsyn, Andrey; Temanni, Ramzi; Bouchard, Christelle; Anderson, Peter A V

    2015-01-01

    Transcriptomes are one of the first sources of high-throughput genomic data that have benefitted from the introduction of Next-Gen Sequencing. As sequencing technology becomes more accessible, transcriptome sequencing is applicable to multiple organisms for which genome sequences are unavailable. Currently all methods for de novo assembly are based on the concept of matching the nucleotide context overlapping between short fragments-reads. However, even short reads may still contain biologically relevant information which can be used as hints in guiding the assembly process. We propose a computational workflow for the reconstruction and functional annotation of expressed gene transcripts that does not require a reference genome sequence and can be tolerant to low coverage, high error rates and other issues that often lead to poor results of de novo assembly in studies of non-model organisms. We start with either raw sequences or the output of a context-based de novo transcriptome assembly. Instead of mapping reads to a reference genome or creating a completely unsupervised clustering of reads, we assemble the unknown transcriptome using nearest homologs from a public database as seeds. We consider even distant relations, indirectly linking protein-coding fragments to entire gene families in multiple distantly related genomes. The intended application of the proposed method is an additional step of semantic (based on relations between protein-coding fragments) scaffolding following traditional (i.e. based on sequence overlap) de novo assembly. The method we developed was effective in analysis of the jellyfish Cyanea capillata transcriptome and may be applicable in other studies of gene expression in species lacking a high quality reference genome sequence. Our algorithms are implemented in C and designed for parallel computation using a high-performance computer. The software is available free of charge via an open source license.

  2. Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database.

    Directory of Open Access Journals (Sweden)

    Liesbeth Badisco

    Full Text Available BACKGROUND: The desert locust (Schistocerca gregaria displays a fascinating type of phenotypic plasticity, designated as 'phase polyphenism'. Depending on environmental conditions, one genome can be translated into two highly divergent phenotypes, termed the solitarious and gregarious (swarming phase. Although many of the underlying molecular events remain elusive, the central nervous system (CNS is expected to play a crucial role in the phase transition process. Locusts have also proven to be interesting model organisms in a physiological and neurobiological research context. However, molecular studies in locusts are hampered by the fact that genome/transcriptome sequence information available for this branch of insects is still limited. METHODOLOGY: We have generated 34,672 raw expressed sequence tags (EST from the CNS of desert locusts in both phases. These ESTs were assembled in 12,709 unique transcript sequences and nearly 4,000 sequences were functionally annotated. Moreover, the obtained S. gregaria EST information is highly complementary to the existing orthopteran transcriptomic data. Since many novel transcripts encode neuronal signaling and signal transduction components, this paper includes an overview of these sequences. Furthermore, several transcripts being differentially represented in solitarious and gregarious locusts were retrieved from this EST database. The findings highlight the involvement of the CNS in the phase transition process and indicate that this novel annotated database may also add to the emerging knowledge of concomitant neuronal signaling and neuroplasticity events. CONCLUSIONS: In summary, we met the need for novel sequence data from desert locust CNS. To our knowledge, we hereby also present the first insect EST database that is derived from the complete CNS. The obtained S. gregaria EST data constitute an important new source of information that will be instrumental in further unraveling the molecular

  3. How to Use the Candida Genome Database.

    Science.gov (United States)

    Skrzypek, Marek S; Binkley, Jonathan; Sherlock, Gavin

    2016-01-01

    Studying Candida biology requires access to genomic sequence data in conjunction with experimental information that provides functional context to genes and proteins. The Candida Genome Database (CGD) integrates functional information about Candida genes and their products with a set of analysis tools that facilitate searching for sets of genes and exploring their biological roles. This chapter describes how the various types of information available at CGD can be searched, retrieved, and analyzed. Starting with the guided tour of the CGD Home page and Locus Summary page, this unit shows how to navigate the various assemblies of the C. albicans genome, how to use Gene Ontology tools to make sense of large-scale data, and how to access the microarray data archived at CGD.

  4. Requirements and standards for organelle genome databases

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2006-01-09

    Mitochondria and plastids (collectively called organelles)descended from prokaryotes that adopted an intracellular, endosymbioticlifestyle within early eukaryotes. Comparisons of their remnant genomesaddress a wide variety of biological questions, especially when includingthe genomes of their prokaryotic relatives and the many genes transferredto the eukaryotic nucleus during the transitions from endosymbiont toorganelle. The pace of producing complete organellar genome sequences nowmakes it unfeasible to do broad comparisons using the primary literatureand, even if it were feasible, it is now becoming uncommon for journalsto accept detailed descriptions of genome-level features. Unfortunatelyno database is currently useful for this task, since they have littlestandardization and are riddled with error. Here I outline what iscurrently wrong and what must be done to make this data useful to thescientific community.

  5. How to use the Candida Genome Database

    Science.gov (United States)

    Skrzypek, Marek S.; Binkley, Jonathan; Sherlock, Gavin

    2016-01-01

    Summary Studying Candida biology requires access to genomic sequence data in conjunction with experimental information that provides functional context to genes and proteins. The Candida Genome Database (CGD) integrates functional information about Candida genes and their products with a set of analysis tools that facilitate searching for sets of genes and exploring their biological roles. This chapter describes how the various types of information available at CGD can be searched, retrieved, and analyzed. Starting with the guided tour of the CGD Home page and Locus Summary page, this unit shows how to navigate the various assemblies of the C. albicans genome, how to use Gene Ontology tools to make sense of large-scale data, and how to access the microarray data archived at CGD. PMID:26519061

  6. Annotated genes and nonannotated genomes: cross-species use of Gene Ontology in ecology and evolution research.

    Science.gov (United States)

    Primmer, C R; Papakostas, S; Leder, E H; Davis, M J; Ragan, M A

    2013-06-01

    Recent advances in molecular technologies have opened up unprecedented opportunities for molecular ecologists to better understand the molecular basis of traits of ecological and evolutionary importance in almost any organism. Nevertheless, reliable and systematic inference of functionally relevant information from these masses of data remains challenging. The aim of this review is to highlight how the Gene Ontology (GO) database can be of use in resolving this challenge. The GO provides a largely species-neutral source of information on the molecular function, biological role and cellular location of tens of thousands of gene products. As it is designed to be species-neutral, the GO is well suited for cross-species use, meaning that, functional annotation derived from model organisms can be transferred to inferred orthologues in newly sequenced species. In other words, the GO can provide gene annotation information for species with nonannotated genomes. In this review, we describe the GO database, how functional information is linked with genes/gene products in model organisms, and how molecular ecologists can utilize this information to annotate their own data. Then, we outline various applications of GO for enhancing the understanding of molecular basis of traits in ecologically relevant species. We also highlight potential pitfalls, provide step-by-step recommendations for conducting a sound study in nonmodel organisms, suggest avenues for future research and outline a strategy for maximizing the benefits of a more ecological and evolutionary genomics-oriented ontology by ensuring its compatibility with the GO. © 2013 John Wiley & Sons Ltd.

  7. Online genetic databases informing human genome epidemiology

    Directory of Open Access Journals (Sweden)

    Higgins Julian PT

    2007-07-01

    Full Text Available Abstract Background With the advent of high throughput genotyping technology and the information available via projects such as the human genome sequencing and the HapMap project, more and more data relevant to the study of genetics and disease risk will be produced. Systematic reviews and meta-analyses of human genome epidemiology studies rely on the ability to identify relevant studies and to obtain suitable data from these studies. A first port of call for most such reviews is a search of MEDLINE. We examined whether this could be usefully supplemented by identifying databases on the World Wide Web that contain genetic epidemiological information. Methods We conducted a systematic search for online databases containing genetic epidemiological information on gene prevalence or gene-disease association. In those containing information on genetic association studies, we examined what additional information could be obtained to supplement a MEDLINE literature search. Results We identified 111 databases containing prevalence data, 67 databases specific to a single gene and only 13 that contained information on gene-disease associations. Most of the latter 13 databases were linked to MEDLINE, although five contained information that may not be available from other sources. Conclusion There is no single resource of structured data from genetic association studies covering multiple diseases, and in relation to the number of studies being conducted there is very little information specific to gene-disease association studies currently available on the World Wide Web. Until comprehensive data repositories are created and utilized regularly, new data will remain largely inaccessible to many systematic review authors and meta-analysts.

  8. Annotated checklist and database for vascular plants of the Jemez Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Foxx, T. S.; Pierce, L.; Tierney, G. D.; Hansen, L. A.

    1998-03-01

    Studies done in the last 40 years have provided information to construct a checklist of the Jemez Mountains. The present database and checklist builds on the basic list compiled by Teralene Foxx and Gail Tierney in the early 1980s. The checklist is annotated with taxonomic information, geographic and biological information, economic uses, wildlife cover, revegetation potential, and ethnographic uses. There are nearly 1000 species that have been noted for the Jemez Mountains. This list is cross-referenced with the US Department of Agriculture Natural Resource Conservation Service PLANTS database species names and acronyms. All information will soon be available on a Web Page.

  9. Update History of This Database - TMBETA-GENOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us TMBETA-GENOME Up...date History of This Database Date Update contents 2015/03/09 TMBETA-GENOME English archive ...site is opened. Joomla SEF URLs by Artio About This Database Database Description Download License Update Hi...story of This Database Site Policy | Contact Us Update History of This Database - TMBETA-GENOME | LSDB Archive ...

  10. Algal functional annotation tool

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes

  11. Building and Querying RDF/OWL Database of Semantically Annotated Nuclear Medicine Images.

    Science.gov (United States)

    Hwang, Kyung Hoon; Lee, Haejun; Koh, Geon; Willrett, Debra; Rubin, Daniel L

    2017-02-01

    As the use of positron emission tomography-computed tomography (PET-CT) has increased rapidly, there is a need to retrieve relevant medical images that can assist image interpretation. However, the images themselves lack the explicit information needed for query. We constructed a semantically structured database of nuclear medicine images using the Annotation and Image Markup (AIM) format and evaluated the ability the AIM annotations to improve image search. We created AIM annotation templates specific to the nuclear medicine domain and used them to annotate 100 nuclear medicine PET-CT studies in AIM format using controlled vocabulary. We evaluated image retrieval from 20 specific clinical queries. As the gold standard, two nuclear medicine physicians manually retrieved the relevant images from the image database using free text search of radiology reports for the same queries. We compared query results with the manually retrieved results obtained by the physicians. The query performance indicated a 98 % recall for simple queries and a 89 % recall for complex queries. In total, the queries provided 95 % (75 of 79 images) recall, 100 % precision, and an F1 score of 0.97 for the 20 clinical queries. Three of the four images missed by the queries required reasoning for successful retrieval. Nuclear medicine images augmented using semantic annotations in AIM enabled high recall and precision for simple queries, helping physicians to retrieve the relevant images. Further study using a larger data set and the implementation of an inference engine may improve query results for more complex queries.

  12. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    Science.gov (United States)

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  13. The use of multiple hierarchically independent gene ontology terms in gene function prediction and genome annotation

    NARCIS (Netherlands)

    Kourmpetis, Y.I.A.; Burgt, van der A.; Bink, M.C.A.M.; Braak, ter C.J.F.; Ham, van R.C.H.J.

    2007-01-01

    The Gene Ontology (GO) is a widely used controlled vocabulary for the description of gene function. In this study we quantify the usage of multiple and hierarchically independent GO terms in the curated genome annotations of seven well-studied species. In most genomes, significant proportions (6 -

  14. Using Microbial Genome Annotation as a Foundation for Collaborative Student Research

    Science.gov (United States)

    Reed, Kelynne E.; Richardson, John M.

    2013-01-01

    We used the Integrated Microbial Genomes Annotation Collaboration Toolkit as a framework to incorporate microbial genomics research into a microbiology and biochemistry course in a way that promoted student learning of bioinformatics and research skills and emphasized teamwork and collaboration as evidenced through multiple assessment mechanisms.…

  15. Where in the genome are we? A cautionary tale of database use in genomics research.

    Directory of Open Access Journals (Sweden)

    Laura Kelly eVaughan

    2013-03-01

    Full Text Available With the advent of high throughput data genomic technologies the volume of available data is now staggering. In addition databases that provide resources to annotate, translate and connect biological data have grown exponentially in content and use. The availability of such data emphasizes the importance of bioinformatics and computational biology in genomics research and has led to the development of thousands of tools to integrate and utilize these resources. When utilizing such resources, the principles of reproducible research are often overlooked. In this manuscript we provide selected case studies illustrating issues that may arise while working with genes and genetic polymorphisms. These case studies illustrate potential sources of error which can be introduced if the practices of reproducible research are not employed and non-concurrent databases are used. We also show examples of a lack of transparency when these databases are concerned when using popular bioinformatics tools. These examples highlight that resources are constantly evolving, and in order to provide reproducible results, research should be aware of and connected to the correct release of the data, particularly when implementing computational tools.

  16. PATtyFams: Protein families for the microbial genomes in the PATRIC database

    Directory of Open Access Journals (Sweden)

    James J Davis

    2016-02-01

    Full Text Available The ability to build accurate protein families is a fundamental operation in bioinformatics that influences comparative analyses, genome annotation and metabolic modeling. For several years we have been maintaining protein families for all microbial genomes in the PATRIC database (Pathosystems Resource Integration Center, patricbrc.org in order to drive many of the comparative analysis tools that are available through the PATRIC website. However, due to the burgeoning number of genomes, traditional approaches for generating protein families are becoming prohibitive. In this report, we describe a new approach for generating protein families, which we call PATtyFams. This method uses the k-mer-based function assignments available through RAST (Rapid Annotation using Subsystem Technology to rapidly guide family formation, and then differentiates the function-based groups into families using a Markov Cluster algorithm (MCL. This new approach for generating protein families is rapid, scalable and has properties that are consistent with alignment-based methods.

  17. LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes.

    Science.gov (United States)

    Li, Jun; Dai, Xinbin; Liu, Tingsong; Zhao, Patrick Xuechun

    2012-01-01

    Legumes play a vital role in maintaining the nitrogen cycle of the biosphere. They conduct symbiotic nitrogen fixation through endosymbiotic relationships with bacteria in root nodules. However, this and other characteristics of legumes, including mycorrhization, compound leaf development and profuse secondary metabolism, are absent in the typical model plant Arabidopsis thaliana. We present LegumeIP (http://plantgrn.noble.org/LegumeIP/), an integrative database for comparative genomics and transcriptomics of model legumes, for studying gene function and genome evolution in legumes. LegumeIP compiles gene and gene family information, syntenic and phylogenetic context and tissue-specific transcriptomic profiles. The database holds the genomic sequences of three model legumes, Medicago truncatula, Glycine max and Lotus japonicus plus two reference plant species, A. thaliana and Populus trichocarpa, with annotations based on UniProt, InterProScan, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes databases. LegumeIP also contains large-scale microarray and RNA-Seq-based gene expression data. Our new database is capable of systematic synteny analysis across M. truncatula, G. max, L. japonicas and A. thaliana, as well as construction and phylogenetic analysis of gene families across the five hosted species. Finally, LegumeIP provides comprehensive search and visualization tools that enable flexible queries based on gene annotation, gene family, synteny and relative gene expression.

  18. Sentra : a database of signal transduction proteins for comparative genome analysis.

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, M.; Glass, E. M.; Syed, M. H.; Zhang, Y.; Rodriguez, A.; Maltsev, N.; Galerpin, M. Y.; Mathematics and Computer Science; Univ. of Chicago; NIH

    2007-01-01

    Sentra (http://compbio.mcs.anl.gov/sentra), a database of signal transduction proteins encoded in completely sequenced prokaryotic genomes, has been updated to reflect recent advances in understanding signal transduction events on a whole-genome scale. Sentra consists of two principal components, a manually curated list of signal transduction proteins in 202 completely sequenced prokaryotic genomes and an automatically generated listing of predicted signaling proteins in 235 sequenced genomes that are awaiting manual curation. In addition to two-component histidine kinases and response regulators, the database now lists manually curated Ser/Thr/Tyr protein kinases and protein phosphatases, as well as adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases, as defined in several recent reviews. All entries in Sentra are extensively annotated with relevant information from public databases (e.g. UniProt, KEGG, PDB and NCBI). Sentra's infrastructure was redesigned to support interactive cross-genome comparisons of signal transduction capabilities of prokaryotic organisms from a taxonomic and phenotypic perspective and in the framework of signal transduction pathways from KEGG. Sentra leverages the PUMA2 system to support interactive analysis and annotation of signal transduction proteins by the users.

  19. RadishBase: a database for genomics and genetics of radish.

    Science.gov (United States)

    Shen, Di; Sun, Honghe; Huang, Mingyun; Zheng, Yi; Li, Xixiang; Fei, Zhangjun

    2013-02-01

    Radish is an economically important vegetable crop. During the past several years, large-scale genomics and genetics resources have been accumulated for this species. To store, query, analyze and integrate these radish resources efficiently, we have developed RadishBase (http://bioinfo.bti.cornell.edu/radish), a genomics and genetics database of radish. Currently the database contains radish mitochondrial genome sequences, expressed sequence tag (EST) and unigene sequences and annotations, biochemical pathways, EST-derived single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers, and genetic maps. RadishBase is designed to enable users easily to retrieve and visualize biologically important information through a set of efficient query interfaces and analysis tools, including the BLAST search and unigene annotation query interfaces, and tools to classify unigenes functionally, to identify enriched gene ontology (GO) terms and to visualize genetic maps. A database containing radish pathways predicted from unigene sequences is also included in RadishBase. The tools and interfaces in RadishBase allow efficient mining of recently released and continually expanding large-scale radish genomics and genetics data sets, including the radish genome sequences and RNA-seq data sets.

  20. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics.

    Directory of Open Access Journals (Sweden)

    Mohit Verma

    Full Text Available Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB, which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database features many tools for similarity search, functional annotation (putative function, PFAM domain and gene ontology search and comparative gene expression analysis. The current release of CTDB (v2.0 hosts transcriptome datasets with high quality functional annotation from cultivated (desi and kabuli types and wild chickpea. A catalog of transcription factor families and their expression profiles in chickpea are available in the database. The gene expression data have been integrated to study the expression profiles of chickpea transcripts in major tissues/organs and various stages of flower development. The utilities, such as similarity search, ortholog identification and comparative gene expression have also been implemented in the database to facilitate comparative genomic studies among different legumes and Arabidopsis. Furthermore, the CTDB represents a resource for the discovery of functional molecular markers (microsatellites and single nucleotide polymorphisms between different chickpea types. We anticipate that integrated information content of this database will accelerate the functional and applied genomic research for improvement of chickpea. The CTDB web service is freely available at http://nipgr.res.in/ctdb.html.

  1. A kingdom-specific protein domain HMM library for improved annotation of fungal genomes

    Directory of Open Access Journals (Sweden)

    Oliver Stephen G

    2007-04-01

    Full Text Available Abstract Background Pfam is a general-purpose database of protein domain alignments and profile Hidden Markov Models (HMMs, which is very popular for the annotation of sequence data produced by genome sequencing projects. Pfam provides models that are often very general in terms of the taxa that they cover and it has previously been suggested that such general models may lack some of the specificity or selectivity that would be provided by kingdom-specific models. Results Here we present a general approach to create domain libraries of HMMs for sub-taxa of a kingdom. Taking fungal species as an example, we construct a domain library of HMMs (called Fungal Pfam or FPfam using sequences from 30 genomes, consisting of 24 species from the ascomycetes group and two basidiomycetes, Ustilago maydis, a fungal pathogen of maize, and the white rot fungus Phanerochaete chrysosporium. In addition, we include the Microsporidion Encephalitozoon cuniculi, an obligate intracellular parasite, and two non-fungal species, the oomycetes Phytophthora sojae and Phytophthora ramorum, both plant pathogens. We evaluate the performance in terms of coverage against the original 30 genomes used in training FPfam and against five more recently sequenced fungal genomes that can be considered as an independent test set. We show that kingdom-specific models such as FPfam can find instances of both novel and well characterized domains, increases overall coverage and detects more domains per sequence with typically higher bitscores than Pfam for the same domain families. An evaluation of the effect of changing E-values on the coverage shows that the performance of FPfam is consistent over the range of E-values applied. Conclusion Kingdom-specific models are shown to provide improved coverage. However, as the models become more specific, some sequences found by Pfam may be missed by the models in FPfam and some of the families represented in the test set are not present in FPfam

  2. Construction of customized sub-databases from NCBI-nr database for rapid annotation of huge metagenomic datasets using a combined BLAST and MEGAN approach.

    Science.gov (United States)

    Yu, Ke; Zhang, Tong

    2013-01-01

    We developed a fast method to construct local sub-databases from the NCBI-nr database for the quick similarity search and annotation of huge metagenomic datasets based on BLAST-MEGAN approach. A three-step sub-database annotation pipeline (SAP) was further proposed to conduct the annotation in a much more time-efficient way which required far less computational capacity than the direct NCBI-nr database BLAST-MEGAN approach. The 1(st) BLAST of SAP was conducted using the original metagenomic dataset against the constructed sub-database for a quick screening of candidate target sequences. Then, the candidate target sequences identified in the 1(st) BLAST were subjected to the 2(nd) BLAST against the whole NCBI-nr database. The BLAST results were finally annotated using MEGAN to filter out those mistakenly selected sequences in the 1(st) BLAST to guarantee the accuracy of the results. Based on the tests conducted in this study, SAP achieved a speedup of ~150-385 times at the BLAST e-value of 1e-5, compared to the direct BLAST against NCBI-nr database. The annotation results of SAP are exactly in agreement with those of the direct NCBI-nr database BLAST-MEGAN approach, which is very time-consuming and computationally intensive. Selecting rigorous thresholds (e.g. e-value of 1e-10) would further accelerate SAP process. The SAP pipeline may also be coupled with novel similarity search tools (e.g. RAPsearch) other than BLAST to achieve even faster annotation of huge metagenomic datasets. Above all, this sub-database construction method and SAP pipeline provides a new time-efficient and convenient annotation similarity search strategy for laboratories without access to high performance computing facilities. SAP also offers a solution to high performance computing facilities for the processing of more similarity search tasks.

  3. MC-GenomeKey: a multicloud system for the detection and annotation of genomic variants.

    Science.gov (United States)

    Elshazly, Hatem; Souilmi, Yassine; Tonellato, Peter J; Wall, Dennis P; Abouelhoda, Mohamed

    2017-01-20

    Next Generation Genome sequencing techniques became affordable for massive sequencing efforts devoted to clinical characterization of human diseases. However, the cost of providing cloud-based data analysis of the mounting datasets remains a concerning bottleneck for providing cost-effective clinical services. To address this computational problem, it is important to optimize the variant analysis workflow and the used analysis tools to reduce the overall computational processing time, and concomitantly reduce the processing cost. Furthermore, it is important to capitalize on the use of the recent development in the cloud computing market, which have witnessed more providers competing in terms of products and prices. In this paper, we present a new package called MC-GenomeKey (Multi-Cloud GenomeKey) that efficiently executes the variant analysis workflow for detecting and annotating mutations using cloud resources from different commercial cloud providers. Our package supports Amazon, Google, and Azure clouds, as well as, any other cloud platform based on OpenStack. Our package allows different scenarios of execution with different levels of sophistication, up to the one where a workflow can be executed using a cluster whose nodes come from different clouds. MC-GenomeKey also supports scenarios to exploit the spot instance model of Amazon in combination with the use of other cloud platforms to provide significant cost reduction. To the best of our knowledge, this is the first solution that optimizes the execution of the workflow using computational resources from different cloud providers. MC-GenomeKey provides an efficient multicloud based solution to detect and annotate mutations. The package can run in different commercial cloud platforms, which enables the user to seize the best offers. The package also provides a reliable means to make use of the low-cost spot instance model of Amazon, as it provides an efficient solution to the sudden termination of spot

  4. The Drosophila melanogaster PeptideAtlas facilitates the use of peptide data for improved fly proteomics and genome annotation

    Directory of Open Access Journals (Sweden)

    King Nichole L

    2009-02-01

    Full Text Available Abstract Background Crucial foundations of any quantitative systems biology experiment are correct genome and proteome annotations. Protein databases compiled from high quality empirical protein identifications that are in turn based on correct gene models increase the correctness, sensitivity, and quantitative accuracy of systems biology genome-scale experiments. Results In this manuscript, we present the Drosophila melanogaster PeptideAtlas, a fly proteomics and genomics resource of unsurpassed depth. Based on peptide mass spectrometry data collected in our laboratory the portal http://www.drosophila-peptideatlas.org allows querying fly protein data observed with respect to gene model confirmation and splice site verification as well as for the identification of proteotypic peptides suited for targeted proteomics studies. Additionally, the database provides consensus mass spectra for observed peptides along with qualitative and quantitative information about the number of observations of a particular peptide and the sample(s in which it was observed. Conclusion PeptideAtlas is an open access database for the Drosophila community that has several features and applications that support (1 reduction of the complexity inherently associated with performing targeted proteomic studies, (2 designing and accelerating shotgun proteomics experiments, (3 confirming or questioning gene models, and (4 adjusting gene models such that they are in line with observed Drosophila peptides. While the database consists of proteomic data it is not required that the user is a proteomics expert.

  5. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data

    Directory of Open Access Journals (Sweden)

    Peterson Elena S

    2012-04-01

    Full Text Available Abstract Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq, global microarrays, and tandem mass spectrometry (MS/MS-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric and transcriptomics (probe or RNA-Seq data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002 to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations

  6. Genome-wide functional annotation of Phomopsis longicolla isolate MSPL 10-6

    Directory of Open Access Journals (Sweden)

    Omar Darwish

    2016-06-01

    Full Text Available Phomopsis seed decay of soybean is caused primarily by the seed-borne fungal pathogen Phomopsis longicolla (syn. Diaporthe longicolla. This disease severely decreases soybean seed quality, reduces seedling vigor and stand establishment, and suppresses yield. It is one of the most economically important soybean diseases. In this study we annotated the entire genome of P. longicolla isolate MSPL 10-6, which was isolated from field-grown soybean seed in Mississippi, USA. This study represents the first reported genome-wide functional annotation of a seed borne fungal pathogen in the Diaporthe–Phomopsis complex. The P. longicolla genome annotation will enable research into the genetic basis of fungal infection of soybean seed and provide information for the study of soybean–fungal interactions. The genome annotation will also be a valuable resource for the research and agricultural communities. It will aid in the development of new control strategies for this pathogen. The annotations can be found from: http://bioinformatics.towson.edu/phomopsis_longicolla/download.html. NCBI accession number is: AYRD00000000.

  7. xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud.

    Science.gov (United States)

    Duvick, Jon; Standage, Daniel S; Merchant, Nirav; Brendel, Volker P

    2016-04-01

    Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today's pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant's Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching.

  8. Exploring human disease using the Rat Genome Database

    Directory of Open Access Journals (Sweden)

    Mary Shimoyama

    2016-10-01

    Full Text Available Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases.

  9. Exploring human disease using the Rat Genome Database

    Science.gov (United States)

    Laulederkind, Stanley J. F.; De Pons, Jeff; Nigam, Rajni; Smith, Jennifer R.; Tutaj, Marek; Petri, Victoria; Hayman, G. Thomas; Wang, Shur-Jen; Ghiasvand, Omid; Thota, Jyothi; Dwinell, Melinda R.

    2016-01-01

    ABSTRACT Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu) has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases. PMID:27736745

  10. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea

    Directory of Open Access Journals (Sweden)

    Joon-Hee Han

    2016-06-01

    Full Text Available Colletotrichum acutatum is a destructive fungal pathogen which causes anthracnose in a wide range of crops. Here we report the whole genome sequence and annotation of C. acutatum strain KC05, isolated from an infected pepper in Kangwon, South Korea. Genomic DNA from the KC05 strain was used for the whole genome sequencing using a PacBio sequencer and the MiSeq system. The KC05 genome was determined to be 52,190,760 bp in size with a G + C content of 51.73% in 27 scaffolds and to contain 13,559 genes with an average length of 1516 bp. Gene prediction and annotation were performed by incorporating RNA-Seq data. The genome sequence of the KC05 was deposited at DDBJ/ENA/GenBank under the accession number LUXP00000000.

  11. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea.

    Science.gov (United States)

    Han, Joon-Hee; Chon, Jae-Kyung; Ahn, Jong-Hwa; Choi, Ik-Young; Lee, Yong-Hwan; Kim, Kyoung Su

    2016-06-01

    Colletotrichum acutatum is a destructive fungal pathogen which causes anthracnose in a wide range of crops. Here we report the whole genome sequence and annotation of C. acutatum strain KC05, isolated from an infected pepper in Kangwon, South Korea. Genomic DNA from the KC05 strain was used for the whole genome sequencing using a PacBio sequencer and the MiSeq system. The KC05 genome was determined to be 52,190,760 bp in size with a G + C content of 51.73% in 27 scaffolds and to contain 13,559 genes with an average length of 1516 bp. Gene prediction and annotation were performed by incorporating RNA-Seq data. The genome sequence of the KC05 was deposited at DDBJ/ENA/GenBank under the accession number LUXP00000000.

  12. Designing of Ground Truth Annotated DBT-TU-JU Breast Thermogram Database towards Early Abnormality Prediction.

    Science.gov (United States)

    Bhowmik, Mrinal Kanti; Gogoi, Usha Rani; Majumdar, Gautam; Bhattacharjee, Debotosh; Datta, Dhritiman; Ghosh, Anjan Kumar

    2017-08-17

    The advancement of research in a specific area of clinical diagnosis crucially depends on the availability and quality of the radiology and other test related databases accompanied by ground truth and additional necessary medical findings. The paper describes the creation of the Department of Biotechnology-Tripura University-Jadavpur University (DBT-TU-JU) breast thermogram database. The objective of creating the DBT-TU-JU database is to provide a breast thermogram database that is annotated with the ground truth images of the suspicious regions. Along with the result of breast thermography, the database comprises of the results of other breast imaging methodologies. A standard breast thermogram acquisition protocol suite comprising of several critical factors has been designed for the collection of breast thermograms. Currently, the DBT-TU-JU database contains 1100 breast thermograms of 100 subjects. Due to the necessity of evaluating any breast abnormality detection system, this study emphasizes the generation of the ground truth images of the hotspot areas, whose presence in a breast thermogram signifies the presence of breast abnormality. With the generated ground truth images, we compared the results of six state-of-the-art image segmentation methods using five supervised evaluation metrics to identify the proficient segmentation methods for hotspot extraction. Based on the evaluation results, the Fractional-Order Darwinian particle swarm optimization, Region growing, Mean shift and Fuzzy c-means clustering are found to be more efficient in comparison to k-means clustering and Threshold based segmentation methods.

  13. Generation, functional annotation and comparative analysis of black spruce (Picea mariana) ESTs: an important conifer genomic resource.

    Science.gov (United States)

    Mann, Ishminder K; Wegrzyn, Jill L; Rajora, Om P

    2013-10-11

    EST (expressed sequence tag) sequences and their annotation provide a highly valuable resource for gene discovery, genome sequence annotation, and other genomics studies that can be applied in genetics, breeding and conservation programs for non-model organisms. Conifers are long-lived plants that are ecologically and economically important globally, and have a large genome size. Black spruce (Picea mariana), is a transcontinental species of the North American boreal and temperate forests. However, there are limited transcriptomic and genomic resources for this species. The primary objective of our study was to develop a black spruce transcriptomic resource to facilitate on-going functional genomics projects related to growth and adaptation to climate change. We conducted bidirectional sequencing of cDNA clones from a standard cDNA library constructed from black spruce needle tissues. We obtained 4,594 high quality (2,455 5' end and 2,139 3' end) sequence reads, with an average read-length of 532 bp. Clustering and assembly of ESTs resulted in 2,731 unique sequences, consisting of 2,234 singletons and 497 contigs. Approximately two-thirds (63%) of unique sequences were functionally annotated. Genes involved in 36 molecular functions and 90 biological processes were discovered, including 24 putative transcription factors and 232 genes involved in photosynthesis. Most abundantly expressed transcripts were associated with photosynthesis, growth factors, stress and disease response, and transcription factors. A total of 216 full-length genes were identified. About 18% (493) of the transcripts were novel, representing an important addition to the Genbank EST database (dbEST). Fifty-seven di-, tri-, tetra- and penta-nucleotide simple sequence repeats were identified. We have developed the first high quality EST resource for black spruce and identified 493 novel transcripts, which may be species-specific related to life history and ecological traits. We have also

  14. The Ruby UCSC API: accessing the UCSC genome database using Ruby

    Directory of Open Access Journals (Sweden)

    Mishima Hiroyuki

    2012-09-01

    Full Text Available Abstract Background The University of California, Santa Cruz (UCSC genome database is among the most used sources of genomic annotation in human and other organisms. The database offers an excellent web-based graphical user interface (the UCSC genome browser and several means for programmatic queries. A simple application programming interface (API in a scripting language aimed at the biologist was however not yet available. Here, we present the Ruby UCSC API, a library to access the UCSC genome database using Ruby. Results The API is designed as a BioRuby plug-in and built on the ActiveRecord 3 framework for the object-relational mapping, making writing SQL statements unnecessary. The current version of the API supports databases of all organisms in the UCSC genome database including human, mammals, vertebrates, deuterostomes, insects, nematodes, and yeast. The API uses the bin index—if available—when querying for genomic intervals. The API also supports genomic sequence queries using locally downloaded *.2bit files that are not stored in the official MySQL database. The API is implemented in pure Ruby and is therefore available in different environments and with different Ruby interpreters (including JRuby. Conclusions Assisted by the straightforward object-oriented design of Ruby and ActiveRecord, the Ruby UCSC API will facilitate biologists to query the UCSC genome database programmatically. The API is available through the RubyGem system. Source code and documentation are available at https://github.com/misshie/bioruby-ucsc-api/ under the Ruby license. Feedback and help is provided via the website at http://rubyucscapi.userecho.com/.

  15. Genomic annotation of the meningioma tumor suppressor locus on chromosome 1p34.

    Science.gov (United States)

    Sulman, Erik P; White, Peter S; Brodeur, Garrett M

    2004-01-29

    Meningioma is a frequently occurring tumor of the meninges surrounding the central nervous system. Loss of the short arm of chromosome 1 (1p) is the second most frequent chromosomal abnormality observed in these tumors. Previously, we identified a 3.7 megabase (Mb) region of consistent deletion on 1p33-p34 in a panel of 157 tumors. Loss of this region was associated with advanced disease and predictive for tumor relapse. In this report, a high-resolution integrated map of the region was constructed (CompView) to identify all markers in the smallest region of overlapping deletion (SRO). A regional somatic cell hybrid panel was used to more precisely localize those markers identified in CompView as within or overlapping the region. Additional deletion mapping using microsatellites localized to the region narrowed the SRO to approximately 2.8 Mb. The 88 markers remaining in the SRO were used to screen genomic databases to identify large-insert clones. Clones were assembled into a physical map of the region by PCR-based, sequence-tagged site (STS) content mapping. A sequence from clones was used to validate STS content by electronic PCR and to identify transcripts. A minimal tiling path of 43 clones was constructed across the SRO. Sequence data from the most current sequence assembly were used for further validation. A total of 59 genes were ordered within the SRO. In all, 17 of these were selected as likely candidates based on annotation using Gene Ontology Consortium terms, including the MUTYH, PRDX1, FOXD2, FOXE3, PTCH2, and RAD54L genes. This annotation of a putative tumor suppressor locus provides a resource for further analysis of meningioma candidate genes.

  16. SoyTEdb: a comprehensive database of transposable elements in the soybean genome

    Directory of Open Access Journals (Sweden)

    Zhu Liucun

    2010-02-01

    Full Text Available Abstract Background Transposable elements are the most abundant components of all characterized genomes of higher eukaryotes. It has been documented that these elements not only contribute to the shaping and reshaping of their host genomes, but also play significant roles in regulating gene expression, altering gene function, and creating new genes. Thus, complete identification of transposable elements in sequenced genomes and construction of comprehensive transposable element databases are essential for accurate annotation of genes and other genomic components, for investigation of potential functional interaction between transposable elements and genes, and for study of genome evolution. The recent availability of the soybean genome sequence has provided an unprecedented opportunity for discovery, and structural and functional characterization of transposable elements in this economically important legume crop. Description Using a combination of structure-based and homology-based approaches, a total of 32,552 retrotransposons (Class I and 6,029 DNA transposons (Class II with clear boundaries and insertion sites were structurally annotated and clearly categorized, and a soybean transposable element database, SoyTEdb, was established. These transposable elements have been anchored in and integrated with the soybean physical map and genetic map, and are browsable and visualizable at any scale along the 20 soybean chromosomes, along with predicted genes and other sequence annotations. BLAST search and other infrastracture tools were implemented to facilitate annotation of transposable elements or fragments from soybean and other related legume species. The majority (> 95% of these elements (particularly a few hundred low-copy-number families are first described in this study. Conclusion SoyTEdb provides resources and information related to transposable elements in the soybean genome, representing the most comprehensive and the largest manually

  17. The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources.

    Science.gov (United States)

    Arnaud, Martha B; Cerqueira, Gustavo C; Inglis, Diane O; Skrzypek, Marek S; Binkley, Jonathan; Chibucos, Marcus C; Crabtree, Jonathan; Howarth, Clinton; Orvis, Joshua; Shah, Prachi; Wymore, Farrell; Binkley, Gail; Miyasato, Stuart R; Simison, Matt; Sherlock, Gavin; Wortman, Jennifer R

    2012-01-01

    The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available, web-based resource for researchers studying fungi of the genus Aspergillus, which includes organisms of clinical, agricultural and industrial importance. AspGD curators have now completed comprehensive review of the entire published literature about Aspergillus nidulans and Aspergillus fumigatus, and this annotation is provided with streamlined, ortholog-based navigation of the multispecies information. AspGD facilitates comparative genomics by providing a full-featured genomics viewer, as well as matched and standardized sets of genomic information for the sequenced aspergilli. AspGD also provides resources to foster interaction and dissemination of community information and resources. We welcome and encourage feedback at aspergillus-curator@lists.stanford.edu.

  18. ChickVD: a sequence variation database for the chicken genome

    DEFF Research Database (Denmark)

    Wang, Jing; He, Ximiao; Ruan, Jue

    2005-01-01

    Working in parallel with the efforts to sequence the chicken (Gallus gallus) genome, the Beijing Genomics Institute led an international team of scientists from China, USA, UK, Sweden, The Netherlands and Germany to map extensive DNA sequence variation throughout the chicken genome by sampling DNA...... from domestic breeds. Using the Red Jungle Fowl genome sequence as a reference, we identified 3.1 million non-redundant DNA sequence variants. To facilitate the application of our data to avian genetics and to provide a foundation for functional and evolutionary studies, we created the 'Chicken...... Variation Database' (ChickVD). A graphical MapView shows variants mapped onto the chicken genome in the context of gene annotations and other features, including genetic markers, trait loci, cDNAs, chicken orthologs of human disease genes and raw sequence traces. ChickVD also stores information...

  19. Private and Efficient Query Processing on Outsourced Genomic Databases.

    Science.gov (United States)

    Ghasemi, Reza; Al Aziz, Md Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian

    2017-09-01

    Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time consuming and expensive process. Second, it requires large-scale computation and storage systems to process genomic sequences. Third, genomic databases are often owned by different organizations, and thus, not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 Single Nucleotide Polymorphisms (SNPs) in a database of 20 000 records takes around 100 and 150 s, respectively.

  20. Genome sequencing and annotation of Morganella sp. SA36

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Morganella sp. Strain SA36, isolated from water spring in Aljouf region, Saudi Arabia. The draft genome size is 2,564,439 bp with a G + C content of 51.1% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDNQ00000000.

  1. Genome sequencing and annotation of Stenotrophomonas sp. SAM8

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Stenotrophomonas sp. strain SAM8, isolated from environmental water. The draft genome size is 3,665,538 bp with a G + C content of 67.2% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDAV00000000.

  2. Genome sequencing and annotation of Proteus sp. SAS71

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Proteus sp. strain SAS71, isolated from water spring in Aljouf region, Saudi Arabia. The draft genome size is 3,037,704 bp with a G + C content of 39.3% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDIU00000000.

  3. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    Science.gov (United States)

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  4. Genome sequencing and annotation of Cellulomonas sp. HZM

    Directory of Open Access Journals (Sweden)

    Patric Chua

    2015-09-01

    Full Text Available We report the draft genome sequence of Cellulomonas sp. HZM, isolated from a tropical peat swamp forest. The draft genome size is 3,559,280 bp with a G + C content of 73% and contains 3 rRNA sequences (single copies of 5S, 16S and 23S rRNA.

  5. Protein annotation in the era of personal genomics

    DEFF Research Database (Denmark)

    Holberg Blicher, Thomas; Gupta, Ramneek; Wesolowska, Agata;

    2010-01-01

    the differences between many individuals of the same species-humans in particular-the focus needs be on the functional impact of individual residue variation. To fulfil the promises of personal genomics, we need to start asking not only what is in a genome but also how millions of small differences between...

  6. The Mouse Genome Database (MGD): from genes to mice--a community resource for mouse biology.

    Science.gov (United States)

    Eppig, Janan T; Bult, Carol J; Kadin, James A; Richardson, Joel E; Blake, Judith A; Anagnostopoulos, A; Baldarelli, R M; Baya, M; Beal, J S; Bello, S M; Boddy, W J; Bradt, D W; Burkart, D L; Butler, N E; Campbell, J; Cassell, M A; Corbani, L E; Cousins, S L; Dahmen, D J; Dene, H; Diehl, A D; Drabkin, H J; Frazer, K S; Frost, P; Glass, L H; Goldsmith, C W; Grant, P L; Lennon-Pierce, M; Lewis, J; Lu, I; Maltais, L J; McAndrews-Hill, M; McClellan, L; Miers, D B; Miller, L A; Ni, L; Ormsby, J E; Qi, D; Reddy, T B K; Reed, D J; Richards-Smith, B; Shaw, D R; Sinclair, R; Smith, C L; Szauter, P; Walker, M B; Walton, D O; Washburn, L L; Witham, I T; Zhu, Y

    2005-01-01

    The Mouse Genome Database (MGD) forms the core of the Mouse Genome Informatics (MGI) system (http://www.informatics.jax.org), a model organism database resource for the laboratory mouse. MGD provides essential integration of experimental knowledge for the mouse system with information annotated from both literature and online sources. MGD curates and presents consensus and experimental data representations of genotype (sequence) through phenotype information, including highly detailed reports about genes and gene products. Primary foci of integration are through representations of relationships among genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse and to build and implement the data and semantic standards that are essential for comparative genome analysis. Recent improvements in MGD discussed here include the enhancement of phenotype resources, the re-development of the International Mouse Strain Resource, IMSR, the update of mammalian orthology datasets and the electronic publication of classic books in mouse genetics.

  7. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results......: We apply our method to 15 pairwise alignments of six different HIV2 genomes. Given sufficient evolutionary distance between the two sequences, we achieve sensitivity of about 84% and specificity of about 97%. We additionally annotate three pairwise alignments of the more distantly related HIV1...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  8. Sputnik: a database platform for comparative plant genomics.

    Science.gov (United States)

    Rudd, Stephen; Mewes, Hans-Werner; Mayer, Klaus F X

    2003-01-01

    Two million plant ESTs, from 20 different plant species, and totalling more than one 1000 Mbp of DNA sequence, represents a formidable transcriptomic resource. Sputnik uses the potential of this sequence resource to fill some of the information gap in the un-sequenced plant genomes and to serve as the foundation for in silicio comparative plant genomics. The complexity of the individual EST collections has been reduced using optimised EST clustering techniques. Annotation of cluster sequences is performed by exploiting and transferring information from the comprehensive knowledgebase already produced for the completed model plant genome (Arabidopsis thaliana) and by performing additional state of-the-art sequence analyses relevant to today's plant biologist. Functional predictions, comparative analyses and associative annotations for 500 000 plant EST derived peptides make Sputnik (http://mips.gsf.de/proj/sputnik/) a valid platform for contemporary plant genomics.

  9. Exploring an Annotated Sequence Assembly of the Perennial Ryegrass Genome for Genomic Regions Enriched for Trait Associated Variants

    DEFF Research Database (Denmark)

    Byrne, Stephen; Cericola, Fabio; Janss, Luc

    2015-01-01

    Perennial ryegrass (Lolium perenne L.) is an outbreeding diploid species and one of the most important forage crops used in temperate agriculture. We have developed a draft sequence assembly of the perennial ryegrass genome and annotated it with the aid of RNA-seq data from various genotypes, plant...

  10. PairWise Neighbours database: overlaps and spacers among prokaryote genomes

    Directory of Open Access Journals (Sweden)

    Garcia-Vallvé Santiago

    2009-06-01

    Full Text Available Abstract Background Although prokaryotes live in a variety of habitats and possess different metabolic and genomic complexity, they have several genomic architectural features in common. The overlapping genes are a common feature of the prokaryote genomes. The overlapping lengths tend to be short because as the overlaps become longer they have more risk of deleterious mutations. The spacers between genes tend to be short too because of the tendency to reduce the non coding DNA among prokaryotes. However they must be long enough to maintain essential regulatory signals such as the Shine-Dalgarno (SD sequence, which is responsible of an efficient translation. Description PairWise Neighbours is an interactive and intuitive database used for retrieving information about the spacers and overlapping genes among bacterial and archaeal genomes. It contains 1,956,294 gene pairs from 678 fully sequenced prokaryote genomes and is freely available at the URL http://genomes.urv.cat/pwneigh. This database provides information about the overlaps and their conservation across species. Furthermore, it allows the wide analysis of the intergenic regions providing useful information such as the location and strength of the SD sequence. Conclusion There are experiments and bioinformatic analysis that rely on correct annotations of the initiation site. Therefore, a database that studies the overlaps and spacers among prokaryotes appears to be desirable. PairWise Neighbours database permits the reliability analysis of the overlapping structures and the study of the SD presence and location among the adjacent genes, which may help to check the annotation of the initiation sites.

  11. The draft genome sequence and annotation of the desert woodrat Neotoma lepida

    Directory of Open Access Journals (Sweden)

    Michael Campbell

    2016-09-01

    Full Text Available We present the de novo draft genome sequence for a vertebrate mammalian herbivore, the desert woodrat (Neotoma lepida. This species is of ecological and evolutionary interest with respect to ingestion, microbial detoxification and hepatic metabolism of toxic plant secondary compounds from the highly toxic creosote bush (Larrea tridentata and the juniper shrub (Juniperus monosperma. The draft genome sequence and annotation have been deposited at GenBank under the accession LZPO01000000.

  12. The draft genome sequence and annotation of the desert woodrat Neotoma lepida.

    Science.gov (United States)

    Campbell, Michael; Oakeson, Kelly F; Yandell, Mark; Halpert, James R; Dearing, Denise

    2016-09-01

    We present the de novo draft genome sequence for a vertebrate mammalian herbivore, the desert woodrat (Neotoma lepida). This species is of ecological and evolutionary interest with respect to ingestion, microbial detoxification and hepatic metabolism of toxic plant secondary compounds from the highly toxic creosote bush (Larrea tridentata) and the juniper shrub (Juniperus monosperma). The draft genome sequence and annotation have been deposited at GenBank under the accession LZPO01000000.

  13. Genome sequencing and annotation of Aeromonas sp. HZM

    Directory of Open Access Journals (Sweden)

    Patric Chua

    2015-09-01

    Full Text Available We report the draft genome sequence of Aeromonas sp. strain HZM, isolated from tropical peat swamp forest soil. The draft genome size is 4,451,364 bp with a G + C content of 61.7% and contains 10 rRNA sequences (eight copies of 5S rRNA genes, single copy of 16S and 23S rRNA each. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JEMQ00000000.

  14. Analysis of high-throughput sequencing and annotation strategies for phage genomes.

    Directory of Open Access Journals (Sweden)

    Matthew R Henn

    Full Text Available BACKGROUND: Bacterial viruses (phages play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage. METHODOLOGY/PRINCIPAL FINDINGS: To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles, and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL or of a whole genome shotgun library (WGSL, or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling. CONCLUSIONS/SIGNIFICANCE: These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics.

  15. The 2008 update of the Aspergillus nidulans genome annotation : A community effort

    NARCIS (Netherlands)

    Wortman, Jennifer Russo; Gilsenan, Jane Mabey; Joardar, Vinita; Deegan, Jennifer; Clutterbuck, John; Andersen, Mikael R.; Archer, David; Bencina, Mojca; Braus, Gerhard; Coutinho, Pedro; von Doehren, Hans; Doonan, John; Driessen, Arnold J. M.; Durek, Pawel; Espeso, Eduardo; Fekete, Erzsebet; Flipphi, Michel; Garcia Estrada, Carlos; Geysens, Steven; Goldman, Gustavo; de Groot, Piet W. J.; Hansen, Kim; Harris, Steven D.; Heinekamp, Thorsten; Helmstaedt, Kerstin; Henrissat, Bernard; Hofmann, Gerald; Homan, Tim; Horio, Tetsuya; Horiuchi, Hiroyuki; James, Steve; Jones, Meriel; Karaffa, Levente; Karanyi, Zsolt; Kato, Masashi; Keller, Nancy; Kelly, Diane E.; Kiel, Jan A. K. W.; Kim, Jung-Mi; van der Klei, Ida J.; Klis, Frans M.; Kovalchuk, Andriy; Krasevec, Nada; Kubicek, Christian P.; Liu, Bo; MacCabe, Andrew; Meyer, Vera; Mirabito, Pete; Miskei, Marton; Mos, Magdalena; Mullins, Jonathan; Nelson, David R.; Nielsen, Jens; Oakley, Berl R.; Osmani, Stephen A.; Pakula, Tiina; Paszewski, Andrzej; Paulsen, Ian; Pilsyk, Sebastian; Pocsi, Istvan; Punt, Peter J.; Ram, Arthur F. J.; Ren, Qinghu; Robellet, Xavier; Robson, Geoff; Seiboth, Bernhard; van Solingen, Piet; Specht, Thomas; Sun, Jibin; Taheri-Talesh, Naimeh; Takeshita, Norio; Ussery, Dave; Vankuyk, Patricia A.; Visser, Hans; de Vondervoort, Peter J. I. van; Walton, Jonathan; Xiang, Xin; Xiong, Yi; Zeng, An Ping; Brandt, Bernd W.; Cornell, Michael J.; van den Hondel, Cees A. M. J. J.; Visser, Jacob; Oliver, Stephen G.; Turner, Geoffrey; Kraševec, Nada; Kuyk, Patricia A. van; Döhren, D.H.; van Seilboth, B; de Vries, R.

    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional

  16. The 2008 update of the Aspergillus nidulans genome annotation : a community effort

    NARCIS (Netherlands)

    Wortman, Jennifer Russo; Gilsenan, Jane Mabey; Joardar, Vinita; Deegan, Jennifer; Clutterbuck, John; Andersen, Mikael R; Archer, David; Bencina, Mojca; Braus, Gerhard; Coutinho, Pedro; von Döhren, Hans; Doonan, John; Driessen, Arnold J M; Durek, Pawel; Espeso, Eduardo; Fekete, Erzsébet; Flipphi, Michel; Estrada, Carlos Garcia; Geysens, Steven; Goldman, Gustavo; de Groot, Piet W J; Hansen, Kim; Harris, Steven D; Heinekamp, Thorsten; Helmstaedt, Kerstin; Henrissat, Bernard; Hofmann, Gerald; Homan, Tim; Horio, Tetsuya; Horiuchi, Hiroyuki; James, Steve; Jones, Meriel; Karaffa, Levente; Karányi, Zsolt; Kato, Masashi; Keller, Nancy; Kelly, Diane E; Kiel, Jan A K W; Kim, Jung-Mi; van der Klei, Ida J; Klis, Frans M; Kovalchuk, Andriy; Krasevec, Nada; Kubicek, Christian P; Liu, Bo; Maccabe, Andrew; Meyer, Vera; Mirabito, Pete; Miskei, Márton; Mos, Magdalena; Mullins, Jonathan; Nelson, David R; Nielsen, Jens; Oakley, Berl R; Osmani, Stephen A; Pakula, Tiina; Paszewski, Andrzej; Paulsen, Ian; Pilsyk, Sebastian; Pócsi, István; Punt, Peter J; Ram, Arthur F J; Ren, Qinghu; Robellet, Xavier; Robson, Geoff; Seiboth, Bernhard; van Solingen, Piet; Specht, Thomas; Sun, Jibin; Taheri-Talesh, Naimeh; Takeshita, Norio; Ussery, Dave; vanKuyk, Patricia A; Visser, Hans; van de Vondervoort, Peter J I; de Vries, Ronald P; Walton, Jonathan; Xiang, Xin; Xiong, Yi; Zeng, An Ping; Brandt, Bernd W; Cornell, Michael J; van den Hondel, Cees A M J J; Visser, Jacob; Oliver, Stephen G; Turner, Geoffrey

    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional

  17. The 2008 update of the Aspergillus nidulans genome annotation: A community effort

    DEFF Research Database (Denmark)

    Wortman, Jennifer Russo; Gilsenan, Jane Mabey; Joardar, Vinita

    2009-01-01

    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional ap...

  18. The 2008 update of the Aspergillus nidulans genome annotation: A community effort

    NARCIS (Netherlands)

    Wortman, J.R.; Gilsenan, J.M.; Joardar, V.; Deegan, J.; Clutterbuck, J.; Andersen, M.R.; Archer, D.; Bencina, M.; Braus, G.; Coutinho, P.; von Döhren, H.; Doonan, J.; Driessen, A.J.M.; Durek, P.; Espeso, E.; Fekete, E.; Flipphi, M.; Estrada, C.G.; Geysens, S.; Goldman, G.; de Groot, P.W.J.; Hansen, K.; Harris, S.D.; Heinekamp, T.; Helmstaedt, K.; Henrissat, B.; Hofmann, G.; Homan, T.; Horio, T.; Horiuchi, H.; James, S.; Jones, M.; Karaffa, L.; Karányi, Z.; Kato, M.; Keller, N.; Kelly, D.E.; Kiel, J.A.K.W.; Kim, J.M.; van der Klei, I.J.; Klis, F.M.; Kovalchuk, A.; Kraševec, N.; Kubicek, C.P.; Liu, B.; MacCabe, A.; Meyer, V.; Mirabito, P.; Miskei, M.; Mos, M.; Mullins, J.; Nelson, D.R.; Nielsen, J.; Oakley, B.R.; Osmani, S.A.; Pakula, T.; Paszewski, A.; Paulsen, I.; Pilsyk, S.; Pócsi, I.; Punt, P.J.; Ram, A.F.J.; Ren, Q.; Robellet, X.; Robson, G.; Seiboth, B.; van Solingen, P.; Specht, T.; Sun, J.; Taheri-Talesh, N.; Takeshita, N.; Ussery, D.; vanKuyk, P.A.; Visser, H.; van de Vondervoort, P.J.I.; de Vries, R.P.; Walton, J.; Xiang, X.; Xiong, Y.; Zeng, A.P.; Brandt, B.W.; Cornell, M.J.; van den Hondel, C.A.M.J.J.; Visser, J.; Oliver, S.G.; Turner, G.

    2009-01-01

    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional appli

  19. A combined approach for genome wide protein function annotation/prediction

    DEFF Research Database (Denmark)

    Benso, Alfredo; Di Carlo, Stefano; Ur Rehman, Hafeez

    2013-01-01

    proteins in functional genomics and biology in general motivates the use of computational techniques well orchestrated to accurately predict their functions. METHODS: We propose a computational flow for the functional annotation of a protein able to assign the most probable functions to a protein...

  20. Genome Sequence and Annotation of Colletotrichum higginsianum, a Causal Agent of Crucifer Anthracnose Disease.

    Science.gov (United States)

    Zampounis, Antonios; Pigné, Sandrine; Dallery, Jean-Félix; Wittenberg, Alexander H J; Zhou, Shiguo; Schwartz, David C; Thon, Michael R; O'Connell, Richard J

    2016-08-18

    Colletotrichum higginsianum is an ascomycete fungus causing anthracnose disease on numerous cultivated plants in the family Brassicaceae, as well as the model plant Arabidopsis thaliana We report an assembly of the nuclear genome and gene annotation of this pathogen, which was obtained using a combination of PacBio long-read sequencing and optical mapping. Copyright © 2016 Zampounis et al.

  1. Toward an Upgraded Honey Bee (Apis mellifera L.) Genome Annotation Using Proteogenomics.

    Science.gov (United States)

    McAfee, Alison; Harpur, Brock A; Michaud, Sarah; Beavis, Ronald C; Kent, Clement F; Zayed, Amro; Foster, Leonard J

    2016-02-05

    The honey bee is a key pollinator in agricultural operations as well as a model organism for studying the genetics and evolution of social behavior. The Apis mellifera genome has been sequenced and annotated twice over, enabling proteomics and functional genomics methods for probing relevant aspects of their biology. One troubling trend that emerged from proteomic analyses is that honey bee peptide samples consistently result in lower peptide identification rates compared with other organisms. This suggests that the genome annotation can be improved, or atypical biological processes are interfering with the mass spectrometry workflow. First, we tested whether high levels of polymorphisms could explain some of the missed identifications by searching spectra against the reference proteome (OGSv3.2) versus a customized proteome of a single honey bee, but our results indicate that this contribution was minor. Likewise, error-tolerant peptide searches lead us to eliminate unexpected post-translational modifications as a major factor in missed identifications. We then used a proteogenomic approach with ~1500 raw files to search for missing genes and new exons, to revive discarded annotations and to identify over 2000 new coding regions. These results will contribute to a more comprehensive genome annotation and facilitate continued research on this important insect.

  2. Sequence and annotation of the apicoplast genome of the human pathogen Babesia microti.

    Directory of Open Access Journals (Sweden)

    Aprajita Garg

    Full Text Available The apicomplexan intraerythrocytic parasite Babesia microti is an emerging human pathogen and the primary cause of human babesiosis, a malaria-like illness endemic in the United States. The pathogen is transmitted to humans by the tick vector, Ixodes scapularis, and by transfusion of blood from asymptomatic B. microti-infected donors. Whereas the nuclear and mitochondrial genomes of this parasite have been sequenced, assembled and annotated, its apicoplast genome remained incomplete, mainly due to its low representation and high A+T content. Here we report the complete sequence and annotation of the apicoplast genome of the B. microti R1 isolate. The genome consists of a 28.7 kb circular molecule encoding primarily functions important for maintenance of the apicoplast DNA, transcription, translation and maturation of organellar proteins. Genome analysis and annotation revealed a unique gene structure and organization of the B. microti apicoplast genome and suggest that all metabolic and non-housekeeping functions in this organelle are nuclear-encoded. B. microti apicoplast functions are significantly different from those of the host, suggesting that they might be useful as targets for development of potent and safe therapies for the treatment of human babesiosis.

  3. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins.

    Science.gov (United States)

    Pruitt, Kim D; Tatusova, Tatiana; Maglott, Donna R

    2005-01-01

    The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) provides a non-redundant collection of sequences representing genomic data, transcripts and proteins. Although the goal is to provide a comprehensive dataset representing the complete sequence information for any given species, the database pragmatically includes sequence data that are currently publicly available in the archival databases. The database incorporates data from over 2400 organisms and includes over one million proteins representing significant taxonomic diversity spanning prokaryotes, eukaryotes and viruses. Nucleotide and protein sequences are explicitly linked, and the sequences are linked to other resources including the NCBI Map Viewer and Gene. Sequences are annotated to include coding regions, conserved domains, variation, references, names, database cross-references, and other features using a combined approach of collaboration and other input from the scientific community, automated annotation, propagation from GenBank and curation by NCBI staff.

  4. Genome sequencing and annotation of Acinetobacter junii strain MTCC 11364

    Directory of Open Access Journals (Sweden)

    Indu Khatri

    2014-12-01

    Full Text Available The genus Acinetobacter consists of 31 validly published species ubiquitously distributed in nature and primarily associated with nosocomial infection. We report the 3.5 Mb draft genome of the Acinetobacter junii strain MTCC 11364. The genome has a G + C content of 38.0% and includes 3 rRNA genes (5S, 23S, 16S and 64 aminoacyl-tRNA synthetase genes.

  5. EcoGene: a genome sequence database for Escherichia coli K-12.

    Science.gov (United States)

    Rudd, K E

    2000-01-01

    The EcoGene database provides a set of gene and protein sequences derived from the genome sequence of Escherichia coli K-12. EcoGene is a source of re-annotated sequences for the SWISS-PROT and Colibri databases. EcoGene is used for genetic and physical map compilations in collaboration with the Coli Genetic Stock Center. The EcoGene12 release includes 4293 genes. EcoGene12 differs from the GenBank annotation of the complete genome sequence in several ways, including (i) the revision of 706 predicted or confirmed gene start sites, (ii) the correction or hypothetical reconstruction of 61 frame-shifts caused by either sequence error or mutation, (iii) the reconstruction of 14 protein sequences interrupted by the insertion of IS elements, and (iv) pre-dictions that 92 genes are partially deleted gene fragments. A literature survey identified 717 proteins whose N-terminal amino acids have been verified by sequencing. 12 446 cross-references to 6835 literature citations and s are provided. EcoGene is accessible at a new website: http://bmb.med.miami.edu/EcoGene/EcoWeb. Users can search and retrieve individual EcoGene GenePages or they can download large datasets for incorporation into database management systems, facilitating various genome-scale computational and functional analyses.

  6. Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry

    Directory of Open Access Journals (Sweden)

    De Loof Arnold

    2006-08-01

    Full Text Available Abstract Background For holometabolous insects there has been an explosion of proteomic and peptidomic information thanks to large genome sequencing projects. Heterometabolous insects, although comprising many important species, have been far less studied. The migratory locust Locusta migratoria, a heterometabolous insect, is one of the most infamous agricultural pests. They undergo a well-known and profound phase transition from the relatively harmless solitary form to a ferocious gregarious form. The underlying regulatory mechanisms of this phase transition are not fully understood, but it is undoubtedly that neuropeptides are involved. However, neuropeptide research in locusts is hampered by the absence of genomic information. Results Recently, EST (Expressed Sequence Tag databases from Locusta migratoria were constructed. Using bioinformatical tools, we searched these EST databases specifically for neuropeptide precursors. Based on known locust neuropeptide sequences, we confirmed the sequence of several previously identified neuropeptide precursors (i.e. pacifastin-related peptides, which consolidated our method. In addition, we found two novel neuroparsin precursors and annotated the hitherto unknown tachykinin precursor. Besides one of the known tachykinin peptides, this EST contained an additional tachykinin-like sequence. Using neuropeptide precursors from Drosophila melanogaster as a query, we succeeded in annotating the Locusta neuropeptide F, allatostatin-C and ecdysis-triggering hormone precursor, which until now had not been identified in locusts or in any other heterometabolous insect. For the tachykinin precursor, the ecdysis-triggering hormone precursor and the allatostatin-C precursor, translation of the predicted neuropeptides in neural tissues was confirmed with mass spectrometric techniques. Conclusion In this study we describe the annotation of 6 novel neuropeptide precursors and the neuropeptides they encode from the

  7. Genome sequencing and annotation of Amycolatopsis azurea DSM 43854T

    Directory of Open Access Journals (Sweden)

    Indu Khatri

    2014-12-01

    Full Text Available We report the 9.2 Mb genome of the azureomycin A and B antibiotic producing strain Amycolatopsis azurea isolated from a Japanese soil sample. The draft genome of strain DSM 43854T consists of 9,223,451 bp with a G + C content of 69.0% and the genome contains 3 rRNA genes (5S–23S–16S and 58 aminoacyl-tRNA synthetase genes. The homology searches revealed that the PKS gene clusters are supposed to be responsible for the biosynthesis of naptomycin, macbecin, rifamycin, mitomycin, maduropeptin enediyne, neocarzinostatin enediyne, C-1027 enediyne, calicheamicin enediyne, landomycin, simocyclinone, medermycin, granaticin, polyketomycin, teicoplanin, balhimycin, vancomycin, staurosporine, rubradirin and complestatin.

  8. Genome sequencing and annotation of multidrug resistant Mycobacterium tuberculosis (MDR-TB PR10 strain

    Directory of Open Access Journals (Sweden)

    Mohd Zakihalani A. Halim

    2016-03-01

    Full Text Available Here, we report the draft genome sequence and annotation of a multidrug resistant Mycobacterium tuberculosis strain PR10 (MDR-TB PR10 isolated from a patient diagnosed with tuberculosis. The size of the draft genome MDR-TB PR10 is 4.34 Mbp with 65.6% of G + C content and consists of 4637 predicted genes. The determinants were categorized by RAST into 400 subsystems with 4286 coding sequences and 50 RNAs. The whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number CP010968.

  9. Evolutionary interrogation of human biology in well-annotated genomic framework of rhesus macaque.

    Science.gov (United States)

    Zhang, Shi-Jian; Liu, Chu-Jun; Yu, Peng; Zhong, Xiaoming; Chen, Jia-Yu; Yang, Xinzhuang; Peng, Jiguang; Yan, Shouyu; Wang, Chenqu; Zhu, Xiaotong; Xiong, Jingwei; Zhang, Yong E; Tan, Bertrand Chin-Ming; Li, Chuan-Yun

    2014-05-01

    With genome sequence and composition highly analogous to human, rhesus macaque represents a unique reference for evolutionary studies of human biology. Here, we developed a comprehensive genomic framework of rhesus macaque, the RhesusBase2, for evolutionary interrogation of human genes and the associated regulations. A total of 1,667 next-generation sequencing (NGS) data sets were processed, integrated, and evaluated, generating 51.2 million new functional annotation records. With extensive NGS annotations, RhesusBase2 refined the fine-scale structures in 30% of the macaque Ensembl transcripts, reporting an accurate, up-to-date set of macaque gene models. On the basis of these annotations and accurate macaque gene models, we further developed an NGS-oriented Molecular Evolution Gateway to access and visualize macaque annotations in reference to human orthologous genes and associated regulations (www.rhesusbase.org/molEvo). We highlighted the application of this well-annotated genomic framework in generating hypothetical link of human-biased regulations to human-specific traits, by using mechanistic characterization of the DIEXF gene as an example that provides novel clues to the understanding of digestive system reduction in human evolution. On a global scale, we also identified a catalog of 9,295 human-biased regulatory events, which may represent novel elements that have a substantial impact on shaping human transcriptome and possibly underpin recent human phenotypic evolution. Taken together, we provide an NGS data-driven, information-rich framework that will broadly benefit genomics research in general and serves as an important resource for in-depth evolutionary studies of human biology.

  10. Gramene database: navigating plant comparative genomics resources

    Science.gov (United States)

    Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationship...

  11. Recent updates and developments to plant genome size databases

    Science.gov (United States)

    Garcia, Sònia; Leitch, Ilia J.; Anadon-Rosell, Alba; Canela, Miguel Á.; Gálvez, Francisco; Garnatje, Teresa; Gras, Airy; Hidalgo, Oriane; Johnston, Emmeline; Mas de Xaxars, Gemma; Pellicer, Jaume; Siljak-Yakovlev, Sonja; Vallès, Joan; Vitales, Daniel; Bennett, Michael D.

    2014-01-01

    Two plant genome size databases have been recently updated and/or extended: the Plant DNA C-values database (http://data.kew.org/cvalues), and GSAD, the Genome Size in Asteraceae database (http://www.asteraceaegenomesize.com). While the first provides information on nuclear DNA contents across land plants and some algal groups, the second is focused on one of the largest and most economically important angiosperm families, Asteraceae. Genome size data have numerous applications: they can be used in comparative studies on genome evolution, or as a tool to appraise the cost of whole-genome sequencing programs. The growing interest in genome size and increasing rate of data accumulation has necessitated the continued update of these databases. Currently, the Plant DNA C-values database (Release 6.0, Dec. 2012) contains data for 8510 species, while GSAD has 1219 species (Release 2.0, June 2013), representing increases of 17 and 51%, respectively, in the number of species with genome size data, compared with previous releases. Here we provide overviews of the most recent releases of each database, and outline new features of GSAD. The latter include (i) a tool to visually compare genome size data between species, (ii) the option to export data and (iii) a webpage containing information about flow cytometry protocols. PMID:24288377

  12. StellaBase: The Nematostella vectensis Genomics Database

    OpenAIRE

    James C Sullivan; Ryan, Joseph F; Watson, James A.; Webb, Jeramy; Mullikin, James C; Rokhsar, Daniel; Finnerty, John R

    2005-01-01

    StellaBase, the Nematostella vectensis Genomics Database, is a web-based resource that will facilitate desktop and bench-top studies of the starlet sea anemone. Nematostella is an emerging model organism that has already proven useful for addressing fundamental questions in developmental evolution and evolutionary genomics. StellaBase allows users to query the assembled Nematostella genome, a confirmed gene library, and a predicted genome using both keyword and homology based search functions...

  13. Annotation Method (AM) - Metabolonote | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available Method Details ID are merged into ID in the Simple search.) Title Annotation method name Description Describes details regarding ann...List Contact us Metabolonote Annotation Method (AM) Data detail Data name Annotation Method (AM) DOI 10.1890...8/lsdba.nbdc01324-007 Description of data contents Information about method of metabolite peak annotation. D...ata file File name: metabolonote_annotation_method_details.zip File URL: ftp://ftp.biosciencedbc.jp/archive/...metabolonote/LATEST/metabolonote_annotation_method_details.zip File size: 26 KB S

  14. A Compressed Self-Index for Genomic Databases

    CERN Document Server

    Gagie, Travis; Nekrich, Yakov; Puglisi, Simon J

    2011-01-01

    Advances in DNA sequencing technology will soon result in databases of thousands of genomes. Within a species, individuals' genomes are almost exact copies of each other; e.g., any two human genomes are 99.9% the same. Relative Lempel-Ziv (RLZ) compression takes advantage of this property: it stores the first genome uncompressed or as an FM-index, then compresses the other genomes with a variant of LZ77 that copies phrases only from the first genome. RLZ achieves good compression and supports fast random access; in this paper we show how to support fast search as well, thus obtaining an efficient compressed self-index.

  15. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.

    Science.gov (United States)

    Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias

    2014-08-01

    Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications.

  16. Tree shrew database (TreeshrewDB): a genomic knowledge base for the Chinese tree shrew.

    Science.gov (United States)

    Fan, Yu; Yu, Dandan; Yao, Yong-Gang

    2014-11-21

    The tree shrew (Tupaia belangeri) is a small mammal with a close relationship to primates and it has been proposed as an alternative experimental animal to primates in biomedical research. The recent release of a high-quality Chinese tree shrew genome enables more researchers to use this species as the model animal in their studies. With the aim to making the access to an extensively annotated genome database straightforward and easy, we have created the Tree shrew Database (TreeshrewDB). This is a web-based platform that integrates the currently available data from the tree shrew genome, including an updated gene set, with a systematic functional annotation and a mRNA expression pattern. In addition, to assist with automatic gene sequence analysis, we have integrated the common programs Blast, Muscle, GBrowse, GeneWise and codeml, into TreeshrewDB. We have also developed a pipeline for the analysis of positive selection. The user-friendly interface of TreeshrewDB, which is available at http://www.treeshrewdb.org, will undoubtedly help in many areas of biological research into the tree shrew.

  17. Missing semantic annotation in databases. The root cause for data integration and migration problems in information systems.

    Science.gov (United States)

    Dugas, M

    2014-01-01

    Data integration is a well-known grand challenge in information systems. It is highly relevant in medicine because of the multitude of patient data sources. Semantic annotations of data items regarding concept and value domain, based on comprehensive terminologies can facilitate data integration and migration. Therefore it should be implemented in databases from the very beginning.

  18. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    Motivation: Detecting genes in viral genomes is a complex task. Due to the biological necessity of them being constrained in length, RNA viruses in particular tend to code in overlapping reading frames. Since one amino acid is encoded by a triplet of nucleic acids, up to three genes may be coded...... allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  19. Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments

    LENUS (Irish Health Repository)

    OhEigeartaigh, Sean S

    2011-07-26

    Abstract Background In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically. Results We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in Saccharomyces cerevisiae. We found additional genes for the mating pheromone a-factor in six species including Kluyveromyces lactis. Conclusions SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external

  20. The mouse genome database: genotypes, phenotypes, and models of human disease.

    Science.gov (United States)

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2013-01-01

    The laboratory mouse is the premier animal model for studying human biology because all life stages can be accessed experimentally, a completely sequenced reference genome is publicly available and there exists a myriad of genomic tools for comparative and experimental research. In the current era of genome scale, data-driven biomedical research, the integration of genetic, genomic and biological data are essential for realizing the full potential of the mouse as an experimental model. The Mouse Genome Database (MGD; http://www.informatics.jax.org), the community model organism database for the laboratory mouse, is designed to facilitate the use of the laboratory mouse as a model system for understanding human biology and disease. To achieve this goal, MGD integrates genetic and genomic data related to the functional and phenotypic characterization of mouse genes and alleles and serves as a comprehensive catalog for mouse models of human disease. Recent enhancements to MGD include the addition of human ortholog details to mouse Gene Detail pages, the inclusion of microRNA knockouts to MGD's catalog of alleles and phenotypes, the addition of video clips to phenotype images, providing access to genotype and phenotype data associated with quantitative trait loci (QTL) and improvements to the layout and display of Gene Ontology annotations.

  1. pico-PLAZA, a genome database of microbial photosynthetic eukaryotes.

    Science.gov (United States)

    Vandepoele, Klaas; Van Bel, Michiel; Richard, Guilhem; Van Landeghem, Sofie; Verhelst, Bram; Moreau, Hervé; Van de Peer, Yves; Grimsley, Nigel; Piganeau, Gwenael

    2013-08-01

    With the advent of next generation genome sequencing, the number of sequenced algal genomes and transcriptomes is rapidly growing. Although a few genome portals exist to browse individual genome sequences, exploring complete genome information from multiple species for the analysis of user-defined sequences or gene lists remains a major challenge. pico-PLAZA is a web-based resource (http://bioinformatics.psb.ugent.be/pico-plaza/) for algal genomics that combines different data types with intuitive tools to explore genomic diversity, perform integrative evolutionary sequence analysis and study gene functions. Apart from homologous gene families, multiple sequence alignments, phylogenetic trees, Gene Ontology, InterPro and text-mining functional annotations, different interactive viewers are available to study genome organization using gene collinearity and synteny information. Different search functions, documentation pages, export functions and an extensive glossary are available to guide non-expert scientists. To illustrate the versatility of the platform, different case studies are presented demonstrating how pico-PLAZA can be used to functionally characterize large-scale EST/RNA-Seq data sets and to perform environmental genomics. Functional enrichments analysis of 16 Phaeodactylum tricornutum transcriptome libraries offers a molecular view on diatom adaptation to different environments of ecological relevance. Furthermore, we show how complementary genomic data sources can easily be combined to identify marker genes to study the diversity and distribution of algal species, for example in metagenomes, or to quantify intraspecific diversity from environmental strains.

  2. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants

    OpenAIRE

    2014-01-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10...

  3. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life.

    Science.gov (United States)

    Elbourne, Liam D H; Tetu, Sasha G; Hassan, Karl A; Paulsen, Ian T

    2017-01-04

    All cellular life contains an extensive array of membrane transport proteins. The vast majority of these transporters have not been experimentally characterized. We have developed a bioinformatic pipeline to identify and annotate complete sets of transporters in any sequenced genome. This pipeline is now fully automated enabling it to better keep pace with the accelerating rate of genome sequencing. This manuscript describes TransportDB 2.0 (http://www.membranetransport.org/transportDB2/), a completely updated version of TransportDB, which provides access to the large volumes of data generated by our automated transporter annotation pipeline. The TransportDB 2.0 web portal has been rebuilt to utilize contemporary JavaScript libraries, providing a highly interactive interface to the annotation information, and incorporates analysis tools that enable users to query the database on a number of levels. For example, TransportDB 2.0 includes tools that allow users to select annotated genomes of interest from the thousands of species held in the database and compare their complete transporter complements.

  4. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life

    Science.gov (United States)

    Elbourne, Liam D. H.; Tetu, Sasha G.; Hassan, Karl A.; Paulsen, Ian T.

    2017-01-01

    All cellular life contains an extensive array of membrane transport proteins. The vast majority of these transporters have not been experimentally characterized. We have developed a bioinformatic pipeline to identify and annotate complete sets of transporters in any sequenced genome. This pipeline is now fully automated enabling it to better keep pace with the accelerating rate of genome sequencing. This manuscript describes TransportDB 2.0 (http://www.membranetransport.org/transportDB2/), a completely updated version of TransportDB, which provides access to the large volumes of data generated by our automated transporter annotation pipeline. The TransportDB 2.0 web portal has been rebuilt to utilize contemporary JavaScript libraries, providing a highly interactive interface to the annotation information, and incorporates analysis tools that enable users to query the database on a number of levels. For example, TransportDB 2.0 includes tools that allow users to select annotated genomes of interest from the thousands of species held in the database and compare their complete transporter complements. PMID:27899676

  5. Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis

    OpenAIRE

    Ayele, Mulu; Haas, Brian J.; Kumar, Nikhil; Wu, Hank; Xiao, Yongli; Van Aken, Susan; Utterback, Teresa R.; WORTMAN, Jennifer R.; White, Owen R.; Town, Christopher D

    2005-01-01

    Through comparative studies of the model organism Arabidopsis thaliana and its close relative Brassica oleracea, we have identified conserved regions that represent potentially functional sequences overlooked by previous Arabidopsis genome annotation methods. A total of 454,274 whole genome shotgun sequences covering 283 Mb (0.44×) of the estimated 650 Mb Brassica genome were searched against the Arabidopsis genome, and conserved Arabidopsis genome sequences (CAGSs) were identified. Of these ...

  6. Advancing Trypanosoma brucei genome annotation through ribosome profiling and spliced leader mapping.

    Science.gov (United States)

    Parsons, Marilyn; Ramasamy, Gowthaman; Vasconcelos, Elton J R; Jensen, Bryan C; Myler, Peter J

    2015-08-01

    Since the initial publication of the trypanosomatid genomes, curation has been ongoing. Here we make use of existing Trypanosoma brucei ribosome profiling data to provide evidence of ribosome occupancy (and likely translation) of mRNAs from 225 currently unannotated coding sequences (CDSs). A small number of these putative genes correspond to extra copies of previously annotated genes, but 85% are novel. The median size of these novels CDSs is small (81 aa), indicating that past annotation work has excelled at detecting large CDSs. Of the unique CDSs confirmed here, over half have candidate orthologues in other trypanosomatid genomes, most of which were not yet annotated as protein-coding genes. Nonetheless, approximately one-third of the new CDSs were found only in T. brucei subspecies. Using ribosome footprints, RNA-Seq and spliced leader mapping data, we updated previous work to definitively revise the start sites for 414 CDSs as compared to the current gene models. The data pointed to several regions of the genome that had sequence errors that altered coding region boundaries. Finally, we consolidated this data with our previous work to propose elimination of 683 putative genes as protein-coding and arrive at a view of the translatome of slender bloodstream and procyclic culture form T. brucei.

  7. Tidying up international nucleotide sequence databases: ecological, geographical and sequence quality annotation of its sequences of mycorrhizal fungi.

    Directory of Open Access Journals (Sweden)

    Leho Tedersoo

    Full Text Available Sequence analysis of the ribosomal RNA operon, particularly the internal transcribed spacer (ITS region, provides a powerful tool for identification of mycorrhizal fungi. The sequence data deposited in the International Nucleotide Sequence Databases (INSD are, however, unfiltered for quality and are often poorly annotated with metadata. To detect chimeric and low-quality sequences and assign the ectomycorrhizal fungi to phylogenetic lineages, fungal ITS sequences were downloaded from INSD, aligned within family-level groups, and examined through phylogenetic analyses and BLAST searches. By combining the fungal sequence database UNITE and the annotation and search tool PlutoF, we also added metadata from the literature to these accessions. Altogether 35,632 sequences belonged to mycorrhizal fungi or originated from ericoid and orchid mycorrhizal roots. Of these sequences, 677 were considered chimeric and 2,174 of low read quality. Information detailing country of collection, geographical coordinates, interacting taxon and isolation source were supplemented to cover 78.0%, 33.0%, 41.7% and 96.4% of the sequences, respectively. These annotated sequences are publicly available via UNITE (http://unite.ut.ee/ for downstream biogeographic, ecological and taxonomic analyses. In European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/, the annotated sequences have a special link-out to UNITE. We intend to expand the data annotation to additional genes and all taxonomic groups and functional guilds of fungi.

  8. Genome sequencing and annotation of Amycolatopsis vancoresmycina strain DSM 44592T

    Directory of Open Access Journals (Sweden)

    Navjot Kaur

    2014-12-01

    Full Text Available We report the 9.0-Mb draft genome of Amycolatopsis vancoresmycina strain DSM 44592T, isolated from Indian soil sample; produces antibiotic vancoresmycin. Draft genome of strain DSM44592T consists of 9,037,069 bp with a G+C content of 71.79% and 8340 predicted protein coding genes and 57 RNAs. RAST annotation indicates that strains Streptomyces sp. AA4 (score 521, Saccharomonospora viridis DSM 43017 (score 400 and Actinosynnema mirum DSM 43827 (score 372 are the closest neighbors of the strain DSM 44592T.

  9. (reprocessed)CAGE_peaks_annotation - FANTOM5 | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us FANTOM5 (reprocessed)CAGE_peaks_annotation Data detail Data name (reprocessed)CAGE_peaks_ann... - - Description of data contents Annotation of human and mouse CAGE peaks and RNA transcriptional initiatio...rence sequences (hg38/mm10). Data file File name: (reprocessed)CAGE_peaks_annotation (Homo sapiens) File URL...: ftp://ftp.biosciencedbc.jp/archive/fantom5/datafiles/reprocessed/hg38_latest/extra/CAGE_peaks_annotation/ ...File size: 16 MB File name: (reprocessed)CAGE_peaks_annotation (Mus musculus) Fil

  10. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics.

    Science.gov (United States)

    Schoof, Heiko; Ernst, Rebecca; Nazarov, Vladimir; Pfeifer, Lukas; Mewes, Hans-Werner; Mayer, Klaus F X

    2004-01-01

    Arabidopsis thaliana is the most widely studied model plant. Functional genomics is intensively underway in many laboratories worldwide. Beyond the basic annotation of the primary sequence data, the annotated genetic elements of Arabidopsis must be linked to diverse biological data and higher order information such as metabolic or regulatory pathways. The MIPS Arabidopsis thaliana database MAtDB aims to provide a comprehensive resource for Arabidopsis as a genome model that serves as a primary reference for research in plants and is suitable for transfer of knowledge to other plants, especially crops. The genome sequence as a common backbone serves as a scaffold for the integration of data, while, in a complementary effort, these data are enhanced through the application of state-of-the-art bioinformatics tools. This information is visualized on a genome-wide and a gene-by-gene basis with access both for web users and applications. This report updates the information given in a previous report and provides an outlook on further developments. The MAtDB web interface can be accessed at http://mips.gsf.de/proj/thal/db.

  11. Ab initio gene identification: prokaryote genome annotation with GeneScan and GLIMMER

    Indian Academy of Sciences (India)

    Gautam Aggarwal; Ramakrishna Ramaswamy

    2002-02-01

    We compare the annotation of three complete genomes using the ab initio methods of gene identification GeneScan and GLIMMER. The annotation given in GenBank, the standard against which these are compared, has been made using GeneMark. We find a number of novel genes which are predicted by both methods used here, as well as a number of genes that are predicted by GeneMark, but are not identified by either of the nonconsensus methods that we have used. The three organisms studied here are all prokaryotic species with fairly compact genomes. The Fourier measure forms the basis for an efficient non-consensus method for gene prediction, and the algorithm GeneScan exploits this measure. We have bench-marked this program as well as GLIMMER using 3 complete prokaryotic genomes. An effort has also been made to study the limitations of these techniques for complete genome analysis. GeneScan and GLIMMER are of comparable accuracy insofar as gene-identification is concerned, with sensitivities and specificities typically greater than 0.9. The number of false predictions (both positive and negative) is higher for GeneScan as compared to GLIMMER, but in a significant number of cases, similar results are provided by the two techniques. This suggests that there could be some as-yet unidentified additional genes in these three genomes, and also that some of the putative identifications made hitherto might require re-evaluation. All these cases are discussed in detail.

  12. viruSITE—integrated database for viral genomics

    Science.gov (United States)

    Stano, Matej; Beke, Gabor; Klucar, Lubos

    2016-01-01

    Viruses are the most abundant biological entities and the reservoir of most of the genetic diversity in the Earth's biosphere. Viral genomes are very diverse, generally short in length and compared to other organisms carry only few genes. viruSITE is a novel database which brings together high-value information compiled from various resources. viruSITE covers the whole universe of viruses and focuses on viral genomes, genes and proteins. The database contains information on virus taxonomy, host range, genome features, sequential relatedness as well as the properties and functions of viral genes and proteins. All entries in the database are linked to numerous information resources. The above-mentioned features make viruSITE a comprehensive knowledge hub in the field of viral genomics. The web interface of the database was designed so as to offer an easy-to-navigate, intuitive and user-friendly environment. It provides sophisticated text searching and a taxonomy-based browsing system. viruSITE also allows for an alternative approach based on sequence search. A proprietary genome browser generates a graphical representation of viral genomes. In addition to retrieving and visualising data, users can perform comparative genomics analyses using a variety of tools. Database URL: http://www.virusite.org/ PMID:28025349

  13. Enchytraeus albidus microarray: enrichment, design, annotation and database (EnchyBASE.

    Directory of Open Access Journals (Sweden)

    Sara C Novais

    Full Text Available Enchytraeus albidus (Oligochaeta is an ecologically relevant species used as standard test organisms for risk assessment. Effects of stressors in this species are commonly determined at the population level using reproduction and survival as endpoints. The assessment of transcriptomic responses can be very useful e.g. to understand underlying mechanisms of toxicity with gene expression fingerprinting. In the present paper the following is being addressed: 1 development of suppressive subtractive hybridization (SSH libraries enriched for differentially expressed genes after metal and pesticide exposures; 2 sequencing and characterization of all generated cDNA inserts; 3 development of a publicly available genomic database on E. albidus. A total of 2100 Expressed Sequence Tags (ESTs were isolated, sequenced and assembled into 1124 clusters (947 singletons and 177 contigs. From these sequences, 41% matched known proteins in GenBank (BLASTX, e-value ≤ 10(-5 and 37% had at least one Gene Ontology (GO term assigned. In total, 5.5% of the sequences were assigned to a metabolic pathway, based on KEGG. With this new sequencing information, an Agilent custom oligonucleotide microarray was designed, representing a potential tool for transcriptomic studies. EnchyBASE (http://bioinformatics.ua.pt/enchybase/ was developed as a web freely available database containing genomic information on E. albidus and will be further extended in the near future for other enchytraeid species. The database so far includes all ESTs generated for E. albidus from three cDNA libraries. This information can be downloaded and applied in functional genomics and transcription studies.

  14. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  15. Improved genome annotation through untargeted detection of pathway-specific metabolites

    Directory of Open Access Journals (Sweden)

    Banfield Jillian F

    2011-06-01

    Full Text Available Abstract Background Mass spectrometry-based metabolomics analyses have the potential to complement sequence-based methods of genome annotation, but only if raw mass spectral data can be linked to specific metabolic pathways. In untargeted metabolomics, the measured mass of a detected compound is used to define the location of the compound in chemical space, but uncertainties in mass measurements lead to "degeneracies" in chemical space since multiple chemical formulae correspond to the same measured mass. We compare two methods to eliminate these degeneracies. One method relies on natural isotopic abundances, and the other relies on the use of stable-isotope labeling (SIL to directly determine C and N atom counts. Both depend on combinatorial explorations of the "chemical space" comprised of all possible chemical formulae comprised of biologically relevant chemical elements. Results Of 1532 metabolic pathways curated in the MetaCyc database, 412 contain a metabolite having a chemical formula unique to that metabolic pathway. Thus, chemical formulae alone can suffice to infer the presence of some metabolic pathways. Of 248,928 unique chemical formulae selected from the PubChem database, more than 95% had at least one degeneracy on the basis of accurate mass information alone. Consideration of natural isotopic abundance reduced degeneracy to 64%, but mainly for formulae less than 500 Da in molecular weight, and only if the error in the relative isotopic peak intensity was less than 10%. Knowledge of exact C and N atom counts as determined by SIL enabled reduced degeneracy, allowing for determination of unique chemical formula for 55% of the PubChem formulae. Conclusions To facilitate the assignment of chemical formulae to unknown mass-spectral features, profiling can be performed on cultures uniformly labeled with stable isotopes of nitrogen (15N or carbon (13C. This makes it possible to accurately count the number of carbon and nitrogen atoms in

  16. Uniform standards for genome databases in forest and fruit trees

    Science.gov (United States)

    TreeGenes and tfGDR serve the international forestry and fruit tree genomics research communities, respectively. These databases hold similar sequence data and provide resources for the submission and recovery of this information in order to enable comparative genomics research. Large-scale genotype...

  17. Bacillus pumilus SAFR-032 Genome Revisited: Sequence Update and Re-Annotation

    Science.gov (United States)

    Stepanov, Victor G.; Tirumalai, Madhan R.; Montazari, Saied; Checinska, Aleksandra; Venkateswaran, Kasthuri

    2016-01-01

    Bacillus pumilus strain SAFR-032 is a non-pathogenic spore-forming bacterium exhibiting an anomalously high persistence in bactericidal environments. In its dormant state, it is capable of withstanding doses of ultraviolet (UV) radiation or hydrogen peroxide, which are lethal for the vast majority of microorganisms. This unusual resistance profile has made SAFR-032 a reference strain for studies of bacterial spore resistance. The complete genome sequence of B. pumilus SAFR-032 was published in 2007 early in the genomics era. Since then, the SAFR-032 strain has frequently been used as a source of genetic/genomic information that was regarded as representative of the entire B. pumilus species group. Recently, our ongoing studies of conservation of gene distribution patterns in the complete genomes of various B. pumilus strains revealed indications of misassembly in the B. pumilus SAFR-032 genome. Synteny-driven local genome resequencing confirmed that the original SAFR-032 sequence contained assembly errors associated with long sequence repeats. The genome sequence was corrected according to the new findings. In addition, a significantly improved annotation is now available. Gene orders were compared and portions of the genome arrangement were found to be similar in a wide spectrum of Bacillus strains. PMID:27351589

  18. Bacillus pumilus SAFR-032 Genome Revisited: Sequence Update and Re-Annotation.

    Directory of Open Access Journals (Sweden)

    Victor G Stepanov

    Full Text Available Bacillus pumilus strain SAFR-032 is a non-pathogenic spore-forming bacterium exhibiting an anomalously high persistence in bactericidal environments. In its dormant state, it is capable of withstanding doses of ultraviolet (UV radiation or hydrogen peroxide, which are lethal for the vast majority of microorganisms. This unusual resistance profile has made SAFR-032 a reference strain for studies of bacterial spore resistance. The complete genome sequence of B. pumilus SAFR-032 was published in 2007 early in the genomics era. Since then, the SAFR-032 strain has frequently been used as a source of genetic/genomic information that was regarded as representative of the entire B. pumilus species group. Recently, our ongoing studies of conservation of gene distribution patterns in the complete genomes of various B. pumilus strains revealed indications of misassembly in the B. pumilus SAFR-032 genome. Synteny-driven local genome resequencing confirmed that the original SAFR-032 sequence contained assembly errors associated with long sequence repeats. The genome sequence was corrected according to the new findings. In addition, a significantly improved annotation is now available. Gene orders were compared and portions of the genome arrangement were found to be similar in a wide spectrum of Bacillus strains.

  19. Bacillus pumilus SAFR-032 Genome Revisited: Sequence Update and Re-Annotation.

    Science.gov (United States)

    Stepanov, Victor G; Tirumalai, Madhan R; Montazari, Saied; Checinska, Aleksandra; Venkateswaran, Kasthuri; Fox, George E

    2016-01-01

    Bacillus pumilus strain SAFR-032 is a non-pathogenic spore-forming bacterium exhibiting an anomalously high persistence in bactericidal environments. In its dormant state, it is capable of withstanding doses of ultraviolet (UV) radiation or hydrogen peroxide, which are lethal for the vast majority of microorganisms. This unusual resistance profile has made SAFR-032 a reference strain for studies of bacterial spore resistance. The complete genome sequence of B. pumilus SAFR-032 was published in 2007 early in the genomics era. Since then, the SAFR-032 strain has frequently been used as a source of genetic/genomic information that was regarded as representative of the entire B. pumilus species group. Recently, our ongoing studies of conservation of gene distribution patterns in the complete genomes of various B. pumilus strains revealed indications of misassembly in the B. pumilus SAFR-032 genome. Synteny-driven local genome resequencing confirmed that the original SAFR-032 sequence contained assembly errors associated with long sequence repeats. The genome sequence was corrected according to the new findings. In addition, a significantly improved annotation is now available. Gene orders were compared and portions of the genome arrangement were found to be similar in a wide spectrum of Bacillus strains.

  20. A field guide to whole-genome sequencing, assembly and annotation.

    Science.gov (United States)

    Ekblom, Robert; Wolf, Jochen B W

    2014-11-01

    Genome sequencing projects were long confined to biomedical model organisms and required the concerted effort of large consortia. Rapid progress in high-throughput sequencing technology and the simultaneous development of bioinformatic tools have democratized the field. It is now within reach for individual research groups in the eco-evolutionary and conservation community to generate de novo draft genome sequences for any organism of choice. Because of the cost and considerable effort involved in such an endeavour, the important first step is to thoroughly consider whether a genome sequence is necessary for addressing the biological question at hand. Once this decision is taken, a genome project requires careful planning with respect to the organism involved and the intended quality of the genome draft. Here, we briefly review the state of the art within this field and provide a step-by-step introduction to the workflow involved in genome sequencing, assembly and annotation with particular reference to large and complex genomes. This tutorial is targeted at scientists with a background in conservation genetics, but more generally, provides useful practical guidance for researchers engaging in whole-genome sequencing projects.

  1. Gene fusions and gene duplications: relevance to genomic annotation and functional analysis

    Directory of Open Access Journals (Sweden)

    Riley Monica

    2005-03-01

    Full Text Available Abstract Background Escherichia coli a model organism provides information for annotation of other genomes. Our analysis of its genome has shown that proteins encoded by fused genes need special attention. Such composite (multimodular proteins consist of two or more components (modules encoding distinct functions. Multimodular proteins have been found to complicate both annotation and generation of sequence similar groups. Previous work overstated the number of multimodular proteins in E. coli. This work corrects the identification of modules by including sequence information from proteins in 50 sequenced microbial genomes. Results Multimodular E. coli K-12 proteins were identified from sequence similarities between their component modules and non-fused proteins in 50 genomes and from the literature. We found 109 multimodular proteins in E. coli containing either two or three modules. Most modules had standalone sequence relatives in other genomes. The separated modules together with all the single (un-fused proteins constitute the sum of all unimodular proteins of E. coli. Pairwise sequence relationships among all E. coli unimodular proteins generated 490 sequence similar, paralogous groups. Groups ranged in size from 92 to 2 members and had varying degrees of relatedness among their members. Some E. coli enzyme groups were compared to homologs in other bacterial genomes. Conclusion The deleterious effects of multimodular proteins on annotation and on the formation of groups of paralogs are emphasized. To improve annotation results, all multimodular proteins in an organism should be detected and when known each function should be connected with its location in the sequence of the protein. When transferring functions by sequence similarity, alignment locations must be noted, particularly when alignments cover only part of the sequences, in order to enable transfer of the correct function. Separating multimodular proteins into module units makes

  2. wFleaBase: the Daphnia genome database

    Directory of Open Access Journals (Sweden)

    Singan Vasanth R

    2005-03-01

    Full Text Available Abstract Background wFleaBase is a database with the necessary infrastructure to curate, archive and share genetic, molecular and functional genomic data and protocols for an emerging model organism, the microcrustacean Daphnia. Commonly known as the water-flea, Daphnia's ecological merit is unequaled among metazoans, largely because of its sentinel role within freshwater ecosystems and over 200 years of biological investigations. By consequence, the Daphnia Genomics Consortium (DGC has launched an interdisciplinary research program to create the resources needed to study genes that affect ecological and evolutionary success in natural environments. Discussion These tools include the genome database wFleaBase, which currently contains functions to search and extract information from expressed sequenced tags, genome survey sequences and full genome sequencing projects. This new database is built primarily from core components of the Generic Model Organism Database project, and related bioinformatics tools. Summary Over the coming year, preliminary genetic maps and the nearly complete genomic sequence of Daphnia pulex will be integrated into wFleaBase, including gene predictions and ortholog assignments based on sequence similarities with eukaryote genes of known function. wFleaBase aims to serve a large ecological and evolutionary research community. Our challenge is to rapidly expand its content and to ultimately integrate genetic and functional genomic information with population-level responses to environmental challenges. URL: http://wfleabase.org/.

  3. The Fast Changing Landscape of Sequencing Technologies and Their Impact on Microbial Genome Assemblies and Annotation

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Brettin, Thomas S [ORNL; Quest, Daniel J [ORNL; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Clum, Alicia [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Cottingham, Robert W [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2012-01-01

    Background: The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. Methodology/Principal Findings: In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. Conclusion: These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).

  4. Kazusa Marker DataBase: a database for genomics, genetics, and molecular breeding in plants.

    Science.gov (United States)

    Shirasawa, Kenta; Isobe, Sachiko; Tabata, Satoshi; Hirakawa, Hideki

    2014-09-01

    In order to provide useful genomic information for agronomical plants, we have established a database, the Kazusa Marker DataBase (http://marker.kazusa.or.jp). This database includes information on DNA markers, e.g., SSR and SNP markers, genetic linkage maps, and physical maps, that were developed at the Kazusa DNA Research Institute. Keyword searches for the markers, sequence data used for marker development, and experimental conditions are also available through this database. Currently, 10 plant species have been targeted: tomato (Solanum lycopersicum), pepper (Capsicum annuum), strawberry (Fragaria × ananassa), radish (Raphanus sativus), Lotus japonicus, soybean (Glycine max), peanut (Arachis hypogaea), red clover (Trifolium pratense), white clover (Trifolium repens), and eucalyptus (Eucalyptus camaldulensis). In addition, the number of plant species registered in this database will be increased as our research progresses. The Kazusa Marker DataBase will be a useful tool for both basic and applied sciences, such as genomics, genetics, and molecular breeding in crops.

  5. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779.

    Directory of Open Access Journals (Sweden)

    Astrid Vieler

    Full Text Available Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis

  6. Discovery and annotation of small proteins using genomics, proteomics and computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan; Tschaplinski, Timothy J.; Hurst, Gregory B.; Jawdy, Sara; Abraham, Paul E.; Lankford, Patricia K.; Adams, Rachel M.; Shah, Manesh B.; Hettich, Robert L.; Lindquist, Erika; Kalluri, Udaya C.; Gunter, Lee E.; Pennacchio, Christa; Tuskan, Gerald A.

    2011-03-02

    Small proteins (10 200 amino acids aa in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering, and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained 2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10 200 aa in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: (1) codingpotential prediction, (2) evolutionary conservation between P. deltoides and other plant species, and (3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were supported by proteomics data. Of the 611 highest-confidence candidate sORF genes, 56 were new to the current Populus genome annotation. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  7. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    KAUST Repository

    Ohyanagi, Hajime

    2015-11-18

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a textbased browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tabdelimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/ scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  8. OryzaGenome: Genome Diversity Database of Wild Oryza Species.

    Science.gov (United States)

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  9. Development of a maize molecular evolutionary genomic database.

    Science.gov (United States)

    Du, Chunguang; Buckler, Edward; Muse, Spencer

    2003-01-01

    PANZEA is the first public database for studying maize genomic diversity. It was initiated as a repository of genomic diversity for an NSF Plant Genome project on 'Maize Evolutionary Genomics'. PANZEA is hosted at the Bioinformatics Research Center, North Carolina State University, and is open to the public (http://statgen.ncsu.edu/panzea). PANZEA is designed to capture the interrelationships between germplasm, molecular diversity, phenotypic diversity and genome structure. It has the ability to store, integrate and visualize DNA sequence, enzymatic, SSR (simple sequence repeat) marker, germplasm and phenotypic data. The relational data model is selected and implemented in Oracle. An automated DNA sequence data submission tool has been created that allows project researchers to remotely submit their DNA sequence data directly to PANZEA. On-line database search forms and reports have been created to allow users to search or download germplasm, DNA sequence, gene/locus data and much more, directly from the web.

  10. ProtRepeatsDB: a database of amino acid repeats in genomes

    Directory of Open Access Journals (Sweden)

    Chauhan Virander S

    2006-07-01

    Full Text Available Abstract Background Genome wide and cross species comparisons of amino acid repeats is an intriguing problem in biology mainly due to the highly polymorphic nature and diverse functions of amino acid repeats. Innate protein repeats constitute vital functional and structural regions in proteins. Repeats are of great consequence in evolution of proteins, as evident from analysis of repeats in different organisms. In the post genomic era, availability of protein sequences encoded in different genomes provides a unique opportunity to perform large scale comparative studies of amino acid repeats. ProtRepeatsDB http://bioinfo.icgeb.res.in/repeats/ is a relational database of perfect and mismatch repeats, access to which is designed as a resource and collection of tools for detection and cross species comparisons of different types of amino acid repeats. Description ProtRepeatsDB (v1.2 consists of perfect as well as mismatch amino acid repeats in the protein sequences of 141 organisms, the genomes of which are now available. The web interface of ProtRepeatsDB consists of different tools to perform repeat s; based on protein IDs, organism name, repeat sequences, and keywords as in FASTA headers, size, frequency, gene ontology (GO annotation IDs and regular expressions (REGEXP describing repeats. These tools also allow formulation of a variety of simple, complex and logical queries to facilitate mining and large-scale cross-species comparisons of amino acid repeats. In addition to this, the database also contains sequence analysis tools to determine repeats in user input sequences. Conclusion ProtRepeatsDB is a multi-organism database of different types of amino acid repeats present in proteins. It integrates useful tools to perform genome wide queries for rapid screening and identification of amino acid repeats and facilitates comparative and evolutionary studies of the repeats. The database is useful for identification of species or organism specific

  11. GeneTack database: genes with frameshifts in prokaryotic genomes and eukaryotic mRNA sequences.

    Science.gov (United States)

    Antonov, Ivan; Baranov, Pavel; Borodovsky, Mark

    2013-01-01

    Database annotations of prokaryotic genomes and eukaryotic mRNA sequences pay relatively low attention to frame transitions that disrupt protein-coding genes. Frame transitions (frameshifts) could be caused by sequencing errors or indel mutations inside protein-coding regions. Other observed frameshifts are related to recoding events (that evolved to control expression of some genes). Earlier, we have developed an algorithm and software program GeneTack for ab initio frameshift finding in intronless genes. Here, we describe a database (freely available at http://topaz.gatech.edu/GeneTack/db.html) containing genes with frameshifts (fs-genes) predicted by GeneTack. The database includes 206 991 fs-genes from 1106 complete prokaryotic genomes and 45 295 frameshifts predicted in mRNA sequences from 100 eukaryotic genomes. The whole set of fs-genes was grouped into clusters based on sequence similarity between fs-proteins (conceptually translated fs-genes), conservation of the frameshift position and frameshift direction (-1, +1). The fs-genes can be retrieved by similarity search to a given query sequence via a web interface, by fs-gene cluster browsing, etc. Clusters of fs-genes are characterized with respect to their likely origin, such as pseudogenization, phase variation, etc. The largest clusters contain fs-genes with programed frameshifts (related to recoding events).

  12. A Linked Data-Based Collaborative Annotation System for Increasing Learning Achievements

    Science.gov (United States)

    Zarzour, Hafed; Sellami, Mokhtar

    2017-01-01

    With the emergence of the Web 2.0, collaborative annotation practices have become more mature in the field of learning. In this context, several recent studies have shown the powerful effects of the integration of annotation mechanism in learning process. However, most of these studies provide poor support for semantically structured resources,…

  13. GO-FAANG meeting: a Gathering On Functional Annotation of Animal Genomes.

    Science.gov (United States)

    Tuggle, Christopher K; Giuffra, Elisabetta; White, Stephen N; Clarke, Laura; Zhou, Huaijun; Ross, Pablo J; Acloque, Hervé; Reecy, James M; Archibald, Alan; Bellone, Rebecca R; Boichard, Michèle; Chamberlain, Amanda; Cheng, Hans; Crooijmans, Richard P M A; Delany, Mary E; Finno, Carrie J; Groenen, Martien A M; Hayes, Ben; Lunney, Joan K; Petersen, Jessica L; Plastow, Graham S; Schmidt, Carl J; Song, Jiuzhou; Watson, Mick

    2016-10-01

    The Functional Annotation of Animal Genomes (FAANG) Consortium recently held a Gathering On FAANG (GO-FAANG) Workshop in Washington, DC on October 7-8, 2015. This consortium is a grass-roots organization formed to advance the annotation of newly assembled genomes of domesticated and non-model organisms (www.faang.org). The workshop gathered together from around the world a group of 100+ genome scientists, administrators, representatives of funding agencies and commodity groups to discuss the latest advancements of the consortium, new perspectives, next steps and implementation plans. The workshop was streamed live and recorded, and all talks, along with speaker slide presentations, are available at www.faang.org. In this report, we describe the major activities and outcomes of this meeting. We also provide updates on ongoing efforts to implement discussions and decisions taken at GO-FAANG to guide future FAANG activities. In summary, reference datasets are being established under pilot projects; plans for tissue sets, morphological classification and methods of sample collection for different tissues were organized; and core assays and data and meta-data analysis standards were established.

  14. StellaBase: the Nematostella vectensis Genomics Database.

    Science.gov (United States)

    Sullivan, James C; Ryan, Joseph F; Watson, James A; Webb, Jeramy; Mullikin, James C; Rokhsar, Daniel; Finnerty, John R

    2006-01-01

    StellaBase, the Nematostella vectensis Genomics Database, is a web-based resource that will facilitate desktop and bench-top studies of the starlet sea anemone. Nematostella is an emerging model organism that has already proven useful for addressing fundamental questions in developmental evolution and evolutionary genomics. StellaBase allows users to query the assembled Nematostella genome, a confirmed gene library, and a predicted genome using both keyword and homology based search functions. Data provided by these searches will elucidate gene family evolution in early animals. Unique research tools, including a Nematostella genetic stock library, a primer library, a literature repository and a gene expression library will provide support to the burgeoning Nematostella research community. The development of StellaBase accompanies significant upgrades to CnidBase, the Cnidarian Evolutionary Genomics Database. With the completion of the first sequenced cnidarian genome, genome comparison tools have been added to CnidBase. In addition, StellaBase provides a framework for the integration of additional species-specific databases into CnidBase. StellaBase is available at http://www.stellabase.org.

  15. Filtering "genic" open reading frames from genomic DNA samples for advanced annotation

    Directory of Open Access Journals (Sweden)

    Sblattero Daniele

    2011-06-01

    Full Text Available Abstract Background In order to carry out experimental gene annotation, DNA encoding open reading frames (ORFs derived from real genes (termed "genic" in the correct frame is required. When genes are correctly assigned, isolation of genic DNA for functional annotation can be carried out by PCR. However, not all genes are correctly assigned, and even when correctly assigned, gene products are often incorrectly folded when expressed in heterologous hosts. This is a problem that can sometimes be overcome by the expression of protein fragments encoding domains, rather than full-length proteins. One possible method to isolate DNA encoding such domains would to "filter" complex DNA (cDNA libraries, genomic and metagenomic DNA for gene fragments that confer a selectable phenotype relying on correct folding, with all such domains present in a complex DNA sample, termed the “domainome”. Results In this paper we discuss the preparation of diverse genic ORF libraries from randomly fragmented genomic DNA using ß-lactamase to filter out the open reading frames. By cloning DNA fragments between leader sequences and the mature ß-lactamase gene, colonies can be selected for resistance to ampicillin, conferred by correct folding of the lactamase gene. Our experiments demonstrate that the majority of surviving colonies contain genic open reading frames, suggesting that ß-lactamase is acting as a selectable folding reporter. Furthermore, different leaders (Sec, TAT and SRP, normally translocating different protein classes, filter different genic fragment subsets, indicating that their use increases the fraction of the “domainone” that is accessible. Conclusions The availability of ORF libraries, obtained with the filtering method described here, combined with screening methods such as phage display and protein-protein interaction studies, or with protein structure determination projects, can lead to the identification and structural determination of

  16. PeakAnalyzer: Genome-wide annotation of chromatin binding and modification loci

    Directory of Open Access Journals (Sweden)

    Tammoja Kairi

    2010-08-01

    Full Text Available Abstract Background Functional genomic studies involving high-throughput sequencing and tiling array applications, such as ChIP-seq and ChIP-chip, generate large numbers of experimentally-derived signal peaks across the genome under study. In analyzing these loci to determine their potential regulatory functions, areas of signal enrichment must be considered relative to proximal genes and regulatory elements annotated throughout the target genome Regions of chromatin association by transcriptional regulators should be distinguished as individual binding sites in order to enhance downstream analyses, such as the identification of known and novel consensus motifs. Results PeakAnalyzer is a set of high-performance utilities for the automated processing of experimentally-derived peak regions and annotation of genomic loci. The programs can accurately subdivide multimodal regions of signal enrichment into distinct subpeaks corresponding to binding sites or chromatin modifications, retrieve genomic sequences encompassing the computed subpeak summits, and identify positional features of interest such as intersection with exon/intron gene components, proximity to up- or downstream transcriptional start sites and cis-regulatory elements. The software can be configured to run either as a pipeline component for high-throughput analyses, or as a cross-platform desktop application with an intuitive user interface. Conclusions PeakAnalyzer comprises a number of utilities essential for ChIP-seq and ChIP-chip data analysis. High-performance implementations are provided for Unix pipeline integration along with a GUI version for interactive use. Source code in C++ and Java is provided, as are native binaries for Linux, Mac OS X and Windows systems.

  17. Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

    Directory of Open Access Journals (Sweden)

    Luo Ming-Cheng

    2011-01-01

    Full Text Available Abstract Background Many plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence. Results An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii-the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA

  18. Colorectal cancer atlas: An integrative resource for genomic and proteomic annotations from colorectal cancer cell lines and tissues.

    Science.gov (United States)

    Chisanga, David; Keerthikumar, Shivakumar; Pathan, Mohashin; Ariyaratne, Dinuka; Kalra, Hina; Boukouris, Stephanie; Mathew, Nidhi Abraham; Al Saffar, Haidar; Gangoda, Lahiru; Ang, Ching-Seng; Sieber, Oliver M; Mariadason, John M; Dasgupta, Ramanuj; Chilamkurti, Naveen; Mathivanan, Suresh

    2016-01-04

    In order to advance our understanding of colorectal cancer (CRC) development and progression, biomedical researchers have generated large amounts of OMICS data from CRC patient samples and representative cell lines. However, these data are deposited in various repositories or in supplementary tables. A database which integrates data from heterogeneous resources and enables analysis of the multidimensional data sets, specifically pertaining to CRC is currently lacking. Here, we have developed Colorectal Cancer Atlas (http://www.colonatlas.org), an integrated web-based resource that catalogues the genomic and proteomic annotations identified in CRC tissues and cell lines. The data catalogued to-date include sequence variations as well as quantitative and non-quantitative protein expression data. The database enables the analysis of these data in the context of signaling pathways, protein-protein interactions, Gene Ontology terms, protein domains and post-translational modifications. Currently, Colorectal Cancer Atlas contains data for >13 711 CRC tissues, >165 CRC cell lines, 62 251 protein identifications, >8.3 million MS/MS spectra, >18 410 genes with sequence variations (404 278 entries) and 351 pathways with sequence variants. Overall, Colorectal Cancer Atlas has been designed to serve as a central resource to facilitate research in CRC. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. ATLAS (Automatic Tool for Local Assembly Structures) - A Comprehensive Infrastructure for Assembly, Annotation, and Genomic Binning of Metagenomic and Metaranscripomic Data

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard A.; Brown, Joseph M.; Colby, Sean M.; Overall, Christopher C.; Lee, Joon-Yong; Zucker, Jeremy D.; Glaesemann, Kurt R.; Jansson, Georg C.; Jansson, Janet K.

    2017-03-02

    ATLAS (Automatic Tool for Local Assembly Structures) is a comprehensive multiomics data analysis pipeline that is massively parallel and scalable. ATLAS contains a modular analysis pipeline for assembly, annotation, quantification and genome binning of metagenomics and metatranscriptomics data and a framework for reference metaproteomic database construction. ATLAS transforms raw sequence data into functional and taxonomic data at the microbial population level and provides genome-centric resolution through genome binning. ATLAS provides robust taxonomy based on majority voting of protein coding open reading frames rolled-up at the contig level using modified lowest common ancestor (LCA) analysis. ATLAS provides robust taxonomy based on majority voting of protein coding open reading frames rolled-up at the contig level using modified lowest common ancestor (LCA) analysis. ATLAS is user-friendly, easy install through bioconda maintained as open-source on GitHub, and is implemented in Snakemake for modular customizable workflows.

  20. i-Genome: A database to summarize oligonucleotide data in genomes

    Directory of Open Access Journals (Sweden)

    Chang Yu-Chung

    2004-10-01

    Full Text Available Abstract Background Information on the occurrence of sequence features in genomes is crucial to comparative genomics, evolutionary analysis, the analyses of regulatory sequences and the quantitative evaluation of sequences. Computing the frequencies and the occurrences of a pattern in complete genomes is time-consuming. Results The proposed database provides information about sequence features generated by exhaustively computing the sequences of the complete genome. The repetitive elements in the eukaryotic genomes, such as LINEs, SINEs, Alu and LTR, are obtained from Repbase. The database supports various complete genomes including human, yeast, worm, and 128 microbial genomes. Conclusions This investigation presents and implements an efficiently computational approach to accumulate the occurrences of the oligonucleotides or patterns in complete genomes. A database is established to maintain the information of the sequence features, including the distributions of oligonucleotide, the gene distribution, the distribution of repetitive elements in genomes and the occurrences of the oligonucleotides. The database can provide more effective and efficient way to access the repetitive features in genomes.

  1. The de novo genome assembly and annotation of a female domestic dromedary of North African origin.

    Science.gov (United States)

    Fitak, Robert R; Mohandesan, Elmira; Corander, Jukka; Burger, Pamela A

    2016-01-01

    The single-humped dromedary (Camelus dromedarius) is the most numerous and widespread of domestic camel species and is a significant source of meat, milk, wool, transportation and sport for millions of people. Dromedaries are particularly well adapted to hot, desert conditions and harbour a variety of biological and physiological characteristics with evolutionary, economic and medical importance. To understand the genetic basis of these traits, an extensive resource of genomic variation is required. In this study, we assembled at 65× coverage, a 2.06 Gb draft genome of a female dromedary whose ancestry can be traced to an isolated population from the Canary Islands. We annotated 21,167 protein-coding genes and estimated ~33.7% of the genome to be repetitive. A comparison with the recently published draft genome of an Arabian dromedary resulted in 1.91 Gb of aligned sequence with a divergence of 0.095%. An evaluation of our genome with the reference revealed that our assembly contains more error-free bases (91.2%) and fewer scaffolding errors. We identified ~1.4 million single-nucleotide polymorphisms with a mean density of 0.71 × 10(-3) per base. An analysis of demographic history indicated that changes in effective population size corresponded with recent glacial epochs. Our de novo assembly provides a useful resource of genomic variation for future studies of the camel's adaptations to arid environments and economically important traits. Furthermore, these results suggest that draft genome assemblies constructed with only two differently sized sequencing libraries can be comparable to those sequenced using additional library sizes, highlighting that additional resources might be better placed in technologies alternative to short-read sequencing to physically anchor scaffolds to genome maps.

  2. Insights from the genome annotation of Elizabethkingia anophelis from the malaria vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Phanidhar Kukutla

    Full Text Available Elizabethkingia anophelis is a dominant bacterial species in the gut ecosystem of the malaria vector mosquito Anopheles gambiae. We recently sequenced the genomes of two strains of E. anophelis, R26T and Ag1, isolated from different strains of A. gambiae. The two bacterial strains are identical with a few exceptions. Phylogenetically, Elizabethkingia is closer to Chryseobacterium and Riemerella than to Flavobacterium. In line with other Bacteroidetes known to utilize various polymers in their ecological niches, the E. anophelis genome contains numerous TonB dependent transporters with various substrate specificities. In addition, several genes belonging to the polysaccharide utilization system and the glycoside hydrolase family were identified that could potentially be of benefit for the mosquito carbohydrate metabolism. In agreement with previous reports of broad antibiotic resistance in E. anophelis, a large number of genes encoding efflux pumps and β-lactamases are present in the genome. The component genes of resistance-nodulation-division type efflux pumps were found to be syntenic and conserved in different taxa of Bacteroidetes. The bacterium also displays hemolytic activity and encodes several hemolysins that may participate in the digestion of erythrocytes in the mosquito gut. At the same time, the OxyR regulon and antioxidant genes could provide defense against the oxidative stress that is associated with blood digestion. The genome annotation and comparative genomic analysis revealed functional characteristics associated with the symbiotic relationship with the mosquito host.

  3. The assembly and annotation of the complete Rufous-bellied thrush mitochondrial genome.

    Science.gov (United States)

    Gomes de Sá, Pablo; Veras, Adonney; Fontana, Carla Suertegaray; Aleixo, Alexandre; Burlamaqui, Tibério; Mello, Claudio Vianna; de Vasconcelos, Ana Tereza Ribeiro; Prosdocimi, Francisco; Ramos, Rommel; Schneider, Maria; Silva, Artur

    2017-03-01

    Among known bird species, oscines are one of the few groups that produce complex vocalizations due to vocal learning. One of the most conspicuous oscine passerines in southeastern South America is the Rufous-bellied Thrush, Turdus rufiventris. The complete mitochondrial genome of this species was sequenced with the Illumina HiSeq platform (Illumina Inc., San Diego, CA), assembled using MITObim software and annotated by MITOS web server and Artemis software. This mitogenome contained 16 669 bases, organized as 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and a control region (d-loop). The sequencing of the Rufous-bellied Thrush mitochondrial genome is of particular interest for better understanding of population genetics and phylogeography of the Turdidae family.

  4. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    Science.gov (United States)

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. New local potential useful for genome annotation and 3D modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Cohen, Fred E.

    2003-07-17

    A new potential energy function representing the conformational preferences of sequentially local regions of a protein backbone is presented. This potential is derived from secondary structure probabilities such as those produced by neural network-based prediction methods. The potential is applied to the problem of remote homolog identification, in combination with a distance dependent inter-residue potential and position-based scoring matrices. This fold recognition jury is implemented in a Java application called JThread. These methods are benchmarked on several test sets, including one released entirely after development and parameterization of JThread. In benchmark tests to identify known folds structurally similar (but not identical) to the native structure of a sequence, JThread performs significantly better than PSI-BLAST, with 10 percent more structures correctly identified as the most likely structural match in a fold library, and 20 percent more structures correctly narrowed down to a set of five possible candidates. JThread also significantly improves the average sequence alignment accuracy, from 53 percent to 62 percent of residues correctly aligned. Reliable fold assignments and alignments are identified, making the method useful for genome annotation. JThread is applied to predicted open reading frames (ORFs) from the genomes of Mycoplasma genitalium and Drosophila melanogaster, identifying 20 new structural annotations in the former and 801 in the latter.

  6. BBGD: an online database for blueberry genomic data

    Directory of Open Access Journals (Sweden)

    Matthews Benjamin F

    2007-01-01

    Full Text Available Abstract Background Blueberry is a member of the Ericaceae family, which also includes closely related cranberry and more distantly related rhododendron, azalea, and mountain laurel. Blueberry is a major berry crop in the United States, and one that has great nutritional and economical value. Extreme low temperatures, however, reduce crop yield and cause major losses to US farmers. A better understanding of the genes and biochemical pathways that are up- or down-regulated during cold acclimation is needed to produce blueberry cultivars with enhanced cold hardiness. To that end, the blueberry genomics database (BBDG was developed. Along with the analysis tools and web-based query interfaces, the database serves both the broader Ericaceae research community and the blueberry research community specifically by making available ESTs and gene expression data in searchable formats and in elucidating the underlying mechanisms of cold acclimation and freeze tolerance in blueberry. Description BBGD is the world's first database for blueberry genomics. BBGD is both a sequence and gene expression database. It stores both EST and microarray data and allows scientists to correlate expression profiles with gene function. BBGD is a public online database. Presently, the main focus of the database is the identification of genes in blueberry that are significantly induced or suppressed after low temperature exposure. Conclusion By using the database, researchers have developed EST-based markers for mapping and have identified a number of "candidate" cold tolerance genes that are highly expressed in blueberry flower buds after exposure to low temperatures.

  7. BBGD: an online database for blueberry genomic data.

    Science.gov (United States)

    Alkharouf, Nadim W; Dhanaraj, Anik L; Naik, Dhananjay; Overall, Chris; Matthews, Benjamin F; Rowland, Lisa J

    2007-01-30

    Blueberry is a member of the Ericaceae family, which also includes closely related cranberry and more distantly related rhododendron, azalea, and mountain laurel. Blueberry is a major berry crop in the United States, and one that has great nutritional and economical value. Extreme low temperatures, however, reduce crop yield and cause major losses to US farmers. A better understanding of the genes and biochemical pathways that are up- or down-regulated during cold acclimation is needed to produce blueberry cultivars with enhanced cold hardiness. To that end, the blueberry genomics database (BBDG) was developed. Along with the analysis tools and web-based query interfaces, the database serves both the broader Ericaceae research community and the blueberry research community specifically by making available ESTs and gene expression data in searchable formats and in elucidating the underlying mechanisms of cold acclimation and freeze tolerance in blueberry. BBGD is the world's first database for blueberry genomics. BBGD is both a sequence and gene expression database. It stores both EST and microarray data and allows scientists to correlate expression profiles with gene function. BBGD is a public online database. Presently, the main focus of the database is the identification of genes in blueberry that are significantly induced or suppressed after low temperature exposure. By using the database, researchers have developed EST-based markers for mapping and have identified a number of "candidate" cold tolerance genes that are highly expressed in blueberry flower buds after exposure to low temperatures.

  8. A primer on rapid prototyping of genomic databases in Prolog

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kaoru; Smith, C.L. [Lawrence Berkeley Lab., CA (United States); Overbeek, R. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1992-01-01

    This report presents a tutorial on how one might create an integrated database of genomic information. We outline the required steps for implementation, give a brief introduction to Prolog, and discuss the query facility supported by our system. Our goal is to enable researchers to being constructing their own biological information system.

  9. Tripal: a construction toolkit for online genome databases.

    Science.gov (United States)

    Ficklin, Stephen P; Sanderson, Lacey-Anne; Cheng, Chun-Huai; Staton, Margaret E; Lee, Taein; Cho, Il-Hyung; Jung, Sook; Bett, Kirstin E; Main, Doreen

    2011-01-01

    As the availability, affordability and magnitude of genomics and genetics research increases so does the need to provide online access to resulting data and analyses. Availability of a tailored online database is the desire for many investigators or research communities; however, managing the Information Technology infrastructure needed to create such a database can be an undesired distraction from primary research or potentially cost prohibitive. Tripal provides simplified site development by merging the power of Drupal, a popular web Content Management System with that of Chado, a community-derived database schema for storage of genomic, genetic and other related biological data. Tripal provides an interface that extends the content management features of Drupal to the data housed in Chado. Furthermore, Tripal provides a web-based Chado installer, genomic data loaders, web-based editing of data for organisms, genomic features, biological libraries, controlled vocabularies and stock collections. Also available are Tripal extensions that support loading and visualizations of NCBI BLAST, InterPro, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses, as well as an extension that provides integration of Tripal with GBrowse, a popular GMOD tool. An Application Programming Interface is available to allow creation of custom extensions by site developers, and the look-and-feel of the site is completely customizable through Drupal-based PHP template files. Addition of non-biological content and user-management is afforded through Drupal. Tripal is an open source and freely available software package found at http://tripal.sourceforge.net.

  10. Subfunction partitioning, the teleost radiation and the annotation of the human genome.

    Science.gov (United States)

    Postlethwait, John; Amores, Angel; Cresko, William; Singer, Amy; Yan, Yi-Lin

    2004-10-01

    Half of all vertebrate species are teleost fish. What accounts for this explosion of biodiversity? Recent evidence and advances in evolutionary theory suggest that genomic features could have played a significant role in the teleost radiation. This review examines evidence for an ancient whole-genome duplication (tetraploidization) event that probably occurred just before the teleost radiation. The partitioning of ancestral subfunctions between gene copies arising from this duplication could have contributed to the genetic isolation of populations, to lineage-specific diversification of developmental programs, and ultimately to phenotypic variation among teleost fish. Beyond its importance for understanding mechanisms that generate biodiversity, the partitioning of subfunctions between teleost co-orthologs of human genes can facilitate the identification of tissue-specific conserved noncoding regions and can simplify the analysis of ancestral gene functions obscured by pleiotropy or haploinsufficiency. Applying these principles on a genomic scale can accelerate the functional annotation of the human genome and understanding of the roles of human genes in health and disease.

  11. Integrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies.

    Directory of Open Access Journals (Sweden)

    Qiongshi Lu

    2016-04-01

    Full Text Available Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies. Integrative analysis of GenoSkyline annotations and results from genome-wide association studies (GWAS led to novel biological insights on the etiologies of a number of human complex traits. We also explored using tissue-specific functional annotations to prioritize GWAS signals and predict relevant tissue types for each risk locus. Brain and blood-specific annotations led to better prioritization performance for schizophrenia than standard GWAS p-values and non-tissue-specific annotations. As for coronary artery disease, heart-specific functional regions was highly enriched of GWAS signals, but previously identified risk loci were found to be most functional in other tissues, suggesting a substantial proportion of still undetected heart-related loci. In summary, GenoSkyline annotations can guide genetic studies at multiple resolutions and provide valuable insights in understanding complex diseases. GenoSkyline is available at http://genocanyon.med.yale.edu/GenoSkyline.

  12. Semantically enabling a genome-wide association study database

    Directory of Open Access Journals (Sweden)

    Beck Tim

    2012-12-01

    Full Text Available Abstract Background The amount of data generated from genome-wide association studies (GWAS has grown rapidly, but considerations for GWAS phenotype data reuse and interchange have not kept pace. This impacts on the work of GWAS Central – a free and open access resource for the advanced querying and comparison of summary-level genetic association data. The benefits of employing ontologies for standardising and structuring data are widely accepted. The complex spectrum of observed human phenotypes (and traits, and the requirement for cross-species phenotype comparisons, calls for reflection on the most appropriate solution for the organisation of human phenotype data. The Semantic Web provides standards for the possibility of further integration of GWAS data and the ability to contribute to the web of Linked Data. Results A pragmatic consideration when applying phenotype ontologies to GWAS data is the ability to retrieve all data, at the most granular level possible, from querying a single ontology graph. We found the Medical Subject Headings (MeSH terminology suitable for describing all traits (diseases and medical signs and symptoms at various levels of granularity and the Human Phenotype Ontology (HPO most suitable for describing phenotypic abnormalities (medical signs and symptoms at the most granular level. Diseases within MeSH are mapped to HPO to infer the phenotypic abnormalities associated with diseases. Building on the rich semantic phenotype annotation layer, we are able to make cross-species phenotype comparisons and publish a core subset of GWAS data as RDF nanopublications. Conclusions We present a methodology for applying phenotype annotations to a comprehensive genome-wide association dataset and for ensuring compatibility with the Semantic Web. The annotations are used to assist with cross-species genotype and phenotype comparisons. However, further processing and deconstructions of terms may be required to facilitate automatic

  13. EuPathDB: the eukaryotic pathogen genomics database resource

    Science.gov (United States)

    Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y.; Brestelli, John; Brunk, Brian P.; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S.; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C.; Lawrence, Cris; Li, Wei; Pinney, Deborah F.; Pulman, Jane A.; Roos, David S.; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J.; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie

    2017-01-01

    The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host–pathogen interactions. PMID:27903906

  14. EuPathDB: the eukaryotic pathogen genomics database resource.

    Science.gov (United States)

    Aurrecoechea, Cristina; Barreto, Ana; Basenko, Evelina Y; Brestelli, John; Brunk, Brian P; Cade, Shon; Crouch, Kathryn; Doherty, Ryan; Falke, Dave; Fischer, Steve; Gajria, Bindu; Harb, Omar S; Heiges, Mark; Hertz-Fowler, Christiane; Hu, Sufen; Iodice, John; Kissinger, Jessica C; Lawrence, Cris; Li, Wei; Pinney, Deborah F; Pulman, Jane A; Roos, David S; Shanmugasundram, Achchuthan; Silva-Franco, Fatima; Steinbiss, Sascha; Stoeckert, Christian J; Spruill, Drew; Wang, Haiming; Warrenfeltz, Susanne; Zheng, Jie

    2017-01-04

    The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs. All data are analyzed with the same workflows, including creation of gene orthology profiles, so data are easily compared across data sets, data types and organisms. EuPathDB is updated with numerous new analysis tools, features, data sets and data types. New tools include GO, metabolic pathway and word enrichment analyses plus an online workspace for analysis of personal, non-public, large-scale data. Expanded data content is mostly genomic and functional genomic data while new data types include protein microarray, metabolic pathways, compounds, quantitative proteomics, copy number variation, and polysomal transcriptomics. New features include consistent categorization of searches, data sets and genome browser tracks; redesigned gene pages; effective integration of alternative transcripts; and a EuPathDB Galaxy instance for private analyses of a user's data. Forthcoming upgrades include user workspaces for private integration of data with existing EuPathDB data and improved integration and presentation of host-pathogen interactions.

  15. ICDS database: interrupted CoDing sequences in prokaryotic genomes.

    Science.gov (United States)

    Perrodou, Emmanuel; Deshayes, Caroline; Muller, Jean; Schaeffer, Christine; Van Dorsselaer, Alain; Ripp, Raymond; Poch, Olivier; Reyrat, Jean-Marc; Lecompte, Odile

    2006-01-01

    Unrecognized frameshifts, in-frame stop codons and sequencing errors lead to Interrupted CoDing Sequence (ICDS) that can seriously affect all subsequent steps of functional characterization, from in silico analysis to high-throughput proteomic projects. Here, we describe the Interrupted CoDing Sequence database containing ICDS detected by a similarity-based approach in 80 complete prokaryotic genomes. ICDS can be retrieved by species browsing or similarity searches via a web interface (http://www-bio3d-igbmc.u-strasbg.fr/ICDS/). The definition of each interrupted gene is provided as well as the ICDS genomic localization with the surrounding sequence. Furthermore, to facilitate the experimental characterization of ICDS, we propose optimized primers for re-sequencing purposes. The database will be regularly updated with additional data from ongoing sequenced genomes. Our strategy has been validated by three independent tests: (i) ICDS prediction on a benchmark of artificially created frameshifts, (ii) comparison of predicted ICDS and results obtained from the comparison of the two genomic sequences of Bacillus licheniformis strain ATCC 14580 and (iii) re-sequencing of 25 predicted ICDS of the recently sequenced genome of Mycobacterium smegmatis. This allows us to estimate the specificity and sensitivity (95 and 82%, respectively) of our program and the efficiency of primer determination.

  16. Genome-Wide Functional Annotation of Human Protein-Coding Splice Variants Using Multiple Instance Learning.

    Science.gov (United States)

    Panwar, Bharat; Menon, Rajasree; Eksi, Ridvan; Li, Hong-Dong; Omenn, Gilbert S; Guan, Yuanfang

    2016-06-03

    The vast majority of human multiexon genes undergo alternative splicing and produce a variety of splice variant transcripts and proteins, which can perform different functions. These protein-coding splice variants (PCSVs) greatly increase the functional diversity of proteins. Most functional annotation algorithms have been developed at the gene level; the lack of isoform-level gold standards is an important intellectual limitation for currently available machine learning algorithms. The accumulation of a large amount of RNA-seq data in the public domain greatly increases our ability to examine the functional annotation of genes at isoform level. In the present study, we used a multiple instance learning (MIL)-based approach for predicting the function of PCSVs. We used transcript-level expression values and gene-level functional associations from the Gene Ontology database. A support vector machine (SVM)-based 5-fold cross-validation technique was applied. Comparatively, genes with multiple PCSVs performed better than single PCSV genes, and performance also improved when more examples were available to train the models. We demonstrated our predictions using literature evidence of ADAM15, LMNA/C, and DMXL2 genes. All predictions have been implemented in a web resource called "IsoFunc", which is freely available for the global scientific community through http://guanlab.ccmb.med.umich.edu/isofunc .

  17. Algal functional annotation tool

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, D. [UCLA; Casero, D. [UCLA; Cokus, S. J. [UCLA; Merchant, S. S. [UCLA; Pellegrini, M. [UCLA

    2012-07-01

    The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion.

  18. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  19. Construction of an integrated database to support genomic sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.; Overbeek, R.

    1994-11-01

    The central goal of this project is to develop an integrated database to support comparative analysis of genomes including DNA sequence data, protein sequence data, gene expression data and metabolism data. In developing the logic-based system GenoBase, a broader integration of available data was achieved due to assistance from collaborators. Current goals are to easily include new forms of data as they become available and to easily navigate through the ensemble of objects described within the database. This report comments on progress made in these areas.

  20. Emerging applications of read profiles towards the functional annotation of the genome

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Poirazi, Panayiota; Gorodkin, Jan

    2015-01-01

    to the research question addressed. Several strategies have been employed at varying levels of abstraction ranging from a somewhat ad hoc to a more systematic analysis of read profiles. These include methods which can compare read profiles, e.g., from direct (non-sequence based) alignments to classification...... is typically a result of the protocol designed to address specific research questions. The sequencing results in reads, which when mapped to a reference genome often leads to the formation of distinct patterns (read profiles). Interpretation of these read profiles is essential for their analysis in relation...... of patterns into functional groups. In this review, we highlight the emerging applications of read profiles for the annotation of non-coding RNA and cis-regulatory elements (CREs) such as enhancers and promoters. We also discuss the biological rationale behind their formation....

  1. Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Ronan K. Carroll

    2016-02-01

    Full Text Available In Staphylococcus aureus, hundreds of small regulatory or small RNAs (sRNAs have been identified, yet this class of molecule remains poorly understood and severely understudied. sRNA genes are typically absent from genome annotation files, and as a consequence, their existence is often overlooked, particularly in global transcriptomic studies. To facilitate improved detection and analysis of sRNAs in S. aureus, we generated updated GenBank files for three commonly used S. aureus strains (MRSA252, NCTC 8325, and USA300, in which we added annotations for >260 previously identified sRNAs. These files, the first to include genome-wide annotation of sRNAs in S. aureus, were then used as a foundation to identify novel sRNAs in the community-associated methicillin-resistant strain USA300. This analysis led to the discovery of 39 previously unidentified sRNAs. Investigating the genomic loci of the newly identified sRNAs revealed a surprising degree of inconsistency in genome annotation in S. aureus, which may be hindering the analysis and functional exploration of these elements. Finally, using our newly created annotation files as a reference, we perform a global analysis of sRNA gene expression in S. aureus and demonstrate that the newly identified tsr25 is the most highly upregulated sRNA in human serum. This study provides an invaluable resource to the S. aureus research community in the form of our newly generated annotation files, while at the same time presenting the first examination of differential sRNA expression in pathophysiologically relevant conditions.

  2. The FunGenES database: a genomics resource for mouse embryonic stem cell differentiation.

    Science.gov (United States)

    Schulz, Herbert; Kolde, Raivo; Adler, Priit; Aksoy, Irène; Anastassiadis, Konstantinos; Bader, Michael; Billon, Nathalie; Boeuf, Hélène; Bourillot, Pierre-Yves; Buchholz, Frank; Dani, Christian; Doss, Michael Xavier; Forrester, Lesley; Gitton, Murielle; Henrique, Domingos; Hescheler, Jürgen; Himmelbauer, Heinz; Hübner, Norbert; Karantzali, Efthimia; Kretsovali, Androniki; Lubitz, Sandra; Pradier, Laurent; Rai, Meena; Reimand, Jüri; Rolletschek, Alexandra; Sachinidis, Agapios; Savatier, Pierre; Stewart, Francis; Storm, Mike P; Trouillas, Marina; Vilo, Jaak; Welham, Melanie J; Winkler, Johannes; Wobus, Anna M; Hatzopoulos, Antonis K

    2009-09-03

    Embryonic stem (ES) cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the "Functional Genomics in Embryonic Stem Cells" consortium (FunGenES) has analyzed the transcriptome of mouse ES cells in eleven diverse settings representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have organized the results in an interactive database with a number of features and tools. Specifically, we have generated clusters of transcripts that behave the same way under the entire spectrum of the sixty-seven experimental conditions; we have assembled genes in groups according to their time of expression during successive days of ES cell differentiation; we have included expression profiles of specific gene classes such as transcription regulatory factors and Expressed Sequence Tags; transcripts have been arranged in "Expression Waves" and juxtaposed to genes with opposite or complementary expression patterns; we have designed search engines to display the expression profile of any transcript during ES cell differentiation; gene expression data have been organized in animated graphs of KEGG signaling and metabolic pathways; and finally, we have incorporated advanced functional annotations for individual genes or gene clusters of interest and links to microarray and genomic resources. The FunGenES database provides a comprehensive resource for studies into the biology of ES cells.

  3. The FunGenES database: a genomics resource for mouse embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Herbert Schulz

    Full Text Available Embryonic stem (ES cells have high self-renewal capacity and the potential to differentiate into a large variety of cell types. To investigate gene networks operating in pluripotent ES cells and their derivatives, the "Functional Genomics in Embryonic Stem Cells" consortium (FunGenES has analyzed the transcriptome of mouse ES cells in eleven diverse settings representing sixty-seven experimental conditions. To better illustrate gene expression profiles in mouse ES cells, we have organized the results in an interactive database with a number of features and tools. Specifically, we have generated clusters of transcripts that behave the same way under the entire spectrum of the sixty-seven experimental conditions; we have assembled genes in groups according to their time of expression during successive days of ES cell differentiation; we have included expression profiles of specific gene classes such as transcription regulatory factors and Expressed Sequence Tags; transcripts have been arranged in "Expression Waves" and juxtaposed to genes with opposite or complementary expression patterns; we have designed search engines to display the expression profile of any transcript during ES cell differentiation; gene expression data have been organized in animated graphs of KEGG signaling and metabolic pathways; and finally, we have incorporated advanced functional annotations for individual genes or gene clusters of interest and links to microarray and genomic resources. The FunGenES database provides a comprehensive resource for studies into the biology of ES cells.

  4. Core Data of Yeast Interacting Proteins Database (Annotation Updated Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available nteractions are required. Several sources including YPD (Yeast Proteome Database, Costanzo, M. C., Hogan, J....erse direction. *1 The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources

  5. Genome assembly and annotation of Arabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology.

    Science.gov (United States)

    Briskine, Roman V; Paape, Timothy; Shimizu-Inatsugi, Rie; Nishiyama, Tomoaki; Akama, Satoru; Sese, Jun; Shimizu, Kentaro K

    2016-09-27

    The self-incompatible species Arabidopsis halleri is a close relative of the self-compatible model plant Arabidopsis thaliana. The broad European and Asian distribution and heavy metal hyperaccumulation ability make A. halleri a useful model for ecological genomics studies. We used long-insert mate-pair libraries to improve the genome assembly of the A. halleri ssp. gemmifera Tada mine genotype (W302) collected from a site with high contamination by heavy metals in Japan. After five rounds of forced selfing, heterozygosity was reduced to 0.04%, which facilitated subsequent genome assembly. Our assembly now covers 196 Mb or 78% of the estimated genome size and achieved scaffold N50 length of 712 kb. To validate assembly and annotation, we used synteny of A. halleri Tada mine with a previously published high-quality reference assembly of a closely related species, Arabidopsis lyrata. Further validation of the assembly quality comes from synteny and phylogenetic analysis of the HEAVY METAL ATPASE4 (HMA4) and METAL TOLERANCE PROTEIN1 (MTP1) regions using published sequences from European A. halleri for comparison. Three tandemly duplicated copies of HMA4, key gene involved in cadmium and zinc hyperaccumulation, were assembled on a single scaffold. The assembly will enhance the genomewide studies of A. halleri as well as the allopolyploid Arabidopsis kamchatica derived from A. lyrata and A. halleri. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  6. A geographically-diverse collection of 418 human gut microbiome pathway genome databases

    KAUST Repository

    Hahn, Aria S.

    2017-04-11

    Advances in high-throughput sequencing are reshaping how we perceive microbial communities inhabiting the human body, with implications for therapeutic interventions. Several large-scale datasets derived from hundreds of human microbiome samples sourced from multiple studies are now publicly available. However, idiosyncratic data processing methods between studies introduce systematic differences that confound comparative analyses. To overcome these challenges, we developed GutCyc, a compendium of environmental pathway genome databases (ePGDBs) constructed from 418 assembled human microbiome datasets using MetaPathways, enabling reproducible functional metagenomic annotation. We also generated metabolic network reconstructions for each metagenome using the Pathway Tools software, empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways encoded by the human gut microbiome. For the first time, GutCyc provides consistent annotations and metabolic pathway predictions, making possible comparative community analyses between health and disease states in inflammatory bowel disease, Crohn’s disease, and type 2 diabetes. GutCyc data products are searchable online, or may be downloaded and explored locally using MetaPathways and Pathway Tools.

  7. The Plant Ontology Database: A Community Resource for Plant Structure and Developmental Stages Controlled Vocabulary and Annotations

    Science.gov (United States)

    The Plant Ontology Consortium (POC, http://www.plantontology.org) is a collaborative effort among model plant genome databases and plant researchers that aims to create, maintain and facilitate the use of a controlled vocabulary(ontology) for plants. The ontology allows users to ascribe attributes o...

  8. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins.

    Science.gov (United States)

    Pruitt, Kim D; Tatusova, Tatiana; Maglott, Donna R

    2007-01-01

    NCBI's reference sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) is a curated non-redundant collection of sequences representing genomes, transcripts and proteins. The database includes 3774 organisms spanning prokaryotes, eukaryotes and viruses, and has records for 2,879,860 proteins (RefSeq release 19). RefSeq records integrate information from multiple sources, when additional data are available from those sources and therefore represent a current description of the sequence and its features. Annotations include coding regions, conserved domains, tRNAs, sequence tagged sites (STS), variation, references, gene and protein product names, and database cross-references. Sequence is reviewed and features are added using a combined approach of collaboration and other input from the scientific community, prediction, propagation from GenBank and curation by NCBI staff. The format of all RefSeq records is validated, and an increasing number of tests are being applied to evaluate the quality of sequence and annotation, especially in the context of complete genomic sequence.

  9. SNPpy--database management for SNP data from genome wide association studies.

    Directory of Open Access Journals (Sweden)

    Faheem Mitha

    Full Text Available BACKGROUND: We describe SNPpy, a hybrid script database system using the Python SQLAlchemy library coupled with the PostgreSQL database to manage genotype data from Genome-Wide Association Studies (GWAS. This system makes it possible to merge study data with HapMap data and merge across studies for meta-analyses, including data filtering based on the values of phenotype and Single-Nucleotide Polymorphism (SNP data. SNPpy and its dependencies are open source software. RESULTS: The current version of SNPpy offers utility functions to import genotype and annotation data from two commercial platforms. We use these to import data from two GWAS studies and the HapMap Project. We then export these individual datasets to standard data format files that can be imported into statistical software for downstream analyses. CONCLUSIONS: By leveraging the power of relational databases, SNPpy offers integrated management and manipulation of genotype and phenotype data from GWAS studies. The analysis of these studies requires merging across GWAS datasets as well as patient and marker selection. To this end, SNPpy enables the user to filter the data and output the results as standardized GWAS file formats. It does low level and flexible data validation, including validation of patient data. SNPpy is a practical and extensible solution for investigators who seek to deploy central management of their GWAS data.

  10. Discovery of germline-related genes in Cephalochordate amphioxus: A genome wide survey using genome annotation and transcriptome data.

    Science.gov (United States)

    Yue, Jia-Xing; Li, Kun-Lung; Yu, Jr-Kai

    2015-12-01

    The generation of germline cells is a critical process in the reproduction of multicellular organisms. Studies in animal models have identified a common repertoire of genes that play essential roles in primordial germ cell (PGC) formation. However, comparative studies also indicate that the timing and regulation of this core genetic program vary considerably in different animals, raising the intriguing questions regarding the evolution of PGC developmental mechanisms in metazoans. Cephalochordates (commonly called amphioxus or lancelets) represent one of the invertebrate chordate groups and can provide important information about the evolution of developmental mechanisms in the chordate lineage. In this study, we used genome and transcriptome data to identify germline-related genes in two distantly related cephalochordate species, Branchiostoma floridae and Asymmetron lucayanum. Branchiostoma and Asymmetron diverged more than 120 MYA, and the most conspicuous difference between them is their gonadal morphology. We used important germline developmental genes in several model animals to search the amphioxus genome and transcriptome dataset for conserved homologs. We also annotated the assembled transcriptome data using Gene Ontology (GO) terms to facilitate the discovery of putative genes associated with germ cell development and reproductive functions in amphioxus. We further confirmed the expression of 14 genes in developing oocytes or mature eggs using whole mount in situ hybridization, suggesting their potential functions in amphioxus germ cell development. The results of this global survey provide a useful resource for testing potential functions of candidate germline-related genes in cephalochordates and for investigating differences in gonad developmental mechanisms between Branchiostoma and Asymmetron species.

  11. Integration and Querying of Genomic and Proteomic Semantic Annotations for Biomedical Knowledge Extraction.

    Science.gov (United States)

    Masseroli, Marco; Canakoglu, Arif; Ceri, Stefano

    2016-01-01

    Understanding complex biological phenomena involves answering complex biomedical questions on multiple biomolecular information simultaneously, which are expressed through multiple genomic and proteomic semantic annotations scattered in many distributed and heterogeneous data sources; such heterogeneity and dispersion hamper the biologists' ability of asking global queries and performing global evaluations. To overcome this problem, we developed a software architecture to create and maintain a Genomic and Proteomic Knowledge Base (GPKB), which integrates several of the most relevant sources of such dispersed information (including Entrez Gene, UniProt, IntAct, Expasy Enzyme, GO, GOA, BioCyc, KEGG, Reactome, and OMIM). Our solution is general, as it uses a flexible, modular, and multilevel global data schema based on abstraction and generalization of integrated data features, and a set of automatic procedures for easing data integration and maintenance, also when the integrated data sources evolve in data content, structure, and number. These procedures also assure consistency, quality, and provenance tracking of all integrated data, and perform the semantic closure of the hierarchical relationships of the integrated biomedical ontologies. At http://www.bioinformatics.deib.polimi.it/GPKB/, a Web interface allows graphical easy composition of queries, although complex, on the knowledge base, supporting also semantic query expansion and comprehensive explorative search of the integrated data to better sustain biomedical knowledge extraction.

  12. Amino acid sequences of predicted proteins and their annotation for 95 organism species. - Gclust Server | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us ...Gclust Server Amino acid sequences of predicted proteins and their annotation for 95 organism species. Data ...detail Data name Amino acid sequences of predicted proteins and their annotation for 95 organism species. De...scription of data contents Amino acid sequences of predicted proteins and their a...nload License Update History of This Database Site Policy | Contact Us Amino acid sequences of predicted pro

  13. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen [University of Chicago

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  14. ChIP-Seq-Annotated Heliconius erato Genome Highlights Patterns of cis-Regulatory Evolution in Lepidoptera.

    Science.gov (United States)

    Lewis, James J; van der Burg, Karin R L; Mazo-Vargas, Anyi; Reed, Robert D

    2016-09-13

    Uncovering phylogenetic patterns of cis-regulatory evolution remains a fundamental goal for evolutionary and developmental biology. Here, we characterize the evolution of regulatory loci in butterflies and moths using chromatin immunoprecipitation sequencing (ChIP-seq) annotation of regulatory elements across three stages of head development. In the process we provide a high-quality, functionally annotated genome assembly for the butterfly, Heliconius erato. Comparing cis-regulatory element conservation across six lepidopteran genomes, we find that regulatory sequences evolve at a pace similar to that of protein-coding regions. We also observe that elements active at multiple developmental stages are markedly more conserved than elements with stage-specific activity. Surprisingly, we also find that stage-specific proximal and distal regulatory elements evolve at nearly identical rates. Our study provides a benchmark for genome-wide patterns of regulatory element evolution in insects, and it shows that developmental timing of activity strongly predicts patterns of regulatory sequence evolution.

  15. Addition of a breeding database in the Genome Database for Rosaceae.

    Science.gov (United States)

    Evans, Kate; Jung, Sook; Lee, Taein; Brutcher, Lisa; Cho, Ilhyung; Peace, Cameron; Main, Dorrie

    2013-01-01

    Breeding programs produce large datasets that require efficient management systems to keep track of performance, pedigree, geographical and image-based data. With the development of DNA-based screening technologies, more breeding programs perform genotyping in addition to phenotyping for performance evaluation. The integration of breeding data with other genomic and genetic data is instrumental for the refinement of marker-assisted breeding tools, enhances genetic understanding of important crop traits and maximizes access and utility by crop breeders and allied scientists. Development of new infrastructure in the Genome Database for Rosaceae (GDR) was designed and implemented to enable secure and efficient storage, management and analysis of large datasets from the Washington State University apple breeding program and subsequently expanded to fit datasets from other Rosaceae breeders. The infrastructure was built using the software Chado and Drupal, making use of the Natural Diversity module to accommodate large-scale phenotypic and genotypic data. Breeders can search accessions within the GDR to identify individuals with specific trait combinations. Results from Search by Parentage lists individuals with parents in common and results from Individual Variety pages link to all data available on each chosen individual including pedigree, phenotypic and genotypic information. Genotypic data are searchable by markers and alleles; results are linked to other pages in the GDR to enable the user to access tools such as GBrowse and CMap. This breeding database provides users with the opportunity to search datasets in a fully targeted manner and retrieve and compare performance data from multiple selections, years and sites, and to output the data needed for variety release publications and patent applications. The breeding database facilitates efficient program management. Storing publicly available breeding data in a database together with genomic and genetic data will

  16. Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing.

    Science.gov (United States)

    Cramaro, Wibke J; Hunewald, Oliver E; Bell-Sakyi, Lesley; Muller, Claude P

    2017-02-08

    Global warming and other ecological changes have facilitated the expansion of Ixodes ricinus tick populations. Ixodes ricinus is the most important carrier of vector-borne pathogens in Europe, transmitting viruses, protozoa and bacteria, in particular Borrelia burgdorferi (sensu lato), the causative agent of Lyme borreliosis, the most prevalent vector-borne disease in humans in the Northern hemisphere. To faster control this disease vector, a better understanding of the I. ricinus tick is necessary. To facilitate such studies, we recently published the first reference genome of this highly prevalent pathogen vector. Here, we further extend these studies by scaffolding and annotating the first reference genome by using ultra-long sequencing reads from third generation single molecule sequencing. In addition, we present the first genome size estimation for I. ricinus ticks and the embryo-derived cell line IRE/CTVM19. 235,953 contigs were integrated into 204,904 scaffolds, extending the currently known genome lengths by more than 30% from 393 to 516 Mb and the N50 contig value by 87% from 1643 bp to a N50 scaffold value of 3067 bp. In addition, 25,263 sequences were annotated by comparison to the tick's North American relative Ixodes scapularis. After (conserved) hypothetical proteins, zinc finger proteins, secreted proteins and P450 coding proteins were the most prevalent protein categories annotated. Interestingly, more than 50% of the amino acid sequences matching the homology threshold had 95-100% identity to the corresponding I. scapularis gene models. The sequence information was complemented by the first genome size estimation for this species. Flow cytometry-based genome size analysis revealed a haploid genome size of 2.65Gb for I. ricinus ticks and 3.80 Gb for the cell line. We present a first draft sequence map of the I. ricinus genome based on a PacBio-Illumina assembly. The I. ricinus genome was shown to be 26% (500 Mb) larger than the genome of its

  17. Comparative genomic analysis of the family Iridoviridae: re-annotating and defining the core set of iridovirus genes

    Directory of Open Access Journals (Sweden)

    Upton Chris

    2007-01-01

    Full Text Available Abstract Background Members of the family Iridoviridae can cause severe diseases resulting in significant economic and environmental losses. Very little is known about how iridoviruses cause disease in their host. In the present study, we describe the re-analysis of the Iridoviridae family of complex DNA viruses using a variety of comparative genomic tools to yield a greater consensus among the annotated sequences of its members. Results A series of genomic sequence comparisons were made among, and between the Ranavirus and Megalocytivirus genera in order to identify novel conserved ORFs. Of these two genera, the Megalocytivirus genomes required the greatest number of altered annotations. Prior to our re-analysis, the Megalocytivirus species orange-spotted grouper iridovirus and rock bream iridovirus shared 99% sequence identity, but only 82 out of 118 potential ORFs were annotated; in contrast, we predict that these species share an identical complement of genes. These annotation changes allowed the redefinition of the group of core genes shared by all iridoviruses. Seven new core genes were identified, bringing the total number to 26. Conclusion Our re-analysis of genomes within the Iridoviridae family provides a unifying framework to understand the biology of these viruses. Further re-defining the core set of iridovirus genes will continue to lead us to a better understanding of the phylogenetic relationships between individual iridoviruses as well as giving us a much deeper understanding of iridovirus replication. In addition, this analysis will provide a better framework for characterizing and annotating currently unclassified iridoviruses.

  18. HIVBrainSeqDB: a database of annotated HIV envelope sequences from brain and other anatomical sites

    Directory of Open Access Journals (Sweden)

    O'Connor Niall

    2010-12-01

    Full Text Available Abstract Background The population of HIV replicating within a host consists of independently evolving and interacting sub-populations that can be genetically distinct within anatomical compartments. HIV replicating within the brain causes neurocognitive disorders in up to 20-30% of infected individuals and is a viral sanctuary site for the development of drug resistance. The primary determinant of HIV neurotropism is macrophage tropism, which is primarily determined by the viral envelope (env gene. However, studies of genetic aspects of HIV replicating in the brain are hindered because existing repositories of HIV sequences are not focused on neurotropic virus nor annotated with neurocognitive and neuropathological status. To address this need, we constructed the HIV Brain Sequence Database. Results The HIV Brain Sequence Database is a public database of HIV envelope sequences, directly sequenced from brain and other tissues from the same patients. Sequences are annotated with clinical data including viral load, CD4 count, antiretroviral status, neurocognitive impairment, and neuropathological diagnosis, all curated from the original publication. Tissue source is coded using an anatomical ontology, the Foundational Model of Anatomy, to capture the maximum level of detail available, while maintaining ontological relationships between tissues and their subparts. 44 tissue types are represented within the database, grouped into 4 categories: (i brain, brainstem, and spinal cord; (ii meninges, choroid plexus, and CSF; (iii blood and lymphoid; and (iv other (bone marrow, colon, lung, liver, etc. Patient coding is correlated across studies, allowing sequences from the same patient to be grouped to increase statistical power. Using Cytoscape, we visualized relationships between studies, patients and sequences, illustrating interconnections between studies and the varying depth of sequencing, patient number, and tissue representation across studies

  19. Dry and wet approaches for genome-wide functional annotation of conventional and unconventional transcriptional activators

    Directory of Open Access Journals (Sweden)

    Elisabetta Levati

    2016-01-01

    Full Text Available Transcription factors (TFs are master gene products that regulate gene expression in response to a variety of stimuli. They interact with DNA in a sequence-specific manner using a variety of DNA-binding domain (DBD modules. This allows to properly position their second domain, called “effector domain”, to directly or indirectly recruit positively or negatively acting co-regulators including chromatin modifiers, thus modulating preinitiation complex formation as well as transcription elongation. At variance with the DBDs, which are comprised of well-defined and easily recognizable DNA binding motifs, effector domains are usually much less conserved and thus considerably more difficult to predict. Also not so easy to identify are the DNA-binding sites of TFs, especially on a genome-wide basis and in the case of overlapping binding regions. Another emerging issue, with many potential regulatory implications, is that of so-called “moonlighting” transcription factors, i.e., proteins with an annotated function unrelated to transcription and lacking any recognizable DBD or effector domain, that play a role in gene regulation as their second job. Starting from bioinformatic and experimental high-throughput tools for an unbiased, genome-wide identification and functional characterization of TFs (especially transcriptional activators, we describe both established (and usually well affordable as well as newly developed platforms for DNA-binding site identification. Selected combinations of these search tools, some of which rely on next-generation sequencing approaches, allow delineating the entire repertoire of TFs and unconventional regulators encoded by the any sequenced genome.

  20. Annotated text databases in the context of the Kaj Munk corpus

    DEFF Research Database (Denmark)

    Sandborg-Petersen, Ulrik

    linguistic annotations of text. As I show in Chapter 10, it is certainly the case that all of the annotations with which we in the Kaj Munk Research Centre have desired to enrich the Kaj Munk Corpus, can be expressed in the EMdF model. The MQL query language is a “full access language”, supporting the four......D work has been carried out under the organizational umbrella of the Kaj Munk Research Centre at Aalborg University, Denmark. Kaj Munk (1898–1944) was an influential and prolific playwright, journalist, pastor, and poet, whose influence was widely felt — both inside and outside of Denmark — during...... the period between World War I and World War II. He was murdered by Gestapo in early January 1944 for his resistance stance. The two main tasks of the Kaj Munk Research Centre in which I have been involved during my PhD work are: a) Digitizing the nachlass of Kaj Munk, and b) Making the texts of Kaj Munk...

  1. Full Data of Yeast Interacting Proteins Database (Annotation Updated Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available st proteins and their interactions are required. Several sources including YPD (Yeast Proteome Database, Cos...ome database (WormPD): comprehensive resources for the organization and comparison of model organism protein

  2. Manual annotation and analysis of the defensin gene cluster in the C57BL/6J mouse reference genome

    Directory of Open Access Journals (Sweden)

    Dougan Gordon

    2009-12-01

    Full Text Available Abstract Background Host defense peptides are a critical component of the innate immune system. Human alpha- and beta-defensin genes are subject to copy number variation (CNV and historically the organization of mouse alpha-defensin genes has been poorly defined. Here we present the first full manual genomic annotation of the mouse defensin region on Chromosome 8 of the reference strain C57BL/6J, and the analysis of the orthologous regions of the human and rat genomes. Problems were identified with the reference assemblies of all three genomes. Defensins have been studied for over two decades and their naming has become a critical issue due to incorrect identification of defensin genes derived from different mouse strains and the duplicated nature of this region. Results The defensin gene cluster region on mouse Chromosome 8 A2 contains 98 gene loci: 53 are likely active defensin genes and 22 defensin pseudogenes. Several TATA box motifs were found for human and mouse defensin genes that likely impact gene expression. Three novel defensin genes belonging to the Cryptdin Related Sequences (CRS family were identified. All additional mouse defensin loci on Chromosomes 1, 2 and 14 were annotated and unusual splice variants identified. Comparison of the mouse alpha-defensins in the three main mouse reference gene sets Ensembl, Mouse Genome Informatics (MGI, and NCBI RefSeq reveals significant inconsistencies in annotation and nomenclature. We are collaborating with the Mouse Genome Nomenclature Committee (MGNC to establish a standardized naming scheme for alpha-defensins. Conclusions Prior to this analysis, there was no reliable reference gene set available for the mouse strain C57BL/6J defensin genes, demonstrating that manual intervention is still critical for the annotation of complex gene families and heavily duplicated regions. Accurate gene annotation is facilitated by the annotation of pseudogenes and regulatory elements. Manually curated gene

  3. Final Technical Report on the Genome Sequence DataBase (GSDB): DE-FG03 95 ER 62062 September 1997-September 1999

    Energy Technology Data Exchange (ETDEWEB)

    Harger, Carol A.

    1999-10-28

    Since September 1997 NCGR has produced two web-based tools for researchers to use to access and analyze data in the Genome Sequence DataBase (GSDB). These tools are: Sequence Viewer, a nucleotide sequence and annotation visualization tool, and MAR-Finder, a tool that predicts, base upon statistical inferences, the location of matrix attachment regions (MARS) within a nucleotide sequence. [The annual report for June 1996 to August 1997 is included as an attachment to this final report.

  4. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3.

    Science.gov (United States)

    Han, Mira V; Thomas, Gregg W C; Lugo-Martinez, Jose; Hahn, Matthew W

    2013-08-01

    Current sequencing methods produce large amounts of data, but genome assemblies constructed from these data are often fragmented and incomplete. Incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. This means that methods attempting to estimate rates of gene duplication and loss often will be misled by such errors and that rates of gene family evolution will be consistently overestimated. Here, we present a method that takes these errors into account, allowing one to accurately infer rates of gene gain and loss among genomes even with low assembly and annotation quality. The method is implemented in the newest version of the software package CAFE, along with several other novel features. We demonstrate the accuracy of the method with extensive simulations and reanalyze several previously published data sets. Our results show that errors in genome annotation do lead to higher inferred rates of gene gain and loss but that CAFE 3 sufficiently accounts for these errors to provide accurate estimates of important evolutionary parameters.

  5. MaizeGDB: The Maize Genetics and Genomics Database.

    Science.gov (United States)

    Harper, Lisa; Gardiner, Jack; Andorf, Carson; Lawrence, Carolyn J

    2016-01-01

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.

  6. The catfish genome database cBARBEL: an informatic platform for genome biology of ictalurid catfish.

    Science.gov (United States)

    Lu, Jianguo; Peatman, Eric; Yang, Qing; Wang, Shaolin; Hu, Zhiliang; Reecy, James; Kucuktas, Huseyin; Liu, Zhanjiang

    2011-01-01

    The catfish genome database, cBARBEL (abbreviated from catfish Breeder And Researcher Bioinformatics Entry Location) is an online open-access database for genome biology of ictalurid catfish (Ictalurus spp.). It serves as a comprehensive, integrative platform for all aspects of catfish genetics, genomics and related data resources. cBARBEL provides BLAST-based, fuzzy and specific search functions, visualization of catfish linkage, physical and integrated maps, a catfish EST contig viewer with SNP information overlay, and GBrowse-based organization of catfish genomic data based on sequence similarity with zebrafish chromosomes. Subsections of the database are tightly related, allowing a user with a sequence or search string of interest to navigate seamlessly from one area to another. As catfish genome sequencing proceeds and ongoing quantitative trait loci (QTL) projects bear fruit, cBARBEL will allow rapid data integration and dissemination within the catfish research community and to interested stakeholders. cBARBEL can be accessed at http://catfishgenome.org.

  7. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes.

    Science.gov (United States)

    Chan, Patricia P; Lowe, Todd M

    2016-01-01

    Transfer RNAs represent the largest, most ubiquitous class of non-protein coding RNA genes found in all living organisms. The tRNAscan-SE search tool has become the de facto standard for annotating tRNA genes in genomes, and the Genomic tRNA Database (GtRNAdb) was created as a portal for interactive exploration of these gene predictions. Since its published description in 2009, the GtRNAdb has steadily grown in content, and remains the most commonly cited web-based source of tRNA gene information. In this update, we describe not only a major increase in the number of tRNA predictions (>367000) and genomes analyzed (>4370), but more importantly, the integration of new analytic and functional data to improve the quality and biological context of tRNA gene predictions. New information drawn from other sources includes tRNA modification data, epigenetic data, single nucleotide polymorphisms, gene expression and evolutionary conservation. A richer set of analytic data is also presented, including better tRNA functional prediction, non-canonical features, predicted structural impacts from sequence variants and minimum free energy structural predictions. Views of tRNA genes in genomic context are provided via direct links to the UCSC genome browsers. The database can be searched by sequence or gene features, and is available at http://gtrnadb.ucsc.edu/.

  8. dbSUPER: a database of super-enhancers in mouse and human genome.

    Science.gov (United States)

    Khan, Aziz; Zhang, Xuegong

    2016-01-04

    Super-enhancers are clusters of transcriptional enhancers that drive cell-type-specific gene expression and are crucial to cell identity. Many disease-associated sequence variations are enriched in super-enhancer regions of disease-relevant cell types. Thus, super-enhancers can be used as potential biomarkers for disease diagnosis and therapeutics. Current studies have identified super-enhancers in more than 100 cell types and demonstrated their functional importance. However, a centralized resource to integrate all these findings is not currently available. We developed dbSUPER (http://bioinfo.au.tsinghua.edu.cn/dbsuper/), the first integrated and interactive database of super-enhancers, with the primary goal of providing a resource for assistance in further studies related to transcriptional control of cell identity and disease. dbSUPER provides a responsive and user-friendly web interface to facilitate efficient and comprehensive search and browsing. The data can be easily sent to Galaxy instances, GREAT and Cistrome web-servers for downstream analysis, and can also be visualized in the UCSC genome browser where custom tracks can be added automatically. The data can be downloaded and exported in variety of formats. Furthermore, dbSUPER lists genes associated with super-enhancers and also links to external databases such as GeneCards, UniProt and Entrez. dbSUPER also provides an overlap analysis tool to annotate user-defined regions. We believe dbSUPER is a valuable resource for the biology and genetic research communities.

  9. Integrative analysis of functional genomic annotations and sequencing data to identify rare causal variants via hierarchical modeling

    Directory of Open Access Journals (Sweden)

    Marinela eCapanu

    2015-05-01

    Full Text Available Identifying the small number of rare causal variants contributing to disease has beena major focus of investigation in recent years, but represents a formidable statisticalchallenge due to the rare frequencies with which these variants are observed. In thiscommentary we draw attention to a formal statistical framework, namely hierarchicalmodeling, to combine functional genomic annotations with sequencing data with theobjective of enhancing our ability to identify rare causal variants. Using simulations weshow that in all configurations studied, the hierarchical modeling approach has superiordiscriminatory ability compared to a recently proposed aggregate measure of deleteriousness,the Combined Annotation-Dependent Depletion (CADD score, supportingour premise that aggregate functional genomic measures can more accurately identifycausal variants when used in conjunction with sequencing data through a hierarchicalmodeling approach

  10. A new database (GCD) on genome composition for eukaryote and prokaryote genome sequences and their initial analyses.

    Science.gov (United States)

    Kryukov, Kirill; Sumiyama, Kenta; Ikeo, Kazuho; Gojobori, Takashi; Saitou, Naruya

    2012-01-01

    Eukaryote genomes contain many noncoding regions, and they are quite complex. To understand these complexities, we constructed a database, Genome Composition Database, for the whole genome composition statistics for 101 eukaryote genome data, as well as more than 1,000 prokaryote genomes. Frequencies of all possible one to ten oligonucleotides were counted for each genome, and these observed values were compared with expected values computed under observed oligonucleotide frequencies of length 1-4. Deviations from expected values were much larger for eukaryotes than prokaryotes, except for fungal genomes. Mammalian genomes showed the largest deviation among animals. The results of comparison are available online at http://esper.lab.nig.ac.jp/genome-composition-database/.

  11. CASCAD : a database of annotated candidate single nucleotide polymorphisms associated with expressed sequences

    NARCIS (Netherlands)

    Guryev, Victor; Berezikov, Eugene; Cuppen, Edwin

    2005-01-01

    BACKGROUND: With the recent progress made in large-scale genome sequencing projects a vast amount of novel data is becoming available. A comparative sequence analysis, exploiting sequence information from various resources, can be used to uncover hidden information, such as genetic variation. Althou

  12. Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria.

    Science.gov (United States)

    Liu, Junyan; Li, Lin; Peters, Brian M; Li, Bing; Deng, Yang; Xu, Zhenbo; Shirtliff, Mark E

    2016-09-01

    Lactobacillus acetotolerans is a hard-to-culture beer-spoilage bacterium capable of entering into the viable putative nonculturable (VPNC) state. As part of an initial strategy to investigate the phenotypic behavior of L. acetotolerans, draft genome sequencing was performed. Results demonstrated a total of 1824 predicted annotated genes, with several potential VPNC- and beer-spoilage-associated genes identified. Importantly, this is the first genome sequence of L. acetotolerans as beer-spoilage bacteria and it may aid in further analysis of L. acetotolerans and other beer-spoilage bacteria, with direct implications for food safety control in the beer brewing industry.

  13. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-12-01

    Full Text Available Abstract Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas.

  14. Statistical analysis of genomic protein family and domain controlled annotations for functional investigation of classified gene lists

    Directory of Open Access Journals (Sweden)

    Masseroli Marco

    2007-03-01

    Full Text Available Abstract Background The increasing protein family and domain based annotations constitute important information to understand protein functions and gain insight into relations among their codifying genes. To allow analyzing of gene proteomic annotations, we implemented novel modules within GFINDer, a Web system we previously developed that dynamically aggregates functional and phenotypic annotations of user-uploaded gene lists and allows performing their statistical analysis and mining. Results Exploiting protein information in Pfam and InterPro databanks, we developed and added in GFINDer original modules specifically devoted to the exploration and analysis of functional signatures of gene protein products. They allow annotating numerous user-classified nucleotide sequence identifiers with controlled information on related protein families, domains and functional sites, classifying them according to such protein annotation categories, and statistically analyzing the obtained classifications. In particular, when uploaded nucleotide sequence identifiers are subdivided in classes, the Statistics Protein Families&Domains module allows estimating relevance of Pfam or InterPro controlled annotations for the uploaded genes by highlighting protein signatures significantly more represented within user-defined classes of genes. In addition, the Logistic Regression module allows identifying protein functional signatures that better explain the considered gene classification. Conclusion Novel GFINDer modules provide genomic protein family and domain analyses supporting better functional interpretation of gene classes, for instance defined through statistical and clustering analyses of gene expression results from microarray experiments. They can hence help understanding fundamental biological processes and complex cellular mechanisms influenced by protein domain composition, and contribute to unveil new biomedical knowledge about the codifying genes.

  15. DFLAT: functional annotation for human development.

    Science.gov (United States)

    Wick, Heather C; Drabkin, Harold; Ngu, Huy; Sackman, Michael; Fournier, Craig; Haggett, Jessica; Blake, Judith A; Bianchi, Diana W; Slonim, Donna K

    2014-02-07

    Recent increases in genomic studies of the developing human fetus and neonate have led to a need for widespread characterization of the functional roles of genes at different developmental stages. The Gene Ontology (GO), a valuable and widely-used resource for characterizing gene function, offers perhaps the most suitable functional annotation system for this purpose. However, due in part to the difficulty of studying molecular genetic effects in humans, even the current collection of comprehensive GO annotations for human genes and gene products often lacks adequate developmental context for scientists wishing to study gene function in the human fetus. The Developmental FunctionaL Annotation at Tufts (DFLAT) project aims to improve the quality of analyses of fetal gene expression and regulation by curating human fetal gene functions using both manual and semi-automated GO procedures. Eligible annotations are then contributed to the GO database and included in GO releases of human data. DFLAT has produced a considerable body of functional annotation that we demonstrate provides valuable information about developmental genomics. A collection of gene sets (genes implicated in the same function or biological process), made by combining existing GO annotations with the 13,344 new DFLAT annotations, is available for use in novel analyses. Gene set analyses of expression in several data sets, including amniotic fluid RNA from fetuses with trisomies 21 and 18, umbilical cord blood, and blood from newborns with bronchopulmonary dysplasia, were conducted both with and without the DFLAT annotation. Functional analysis of expression data using the DFLAT annotation increases the number of implicated gene sets, reflecting the DFLAT's improved representation of current knowledge. Blinded literature review supports the validity of newly significant findings obtained with the DFLAT annotations. Newly implicated significant gene sets also suggest specific hypotheses for future

  16. Heterogeneous data analysis for annotation of microRNAs and novel genome assembly

    NARCIS (Netherlands)

    Zhang, Yanju

    2011-01-01

    This thesis is the collection of four published papers demonstrating annotation of genes and microRNAs with the aid of bioinformatics, in particular using heterogeneous data integration. Gene annotation is the process of detecting the structure and biological function of the raw DNA sequences; while

  17. Facilitating functional annotation of chicken microarray data

    Directory of Open Access Journals (Sweden)

    Gresham Cathy R

    2009-10-01

    Full Text Available Abstract Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO. However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and

  18. AraPPISite: a database of fine-grained protein-protein interaction site annotations for Arabidopsis thaliana.

    Science.gov (United States)

    Li, Hong; Yang, Shiping; Wang, Chuan; Zhou, Yuan; Zhang, Ziding

    2016-09-01

    Knowledge about protein interaction sites provides detailed information of protein-protein interactions (PPIs). To date, nearly 20,000 of PPIs from Arabidopsis thaliana have been identified. Nevertheless, the interaction site information has been largely missed by previously published PPI databases. Here, AraPPISite, a database that presents fine-grained interaction details for A. thaliana PPIs is established. First, the experimentally determined 3D structures of 27 A. thaliana PPIs are collected from the Protein Data Bank database and the predicted 3D structures of 3023 A. thaliana PPIs are modeled by using two well-established template-based docking methods. For each experimental/predicted complex structure, AraPPISite not only provides an interactive user interface for browsing interaction sites, but also lists detailed evolutionary and physicochemical properties of these sites. Second, AraPPISite assigns domain-domain interactions or domain-motif interactions to 4286 PPIs whose 3D structures cannot be modeled. In this case, users can easily query protein interaction regions at the sequence level. AraPPISite is a free and user-friendly database, which does not require user registration or any configuration on local machines. We anticipate AraPPISite can serve as a helpful database resource for the users with less experience in structural biology or protein bioinformatics to probe the details of PPIs, and thus accelerate the studies of plant genetics and functional genomics. AraPPISite is available at http://systbio.cau.edu.cn/arappisite/index.html .

  19. Homology-based annotation of non-coding RNAs in the genomes of Schistosoma mansoni and Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Santana Clara

    2009-10-01

    Full Text Available Abstract Background Schistosomes are trematode parasites of the phylum Platyhelminthes. They are considered the most important of the human helminth parasites in terms of morbidity and mortality. Draft genome sequences are now available for Schistosoma mansoni and Schistosoma japonicum. Non-coding RNA (ncRNA plays a crucial role in gene expression regulation, cellular function and defense, homeostasis, and pathogenesis. The genome-wide annotation of ncRNAs is a non-trivial task unless well-annotated genomes of closely related species are already available. Results A homology search for structured ncRNA in the genome of S. mansoni resulted in 23 types of ncRNAs with conserved primary and secondary structure. Among these, we identified rRNA, snRNA, SL RNA, SRP, tRNAs and RNase P, and also possibly MRP and 7SK RNAs. In addition, we confirmed five miRNAs that have recently been reported in S. japonicum and found two additional homologs of known miRNAs. The tRNA complement of S. mansoni is comparable to that of the free-living planarian Schmidtea mediterranea, although for some amino acids differences of more than a factor of two are observed: Leu, Ser, and His are overrepresented, while Cys, Meth, and Ile are underrepresented in S. mansoni. On the other hand, the number of tRNAs in the genome of S. japonicum is reduced by more than a factor of four. Both schistosomes have a complete set of minor spliceosomal snRNAs. Several ncRNAs that are expected to exist in the S. mansoni genome were not found, among them the telomerase RNA, vault RNAs, and Y RNAs. Conclusion The ncRNA sequences and structures presented here represent the most complete dataset of ncRNA from any lophotrochozoan reported so far. This data set provides an important reference for further analysis of the genomes of schistosomes and indeed eukaryotic genomes at large.

  20. Annotation Of Novel And Conserved MicroRNA Genes In The Build 10 Sus scrofa Reference Genome And Determination Of Their Expression Levels In Ten Different Tissues

    DEFF Research Database (Denmark)

    Thomsen, Bo; Nielsen, Mathilde; Hedegaard, Jakob

    The DNA template used in the pig genome sequencing project was provided by a Duroc pig named TJ Tabasco. In an effort to annotate microRNA (miRNA) genes in the reference genome we have conducted deep sequencing to determine the miRNA transcriptomes in ten different tissues isolated from Pinky......, a genetically identical clone of TJ Tabasco. The purpose was to generate miRNA sequences that are highly homologous to the reference genome sequence, which along with computational prediction will improve confidence in the genomic annotation of miRNA genes. Based on homology searches of the sequence data...

  1. Nuclear-like Seq in mt Genome - RMG | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us RMG Nuclear...-like Seq in mt Genome Data detail Data name Nuclear-like Seq in mt Genome Description of data co...t This Database Database Description Download License Update History of This Database Site Policy | Contact Us Nuclear-like Seq in mt Genome - RMG | LSDB Archive ...

  2. Genomics and Public Health Research: Can the State Allow Access to Genomic Databases?

    Directory of Open Access Journals (Sweden)

    M Stanton Jean

    2012-04-01

    Full Text Available Because many diseases are multifactorial disorders,the scientific progress in genomics and genetics should be taken into consideration in public health research. In this context, genomic databases will constitute an important source of information. Consequently, it is important to identify and characterize the State's role and authority on matters related to public health,in order to verify whether it has access to such databases while engaging in public health genomic research. We first consider the evolution of the concept of public health, as well as its core functions, using a comparative approach (e.g. WHO, PAHO, CDC and the Canadian province of Quebec. Following an analysis of relevant Quebec legislation, the precautionary principle is examined as a possible avenue to justify State access to and use of genomic databases for research purposes. Finally, we consider the Influenza pandemic plans developed by WHO, Canada, and Quebec,as examples of key tools framing public health decision-making process.We observed that State powers in public health, are not,in Quebec,well adapted to the expansion of genomics research.We propose that the scope of the concept of research in public health should be clear and include the following characteristics:a commitment to the health and well-being of the population and to their determinants; the inclusion of both applied research and basic research; and, an appropriate model of governance (authorization, follow-up,consent, etc..We also suggest that the strategic approach version of the precautionary principle could guide collective choices in these matters.

  3. Sequence modelling and an extensible data model for genomic database

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peter Wei-Der [California Univ., San Francisco, CA (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1992-01-01

    The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS`s do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the ``Extensible Object Model``, to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

  4. Sequence modelling and an extensible data model for genomic database

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peter Wei-Der (California Univ., San Francisco, CA (United States) Lawrence Berkeley Lab., CA (United States))

    1992-01-01

    The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS's do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the Extensible Object Model'', to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

  5. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps.

    Science.gov (United States)

    Georges, Arthur; Li, Qiye; Lian, Jinmin; O'Meally, Denis; Deakin, Janine; Wang, Zongji; Zhang, Pei; Fujita, Matthew; Patel, Hardip R; Holleley, Clare E; Zhou, Yang; Zhang, Xiuwen; Matsubara, Kazumi; Waters, Paul; Graves, Jennifer A Marshall; Sarre, Stephen D; Zhang, Guojie

    2015-01-01

    The lizards of the family Agamidae are one of the most prominent elements of the Australian reptile fauna. Here, we present a genomic resource built on the basis of a wild-caught male ZZ central bearded dragon Pogona vitticeps. The genomic sequence for P. vitticeps, generated on the Illumina HiSeq 2000 platform, comprised 317 Gbp (179X raw read depth) from 13 insert libraries ranging from 250 bp to 40 kbp. After filtering for low-quality and duplicated reads, 146 Gbp of data (83X) was available for assembly. Exceptionally high levels of heterozygosity (0.85 % of single nucleotide polymorphisms plus sequence insertions or deletions) complicated assembly; nevertheless, 96.4 % of reads mapped back to the assembled scaffolds, indicating that the assembly included most of the sequenced genome. Length of the assembly was 1.8 Gbp in 545,310 scaffolds (69,852 longer than 300 bp), the longest being 14.68 Mbp. N50 was 2.29 Mbp. Genes were annotated on the basis of de novo prediction, similarity to the green anole Anolis carolinensis, Gallus gallus and Homo sapiens proteins, and P. vitticeps transcriptome sequence assemblies, to yield 19,406 protein-coding genes in the assembly, 63 % of which had intact open reading frames. Our assembly captured 99 % (246 of 248) of core CEGMA genes, with 93 % (231) being complete. The quality of the P. vitticeps assembly is comparable or superior to that of other published squamate genomes, and the annotated P. vitticeps genome can be accessed through a genome browser available at https://genomics.canberra.edu.au.

  6. Translational genomics for plant breeding with the genome sequence explosion.

    Science.gov (United States)

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.

  7. Non-gaussian distributions affect identification of expression patterns, functional annotation, and prospective classification in human cancer genomes.

    Directory of Open Access Journals (Sweden)

    Nicholas F Marko

    Full Text Available INTRODUCTION: Gene expression data is often assumed to be normally-distributed, but this assumption has not been tested rigorously. We investigate the distribution of expression data in human cancer genomes and study the implications of deviations from the normal distribution for translational molecular oncology research. METHODS: We conducted a central moments analysis of five cancer genomes and performed empiric distribution fitting to examine the true distribution of expression data both on the complete-experiment and on the individual-gene levels. We used a variety of parametric and nonparametric methods to test the effects of deviations from normality on gene calling, functional annotation, and prospective molecular classification using a sixth cancer genome. RESULTS: Central moments analyses reveal statistically-significant deviations from normality in all of the analyzed cancer genomes. We observe as much as 37% variability in gene calling, 39% variability in functional annotation, and 30% variability in prospective, molecular tumor subclassification associated with this effect. CONCLUSIONS: Cancer gene expression profiles are not normally-distributed, either on the complete-experiment or on the individual-gene level. Instead, they exhibit complex, heavy-tailed distributions characterized by statistically-significant skewness and kurtosis. The non-Gaussian distribution of this data affects identification of differentially-expressed genes, functional annotation, and prospective molecular classification. These effects may be reduced in some circumstances, although not completely eliminated, by using nonparametric analytics. This analysis highlights two unreliable assumptions of translational cancer gene expression analysis: that "small" departures from normality in the expression data distributions are analytically-insignificant and that "robust" gene-calling algorithms can fully compensate for these effects.

  8. Genomic analyses with biofilter 2.0: knowledge driven filtering, annotation, and model development

    National Research Council Canada - National Science Library

    Pendergrass, Sarah A; Frase, Alex; Wallace, John; Wolfe, Daniel; Katiyar, Neerja; Moore, Carrie; Ritchie, Marylyn D

    2013-01-01

    .... We have now extensively revised and updated the multi-purpose software tool Biofilter that allows researchers to annotate and/or filter data as well as generate gene-gene interaction models based...

  9. Database Description - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available d and funding Name: Database Integration Coordination Program (FY2011-FY2013) Integration of plant databases...ency (JST) Reference(s) Article title: Plant Genome DataBase Japan (PGDBj): A Portal Website for the Integ...ration of Plant Genome-Related Databases Author name(s): Erika Asamizu, Hisako Ichi

  10. License - TMBETA-GENOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available TMBETA-GENOME License License to Use This Database Last updated : 2015/03/09 You may use this database in co...ms regarding the use of this database and the requirements you must follow in using this database.... The license for this database is specified in the Creative Commons Attribution-Share Alike... 2.1 Japan . If you use data from this database, please be sure attribute this database as follows: TMBETA-G...ummary of the Creative Commons Attribution-Share Alike 2.1 Japan is found here . With regard to this database

  11. Genome analysis methods - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us PGDBj Registered...ear Year of genome analysis Sequencing method Sequencing method Read counts Read counts Covered genome region Covered...otation method Number of predicted genes Number of predicted genes Genome database Genome database informati... License Update History of This Database Site Policy | Contact Us Genome analysis... methods - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  12. ChIP-Seq-Annotated Heliconius erato Genome Highlights Patterns of cis-Regulatory Evolution in Lepidoptera

    Directory of Open Access Journals (Sweden)

    James J. Lewis

    2016-09-01

    Full Text Available Uncovering phylogenetic patterns of cis-regulatory evolution remains a fundamental goal for evolutionary and developmental biology. Here, we characterize the evolution of regulatory loci in butterflies and moths using chromatin immunoprecipitation sequencing (ChIP-seq annotation of regulatory elements across three stages of head development. In the process we provide a high-quality, functionally annotated genome assembly for the butterfly, Heliconius erato. Comparing cis-regulatory element conservation across six lepidopteran genomes, we find that regulatory sequences evolve at a pace similar to that of protein-coding regions. We also observe that elements active at multiple developmental stages are markedly more conserved than elements with stage-specific activity. Surprisingly, we also find that stage-specific proximal and distal regulatory elements evolve at nearly identical rates. Our study provides a benchmark for genome-wide patterns of regulatory element evolution in insects, and it shows that developmental timing of activity strongly predicts patterns of regulatory sequence evolution.

  13. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata

    Energy Technology Data Exchange (ETDEWEB)

    Fenner, Marsha W; Liolios, Konstantinos; Mavromatis, Konstantinos; Tavernarakis, Nektarios; Kyrpides, Nikos C.

    2007-12-31

    The Genomes On Line Database (GOLD) is a comprehensive resource of information for genome and metagenome projects world-wide. GOLD provides access to complete and ongoing projects and their associated metadata through pre-computed lists and a search page. The database currently incorporates information for more than 2900 sequencing projects, of which 639 have been completed and the data deposited in the public databases. GOLD is constantly expanding to provide metadata information related to the project and the organism and is compliant with the Minimum Information about a Genome Sequence (MIGS) specifications.

  14. On genome annotation of Brucellaphage Gadvasu (BpG): discovery of ORFans for integrated systems biology approaches.

    Science.gov (United States)

    Chachra, Deepti; Kaur, Pushpinder; Siddavatam, Prasad; Suravajhala, Prashanth; Saxena, Hari Mohan

    2015-12-01

    Brucellaphage Gadvasu (BpG) is a lytic phage infecting Brucella spp. Brucellaphages contain dsDNA as genetic material and are short-tailed particles with host-specificity. Here, we report the challenges on annotation in the complete genome sequence of BpG when compared with that of a recent broad host-range brucellaphage Pr, an original reference genome. The extracted DNA was subjected to genome sequencing with Illumina technology and assembled using SSAKE/Velvet. A significant number of genes were found to be similar between the phages with sequence analysis revealing conserved open reading frames that correspond to 33 gene ontology classifiers, transcriptional terminators and a few putative transcriptional promoters. The analyses revealed that the genome constitutes 1269 contigs and 275 genes encoding 260 proteins. The sequence comparison from the reference data indicated that the genome shares an approximately 70 % nucleotide similarity and differs mainly in the region encoding proteins. We bring this commentary providing an overview of how this exemplar genome can allow us to understand these known unknown regions in brucellaphages.

  15. A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm

    Directory of Open Access Journals (Sweden)

    Allen Eric E

    2008-10-01

    Full Text Available Abstract Background The process of horizontal gene transfer (HGT is believed to be widespread in Bacteria and Archaea, but little comparative data is available addressing its occurrence in complete microbial genomes. Collection of high-quality, automated HGT prediction data based on phylogenetic evidence has previously been impractical for large numbers of genomes at once, due to prohibitive computational demands. DarkHorse, a recently described statistical method for discovering phylogenetically atypical genes on a genome-wide basis, provides a means to solve this problem through lineage probability index (LPI ranking scores. LPI scores inversely reflect phylogenetic distance between a test amino acid sequence and its closest available database matches. Proteins with low LPI scores are good horizontal gene transfer candidates; those with high scores are not. Description The DarkHorse algorithm has been applied to 955 microbial genome sequences, and the results organized into a web-searchable relational database, called the DarkHorse HGT Candidate Resource http://darkhorse.ucsd.edu. Users can select individual genomes or groups of genomes to screen by LPI score, search for protein functions by descriptive annotation or amino acid sequence similarity, or select proteins with unusual G+C composition in their underlying coding sequences. The search engine reports LPI scores for match partners as well as query sequences, providing the opportunity to explore whether potential HGT donor sequences are phylogenetically typical or atypical within their own genomes. This information can be used to predict whether or not sufficient information is available to build a well-supported phylogenetic tree using the potential donor sequence. Conclusion The DarkHorse HGT Candidate database provides a powerful, flexible set of tools for identifying phylogenetically atypical proteins, allowing researchers to explore both individual HGT events in single genomes, and

  16. MELOGEN: an EST database for melon functional genomics

    Directory of Open Access Journals (Sweden)

    Puigdomènech Pere

    2007-09-01

    Full Text Available Abstract Background Melon (Cucumis melo L. is one of the most important fleshy fruits for fresh consumption. Despite this, few genomic resources exist for this species. To facilitate the discovery of genes involved in essential traits, such as fruit development, fruit maturation and disease resistance, and to speed up the process of breeding new and better adapted melon varieties, we have produced a large collection of expressed sequence tags (ESTs from eight normalized cDNA libraries from different tissues in different physiological conditions. Results We determined over 30,000 ESTs that were clustered into 16,637 non-redundant sequences or unigenes, comprising 6,023 tentative consensus sequences (contigs and 10,614 unclustered sequences (singletons. Many potential molecular markers were identified in the melon dataset: 1,052 potential simple sequence repeats (SSRs and 356 single nucleotide polymorphisms (SNPs were found. Sixty-nine percent of the melon unigenes showed a significant similarity with proteins in databases. Functional classification of the unigenes was carried out following the Gene Ontology scheme. In total, 9,402 unigenes were mapped to one or more ontology. Remarkably, the distributions of melon and Arabidopsis unigenes followed similar tendencies, suggesting that the melon dataset is representative of the whole melon transcriptome. Bioinformatic analyses primarily focused on potential precursors of melon micro RNAs (miRNAs in the melon dataset, but many other genes potentially controlling disease resistance and fruit quality traits were also identified. Patterns of transcript accumulation were characterised by Real-Time-qPCR for 20 of these genes. Conclusion The collection of ESTs characterised here represents a substantial increase on the genetic information available for melon. A database (MELOGEN which contains all EST sequences, contig images and several tools for analysis and data mining has been created. This set of

  17. Dictionary-driven protein annotation.

    Science.gov (United States)

    Rigoutsos, Isidore; Huynh, Tien; Floratos, Aris; Parida, Laxmi; Platt, Daniel

    2002-09-01

    Computational methods seeking to automatically determine the properties (functional, structural, physicochemical, etc.) of a protein directly from the sequence have long been the focus of numerous research groups. With the advent of advanced sequencing methods and systems, the number of amino acid sequences that are being deposited in the public databases has been increasing steadily. This has in turn generated a renewed demand for automated approaches that can annotate individual sequences and complete genomes quickly, exhaustively and objectively. In this paper, we present one such approach that is centered around and exploits the Bio-Dictionary, a collection of amino acid patterns that completely covers the natural sequence space and can capture functional and structural signals that have been reused during evolution, within and across protein families. Our annotation approach also makes use of a weighted, position-specific scoring scheme that is unaffected by the over-representation of well-conserved proteins and protein fragments in the databases used. For a given query sequence, the method permits one to determine, in a single pass, the following: local and global similarities between the query and any protein already present in a public database; the likeness of the query to all available archaeal/ bacterial/eukaryotic/viral sequences in the database as a function of amino acid position within the query; the character of secondary structure of the query as a function of amino acid position within the query; the cytoplasmic, transmembrane or extracellular behavior of the query; the nature and position of binding domains, active sites, post-translationally modified sites, signal peptides, etc. In terms of performance, the proposed method is exhaustive, objective and allows for the rapid annotation of individual sequences and full genomes. Annotation examples are presented and discussed in Results, including individual queries and complete genomes that were

  18. Tripal v1.1: a standards-based toolkit for construction of online genetic and genomic databases.

    Science.gov (United States)

    Sanderson, Lacey-Anne; Ficklin, Stephen P; Cheng, Chun-Huai; Jung, Sook; Feltus, Frank A; Bett, Kirstin E; Main, Dorrie

    2013-01-01

    Tripal is an open-source freely available toolkit for construction of online genomic and genetic databases. It aims to facilitate development of community-driven biological websites by integrating the GMOD Chado database schema with Drupal, a popular website creation and content management software. Tripal provides a suite of tools for interaction with a Chado database and display of content therein. The tools are designed to be generic to support the various ways in which data may be stored in Chado. Previous releases of Tripal have supported organisms, genomic libraries, biological stocks, stock collections and genomic features, their alignments and annotations. Also, Tripal and its extension modules provided loaders for commonly used file formats such as FASTA, GFF, OBO, GAF, BLAST XML, KEGG heir files and InterProScan XML. Default generic templates were provided for common views of biological data, which could be customized using an open Application Programming Interface to change the way data are displayed. Here, we report additional tools and functionality that are part of release v1.1 of Tripal. These include (i) a new bulk loader that allows a site curator to import data stored in a custom tab delimited format; (ii) full support of every Chado table for Drupal Views (a powerful tool allowing site developers to construct novel displays and search pages); (iii) new modules including 'Feature Map', 'Genetic', 'Publication', 'Project', 'Contact' and the 'Natural Diversity' modules. Tutorials, mailing lists, download and set-up instructions, extension modules and other documentation can be found at the Tripal website located at http://tripal.info. DATABASE URL: http://tripal.info/.

  19. The future of transposable element annotation and their classification in the light of functional genomics - what we can learn from the fables of Jean de la Fontaine?

    Science.gov (United States)

    Arensburger, Peter; Piégu, Benoît; Bigot, Yves

    2016-01-01

    Transposable element (TE) science has been significantly influenced by the pioneering ideas of David Finnegan near the end of the last century, as well as by the classification systems that were subsequently developed. Today, whole genome TE annotation is mostly done using tools that were developed to aid gene annotation rather than to specifically study TEs. We argue that further progress in the TE field is impeded both by current TE classification schemes and by a failure to recognize that TE biology is fundamentally different from that of multicellular organisms. Novel genome wide TE annotation methods are helping to redefine our understanding of TE sequence origins and evolution. We briefly discuss some of these new methods as well as ideas for possible alternative classification schemes. Our hope is to encourage the formation of a society to organize a larger debate on these questions and to promote the adoption of standards for annotation and an improved TE classification.

  20. Resolving the problem of multiple accessions of the same transcript deposited across various public databases.

    Science.gov (United States)

    Weirick, Tyler; John, David; Uchida, Shizuka

    2017-03-01

    Maintaining the consistency of genomic annotations is an increasingly complex task because of the iterative and dynamic nature of assembly and annotation, growing numbers of biological databases and insufficient integration of annotations across databases. As information exchange among databases is poor, a 'novel' sequence from one reference annotation could be annotated in another. Furthermore, relationships to nearby or overlapping annotated transcripts are even more complicated when using different genome assemblies. To better understand these problems, we surveyed current and previous versions of genomic assemblies and annotations across a number of public databases containing long noncoding RNA. We identified numerous discrepancies of transcripts regarding their genomic locations, transcript lengths and identifiers. Further investigation showed that the positional differences between reference annotations of essentially the same transcript could lead to differences in its measured expression at the RNA level. To aid in resolving these problems, we present the algorithm 'Universal Genomic Accession Hash (UGAHash)' and created an open source web tool to encourage the usage of the UGAHash algorithm. The UGAHash web tool (http://ugahash.uni-frankfurt.de) can be accessed freely without registration. The web tool allows researchers to generate Universal Genomic Accessions for genomic features or to explore annotations deposited in the public databases of the past and present versions. We anticipate that the UGAHash web tool will be a valuable tool to check for the existence of transcripts before judging the newly discovered transcripts as novel. © The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Qiongshi Lu

    2017-07-01

    Full Text Available Continuing efforts from large international consortia have made genome-wide epigenomic and transcriptomic annotation data publicly available for a variety of cell and tissue types. However, synthesis of these datasets into effective summary metrics to characterize the functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus, an extension of our previous work through integration of an expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single tissue annotations. After validating our annotations with a catalog of tissue-specific non-coding elements previously identified in the literature, we apply our method using data from 127 different cell and tissue types to present an atlas of heritability enrichment across 45 different GWAS traits. We show that broader organ system categories (e.g. immune system increase statistical power in identifying biologically relevant tissue types for complex diseases while annotations of individual cell types (e.g. monocytes or B-cells provide deeper insights into disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth case study of late-onset Alzheimer's disease (LOAD. Our analyses suggest a strong connection between LOAD heritability and genetic variants contained in regions of the genome functional in monocytes. Furthermore, we show that LOAD shares a similar localization of SNPs to monocyte-functional regions with Parkinson's disease. Overall, we demonstrate that integrated genome annotations at the single tissue level provide a valuable tool for understanding the etiology of complex human diseases. Our GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/GenoSkyline.

  2. Partitioning SNPs Identified By GBS into Genome Annotation Classes and Calculating SNP-Explained Variances for Heading Date and Disease Resistance from the Resulting Genomic Relationship Matrices - Lolium perenne

    DEFF Research Database (Denmark)

    Byrne, Stephen; Cericola, Fabio; Janss, Luc;

    2015-01-01

    , and an average protein Annotation Edit Distance (AED) of 0.14. Genotyping-By-Sequencing (GBS) data was generated after genome complexity reduction with ApeKI for 995 breeding families. Data was aligned against the annotated sequence assembly, and we identified variants at over 1.8 million positions, which were......,273 SNPs), genes with NB-ARC domains (9,056 SNPs), intron (168,023 SNPs), and inter-genic (1,420,866 SNPs). Genomic relationship matrices were created for each annotation class and SNP-explained variances for heading date and disease resistance were calculated...

  3. Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress

    Directory of Open Access Journals (Sweden)

    Benham Craig J

    2006-05-01

    Full Text Available Abstract Background In our previous studies, we found that the sites in prokaryotic genomes which are most susceptible to duplex destabilization under the negative superhelical stresses that occur in vivo are statistically highly significantly associated with intergenic regions that are known or inferred to contain promoters. In this report we investigate how this structural property, either alone or together with other structural and sequence attributes, may be used to search prokaryotic genomes for promoters. Results We show that the propensity for stress-induced DNA duplex destabilization (SIDD is closely associated with specific promoter regions. The extent of destabilization in promoter-containing regions is found to be bimodally distributed. When compared with DNA curvature, deformability, thermostability or sequence motif scores within the -10 region, SIDD is found to be the most informative DNA property regarding promoter locations in the E. coli K12 genome. SIDD properties alone perform better at detecting promoter regions than other programs trained on this genome. Because this approach has a very low false positive rate, it can be used to predict with high confidence the subset of promoters that are strongly destabilized. When SIDD properties are combined with -10 motif scores in a linear classification function, they predict promoter regions with better than 80% accuracy. When these methods were tested with promoter and non-promoter sequences from Bacillus subtilis, they achieved similar or higher accuracies. We also present a strictly SIDD-based predictor for annotating promoter sequences in complete microbial genomes. Conclusion In this report we show that the propensity to undergo stress-induced duplex destabilization (SIDD is a distinctive structural attribute of many prokaryotic promoter sequences. We have developed methods to identify promoter sequences in prokaryotic genomes that use SIDD either as a sole predictor or in

  4. The Development of PIPA: An Integrated and Automated Pipeline for Genome-Wide Protein Function Annotation

    Science.gov (United States)

    2008-01-25

    protein function annotation Chenggang Yu1, Nela Zavaljevski1, Valmik Desai1, Seth Johnson2, Fred J Stevens3 and Jaques Reifman*1 Address: 1Biotechnology...cyu@bioanalysis.org; Nela Zavaljevski - nelaz@bioanalysis.org; Valmik Desai - valmik@bioanalysis.org; Seth Johnson - sjohnson@exonhit-usa.com; Fred J

  5. A combined approach for genome wide protein function annotation/prediction

    DEFF Research Database (Denmark)

    Benso, Alfredo; Di Carlo, Stefano; Ur Rehman, Hafeez;

    2013-01-01

    proteins are discovered. On the other hand, proteins are the prominent stakeholders in almost all biological processes, and therefore the need to precisely know their functions for a better understanding of the underlying biological mechanism is inevitable. The challenge of annotating uncharacterized...

  6. Annotation of Two Large Contiguous Regions from the Haemonchus contortus Genome Using RNA-seq and Comparative Analysis with Caenorhabditis elegans

    Science.gov (United States)

    Laing, Roz; Hunt, Martin; Protasio, Anna V.; Saunders, Gary; Mungall, Karen; Laing, Steven; Jackson, Frank; Quail, Michael; Beech, Robin; Berriman, Matthew; Gilleard, John S.

    2011-01-01

    The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid nematode genomes

  7. The FlyBase database of the Drosophila genome projects andcommunity literature

    Energy Technology Data Exchange (ETDEWEB)

    Gelbart, William; Bayraktaroglu, Leyla; Bettencourt, Brian; Campbell, Kathy; Crosby, Madeline; Emmert, David; Hradecky, Pavel; Huang,Yanmei; Letovsky, Stan; Matthews, Beverly; Russo, Susan; Schroeder,Andrew; Smutniak, Frank; Zhou, Pinglei; Zytkovicz, Mark; Ashburner,Michael; Drysdale, Rachel; de Grey, Aubrey; Foulger, Rebecca; Millburn,Gillian; Yamada, Chihiro; Kaufman, Thomas; Matthews, Kathy; Gilbert, Don; Grumbling, Gary; Strelets, Victor; Shemen, C.; Rubin, Gerald; Berman,Brian; Frise, Erwin; Gibson, Mark; Harris, Nomi; Kaminker, Josh; Lewis,Suzanna; Marshall, Brad; Misra, Sima; Mungall, Christopher; Prochnik,Simon; Richter, John; Smith, Christopher; Shu, ShengQiang; Tupy,Jonathan; Wiel, Colin

    2002-09-16

    FlyBase (http://flybase.bio.indiana.edu/) provides an integrated view of the fundamental genomic and genetic data on the major genetic model Drosophila melanogaster and related species. FlyBase has primary responsibility for the continual reannotation of the D.melanogaster genome. The ultimate goal of the reannotation effort is to decorate the euchromatic sequence of the genome with as much biological information as is available from the community and from the major genome project centers. A complete revision of the annotations of the now-finished euchromatic genomic sequence has been completed. There are many points of entry to the genome within FlyBase, most notably through maps, gene products and ontologies, structured phenotypic and gene expression data, and anatomy.

  8. KSHV 2.0: a comprehensive annotation of the Kaposi's sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features.

    Directory of Open Access Journals (Sweden)

    Carolina Arias

    2014-01-01

    Full Text Available Productive herpesvirus infection requires a profound, time-controlled remodeling of the viral transcriptome and proteome. To gain insights into the genomic architecture and gene expression control in Kaposi's sarcoma-associated herpesvirus (KSHV, we performed a systematic genome-wide survey of viral transcriptional and translational activity throughout the lytic cycle. Using mRNA-sequencing and ribosome profiling, we found that transcripts encoding lytic genes are promptly bound by ribosomes upon lytic reactivation, suggesting their regulation is mainly transcriptional. Our approach also uncovered new genomic features such as ribosome occupancy of viral non-coding RNAs, numerous upstream and small open reading frames (ORFs, and unusual strategies to expand the virus coding repertoire that include alternative splicing, dynamic viral mRNA editing, and the use of alternative translation initiation codons. Furthermore, we provide a refined and expanded annotation of transcription start sites, polyadenylation sites, splice junctions, and initiation/termination codons of known and new viral features in the KSHV genomic space which we have termed KSHV 2.0. Our results represent a comprehensive genome-scale image of gene regulation during lytic KSHV infection that substantially expands our understanding of the genomic architecture and coding capacity of the virus.

  9. Metalloproteomics: High-Throughput Structural and Functional Annotation of Proteins in Structural Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Shi,W.; Zhan, C.; Lgnatov, A.; Manjasetty, B.; Marinkovic, N.; Sullivan, M.; Huang, R.; Chance, M.; Li, H.; et al.

    2005-01-01

    A high-throughput method for measuring transition metal content based on quantitation of X-ray fluorescence signals was used to analyze 654 proteins selected as targets by the New York Structural GenomiX Research Consortium. Over 10% showed the presence of transition metal atoms in stoichiometric amounts; these totals as well as the abundance distribution are similar to those of the Protein Data Bank. Bioinformatics analysis of the identified metalloproteins in most cases supported the metalloprotein annotation; identification of the conserved metal binding motif was also shown to be useful in verifying structural models of the proteins. Metalloproteomics provides a rapid structural and functional annotation for these sequences and is shown to be {approx}95% accurate in predicting the presence or absence of stoichiometric metal content. The project's goal is to assay at least 1 member from each Pfam family; approximately 500 Pfam families have been characterized with respect to transition metal content so far.

  10. HBVRegDB: Annotation, comparison, detection and visualization of regulatory elements in hepatitis B virus sequences

    Directory of Open Access Journals (Sweden)

    Firth Andrew E

    2007-12-01

    Full Text Available Abstract Background The many Hepadnaviridae sequences available have widely varied functional annotation. The genomes are very compact (~3.2 kb but contain multiple layers of functional regulatory elements in addition to coding regions. Key regions are subject to purifying selection, as mutations in these regions will produce non-functional viruses. Results These genomic sequences have been organized into a structured database to facilitate research at the molecular level. HBVRegDB is a comparative genomic analysis tool with an integrated underlying sequence database. The database contains genomic sequence data from representative viruses. In addition to INSDC and RefSeq annotation, HBVRegDB also contains expert and systematically calculated annotations (e.g. promoters and comparative genome analysis results (e.g. blastn, tblastx. It also contains analyses based on curated HBV alignments. Information about conserved regions – including primary conservation (e.g. CDS-Plotcon and RNA secondary structure predictions (e.g. Alidot – is integrated into the database. A large amount of data is graphically presented using the GBrowse (Generic Genome Browser adapted for analysis of viral genomes. Flexible query access is provided based on any annotated genomic feature. Novel regulatory motifs can be found by analysing the annotated sequences. Conclusion HBVRegDB serves as a knowledge database and as a comparative genomic analysis tool for molecular biologists investigating HBV. It is publicly available and complementary to other viral and HBV focused datasets and tools http://hbvregdb.otago.ac.nz. The availability of multiple and highly annotated sequences of viral genomes in one database combined with comparative analysis tools facilitates detection of novel genomic elements.

  11. EuMicroSatdb: A database for microsatellites in the sequenced genomes of eukaryotes

    Directory of Open Access Journals (Sweden)

    Grover Atul

    2007-07-01

    Full Text Available Abstract Background Microsatellites have immense utility as molecular markers in different fields like genome characterization and mapping, phylogeny and evolutionary biology. Existing microsatellite databases are of limited utility for experimental and computational biologists with regard to their content and information output. EuMicroSatdb (Eukaryotic MicroSatellite database http://ipu.ac.in/usbt/EuMicroSatdb.htm is a web based relational database for easy and efficient positional mining of microsatellites from sequenced eukaryotic genomes. Description A user friendly web interface has been developed for microsatellite data retrieval using Active Server Pages (ASP. The backend database codes for data extraction and assembly have been written using Perl based scripts and C++. Precise need based microsatellites data retrieval is possible using different input parameters like microsatellite type (simple perfect or compound perfect, repeat unit length (mono- to hexa-nucleotide, repeat number, microsatellite length and chromosomal location in the genome. Furthermore, information about clustering of different microsatellites in the genome can also be retrieved. Finally, to facilitate primer designing for PCR amplification of any desired microsatellite locus, 200 bp upstream and downstream sequences are provided. Conclusion The database allows easy systematic retrieval of comprehensive information about simple and compound microsatellites, microsatellite clusters and their locus coordinates in 31 sequenced eukaryotic genomes. The information content of the database is useful in different areas of research like gene tagging, genome mapping, population genetics, germplasm characterization and in understanding microsatellite dynamics in eukaryotic genomes.

  12. Genome-Wide Enzyme Annotation with Precision Control: Catalytic Families (CatFam) Databases

    Science.gov (United States)

    2008-01-01

    2.4.1.21 ( starch synthase using ADP-glucose) predicted for proteins SSG1_HORVU and SSG1_MANES are sub- sumed by EC 2.4.1.242 ( starch synthase using...glucan glucanohydrolase [Cyclodextrin glucanotransferase] SSG1_HORVUf 2.4.1.21 2.4.1.242 Starch synthase that uses either UDP- or ADP- glucose [ Starch ...exonuclease [DNA-directed DNA polymerase] MGTA_THENE 3.2.1.1 2.4.1.25 14 4-a-glucanotransferase [a- amylase ] GUX6_HUMIN 3.2.1.4 3.2.1.91 12 Exoglucanase

  13. The GATO gene annotation tool for research laboratories

    Directory of Open Access Journals (Sweden)

    A. Fujita

    2005-11-01

    Full Text Available Large-scale genome projects have generated a rapidly increasing number of DNA sequences. Therefore, development of computational methods to rapidly analyze these sequences is essential for progress in genomic research. Here we present an automatic annotation system for preliminary analysis of DNA sequences. The gene annotation tool (GATO is a Bioinformatics pipeline designed to facilitate routine functional annotation and easy access to annotated genes. It was designed in view of the frequent need of genomic researchers to access data pertaining to a common set of genes. In the GATO system, annotation is generated by querying some of the Web-accessible resources and the information is stored in a local database, which keeps a record of all previous annotation results. GATO may be accessed from everywhere through the internet or may be run locally if a large number of sequences are going to be annotated. It is implemented in PHP and Perl and may be run on any suitable Web server. Usually, installation and application of annotation systems require experience and are time consuming, but GATO is simple and practical, allowing anyone with basic skills in informatics to access it without any special training. GATO can be downloaded at [http://mariwork.iq.usp.br/gato/]. Minimum computer free space required is 2 MB.

  14. Genomic sequence around butterfly wing development genes: annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Inês C Conceição

    Full Text Available BACKGROUND: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes. CONCLUSIONS: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1 the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2 the high

  15. Automated update, revision, and quality control of the maize genome annotations using MAKER-P improves the B73 RefGen_v3 gene models and identifies new genes

    Science.gov (United States)

    The large size and relative complexity of many plant genomes make creation, quality control, and dissemination of high-quality gene structure annotations challenging. In response, we have developed MAKER-P, a fast and easy-to-use genome annotation engine for plants. Here, we report the use of MAKER-...

  16. Download - TMBETA-GENOME | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us TMBETA...Update History of This Database Site Policy | Contact Us Download - TMBETA-GENOME | LSDB Archive ...

  17. An Innovative Plant Genomics and Gene Annotation Program for High School, Community College, and University Faculty

    Science.gov (United States)

    Hacisalihoglu, Gokhan; Hilgert, Uwe; Nash, E. Bruce; Micklos, David A.

    2008-01-01

    Today's biology educators face the challenge of training their students in modern molecular biology techniques including genomics and bioinformatics. The Dolan DNA Learning Center (DNALC) of Cold Spring Harbor Laboratory has developed and disseminated a bench- and computer-based plant genomics curriculum for biology faculty. In 2007, a five-day…

  18. Rapid annotation of anonymous sequences from genome projects using semantic similarities and a weighting scheme in gene ontology.

    Directory of Open Access Journals (Sweden)

    Paolo Fontana

    Full Text Available BACKGROUND: Large-scale sequencing projects have now become routine lab practice and this has led to the development of a new generation of tools involving function prediction methods, bringing the latter back to the fore. The advent of Gene Ontology, with its structured vocabulary and paradigm, has provided computational biologists with an appropriate means for this task. METHODOLOGY: We present here a novel method called ARGOT (Annotation Retrieval of Gene Ontology Terms that is able to process quickly thousands of sequences for functional inference. The tool exploits for the first time an integrated approach which combines clustering of GO terms, based on their semantic similarities, with a weighting scheme which assesses retrieved hits sharing a certain number of biological features with the sequence to be annotated. These hits may be obtained by different methods and in this work we have based ARGOT processing on BLAST results. CONCLUSIONS: The extensive benchmark involved 10,000 protein sequences, the complete S. cerevisiae genome and a small subset of proteins for purposes of comparison with other available tools. The algorithm was proven to outperform existing methods and to be suitable for function prediction of single proteins due to its high degree of sensitivity, specificity and coverage.

  19. Updated genome assembly and annotation of Paenibacillus larvae, the agent of American foulbrood disease of honey bees

    Directory of Open Access Journals (Sweden)

    de Graaf Dirk C

    2011-09-01

    Full Text Available Abstract Background As scientists continue to pursue various 'omics-based research, there is a need for high quality data for the most fundamental 'omics of all: genomics. The bacterium Paenibacillus larvae is the causative agent of the honey bee disease American foulbrood. If untreated, it can lead to the demise of an entire hive; the highly social nature of bees also leads to easy disease spread, between both individuals and colonies. Biologists have studied this organism since the early 1900s, and a century later, the molecular mechanism of infection remains elusive. Transcriptomics and proteomics, because of their ability to analyze multiple genes and proteins in a high-throughput manner, may be very helpful to its study. However, the power of these methodologies is severely limited without a complete genome; we undertake to address that deficiency here. Results We used the Illumina GAIIx platform and conventional Sanger sequencing to generate a 182-fold sequence coverage of the P. larvae genome, and assembled the data using ABySS into a total of 388 contigs spanning 4.5 Mbp. Comparative genomics analysis against fully-sequenced soil bacteria P. JDR2 and P. vortex showed that regions of poor conservation may contain putative virulence factors. We used GLIMMER to predict 3568 gene models, and named them based on homology revealed by BLAST searches; proteases, hemolytic factors, toxins, and antibiotic resistance enzymes were identified in this way. Finally, mass spectrometry was used to provide experimental evidence that at least 35% of the genes are expressed at the protein level. Conclusions This update on the genome of P. larvae and annotation represents an immense advancement from what we had previously known about this species. We provide here a reliable resource that can be used to elucidate the mechanism of infection, and by extension, more effective methods to control and cure this widespread honey bee disease.

  20. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations

    LENUS (Irish Health Repository)

    2011-08-30

    Abstract Background Lactobacillus ruminis is a poorly characterized member of the Lactobacillus salivarius clade that is part of the intestinal microbiota of pigs, humans and other mammals. Its variable abundance in human and animals may be linked to historical changes over time and geographical differences in dietary intake of complex carbohydrates. Results In this study, we investigated the ability of nine L. ruminis strains of human and bovine origin to utilize fifty carbohydrates including simple sugars, oligosaccharides, and prebiotic polysaccharides. The growth patterns were compared with metabolic pathways predicted by annotation of a high quality draft genome sequence of ATCC 25644 (human isolate) and the complete genome of ATCC 27782 (bovine isolate). All of the strains tested utilized prebiotics including fructooligosaccharides (FOS), soybean-oligosaccharides (SOS) and 1,3:1,4-β-D-gluco-oligosaccharides to varying degrees. Six strains isolated from humans utilized FOS-enriched inulin, as well as FOS. In contrast, three strains isolated from cows grew poorly in FOS-supplemented medium. In general, carbohydrate utilisation patterns were strain-dependent and also varied depending on the degree of polymerisation or complexity of structure. Six putative operons were identified in the genome of the human isolate ATCC 25644 for the transport and utilisation of the prebiotics FOS, galacto-oligosaccharides (GOS), SOS, and 1,3:1,4-β-D-Gluco-oligosaccharides. One of these comprised a novel FOS utilisation operon with predicted capacity to degrade chicory-derived FOS. However, only three of these operons were identified in the ATCC 27782 genome that might account for the utilisation of only SOS and 1,3:1,4-β-D-Gluco-oligosaccharides. Conclusions This study has provided definitive genome-based evidence to support the fermentation patterns of nine strains of Lactobacillus ruminis, and has linked it to gene distribution patterns in strains from different sources

  1. SelenoDB 2.0: annotation of selenoprotein genes in animals and their genetic diversity in humans.

    Science.gov (United States)

    Romagné, Frédéric; Santesmasses, Didac; White, Louise; Sarangi, Gaurab K; Mariotti, Marco; Hübler, Ron; Weihmann, Antje; Parra, Genís; Gladyshev, Vadim N; Guigó, Roderic; Castellano, Sergi

    2014-01-01

    SelenoDB (http://www.selenodb.org) aims to provide high-quality annotations of selenoprotein genes, proteins and SECIS elements. Selenoproteins are proteins that contain the amino acid selenocysteine (Sec) and the first release of the database included annotations for eight species. Since the release of SelenoDB 1.0 many new animal genomes have been sequenced. The annotations of selenoproteins in new genomes usually contain many errors in major databases. For this reason, we have now fully annotated selenoprotein genes in 58 animal genomes. We provide manually curated annotations for human selenoproteins, whereas we use an automatic annotation pipeline to annotate selenoprotein genes in other animal genomes. In addition, we annotate the homologous genes containing cysteine (Cys) instead of Sec. Finally, we have surveyed genetic variation in the annotated genes in humans. We use exon capture and resequencing approaches to identify single-nucleotide polymorphisms in more than 50 human populations around the world. We thus present a detailed view of the genetic divergence of Sec- and Cys-containing genes in animals and their diversity in humans. The addition of these datasets into the second release of the database provides a valuable resource for addressing medical and evolutionary questions in selenium biology.

  2. Comparative genomic mapping of the bovine Fragile Histidine Triad (FHIT tumour suppressor gene: characterization of a 2 Mb BAC contig covering the locus, complete annotation of the gene, analysis of cDNA and of physiological expression profiles

    Directory of Open Access Journals (Sweden)

    Boussaha Mekki

    2006-05-01

    Full Text Available Abstract Background The Fragile Histidine Triad gene (FHIT is an oncosuppressor implicated in many human cancers, including vesical tumors. FHIT is frequently hit by deletions caused by fragility at FRA3B, the most active of human common fragile sites, where FHIT lays. Vesical tumors affect also cattle, including animals grazing in the wild on bracken fern; compounds released by the fern are known to induce chromosome fragility and may trigger cancer with the interplay of latent Papilloma virus. Results The bovine FHIT was characterized by assembling a contig of 78 BACs. Sequence tags were designed on human exons and introns and used directly to select bovine BACs, or compared with sequence data in the bovine genome database or in the trace archive of the bovine genome sequencing project, and adapted before use. FHIT is split in ten exons like in man, with exons 5 to 9 coding for a 149 amino acids protein. VISTA global alignments between bovine genomic contigs retrieved from the bovine genome database and the human FHIT region were performed. Conservation was extremely high over a 2 Mb region spanning the whole FHIT locus, including the size of introns. Thus, the bovine FHIT covers about 1.6 Mb compared to 1.5 Mb in man. Expression was analyzed by RT-PCR and Northern blot, and was found to be ubiquitous. Four cDNA isoforms were isolated and sequenced, that originate from an alternative usage of three variants of exon 4, revealing a size very close to the major human FHIT cDNAs. Conclusion A comparative genomic approach allowed to assemble a contig of 78 BACs and to completely annotate a 1.6 Mb region spanning the bovine FHIT gene. The findings confirmed the very high level of conservation between human and bovine genomes and the importance of comparative mapping to speed the annotation process of the recently sequenced bovine genome. The detailed knowledge of the genomic FHIT region will allow to study the role of FHIT in bovine cancerogenesis

  3. Assembly and annotation of full mitochondrial genomes for the corn rootworm species, Diabrotica virgifera virgifera and D. barberi (Insecta: Coleoptera: Chrysomelidae), using Next Generation Sequence data

    Science.gov (United States)

    Complete mitochondrial genomes for two corn rootworm species, Diabrotica v. virgifera (16,747 bp) and D. barberi (16,632; Insecta: Coleoptera: Chrysomelidae), were assembled from Illumina HiSeq2000 read data. Annotation indicated that the order and orientation of 13 protein coding genes (PCGs), and...

  4. The Littorina sequence database (LSD)--an online resource for genomic data.

    Science.gov (United States)

    Canbäck, Björn; André, Carl; Galindo, Juan; Johannesson, Kerstin; Johansson, Tomas; Panova, Marina; Tunlid, Anders; Butlin, Roger

    2012-01-01

    We present an interactive, searchable expressed sequence tag database for the periwinkle snail Littorina saxatilis, an upcoming model species in evolutionary biology. The database is the result of a hybrid assembly between Sanger and 454 sequences, 1290 and 147,491 sequences respectively. Normalized and non-normalized cDNA was obtained from different ecotypes of L. saxatilis collected in the UK and Sweden. The Littorina sequence database (LSD) contains 26,537 different contigs, of which 2453 showed similarity with annotated proteins in UniProt. Querying the LSD permits the selection of the taxonomic origin of blast hits for each contig, and the search can be restricted to particular taxonomic groups. The database allows access to UniProt annotations, blast output, protein family domains (PFAM) and Gene Ontology. The database will allow users to search for genetic markers and identifying candidate genes or genes for expression analyses. It is open for additional deposition of sequence information for L. saxatilis and other species of the genus Littorina. The LSD is available at http://mbio-serv2.mbioekol.lu.se/Littorina/.

  5. Use of Genomic Databases for Inquiry-Based Learning about Influenza

    Science.gov (United States)

    Ledley, Fred; Ndung'u, Eric

    2011-01-01

    The genome projects of the past decades have created extensive databases of biological information with applications in both research and education. We describe an inquiry-based exercise that uses one such database, the National Center for Biotechnology Information Influenza Virus Resource, to advance learning about influenza. This database…

  6. Use of Genomic Databases for Inquiry-Based Learning about Influenza

    Science.gov (United States)

    Ledley, Fred; Ndung'u, Eric

    2011-01-01

    The genome projects of the past decades have created extensive databases of biological information with applications in both research and education. We describe an inquiry-based exercise that uses one such database, the National Center for Biotechnology Information Influenza Virus Resource, to advance learning about influenza. This database…

  7. Database of Periodic DNA Regions in Major Genomes

    Directory of Open Access Journals (Sweden)

    Felix E. Frenkel

    2017-01-01

    Full Text Available Summary. We analyzed several prokaryotic and eukaryotic genomes looking for the periodicity sequences availability and employing a new mathematical method. The method envisaged using the random position weight matrices and dynamic programming. Insertions and deletions were allowed inside periodicities, thus adding a novelty to the results we obtained. A periodicity length, one of the key periodicity features, varied from 2 to 50 nt. Totally over 60,000 periodicity sequences were found in 15 genomes including some chromosomes of the H. sapiens (partial, C. elegans, D. melanogaster, and A. thaliana genomes.

  8. Database of Periodic DNA Regions in Major Genomes

    Science.gov (United States)

    2017-01-01

    Summary. We analyzed several prokaryotic and eukaryotic genomes looking for the periodicity sequences availability and employing a new mathematical method. The method envisaged using the random position weight matrices and dynamic programming. Insertions and deletions were allowed inside periodicities, thus adding a novelty to the results we obtained. A periodicity length, one of the key periodicity features, varied from 2 to 50 nt. Totally over 60,000 periodicity sequences were found in 15 genomes including some chromosomes of the H. sapiens (partial), C. elegans, D. melanogaster, and A. thaliana genomes. PMID:28182099

  9. Algal Functional Annotation Tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data

    Directory of Open Access Journals (Sweden)

    Merchant Sabeeha S

    2011-07-01

    Full Text Available Abstract Background Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. Description The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of

  10. Chloroplast Genome Sequence Annotation of Dendrobium nobile (Asparagales: Orchidaceae), an Endangered Medicinal Orchid from Northeast India.

    Science.gov (United States)

    Biswal, Devendra; Konhar, Ruchishree; Debnath, Manish; Parameswaran, Sriram; Sundar, Durai; Tandon, Pramod

    2017-05-19

    Orchidaceae constitutes one of the largest families of angiosperms. Owing to the significance of orchids in plant biology, market needs and current sustainable technology levels, basic research on the biology of orchids and their applications in the orchid industry is increasing. Although chloroplast (cp) genomes continue to be evolutionarily informative, there is very limited information available on orchid chloroplast genomes in public repositories. Here, we report the complete cp genome sequence of Dendrobium nobile from Northeast India (Orchidaceae, Asparagales), bearing the GenBank accession number KX377961, which will provide valuable information for future research on orchid genomics and evolution, as well as the medicinal value of orchids. Phylogenetic analyses using Bayesian methods recovered a monophyletic grouping of all Dendrobium species (D. nobile, D. huoshanense, D. officinale, D. pendulum, D. strongylanthum and D. chrysotoxum). The relationships recovered among the representative orchid species from the four subfamilies, i.e., Cypripedioideae, Epidendroideae, Orchidoideae and Vanilloideae, were consistent within the family Orchidaceae.

  11. Genome sequencing and annotation of Acinetobacter gyllenbergii strain MTCC 11365T

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Singh

    2014-12-01

    Full Text Available The genus Acinetobacter consists of 31 validly published species ubiquitously distributed in nature and primarily associated with nosocomial infection. We report 4.3 Mb genome of the Acinetobacter gyllenbergii strain MTCC 11365T. The draft genome of A. gyllenbergii has a G + C content of 41.0% and includes 3 rRNA genes (5S, 23S, 16S and 67 aminoacyl-tRNA synthetase genes.

  12. Genome sequencing and annotation of Acinetobacter gerneri strain MTCC 9824T

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Singh

    2014-12-01

    Full Text Available The genus Acinetobacter consists of 31 validly published species ubiquitously distributed in nature and primarily associated with nosocomial infection. We report the 4.4 Mb genome of Acinetobacter gerneri strain MTCC 9824T. The genome has a G + C content of 38.0% and includes 3 rRNA genes (5S, 23S16S and 64 aminoacyl-tRNA synthetase genes.

  13. Genome sequencing and annotation of Acinetobacter haemolyticus strain MTCC 9819T

    Directory of Open Access Journals (Sweden)

    Indu Khatri

    2014-12-01

    Full Text Available The genus Acinetobacter consists of 31 validly published species ubiquitously distributed in nature and primarily associated with nosocomial infection. We report the 3.4 Mb genome of Acinetobacter haemolyticus strain MTCC 9819T. The genome has a G + C content of 40.0% and includes 3 rRNA genes (5S, 23S, 16S and 65 aminoacyl-tRNA synthetase genes.

  14. Genome sequencing and annotation of Afipia septicemium strain OHSU_II

    Directory of Open Access Journals (Sweden)

    Philip Yang

    2014-12-01

    Full Text Available We report the 5.1 Mb noncontiguous draft genome of Afipia septicemium strain OHSU_II, isolated from blood of a female patient. The genome consists of 5,087,893 bp circular chromosome with no identifiable autonomous plasmid with a G + C content of 61.09% and contains 4898 protein-coding genes and 49 RNA genes including 3 rRNA genes and 46 tRNA genes.

  15. Fish the ChIPs: a pipeline for automated genomic annotation of ChIP-Seq data

    Directory of Open Access Journals (Sweden)

    Minucci Saverio

    2011-10-01

    Full Text Available Abstract Background High-throughput sequencing is generating massive amounts of data at a pace that largely exceeds the throughput of data analysis routines. Here we introduce Fish the ChIPs (FC, a computational pipeline aimed at a broad public of users and designed to perform complete ChIP-Seq data analysis of an unlimited number of samples, thus increasing throughput, reproducibility and saving time. Results Starting from short read sequences, FC performs the following steps: 1 quality controls, 2 alignment to a reference genome, 3 peak calling, 4 genomic annotation, 5 generation of raw signal tracks for visualization on the UCSC and IGV genome browsers. FC exploits some of the fastest and most effective tools today available. Installation on a Mac platform requires very basic computational skills while configuration and usage are supported by a user-friendly graphic user interface. Alternatively, FC can be compiled from the source code on any Unix machine and then run with the possibility of customizing each single parameter through a simple configuration text file that can be generated using a dedicated user-friendly web-form. Considering the execution time, FC can be run on a desktop machine, even though the use of a computer cluster is recommended for analyses of large batches of data. FC is perfectly suited to work with data coming from Illumina Solexa Genome Analyzers or ABI SOLiD and its usage can potentially be extended to any sequencing platform. Conclusions Compared to existing tools, FC has two main advantages that make it suitable for a broad range of users. First of all, it can be installed and run by wet biologists on a Mac machine. Besides it can handle an unlimited number of samples, being convenient for large analyses. In this context, computational biologists can increase reproducibility of their ChIP-Seq data analyses while saving time for downstream analyses. Reviewers This article was reviewed by Gavin Huttley, George

  16. Assessment and improvement of Indian-origin rhesus macaque and Mauritian-origin cynomolgus macaque genome annotations using deep transcriptome sequencing data

    Science.gov (United States)

    Peng, Xinxia; Pipes, Lenore; Xiong, Hao; Green, Richard R.; Jones, Daniel C.; Ruzzo, Walter L.; Schroth, Gary P.; Mason, Christopher E.; Palermo, Robert E.; Katze, Michael G.

    2014-01-01

    Background The genome annotations of rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques, two of the most common nonhuman primate animal models, are limited. Methods We analyzed large-scale macaque RNA-based next-generation sequencing (RNAseq) data to identify un-annotated macaque transcripts. Results For both macaque species, we uncovered thousands of novel isoforms for annotated genes and thousands of un-annotated intergenic transcripts enriched with non-coding RNAs. We also identified thousands of transcript sequences which are partially or completely ‘missing’ from current macaque genome assemblies. We showed that many newly identified transcripts were differentially expressed during SIV infection of rhesus macaques or during Ebola virus infection of cynomolgus macaques. Conclusions For two important macaque species, we uncovered thousands of novel isoforms and un-annotated intergenic transcripts including coding and non-coding RNAs, polyadenylated and non-polyadenylated transcripts. This resource will greatly improve future macaque studies, as demonstrated by their applications in infectious disease studies. PMID:24810475

  17. Genome sequencing and annotation of Acinetobacter guillouiae strain MSP 4-18

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Singh

    2014-12-01

    Full Text Available The genus Acinetobacter consists of 31 validly published species ubiquitously distributed in nature and primarily associated with nosocomial infection. We report the 4.8 Mb genome of Acinetobacter guillouiae MSP 4-18, isolated from a mangrove soil sample from Parangipettai (11°30′N, 79°47′E, Tamil Nadu, India. The draft genome of A. guillouiae MSP 4-18 has a G + C content of 38.0% and includes 3 rRNA genes (5S, 23S, 16S and 69 aminoacyl-tRNA synthetase genes.

  18. Whole genome sequences and annotation of Micrococcus luteus SUBG006, a novel phytopathogen of mango

    Directory of Open Access Journals (Sweden)

    Purvi M. Rakhashiya

    2015-12-01

    Full Text Available Actinobaceria, Micrococcus luteus SUBG006 was isolated from infected leaves of Mangifera indica L. vr. Nylon in Rajkot, (22.30°N, 70.78°E, Gujarat, India. The genome size is 3.86 Mb with G + C content of 69.80% and contains 112 rRNA sequences (5S, 16S and 23S. The whole genome sequencing has been deposited in DDBJ/EMBL/GenBank under the accession number JOKP00000000.

  19. MIPS PlantsDB: a database framework for comparative plant genome research.

    Science.gov (United States)

    Nussbaumer, Thomas; Martis, Mihaela M; Roessner, Stephan K; Pfeifer, Matthias; Bader, Kai C; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel

    2013-01-01

    The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB-plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834-D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB.

  20. Databases and web tools for cancer genomics study.

    Science.gov (United States)

    Yang, Yadong; Dong, Xunong; Xie, Bingbing; Ding, Nan; Chen, Juan; Li, Yongjun; Zhang, Qi