WorldWideScience

Sample records for genetically encoded optical

  1. Data Encoding using Periodic Nano-Optical Features

    Science.gov (United States)

    Vosoogh-Grayli, Siamack

    Successful trials have been made through a designed algorithm to quantize, compress and optically encode unsigned 8 bit integer values in the form of images using Nano optical features. The periodicity of the Nano-scale features (Nano-gratings) have been designed and investigated both theoretically and experimentally to create distinct states of variation (three on states and one off state). The use of easy to manufacture and machine readable encoded data in secured authentication media has been employed previously in bar-codes for bi-state (binary) models and in color barcodes for multiple state models. This work has focused on implementing 4 states of variation for unit information through periodic Nano-optical structures that separate an incident wavelength into distinct colors (variation states) in order to create an encoding system. Compared to barcodes and magnetic stripes in secured finite length storage media the proposed system encodes and stores more data. The benefits of multiple states of variation in an encoding unit are 1) increased numerically representable range 2) increased storage density and 3) decreased number of typical set elements for any ergodic or semi-ergodic source that emits these encoding units. A thorough investigation has targeted the effects of the use of multi-varied state Nano-optical features on data storage density and consequent data transmission rates. The results show that use of Nano-optical features for encoding data yields a data storage density of circa 800 Kbits/in2 via the implementation of commercially available high resolution flatbed scanner systems for readout. Such storage density is far greater than commercial finite length secured storage media such as Barcode family with maximum practical density of 1kbits/in2 and highest density magnetic stripe cards with maximum density circa 3 Kbits/in2. The numerically representable range of the proposed encoding unit for 4 states of variation is [0 255]. The number of

  2. Optical encoder based on a nondiffractive beam

    International Nuclear Information System (INIS)

    Lutenberg, Ariel; Perez-Quintian, Fernando; Rebollo, Maria A.

    2008-01-01

    Optical encoders are used in industrial and laboratory motion equipment to measure rotations and linear displacements. We introduce a design of an optical encoder based on a nondiffractive beam. We expect that the invariant profile and radial symmetry of the nondiffractive beam provide the design with remarkable tolerance to mechanical perturbations. We experimentally demonstrate that the proposed design generates a suitable output sinusoidal signal with low harmonic distortion. Moreover, we present a numerical model of the system based on the angular spectrum approximation whose predictions are in excellent agreement with the experimental results

  3. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    Science.gov (United States)

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant

  4. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix; Fu, Qiang; Peng, Yifan; Heidrich, Wolfgang

    2016-01-01

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  5. Encoded diffractive optics for full-spectrum computational imaging

    KAUST Repository

    Heide, Felix

    2016-09-16

    Diffractive optical elements can be realized as ultra-thin plates that offer significantly reduced footprint and weight compared to refractive elements. However, such elements introduce severe chromatic aberrations and are not variable, unless used in combination with other elements in a larger, reconfigurable optical system. We introduce numerically optimized encoded phase masks in which different optical parameters such as focus or zoom can be accessed through changes in the mechanical alignment of a ultra-thin stack of two or more masks. Our encoded diffractive designs are combined with a new computational approach for self-calibrating imaging (blind deconvolution) that can restore high-quality images several orders of magnitude faster than the state of the art without pre-calibration of the optical system. This co-design of optics and computation enables tunable, full-spectrum imaging using thin diffractive optics.

  6. A 10 Gbit/s OCDMA system based on electric encoding and optical transmission

    Science.gov (United States)

    Li, Chuan-qi; Hu, Jin-lin; He, Dong-dong; Chen, Mei-juan; Wang, Da-chi; Chen, Yan

    2013-11-01

    An electric encoded/optical transmission system of code division multiple access (CDMA) is proposed. It encodes the user signal in electric domain, and transfers the different code slice signals via the different wavelengths of light. This electric domain encoder/decoder is compared with current traditional encoder/decoder. Four-user modulation/demodulation optical CDMA (OCDMA) system with rate of 2.5 Gbit/s is simulated, which is based on the optical orthogonal code (OCC) designed in our laboratory. The results show that the structure of electric encoding/optical transmission can encode/decode signal correctly, and can achieve the chip rate equal to the user data rate. It can overcome the rate limitation of electronic bottleneck, and bring some potential applications in the electro-optical OCDMA system.

  7. Negative base encoding in optical linear algebra processors

    Science.gov (United States)

    Perlee, C.; Casasent, D.

    1986-01-01

    In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.

  8. Transfection of genetically encoded photoswitchable probes for STORM imaging.

    Science.gov (United States)

    Bates, Mark; Jones, Sara A; Zhuang, Xiaowei

    2013-06-01

    Conventional fluorescence microscopy is limited by its spatial resolution, leaving many biological structures too small to be studied in detail. Stochastic optical reconstruction microscopy (STORM) is a method for superresolution fluorescence imaging based on the high accuracy localization of individual fluorophores. It uses optically switchable fluorophores: molecules that can be switched between a nonfluorescent and a fluorescent state by exposure to light. This protocol describes the transfection of genetically encoded photoswitchable probes for STORM imaging. It includes a discussion of how to choose a photoswitchable fluorescent protein; standard molecular biology techniques should be used to generate a plasmid containing the sequence of the photoswitchable protein linked to the gene of interest. Once the plasmid has been generated and has been verified, it can be introduced into cells via any standard means of gene delivery, such as lipofection or electroporation. Optimal conditions will vary considerably for different cell lines and plasmids. Here, we present an example protocol for the transfection of BS-C-1 cells with an mEos2-vimentin plasmid using the lipid-based reagent FuGENE6.

  9. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    Science.gov (United States)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James

    2015-01-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223

  10. Extraordinarily adaptive properties of the genetically encoded amino acids.

    Science.gov (United States)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves, H James

    2015-03-24

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or "chemistry space." Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set.

  11. Imaging dynamic redox processes with genetically encoded probes.

    Science.gov (United States)

    Ezeriņa, Daria; Morgan, Bruce; Dick, Tobias P

    2014-08-01

    Redox signalling plays an important role in many aspects of physiology, including that of the cardiovascular system. Perturbed redox regulation has been associated with numerous pathological conditions; nevertheless, the causal relationships between redox changes and pathology often remain unclear. Redox signalling involves the production of specific redox species at specific times in specific locations. However, until recently, the study of these processes has been impeded by a lack of appropriate tools and methodologies that afford the necessary redox species specificity and spatiotemporal resolution. Recently developed genetically encoded fluorescent redox probes now allow dynamic real-time measurements, of defined redox species, with subcellular compartment resolution, in intact living cells. Here we discuss the available genetically encoded redox probes in terms of their sensitivity and specificity and highlight where uncertainties or controversies currently exist. Furthermore, we outline major goals for future probe development and describe how progress in imaging methodologies will improve our ability to employ genetically encoded redox probes in a wide range of situations. This article is part of a special issue entitled "Redox Signalling in the Cardiovascular System." Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Modulating the Voltage-sensitivity of a Genetically Encoded Voltage Indicator.

    Science.gov (United States)

    Jung, Arong; Rajakumar, Dhanarajan; Yoon, Bong-June; Baker, Bradley J

    2017-10-01

    Saturation mutagenesis was performed on a single position in the voltage-sensing domain (VSD) of a genetically encoded voltage indicator (GEVI). The VSD consists of four transmembrane helixes designated S1-S4. The V220 position located near the plasma membrane/extracellular interface had previously been shown to affect the voltage range of the optical signal. Introduction of polar amino acids at this position reduced the voltage-dependent optical signal of the GEVI. Negatively charged amino acids slightly reduced the optical signal by 33 percent while positively charge amino acids at this position reduced the optical signal by 80%. Surprisingly, the range of V220D was similar to that of V220K with shifted optical responses towards negative potentials. In contrast, the V220E mutant mirrored the responses of the V220R mutation suggesting that the length of the side chain plays in role in determining the voltage range of the GEVI. Charged mutations at the 219 position all behaved similarly slightly shifting the optical response to more negative potentials. Charged mutations to the 221 position behaved erratically suggesting interactions with the plasma membrane and/or other amino acids in the VSD. Introduction of bulky amino acids at the V220 position increased the range of the optical response to include hyperpolarizing signals. Combining The V220W mutant with the R217Q mutation resulted in a probe that reduced the depolarizing signal and enhanced the hyperpolarizing signal which may lead to GEVIs that only report neuronal inhibition.

  13. W-band radio-over-fiber propagation of two optically encoded wavelength channels

    Science.gov (United States)

    Eghbal, Morad Khosravi; Shadaram, Mehdi

    2018-01-01

    We propose a W-band wavelength-division multiplexing (WDM)-over-optical code-division multiple access radio-over-fiber system. This system offers capacity expansion by increasing the working frequency to millimeter wave region and by introducing optical encoding and multiwavelength multiplexing. The system's functionality is investigated by software modeling, and the results are presented. The generated signals are data modulated at 10 Gb/s and optically encoded for two wavelength channels and transmitted with a 20-km length of fiber. The received signals are optically decoded and detected. Also, encoding has improved the bit error rate (BER) versus the received optical power margin for the WDM setting by about 4 dB. In addition, the eye-diagram shows that the difference between received optical power levels at the BER of 10-12 to 10-3 is about 1.3% between two encoded channels. This method of capacity improvement is significantly important for the next generation of mobile communication, where millimeter wave signals will be widely used to deliver data to small cells.

  14. Fluorescence-Based Multiplex Protein Detection Using Optically Encoded Microbeads

    Directory of Open Access Journals (Sweden)

    Dae Hong Jeong

    2012-03-01

    Full Text Available Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based multiplex detection techniques. Among the various techniques for high-throughput protein screening, optically-encoded beads combined with fluorescence-based target monitoring have great advantages over the planar array-based multiplexing assays. This review discusses recent developments of analytical methods of screening protein molecules on microbead-based platforms. These include various strategies such as barcoded microbeads, molecular beacon-based techniques, and surface-enhanced Raman scattering-based techniques. Their applications for label-free protein detection are also addressed. Especially, the optically-encoded beads such as multilayer fluorescence beads and SERS-encoded beads are successful for generating a large number of coding.

  15. Method for accurate determination of dissociation constants of optical ratiometric systems: chemical probes, genetically encoded sensors, and interacting molecules.

    Science.gov (United States)

    Pomorski, Adam; Kochańczyk, Tomasz; Miłoch, Anna; Krężel, Artur

    2013-12-03

    Ratiometric chemical probes and genetically encoded sensors are of high interest for both analytical chemists and molecular biologists. Their high sensitivity toward the target ligand and ability to obtain quantitative results without a known sensor concentration have made them a very useful tool in both in vitro and in vivo assays. Although ratiometric sensors are widely used in many applications, their successful and accurate usage depends on how they are characterized in terms of sensing target molecules. The most important feature of probes and sensors besides their optical parameters is an affinity constant toward analyzed molecules. The literature shows that different analytical approaches are used to determine the stability constants, with the ratio approach being most popular. However, oversimplification and lack of attention to detail results in inaccurate determination of stability constants, which in turn affects the results obtained using these sensors. Here, we present a new method where ratio signal is calibrated for borderline values of intensities of both wavelengths, instead of borderline ratio values that generate errors in many studies. At the same time, the equation takes into account the cooperativity factor or fluorescence artifacts and therefore can be used to characterize systems with various stoichiometries and experimental conditions. Accurate determination of stability constants is demonstrated utilizing four known optical ratiometric probes and sensors, together with a discussion regarding other, currently used methods.

  16. DS-OCDMA Encoder/Decoder Performance Analysis Using Optical Low-Coherence Reflectometry

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Obaton, Anne-Francoise; Gallion, Philippe

    2006-08-01

    Direct-sequence optical code-division multiple-access (DS-OCDMA) encoder/decoder based on sampled fiber Bragg gratings (S-FBGs) is characterized using phase-sensitive optical low-coherence reflectometry (OLCR). The OLCR technique allows localized measurements of FBG wavelength and physical length inside one S-FBG. This paper shows how the discrepancies between specifications and measurements of the different FBGs have some impact on spectral and temporal pulse responses of the OCDMA encoder/decoder. The FBG physical lengths lower than the specified ones are shown to affect the mean optical power reflected by the OCDMA encoder/decoder. The FBG wavelengths that are detuned from each other induce some modulations of S-FBG reflectivity resulting in encoder/decoder sensitivity to laser wavelength drift of the OCDMA system. Finally, highlighted by this OLCR study, some solutions to overcome limitations in performance with the S-FBG technology are suggested.

  17. Polarization encoded all-optical multi-valued shift operators

    Science.gov (United States)

    Roy, Jitendra Nath; Bhowmik, Panchatapa

    2014-08-01

    Polarization encoded multi-valued (both ternary and quaternary logic) shift operators have been designed using linear optical devices only. There are six ternary and 24 quaternary shift operators in multi-valued system. These are also known as reversible literals. This circuit will be useful in future all-optical multi-valued logic based information processing system. Different states of polarization of light are taken as different logic states.

  18. Cost-Effective Magnetoencephalography Based on Time Encoded Optical Fiber Interferometry for Epilepsy and Tinnitus

    Science.gov (United States)

    2016-09-01

    respectively. A length of dispersive fiber and a computer are used to first “decode” the optical interference signal into dispersed optical wave-packet...AWARD NUMBER: W81XWH-15-1-0008 TITLE: Cost-Effective Magnetoencephalography Based on Time-Encoded Optical Fiber Interferometry for Epilepsy...10 Dec 2014 - 9 Jun 2016 4. TITLE AND SUBTITLE 5a.16 CONTRACT NUMBER Encoded Optical Fiber Interferometry for Epilepsy and Tinnitus Diagnosis 5b

  19. The symmetric MSD encoder for one-step adder of ternary optical computer

    Science.gov (United States)

    Kai, Song; LiPing, Yan

    2016-08-01

    The symmetric Modified Signed-Digit (MSD) encoding is important for achieving the one-step MSD adder of Ternary Optical Computer (TOC). The paper described the symmetric MSD encoding algorithm in detail, and developed its truth table which has nine rows and nine columns. According to the truth table, the state table was developed, and the optical-path structure and circuit-implementation scheme of the symmetric MSD encoder (SME) for one-step adder of TOC were proposed. Finally, a series of experiments were designed and performed. The observed results of the experiments showed that the scheme to implement SME was correct, feasible and efficient.

  20. Designs of Optoelectronic Trinary Signed-Digit Multiplication by use of Joint Spatial Encodings and Optical Correlation

    Science.gov (United States)

    Cherri, Abdallah K.

    1999-02-01

    Trinary signed-digit (TSD) symbolic-substitution-based (SS-based) optical adders, which were recently proposed, are used as the basic modules for designing highly parallel optical multiplications by use of cascaded optical correlators. The proposed multiplications perform carry-free generation of the multiplication partial products of two words in constant time. Also, three different multiplication designs are presented, and new joint spatial encodings for the TSD numbers are introduced. The proposed joint spatial encodings allow one to reduce the SS computation rules involved in optical multiplication. In addition, the proposed joint spatial encodings increase the space bandwidth product of the spatial light modulators of the optical system. This increase is achieved by reduction of the numbers of pixels in the joint spatial encodings for the input TSD operands as well as reduction of the number of pixels used in the proposed matched spatial filters for the optical multipliers.

  1. Utilizing encoding in scalable linear optics quantum computing

    International Nuclear Information System (INIS)

    Hayes, A J F; Gilchrist, A; Myers, C R; Ralph, T C

    2004-01-01

    We present a scheme which offers a significant reduction in the resources required to implement linear optics quantum computing. The scheme is a variation of the proposal of Knill, Laflamme and Milburn, and makes use of an incremental approach to the error encoding to boost probability of success

  2. Suppression of Noise to Obtain a High-Performance Low-Cost Optical Encoder

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez-Rodríguez

    2018-01-01

    Full Text Available Currently, commercial encoders endowed with high precision are expensive sensors, and optical low-cost designs to measure the positioning angle have undesirable levels of system noise which reduce the good performance of devices. This research is devoted to the designing of mathematical filters to suppress noise in polarized transducers, in order to obtain high accuracy, precision, and resolution, along with an adaptive maximum response speed for low-cost optical encoders. This design was proved through a prototype inside a research platform, and experimental results show an accuracy of 3.9, a precision of 26, and a resolution of 17 [arc seconds], at least for the specified working conditions, for the sensing of the angular position of a rotary polarizer. From this work has been obtained a high-performance low-cost polyphase optical encoder, which uses filtering mathematical principles potentially generalizable to other inventions.

  3. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential.

    Science.gov (United States)

    Piao, Hong Hua; Rajakumar, Dhanarajan; Kang, Bok Eum; Kim, Eun Ha; Baker, Bradley J

    2015-01-07

    ArcLight is a genetically encoded fluorescent voltage sensor using the voltage-sensing domain of the voltage-sensing phosphatase from Ciona intestinalis that gives a large but slow-responding optical signal in response to changes in membrane potential (Jin et al., 2012). Fluorescent voltage sensors using the voltage-sensing domain from other species give faster yet weaker optical signals (Baker et al., 2012; Han et al., 2013). Sequence alignment of voltage-sensing phosphatases from different species revealed conserved polar and charged residues at 7 aa intervals in the S1-S3 transmembrane segments of the voltage-sensing domain, suggesting potential coil-coil interactions. The contribution of these residues to the voltage-induced optical signal was tested using a cassette mutagenesis screen by flanking each transmembrane segment with unique restriction sites to allow for the testing of individual mutations in each transmembrane segment, as well as combinations in all four transmembrane segments. Addition of a counter charge in S2 improved the kinetics of the optical response. A double mutation in the S4 domain dramatically reduced the slow component of the optical signal seen in ArcLight. Combining that double S4 mutant with the mutation in the S2 domain yielded a probe with kinetics voltage-sensing domain could potentially lead to fluorescent sensors capable of optically resolving neuronal inhibition and subthreshold synaptic activity. Copyright © 2015 the authors 0270-6474/15/350372-15$15.00/0.

  4. Polarization encoded all-optical quaternary R-S flip-flop using binary latch

    Science.gov (United States)

    Chattopadhyay, Tanay; Roy, Jitendra Nath; Chakraborty, Ajoy Kumar

    2009-04-01

    The developments of different multi-valued logic (MVL) systems have received considerable interests in recent years all over the world. In electronics, efforts have already been made to incorporate multi-valued system in logic and arithmetic data processing. But, very little efforts have been given in realization of MVL with optics. In this paper we present novel designs of certain all-optical circuits that can be used for realizing multi-valued logic functions. Polarization encoded all-optical quaternary (4-valued) R-S flip-flop is proposed and described. Two key circuits (all-optical encoder/decoder and a binary latch) are designed first. They are used to realize quaternary flip-flop in all-optical domain. Here the different quaternary logical states are represented by different polarized state of light. Terahertz Optical Asymmetric Demultiplexer (TOAD) based interferometric switch can take an important role. Computer simulation result confirming described methods and conclusion are given in this paper.

  5. Possibilities for Advanced Encoding Techniques at Signal Transmission in the Optical Transmission Medium

    Directory of Open Access Journals (Sweden)

    Filip Čertík

    2016-01-01

    Full Text Available This paper presents a possible simulation of negative effects in the optical transmission medium and an analysis for the utilization of different signal processing techniques at the optical signal transmission. An attention is focused on the high data rate signal transmission in the optical fiber influenced by linear and nonlinear environmental effects presented by the prepared simulation model. The analysis includes possible utilization of OOK, BPSK, DBPSK, BFSK, QPSK, DQPSK, 8PSK, and 16QAM modulation techniques together with RS, BCH, and LDPC encoding techniques for the signal transmission in the optical fiber. Moreover, the prepared simulation model is compared with real optical transmission systems. In the final part, a comparison of the selected modulation techniques with different encoding techniques and their implementation in real transmission systems is shown.

  6. Visualizing presynaptic calcium dynamics and vesicle fusion with a single genetically encoded reporter at individual synapses

    Directory of Open Access Journals (Sweden)

    Rachel E Jackson

    2016-07-01

    Full Text Available Synaptic transmission depends on the influx of calcium into the presynaptic compartment, which drives neurotransmitter release. Genetically encoded reporters are widely used tools to understand these processes, particularly pHluorin-based reporters that report vesicle exocytosis and endocytosis through pH dependent changes in fluorescence, and genetically encoded calcium indicators (GECIs that exhibit changes in fluorescence upon binding to calcium. The recent expansion of the color palette of available indicators has made it possible to image multiple probes simultaneously within a cell. We have constructed a single molecule reporter capable of concurrent imaging of both presynaptic calcium influx and exocytosis, by fusion of sypHy, the vesicle associated protein synaptophysin containing a GFP-based pHluorin sensor, with the red-shifted GECI R-GECO1. Due to the fixed stoichiometry of the two probes, the ratio of the two responses can also be measured, providing an all optical correlate of the calcium dependence of release. Here, we have characterized stimulus-evoked sypHy-RGECO responses of hippocampal synapses in vitro, exploring the effects of different stimulus strengths and frequencies as well as variations in external calcium concentrations. By combining live sypHy-RGECO imaging with post-hoc fixation and immunofluorescence, we have also investigated correlations between structural and functional properties of synapses.

  7. A novel method of developing all optical frequency encoded Fredkin gates

    Science.gov (United States)

    Garai, Sisir Kumar

    2014-02-01

    All optical reversible logic gates have significant applications in the field of optics and optoelectronics for developing different sequential and combinational circuits of optical computing, optical signal processing and in multi-valued logic operations and quantum computing. Here the author proposes a method for developing all optical three-input-output Fredkin gate and modified Fredkin gate using frequency encoded data. For this purpose the author has exploited the properties of efficient frequency conversion and faster switching speed of semiconductor optical amplifiers. Simulation results of the three input-output Fredkin gate testifies to the feasibility of the proposed scheme. These Fredkin gates are universal logic gates, and can be used to develop different all-optical logic and data processors in communication network.

  8. Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Wada, Naoya

    2007-06-11

    We propose a novel reconfigurable time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access application. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. The time domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. Proof-of-principle experiments of encoding with 16-chip, 20 GHz/chip binary-phase-shift-keying codes and 1.25 Gbps data transmission have been successfully demonstrated together with an arrayed-wave-guide decoder.

  9. Displacement encoder

    International Nuclear Information System (INIS)

    Hesketh, T.G.

    1983-01-01

    In an optical encoder, light from an optical fibre input A is encoded by means of the encoding disc and is subsequently collected for transmission via optical fibre B. At some point in the optical path between the fibres A and B, the light is separated into component form by means of a filtering or dispersive system and each colour component is associated with a respective one of the coding channels of the disc. In this way, the significance of each bit of the coded information is represented by a respective colour thereby enabling the components to be re-combined for transmission by the fibre B without loss of information. (author)

  10. Optical label encoding using electroabsorption modulators and investigation of chirp properties

    DEFF Research Database (Denmark)

    Xu, Lin; Chi, Nan; Oxenløwe, Leif Katsuo

    2003-01-01

    A novel scheme of optical label encoding by wavelength conversion based on electroabsorption modulators (EAMs) is reported. Based on the experimental observations, the chirp properties of the wavelength-converted signal are discussed and a wide dynamic range of the chirp α-parameter is found...

  11. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits

    Science.gov (United States)

    Zeuner, Jonas; Sharma, Aditya N.; Tillmann, Max; Heilmann, René; Gräfe, Markus; Moqanaki, Amir; Szameit, Alexander; Walther, Philip

    2018-03-01

    Recent progress in integrated-optics technology has made photonics a promising platform for quantum networks and quantum computation protocols. Integrated optical circuits are characterized by small device footprints and unrivalled intrinsic interferometric stability. Here, we take advantage of femtosecond-laser-written waveguides' ability to process polarization-encoded qubits and present an implementation of a heralded controlled-NOT gate on chip. We evaluate the gate performance in the computational basis and a superposition basis, showing that the gate can create polarization entanglement between two photons. Transmission through the integrated device is optimized using thermally expanded core fibers and adiabatically reduced mode-field diameters at the waveguide facets. This demonstration underlines the feasibility of integrated quantum gates for all-optical quantum networks and quantum repeaters.

  12. An encoding device and a method of encoding

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an encoding device, such as an optical position encoder, for encoding input from an object, and a method for encoding input from an object, for determining a position of an object that interferes with light of the device. The encoding device comprises a light source...... in the area in the space and may interfere with the light, which interference may be encoded into a position or activation....

  13. Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics.

    Science.gov (United States)

    Baker, Bradley J; Jin, Lei; Han, Zhou; Cohen, Lawrence B; Popovic, Marko; Platisa, Jelena; Pieribone, Vincent

    2012-07-15

    A substantial increase in the speed of the optical response of genetically encoded fluorescent protein voltage sensors (FP voltage sensors) was achieved by using the voltage-sensing phosphatase genes of Nematostella vectensis and Danio rerio. A potential N. vectensis voltage-sensing phosphatase was identified in silico. The voltage-sensing domain (S1-S4) of the N. vectensis homolog was used to create an FP voltage sensor called Nema. By replacing the phosphatase with a cerulean/citrine FRET pair, a new FP voltage sensor was synthesized with fast off kinetics (Tau(off)voltage-sensing phosphatase homolog, designated Zahra and Zahra 2, exhibited fast on and off kinetics within 2ms of the time constants observed with the organic voltage-sensitive dye, di4-ANEPPS. Mutagenesis of the S4 region of the Danio FP voltage sensor shifted the voltage dependence to more negative potentials but did not noticeably affect the kinetics of the optical signal. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Genetically-encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics

    Science.gov (United States)

    Baker, Bradley J.; Jin, Lei; Han, Zhou; Cohen, Lawrence B.; Popovic, Marko; Platisa, Jelena; Pieribone, Vincent

    2012-01-01

    A substantial increase in the speed of the optical response of genetically-encoded Fluorescent Protein voltage sensors (FP voltage sensors) was achieved by using the voltage-sensing phosphatase genes of Nematostella vectensis and Danio rerio. A potential N. vectensis voltage-sensing phosphatase was identified in silico. The voltage-sensing domain (S1–S4) of the N. vectensis homolog was used to create an FP voltage sensor called Nema. By replacing the phosphatase with a cerulean/citrine FRET pair, a new FP voltage sensor was synthesized with fast off kinetics (Tauoff voltage-sensing phosphatase homolog, designated Zahra and Zahra 2, exhibited fast on and off kinetics within 2 msec of the time constants observed with the organic voltage-sensitive dye, di4-ANEPPS. Mutagenesis of the S4 region of the Danio FP voltage sensor shifted the voltage dependence to more negative potentials but did not noticeably affect the kinetics of the optical signal. PMID:22634212

  15. Genetics Home Reference: optic atrophy type 1

    Science.gov (United States)

    ... Nerve Atrophy Encyclopedia: Visual Acuity Test Health Topic: Color Blindness Health Topic: Optic Nerve Disorders Genetic and Rare ... Disease InfoSearch: Optic atrophy 1 Kids Health: What's Color Blindness? MalaCards: autosomal dominant optic atrophy, classic form Merck ...

  16. Dual Optical Recordings for Action Potentials and Calcium Handling in Induced Pluripotent Stem Cell Models of Cardiac Arrhythmias Using Genetically Encoded Fluorescent Indicators

    Science.gov (United States)

    Song, LouJin; Awari, Daniel W.; Han, Elizabeth Y.; Uche-Anya, Eugenia; Park, Seon-Hye E.; Yabe, Yoko A.; Chung, Wendy K.

    2015-01-01

    Reprogramming of human somatic cells to pluripotency has been used to investigate disease mechanisms and to identify potential therapeutics. However, the methods used for reprogramming, in vitro differentiation, and phenotyping are still complicated, expensive, and time-consuming. To address the limitations, we first optimized a protocol for reprogramming of human fibroblasts and keratinocytes into pluripotency using single lipofection and the episomal vectors in a 24-well plate format. This method allowed us to generate multiple lines of integration-free and feeder-free induced pluripotent stem cells (iPSCs) from seven patients with cardiac diseases and three controls. Second, we differentiated human iPSCs derived from patients with Timothy syndrome into cardiomyocytes using a monolayer differentiation method. We found that Timothy syndrome cardiomyocytes showed slower, irregular contractions and abnormal calcium handling compared with the controls. The results are consistent with previous reports using a retroviral method for reprogramming and an embryoid body-based method for cardiac differentiation. Third, we developed an efficient approach for recording the action potentials and calcium transients simultaneously in control and patient cardiomyocytes using genetically encoded fluorescent indicators, ArcLight and R-GECO1. The dual optical recordings enabled us to observe prolonged action potentials and abnormal calcium handling in Timothy syndrome cardiomyocytes. We confirmed that roscovitine rescued the phenotypes in Timothy syndrome cardiomyocytes and that these findings were consistent with previous studies using conventional electrophysiological recordings and calcium imaging with dyes. The approaches using our optimized methods and dual optical recordings will improve iPSC applicability for disease modeling to investigate mechanisms underlying cardiac arrhythmias and to test potential therapeutics. PMID:25769651

  17. Measurement of picometre non-linearity in an optical grating encoder using x-ray interferometry

    Science.gov (United States)

    Yacoot, Andrew; Cross, Nigel

    2003-01-01

    X-ray interferometry has been used to characterize the non-linearity in an optical encoder displacement measuring system. Traceable measurements of the non-linearity have been made and an estimation of the uncertainty associated with the measurements is given. Cyclic errors with a magnitude of up to 50 pm and periodicity of the encoder system (128 nm) have been recorded.

  18. Chemical fingerprints encode mother–offspring similarity, colony membership, relatedness, and genetic quality in fur seals

    Science.gov (United States)

    Stoffel, Martin A.; Caspers, Barbara A.; Forcada, Jaume; Giannakara, Athina; Baier, Markus; Eberhart-Phillips, Luke; Müller, Caroline; Hoffman, Joseph I.

    2015-01-01

    Chemical communication underpins virtually all aspects of vertebrate social life, yet remains poorly understood because of its highly complex mechanistic basis. We therefore used chemical fingerprinting of skin swabs and genetic analysis to explore the chemical cues that may underlie mother–offspring recognition in colonially breeding Antarctic fur seals. By sampling mother–offspring pairs from two different colonies, using a variety of statistical approaches and genotyping a large panel of microsatellite loci, we show that colony membership, mother–offspring similarity, heterozygosity, and genetic relatedness are all chemically encoded. Moreover, chemical similarity between mothers and offspring reflects a combination of genetic and environmental influences, the former partly encoded by substances resembling known pheromones. Our findings reveal the diversity of information contained within chemical fingerprints and have implications for understanding mother–offspring communication, kin recognition, and mate choice. PMID:26261311

  19. Design of 10Gbps optical encoder/decoder structure for FE-OCDMA system using SOA and opto-VLSI processors.

    Science.gov (United States)

    Aljada, Muhsen; Hwang, Seow; Alameh, Kamal

    2008-01-21

    In this paper we propose and experimentally demonstrate a reconfigurable 10Gbps frequency-encoded (1D) encoder/decoder structure for optical code division multiple access (OCDMA). The encoder is constructed using a single semiconductor optical amplifier (SOA) and 1D reflective Opto-VLSI processor. The SOA generates broadband amplified spontaneous emission that is dynamically sliced using digital phase holograms loaded onto the Opto-VLSI processor to generate 1D codewords. The selected wavelengths are injected back into the same SOA for amplifications. The decoder is constructed using single Opto-VLSI processor only. The encoded signal can successfully be retrieved at the decoder side only when the digital phase holograms of the encoder and the decoder are matched. The system performance is measured in terms of the auto-correlation and cross-correlation functions as well as the eye diagram.

  20. Genetically encoded probes for NAD+/NADH monitoring.

    Science.gov (United States)

    Bilan, Dmitry S; Belousov, Vsevolod V

    2016-11-01

    NAD + and NADH participate in many metabolic reactions. The NAD + /NADH ratio is an important parameter reflecting the general metabolic and redox state of different types of cells. For a long time, in situ and in vivo NAD + /NADH monitoring has been hampered by the lack of suitable tools. The recent development of genetically encoded indicators based on fluorescent proteins linked to specific nucleotide-binding domains has already helped to address this monitoring problem. In this review, we will focus on four available indicators: Peredox, Frex family probes, RexYFP and SoNar. Each indicator has advantages and limitations. We will also discuss the most important points that should be considered when selecting a suitable indicator for certain experimental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators.

    Science.gov (United States)

    Chamberland, Simon; Yang, Helen H; Pan, Michael M; Evans, Stephen W; Guan, Sihui; Chavarha, Mariya; Yang, Ying; Salesse, Charleen; Wu, Haodi; Wu, Joseph C; Clandinin, Thomas R; Toth, Katalin; Lin, Michael Z; St-Pierre, François

    2017-07-27

    Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila . These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision.

  2. Engineering a genetically-encoded SHG chromophore by electrostatic targeting to the membrane

    Directory of Open Access Journals (Sweden)

    Yuka eJinno

    2014-11-01

    Full Text Available Although second harmonic generation (SHG microscopy provides unique imaging advantages for voltage imaging and other biological applications, genetically-encoded SHG chromophores remain relatively unexplored. SHG only arises from non-centrosymmetric media, so an anisotropic arrangement of chromophores is essential to provide strong SHG signals. Here, inspired by the mechanism by which K-Ras4B associates with plasma membranes, we sought to achieve asymmetric arrangements of chromophores at the membrane-cytoplasm interface using the fluorescent protein mVenus. After adding a farnesylation motif to the C-terminus of mVenus, nine amino acids composing its -barrel surface were replaced by lysine, forming an electrostatic patch. This protein (mVe9Knus-CVIM was efficiently targeted to the plasma membrane in a geometrically defined manner and exhibited SHG in HEK293 cells. In agreement with its design, mVe9Knus-CVIM hyperpolarizability was oriented at a small angle (~7.3º from the membrane normal. Genetically-encoded SHG chromophores could serve as a molecular platform for imaging membrane potential.

  3. Wavelength-encoding/temporal-spreading optical code division multiple-access system with in-fiber chirped moiré gratings.

    Science.gov (United States)

    Chen, L R; Smith, P W; de Sterke, C M

    1999-07-20

    We propose an optical code division multiple-access (OCDMA) system that uses in-fiber chirped moiré gratings (CMG's) for encoding and decoding of broadband pulses. In reflection the wavelength-selective and dispersive nature of CMG's can be used to implement wavelength-encoding/temporal-spreading OCDMA. We give examples of codes designed around the constraints imposed by the encoding devices and present numerical simulations that demonstrate the proposed concept.

  4. Design of polarization encoded all-optical 4-valued MAX logic gate and its applications

    Science.gov (United States)

    Chattopadhyay, Tanay; Nath Roy, Jitendra

    2013-07-01

    Quaternary maximum (QMAX) gate is one type of multi-valued logic gate. An all-optical scheme of polarization encoded quaternary (4-valued) MAX logic gate with the help of Terahertz Optical Asymmetric Demultiplexer (TOAD) based fiber interferometric switch is proposed and described. For the quaternary information processing in optics, the quaternary number (0, 1, 2, 3) can be represented by four discrete polarized states of light. Numerical simulation result confirming the described methods is given in this paper. Some applications of MAX gate in logical operation and memory device are also given.

  5. Genetic algorithm approach to thin film optical parameters determination

    International Nuclear Information System (INIS)

    Jurecka, S.; Jureckova, M.; Muellerova, J.

    2003-01-01

    Optical parameters of thin film are important for several optical and optoelectronic applications. In this work the genetic algorithm proposed to solve optical parameters of thin film values. The experimental reflectance is modelled by the Forouhi - Bloomer dispersion relations. The refractive index, the extinction coefficient and the film thickness are the unknown parameters in this model. Genetic algorithm use probabilistic examination of promissing areas of the parameter space. It creates a population of solutions based on the reflectance model and then operates on the population to evolve the best solution by using selection, crossover and mutation operators on the population individuals. The implementation of genetic algorithm method and the experimental results are described too (Authors)

  6. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons

    Directory of Open Access Journals (Sweden)

    Joseph Valentino Raimondo

    2012-05-01

    Full Text Available The regulation of hydrogen ion concentration (pH is fundamental to cell viability, metabolism and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilised to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E2GFP and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.

  7. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons.

    Science.gov (United States)

    Raimondo, Joseph V; Irkle, Agnese; Wefelmeyer, Winnie; Newey, Sarah E; Akerman, Colin J

    2012-01-01

    The regulation of hydrogen ion concentration (pH) is fundamental to cell viability, metabolism, and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission, and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilized to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E(2)GFP, and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.

  8. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Jordan S. Leyton-Mange

    2014-02-01

    Full Text Available In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity.

  9. Optical demodulation system for digitally encoded suspension array in fluoroimmunoassay

    Science.gov (United States)

    He, Qinghua; Li, Dongmei; He, Yonghong; Guan, Tian; Zhang, Yilong; Shen, Zhiyuan; Chen, Xuejing; Liu, Siyu; Lu, Bangrong; Ji, Yanhong

    2017-09-01

    A laser-induced breakdown spectroscopy and fluorescence spectroscopy-coupled optical system is reported to demodulate digitally encoded suspension array in fluoroimmunoassay. It takes advantage of the plasma emissions of assembled elemental materials to digitally decode the suspension array, providing a more stable and accurate recognition to target biomolecules. By separating the decoding procedure of suspension array and adsorption quantity calculation of biomolecules into two independent channels, the cross talk between decoding and label signals in traditional methods had been successfully avoided, which promoted the accuracy of both processes and realized more sensitive quantitative detection of target biomolecules. We carried a multiplexed detection of several types of anti-IgG to verify the quantitative analysis performance of the system. A limit of detection of 1.48×10-10 M was achieved, demonstrating the detection sensitivity of the optical demodulation system.

  10. Fiber Bragg grating for spectral phase optical code-division multiple-access encoding and decoding

    Science.gov (United States)

    Fang, Xiaohui; Wang, Dong-Ning; Li, Shichen

    2003-08-01

    A new method for realizing spectral phase optical code-division multiple-access (OCDMA) coding based on step chirped fiber Bragg gratings (SCFBGs) is proposed and the corresponding encoder/decoder is presented. With this method, a mapping code is introduced for the m-sequence address code and the phase shift can be inserted into the subgratings of the SCFBG according to the mapping code. The transfer matrix method together with Fourier transform is used to investigate the characteristics of the encoder/decoder. The factors that influence the correlation property of the encoder/decoder, including index modulation and bandwidth of the subgrating, are identified. The system structure is simple and good correlation output can be obtained. The performance of the OCDMA system based on SCFBGs has been analyzed.

  11. a permutation encoding te algorithm solution of reso tation encoding

    African Journals Online (AJOL)

    eobe

    Keywords: Genetic algorithm, resource constrained. 1. INTRODUCTION. 1. .... Nigerian Journal of Technology. Vol. 34, No. 1, January 2015. 128 ... 4. ENCODING OF CHROMOSOME. ENCODING OF CHROMOSOME .... International Multi conference of Engineers and ... method”, Naval Research Logistics, vol 48, issue 2,.

  12. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    Science.gov (United States)

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  13. Optical incremental rotary encoder in low-cost-design; Optischer inkrementaler Drehgeber in Low-Cost-Bauweise

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, David; Pruss, Christof; Osten, Wolfgang [Stuttgart Univ. (Germany). Inst. fuer Technische Optik; Seybold, Jonathan; Mayer, Volker [Hans-Schickard-Gesellschaft, Stuttgart (DE). Inst. fuer Mikroaufbautechnik (IMAT); Kueck, Heinz [Hans-Schickard-Gesellschaft, Stuttgart (DE). Inst. fuer Mikroaufbautechnik (IMAT); Stuttgart Univ. (Germany). Inst. fuer Zeitmesstechnik, Fein- und Mikrotechnik

    2010-07-01

    We have developed a new concept for low-cost optical encoders to come up to meet the increasing demand for inexpensive rotary sensors. The principal idea is to use a micro patterned plastic disc with metal coating, as it is used for Compact Discs or DVDs. Such encoder discs can be manufactured by an efficient injection compression moulding process. With this well established technique it is possible to achieve highly precise micro patterns while running a cost effective process for high volume production. (orig.)

  14. Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression.

    Directory of Open Access Journals (Sweden)

    Sher L Hendrickson

    2010-09-01

    Full Text Available The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression.Here we explore whether single nucleotide polymorphisms (SNPs within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4 on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI on chromosome 6.Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis.

  15. Multiple-stage pure phase encoding with biometric information

    Science.gov (United States)

    Chen, Wen

    2018-01-01

    In recent years, many optical systems have been developed for securing information, and optical encryption/encoding has attracted more and more attention due to the marked advantages, such as parallel processing and multiple-dimensional characteristics. In this paper, an optical security method is presented based on pure phase encoding with biometric information. Biometric information (such as fingerprint) is employed as security keys rather than plaintext used in conventional optical security systems, and multiple-stage phase-encoding-based optical systems are designed for generating several phase-only masks with biometric information. Subsequently, the extracted phase-only masks are further used in an optical setup for encoding an input image (i.e., plaintext). Numerical simulations are conducted to illustrate the validity, and the results demonstrate that high flexibility and high security can be achieved.

  16. Optimization of multicast optical networks with genetic algorithm

    Science.gov (United States)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  17. Optical pulse coupling in a photorefractive crystal, propagation of encoded pulses in an optical fiber, and phase conjugate optical interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Yao, X.S.

    1992-01-01

    In Part I, the author presents a theory to describe the interaction between short optical pulses in a photorefractive crystal. This theory provides an analytical framework for pulse coherence length measurements using a photorefractive crystal. The theory also predicts how a pulse changes its temporal shape due to its coupling with another pulse in a photorefractive crystal. The author describes experiments to demonstrate how photorefractive coupling alters the temporal shape and the frequency spectrum of an optical pulse. The author describes a compact optical field correlator. Using this correlator, the author measured the field cross-correlation function of optical pulses using a photorefractive crystal. The author presents a more sophisticated theory to describe the photorefractive coupling of optical pulses that are too short for the previous theory to be valid. In Part II of this dissertation, the author analyzes how the group-velocity dispersion and the optical nonlinearity of an optical fiber ruin an fiberoptic code-division multiple-access (CDMA) communication system. The author treats the optical fiber's nonlinear response with a novel approach and derives the pulse propagation equation. Through analysis and numerically simulations, the author obtains the maximum and the maximum allowed peak pulse power, as well as the minimum and the maximum allowed pulse width for the communication system to function properly. The author simulates how the relative misalignment between the encoding and the decoding masks affects the system's performance. In Part III the author demonstrates a novel optical interconnection device based on a mutually pumped phase conjugator. This device automatically routes light from selected information-sending channels to selected information-receiving channels, and vice versa. The phase conjugator eliminates the need for critical alignment. It is shown that a large number of optical channels can be interconnected using this

  18. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system.

    Science.gov (United States)

    Raimondo, Joseph V; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E; Srinivas, Shankar; Akerman, Colin J

    2013-01-01

    Within the nervous system, intracellular Cl(-) and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl(-) and pH are often co-regulated, and network activity results in the movement of both Cl(-) and H(+). Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl(-) and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN-a new genetically-encoded ratiometric Cl(-) and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl(-) and H(+) concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons.

  19. Encoding Schemes For A Digital Optical Multiplier Using The Modified Signed-Digit Number Representation

    Science.gov (United States)

    Lasher, Mark E.; Henderson, Thomas B.; Drake, Barry L.; Bocker, Richard P.

    1986-09-01

    The modified signed-digit (MSD) number representation offers full parallel, carry-free addition. A MSD adder has been described by the authors. This paper describes how the adder can be used in a tree structure to implement an optical multiply algorithm. Three different optical schemes, involving position, polarization, and intensity encoding, are proposed for realizing the trinary logic system. When configured in the generic multiplier architecture, these schemes yield the combinatorial logic necessary to carry out the multiplication algorithm. The optical systems are essentially three dimensional arrangements composed of modular units. Of course, this modularity is important for design considerations, while the parallelism and noninterfering communication channels of optical systems are important from the standpoint of reduced complexity. The authors have also designed electronic hardware to demonstrate and model the combinatorial logic required to carry out the algorithm. The electronic and proposed optical systems will be compared in terms of complexity and speed.

  20. Implementation of trinary logic in a polarization encoded optical shadow-casting scheme.

    Science.gov (United States)

    Rizvi, R A; Zaheer, K; Zubairy, M S

    1991-03-10

    The design of various multioutput trinary combinational logic units by a polarization encoded optical shadow-casting (POSC) technique is presented. The POSC modified algorithm is employed to design and implement these logic elements in a trinary number system with separate and simultaneous generation of outputs. A detailed solution of the POSC logic equations for a fixed source plane and a fixed decoding mask is given to obtain input pixel coding for a trinary half-adder, full adder, and subtractor.

  1. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system

    Science.gov (United States)

    Raimondo, Joseph V.; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E.; Srinivas, Shankar; Akerman, Colin J.

    2013-01-01

    Within the nervous system, intracellular Cl− and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl− and pH are often co-regulated, and network activity results in the movement of both Cl− and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl− and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN—a new genetically-encoded ratiometric Cl− and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl− and H+ concentrations under a variety of conditions. In addition, we establish the sensor's utility by characterizing activity-dependent ion dynamics in hippocampal neurons. PMID:24312004

  2. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system

    Directory of Open Access Journals (Sweden)

    Joseph Valentino Raimondo

    2013-11-01

    Full Text Available Within the nervous system, intracellular Cl- and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission and network excitability. Cl- and pH are often co-regulated, and network activity results in the movement of both Cl- and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl- and pH sensors have been described previously, these either lack ion specificity or are unsuitable for neuronal use. Here we present ClopHensorN - a new genetically-encoded ratiometric Cl- and pH sensor that is optimized for the nervous system. We demonstrate the ability of ClopHensorN to dissociate and simultaneously quantify Cl- and H+ concentrations under a variety of conditions. In addition, we establish the sensor’s utility by characterizing activity-dependent ion dynamics in hippocampal neurons.

  3. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain

    Directory of Open Access Journals (Sweden)

    Yukiko eMishina

    2014-09-01

    Full Text Available Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviours. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP prototypical design or on the voltage dependent state transitions of microbial opsins.We recently introduced a new VSFP design in which the voltage-sensing domain (VSD is sandwiched between a FRET pair of fluorescent proteins (termed VSFP-Butterflies and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  4. Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain.

    Science.gov (United States)

    Mishina, Yukiko; Mutoh, Hiroki; Song, Chenchen; Knöpfel, Thomas

    2014-01-01

    Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviors. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs) has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP) prototypical design or on the voltage-dependent state transitions of microbial opsins. We recently introduced a new VSFP design in which the voltage-sensing domain (VSD) is sandwiched between a fluorescence resonance energy transfer pair of fluorescent proteins (termed VSFP-Butterflies) and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.

  5. Design of frequency-encoded data-based optical master-slave-JK flip-flop using polarization switch

    Science.gov (United States)

    Mandal, Sumana; Mandal, Dhoumendra; Mandal, Mrinal Kanti; Garai, Sisir Kumar

    2017-06-01

    An optical data processing and communication system provides enormous potential bandwidth and a very high processing speed, and it can fulfill the demands of the present generation. For an optical computing system, several data processing units that work in the optical domain are essential. Memory elements are undoubtedly essential to storing any information. Optical flip-flops can store one bit of optical information. From these flip-flop registers, counters can be developed. Here, the authors proposed an optical master-slave (MS)-JK flip-flop with the help of two-input and three-input optical NAND gates. Optical NAND gates have been developed using semiconductor optical amplifiers (SOAs). The nonlinear polarization switching property of an SOA has been exploited here, and it acts as a polarization switch in the proposed scheme. A frequency encoding technique is adopted for representing data. A specific frequency of an optical signal represents a binary data bit. This technique of data representation is helpful because frequency is the fundamental property of a signal, and it remains unaltered during reflection, refraction, absorption, etc. throughout the data propagation. The simulated results enhance the admissibility of the scheme.

  6. DESIGN AND IMPLEMENTATION OF IMPROVED SUPERIMPOSED CYCLIC OPTICAL ORTHOGONAL CODES (SCOOC BASED OPTICAL ENCODER/DECODER STRUCTURE FOR 1GBPS OPTICAL CDMA SYSTEM

    Directory of Open Access Journals (Sweden)

    GURJIT KAUR

    2010-12-01

    Full Text Available In this paper, an improved form of two dimensional optical orthogonal codes is introduced for optical CDMA system by using just six lasers. This new technique not only reduces the length of the code but also improves the bit error rate (BER performance of the system. The uniqueness of this coding architecture is that the two adjacent codes are not only different by their time slots but have different wavelength combination as well. The encoder and decoder structure has been designed with the help of filters and optical delay lines. An OCDMA system at 1 Gbps bit rate is designed for above codes and performance is evaluated and compared for various parameters i.e. number of simultaneous users, bit error rate, quality factor. The OCDMA system can accommodate 25 users for permissible BER of 10-9, with -15db received power at 1 Gbps bit rate respectively. If received power is kept low i.e. -22db, the OCDMA system can support 16 users with extremely low BER of 1.58e-41 for 1G bps bit rate.

  7. Fabrication of high-resolution reflective scale grating for an optical encoder using a patterned self-assembly process

    International Nuclear Information System (INIS)

    Fan, Shanjin; Jiang, Weitao; Li, Xuan; Yu, Haoyu; Lei, Biao; Shi, Yongsheng; Yin, Lei; Chen, Bangdao; Liu, Hongzhong

    2016-01-01

    Steel tape scale grating of a reflective incremental linear encoder has a key impact on the measurement accuracy of the optical encoder. However, it is difficult for conventional manufacturing processes to fabricate scale grating with high-resolution grating strips, due to process and material problems. In this paper, self-assembly technology was employed to fabricate high-resolution steel tape scale grating for a reflective incremental linear encoder. Graphene oxide nanoparticles were adopted to form anti-reflective grating strips of steel tape scale grating. They were deposited in the tape, which had a hydrophobic and hydrophilic grating pattern when the dispersion of the nanoparticles evaporated. A standard lift-off process was employed to fabricate the hydrophobic grating strips on the steel tape. Simultaneously, the steel tape itself presents a hydrophilic property. The hydrophobic and hydrophilic grating pattern was thus obtained. In this study, octafluorocyclobutane was used to prepare the hydrophobic grating strips, due to its hydrophobic property. High-resolution graphene oxide steel tape scale grating with a pitch of 20 μ m was obtained through the self-assembly process. The photoelectric signals of the optical encoder containing the graphene oxide scale grating and conventional scale grating were tested under the same conditions. Comparison test results showed that the graphene oxide scale grating has a better performance in its amplitude and harmonic components than that of the conventional steel tape scale. A comparison experiment of position errors was also conducted, demonstrating an improvement in the positioning error of the graphene oxide scale grating. The comparison results demonstrated the applicability of the proposed self-assembly process to fabricate high-resolution graphene oxide scale grating for a reflective incremental linear encoder. (paper)

  8. Optimal higher-order encoder time-stamping

    NARCIS (Netherlands)

    Merry, R.J.E.; Molengraft, van de M.J.G.; Steinbuch, M.

    2013-01-01

    Optical incremental encoders are used to measure the position of motion control systems. The accuracy of the position measurement is determined and bounded by the number of slits on the encoder. The position measurement is affected by quantization errors and encoder imperfections. In this paper, an

  9. Imaging of Intracellular pH in Tumor Spheroids Using Genetically Encoded Sensor SypHer2.

    Science.gov (United States)

    Zagaynova, Elena V; Druzhkova, Irina N; Mishina, Natalia M; Ignatova, Nadezhda I; Dudenkova, Varvara V; Shirmanova, Marina V

    2017-01-01

    Intracellular pH (pHi) is one of the most important parameters that regulate the physiological state of cells and tissues. pHi homeostasis is crucial for normal cell functioning. Cancer cells are characterized by having a higher (neutral to slightly alkaline) pHi and lower (acidic) extracellular pH (pHe) compared to normal cells. This is referred to as a "reversed" pH gradient, and is essential in supporting their accelerated growth rate, invasion and migration, and in suppressing anti-tumor immunity, the promotion of metabolic coupling with fibroblasts and in preventing apoptosis. Moreover, abnormal pH, both pHi and pHe, contribute to drug resistance in cancers. Therefore, the development of methods for measuring pH in living tumor cells is likely to lead to better understanding of tumor biology and to open new ways for cancer treatment. Genetically encoded, fluorescent, pH-sensitive probes represent promising instruments enabling the subcellular measurement of pHi with unrivaled specificity and high accuracy. Here, we describe a protocol for pHi imaging at a microscopic level in HeLa tumor spheroids, using the genetically encoded ratiometric (dual-excitation) pHi indicator, SypHer2.

  10. StrigoQuant: A genetically encoded biosensor for quantifying strigolactone activity and specificity

    KAUST Repository

    Samodelov, S. L.

    2016-11-05

    Strigolactones are key regulators of plant development and interaction with symbiotic fungi; however, quantitative tools for strigolactone signaling analysis are lacking. We introduce a genetically encoded hormone biosensor used to analyze strigolactone-mediated processes, including the study of the components involved in the hormone perception/signaling complex and the structural specificity and sensitivity of natural and synthetic strigolactones in Arabidopsis, providing quantitative insights into the stereoselectivity of strigolactone perception. Given the high specificity, sensitivity, dynamic range of activity, modular construction, ease of implementation, and wide applicability, the biosensor StrigoQuant will be useful in unraveling multiple levels of strigolactone metabolic and signaling networks.

  11. Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters

    Directory of Open Access Journals (Sweden)

    Rami Shinnawi

    2015-10-01

    Full Text Available The advent of the human-induced pluripotent stem cell (hiPSC technology has transformed biomedical research, providing new tools for human disease modeling, drug development, and regenerative medicine. To fulfill its unique potential in the cardiovascular field, efficient methods should be developed for high-resolution, large-scale, long-term, and serial functional cellular phenotyping of hiPSC-derived cardiomyocytes (hiPSC-CMs. To achieve this goal, we combined the hiPSC technology with genetically encoded voltage (ArcLight and calcium (GCaMP5G fluorescent indicators. Expression of ArcLight and GCaMP5G in hiPSC-CMs permitted to reliably follow changes in transmembrane potential and intracellular calcium levels, respectively. This allowed monitoring short- and long-term changes in action-potential and calcium-handling properties and the development of arrhythmias in response to several pharmaceutical agents and in hiPSC-CMs derived from patients with different inherited arrhythmogenic syndromes. Combining genetically encoded fluorescent reporters with hiPSC-CMs may bring a unique value to the study of inherited disorders, developmental biology, and drug development and testing.

  12. Genetic encoding of a bicyclo[6.1.0]nonyne-charged amino acid enables fast cellular protein imaging by metal-free ligation.

    Science.gov (United States)

    Borrmann, Annika; Milles, Sigrid; Plass, Tilman; Dommerholt, Jan; Verkade, Jorge M M; Wiessler, Manfred; Schultz, Carsten; van Hest, Jan C M; van Delft, Floris L; Lemke, Edward A

    2012-09-24

    Visualizing biomolecules by fluorescent tagging is a powerful method for studying their behaviour and function inside cells. We prepared and genetically encoded an unnatural amino acid (UAA) that features a bicyclononyne moiety. This UAA offered exceptional reactivity in strain-promoted azide-alkyne cycloadditions. Kinetic measurements revealed that the UAA reacted also remarkably fast in the inverse-electron-demand Diels-Alder cycloaddition with tetrazine-conjugated dyes. Genetic encoding of the new UAA inside mammalian cells and its subsequent selective labeling at low dye concentrations demonstrate the usefulness of the new amino acid for future imaging studies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Facile construction of dual bandgap optical encoding materials with PS@P(HEMA-co-AA)/SiO2-TMPTA colloidal photonic crystals

    Science.gov (United States)

    Tian, Yu; Zhang, Jing; Liu, Si-Si; Yang, Shengyang; Yin, Su-Na; Wang, Cai-Feng; Chen, Li; Chen, Su

    2016-07-01

    An operable strategy for the construction of dual-reflex optical code materials from bilayer or Janus-structure colloidal photonic crystals (CPCs) has been established in this work. In this process, monodispersed submicrometer polystryene@poly(2-hydroxyethyl methacrylate-co-acrylic acid) hydrogel microspheres with soft-shell/hard-core structure and monodispersed colloidal silica spheres were fabricated. These two kinds of colloidal units can be facilely integrated into a single material without optical signal interference because they are well isolated for the immiscibility between water and ethoxylated trimethylolpropane triacrylate (TMPTA) and the upper layer of SiO2-TMPTA is a kind of transparent. Moreover, diverse optical code series with different dual photonic bandgaps can be obtained via tuning the colloid sizes. Compared to the conventional single-reflex CPCs, the as-prepared dual-reflex optical code materials represented high information capacity in encoding process. More interesting, delicate code pattern has been also achieved on the optical film via the silk-screen printing technique, which will greatly extend the dual-reflex optical code materials to practical uses in areas containing bio-encoding, anti-counterfeiting, and flexible displays.

  14. Optical encoder based on a nondiffractive beam III

    Energy Technology Data Exchange (ETDEWEB)

    Lutenberg, Ariel; Perez-Quintian, Fernando

    2009-09-20

    In two preceding works (Appl. Opt.47, 2201-2206, 2008APOPAI0003-693510.1364/AO.47.002201; Appl. Opt.48, 414-424, 2009APOPAI0003-693510.1364/AO.48.000414) we introduced the design of an optical encoder based on a nondiffractive beam and studied the dependence of its performance on its parameters (e.g., grating pitch, photodetector size). In those works we proposed different optimization criteria and concluded that the proposed design provides an output sinusoidal signal with high contrast and very low harmonic distortion, while having remarkable tolerance to variations in its parameters and to mechanical perturbations. In this work we (1) study how to improve the system performance by means of selecting appropriate photodetector geometry, (2) study the system performance for different nondiffractive beam geometries, and (3) quantify the output signal tolerance to vertical and lateral misalignment between the centers of the nondiffractive beam and the photodetector. As a consequence, we obtain new sets of optimal parameters that significantly improve the system performance and enhance its tolerance to mechanical perturbations and fabrication errors.

  15. Quantitative readout of optically encoded gold nanorods using an ordinary dark-field microscope.

    Science.gov (United States)

    Mercatelli, Raffaella; Ratto, Fulvio; Centi, Sonia; Soria, Silvia; Romano, Giovanni; Matteini, Paolo; Quercioli, Franco; Pini, Roberto; Fusi, Franco

    2013-10-21

    In this paper we report on a new use for dark-field microscopy in order to retrieve two-dimensional maps of optical parameters of a thin sample such as a cryptograph, a histological section, or a cell monolayer. In particular, we discuss the construction of quantitative charts of light absorbance and scattering coefficients of a polyvinyl alcohol film that was embedded with gold nanorods and then etched using a focused mode-locked Ti:Sapphire oscillator. Individual pulses from this laser excite plasmonic oscillations of the gold nanorods, thus triggering plastic deformations of the particles and their environment, which are confined within a few hundred nm of the light focus. In turn, these deformations modify the light absorbance and scattering landscape, which can be measured with optical resolution in a dark-field microscope equipped with an objective of tuneable numerical aperture. This technique may prove to be valuable for various applications, such as the fast readout of optically encoded data or to model functional interactions between light and biological tissue at the level of cellular organelles, including the photothermolysis of cancer.

  16. Inter-population differences in otolith morphology are genetically encoded in the killifish Aphanius fasciatus (Cyprinodontiformes

    Directory of Open Access Journals (Sweden)

    Ali Annabi

    2013-06-01

    Full Text Available Inter-population differences in otolith shape, morphology and chemistry have been used effectively as indicators for stock assessment or for recognizing environmental adaptation in fishes. However, the precise parameters that affect otolith morphology remain incompletely understood. Here we provide the first direct support for the hypothesis that inter-population differences in otolith morphology are genetically encoded. The study is based on otolith morphology and two mitochondrial markers (D-loop, 16S rRNA of three natural populations of Aphanius fasciatus (Teleostei: Cyprinodontidae from Southeast Tunisia. Otolith and genetic data yielded congruent tree topologies. Divergence of populations likely results from isolation events in the course of the Pleistocene sea level drops. We propose that otolith morphology is a valuable tool for resolving genetic diversity also within other teleost species, which may be important for ecosystem management and conservation of genetic diversity. As reconstructions of ancient teleost fish faunas are often solely based on fossil otoliths, our discoveries may also lead to a new approach to research in palaeontology.

  17. Cyclic Concatenated Genetic Encoder: A mathematical proposal for biological inferences.

    Science.gov (United States)

    Duarte-González, M E; Echeverri, O Y; Guevara, J M; Palazzo, R

    2018-01-01

    The organization of the genetic information and its ability to be conserved and translated to proteins with low error rates have been the subject of study by scientists from different disciplines. Recently, it has been proposed that living organisms display an intra-cellular transmission system of genetic information, similar to a model of digital communication system, in which there is the ability to detect and correct errors. In this work, the concept of Concatenated Genetic Encoder is introduced and applied to the analysis of protein sequences as a tool for exploring evolutionary relationships. For such purposes Error Correcting Codes (ECCs) are used to represent proteins. A methodology for representing or identifying proteins by use of BCH codes over ℤ 20 and F 4 ×ℤ 5 is proposed and cytochrome b6-f complex subunit 6-OS sequences, corresponding to different plants species, are analyzed according to the proposed methodology and results are contrasted to phylogenetic and taxonomic analyses. Through the analyses, it was observed that using BCH codes only some sequences are identified, all of which differ in one amino acid from the original sequence. In addition, mathematical relationships among identified sequences are established by considering minimal polynomials, where such sequences showed a close relationship as revealed in the phylogenetic reconstruction. Results, here shown, point out that communication theory may provide biology of interesting and useful tools to identify biological relationships among proteins, however the proposed methodology needs to be improved and rigorously tested in order to become into an applicable tool for biological analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Crystallization and preliminary X-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2

    International Nuclear Information System (INIS)

    Rodríguez Guilbe, María M.; Alfaro Malavé, Elisa C.; Akerboom, Jasper; Marvin, Jonathan S.; Looger, Loren L.; Schreiter, Eric R.

    2008-01-01

    The genetically encoded fluorescent calcium-indicator protein GCaMP2 was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution and the structure was solved by molecular replacement. Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, this protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way

  19. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    Science.gov (United States)

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar; Akemann, Walther; Knöpfel, Thomas

    2008-06-25

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP) in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  20. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    Science.gov (United States)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  1. Fabrication of high edge-definition steel-tape gratings for optical encoders

    Science.gov (United States)

    Ye, Guoyong; Liu, Hongzhong; Yan, Jiawei; Ban, Yaowen; Fan, Shanjin; Shi, Yongsheng; Yin, Lei

    2017-10-01

    High edge definition of a scale grating is the basic prerequisite for high measurement accuracy of optical encoders. This paper presents a novel fabrication method of steel tape gratings using graphene oxide nanoparticles as anti-reflective grating strips. Roll-to-roll nanoimprint lithography is adopted to manufacture the steel tape with hydrophobic and hydrophilic pattern arrays. Self-assembly technology is employed to obtain anti-reflective grating strips by depositing the graphene oxide nanoparticles on hydrophobic regions. A thin SiO2 coating is deposited on the grating to protect the grating strips. Experimental results confirm that the proposed fabrication process enables a higher edge definition in making steel-tape gratings, and the new steel tape gratings offer better performance than conventional gratings.

  2. Performance of an optical encoder based on a nondiffractive beam implemented with a specific photodetection integrated circuit and a diffractive optical element.

    Science.gov (United States)

    Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José

    2015-09-01

    In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.

  3. pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH.

    Science.gov (United States)

    Zhang, Yunfei; Xie, Qiguang; Robertson, J Brian; Johnson, Carl Hirschie

    2012-01-01

    We report the development of a genetically encodable and ratiometic pH probe named "pHlash" that utilizes Bioluminescence Resonance Energy Transfer (BRET) rather than fluorescence excitation. The pHlash sensor-composed of a donor luciferase that is genetically fused to a Venus fluorophore-exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H(+) specific; neither Ca(++), Mg(++), Na(+), nor K(+) changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H(+) ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate.

  4. pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH.

    Directory of Open Access Journals (Sweden)

    Yunfei Zhang

    Full Text Available We report the development of a genetically encodable and ratiometic pH probe named "pHlash" that utilizes Bioluminescence Resonance Energy Transfer (BRET rather than fluorescence excitation. The pHlash sensor-composed of a donor luciferase that is genetically fused to a Venus fluorophore-exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H(+ specific; neither Ca(++, Mg(++, Na(+, nor K(+ changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H(+ ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate.

  5. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2008-06-01

    Full Text Available Ci-VSP contains a voltage-sensing domain (VSD homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  6. Review of Random Phase Encoding in Volume Holographic Storage

    Directory of Open Access Journals (Sweden)

    Wei-Chia Su

    2012-09-01

    Full Text Available Random phase encoding is a unique technique for volume hologram which can be applied to various applications such as holographic multiplexing storage, image encryption, and optical sensing. In this review article, we first review and discuss diffraction selectivity of random phase encoding in volume holograms, which is the most important parameter related to multiplexing capacity of volume holographic storage. We then review an image encryption system based on random phase encoding. The alignment of phase key for decryption of the encoded image stored in holographic memory is analyzed and discussed. In the latter part of the review, an all-optical sensing system implemented by random phase encoding and holographic interconnection is presented.

  7. Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight.

    Directory of Open Access Journals (Sweden)

    Zhou Han

    Full Text Available ArcLight, a genetically encoded fluorescent protein voltage probe with a large ΔF/ΔV, is a fusion between the voltage sensing domain of the Ciona instestinalis voltage sensitive phosphatase and super ecliptic pHluorin carrying a single mutation (A227D in the fluorescent protein. Without this mutation the probe produces only a very small change in fluorescence in response to voltage deflections (∼ 1%. The large signal afforded by this mutation allows optical detection of action potentials and sub-threshold electrical events in single-trials in vitro and in vivo. However, it is unclear how this single mutation produces a probe with such a large modulation of its fluorescence output with changes in membrane potential. In this study, we identified which residues in super ecliptic pHluorin (vs eGFP are critical for the ArcLight response, as a similarly constructed probe based on eGFP also exhibits large response amplitude if it carries these critical residues. We found that D147 is responsible for determining the pH sensitivity of the fluorescent protein used in these probes but by itself does not result in a voltage probe with a large signal. We also provide evidence that the voltage dependent signal of ArcLight is not simply sensing environmental pH changes. A two-photon polarization microscopy study showed that ArcLight's response to changes in membrane potential includes a reorientation of the super ecliptic pHluorin. We also explored different changes including modification of linker length, deletion of non-essential amino acids in the super ecliptic pHluorin, adding a farnesylation site, using tandem fluorescent proteins and other pH sensitive fluorescent proteins.

  8. Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor.

    Science.gov (United States)

    Fan, Yichong; Makar, Merna; Wang, Michael X; Ai, Hui-Wang

    2017-09-01

    Thioredoxin (Trx) is one of the two major thiol antioxidants, playing essential roles in redox homeostasis and signaling. Despite its importance, there is a lack of methods for monitoring Trx redox dynamics in live cells, hindering a better understanding of physiological and pathological roles of the Trx redox system. In this work, we developed the first genetically encoded fluorescent biosensor for Trx redox by engineering a redox relay between the active-site cysteines of human Trx1 and rxRFP1, a redox-sensitive red fluorescent protein. We used the resultant biosensor-TrxRFP1-to selectively monitor perturbations of Trx redox in various mammalian cell lines. We subcellularly localized TrxRFP1 to image compartmentalized Trx redox changes. We further combined TrxRFP1 with a green fluorescent Grx1-roGFP2 biosensor to simultaneously monitor Trx and glutathione redox dynamics in live cells in response to chemical and physiologically relevant stimuli.

  9. Imaging Intracellular pH in Live Cells with a Genetically-Encoded Red Fluorescent Protein Sensor

    OpenAIRE

    Tantama, Mathew; Hung, Yin Pun; Yellen, Gary

    2011-01-01

    Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically-encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at...

  10. A new method of equalizing the optical power by a liquid crystal-based tunable encoder/decoder in SAC-OCDMA PON

    Science.gov (United States)

    Chen, He; Qiao, Yang; Zhao, Yanbin; Liu, Yang; Liu, Meilin; Liu, Lijun; Zhou, Bilei

    2015-11-01

    A new method of equalizing the optical power is proposed to enhance the performance in the SAC OCDMA PON. The method is to use a tunable liquid crystal-based tunable encoder for further development by voltage controlling individually, so it is achieved in one device for encoding and power equalization, the experimental results show that the system BER and eye diagram are greatly improved. Since the method does not use additional devices in the condition, the system are lower complexity and cost-effective.

  11. Optical flow optimization using parallel genetic algorithm

    Science.gov (United States)

    Zavala-Romero, Olmo; Botella, Guillermo; Meyer-Bäse, Anke; Meyer Base, Uwe

    2011-06-01

    A new approach to optimize the parameters of a gradient-based optical flow model using a parallel genetic algorithm (GA) is proposed. The main characteristics of the optical flow algorithm are its bio-inspiration and robustness against contrast, static patterns and noise, besides working consistently with several optical illusions where other algorithms fail. This model depends on many parameters which conform the number of channels, the orientations required, the length and shape of the kernel functions used in the convolution stage, among many more. The GA is used to find a set of parameters which improve the accuracy of the optical flow on inputs where the ground-truth data is available. This set of parameters helps to understand which of them are better suited for each type of inputs and can be used to estimate the parameters of the optical flow algorithm when used with videos that share similar characteristics. The proposed implementation takes into account the embarrassingly parallel nature of the GA and uses the OpenMP Application Programming Interface (API) to speedup the process of estimating an optimal set of parameters. The information obtained in this work can be used to dynamically reconfigure systems, with potential applications in robotics, medical imaging and tracking.

  12. A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system

    OpenAIRE

    Raimondo, Joseph V.; Joyce, Bradley; Kay, Louise; Schlagheck, Theresa; Newey, Sarah E.; Srinivas, Shankar; Akerman, Colin J.

    2013-01-01

    Within the nervous system, intracellular Cl− and pH regulate fundamental processes including cell proliferation, metabolism, synaptic transmission, and network excitability. Cl− and pH are often co-regulated, and network activity results in the movement of both Cl− and H+. Tools to accurately measure these ions are crucial for understanding their role under physiological and pathological conditions. Although genetically-encoded Cl− and pH sensors have been described previously, these either l...

  13. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor.

    Science.gov (United States)

    Bayguinov, Peter O; Ma, Yihe; Gao, Yu; Zhao, Xinyu; Jackson, Meyer B

    2017-09-20

    Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In

  14. Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses

    International Nuclear Information System (INIS)

    Bionta, M. R.; Hartmann, N.; Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E.; Nicholson, D. J.; Cryan, J. P.; Baker, K.; Kane, D. J.

    2014-01-01

    The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10–100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for “measure-and-sort” at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses

  15. Encoding and decoding of digital spiral imaging based on bidirectional transformation of light's spatial eigenmodes.

    Science.gov (United States)

    Zhang, Wuhong; Chen, Lixiang

    2016-06-15

    Digital spiral imaging has been demonstrated as an effective optical tool to encode optical information and retrieve topographic information of an object. Here we develop a conceptually new and concise scheme for optical image encoding and decoding toward free-space digital spiral imaging. We experimentally demonstrate that the optical lattices with ℓ=±50 orbital angular momentum superpositions and a clover image with nearly 200 Laguerre-Gaussian (LG) modes can be well encoded and successfully decoded. It is found that an image encoded/decoded with a two-index LG spectrum (considering both azimuthal and radial indices, ℓ and p) possesses much higher fidelity than that with a one-index LG spectrum (only considering the ℓ index). Our work provides an alternative tool for the image encoding/decoding scheme toward free-space optical communications.

  16. Models of optical quantum computing

    Directory of Open Access Journals (Sweden)

    Krovi Hari

    2017-03-01

    Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  17. Performance Analysis of Spectral-Phase-Encoded Optical CDMA System Using Two-Photon-Absorption Receiver Structure for Asynchronous and Slot-Level Synchronous Transmitters

    Science.gov (United States)

    Jamshidi, Kambiz; Salehi, Jawad A.

    2007-06-01

    In this paper, we analyze the performance of a nonlinear two-photon-absorption (TPA) receiver and compare its performance with that of a single-photon-absorption (SPA) receiver in the context of spectral-phase-encoded optical code-division multiple access (CDMA) technique. The performances for the above systems are evaluated for two different transmission scenarios, namely, asynchronous and slot-level synchronous transmitters. Performance evaluation includes different sources of degradation such as multiple-access interference, noise due to optical amplification, shot noise, and thermal noise. In obtaining the performance, the mean and variance of the received signal in each of the above techniques are derived, and bit error rate is obtained using Gaussian approximation. In general, it is shown that TPA receivers are superior in performance with respect to SPA receivers when the receiver employs a much slower photodetector in comparison with the laser's transmitted pulse duration. This, indeed, is the reason behind the choice of nonlinear receivers, such as TPA, in most spectral-phase-encoded optical CDMA systems.

  18. Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an -L-Rhamnosidase of enological interest

    NARCIS (Netherlands)

    Manzanares, P.; Orejas, M.; Vicente Gil, J.; Graaff, de L.H.; Visser, J.; Ramon, D.

    2003-01-01

    The Aspergillus aculeatus rhaA gene encoding an alpha-L-rhamnosidase has been expressed in both laboratory and industrial wine yeast strains. Wines produced in microvinifications, conducted using a combination of the genetically modified industrial strain expressing rhaA and another strain

  19. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    Science.gov (United States)

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  20. Optical Encoding Technology for Viral Screening Panels Final Report CRADA No TC02132.0

    Energy Technology Data Exchange (ETDEWEB)

    Lenhoff, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haushalter, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory (LLNL) and Parallel Synthesis Technologies, Inc. (PSTI), to develop Optical Encoding Technology for Viral Screening Panels. The goal for this effort was to prepare a portable bead reader system that would enable the development of viral and bacterial screening panels which could be used for the detection of any desired set of bacteria or viruses in any location. The main objective was to determine if the combination of a bead-based, PCR suspension array technology, formulated from Parallume encoded beads and PSTI’s multiplex assay reader system (MARS), could provide advantages in terms of the number of simultaneously measured samples, portability, ruggedness, ease of use, accuracy, precision or cost as compared to the Luminexbased system developed at LLNL. The project underwent several no cost extensions however the overall goal of demonstrating the utility of this new system was achieved. As a result of the project a significant change to the type of bead PSTI used for the suspension system was implemented allowing better performance than the commercial Luminex system.

  1. Genetic analysis of the VP2-encoding gene of canine parvovirus strains from Africa.

    Science.gov (United States)

    Dogonyaro, Banenat B; Bosman, Anna-Mari; Sibeko, Kgomotso P; Venter, Estelle H; van Vuuren, Moritz

    2013-08-30

    Since the emergence of canine parvovirus type-2 (CPV-2) in the early 1970s, it has been evolving into novel genetic and antigenic variants (CPV-2a, 2b and 2c) that are unevenly distributed throughout the world. Genetic characterization of CPV-2 has not been documented in Africa since 1998 apart from the study carried out in Tunisia 2009. A total of 139 field samples were collected from South Africa and Nigeria, detected using PCR and the full length VP2-encoding gene of 27 positive samples were sequenced and genetically analyzed. Nigerian samples (n=6), South Africa (n=19) and vaccine strains (n=2) were compared with existing sequences obtained from GenBank. The results showed the presence of both CPV-2a and 2b in South Africa and only CPV-2a in Nigeria. No CPV-2c strain was detected during this study. Phylogenetic analysis showed a clustering not strictly associated with the geographical origin of the analyzed strains, although most of the South African strains tended to cluster together and the viral strains analyzed in this study were not completely distinct from CPV-2 strains from other parts of the world. Amino acid analysis showed predicted amino acid changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Distributed-phase OCDMA encoder-decoders based on fiber Bragg gratings

    OpenAIRE

    Zhang, Zhaowei; Tian, C.; Petropoulos, P.; Richardson, D.J.; Ibsen, M.

    2007-01-01

    We propose and demonstrate new optical code-division multiple-access (OCDMA) encoder-decoders having a continuous phase-distribution. With the same spatial refractive index distribution as the reconfigurable optical phase encoder-decoders, they are inherently suitable for the application in reconfigurable OCDMA systems. Furthermore, compared with conventional discrete-phase devices, they also have additional advantages of being more tolerant to input pulse width and, therefore, have the poten...

  3. Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters.

    Science.gov (United States)

    Rogers, Kelly L; Stinnakre, Jacques; Agulhon, Cendra; Jublot, Delphine; Shorte, Spencer L; Kremer, Eric J; Brûlet, Philippe

    2005-02-01

    Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto-fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca(2+)-sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi-functional Ca2+ reporter gene, GFP-aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260-7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable 'real-time' measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal-to-noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell-cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex-vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non-invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies.

  4. Simulating Visual Learning and Optical Illusions via a Network-Based Genetic Algorithm

    Science.gov (United States)

    Siu, Theodore; Vivar, Miguel; Shinbrot, Troy

    We present a neural network model that uses a genetic algorithm to identify spatial patterns. We show that the model both learns and reproduces common visual patterns and optical illusions. Surprisingly, we find that the illusions generated are a direct consequence of the network architecture used. We discuss the implications of our results and the insights that we gain on how humans fall for optical illusions

  5. Power calculation of linear and angular incremental encoders

    Science.gov (United States)

    Prokofev, Aleksandr V.; Timofeev, Aleksandr N.; Mednikov, Sergey V.; Sycheva, Elena A.

    2016-04-01

    Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and transmit the measured values back to the control unit. The capabilities of these systems are undergoing continual development in terms of their resolution, accuracy and reliability, their measuring ranges, and maximum speeds. This article discusses the method of power calculation of linear and angular incremental photoelectric encoders, to find the optimum parameters for its components, such as light emitters, photo-detectors, linear and angular scales, optical components etc. It analyzes methods and devices that permit high resolutions in the order of 0.001 mm or 0.001°, as well as large measuring lengths of over 100 mm. In linear and angular incremental photoelectric encoders optical beam is usually formulated by a condenser lens passes through the measuring unit changes its value depending on the movement of a scanning head or measuring raster. Past light beam is converting into an electrical signal by the photo-detecter's block for processing in the electrical block. Therefore, for calculating the energy source is a value of the desired value of the optical signal at the input of the photo-detecter's block, which reliably recorded and processed in the electronic unit of linear and angular incremental optoelectronic encoders. Automation technology is constantly expanding its role in improving the efficiency of manufacturing and testing processes in all branches of industry. More than ever before, the mechanical movements of linear slides, rotary tables, robot arms, actuators, etc. are numerically controlled. Linear and angular incremental photoelectric encoders measure mechanical motion and

  6. The study of hydrogen peroxide level under cisplatin action using genetically encoded sensor hyper

    Science.gov (United States)

    Belova, A. S.; Orlova, A. G.; Maslennikova, A. V.; Brilkina, A. A.; Balalaeva, I. V.; Antonova, N. O.; Mishina, N. M.; Shakhova, N. M.; Belousov, V. V.

    2014-03-01

    The aim of the work was to study the participation of hydrogen peroxide in reaction of cervical cancer cell line HeLa Kyoto on cisplatin action. Determination of hydrogen peroxide level was performed using genetically encoded fluorescent sensor HyPer2. The dependence of cell viability on cisplatin concentration was determined using MTT assay. Mechanisms of cell death as well as HyPer2 reaction was revealed by flow cytometry after 6-hours of incubation with cisplatin in different concentrations. Cisplatin used in low concentrations had no effect on hydrogen peroxide level in HeLa Kyoto cells. Increase of HyPer2 fluorescence was detected only after exposure with cisplatin in high concentration. The reaction was not the consequence of cell death.

  7. Intracellular pH imaging in cancer cells in vitro and tumors in vivo using the new genetically encoded sensor SypHer2.

    Science.gov (United States)

    Shirmanova, Marina V; Druzhkova, Irina N; Lukina, Maria M; Matlashov, Mikhail E; Belousov, Vsevolod V; Snopova, Ludmila B; Prodanetz, Natalia N; Dudenkova, Varvara V; Lukyanov, Sergey A; Zagaynova, Elena V

    2015-09-01

    Measuring intracellular pH (pHi) in tumors is essential for the monitoring of cancer progression and the response of cancer cells to various treatments. The purpose of the study was to develop a method for pHi mapping in living cancer cells in vitro and in tumors in vivo, using the novel genetically encoded indicator, SypHer2. A HeLa Kyoto cell line stably expressing SypHer2 in the cytoplasm was used, to perform ratiometric (dual excitation) imaging of the probe in cell culture, in 3D tumor spheroids and in tumor xenografts in living mice. Using SypHer2, pHi was demonstrated to be 7.34±0.11 in monolayer HeLa cells in vitro under standard cultivation conditions. An increasing pHi gradient from the center to the periphery of the spheroids was displayed. We obtained fluorescence ratio maps for HeLa tumors in vivo and ex vivo. Comparison of the map with the pathomorphology and with hypoxia staining of the tumors revealed a correspondence of the zones with higher pHi to the necrotic and hypoxic areas. Our results demonstrate that pHi imaging with the genetically encoded pHi indicator, SypHer2, can be a valuable tool for evaluating tumor progression in xenograft models. We have demonstrated, for the first time, the possibility of using the genetically encoded sensor SypHer2 for ratiometric pH imaging in cancer cells in vitro and in tumors in vivo. SypHer2 shows great promise as an instrument for pHi monitoring able to provide high accuracy and spatiotemporal resolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A genetically encoded ratiometric sensor to measure extracellular pH in microdomains bounded by basolateral membranes of epithelial cells.

    Science.gov (United States)

    Urra, Javier; Sandoval, Moisés; Cornejo, Isabel; Barros, L Felipe; Sepúlveda, Francisco V; Cid, L Pablo

    2008-10-01

    Extracellular pH, especially in relatively inaccessible microdomains between cells, affects transport membrane protein activity and might have an intercellular signaling role. We have developed a genetically encoded extracellular pH sensor capable of detecting pH changes in basolateral spaces of epithelial cells. It consists of a chimerical membrane protein displaying concatenated enhanced variants of cyan fluorescence protein (ECFP) and yellow fluorescence protein (EYFP) at the external aspect of the cell surface. The construct, termed pHCECSensor01, was targeted to basolateral membranes of Madin-Darby canine kidney (MDCK) cells by means of a sequence derived from the aquaporin AQP4. The fusion of pH-sensitive EYFP with pH-insensitive ECFP allows ratiometric pH measurements. The titration curve of pHCECSensor01 in vivo had a pK (a) value of 6.5 +/- 0.04. Only minor effects of extracellular chloride on pHCECSensor01 were observed around the physiological concentrations of this anion. In MDCK cells, the sensor was able to detect changes in pH secondary to H(+) efflux into the basolateral spaces elicited by an ammonium prepulse or lactate load. This genetically encoded sensor has the potential to serve as a noninvasive tool for monitoring changes in extracellular pH microdomains in epithelial and other tissues in vivo.

  9. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  10. Ultrafast all-optical code-division multiple-access networks

    Science.gov (United States)

    Kwong, Wing C.; Prucnal, Paul R.; Liu, Yanming

    1992-12-01

    In optical code-division multiple access (CDMA), the architecture of optical encoders/decoders is another important factor that needs to be considered, besides the correlation properties of those already extensively studied optical codes. The architecture of optical encoders/decoders affects, for example, the amount of power loss and length of optical delays that are associated with code sequence generation and correlation, which, in turn, affect the power budget, size, and cost of an optical CDMA system. Various CDMA coding architectures are studied in the paper. In contrast to the encoders/decoders used in prime networks (i.e., prime encodes/decoders), which generate, select, and correlate code sequences by a parallel combination of fiber-optic delay-lines, and in 2n networks (i.e., 2n encoders/decoders), which generate and correlate code sequences by a serial combination of 2 X 2 passive couplers and fiber delays with sequence selection performed in a parallel fashion, the modified 2n encoders/decoders generate, select, and correlate code sequences by a serial combination of directional couplers and delays. The power and delay- length requirements of the modified 2n encoders/decoders are compared to that of the prime and 2n encoders/decoders. A 100 Mbit/s optical CDMA experiment in free space demonstrating the feasibility of the all-serial coding architecture using a serial combination of 50/50 beam splitters and retroreflectors at 10 Tchip/s (i.e., 100,000 chip/bit) with 100 fs laser pulses is reported.

  11. METHOD AND MODULE FOR OPTICAL SUBCARRIER LABELLING

    DEFF Research Database (Denmark)

    2004-01-01

    The present invention relates to optical labelling in WDM networks, in that it provides a method and a module to be used in subcarrier label generation and switching in network edge nodes and core switch nodes. The methods and modules are typically employed in Optical Subcarrier Multiplexing (OSCM......) transmitters. The payload and the label are encoded independently on optical carrier and subcarrier signals respectively, using electro-optical modulators. The invention applies single or double sideband carrier-suppressed modulation to generate subcarrier signals for encoding of the label. Thereby the payload...... encoded carrier signal and the label encoded subcarrier signal can be coupled directly without prior filtering....

  12. Frontiers in optical imaging of cerebral blood flow and metabolism.

    Science.gov (United States)

    Devor, Anna; Sakadžić, Sava; Srinivasan, Vivek J; Yaseen, Mohammad A; Nizar, Krystal; Saisan, Payam A; Tian, Peifang; Dale, Anders M; Vinogradov, Sergei A; Franceschini, Maria Angela; Boas, David A

    2012-07-01

    In vivo optical imaging of cerebral blood flow (CBF) and metabolism did not exist 50 years ago. While point optical fluorescence and absorption measurements of cellular metabolism and hemoglobin concentrations had already been introduced by then, point blood flow measurements appeared only 40 years ago. The advent of digital cameras has significantly advanced two-dimensional optical imaging of neuronal, metabolic, vascular, and hemodynamic signals. More recently, advanced laser sources have enabled a variety of novel three-dimensional high-spatial-resolution imaging approaches. Combined, as we discuss here, these methods are permitting a multifaceted investigation of the local regulation of CBF and metabolism with unprecedented spatial and temporal resolution. Through multimodal combination of these optical techniques with genetic methods of encoding optical reporter and actuator proteins, the future is bright for solving the mysteries of neurometabolic and neurovascular coupling and translating them to clinical utility.

  13. Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage

    International Nuclear Information System (INIS)

    Lee, ChaBum; Kim, Gyu Ha; Lee, Sun-Kyu

    2011-01-01

    This paper presents the method of a six-degree-of-freedom (DOF) posture measurement in a linear stage by employing a single unit of an optical encoder. The proposed optical encoder was constructed to simultaneously measure the posture along the traveling axis; angular errors, pitch, yaw and roll; and translational errors, ΔX, ΔY and ΔZ. It consists of a diffractive optical element, a corner cube, four separate two-dimensional position-sensitive detectors, four photodiodes and auxiliary optics components. The circularly polarizing interferometric technique was integrated to measure the displacement of the stage along the traveling axis in a robust manner and the resolution was estimated to be less than 0.4 nm. Two types of stages were employed for the measurement implementation, the piezoelectric transducer-driven and the ballscrew-driven, and they were feedback-controlled for the traveling axis, respectively. With a single travel of the stage, it provided a six-DOF motion error with a high resolution, less than 0.03 arcsec, 20 nm and 0.4 nm for angular errors, ΔY and ΔZ, and ΔX, respectively, at the same time. As a result, it was seen that motion errors of the stage have relevance to the driving mechanism and the whole construction of the stage

  14. Optimization of genetic algorithm for reconstruction of cross-phase modulation frequency-resolved optical gating data

    Czech Academy of Sciences Publication Activity Database

    Vraný, Boleslav; Honzátko, Pavel; Kaňka, Jiří

    2011-01-01

    Roč. 24, č. 5 (2011), 448-456 ISSN 0894-3370 R&D Projects: GA MŠk OE08021 Institutional research plan: CEZ:AV0Z20670512 Keywords : frequency resolved optical gating, FROG * amplitude and phase retrieval * genetic algorithm, GA Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.600, year: 2011

  15. Genetic Testing for Wolfram Syndrome Mutations in a Sample of 71 Patients with Hereditary Optic Neuropathy and Negative Genetic Test Results for OPA1/OPA3/LHON.

    Science.gov (United States)

    Galvez-Ruiz, Alberto; Galindo-Ferreiro, Alicia; Schatz, Patrik

    2018-04-01

    In this study, the authors present a sample of 71 patients with hereditary optic neuropathy and negative genetic test results for OPA1/OPA3/LHON. All of these patients later underwent genetic testing to rule out WFS. As a result, 53 patients (74.7%) were negative and 18 patients (25.3%) were positive for some type of mutation or variation in the WFS gene. The authors believe that this study is interesting because it shows that a sizeable percentage (25.3%) of patients with hereditary optic 25 neuropathy and negative genetic test results for OPA1/OPA3/LHON had WFS mutations or variants.

  16. Encoding qubits into oscillators with atomic ensembles and squeezed light

    Science.gov (United States)

    Motes, Keith R.; Baragiola, Ben Q.; Gilchrist, Alexei; Menicucci, Nicolas C.

    2017-05-01

    The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit within an oscillator provides a number of advantages when used in a fault-tolerant architecture for quantum computing, most notably that Gaussian operations suffice to implement all single- and two-qubit Clifford gates. The main drawback of the encoding is that the logical states themselves are challenging to produce. Here we present a method for generating optical GKP-encoded qubits by coupling an atomic ensemble to a squeezed state of light. Particular outcomes of a subsequent spin measurement of the ensemble herald successful generation of the resource state in the optical mode. We analyze the method in terms of the resources required (total spin and amount of squeezing) and the probability of success. We propose a physical implementation using a Faraday-based quantum nondemolition interaction.

  17. A strategy for genetic modification of the spike-encoding segment of human reovirus T3D for reovirus targeting.

    Science.gov (United States)

    van den Wollenberg, D J M; van den Hengel, S K; Dautzenberg, I J C; Cramer, S J; Kranenburg, O; Hoeben, R C

    2008-12-01

    Human Orthoreovirus Type 3 Dearing is not pathogenic to humans and has been evaluated clinically as an oncolytic agent. Its transduction efficiency and the tumor cell selectivity may be enhanced by incorporating ligands for alternative receptors. However, the genetic modification of reoviruses has been difficult, and genetic targeting of reoviruses has not been reported so far. Here we describe a technique for generating genetically targeted reoviruses. The propagation of wild-type reoviruses on cells expressing a modified sigma 1-encoding segment embedded in a conventional RNA polymerase II transcript leads to substitution of the wild-type genome segment by the modified version. This technique was used for generating reoviruses that are genetically targeted to an artificial receptor expressed on U118MG cells. These cells lack the junction adhesion molecule-1 and therefore resist infection by wild-type reoviruses. The targeted reoviruses were engineered to carry the ligand for this receptor at the C terminus of the sigma 1 spike protein. This demonstrates that the C terminus of the sigma 1 protein is a suitable locale for the insertion of oligopeptide ligands and that targeting of reoviruses is feasible. The genetically targeted viruses can be propagated using the modified U118MG cells as helper cells. This technique may be applicable for the improvement of human reoviruses as oncolytic agents.

  18. Heterogeneous genetic diversity pattern in Plasmodium vivax genes encoding merozoite surface proteins (MSP) -7E, -7F and -7L.

    Science.gov (United States)

    Garzón-Ospina, Diego; Forero-Rodríguez, Johanna; Patarroyo, Manuel A

    2014-12-13

    The msp-7 gene has become differentially expanded in the Plasmodium genus; Plasmodium vivax has the highest copy number of this gene, several of which encode antigenic proteins in merozoites. DNA sequences from thirty-six Colombian clinical isolates from P. vivax (pv) msp-7E, -7F and -7L genes were analysed for characterizing and studying the genetic diversity of these pvmsp-7 members which are expressed during the intra-erythrocyte stage; natural selection signals producing the variation pattern so observed were evaluated. The pvmsp-7E gene was highly polymorphic compared to pvmsp-7F and pvmsp-7L which were seen to have limited genetic diversity; pvmsp-7E polymorphism was seen to have been maintained by different types of positive selection. Even though these copies seemed to be species-specific duplications, a search in the Plasmodium cynomolgi genome (P. vivax sister taxon) showed that both species shared the whole msp-7 repertoire. This led to exploring the long-term effect of natural selection by comparing the orthologous sequences which led to finding signatures for lineage-specific positive selection. The results confirmed that the P. vivax msp-7 family has a heterogeneous genetic diversity pattern; some members are highly conserved whilst others are highly diverse. The results suggested that the 3'-end of these genes encode MSP-7 proteins' functional region whilst the central region of pvmsp-7E has evolved rapidly. The lineage-specific positive selection signals found suggested that mutations occurring in msp-7s genes during host switch may have succeeded in adapting the ancestral P. vivax parasite population to humans.

  19. Genetic and functional analysis of the gene encoding GAP-43 in schizophrenia.

    Science.gov (United States)

    Shen, Yu-Chih; Tsai, Ho-Min; Cheng, Min-Chih; Hsu, Shih-Hsin; Chen, Shih-Fen; Chen, Chia-Hsiang

    2012-02-01

    In earlier reports, growth-associated protein 43 (GAP-43) has been shown to be critical for initial establishment or reorganization of synaptic connections, a process thought to be disrupted in schizophrenia. Additionally, abnormal GAP-43 expression in different brain regions has been linked to this disorder in postmortem brain studies. In this study, we investigated the involvement of the gene encoding GAP-43 in the susceptibility to schizophrenia. We searched for genetic variants in the promoter region and 3 exons (including both UTR ends) of the GAP-43 gene using direct sequencing in a sample of patients with schizophrenia (n=586) and non-psychotic controls (n=576), both being Han Chinese from Taiwan, and conducted an association and functional study. We identified 11 common polymorphisms in the GAP-43 gene. SNP and haplotype-based analyses displayed no associations with schizophrenia. Additionally, we identified 4 rare variants in 5 out of 586 patients, including 1 variant located at the promoter region (c.-258-4722G>T) and 1 synonymous (V110V) and 2 missense (G150R and P188L) variants located at exon 2. No rare variants were found in the control subjects. The results of the reporter gene assay demonstrated that the regulatory activity of construct containing c.-258-4722T was significantly lower as compared to the wild type construct (c.-258-4722G; panalysis also demonstrated the functional relevance of other rare variants. Our study lends support to the hypothesis of multiple rare mutations in schizophrenia, and it provides genetic clues that indicate the involvement of GAP-43 in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Wavelength-encoded OCDMA system using opto-VLSI processors.

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  1. Wavelength-encoded OCDMA system using opto-VLSI processors

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  2. Authentication of gold nanoparticle encoded pharmaceutical tablets using polarimetric signatures.

    Science.gov (United States)

    Carnicer, Artur; Arteaga, Oriol; Suñé-Negre, Josep M; Javidi, Bahram

    2016-10-01

    The counterfeiting of pharmaceutical products represents concerns for both industry and the safety of the general public. Falsification produces losses to companies and poses health risks for patients. In order to detect fake pharmaceutical tablets, we propose producing film-coated tablets with gold nanoparticle encoding. These coated tablets contain unique polarimetric signatures. We present experiments to show that ellipsometric optical techniques, in combination with machine learning algorithms, can be used to distinguish genuine and fake samples. To the best of our knowledge, this is the first report using gold nanoparticles encoded with optical polarimetric classifiers to prevent the counterfeiting of pharmaceutical products.

  3. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice

    Directory of Open Access Journals (Sweden)

    Henry Lütcke

    2010-04-01

    Full Text Available Fluorescent calcium (Ca2+ indicator proteins (FCIPs are promising tools for functional imaging of cellular activity in living animals. However, they have still not reached their full potential for in vivo imaging of neuronal activity due to limitations in expression levels, dynamic range, and sensitivity for reporting action potentials. Here, we report that viral expression of the ratiometric Ca2+ sensor yellow cameleon 3.60 (YC3.60 in pyramidal neurons of mouse barrel cortex enables in vivo measurement of neuronal activity with high dynamic range and sensitivity across multiple spatial scales. By combining juxtacellular recordings and two-photon imaging in vitro and in vivo, we demonstrate that YC3.60 can resolve single action potential (AP-evoked Ca2+ transients and reliably reports bursts of APs with negligible saturation. Spontaneous and whisker-evoked Ca2+ transients were detected in individual apical dendrites and somata as well as in local neuronal populations. Moreover, bulk measurements using wide-field imaging or fiber-optics revealed sensory-evoked YC3.60 signals in large areas of the barrel field. Fiber-optic recordings in particular enabled measurements in awake, freely moving mice and revealed complex Ca2+ dynamics, possibly reflecting different behavior-related brain states. Viral expression of YC3.60 - in combination with various optical techniques - thus opens a multitude of opportunities for functional studies of the neural basis of animal behavior, from dendrites to the levels of local and large-scale neuronal populations.

  4. Applications of Genetic Programming

    DEFF Research Database (Denmark)

    Gaunholt, Hans; Toma, Laura

    1996-01-01

    In this report a study of genetic programming (GP) has been performed with respect to a number of applications such as Symbolic function regression, Solving Symbolic Differential Equations, Image encoding, the ant problem etc.......In this report a study of genetic programming (GP) has been performed with respect to a number of applications such as Symbolic function regression, Solving Symbolic Differential Equations, Image encoding, the ant problem etc....

  5. Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor.

    Science.gov (United States)

    Pakhomov, Alexey A; Martynov, Vladimir I; Orsa, Alexander N; Bondarenko, Alena A; Chertkova, Rita V; Lukyanov, Konstantin A; Petrenko, Alexander G; Deyev, Igor E

    2017-12-02

    Fluorescent protein Dendra2 is a monomeric GFP-like protein that belongs to the group of Kaede-like photoconvertible fluorescent proteins with irreversible photoconversion from a green- to red-emitting state when exposed to violet-blue light. In an acidic environment, photoconverted Dendra2 turns green due to protonation of the phenolic group of the chromophore with pKa of about 7.5. Thus, photoconverted form of Dendra2 can be potentially used as a ratiometric pH-sensor in the physiological pH range. However, incomplete photoconversion makes ratiometric measurements irreproducible when using standard filter sets. Here, we describe the method to detect fluorescence of only photoconverted Dendra2 form, but not nonconverted green Dendra2. We show that the 350 nm excitation light induces solely the fluorescence of photoconverted protein. By measuring the red to green fluorescence ratio, we determined intracellular pH in live CHO and HEK 293 cells. Thus, Dendra2 can be used as a novel ratiometric genetically encoded pH sensor with emission maxima in the green-red spectral region, which is suitable for application in live cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors.

    Science.gov (United States)

    Zhao, Yuzheng; Zhang, Zhuo; Zou, Yejun; Yang, Yi

    2018-01-20

    Beyond their roles as redox currency in living organisms, pyridine dinucleotides (NAD + /NADH and NADP + /NADPH) are also precursors or cosubstrates of great significance in various physiologic and pathologic processes. Recent Advances: For many years, it was challenging to develop methodologies for monitoring pyridine dinucleotides in situ or in vivo. Recent advances in fluorescent protein-based sensors provide a rapid, sensitive, specific, and real-time readout of pyridine dinucleotide dynamics in single cells or in vivo, thereby opening a new era of pyridine dinucleotide bioimaging. In this article, we summarize the developments in genetically encoded fluorescent sensors for NAD + /NADH and NADP + /NADPH redox states, as well as their applications in life sciences and drug discovery. The strengths and weaknesses of individual sensors are also discussed. These sensors have the advantages of being specific and organelle targetable, enabling real-time monitoring and subcellular-level quantification of targeted molecules in living cells and in vivo. NAD + /NADH and NADP + /NADPH have distinct functions in metabolic and redox regulation, and thus, a comprehensive evaluation of metabolic and redox states must be multiplexed with a combination of various metabolite sensors in a single cell. Antioxid. Redox Signal. 28, 213-229.

  7. Characterizing ligand-gated ion channel receptors with genetically encoded Ca2++ sensors.

    Directory of Open Access Journals (Sweden)

    John G Yamauchi

    2011-01-01

    Full Text Available We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC by developing sensor cells stably expressing a Ca(2+ permeable LGIC and a genetically encoded Förster (or fluorescence resonance energy transfer (FRET-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT(3A serotonin receptors and a chimera of human α7/mouse 5-HT(3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.

  8. Encoding mutually unbiased bases in orbital angular momentum for quantum key distribution

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2013-07-01

    Full Text Available We encode mutually unbiased bases (MUBs) using the higher-dimensional orbital angular momentum (OAM) degree of freedom associated with optical fields. We illustrate how these states are encoded with the use of a spatial light modulator (SLM). We...

  9. Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly

    Science.gov (United States)

    Mozhdehi, Davoud; Luginbuhl, Kelli M.; Simon, Joseph R.; Dzuricky, Michael; Berger, Rüdiger; Varol, H. Samet; Huang, Fred C.; Buehne, Kristen L.; Mayne, Nicholas R.; Weitzhandler, Isaac; Bonn, Mischa; Parekh, Sapun H.; Chilkoti, Ashutosh

    2018-05-01

    Post-translational modification of proteins is a strategy widely used in biological systems. It expands the diversity of the proteome and allows for tailoring of both the function and localization of proteins within cells as well as the material properties of structural proteins and matrices. Despite their ubiquity in biology, with a few exceptions, the potential of post-translational modifications in biomaterials synthesis has remained largely untapped. As a proof of concept to demonstrate the feasibility of creating a genetically encoded biohybrid material through post-translational modification, we report here the generation of a family of three stimulus-responsive hybrid materials—fatty-acid-modified elastin-like polypeptides—using a one-pot recombinant expression and post-translational lipidation methodology. These hybrid biomaterials contain an amphiphilic domain, composed of a β-sheet-forming peptide that is post-translationally functionalized with a C14 alkyl chain, fused to a thermally responsive elastin-like polypeptide. They exhibit temperature-triggered hierarchical self-assembly across multiple length scales with varied structure and material properties that can be controlled at the sequence level.

  10. Developing a Genetically Encoded, Cross-Species Biosensor for Detecting Ammonium and Regulating Biosynthesis of Cyanophycin.

    Science.gov (United States)

    Xiao, Yi; Jiang, Wen; Zhang, Fuzhong

    2017-10-20

    Responding to nitrogen status is essential for all living organisms. Bacteria have evolved various complex and exquisite regulatory systems to control nitrogen metabolism. However, natural nitrogen regulatory systems, owing to their complexity, often function only in their original hosts and do not respond properly when transferred to another species. By harnessing the Lactococcus GlnRA system, we developed a genetically encoded, cross-species ammonium biosensor that displays a dynamic range up to 9-fold upon detection of ammonium ion. We demonstrated applications of this ammonium biosensor in three different species (Escherichia coli, Pseudomonas putida, and Synechocystis sp.) to detect different nitrogen sources. This ammonium sensor was further used to regulate the biosynthesis of a nitrogen-rich polymer, cyanophycin, based on ammonium concentration. Given the importance of nitrogen responses, the developed biosensor should be broadly applicable to synthetic biology and bioengineering.

  11. A deep auto-encoder model for gene expression prediction.

    Science.gov (United States)

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  12. Fluorescent-magnetic dual-encoded nanospheres: a promising tool for fast-simultaneous-addressable high-throughput analysis

    Science.gov (United States)

    Xie, Min; Hu, Jun; Wen, Cong-Ying; Zhang, Zhi-Ling; Xie, Hai-Yan; Pang, Dai-Wen

    2012-01-01

    Bead-based optical encoding or magnetic encoding techniques are promising in high-throughput multiplexed detection and separation of numerous species under complicated conditions. Therefore, a self-assembly strategy implemented in an organic solvent is put forward to fabricate fluorescent-magnetic dual-encoded nanospheres. Briefly, hydrophobic trioctylphosphine oxide-capped CdSe/ZnS quantum dots (QDs) and oleic acid-capped nano-γ-Fe2O3 magnetic particles are directly, selectively and controllably assembled on branched poly(ethylene imine)-coated nanospheres without any pretreatment, which is crucial to keep the high quantum yield of QDs and good dispersibility of γ-Fe2O3. Owing to the tunability of coating amounts of QDs and γ-Fe2O3 as well as controllable fluorescent emissions of deposited-QDs, dual-encoded nanospheres with different photoluminescent emissions and gradient magnetic susceptibility are constructed. Using this improved layer-by-layer self-assembly approach, deposition of hydrophobic nanoparticles onto hydrophilic carriers in organic media can be easily realized; meanwhile, fluorescent-magnetic dual-functional nanospheres can be further equipped with readable optical and magnetic addresses. The resultant fluorescent-magnetic dual-encoded nanospheres possess both the unique optical properties of QDs and the superparamagnetic properties of γ-Fe2O3, exhibiting good monodispersibility, huge encoding capacity and nanoscale particle size. Compared with the encoded microbeads reported by others, the nanometre scale of the dual-encoded nanospheres gives them minimum steric hindrance and higher flexibility.

  13. Towards PDT with Genetically Encoded Photosensitizer KillerRed: A Comparison of Continuous and Pulsed Laser Regimens in an Animal Tumor Model.

    Directory of Open Access Journals (Sweden)

    Marina Shirmanova

    Full Text Available The strong phototoxicity of the red fluorescent protein KillerRed allows it to be considered as a potential genetically encoded photosensitizer for the photodynamic therapy (PDT of cancer. The advantages of KillerRed over chemical photosensitizers are its expression in tumor cells transduced with the appropriate gene and direct killing of cells through precise damage to any desired cell compartment. The ability of KillerRed to affect cell division and to induce cell death has already been demonstrated in cancer cell lines in vitro and HeLa tumor xenografts in vivo. However, the further development of this approach for PDT requires optimization of the method of treatment. In this study we tested the continuous wave (593 nm and pulsed laser (584 nm, 10 Hz, 18 ns modes to achieve an antitumor effect. The research was implemented on CT26 subcutaneous mouse tumors expressing KillerRed in fusion with histone H2B. The results showed that the pulsed mode provided a higher rate of photobleaching of KillerRed without any temperature increase on the tumor surface. PDT with the continuous wave laser was ineffective against CT26 tumors in mice, whereas the pulsed laser induced pronounced histopathological changes and inhibition of tumor growth. Therefore, we selected an effective regimen for PDT when using the genetically encoded photosensitizer KillerRed and pulsed laser irradiation.

  14. Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses

    Science.gov (United States)

    Liu, Yan; Shen, Yuecheng; Ruan, Haowen; Brodie, Frank L.; Wong, Terence T. W.; Yang, Changhuei; Wang, Lihong V.

    2018-01-01

    Normal development of the visual system in infants relies on clear images being projected onto the retina, which can be disrupted by lens opacity caused by congenital cataract. This disruption, if uncorrected in early life, results in amblyopia (permanently decreased vision even after removal of the cataract). Doctors are able to prevent amblyopia by removing the cataract during the first several weeks of life, but this surgery risks a host of complications, which can be equally visually disabling. Here, we investigated the feasibility of focusing light noninvasively through highly scattering cataractous lenses to stimulate the retina, thereby preventing amblyopia. This approach would allow the cataractous lens removal surgery to be delayed and hence greatly reduce the risk of complications from early surgery. Employing a wavefront shaping technique named time-reversed ultrasonically encoded optical focusing in reflection mode, we focused 532-nm light through a highly scattering ex vivo adult human cataractous lens. This work demonstrates a potential clinical application of wavefront shaping techniques.

  15. Genetic local search algorithm for optimization design of diffractive optical elements.

    Science.gov (United States)

    Zhou, G; Chen, Y; Wang, Z; Song, H

    1999-07-10

    We propose a genetic local search algorithm (GLSA) for the optimization design of diffractive optical elements (DOE's). This hybrid algorithm incorporates advantages of both genetic algorithm (GA) and local search techniques. It appears better able to locate the global minimum compared with a canonical GA. Sample cases investigated here include the optimization design of binary-phase Dammann gratings, continuous surface-relief grating array generators, and a uniform top-hat focal plane intensity profile generator. Two GLSA's whose incorporated local search techniques are the hill-climbing method and the simulated annealing algorithm are investigated. Numerical experimental results demonstrate that the proposed algorithm is highly efficient and robust. DOE's that have high diffraction efficiency and excellent uniformity can be achieved by use of the algorithm we propose.

  16. Optical Computing

    OpenAIRE

    Woods, Damien; Naughton, Thomas J.

    2008-01-01

    We consider optical computers that encode data using images and compute by transforming such images. We give an overview of a number of such optical computing architectures, including descriptions of the type of hardware commonly used in optical computing, as well as some of the computational efficiencies of optical devices. We go on to discuss optical computing from the point of view of computational complexity theory, with the aim of putting some old, and some very recent, re...

  17. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)

    Science.gov (United States)

    Judkewitz, Benjamin; Wang, Ying Min; Horstmeyer, Roarke; Mathy, Alexandre; Yang, Changhuei

    2013-04-01

    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm.

  18. Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE).

    Science.gov (United States)

    Judkewitz, Benjamin; Wang, Ying Min; Horstmeyer, Roarke; Mathy, Alexandre; Yang, Changhuei

    2013-04-01

    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance-encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at unprecedented, speckle-scale lateral resolution of ~ 5 μm.

  19. Research on the Phase Aberration Correction with a Deformable Mirror Controlled by a Genetic Algorithm

    International Nuclear Information System (INIS)

    Yang, P; Hu, S J; Chen, S Q; Yang, W; Xu, B; Jiang, W H

    2006-01-01

    In order to improve laser beam quality, a real number encoding genetic algorithm based on adaptive optics technology was presented. This algorithm was applied to control a 19-channel deformable mirror to correct phase aberration in laser beam. It is known that when traditional adaptive optics system is used to correct laser beam wave-front phase aberration, a precondition is to measure the phase aberration information in the laser beam. However, using genetic algorithms, there is no necessary to know the phase aberration information in the laser beam beforehand. The only parameter need to know is the Light intensity behind the pinhole on the focal plane. This parameter was used as the fitness function for the genetic algorithm. Simulation results show that the optimal shape of the 19-channel deformable mirror applied to correct the phase aberration can be ascertained. The peak light intensity was improved by a factor of 21, and the encircled energy strehl ratio was increased to 0.34 from 0.02 as the phase aberration was corrected with this technique

  20. Expression and testing in plants of ArcLight, a genetically-encoded voltage indicator used in neuroscience research.

    Science.gov (United States)

    Matzke, Antonius J M; Matzke, Marjori

    2015-10-12

    It is increasingly appreciated that electrical controls acting at the cellular and supra-cellular levels influence development and initiate rapid responses to environmental cues. An emerging method for non-invasive optical imaging of electrical activity at cell membranes uses genetically-encoded voltage indicators (GEVIs). Developed by neuroscientists to chart neuronal circuits in animals, GEVIs comprise a fluorescent protein that is fused to a voltage-sensing domain. One well-known GEVI, ArcLight, undergoes strong shifts in fluorescence intensity in response to voltage changes in mammalian cells. ArcLight consists of super-ecliptic (SE) pHluorin (pH-sensitive fluorescent protein) with an A227D substitution, which confers voltage sensitivity in neurons, fused to the voltage-sensing domain of the voltage-sensing phosphatase of C iona i ntestinalis (Ci-VSD). In an ongoing effort to adapt tools of optical electrophysiology for plants, we describe here the expression and testing of ArcLight and various derivatives in different membranes of root cells in Arabidopsis thaliana. Transgenic constructs were designed to express ArcLight and various derivatives targeted to the plasma membrane and nuclear membranes of Arabidopsis root cells. In transgenic seedlings, changes in fluorescence intensity of these reporter proteins following extracellular ATP (eATP) application were monitored using a fluorescence microscope equipped with a high speed camera. Coordinate reductions in fluorescence intensity of ArcLight and Ci-VSD-containing derivatives were observed at both the plasma membrane and nuclear membranes following eATP treatments. However, similar responses were observed for derivatives lacking the Ci-VSD. The dispensability of the Ci-VSD suggests that in plants, where H(+) ions contribute substantially to electrical activities, the voltage-sensing ability of ArcLight is subordinate to the pH sensitivity of its SEpHluorin base. The transient reduction of Arc

  1. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  2. Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response.

    Directory of Open Access Journals (Sweden)

    Masahiro Nakano

    Full Text Available Temperature is a fundamental physical parameter that plays an important role in biological reactions and events. Although thermometers developed previously have been used to investigate several important phenomena, such as heterogeneous temperature distribution in a single living cell and heat generation in mitochondria, the development of a thermometer with a sensitivity over a wide temperature range and rapid response is still desired to quantify temperature change in not only homeotherms but also poikilotherms from the cellular level to in vivo. To overcome the weaknesses of the conventional thermometers, such as a limitation of applicable species and a low temporal resolution, owing to the narrow temperature range of sensitivity and the thermometry method, respectively, we developed a genetically encoded ratiometric fluorescent temperature indicator, gTEMP, by using two fluorescent proteins with different temperature sensitivities. Our thermometric method enabled a fast tracking of the temperature change with a time resolution of 50 ms. We used this method to observe the spatiotemporal temperature change between the cytoplasm and nucleus in cells, and quantified thermogenesis from the mitochondria matrix in a single living cell after stimulation with carbonyl cyanide 4-(trifluoromethoxyphenylhydrazone, which was an uncoupler of oxidative phosphorylation. Moreover, exploiting the wide temperature range of sensitivity from 5°C to 50°C of gTEMP, we monitored the temperature in a living medaka embryo for 15 hours and showed the feasibility of in vivo thermometry in various living species.

  3. Primary chromatic aberration elimination via optimization work with genetic algorithm

    Science.gov (United States)

    Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao

    2008-09-01

    Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.

  4. Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters.

    Science.gov (United States)

    Germond, Arno; Fujita, Hideaki; Ichimura, Taro; Watanabe, Tomonobu M

    2016-06-01

    Over the past decades many researchers have made major contributions towards the development of genetically encoded (GE) fluorescent sensors derived from fluorescent proteins. GE sensors are now used to study biological phenomena by facilitating the measurement of biochemical behaviors at various scales, ranging from single molecules to single cells or even whole animals. Here, we review the historical development of GE fluorescent sensors and report on their current status. We specifically focus on the development strategies of the GE sensors used for measuring pH, ion concentrations (e.g., chloride and calcium), redox indicators, membrane potential, temperature, pressure, and molecular crowding. We demonstrate that these fluroescent protein-based sensors have a shared history of concepts and development strategies, and we highlight the most original concepts used to date. We believe that the understanding and application of these various concepts will pave the road for the development of future GE sensors and lead to new breakthroughs in bioimaging.

  5. Analysis of Genetic Mutations in a Cohort of Hereditary Optic Neuropathy in Shanghai, China.

    Science.gov (United States)

    Gan, Dekang; Li, Mengwei; Wu, Jihong; Sun, Xinghuai; Tian, Guohong

    2017-01-01

    To evaluate the clinical classification and characteristics of hereditary optic neuropathy patients in a single center in China. Retrospective case study. Patients diagnosed with hereditary optic neuropathy between January 2014 and December 2015 in the neuro-ophthalmology division in Shanghai Eye and ENT Hospital of Fudan University were recruited. Clinical features as well as visual field, brain/orbital MRI, and spectrum domain optical coherence tomography (SD-OCT) were analyzed. Eighty-two patients diagnosed by gene test were evaluated, including 66 males and 16 females. The mean age of the patients was 19.4 years (range, 5-46 years). A total of 158 eyes were analyzed, including 6 unilateral, 61 bilateral, and 15 sequential. The median duration of the disease was 0.5 year (range, 0.1-20 years). Genetic test identified 68 patients with Leber hereditary optic neuropathy, 9 with dominant optic neuropathy, and 2 with a Wolfram gene mutation. There was also one case of hereditary spastic paraplegia, spinocerebellar ataxia, and polymicrogyria with optic nerve atrophy, respectively. Leber hereditary optic neuropathy is the most common detected type of hereditary optic neuropathy in Shanghai, China. The detection of other autosomal mutations in hereditary optic neuropathy is limited by the currently available technique.

  6. Optical image encryption method based on incoherent imaging and polarized light encoding

    Science.gov (United States)

    Wang, Q.; Xiong, D.; Alfalou, A.; Brosseau, C.

    2018-05-01

    We propose an incoherent encoding system for image encryption based on a polarized encoding method combined with an incoherent imaging. Incoherent imaging is the core component of this proposal, in which the incoherent point-spread function (PSF) of the imaging system serves as the main key to encode the input intensity distribution thanks to a convolution operation. An array of retarders and polarizers is placed on the input plane of the imaging structure to encrypt the polarized state of light based on Mueller polarization calculus. The proposal makes full use of randomness of polarization parameters and incoherent PSF so that a multidimensional key space is generated to deal with illegal attacks. Mueller polarization calculus and incoherent illumination of imaging structure ensure that only intensity information is manipulated. Another key advantage is that complicated processing and recording related to a complex-valued signal are avoided. The encoded information is just an intensity distribution, which is advantageous for data storage and transition because information expansion accompanying conventional encryption methods is also avoided. The decryption procedure can be performed digitally or using optoelectronic devices. Numerical simulation tests demonstrate the validity of the proposed scheme.

  7. Illumination of the Spatial Order of Intracellular pH by Genetically Encoded pH-Sensitive Sensors

    Directory of Open Access Journals (Sweden)

    Mojca Benčina

    2013-12-01

    Full Text Available Fluorescent proteins have been extensively used for engineering genetically encoded sensors that can monitor levels of ions, enzyme activities, redox potential, and metabolites. Certain fluorescent proteins possess specific pH-dependent spectroscopic features, and thus can be used as indicators of intracellular pH. Moreover, concatenated pH-sensitive proteins with target proteins pin the pH sensors to a definite location within the cell, compartment, or tissue. This study provides an overview of the continually expanding family of pH-sensitive fluorescent proteins that have become essential tools for studies of pH homeostasis and cell physiology. We describe and discuss the design of intensity-based and ratiometric pH sensors, their spectral properties and pH-dependency, as well as their performance. Finally, we illustrate some examples of the applications of pH sensors targeted at different subcellular compartments.

  8. Identification and characterization of a gene encoding a putative ...

    Indian Academy of Sciences (India)

    2012-10-30

    Oct 30, 2012 ... Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China. 2Institute of ... Its encoding gene is an essential candidate for oil crops to .... higher level in leaves than in other organs (Kim and Huang. 2004) ...

  9. Genetically determined optic neuropathies

    DEFF Research Database (Denmark)

    Milea, Dan; Amati-Bonneau, Patrizia; Reynier, Pascal

    2010-01-01

    The present review focuses on recent advances in the knowledge of hereditary optic neuropathies resulting from retinal ganglion cell degeneration, mostly due to mitochondrial dysfunctions.......The present review focuses on recent advances in the knowledge of hereditary optic neuropathies resulting from retinal ganglion cell degeneration, mostly due to mitochondrial dysfunctions....

  10. Multimodal ophthalmic imaging using spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    Science.gov (United States)

    El-Haddad, Mohamed T.; Malone, Joseph D.; Li, Jianwei D.; Bozic, Ivan; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-08-01

    Ophthalmic surgery involves manipulation of delicate, layered tissue structures on milli- to micrometer scales. Traditional surgical microscopes provide an inherently two-dimensional view of the surgical field with limited depth perception which precludes accurate depth-resolved visualization of these tissue layers, and limits the development of novel surgical techniques. We demonstrate multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) to address current limitations of image-guided ophthalmic microsurgery. SS-SESLO-OCT provides inherently co-registered en face and cross-sectional field-of-views (FOVs) at a line rate of 400 kHz and >2 GPix/s throughput. We show in vivo imaging of the anterior segment and retinal fundus of a healthy volunteer, and preliminary results of multi-volumetric mosaicking for ultrawide-field retinal imaging with 90° FOV. Additionally, a scan-head was rapid-prototyped with a modular architecture which enabled integration of SS-SESLO-OCT with traditional surgical microscope and slit-lamp imaging optics. Ex vivo surgical maneuvers were simulated in cadaveric porcine eyes. The system throughput enabled volumetric acquisition at 10 volumes-per-second (vps) and allowed visualization of surgical dynamics in corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. SESLO en face images enabled simple real-time co-registration with the surgical microscope FOV, and OCT cross-sections provided depth-resolved visualization of instrument-tissue interactions. Finally, we demonstrate novel augmented-reality integration with the surgical view using segmentation overlays to aid surgical guidance. SS-SESLO-OCT may benefit clinical diagnostics by enabling aiming, registration, and mosaicking; and intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted biomarkers of disease.

  11. Non-deterministic quantum CNOT gate with double encoding

    Science.gov (United States)

    Gueddana, Amor; Attia, Moez; Chatta, Rihab

    2013-09-01

    We define an Asymmetric Partially Polarizing Beam Splitter (APPBS) to be a linear optical component having different reflectivity (transmittance) coefficients, on the upper and the lower arms, for horizontally and vertically Polarized incident photons. Our CNOT model is composed by two APPBSs, one Half Wave Plate (HWP), two Polarizing Beam Splitters (PBSs), a Beam Splitter (BS) and a -phase rotator for specific wavelength. Control qubit operates with dual rail encoding while target qubit is based on polarization encoding. To perform CNOT operation in 4/27 of the cases, input and target incoming photons are injected with different wavelengths.

  12. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor.

    Science.gov (United States)

    Tantama, Mathew; Hung, Yin Pun; Yellen, Gary

    2011-07-06

    Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm that can be used for ratiometric imaging. The intensity ratio responds with an apparent pK(a) of 6.6 and a >10-fold dynamic range. Furthermore, pHRed has a pH-responsive fluorescence lifetime that changes by ~0.4 ns over physiological pH values and can be monitored with single-wavelength two-photon excitation. After characterizing the sensor, we tested pHRed's ability to monitor intracellular pH by imaging energy-dependent changes in cytosolic and mitochondrial pH.

  13. Network analysis of mesoscale optical recordings to assess regional, functional connectivity.

    Science.gov (United States)

    Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H

    2015-10-01

    With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.

  14. A linear-encoding model explains the variability of the target morphology in regeneration

    Science.gov (United States)

    Lobo, Daniel; Solano, Mauricio; Bubenik, George A.; Levin, Michael

    2014-01-01

    A fundamental assumption of today's molecular genetics paradigm is that complex morphology emerges from the combined activity of low-level processes involving proteins and nucleic acids. An inherent characteristic of such nonlinear encodings is the difficulty of creating the genetic and epigenetic information that will produce a given self-assembling complex morphology. This ‘inverse problem’ is vital not only for understanding the evolution, development and regeneration of bodyplans, but also for synthetic biology efforts that seek to engineer biological shapes. Importantly, the regenerative mechanisms in deer antlers, planarian worms and fiddler crabs can solve an inverse problem: their target morphology can be altered specifically and stably by injuries in particular locations. Here, we discuss the class of models that use pre-specified morphological goal states and propose the existence of a linear encoding of the target morphology, making the inverse problem easy for these organisms to solve. Indeed, many model organisms such as Drosophila, hydra and Xenopus also develop according to nonlinear encodings producing linear encodings of their final morphologies. We propose the development of testable models of regeneration regulation that combine emergence with a top-down specification of shape by linear encodings of target morphology, driving transformative applications in biomedicine and synthetic bioengineering. PMID:24402915

  15. Method of implementing frequency-encoded NOT, OR and NOR

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 5. Method of implementing frequency-encoded NOT, OR and NOR logic operations using lithium niobate waveguide and reflecting semiconductor optical amplifiers. Sisir Kumar Garai Sourangshu Mukhopadhyay. Volume 73 Issue 5 November 2009 pp 901- ...

  16. A new encoding scheme for visible light communications with applications to mobile connections

    Science.gov (United States)

    Benton, David M.; St. John Brittan, Paul

    2017-10-01

    A new, novel and unconventional encoding scheme called concurrent coding, has recently been demonstrated and shown to offer interesting features and benefits in comparison to conventional techniques, such as robustness against burst errors and improved efficiency of transmitted power. Free space optical communications can suffer particularly from issues of alignment which requires stable, fixed links to be established and beam wander which can interrupt communications. Concurrent coding has the potential to help ease these difficulties and enable mobile, flexible optical communications to be implemented through the use of a source encoding technique. This concept has been applied for the first time to optical communications where standard light emitting diodes (LEDs) have been used to transmit information encoded with concurrent coding. The technique successfully transmits and decodes data despite unpredictable interruptions to the transmission causing significant drop-outs to the detected signal. The technique also shows how it is possible to send a single block of data in isolation with no pre-synchronisation required between transmitter and receiver, and no specific synchronisation sequence appended to the transmission. Such systems are robust against interference - intentional or otherwise - as well as intermittent beam blockage.

  17. Quantum-dots-encoded-microbeads based molecularly imprinted polymer.

    Science.gov (United States)

    Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui

    2016-03-15

    Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Probing optimal measurement configuration for optical scatterometry by the multi-objective genetic algorithm

    Science.gov (United States)

    Chen, Xiuguo; Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan

    2018-04-01

    Measurement configuration optimization (MCO) is a ubiquitous and important issue in optical scatterometry, whose aim is to probe the optimal combination of measurement conditions, such as wavelength, incidence angle, azimuthal angle, and/or polarization directions, to achieve a higher measurement precision for a given measuring instrument. In this paper, the MCO problem is investigated and formulated as a multi-objective optimization problem, which is then solved by the multi-objective genetic algorithm (MOGA). The case study on the Mueller matrix scatterometry for the measurement of a Si grating verifies the feasibility of the MOGA in handling the MCO problem in optical scatterometry by making a comparison with the Monte Carlo simulations. Experiments performed at the achieved optimal measurement configuration also show good agreement between the measured and calculated best-fit Mueller matrix spectra. The proposed MCO method based on MOGA is expected to provide a more general and practical means to solve the MCO problem in the state-of-the-art optical scatterometry.

  19. A high-accuracy optical linear algebra processor for finite element applications

    Science.gov (United States)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  20. cDNAs encoding [D-Ala2]deltorphin precursors from skin of Phyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides.

    OpenAIRE

    Richter, K; Egger, R; Negri, L; Corsi, R; Severini, C; Kreil, G

    1990-01-01

    We present the structure of four precursors for [D-Ala2]deltorphins I and II as deduced from cDNAs cloned from skin of the frog Phyllomedusa bicolor. These contain the genetic information for one copy of [D-Ala2]deltorphin II and zero, one, or three copies of [D-Ala2]deltorphin I. In each case, the D-alanine of the end product is encoded by a normal GCG codon for L-alanine. In addition, the existence of three peptides related to dermorphin was predicted from the amino acid sequence of the pre...

  1. A Toolbox of Genetically Encoded FRET-Based Biosensors for Rapid l-Lysine Analysis

    Directory of Open Access Journals (Sweden)

    Victoria Steffen

    2016-09-01

    Full Text Available Background: The fast development of microbial production strains for basic and fine chemicals is increasingly carried out in small scale cultivation systems to allow for higher throughput. Such parallelized systems create a need for new rapid online detection systems to quantify the respective target compound. In this regard, biosensors, especially genetically encoded Förster resonance energy transfer (FRET-based biosensors, offer tremendous opportunities. As a proof-of-concept, we have created a toolbox of FRET-based biosensors for the ratiometric determination of l-lysine in fermentation broth. Methods: The sensor toolbox was constructed based on a sensor that consists of an optimized central lysine-/arginine-/ornithine-binding protein (LAO-BP flanked by two fluorescent proteins (enhanced cyan fluorescent protein (ECFP, Citrine. Further sensor variants with altered affinity and sensitivity were obtained by circular permutation of the binding protein as well as the introduction of flexible and rigid linkers between the fluorescent proteins and the LAO-BP, respectively. Results: The sensor prototype was applied to monitor the extracellular l-lysine concentration of the l-lysine producing Corynebacterium glutamicum (C. glutamicum strain DM1933 in a BioLector® microscale cultivation device. The results matched well with data obtained by HPLC analysis and the Ninhydrin assay, demonstrating the high potential of FRET-based biosensors for high-throughput microbial bioprocess optimization.

  2. M/T method based incremental encoder velocity measurement error analysis and self-adaptive error elimination algorithm

    DEFF Research Database (Denmark)

    Chen, Yangyang; Yang, Ming; Long, Jiang

    2017-01-01

    For motor control applications, the speed loop performance is largely depended on the accuracy of speed feedback signal. M/T method, due to its high theoretical accuracy, is the most widely used in incremental encoder adopted speed measurement. However, the inherent encoder optical grating error...

  3. Dynamic array of dark optical traps

    DEFF Research Database (Denmark)

    Daria, V.R.; Rodrigo, P.J.; Glückstad, J.

    2004-01-01

    A dynamic array of dark optical traps is generated for simultaneous trapping and arbitrary manipulation of multiple low-index microstructures. The dynamic intensity patterns forming the dark optical trap arrays are generated using a nearly loss-less phase-to-intensity conversion of a phase......-encoded coherent light source. Two-dimensional input phase distributions corresponding to the trapping patterns are encoded using a computer-programmable spatial light modulator, enabling each trap to be shaped and moved arbitrarily within the plane of observation. We demonstrate the generation of multiple dark...... optical traps for simultaneous manipulation of hollow "air-filled" glass microspheres suspended in an aqueous medium. (C) 2004 American Institute of Physics....

  4. Measurement of six-degree-of-freedom planar motions by using a multiprobe surface encoder

    Science.gov (United States)

    Li, Xinghui; Shimizu, Yuki; Ito, Takeshi; Cai, Yindi; Ito, So; Gao, Wei

    2014-12-01

    A multiprobe surface encoder for optical metrology of six-degree-of-freedom (six-DOF) planar motions is presented. The surface encoder is composed of an XY planar scale grating with identical microstructures in X- and Y-axes and an optical sensor head. In the optical sensor head, three paralleled laser beams were used as laser probes. After being divided by a beam splitter, the three laser probes were projected onto the scale grating and a reference grating with identical microstructures, respectively. For each probe, the first-order positive and negative diffraction beams along the X- and Y-directions from the scale grating and from the reference grating superimposed with each other and four pieces of interference signals were generated. Three-DOF translational motions of the scale grating Δx, Δy, and Δz can be obtained simultaneously from the interference signals of each probe. Three-DOF angular error motions θX, θY, and θZ can also be calculated simultaneously from differences of displacement output variations and the geometric relationship among the three probes. A prototype optical sensor head was designed, constructed, and evaluated. Experimental results verified that this surface encoder could provide measurement resolutions of subnanometer and better than 0.1 arc sec for three-DOF translational motions and three-DOF angular error motions, respectively.

  5. Flow Cytometry Enables Multiplexed Measurements of Genetically Encoded Intramolecular FRET Sensors Suitable for Screening.

    Science.gov (United States)

    Doucette, Jaimee; Zhao, Ziyan; Geyer, Rory J; Barra, Melanie M; Balunas, Marcy J; Zweifach, Adam

    2016-07-01

    Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)-activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections. © 2016 Society for Laboratory Automation and Screening.

  6. Focusing on optic tectum circuitry through the lens of genetics

    Directory of Open Access Journals (Sweden)

    Nevin Linda M

    2010-09-01

    Full Text Available Abstract The visual pathway is tasked with processing incoming signals from the retina and converting this information into adaptive behavior. Recent studies of the larval zebrafish tectum have begun to clarify how the 'micro-circuitry' of this highly organized midbrain structure filters visual input, which arrives in the superficial layers and directs motor output through efferent projections from its deep layers. The new emphasis has been on the specific function of neuronal cell types, which can now be reproducibly labeled, imaged and manipulated using genetic and optical techniques. Here, we discuss recent advances and emerging experimental approaches for studying tectal circuits as models for visual processing and sensorimotor transformation by the vertebrate brain.

  7. Genetic basis of chronic pancreatitis

    NARCIS (Netherlands)

    Jansen, JBMJ; Morsche, RT; van Goor, Harry; Drenth, JPH

    2002-01-01

    Background: Pancreatitis has a proven genetic basis in a minority of patients. Methods: Review of the literature on genetics of pancreatitis. Results: Ever since the discovery that in most patients with hereditary pancreatitis a mutation in the gene encoding for cationic trypsinogen (R122H) was

  8. Modulating and Measuring Intracellular H2O2 Using Genetically Encoded Tools to Study Its Toxicity to Human Cells.

    Science.gov (United States)

    Huang, Beijing K; Stein, Kassi T; Sikes, Hadley D

    2016-12-16

    Reactive oxygen species (ROS) such as H 2 O 2 play paradoxical roles in mammalian physiology. It is hypothesized that low, baseline levels of H 2 O 2 are necessary for growth and differentiation, while increased intracellular H 2 O 2 concentrations are associated with pathological phenotypes and genetic instability, eventually reaching a toxic threshold that causes cell death. However, the quantities of intracellular H 2 O 2 that lead to these different responses remain an unanswered question in the field. To address this question, we used genetically encoded constructs that both generate and quantify H 2 O 2 in a dose-response study of H 2 O 2 -mediated toxicity. We found that, rather than a simple concentration-response relationship, a combination of intracellular concentration and the cumulative metric of H 2 O 2 concentration multiplied by time (i.e., the area under the curve) determined the occurrence and level of cell death. Establishing the quantitative relationship between H 2 O 2 and cell toxicity promotes a deeper understanding of the intracellular effects of H 2 O 2 specifically as an individual reactive oxygen species, and it contributes to an understanding of its role in various redox-related diseases.

  9. Dominant optic atrophy

    Directory of Open Access Journals (Sweden)

    Lenaers Guy

    2012-07-01

    Full Text Available Abstract Definition of the disease Dominant Optic Atrophy (DOA is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain. Epidemiology The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world. Clinical description DOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts. Aetiology Two genes (OPA1, OPA3 encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8 are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7 are responsible for X-linked or recessive optic atrophy. All OPA genes yet identified encode mitochondrial proteins embedded in the inner membrane and ubiquitously expressed, as are the proteins mutated in the Leber Hereditary Optic Neuropathy. OPA1 mutations affect mitochondrial fusion, energy metabolism, control of apoptosis, calcium clearance and maintenance of mitochondrial genome integrity. OPA3 mutations only affect the energy metabolism and the control of apoptosis. Diagnosis Patients are usually diagnosed during their early childhood, because of

  10. Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure.

    Science.gov (United States)

    Barbagallo, Federica; Xu, Bing; Reddy, Gopireddy R; West, Toni; Wang, Qingtong; Fu, Qin; Li, Minghui; Shi, Qian; Ginsburg, Kenneth S; Ferrier, William; Isidori, Andrea M; Naro, Fabio; Patel, Hemal H; Bossuyt, Julie; Bers, Donald; Xiang, Yang K

    2016-09-30

    In heart failure, myofilament proteins display abnormal phosphorylation, which contributes to contractile dysfunction. The mechanisms underlying the dysregulation of protein phosphorylation on myofilaments is not clear. This study aims to understand the mechanisms underlying altered phosphorylation of myofilament proteins in heart failure. We generate a novel genetically encoded protein kinase A (PKA) biosensor anchored onto the myofilaments in rabbit cardiac myocytes to examine PKA activity at the myofilaments in responses to adrenergic stimulation. We show that PKA activity is shifted from the sarcolemma to the myofilaments in hypertrophic failing rabbit myocytes. In particular, the increased PKA activity on the myofilaments is because of an enhanced β2 adrenergic receptor signal selectively directed to the myofilaments together with a reduced phosphodiesterase activity associated with the myofibrils. Mechanistically, the enhanced PKA activity on the myofilaments is associated with downregulation of caveolin-3 in the hypertrophic failing rabbit myocytes. Reintroduction of caveolin-3 in the failing myocytes is able to normalize the distribution of β2 adrenergic receptor signal by preventing PKA signal access to the myofilaments and to restore contractile response to adrenergic stimulation. In hypertrophic rabbit myocytes, selectively enhanced β2 adrenergic receptor signaling toward the myofilaments contributes to elevated PKA activity and PKA phosphorylation of myofilament proteins. Reintroduction of caveolin-3 is able to confine β2 adrenergic receptor signaling and restore myocyte contractility in response to β adrenergic stimulation. © 2016 American Heart Association, Inc.

  11. Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding

    International Nuclear Information System (INIS)

    Chen, Jun-Xin; Fu, Chong; Zhu, Zhi-Liang; Zhang, Li-Bo; Zhang, Yushu

    2014-01-01

    In this paper, we evaluate the security of an enhanced double random phase encoding (DRPE) image encryption scheme (2013 J. Lightwave Technol. 31 2533). The original system employs a chaotic Baker map prior to DRPE to provide more protection to the plain image and hence promote the security level of DRPE, as claimed. However, cryptanalysis shows that this scheme is vulnerable to a chosen-plaintext attack, and the ciphertext can be precisely recovered. The corresponding improvement is subsequently reported upon the basic premise that no extra equipment or computational complexity is required. The simulation results and security analyses prove its effectiveness and security. The proposed achievements are suitable for all cryptosystems under permutation and, following that, the DRPE architecture, and we hope that our work can motivate the further research on optical image encryption. (paper)

  12. Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encoding

    Science.gov (United States)

    Chen, Jun-Xin; Zhu, Zhi-Liang; Fu, Chong; Zhang, Li-Bo; Zhang, Yushu

    2014-12-01

    In this paper, we evaluate the security of an enhanced double random phase encoding (DRPE) image encryption scheme (2013 J. Lightwave Technol. 31 2533). The original system employs a chaotic Baker map prior to DRPE to provide more protection to the plain image and hence promote the security level of DRPE, as claimed. However, cryptanalysis shows that this scheme is vulnerable to a chosen-plaintext attack, and the ciphertext can be precisely recovered. The corresponding improvement is subsequently reported upon the basic premise that no extra equipment or computational complexity is required. The simulation results and security analyses prove its effectiveness and security. The proposed achievements are suitable for all cryptosystems under permutation and, following that, the DRPE architecture, and we hope that our work can motivate the further research on optical image encryption.

  13. Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation

    Directory of Open Access Journals (Sweden)

    J. Michael eGee

    2015-04-01

    Full Text Available Complex interactions between networks of astrocytes and neurons are beginning to be appreciated, but remain poorly understood. Transgenic mice expressing fluorescent protein reporters of cellular activity, such as the GCaMP family of genetically encoded calcium indicators, have been used to explore network behavior. However, in some cases, it may be desirable to use long-established rat models that closely mimic particular aspects of human conditions such as Parkinson’s disease and the development of epilepsy following status epilepticus. Methods for expressing reporter proteins in the rat brain are relatively limited. Transgenic rat technologies exist but are fairly immature. Viral-mediated expression is robust but unstable, requires invasive injections, and only works well for fairly small genes (< 5 kb. In utero electroporation offers a valuable alternative. IUE is a proven method for transfecting populations of astrocytes and neurons in the rat brain without the strict limitations on transgene size. We built a toolset of IUE plasmids carrying GCaMP variants 3, 6s or 6f driven by CAG and targeted to the cytosol or the plasma membrane. Because low baseline fluorescence of GCaMP can hinder identification of transfected cells, we included the option of co-expressing a cytosolic tdTomato protein. A binary system consisting of a plasmid carrying a piggyBac inverted terminal repeat-flanked CAG-GCaMP-IRES-tdTomato cassette and a separate plasmid encoding for expression of piggyBac transposase was employed to stably express GCaMP and tdTomato. The plasmids were co-electroporated on embryonic days 13.5-14.5 and astrocytic and neuronal activity was subsequently imaged in acute or cultured brain slices prepared from the cortex or hippocampus. Large spontaneous transients were detected in slices obtained from rats of varying ages up to 127 days. In this report, we demonstrate the utility of this toolset for interrogating astrocytic and neuronal

  14. Genetic aspects of hypothalamic and pituitary gland development.

    Science.gov (United States)

    McCabe, Mark J; Dattani, Mehul T

    2014-01-01

    Hypothalamo-pituitary development during embryogenesis is a highly complex process involving the interaction of a network of spatiotemporally regulated signaling molecules and transcription factors. Mutations in any of the genes encoding these components can lead to congenital hypopituitarism, which is often associated with a wide spectrum of defects affecting craniofacial/midline development. In turn, these defects can be incompatible with life, or lead to disorders encompassing holoprosencephaly (HPE) and cleft palate, and septo-optic dysplasia (SOD). In recent years, there has been increasing evidence of an overlapping genotype between this spectrum of disorders and Kallmann syndrome (KS), defined as the association of hypogonadotropic hypogonadism (HH) and anosmia. This is consistent with the known phenotypic overlap between these disorders and opens a new avenue of identifying novel genetic causes of the hypopituitarism spectrum. This chapter reviews the genetic and molecular events leading to the successful development of the hypothalamo-pituitary axis during embryogenesis, and focuses on genes in which variations/mutations occur, leading to congenital hypopituitarism and associated defects. © 2014 Elsevier B.V. All rights reserved.

  15. Genetically Engineered Cyanobacteria

    Science.gov (United States)

    Zhou, Ruanbao (Inventor); Gibbons, William (Inventor)

    2015-01-01

    The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.

  16. Response properties of the genetically encoded optical H2O2 sensor HyPer.

    Science.gov (United States)

    Weller, Jonathan; Kizina, Kathrin M; Can, Karolina; Bao, Guobin; Müller, Michael

    2014-11-01

    Reactive oxygen species mediate cellular signaling and neuropathologies. Hence, there is tremendous interest in monitoring (sub)cellular redox conditions. We evaluated the genetically engineered redox sensor HyPer in mouse hippocampal cell cultures. Two days after lipofection, neurons and glia showed sufficient expression levels, and H2O2 reversibly and dose-dependently increased the fluorescence ratio of cytosolic HyPer. Yet, repeated H2O2 treatment caused progressively declining responses, and with millimolar doses an apparent recovery started while H2O2 was still present. Although HyPer should be H2O2 specific, it seemingly responded also to other oxidants and altered cell-endogenous superoxide production. Control experiments with the SypHer pH sensor confirmed that the HyPer ratio responds to pH changes, decreasing with acidosis and increasing during alkalosis. Anoxia/reoxygenation evoked biphasic HyPer responses reporting apparent reduction/oxidation; replacing Cl(-) exerted only negligible effects. Mitochondria-targeted HyPer readily responded to H2O2-albeit less intensely than cytosolic HyPer. With ratiometric two-photon excitation, H2O2 increased the cytosolic HyPer ratio. Time-correlated fluorescence-lifetime imaging microscopy (FLIM) revealed a monoexponential decay of HyPer fluorescence, and H2O2 decreased fluorescence lifetimes. Dithiothreitol failed to further reduce HyPer or to induce reasonable FLIM and two-photon responses. By enabling dynamic recordings, HyPer is superior to synthetic redox-sensitive dyes. Its feasibility for two-photon excitation also enables studies in more complex preparations. Based on FLIM, quantitative analyses might be possible independent of switching excitation wavelengths. Yet, because of its pronounced pH sensitivity, adaptation to repeated oxidation, and insensitivity to reducing stimuli, HyPer responses have to be interpreted carefully. For reliable data, side-by-side pH monitoring with SypHer is essential. Copyright

  17. Ultrafast two-photon absorption optical thresholding of spectrally coded pulses

    Science.gov (United States)

    Zheng, Z.; Shen, S.; Sardesai, H.; Chang, C.-C.; Marsh, J. H.; Karkhanehchi, M. M.; Weiner, A. M.

    1999-08-01

    We report studies on two-photon absorption (TPA) GaAs p-i-n waveguide photodetectors as optical thresholders for proposed ultrashort pulse optical code-division multiple-access (CDMA) systems. For either chirped optical pulses or spectrally phase coded pseudonoise bursts, the TPA photocurrent response reveals a strong pulseshape dependence and shows good agreement with theoretical predictions and results from conventional SHG measurements. The performance limits of the TPA optical thresholders set by the encoded bandwidth in the spectral encoding-decoding process are also discussed based on numerical simulations. Our results show the feasibility of applying such devices as nonlinear intensity discriminators in ultrahigh-speed optical network applications.

  18. Genetic programs can be compressed and autonomously decompressed in live cells

    Science.gov (United States)

    Lapique, Nicolas; Benenson, Yaakov

    2018-04-01

    Fundamental computer science concepts have inspired novel information-processing molecular systems in test tubes1-13 and genetically encoded circuits in live cells14-21. Recent research has shown that digital information storage in DNA, implemented using deep sequencing and conventional software, can approach the maximum Shannon information capacity22 of two bits per nucleotide23. In nature, DNA is used to store genetic programs, but the information content of the encoding rarely approaches this maximum24. We hypothesize that the biological function of a genetic program can be preserved while reducing the length of its DNA encoding and increasing the information content per nucleotide. Here we support this hypothesis by describing an experimental procedure for compressing a genetic program and its subsequent autonomous decompression and execution in human cells. As a test-bed we choose an RNAi cell classifier circuit25 that comprises redundant DNA sequences and is therefore amenable for compression, as are many other complex gene circuits15,18,26-28. In one example, we implement a compressed encoding of a ten-gene four-input AND gate circuit using only four genetic constructs. The compression principles applied to gene circuits can enable fitting complex genetic programs into DNA delivery vehicles with limited cargo capacity, and storing compressed and biologically inert programs in vivo for on-demand activation.

  19. Optical three-step binary-logic-gate-based MSD arithmetic

    Science.gov (United States)

    Fyath, R. S.; Alsaffar, A. A. W.; Alam, M. S.

    2003-11-01

    A three-step modified signed-digit (MSD) adder is proposed which can be optically implmented using binary logic gates. The proposed scheme depends on encoding each MSD digits into a pair of binary digits using a two-state and multi-position based encoding scheme. The design algorithm depends on constructing the addition truth table of binary-coded MSD numbers and then using Karnaugh map to achieve output minimization. The functions associated with the optical binary logic gates are achieved by simply programming the decoding masks of an optical shadow-casting logic system.

  20. Biomolecule-to-fluorescent-color encoder: modulation of fluorescence emission via DNA structural changes

    Science.gov (United States)

    Nishimura, Takahiro; Ogura, Yusuke; Yamada, Kenji; Ohno, Yuko; Tanida, Jun

    2014-01-01

    A biomolecule-to-fluorescent-color (B/F) encoder for optical readout of biomolecular information is proposed. In the B/F encoder, a set of fluorescence wavelengths and their intensity levels are used for coding of a biomolecular signal. A hybridization chain reaction of hairpin DNAs labeled with fluorescent reporters was performed to generate the fluorescence color codes. The fluorescence is modulated via fluorescence resonance energy transfer, which is controlled by DNA structural changes. The results demonstrate that fluorescent color codes can be configured based on two wavelengths and five intensities using the B/F encoder, and the assigned codes can be retrieved via fluorescence measurements. PMID:25071950

  1. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. Chetana Sachidanandan. Articles written in Journal of Genetics. Volume 92 Issue 3 December 2013 pp 695-701 Perspectives. Time for the zebrafish ENCODE · Sridhar Sivasubbu Chetana Sachidanandan Vinod Scaria · More Details Fulltext PDF ...

  2. Genetic variation in KCNA5

    DEFF Research Database (Denmark)

    Christophersen, Ingrid E; Olesen, Morten S; Liang, Bo

    2012-01-01

    AimsGenetic factors may be important in the development of atrial fibrillation (AF) in the young. KCNA5 encodes the potassium channel a-subunit K(V)1.5, which underlies the voltage-gated atrial-specific potassium current I(Kur). KCNAB2 encodes K(V)ß2, a ß-subunit of K(V)1.5, which increases I......(Kur). Three studies have identified loss-of-function mutations in KCNA5 in patients with idiopathic AF. We hypothesized that early-onset lone AF is associated with high prevalence of genetic variants in KCNA5 and KCNAB2.Methods and resultsThe coding sequences of KCNA5 and KCNAB2 were sequenced in 307 patients...

  3. dlx and sp6-9 Control optic cup regeneration in a prototypic eye.

    Directory of Open Access Journals (Sweden)

    Sylvain W Lapan

    2011-08-01

    Full Text Available Optic cups are a structural feature of diverse eyes, from simple pit eyes to camera eyes of vertebrates and cephalopods. We used the planarian prototypic eye as a model to study the genetic control of optic cup formation and regeneration. We identified two genes encoding transcription factors, sp6-9 and dlx, that were expressed in the eye specifically in the optic cup and not the photoreceptor neurons. RNAi of these genes prevented formation of visible optic cups during regeneration. Planarian regeneration requires an adult proliferative cell population with stem cell-like properties called the neoblasts. We found that optic cup formation occurred only after migration of progressively differentiating progenitor cells from the neoblast population. The eye regeneration defect caused by dlx and sp6-9 RNAi can be explained by a failure to generate these early optic cup progenitors. Dlx and Sp6-9 genes function as a module during the development of diverse animal appendages, including vertebrate and insect limbs. Our work reveals a novel function for this gene pair in the development of a fundamental eye component, and it utilizes these genes to demonstrate a mechanism for total organ regeneration in which extensive cell movement separates new cell specification from organ morphogenesis.

  4. An encoding technique for multiobjective evolutionary algorithms applied to power distribution system reconfiguration.

    Science.gov (United States)

    Guardado, J L; Rivas-Davalos, F; Torres, J; Maximov, S; Melgoza, E

    2014-01-01

    Network reconfiguration is an alternative to reduce power losses and optimize the operation of power distribution systems. In this paper, an encoding scheme for evolutionary algorithms is proposed in order to search efficiently for the Pareto-optimal solutions during the reconfiguration of power distribution systems considering multiobjective optimization. The encoding scheme is based on the edge window decoder (EWD) technique, which was embedded in the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and the Nondominated Sorting Genetic Algorithm II (NSGA-II). The effectiveness of the encoding scheme was proved by solving a test problem for which the true Pareto-optimal solutions are known in advance. In order to prove the practicability of the encoding scheme, a real distribution system was used to find the near Pareto-optimal solutions for different objective functions to optimize.

  5. A flow cytometric assay technology based on quantum dots-encoded beads

    International Nuclear Information System (INIS)

    Wang Haiqiao; Liu Tiancai; Cao Yuancheng; Huang Zhenli; Wang Jianhao; Li Xiuqing; Zhao Yuandi

    2006-01-01

    A flow cytometric detecting technology based on quantum dots (QDs)-encoded beads has been described. Using this technology, several QDs-encoded beads with different code were identified effectively, and the target molecule (DNA sequence) in solution was also detected accurately by coupling to its complementary sequence probed on QDs-encoded beads through DNA hybridization assay. The resolution of this technology for encoded beads is resulted from two longer wavelength fluorescence identification signals (yellow and red fluorescent signals of QDs), and the third shorter wavelength fluorescence signal (green reporting signal of fluorescein isothiocyanate (FITC)) for the determination of reaction between probe and target. In experiment, because of QDs' unique optical character, only one excitation light source was needed to excite the QDs and probe dye FITC synchronously comparing with other flow cytometric assay technology. The results show that this technology has present excellent repeatability and good accuracy. It will become a promising multiple assay platform in various application fields after further improvement

  6. Economic modeling using evolutionary algorithms : the effect of binary encoding of strategies

    NARCIS (Netherlands)

    Waltman, L.R.; Eck, van N.J.; Dekker, Rommert; Kaymak, U.

    2011-01-01

    We are concerned with evolutionary algorithms that are employed for economic modeling purposes. We focus in particular on evolutionary algorithms that use a binary encoding of strategies. These algorithms, commonly referred to as genetic algorithms, are popular in agent-based computational economics

  7. Genetically-encoded tools for cAMP probing and modulation in living systems.

    Directory of Open Access Journals (Sweden)

    Valeriy M Paramonov

    2015-09-01

    Full Text Available Intracellular 3'-5'-cyclic adenosine monophosphate (cAMP is one of the principal second messengers downstream of a manifold of signal transduction pathways, including the ones triggered by G protein-coupled receptors. Not surprisingly, biochemical assays for cAMP have been instrumental for basic research and drug discovery for decades, providing insights into cellular physiology and guiding pharmaceutical industry. However, despite impressive track record, the majority of conventional biochemical tools for cAMP probing share the same fundamental shortcoming - all the measurements require sample disruption for cAMP liberation. This common bottleneck, together with inherently low spatial resolution of measurements (as cAMP is typically analyzed in lysates of thousands of cells, underpin the ensuing limitations of the conventional cAMP assays: 1 genuine kinetic measurements of cAMP levels over time in a single given sample are unfeasible; 2 inability to obtain precise information on cAMP spatial distribution and transfer at subcellular levels, let alone the attempts to pinpoint dynamic interactions of cAMP and its effectors. At the same time, tremendous progress in synthetic biology over the recent years culminated in drastic refinement of our toolbox, allowing us not only to bypass the limitations of conventional assays, but to put intracellular cAMP life-span under tight control – something, that seemed scarcely attainable before. In this review article we discuss the main classes of modern genetically-encoded tools tailored for cAMP probing and modulation in living systems. We examine the capabilities and weaknesses of these different tools in the context of their operational characteristics and applicability to various experimental set-ups involving living cells, providing the guidance for rational selection of the best tools for particular needs.

  8. Method and apparatus for optical communication by frequency modulation

    Science.gov (United States)

    Priatko, Gordon J.

    1988-01-01

    Laser optical communication according to this invention is carried out by producing multi-frequency laser beams having different frequencies, splitting one or more of these constituent beams into reference and signal beams, encoding information on the signal beams by frequency modulation and detecting the encoded information by heterodyne techniques. Much more information can be transmitted over optical paths according to the present invention than with the use of only one path as done previously.

  9. Genetics and Molecular Biology of Epstein-Barr Virus-Encoded BART MicroRNA: A Paradigm for Viral Modulation of Host Immune Response Genes and Genome Stability

    Directory of Open Access Journals (Sweden)

    David H. Dreyfus

    2017-01-01

    Full Text Available Epstein-Barr virus, a ubiquitous human herpesvirus, is associated through epidemiologic evidence with common autoimmune syndromes and cancers. However, specific genetic mechanisms of pathogenesis have been difficult to identify. In this review, the author summarizes evidence that recently discovered noncoding RNAs termed microRNA encoded by Epstein-Barr virus BARF (BamHI A right frame termed BART (BamHI A right transcripts are modulators of human immune response genes and genome stability in infected and bystander cells. BART expression is apparently regulated by complex feedback loops with the host immune response regulatory NF-κB transcription factors. EBV-encoded BZLF-1 (ZEBRA protein could also regulate BART since ZEBRA contains a terminal region similar to ankyrin proteins such as IκBα that regulate host NF-κB. BALF-2 (BamHI A left frame transcript, a viral homologue of the immunoglobulin and T cell receptor gene recombinase RAG-1 (recombination-activating gene-1, may also be coregulated with BART since BALF-2 regulatory sequences are located near the BART locus. Viral-encoded microRNA and viral mRNA transferred to bystander cells through vesicles, defective viral particles, or other mechanisms suggest a new paradigm in which bystander or hit-and-run mechanisms enable the virus to transiently or chronically alter human immune response genes as well as the stability of the human genome.

  10. SnoVault and encodeD: A novel object-based storage system and applications to ENCODE metadata.

    Directory of Open Access Journals (Sweden)

    Benjamin C Hitz

    Full Text Available The Encyclopedia of DNA elements (ENCODE project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data has been released as a separate Python package.

  11. An Encoding Technique for Multiobjective Evolutionary Algorithms Applied to Power Distribution System Reconfiguration

    Directory of Open Access Journals (Sweden)

    J. L. Guardado

    2014-01-01

    Full Text Available Network reconfiguration is an alternative to reduce power losses and optimize the operation of power distribution systems. In this paper, an encoding scheme for evolutionary algorithms is proposed in order to search efficiently for the Pareto-optimal solutions during the reconfiguration of power distribution systems considering multiobjective optimization. The encoding scheme is based on the edge window decoder (EWD technique, which was embedded in the Strength Pareto Evolutionary Algorithm 2 (SPEA2 and the Nondominated Sorting Genetic Algorithm II (NSGA-II. The effectiveness of the encoding scheme was proved by solving a test problem for which the true Pareto-optimal solutions are known in advance. In order to prove the practicability of the encoding scheme, a real distribution system was used to find the near Pareto-optimal solutions for different objective functions to optimize.

  12. Performance analysis of spectral-phase-encoded optical code-division multiple-access system regarding the incorrectly decoded signal as a nonstationary random process

    Science.gov (United States)

    Yan, Meng; Yao, Minyu; Zhang, Hongming

    2005-11-01

    The performance of a spectral-phase-encoded (SPE) optical code-division multiple-access (OCDMA) system is analyzed. Regarding the incorrectly decoded signal (IDS) as a nonstationary random process, we derive a novel probability distribution for it. The probability distribution of the IDS is considered a chi-squared distribution with degrees of freedom r=1, which is more reasonable and accurate than in previous work. The bit error rate (BER) of an SPE OCDMA system under multiple-access interference is evaluated. Numerical results show that the system can sustain very low BER even when there are multiple simultaneous users, and as the code length becomes longer or the initial pulse becomes shorter, the system performs better.

  13. Position and out-of-straightness measurement of a precision linear air-bearing stage by using a two-degree-of-freedom linear encoder

    International Nuclear Information System (INIS)

    Kimura, Akihide; Gao, Wei; Lijiang, Zeng

    2010-01-01

    This paper presents measurement of the X-directional position and the Z-directional out-of-straightness of a precision linear air-bearing stage with a two-degree-of-freedom (two-DOF) linear encoder, which is an optical displacement sensor for simultaneous measurement of the two-DOF displacements. The two-DOF linear encoder is composed of a reflective-type one-axis scale grating and an optical sensor head. A reference grating is placed perpendicular to the scale grating in the optical sensor head. Two-DOF displacements can be obtained from interference signals generated by the ±1 order diffracted beams from two gratings. A prototype two-DOF linear encoder employing the scale grating with the grating period of approximately 1.67 µm measured the X-directional position and the Z-directional out-of-straightness of the linear air-bearing stage

  14. Wavelength encoding technique for particle analyses in hematology analyzer

    Science.gov (United States)

    Rongeat, Nelly; Brunel, Patrick; Gineys, Jean-Philippe; Cremien, Didier; Couderc, Vincent; Nérin, Philippe

    2011-07-01

    The aim of this study is to combine multiple excitation wavelengths in order to improve accuracy of fluorescence characterization of labeled cells. The experimental demonstration is realized with a hematology analyzer based on flow cytometry and a CW laser source emitting two visible wavelengths. A given optical encoding associated to each wavelength allows fluorescence identification coming from specific fluorochromes and avoiding the use of noisy compensation method.

  15. Digital optical processing of optical communications: towards an Optical Turing Machine

    Science.gov (United States)

    Touch, Joe; Cao, Yinwen; Ziyadi, Morteza; Almaiman, Ahmed; Mohajerin-Ariaei, Amirhossein; Willner, Alan E.

    2017-01-01

    Optical computing is needed to support Tb/s in-network processing in a way that unifies communication and computation using a single data representation that supports in-transit network packet processing, security, and big data filtering. Support for optical computation of this sort requires leveraging the native properties of optical wave mixing to enable computation and switching for programmability. As a consequence, data must be encoded digitally as phase (M-PSK), semantics-preserving regeneration is the key to high-order computation, and data processing at Tb/s rates requires mixing. Experiments have demonstrated viable approaches to phase squeezing and power restoration. This work led our team to develop the first serial, optical Internet hop-count decrement, and to design and simulate optical circuits for calculating the Internet checksum and multiplexing Internet packets. The current exploration focuses on limited-lookback computational models to reduce the need for permanent storage and hybrid nanophotonic circuits that combine phase-aligned comb sources, non-linear mixing, and switching on the same substrate to avoid the macroscopic effects that hamper benchtop prototypes.

  16. Digital optical processing of optical communications: towards an Optical Turing Machine

    Directory of Open Access Journals (Sweden)

    Touch Joe

    2017-01-01

    Full Text Available Optical computing is needed to support Tb/s in-network processing in a way that unifies communication and computation using a single data representation that supports in-transit network packet processing, security, and big data filtering. Support for optical computation of this sort requires leveraging the native properties of optical wave mixing to enable computation and switching for programmability. As a consequence, data must be encoded digitally as phase (M-PSK, semantics-preserving regeneration is the key to high-order computation, and data processing at Tb/s rates requires mixing. Experiments have demonstrated viable approaches to phase squeezing and power restoration. This work led our team to develop the first serial, optical Internet hop-count decrement, and to design and simulate optical circuits for calculating the Internet checksum and multiplexing Internet packets. The current exploration focuses on limited-lookback computational models to reduce the need for permanent storage and hybrid nanophotonic circuits that combine phase-aligned comb sources, non-linear mixing, and switching on the same substrate to avoid the macroscopic effects that hamper benchtop prototypes.

  17. Genetic optimization of magneto-optic Kerr effect in lossy cavity-type magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaatshoar, M., E-mail: m-ghanaat@cc.sbu.ac.i [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin 1983963113, Tehran (Iran, Islamic Republic of); Alisafaee, H. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Evin 1983963113, Tehran (Iran, Islamic Republic of)

    2011-07-15

    We have demonstrated an optimization approach in order to obtain desired magnetophotonic crystals (MPCs) composed of a lossy magnetic layer (TbFeCo) placed within a multilayer structure. The approach is an amalgamation between a 4x4 transfer matrix method and a genetic algorithm. Our objective is to enhance the magneto-optic Kerr effect of TbFeCo at short visible wavelength of 405 nm. Through the optimization approach, MPC structures are found meeting definite criteria on the amount of reflectivity and Kerr rotation. The resulting structures are fitted more than 99.9% to optimization criteria. Computation of the internal electric field distribution shows energy localization in the vicinity of the magnetic layer, which is responsible for increased light-matter interaction and consequent enhanced magneto-optic Kerr effect. Versatility of our approach is also exhibited by examining and optimizing several MPC structures. - Research highlights: Structures comprising a highly absorptive TbFeCo layer are designed to work for data storage applications at 405 nm. Optimization algorithm resulted in structures fitted 99.9% to design criteria. More than 10 structures are found exhibiting magneto-optical response of about 1{sup o} rotation and 20% reflection. The ratio of the Kerr rotation to the Kerr ellipticity is enhanced by a factor of 30.

  18. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin

    Science.gov (United States)

    Murphy, John E.; Zhou, Shangzhen; Giese, Klaus; Williams, Lewis T.; Escobedo, Jaime A.; Dwarki, Varavani J.

    1997-01-01

    The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity. PMID:9391128

  19. Experimental generation of optical coherence lattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)

    2016-08-08

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  20. Role of Virus-Encoded microRNAs in Avian Viral Diseases

    Directory of Open Access Journals (Sweden)

    Yongxiu Yao

    2014-03-01

    Full Text Available With total dependence on the host cell, several viruses have adopted strategies to modulate the host cellular environment, including the modulation of microRNA (miRNA pathway through virus-encoded miRNAs. Several avian viruses, mostly herpesviruses, have been shown to encode a number of novel miRNAs. These include the highly oncogenic Marek’s disease virus-1 (26 miRNAs, avirulent Marek’s disease virus-2 (36 miRNAs, herpesvirus of turkeys (28 miRNAs, infectious laryngotracheitis virus (10 miRNAs, duck enteritis virus (33 miRNAs and avian leukosis virus (2 miRNAs. Despite the closer antigenic and phylogenetic relationship among some of the herpesviruses, miRNAs encoded by different viruses showed no sequence conservation, although locations of some of the miRNAs were conserved within the repeat regions of the genomes. However, some of the virus-encoded miRNAs showed significant sequence homology with host miRNAs demonstrating their ability to serve as functional orthologs. For example, mdv1-miR-M4-5p, a functional ortholog of gga-miR-155, is critical for the oncogenicity of Marek’s disease virus. Additionally, we also describe the potential association of the recently described avian leukosis virus subgroup J encoded E (XSR miRNA in the induction of myeloid tumors in certain genetically-distinct chicken lines. In this review, we describe the advances in our understanding on the role of virus-encoded miRNAs in avian diseases.

  1. Real-time monitoring of the Trojan-horse effect of silver nanoparticles by using a genetically encoded fluorescent cell sensor.

    Science.gov (United States)

    You, Fang; Tang, Wenqin; Yung, Lin-Yue Lanry

    2018-04-26

    Silver nanoparticles (AgNPs) are widely incorporated into commercial products due to their antimicrobial properties. As a consequence, concerns about the adverse effects induced by AgNPs to humans and the environment need to be carefully examined. The existing literature reveals that AgNPs exhibit certain toxic effects, but it remains to be proved whether AgNPs or the ionic silver (Ag+) released from AgNPs are the main toxic species. Here, a genetically encoded fluorescent protein sensor with high affinity to Ag+ was developed. The resulting sensor, MT2a-FRET, was found to be ratiometric, sensitive and selective toward only Ag+ but inert against AgNPs. This makes this sensor a potential useful tool for monitoring the real-time intracellular dissolutions of AgNPs. Our data supported that AgNPs display the "Trojan-horse" mechanism, where AgNPs are internalized by cells and undergo dissolution intracellularly. We further found that cells exhibited a detoxification ability to remove active Ag+ from cells in 48 hours.

  2. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    Science.gov (United States)

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  3. A New Genetically Encoded Single-Chain Biosensor for Cdc42 Based on FRET, Useful for Live-Cell Imaging

    Science.gov (United States)

    Cox, Dianne; Hodgson, Louis

    2014-01-01

    Cdc42 is critical in a myriad of cellular morphogenic processes, requiring precisely regulated activation dynamics to affect specific cellular events. To facilitate direct observations of Cdc42 activation in live cells, we developed and validated a new biosensor of Cdc42 activation. The biosensor is genetically encoded, of single-chain design and capable of correctly localizing to membrane compartments as well as interacting with its upstream regulators including the guanine nucleotide dissociation inhibitor. We characterized this new biosensor in motile mouse embryonic fibroblasts and observed robust activation dynamics at leading edge protrusions, similar to those previously observed for endogenous Cdc42 using the organic dye-based biosensor system. We then extended our validations and observations of Cdc42 activity to macrophages, and show that this new biosensor is able to detect differential activation patterns during phagocytosis and cytokine stimulation. Furthermore, we observe for the first time, a highly transient and localized activation of Cdc42 during podosome formation in macrophages, which was previously hypothesized but never directly visualized. PMID:24798463

  4. Snapshot polarization-sensitive plug-in optical module for a Fourier-domain optical coherence tomography system

    Science.gov (United States)

    Marques, Manuel J.; Rivet, Sylvain; Bradu, Adrian; Podoleanu, Adrian

    2018-02-01

    In this communication, we present a proof-of-concept polarization-sensitive Optical Coherence Tomography (PS-OCT) which can be used to characterize the retardance and the axis orientation of a linear birefringent sample. This module configuration is an improvement from our previous work1, 2 since it encodes the two polarization channels on the optical path difference, effectively carrying out the polarization measurements simultaneously (snapshot measurement), whilst retaining all the advantages (namely the insensitivity to environmental parameters when using SM fibers) of these two previous configurations. Further progress consists in employing Master Slave OCT technology,3 which is used to automatically compensate for the dispersion mismatch introduced by the elements in the module. This is essential given the encoding of the polarization states on two different optical path lengths, each of them having dissimilar dispersive properties. By utilizing this method instead of the commonly used re-linearization and numerical dispersion compensation methods an improvement in terms of the calculation time required can be achieved.

  5. Amplifying genetic logic gates.

    Science.gov (United States)

    Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew

    2013-05-03

    Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

  6. A novel attack method about double-random-phase-encoding-based image hiding method

    Science.gov (United States)

    Xu, Hongsheng; Xiao, Zhijun; Zhu, Xianchen

    2018-03-01

    By using optical image processing techniques, a novel text encryption and hiding method applied by double-random phase-encoding technique is proposed in the paper. The first step is that the secret message is transformed into a 2-dimension array. The higher bits of the elements in the array are used to fill with the bit stream of the secret text, while the lower bits are stored specific values. Then, the transformed array is encoded by double random phase encoding technique. Last, the encoded array is embedded on a public host image to obtain the image embedded with hidden text. The performance of the proposed technique is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient.

  7. Image hiding using optical interference

    Science.gov (United States)

    Zhang, Yan; Wang, Weining

    2010-09-01

    Optical image encryption technology has attracted a lot of attentions due to its large capacitance and fast speed. In conventional image encryption methods, the random phase masks are used as encryption keys to encode the images into white noise distribution. Therefore, this kind of methods requires interference technology to record complex amplitude and is vulnerable to attack techniques. The image hiding methods which employ the phase retrieve algorithm to encode the images into two or more phase masks are proposed, the hiding process is carried out within a computer using iterative algorithm. But the iterative algorithms are time consumed. All method mentioned above are based on the optical diffraction of the phase masks. In this presentation, a new optical image hiding method based on optical interference is proposed. The coherence lights which pass through two phase masks are combined by a beam splitter. Two beams interfere with each other and the desired image appears at the pre-designed plane. Two phase distribution masks are design analytically; therefore, the hiding speed can be obviously improved. Simulation results are carried out to demonstrate the novelty of the new proposed methods. This method can be expanded for double images hiding.

  8. Encoding arbitrary grey-level optical landscapes for trapping and manipulation using GPC

    DEFF Research Database (Denmark)

    Alonzo, Carlo Amadeo; Rodrigo, Peter John; Palima, Darwin

    2007-01-01

    With the aid of phase-only spatial light modulators (SLM), generalized phase contrast (GPC) has been applied with great success to the projection of binary light patterns through arbitrary-NA microscope objectives for real-time three-dimensional manipulation of microscopic particles. Here, we...... review the analysis of the GPC method with emphasis on efficiently producing speckle-free two-dimensional grey-level light Patterns. Numerical simulations are applied to construct 8-bit grey-level optical potential landscapes with high fidelity and optical throughput via the GPC method. Three types...... of patterns were constructed: geometric block patterns, multi-level optical trap arrays, and optical obstacle arrays. Non-periodic patterns were accurately projected with an average of 80% diffraction efficiency. Periodic patterns yielded even higher diffraction efficiencies, averaging 94%, by the utilization...

  9. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  10. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES

    International Nuclear Information System (INIS)

    Kim, Seung Jo; Suh, Dongchul; Park, Sang Eun; Park, Jeong-Sook; Byun, Hyang-Min; Lee, Chan; Lee, Sun Young; Kim, Inho; Oh, Yu-Kyoung

    2003-01-01

    To increase the potency of DNA vaccines, we constructed genetic fusion vaccines encoding antigen, secretion signal, and/or chemokine RANTES. The DNA vaccines encoding secreted hepatitis B surface antigen (HBsAg) were constructed by inserting HBsAg gene into an expression vector with an endoplasmic reticulum (ER)-targeting secretory signal sequence. The plasmid encoding secretory HBsAg (pER/HBs) was fused to cDNA of RANTES, generating pER/HBs/R. For comparison, HBsAg genes were cloned into pVAX1 vector with no signal sequence (pHBs), and further linked to the N-terminus of RANTES (pHBs/R). Immunofluorescence study showed the cytoplasmic localization of HBsAg protein expressed from pHBs and pHBs/R, but not from pER/HBs and pER/HBs/R at 48 h after transfection. In mice, RANTES-fused DNA vaccines more effectively elicited the levels of HBsAg-specific IgG antibodies than pHBs. All the DNA vaccines induced higher levels of IgG 2a rather than IgG 1 antibodies. Of RANTES-fused vaccines, pER/HBs/R encoding the secreted fusion protein revealed much higher humoral and CD8 + T cell-stimulating responses compared to pHBs/R. These results suggest that the immunogenicity of DNA vaccines could be enhanced by genetic fusion to a secretory signal peptide sequence and RANTES

  11. Calibration and functional analysis of three genetically encoded Cl−/pH sensors

    Directory of Open Access Journals (Sweden)

    Marat eMukhtarov

    2013-04-01

    Full Text Available Monitoring of the intracellular concentrations of Cl− and H+ requires sensitive probes that allow reliable quantitative measurements without perturbation of cell functioning. For these purposes the most promising are genetically encoded fluorescent biosensors, which have become powerful tools for non-invasive intracellular monitoring of ions, molecules and enzymatic activity. A ratiometric CFP/YFP-based construct with a relatively good sensitivity to Cl− has been developed (Markova et al., 2008; Waseem et al., 2010. Recently, a combined Cl−/pH sensor (ClopHensor opened the way for simultaneous ratiometric measurement of these two ions (Arosio et al., 2010. ClopHensor was obtained by fusion of a red-fluorescent protein (DsRed-monomer to the E2GFP variant that contains a specific Cl−-binding site. This construct possesses pKa = 6.8 for H+ and Kd in the 40-50 mM range for Cl− at physiological pH (~7.3 As in the majority of cell types the intracellular Cl− concentration ([Cl−]i is about 10 mM, the development of sensors with higher sensitivity is highly desirable. Here we report the intracellular calibration and functional characterization of ClopHensor and its two derivatives: the membrane targeting PalmPalm-ClopHensor and the H148G/V224L mutant with improved Cl− affinity, reduced pH dependence and pKa shifted to more alkaline values. For functional analysis, constructs were expressed in CHO cells and [Cl−]i was changed by using pipettes with different Cl− concentrations during whole-cell recordings. Kd values for Cl− measured at 33°C and pH ~ 7.3 were, respectively, 39 mM, 47 mM and 21 mM for ClopHensor, PalmPalm-ClopHensor and the H148G/V224L mutant. PalmPalm-ClopHensor resolved responses to activation of Cl−-selective glycine receptor channels better than did ClopHensor. Our observations indicate that these different ClopHensor constructs are promising tools for non-invasive measurement of [Cl−]i in various living

  12. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor

    Directory of Open Access Journals (Sweden)

    Potzkei Janko

    2012-03-01

    Full Text Available Abstract Background Molecular oxygen (O2 is one of the key metabolites of all obligate and facultative aerobic pro- and eukaryotes. It plays a fundamental role in energy homeostasis whereas oxygen deprivation, in turn, broadly affects various physiological and pathophysiological processes. Therefore, real-time monitoring of cellular oxygen levels is basically a prerequisite for the analysis of hypoxia-induced processes in living cells and tissues. Results We developed a genetically encoded Förster resonance energy transfer (FRET-based biosensor allowing the observation of changing molecular oxygen concentrations inside living cells. This biosensor named FluBO (fluorescent protein-based biosensor for oxygen consists of the yellow fluorescent protein (YFP that is sensitive towards oxygen depletion and the hypoxia-tolerant flavin-binding fluorescent protein (FbFP. Since O2 is essential for the formation of the YFP chromophore, efficient FRET from the FbFP donor domain to the YFP acceptor domain only occurs in the presence but not in the absence of oxygen. The oxygen biosensor was used for continuous real-time monitoring of temporal changes of O2 levels in the cytoplasm of Escherichia coli cells during batch cultivation. Conclusions FluBO represents a unique FRET-based oxygen biosensor which allows the non-invasive ratiometric readout of cellular oxygen. Thus, FluBO can serve as a novel and powerful probe for investigating the occurrence of hypoxia and its effects on a variety of (pathophysiological processes in living cells.

  13. Efficient Text Encryption and Hiding with Double-Random Phase-Encoding

    Directory of Open Access Journals (Sweden)

    Mohammad S. Alam

    2012-10-01

    Full Text Available In this paper, a double-random phase-encoding technique-based text encryption and hiding method is proposed. First, the secret text is transformed into a 2-dimensional array and the higher bits of the elements in the transformed array are used to store the bit stream of the secret text, while the lower bits are filled with specific values. Then, the transformed array is encoded with double-random phase-encoding technique. Finally, the encoded array is superimposed on an expanded host image to obtain the image embedded with hidden data. The performance of the proposed technique, including the hiding capacity, the recovery accuracy of the secret text, and the quality of the image embedded with hidden data, is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient. By using optical information processing techniques, the proposed method has been found to significantly improve the security of text information transmission, while ensuring hiding capacity at a prescribed level.

  14. Surfactant Protein-D-Encoding Gene Variant Polymorphisms Are Linked to Respiratory Outcome in Premature Infants

    DEFF Research Database (Denmark)

    Sorensen, Grith Lykke; Dahl, Marianne; Tan, Qihua

    2014-01-01

    OBJECTIVE: Associations between the genetic variation within or downstream of the surfactant protein-D-encoding gene (SFTPD), which encodes the collectin surfactant protein-D (SP-D) and may lead to respiratory distress syndrome or bronchopulmonary dysplasia, recently were reported. Our aim...... were used to associate genetic variation to SP-D, respiratory distress (RD), oxygen requirement, and respiratory support. RESULTS: The 5'-upstream SFTPD SNP rs1923534 and the 3 structural SNPs rs721917, rs2243639, and rs3088308 were associated with the SP-D level. The same SNPs were associated with RD......, a requirement for supplemental oxygen, and a requirement for respiratory support. Haplotype analyses identified 3 haplotypes that included the minor alleles of rs1923534, rs721917, and rs3088308 that exhibited highly significant associations with decreased SP-D levels and decreased ORs for RD, oxygen...

  15. Optical particle trapping and dynamic manipulation using spatial light modulation

    DEFF Research Database (Denmark)

    Eriksen, René Lynge

    suitable for optical trapping. A phaseonly spatial light modulator (SLM) is used for the phase encoding of the laser beam. The SLM is controlled directly from a standard computer where phase information is represented as gray-scale image information. Experimentally, both linear and angular movements......This thesis deals with the spatial phase-control of light and its application for optical trapping and manipulation of micron-scale objects. Utilizing the radiation pressure, light exerts on dielectric micron-scale particles, functionality of optical tweezers can be obtained. Multiple intensity...... compression factors of two, which is not achievable with binary phase encoding, have been successfully demonstrated. In addition, the GPC method has been miniaturized and implemented in a planar optical platform and shown to work acceptably, with relatively high visibility. Furthermore, the GPC method has...

  16. Encoding arbitrary grey-level optical landscapes for trapping and manipulation using GPC

    DEFF Research Database (Denmark)

    Alonzo, Carlo Amadeo; Rodrigo, Peter John; Palima, Darwin

    2007-01-01

    review the analysis of the GPC method with emphasis on efficiently producing speckle-free two-dimensional grey-level light Patterns. Numerical simulations are applied to construct 8-bit grey-level optical potential landscapes with high fidelity and optical throughput via the GPC method. Three types...

  17. Reph, a regulator of Eph receptor expression in the Drosophila melanogaster optic lobe.

    Directory of Open Access Journals (Sweden)

    Richard E Dearborn

    Full Text Available Receptors of the Eph family of tyrosine kinases and their Ephrin ligands are involved in developmental processes as diverse as angiogenesis, axon guidance and cell migration. However, our understanding of the Eph signaling pathway is incomplete, and could benefit from an analysis by genetic methods. To this end, we performed a genetic modifier screen for mutations that affect Eph signaling in Drosophila melanogaster. Several dozen loci were identified on the basis of their suppression or enhancement of an eye defect induced by the ectopic expression of Ephrin during development; many of these mutant loci were found to disrupt visual system development. One modifier locus, reph (regulator of eph expression, was characterized in molecular detail and found to encode a putative nuclear protein that interacts genetically with Eph signaling pathway mutations. Reph is an autonomous regulator of Eph receptor expression, required for the graded expression of Eph protein and the establishment of an optic lobe axonal topographic map. These results reveal a novel component of the regulatory pathway controlling expression of eph and identify reph as a novel factor in the developing visual system.

  18. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, Ole; Butt, Simon J.B.

    2003-01-01

    . These latter experiments have defined EphA4 as a molecular marker for mammalian excitatory hindlimb CPG neurons. We also review genetic approaches that can be applied to the mouse spinal cord. These include methods for identifying sub-populations of neurons by genetically encoded reporters, techniques to trace...... network connectivity with cell-specific genetically encoded tracers, and ways to selectively ablate or eliminate neuron populations from the CPG. We propose that by applying a multidisciplinary approach it will be possible to understand the network structure of the mammalian locomotor CPG...

  19. Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila.

    Science.gov (United States)

    Tomchik, Seth M

    2013-01-30

    Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.

  20. Full-duplex optical communication system

    Science.gov (United States)

    Shay, Thomas M. (Inventor); Hazzard, David A. (Inventor); Horan, Stephen (Inventor); Payne, Jason A. (Inventor)

    2004-01-01

    A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.

  1. Modified signed-digit trinary arithmetic by using optical symbolic substitution

    Science.gov (United States)

    Awwal, A. A. S.; Islam, M. N.; Karim, M. A.

    1992-04-01

    Carry-free addition and borrow-free subtraction of modified signed-digit trinary numbers with optical symbolic substitution are presented. The proposed two-step and three-step algorithms can be easily implemented by using phase-only holograms, optical content-addressable memories, a multichannel correlator, or a polarization-encoded optical shadow-casting system.

  2. ERP Correlates of Encoding Success and Encoding Selectivity in Attention Switching

    Science.gov (United States)

    Yeung, Nick

    2016-01-01

    Long-term memory encoding depends critically on effective processing of incoming information. The degree to which participants engage in effective encoding can be indexed in electroencephalographic (EEG) data by studying event-related potential (ERP) subsequent memory effects. The current study investigated ERP correlates of memory success operationalised with two different measures—memory selectivity and global memory—to assess whether previously observed ERP subsequent memory effects reflect focused encoding of task-relevant information (memory selectivity), general encoding success (global memory), or both. Building on previous work, the present study combined an attention switching paradigm—in which participants were presented with compound object-word stimuli and switched between attending to the object or the word across trials—with a later recognition memory test for those stimuli, while recording their EEG. Our results provided clear evidence that subsequent memory effects resulted from selective attentional focusing and effective top-down control (memory selectivity) in contrast to more general encoding success effects (global memory). Further analyses addressed the question of whether successful encoding depended on similar control mechanisms to those involved in attention switching. Interestingly, differences in the ERP correlates of attention switching and successful encoding, particularly during the poststimulus period, indicated that variability in encoding success occurred independently of prestimulus demands for top-down cognitive control. These results suggest that while effects of selective attention and selective encoding co-occur behaviourally their ERP correlates are at least partly dissociable. PMID:27907075

  3. Genetic and phylogenetic characterization of the type II cyclobutane pyrimidine dimer photolyases encoded by Leporipoxviruses

    International Nuclear Information System (INIS)

    Bennett, C. James; Webb, Melissa; Willer, David O.; Evans, David H.

    2003-01-01

    Shope fibroma virus and myxoma virus encode proteins predicted to be Type II photolyases. These are enzymes that catalyze light-dependent repair of cyclobutane pyrimidine dimers (CPDs). When the Shope fibroma virus S127L gene was expressed in an Escherichia coli strain lacking functional CPD repair pathways, the expressed gene protected the bacteria from 70-75% of the ultraviolet (UV) light-induced cytotoxic DNA damage. This proportion suggests that Leporipoxvirus photolyases can only repair CPDs, which typically comprise ∼70% of the damage caused by short wavelength UV light. To test whether these enzymes can protect virus genomes from UV, we exposed virus suspensions to UV-C light followed by graded exposure to filtered visible light. Viruses encoding a deletion of the putative photolyase gene were unable to photoreactivate UV damage while this treatment again eliminated 70-90% of the lethal photoproducts in wild-type viruses. Western blotting detected photolyase protein in extracts prepared from purified virions and it can be deduced that the poxvirion interior must be fluid enough to permit diffusion of this ∼50-kDa DNA-binding protein to the sites where it catalyzes photoreactivation. Photolyase promoters are difficult to categorize using bioinformatics methods, as they do not obviously resemble any of the known poxvirus promoter motifs. By fusing the SFV promoter to DNA encoding a luciferase open reading frame, the photolyase promoter was found to exhibit very weak late promoter activity. These data show that the genomes of Leporipoxviruses, similar to that of fowlpox virus, encode catalytically active photolyases. Phylogenetic studies also confirmed the monophyletic origin of poxviruses and suggest an ancient origin for these genes and perhaps poxviruses

  4. Optical protocols for terabit networks

    Science.gov (United States)

    Chua, P. L.; Lambert, J. L.; Morookian, J. M.; Bergman, L. A.

    1991-01-01

    This paper describes a new fiber-optic local area network technology providing 100X improvement over current technology, has full crossbar funtionality, and inherent data security. Based on optical code-division multiple access (CDMA), using spectral phase encoding/decoding of optical pulses, networking protocols are implemented entirely in the optical domain and thus conventional networking bottlenecks are avoided. Component and system issues for a proof-of-concept demonstration are discussed, as well as issues for a more practical and commercially exploitable system. Possible terrestrial and aerospace applications of this technology, and its impact on other technologies are explored. Some initial results toward realization of this concept are also included.

  5. Depth-encoded all-fiber swept source polarization sensitive OCT

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Lee, ByungKun; Choi, WooJhon; Potsaid, Benjamin; Liu, Jonathan; Jayaraman, Vijaysekhar; Cable, Alex; Kraus, Martin F.; Liang, Kaicheng; Hornegger, Joachim; Fujimoto, James G.

    2014-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of conventional OCT and can assess depth-resolved tissue birefringence in addition to intensity. Most existing PS-OCT systems are relatively complex and their clinical translation remains difficult. We present a simple and robust all-fiber PS-OCT system based on swept source technology and polarization depth-encoding. Polarization multiplexing was achieved using a polarization maintaining fiber. Polarization sensitive signals were detected using fiber based polarization beam splitters and polarization controllers were used to remove the polarization ambiguity. A simplified post-processing algorithm was proposed for speckle noise reduction relaxing the demand for phase stability. We demonstrated systems design for both ophthalmic and catheter-based PS-OCT. For ophthalmic imaging, we used an optical clock frequency doubling method to extend the imaging range of a commercially available short cavity light source to improve polarization depth-encoding. For catheter based imaging, we demonstrated 200 kHz PS-OCT imaging using a MEMS-tunable vertical cavity surface emitting laser (VCSEL) and a high speed micromotor imaging catheter. The system was demonstrated in human retina, finger and lip imaging, as well as ex vivo swine esophagus and cardiovascular imaging. The all-fiber PS-OCT is easier to implement and maintain compared to previous PS-OCT systems and can be more easily translated to clinical applications due to its robust design. PMID:25401008

  6. Optical trapping with Super-Gaussian beams

    CSIR Research Space (South Africa)

    Mc

    2013-04-01

    Full Text Available stream_source_info McLaren1_2013.pdf.txt stream_content_type text/plain stream_size 2236 Content-Encoding UTF-8 stream_name McLaren1_2013.pdf.txt Content-Type text/plain; charset=UTF-8 JT2A.34.pdf Optics in the Life... Sciences Congress Technical Digest © 2013 The Optical Society (OSA) Optical trapping with Super-Gaussian beams Melanie McLaren, Thulile Khanyile, Patience Mthunzi and Andrew Forbes* National Laser Centre, Council for Scientific and Industrial Research...

  7. Spectral space-time coding for optical communications through a multimode fiber

    NARCIS (Netherlands)

    Alonso, A.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    We propose a method for coding the mode structure of a multimode optical fiber by spectral coding mixed with space-time modulation. With this system we can improve the data carrying capacity of a multimode fiber for optical communications and optical interconnects, and encode and decode the

  8. Encoding of Naturalistic Optic Flow by a Population of Blowfly Motion-Sensitive Neurons

    NARCIS (Netherlands)

    Karmeier, K.; Hateren, J.H. van; Kern, R.; Egelhaaf, M.

    In sensory systems information is encoded by the activity of populations of neurons. To analyze the coding properties of neuronal populations sensory stimuli have usually been used that were much simpler than those encountered in real life. It has been possible only recently to stimulate visual

  9. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  10. Polarization encoded all-optical quaternary successor with the help of SOA assisted Sagnac switch

    Science.gov (United States)

    Chattopadhyay, Tanay; Roy, Jitendra Nath

    2011-06-01

    The application of multi-valued (non-binary) signals can provide a considerable relief in transmission, storage and processing of large amount of information in digital signal processing. Optical multi-valued logical operation is an interesting challenge for future optical signal processing where we can expect much innovation. A novel all-optical quaternary successor (QSUC) circuit with the help of semiconductor optical amplifier (SOA)-assisted Sagnac switch is proposed and described. This circuit exploits the polarization properties of light. Different logical states are represented by different polarization state of light. Simulation result confirming described method is given in this paper. Proposed all-optical successor circuit can take an important and significant role in designing of all-optical quaternary universal inverter and modulo arithmetic unit (addition and multiplication).

  11. Compliance between clinical and genetic diagnosis of choroidal hypoplasia in 103 Norwegian Border Collie puppies.

    Science.gov (United States)

    Grosås, Siv; Lingaas, Frode; Prestrud, Kristin Wear; Ropstad, Ernst-Otto

    2017-11-07

    To describe the frequency of the nonhomologous end-joining factor 1 (NHEJ1) mutation and the compliance between clinical and genetic diagnosis of choroidal hypoplasia (CH) in a group of Norwegian Border Collies. Border collie puppies in the age from 5 to 8 weeks. Puppies included in the study had a complete ophthalmological examination. All findings were recorded, and an ECVO scheme form was issued for each puppy. DNA samples were achieved from buccal swabs. Genetic typing was performed for the 7.8-kb deletion in the gene encoding NHEJ1. Dogs with none, one, or two copies of the mutated allele were classified as free, carriers, and affected, respectively. 103 Border Collie puppies from 16 litters, 52 females and 51 males, were included in the study. Ages ranged from 5.1 to 8.9 weeks. One puppy had clinical findings consistent with CH and optic nerve coloboma compatible with the diagnosis Collie Eye Anomaly (CEA). Findings on ophthalmological examination of the remaining puppies were within normal limits. On genetic testing, 85 puppies were clear of the mutation in the NHEJ1 gene, 17 puppies were carriers, and one puppy was genetically affected. A good compliance between the clinical diagnosis and the genetic test results was found in all of the puppies examined. The allele frequency of the mutation was 6.3%. © 2017 American College of Veterinary Ophthalmologists.

  12. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2017-08-15

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  13. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Science.gov (United States)

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2013-07-23

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  14. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2016-03-22

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  15. Mitochondrially-Encoded Adenosine Triphosphate Synthase 6 Gene Haplotype Variation among World Population during 2003-2013

    OpenAIRE

    Steven Steven; Yoni F Syukriani; Julius B Dewanto

    2016-01-01

    Background: Adaptation and natural selection serve as an important part of evolution. Adaptation in molecular level can lead to genetic drift which causes mutation of genetic material; one of which is polymorphism of mitochondrial DNA (mtDNA). The aim of this study is to verify the polymorphism of mitochondrially-encoded Adenosine Triphosphate synthase6gene (MT-ATP6) as one of mtDNA building blocks among tropic, sub-tropic, and polar areas. Methods: This descriptive quantitative research used...

  16. Single exposure optically compressed imaging and visualization using random aperture coding

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A [Electro Optical Unit, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); Rivenson, Yair [Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); Javidi, Bahrain [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut 06269-1157 (United States)], E-mail: stern@bgu.ac.il

    2008-11-01

    The common approach in digital imaging follows the sample-then-compress framework. According to this approach, in the first step as many pixels as possible are captured and in the second step the captured image is compressed by digital means. The recently introduced theory of compressed sensing provides the mathematical foundation necessary to combine these two steps in a single one, that is, to compress the information optically before it is recorded. In this paper we overview and extend an optical implementation of compressed sensing theory that we have recently proposed. With this new imaging approach the compression is accomplished inherently in the optical acquisition step. The primary feature of this imaging approach is a randomly encoded aperture realized by means of a random phase screen. The randomly encoded aperture implements random projection of the object field in the image plane. Using a single exposure, a randomly encoded image is captured which can be decoded by proper decoding algorithm.

  17. Efficient quantum computation in a network with probabilistic gates and logical encoding

    DEFF Research Database (Denmark)

    Borregaard, J.; Sørensen, A. S.; Cirac, J. I.

    2017-01-01

    An approach to efficient quantum computation with probabilistic gates is proposed and analyzed in both a local and nonlocal setting. It combines heralded gates previously studied for atom or atomlike qubits with logical encoding from linear optical quantum computation in order to perform high......-fidelity quantum gates across a quantum network. The error-detecting properties of the heralded operations ensure high fidelity while the encoding makes it possible to correct for failed attempts such that deterministic and high-quality gates can be achieved. Importantly, this is robust to photon loss, which...... is typically the main obstacle to photonic-based quantum information processing. Overall this approach opens a path toward quantum networks with atomic nodes and photonic links....

  18. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    Science.gov (United States)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  19. Hierarchical assembly of viral nanotemplates with encoded microparticles via nucleic acid hybridization.

    Science.gov (United States)

    Tan, Wui Siew; Lewis, Christina L; Horelik, Nicholas E; Pregibon, Daniel C; Doyle, Patrick S; Yi, Hyunmin

    2008-11-04

    We demonstrate hierarchical assembly of tobacco mosaic virus (TMV)-based nanotemplates with hydrogel-based encoded microparticles via nucleic acid hybridization. TMV nanotemplates possess a highly defined structure and a genetically engineered high density thiol functionality. The encoded microparticles are produced in a high throughput microfluidic device via stop-flow lithography (SFL) and consist of spatially discrete regions containing encoded identity information, an internal control, and capture DNAs. For the hybridization-based assembly, partially disassembled TMVs were programmed with linker DNAs that contain sequences complementary to both the virus 5' end and a selected capture DNA. Fluorescence microscopy, atomic force microscopy (AFM), and confocal microscopy results clearly indicate facile assembly of TMV nanotemplates onto microparticles with high spatial and sequence selectivity. We anticipate that our hybridization-based assembly strategy could be employed to create multifunctional viral-synthetic hybrid materials in a rapid and high-throughput manner. Additionally, we believe that these viral-synthetic hybrid microparticles may find broad applications in high capacity, multiplexed target sensing.

  20. Bacteriophages encode factors required for protection in a symbiotic mutualism.

    Science.gov (United States)

    Oliver, Kerry M; Degnan, Patrick H; Hunter, Martha S; Moran, Nancy A

    2009-08-21

    Bacteriophages are known to carry key virulence factors for pathogenic bacteria, but their roles in symbiotic bacteria are less well understood. The heritable symbiont Hamiltonella defensa protects the aphid Acyrthosiphon pisum from attack by the parasitoid Aphidius ervi by killing developing wasp larvae. In a controlled genetic background, we show that a toxin-encoding bacteriophage is required to produce the protective phenotype. Phage loss occurs repeatedly in laboratory-held H. defensa-infected aphid clonal lines, resulting in increased susceptibility to parasitism in each instance. Our results show that these mobile genetic elements can endow a bacterial symbiont with benefits that extend to the animal host. Thus, phages vector ecologically important traits, such as defense against parasitoids, within and among symbiont and animal host lineages.

  1. Real-time optical laboratory solution of parabolic differential equations

    Science.gov (United States)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  2. A genetic algorithm approach for evaluation of optical functions of very thin tantalum pentoxide films on Si substrate

    International Nuclear Information System (INIS)

    Sharlandjiev, P S; Nazarova, D I

    2013-01-01

    The optical characteristics of tantalum pentoxide films, deposited on Si(100) substrate by reactive sputtering, are studied. These films are investigated as high-kappa materials for the needs of nano-electronics, i.e. design of dynamic random access memories, etc. One problem in their implementation is that metal oxides are thermodynamically unstable with Si and an interfacial layer is formed between the oxide film and the silicon substrate during the deposition process. Herein, the center of attention is on the optical properties of that interfacial layer, which is studied by spectral photometric measurements. The evaluation of the optical parameters of the structure is fulfilled with the genetic algorithm approach. The spectral range of evaluation covers deep UV to NIR. The equivalent physical thickness (2.5 nm) and the equivalent refractive index of the interfacial layer are estimated from 236 to 750 nm as well as the thickness of the tantalum pentoxide film (9.5 nm). (paper)

  3. A selfish genetic element confers non-Mendelian inheritance in rice.

    Science.gov (United States)

    Yu, Xiaowen; Zhao, Zhigang; Zheng, Xiaoming; Zhou, Jiawu; Kong, Weiyi; Wang, Peiran; Bai, Wenting; Zheng, Hai; Zhang, Huan; Li, Jing; Liu, Jiafan; Wang, Qiming; Zhang, Long; Liu, Kai; Yu, Yang; Guo, Xiuping; Wang, Jiulin; Lin, Qibing; Wu, Fuqing; Ren, Yulong; Zhu, Shanshan; Zhang, Xin; Cheng, Zhijun; Lei, Cailin; Liu, Shijia; Liu, Xi; Tian, Yunlu; Jiang, Ling; Ge, Song; Wu, Chuanyin; Tao, Dayun; Wang, Haiyang; Wan, Jianmin

    2018-06-08

    Selfish genetic elements are pervasive in eukaryote genomes, but their role remains controversial. We show that qHMS7 , a major quantitative genetic locus for hybrid male sterility between wild rice ( Oryza meridionalis ) and Asian cultivated rice ( O. sativa ), contains two tightly linked genes [ Open Reading Frame 2 ( ORF2 ) and ORF3 ]. ORF2 encodes a toxic genetic element that aborts pollen in a sporophytic manner, whereas ORF3 encodes an antidote that protects pollen in a gametophytic manner. Pollens lacking ORF3 are selectively eliminated, leading to segregation distortion in the progeny. Analysis of the genetic sequence suggests that ORF3 arose first, followed by gradual functionalization of ORF2 Furthermore, this toxin-antidote system may have promoted the differentiation and/or maintained the genome stability of wild and cultivated rice. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics

    Directory of Open Access Journals (Sweden)

    Jasper eAkerboom

    2013-03-01

    Full Text Available Genetically encoded calcium indicators (GECIs are powerful tools for systems neuroscience. Here we describe red, single-wavelength GECIs, RCaMPs, engineered from circular permutation of the thermostable red fluorescent protein mRuby. High-resolution crystal structures of mRuby, the red sensor RCaMP, and the recently published red GECI R-GECO1 give insight into the chromophore environments of the Ca2+-bound state of the sensors and the engineered protein domain interfaces of the different indicators. We characterized the biophysical properties and performance of RCaMP sensors in vitro and in vivo in Caenorhabditis elegans, Drosophila larvae, and larval zebrafish. Further, we demonstrate 2-color calcium imaging both within the same cell (registering mitochondrial and somatic [Ca2+] and between two populations of cells: neurons and astrocytes. Finally, we perform integrated optogenetics experiments, wherein neural activation via channelrhodopsin-2 (ChR2 or a red-shifted variant, and activity imaging via RCaMP or GCaMP, are conducted simultaneously, with the ChR2/RCaMP pair providing independently addressable spectral channels. Using this paradigm, we measure calcium responses of naturalistic and ChR2-evoked muscle contractions in vivo in crawling C. elegans. We systematically compare the RCaMP sensors to R-GECO1, in terms of action potential-evoked fluorescence increases in neurons, photobleaching, and photoswitching. R-GECO1 displays higher Ca2+ affinity and larger dynamic range than RCaMP, but exhibits significant photoactivation with blue and green light, suggesting that integrated channelrhodopsin-based optogenetics using R-GECO1 may be subject to artifact. Finally, we create and test blue, cyan and yellow variants engineered from GCaMP by rational design. This engineered set of chromatic variants facilitates new experiments in functional imaging and optogenetics.

  5. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    Science.gov (United States)

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. cDNAs encoding [D-Ala2]deltorphin precursors from skin of Phyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides.

    Science.gov (United States)

    Richter, K; Egger, R; Negri, L; Corsi, R; Severini, C; Kreil, G

    1990-06-01

    We present the structure of four precursors for [D-Ala2]deltorphins I and II as deduced from cDNAs cloned from skin of the frog Phyllomedusa bicolor. These contain the genetic information for one copy of [D-Ala2]deltorphin II and zero, one, or three copies of [D-Ala2]deltorphin I. In each case, the D-alanine of the end product is encoded by a normal GCG codon for L-alanine. In addition, the existence of three peptides related to dermorphin was predicted from the amino acid sequence of the precursors. These peptides were synthesized with a D-alanine in position 2 and their pharmacological properties were tested. Two of them, [Lys7]dermorphin-OH and [Trp4,Asn7]dermorphin-OH, were found to have roughly the same affinity and selectivity for mu-type opioid receptors as dermorphin.

  7. Optical image hiding based on interference

    Science.gov (United States)

    Zhang, Yan; Wang, Bo

    2009-11-01

    Optical image processing has been paid a lot of attentions recently due to its large capacitance and fast speed. Many image encryption and hiding technologies have been proposed based on the optical technology. In conventional image encryption methods, the random phase masks are usually used as encryption keys to encode the images into random white noise distribution. However, this kind of methods requires interference technology such as holography to record complex amplitude. Furthermore, it is vulnerable to attack techniques. The image hiding methods employ the phase retrieve algorithm to encode the images into two or more phase masks. The hiding process is carried out within a computer and the images are reconstructed optically. But the iterative algorithms need a lot of time to hide the image into the masks. All methods mentioned above are based on the optical diffraction of the phase masks. In this presentation, we will propose a new optical image hiding method based on interference. The coherence lights pass through two phase masks and are combined by a beam splitter. Two beams interfere with each other and the desired image appears at the pre-designed plane. Two phase distribution masks are designed analytically; therefore, the hiding speed can be obviously improved. Simulation results are carried out to demonstrate the validity of the new proposed methods.

  8. Ultrasound-mediated Optical Imaging and Focusing in Scattering Media

    Science.gov (United States)

    Suzuki, Yuta

    Because of its non-ionizing and molecular sensing nature, light has been an attractive tool in biomedicine. Scanning an optical focus allows not only high-resolution imaging but also manipulation and therapy. However, due to multiple photon scattering events, conventional optical focusing using an ordinary lens is limited to shallow depths of one transport mean free path (lt'), which corresponds to approximately 1 mm in human tissue. To overcome this limitation, ultrasonic modulation (or encoding ) of diffuse light inside scattering media has enabled us to develop both deep-tissue optical imaging and focusing techniques, namely, ultrasound-modulated optical tomography (UOT) and time-reversed ultrasonically encoded (TRUE) optical focusing. While UOT measures the power of the encoded light to obtain an image, TRUE focusing generates a time-reversed (or phase-conjugated) copy of the encoded light, using a phase-conjugate mirror to focus light inside scattering media beyond 1 lt'. However, despite extensive progress in both UOT and TRUE focusing, the low signal-to-noise ratio in encoded-light detection remains a challenge to meeting both the speed and depth requirements for in vivo applications. This dissertation describes technological advancements of both UOT and TRUE focusing, in terms of their signal detection sensitivities, operational depths, and operational speeds. The first part of this dissertation describes sensitivity improvements of encoded-light detection in UOT, achieved by using a large area (˜5 cm x 5 cm) photorefractive polymer. The photorefractive polymer allowed us to improve the detection etendue by more than 10 times that of previous detection schemes. It has enabled us to resolve absorbing objects embedded inside diffused media thicker than 80 lt', using moderate light power and short ultrasound pulses. The second part of this dissertation describes energy enhancement and fluorescent excitation using TRUE focusing in turbid media, using

  9. Nucleases Encoded by Integraded Elements CJIE2 and CJIE4 Inhibit Natural Transformation of Campylobacter Jejuni

    NARCIS (Netherlands)

    Gaasbeek, E.J.; Wagenaar, J.A.; Guilhabert, M.R.; Putten, van J.P.; Parker, C.T.; Wal, van der F.J.

    2010-01-01

    The species Campylobacter jejuni is naturally competent for DNA uptake; nevertheless, nonnaturally transformable strains do exist. For a subset of strains we previously showed that a periplasmic DNase, encoded by dns, inhibits natural transformation in C. jejuni. In the present study, genetic

  10. RNA aptamer probes as optical imaging agents for the detection of amyloid plaques.

    Directory of Open Access Journals (Sweden)

    Christian T Farrar

    Full Text Available Optical imaging using multiphoton microscopy and whole body near infrared imaging has become a routine part of biomedical research. However, optical imaging methods rely on the availability of either small molecule reporters or genetically encoded fluorescent proteins, which are challenging and time consuming to develop. While directly labeled antibodies can also be used as imaging agents, antibodies are species specific, can typically not be tagged with multiple fluorescent reporters without interfering with target binding, and are bioactive, almost always eliciting a biological response and thereby influencing the process that is being studied. We examined the possibility of developing highly specific and sensitive optical imaging agents using aptamer technology. We developed a fluorescently tagged anti-Aβ RNA aptamer, β55, which binds amyloid plaques in both ex vivo human Alzheimer's disease brain tissue and in vivo APP/PS1 transgenic mice. Diffuse β55 positive halos, attributed to oligomeric Aβ, were observed surrounding the methoxy-XO4 positive plaque cores. Dot blots of synthetic Aβ aggregates provide further evidence that β55 binds both fibrillar and non-fibrillar Aβ. The high binding affinity, the ease of probe development, and the ability to incorporate multiple and multimodal imaging reporters suggest that RNA aptamers may have complementary and perhaps advantageous properties compared to conventional optical imaging probes and reporters.

  11. Spatial correlation genetic algorithm for fractal image compression

    International Nuclear Information System (INIS)

    Wu, M.-S.; Teng, W.-C.; Jeng, J.-H.; Hsieh, J.-G.

    2006-01-01

    Fractal image compression explores the self-similarity property of a natural image and utilizes the partitioned iterated function system (PIFS) to encode it. This technique is of great interest both in theory and application. However, it is time-consuming in the encoding process and such drawback renders it impractical for real time applications. The time is mainly spent on the search for the best-match block in a large domain pool. In this paper, a spatial correlation genetic algorithm (SC-GA) is proposed to speed up the encoder. There are two stages for the SC-GA method. The first stage makes use of spatial correlations in images for both the domain pool and the range pool to exploit local optima. The second stage is operated on the whole image to explore more adequate similarities if the local optima are not satisfied. With the aid of spatial correlation in images, the encoding time is 1.5 times faster than that of traditional genetic algorithm method, while the quality of the retrieved image is almost the same. Moreover, about half of the matched blocks come from the correlated space, so fewer bits are required to represent the fractal transform and therefore the compression ratio is also improved

  12. No-go theorem for passive single-rail linear optical quantum computing.

    Science.gov (United States)

    Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A

    2013-01-01

    Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.

  13. Fault tolerance in parity-state linear optical quantum computing

    International Nuclear Information System (INIS)

    Hayes, A. J. F.; Ralph, T. C.; Haselgrove, H. L.; Gilchrist, Alexei

    2010-01-01

    We use a combination of analytical and numerical techniques to calculate the noise threshold and resource requirements for a linear optical quantum computing scheme based on parity-state encoding. Parity-state encoding is used at the lowest level of code concatenation in order to efficiently correct errors arising from the inherent nondeterminism of two-qubit linear-optical gates. When combined with teleported error-correction (using either a Steane or Golay code) at higher levels of concatenation, the parity-state scheme is found to achieve a saving of approximately three orders of magnitude in resources when compared to the cluster state scheme, at a cost of a somewhat reduced noise threshold.

  14. Experimental study of the use of multiband acousto-optic filters for spectral encoding / decoding the optical signals

    International Nuclear Information System (INIS)

    Proklov, V V; Byshevski-Konopko, O A; Filatov, A L; Lugovskoi, A V; Pisarevsky, Yu V

    2016-01-01

    A prototype of the acousto-optic (AO) decoder of optical signals is created on the base of the multiband AO filter. The joint work of the decoder with the developed previously AO coder has been verified experimentally. The main qualitative and quantitate characteristics of the spectral coding and decoding by Walsh sequences of the industrial LED radiation in the near infrared range are investigated. It is shown, that in the proposed data transmission system realization Signal-to-Interference Ratio (SIR) is not less than 13 dB. (paper)

  15. Nucleic acids encoding phloem small RNA-binding proteins and transgenic plants comprising them

    Science.gov (United States)

    Lucas, William J.; Yoo, Byung-Chun; Lough, Tony J.; Varkonyi-Gasic, Erika

    2007-03-13

    The present invention provides a polynucleotide sequence encoding a component of the protein machinery involved in small RNA trafficking, Cucurbita maxima phloem small RNA-binding protein (CmPSRB 1), and the corresponding polypeptide sequence. The invention also provides genetic constructs and transgenic plants comprising the polynucleotide sequence encoding a phloem small RNA-binding protein to alter (e.g., prevent, reduce or elevate) non-cell autonomous signaling events in the plants involving small RNA metabolism. These signaling events are involved in a broad spectrum of plant physiological and biochemical processes, including, for example, systemic resistance to pathogens, responses to environmental stresses, e.g., heat, drought, salinity, and systemic gene silencing (e.g., viral infections).

  16. All-optical negabinary adders using Mach-Zehnder interferometer

    Science.gov (United States)

    Cherri, A. K.

    2011-02-01

    In contrast to optoelectronics, all-optical adders are proposed where all-optical signals are used to represent the input numbers and the control signals. In addition, the all-optical adders use the negabinary modified signed-digit number representation (an extension of the negabinary number system) to represent the input digits. Further, the ultra-speed of the designed circuits is achieved due to the use of ultra-fast all-optical switching property of the semiconductor optical amplifier and Mach-Zehnder interferometer (SOA-MZI). Furthermore, two-bit per digit binary encoding scheme is employed to represent the trinary values of the negabinary modified signed-digits.

  17. Improving the Calibration of Image Sensors Based on IOFBs, Using Differential Gray-Code Space Encoding

    Directory of Open Access Journals (Sweden)

    Carlos Luna Vázquez

    2012-07-01

    Full Text Available This paper presents a fast calibration method to determine the transfer function for spatial correspondences in image transmission devices with Incoherent Optical Fiber Bundles (IOFBs, by performing a scan of the input, using differential patterns generated from a Gray code (Differential Gray-Code Space Encoding, DGSE. The results demonstrate that this technique provides a noticeable reduction in processing time and better quality of the reconstructed image compared to other, previously employed techniques, such as point or fringe scanning, or even other known space encoding techniques.

  18. A new two-code keying scheme for SAC-OCDMA systems enabling bipolar encoding

    Science.gov (United States)

    Al-Khafaji, Hamza M. R.; Ngah, Razali; Aljunid, S. A.; Rahman, T. A.

    2015-03-01

    In this paper, we propose a new two-code keying scheme for enabling bipolar encoding in a high-rate spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) system. The mathematical formulations are derived for the signal-to-noise ratio and bit-error rate (BER) of SAC-OCDMA system based on the suggested scheme using multi-diagonal (MD) code. Performance analyses are assessed considering the effects of phase-induced intensity noise, as well as shot and thermal noises in photodetectors. The numerical results demonstrated that the proposed scheme exhibits an enhanced BER performance compared to the existing unipolar encoding with direct detection technique. Furthermore, the performance improvement afforded by this scheme is verified using simulation experiments.

  19. Optical image encryption using multilevel Arnold transform and noninterferometric imaging

    Science.gov (United States)

    Chen, Wen; Chen, Xudong

    2011-11-01

    Information security has attracted much current attention due to the rapid development of modern technologies, such as computer and internet. We propose a novel method for optical image encryption using multilevel Arnold transform and rotatable-phase-mask noninterferometric imaging. An optical image encryption scheme is developed in the gyrator transform domain, and one phase-only mask (i.e., phase grating) is rotated and updated during image encryption. For the decryption, an iterative retrieval algorithm is proposed to extract high-quality plaintexts. Conventional encoding methods (such as digital holography) have been proven vulnerably to the attacks, and the proposed optical encoding scheme can effectively eliminate security deficiency and significantly enhance cryptosystem security. The proposed strategy based on the rotatable phase-only mask can provide a new alternative for data/image encryption in the noninterferometric imaging.

  20. A genetically encoded biosensor for visualising hypoxia responses in vivo

    Directory of Open Access Journals (Sweden)

    Tvisha Misra

    2017-02-01

    Full Text Available Cells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia rely on the conserved hypoxia-inducible factor 1 (HIF-1. Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 in vivo. To visualise and analyse HIF-1 dynamics in Drosophila, we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD of the HIF-1 homologue Sima. GFP-ODD responds to changing oxygen levels and to genetic manipulations of the hypoxia pathway, reflecting oxygen-dependent regulation of HIF-1 at the single-cell level. Ratiometric imaging of GFP-ODD and a red-fluorescent reference protein reveals tissue-specific differences in the cellular hypoxic status at ambient normoxia. Strikingly, cells in the larval brain show distinct hypoxic states that correlate with the distribution and relative densities of respiratory tubes. We present a set of genetic and image analysis tools that enable new approaches to map hypoxic microenvironments, to probe effects of perturbations on hypoxic signalling, and to identify new regulators of the hypoxia response.

  1. Cloud-based uniform ChIP-Seq processing tools for modENCODE and ENCODE.

    Science.gov (United States)

    Trinh, Quang M; Jen, Fei-Yang Arthur; Zhou, Ziru; Chu, Kar Ming; Perry, Marc D; Kephart, Ellen T; Contrino, Sergio; Ruzanov, Peter; Stein, Lincoln D

    2013-07-22

    Funded by the National Institutes of Health (NIH), the aim of the Model Organism ENCyclopedia of DNA Elements (modENCODE) project is to provide the biological research community with a comprehensive encyclopedia of functional genomic elements for both model organisms C. elegans (worm) and D. melanogaster (fly). With a total size of just under 10 terabytes of data collected and released to the public, one of the challenges faced by researchers is to extract biologically meaningful knowledge from this large data set. While the basic quality control, pre-processing, and analysis of the data has already been performed by members of the modENCODE consortium, many researchers will wish to reinterpret the data set using modifications and enhancements of the original protocols, or combine modENCODE data with other data sets. Unfortunately this can be a time consuming and logistically challenging proposition. In recognition of this challenge, the modENCODE DCC has released uniform computing resources for analyzing modENCODE data on Galaxy (https://github.com/modENCODE-DCC/Galaxy), on the public Amazon Cloud (http://aws.amazon.com), and on the private Bionimbus Cloud for genomic research (http://www.bionimbus.org). In particular, we have released Galaxy workflows for interpreting ChIP-seq data which use the same quality control (QC) and peak calling standards adopted by the modENCODE and ENCODE communities. For convenience of use, we have created Amazon and Bionimbus Cloud machine images containing Galaxy along with all the modENCODE data, software and other dependencies. Using these resources provides a framework for running consistent and reproducible analyses on modENCODE data, ultimately allowing researchers to use more of their time using modENCODE data, and less time moving it around.

  2. Flipped-Adversarial AutoEncoders

    OpenAIRE

    Zhang, Jiyi; Dang, Hung; Lee, Hwee Kuan; Chang, Ee-Chien

    2018-01-01

    We propose a flipped-Adversarial AutoEncoder (FAAE) that simultaneously trains a generative model G that maps an arbitrary latent code distribution to a data distribution and an encoder E that embodies an "inverse mapping" that encodes a data sample into a latent code vector. Unlike previous hybrid approaches that leverage adversarial training criterion in constructing autoencoders, FAAE minimizes re-encoding errors in the latent space and exploits adversarial criterion in the data space. Exp...

  3. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI.

    Science.gov (United States)

    Zolnik, Timothy A; Sha, Fern; Johenning, Friedrich W; Schreiter, Eric R; Looger, Loren L; Larkum, Matthew E; Sachdev, Robert N S

    2017-03-01

    The genetically encoded fluorescent calcium integrator calcium-modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium. The rate of conversion - the sensitivity to activity - is tunable and depends on the intensity of violet light. Synaptic activity and action potentials can independently initiate significant CaMPARI conversion. The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength. When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all-optical method to map synaptic connectivity. The calcium-modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user-specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all-optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed Ca

  4. Using wavefront coding technique as an optical encryption system: reliability analysis and vulnerabilities assessment

    Science.gov (United States)

    Konnik, Mikhail V.

    2012-04-01

    Wavefront coding paradigm can be used not only for compensation of aberrations and depth-of-field improvement but also for an optical encryption. An optical convolution of the image with the PSF occurs when a diffractive optical element (DOE) with a known point spread function (PSF) is placed in the optical path. In this case, an optically encoded image is registered instead of the true image. Decoding of the registered image can be performed using standard digital deconvolution methods. In such class of optical-digital systems, the PSF of the DOE is used as an encryption key. Therefore, a reliability and cryptographic resistance of such an encryption method depends on the size and complexity of the PSF used for optical encoding. This paper gives a preliminary analysis on reliability and possible vulnerabilities of such an encryption method. Experimental results on brute-force attack on the optically encrypted images are presented. Reliability estimation of optical coding based on wavefront coding paradigm is evaluated. An analysis of possible vulnerabilities is provided.

  5. 26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing

    Science.gov (United States)

    Hillerkuss, D.; Schmogrow, R.; Schellinger, T.; Jordan, M.; Winter, M.; Huber, G.; Vallaitis, T.; Bonk, R.; Kleinow, P.; Frey, F.; Roeger, M.; Koenig, S.; Ludwig, A.; Marculescu, A.; Li, J.; Hoh, M.; Dreschmann, M.; Meyer, J.; Ben Ezra, S.; Narkiss, N.; Nebendahl, B.; Parmigiani, F.; Petropoulos, P.; Resan, B.; Oehler, A.; Weingarten, K.; Ellermeyer, T.; Lutz, J.; Moeller, M.; Huebner, M.; Becker, J.; Koos, C.; Freude, W.; Leuthold, J.

    2011-06-01

    Optical transmission systems with terabit per second (Tbit s-1) single-channel line rates no longer seem to be too far-fetched. New services such as cloud computing, three-dimensional high-definition television and virtual-reality applications require unprecedented optical channel bandwidths. These high-capacity optical channels, however, are fed from lower-bitrate signals. The question then is whether the lower-bitrate tributary information can viably, energy-efficiently and effortlessly be encoded to and extracted from terabit per second data streams. We demonstrate an optical fast Fourier transform scheme that provides the necessary computing power to encode lower-bitrate tributaries into 10.8 and 26.0 Tbit s-1 line-rate orthogonal frequency-division multiplexing (OFDM) data streams and to decode them from fibre-transmitted OFDM data streams. Experiments show the feasibility and ease of handling terabit per second data with low energy consumption. To the best of our knowledge, this is the largest line rate ever encoded onto a single light source.

  6. Multimodal ophthalmic imaging using handheld spectrally encoded coherence tomography and reflectometry (SECTR)

    Science.gov (United States)

    Leeburg, Kelsey C.; El-Haddad, Mohamed T.; Malone, Joseph D.; Terrones, Benjamin D.; Tao, Yuankai K.

    2018-02-01

    Scanning laser ophthalmoscopy (SLO) provides high-speed, noninvasive en face imaging of the retinal fundus. Optical coherence tomography (OCT) is the current "gold-standard" for ophthalmic diagnostic imaging and enables depth-resolved visualization of ophthalmic structures and image-based surrogate biomarkers of disease. We present a compact optical and mechanical design for handheld spectrally encoded coherence tomography and reflectometry (SECTR) for multimodality en face spectrally encoded reflectometry (SER) and cross-sectional OCT imaging. We custom-designed a double-pass telecentric scan lens, which halves the size of 4-f optical relays and allowed us to reduce the footprint of our SECTR scan-head by a factor of >2.7x (volume) over our previous design. The double-pass scan lens was optimized for diffraction-limited performance over a +/-10° scan field. SECTR optics and optomechanics were combined in a compact rapid-prototyped enclosure with dimensions 87 x 141.8 x 137 mm (w x h x d). SECTR was implemented using a custom-built 400 kHz 1050 nm swept-source. OCT and SER were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.4 GS/s per channel. In vivo human en face SER and cross-sectional OCT images were acquired at 350 fps. OCT volumes of 1000 B-scans were acquired in 2.86 s. We believe clinical translation of our compact handheld design will benefit point-of-care ophthalmic diagnostics in patients who are unable to be imaged on conventional slit-lamp based systems, such as infants and the bedridden. When combined with multi-volumetric registration methods, handheld SECTR will have advantages in motion-artifact free imaging over existing handheld technologies.

  7. Genetic regulation of pituitary gland development in human and mouse.

    Science.gov (United States)

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C A F; Dattani, Mehul T

    2009-12-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.

  8. LDPC-PPM Coding Scheme for Optical Communication

    Science.gov (United States)

    Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael

    2009-01-01

    In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.

  9. Vitality of optical vortices (Presentation)

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available stream_source_info Roux3_2014.pdf.txt stream_content_type text/plain stream_size 3018 Content-Encoding UTF-8 stream_name Roux3_2014.pdf.txt Content-Type text/plain; charset=UTF-8 Title Vitality of optical vortices F Stef... Roux Presented at Complex Light and Optical Force VIII SPIE Photonics West 2014 Moscone Center, San Francisco, California USA 5 February 2014 CSIR National Laser Centre, Pretoria, South Africa – p. 1/11 Speckle Amplitude Phase – p. 2/11 Vortex...

  10. Photonic entanglement-assisted quantum low-density parity-check encoders and decoders.

    Science.gov (United States)

    Djordjevic, Ivan B

    2010-05-01

    I propose encoder and decoder architectures for entanglement-assisted (EA) quantum low-density parity-check (LDPC) codes suitable for all-optical implementation. I show that two basic gates needed for EA quantum error correction, namely, controlled-NOT (CNOT) and Hadamard gates can be implemented based on Mach-Zehnder interferometer. In addition, I show that EA quantum LDPC codes from balanced incomplete block designs of unitary index require only one entanglement qubit to be shared between source and destination.

  11. Phase recovering algorithms for extended objects encoded in digitally recorded holograms

    Directory of Open Access Journals (Sweden)

    Peng Z.

    2010-06-01

    Full Text Available The paper presents algorithms to recover the optical phase of digitally encoded holograms. Algorithms are based on the use of a numerical spherical reconstructing wave. Proof of the validity of the concept is performed through an experimental off axis digital holographic set-up. Two-color digital holographic reconstruction is also investigated. Application of the color set-up and algorithms concerns the simultaneous two-dimensional deformation measurement of an object submitted to a mechanical loading.

  12. Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli.

    Science.gov (United States)

    Kawano, Mitsuoki; Oshima, Taku; Kasai, Hiroaki; Mori, Hirotada

    2002-07-01

    Genome sequence analyses of Escherichia coli K-12 revealed four copies of long repetitive elements. These sequences are designated as long direct repeat (LDR) sequences. Three of the repeats (LDR-A, -B, -C), each approximately 500 bp in length, are located as tandem repeats at 27.4 min on the genetic map. Another copy (LDR-D), 450 bp in length and nearly identical to LDR-A, -B and -C, is located at 79.7 min, a position that is directly opposite the position of LDR-A, -B and -C. In this study, we demonstrate that LDR-D encodes a 35-amino-acid peptide, LdrD, the overexpression of which causes rapid cell killing and nucleoid condensation of the host cell. Northern blot and primer extension analysis showed constitutive transcription of a stable mRNA (approximately 370 nucleotides) encoding LdrD and an unstable cis-encoded antisense RNA (approximately 60 nucleotides), which functions as a trans-acting regulator of ldrD translation. We propose that LDR encodes a toxin-antitoxin module. LDR-homologous sequences are not pre-sent on any known plasmids but are conserved in Salmonella and other enterobacterial species.

  13. Analysis of the Performance of a PAM/PPM/OOK System Operating with OCDMA, under Nonlinear Optical Effects in Optical Fiber Propagation

    Science.gov (United States)

    Correia, D. G.; Sales, J. C.; Pinto, P. V. F.; Moura, L. P.; Ferreira, A. C.; Menezes, J. W. M.; Guimarães, G. F.; Sombra, A. S. B.

    2016-06-01

    In this article, we present a numerical simulation study of encoding, decoding and propagation performance of short optical pulses and words with modulations OOK, PAM and PPM in OCDMA systems (Optical Code Division Multiple Access). The encoding and decoding of short pulses are obtained through fiber Bragg grating(FBG - FBG optical) devices, where the codes are inserted through discrete jumps in the optical phase (±π) where Gold codes were used. A figure of merit (SNR - Signal to Noise Ratio) was obtained to quantify the interference in propagation of short optical pulses. An increase in the temporal width was observed. For decoded pulses due to the nonlinearity effect, we observed an increase of 1.3 ps considering the propagation with γ=3 W-1 km-1 and γ=24 W-1 km-1. Analysis of coding and decoding words "a" and "w" was done. Considering the propagation (with γ=9 W-1 km-1) of a word "w", an error occurred in all modulations except for simultaneous PPM/PAM modulation, which is associated to the better autocorrelation characteristics obtained with the OOK, PAM and PPM modulations alone, and could double the transmission rate. The nonlinear effects directly affect the process of the autocorrelation codes due to interference from adjacent chip components of the code.

  14. Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses.

    Science.gov (United States)

    Bertram, Lars; Tanzi, Rudolph E

    2008-10-01

    The genetic underpinnings of Alzheimer's disease (AD) remain largely elusive despite early successes in identifying three genes that cause early-onset familial AD (those that encode amyloid precursor protein (APP) and the presenilins (PSEN1 and PSEN2)), and one genetic risk factor for late-onset AD (the gene that encodes apolipoprotein E (APOE)). A large number of studies that aimed to help uncover the remaining disease-related loci have been published in recent decades, collectively proposing or refuting the involvement of over 500 different gene candidates. Systematic meta-analyses of these studies currently highlight more than 20 loci that have modest but significant effects on AD risk. This Review discusses the putative pathogenetic roles and common biochemical pathways of some of the most genetically and biologically compelling of these potential AD risk factors.

  15. Generation of Path-Encoded Greenberger-Horne-Zeilinger States

    Science.gov (United States)

    Bergamasco, N.; Menotti, M.; Sipe, J. E.; Liscidini, M.

    2017-11-01

    We study the generation of Greenberger-Horne-Zeilinger (GHZ) states of three path-encoded photons. Inspired by the seminal work of Bouwmeester et al. [Phys. Rev. Lett. 82, 1345 (1999), 10.1103/PhysRevLett.82.1345] on polarization-entangled GHZ states, we find a corresponding path representation for the photon states of an optical circuit, identify the elements required for the state generation, and propose a possible implementation of our strategy. Besides the practical advantage of employing an integrated system that can be fabricated with proven lithographic techniques, our example suggests that it is possible to enhance the generation efficiency by using microring resonators.

  16. Mouse Y-Encoded Transcription Factor Zfy2 Is Essential for Sperm Head Remodelling and Sperm Tail Development

    NARCIS (Netherlands)

    Vernet, Nadege; Mahadevaiah, Shantha K.; Decarpentrie, Fanny; Longepied, Guy; de Rooij, Dirk G.; Burgoyne, Paul S.; Mitchell, Michael J.

    2016-01-01

    A previous study indicated that genetic information encoded on the mouse Y chromosome short arm (Yp) is required for efficient completion of the second meiotic division (that generates haploid round spermatids), restructuring of the sperm head, and development of the sperm tail. Using mouse models

  17. Characterization of Sensitivity Encoded Silicon Photomultiplier (SeSP) with 1-Dimensional and 2-Dimensional Encoding for High Resolution PET/MR

    Science.gov (United States)

    Omidvari, Negar; Schulz, Volkmar

    2015-06-01

    This paper evaluates the performance of a new type of PET detectors called sensitivity encoded silicon photomultiplier (SeSP), which allows a direct coupling of small-pitch crystal arrays to the detector with a reduction in the number of readout channels. Four SeSP devices with two separate encoding schemes of 1D and 2D were investigated in this study. Furthermore, both encoding schemes were manufactured in two different sizes of 4 ×4 mm2 and 7. 73 ×7. 9 mm2, in order to investigate the effect of size on detector parameters. All devices were coupled to LYSO crystal arrays with 1 mm pitch size and 10 mm height, with optical isolation between crystals. The characterization was done for the key parameters of crystal-identification, energy resolution, and time resolution as a function of triggering threshold and over-voltage (OV). Position information was archived using the center of gravity (CoG) algorithm and a least squares approach (LSQA) in combination with a mean light matrix around the photo-peak. The positioning results proved the capability of all four SeSP devices in precisely identifying all crystals coupled to the sensors. Energy resolution was measured at different bias voltages, varying from 12% to 18% (FWHM) and paired coincidence time resolution (pCTR) of 384 ps to 1.1 ns was obtained for different SeSP devices at about 18 °C room temperature. However, the best time resolution was achieved at the highest over-voltage, resulting in a noise ratio of 99.08%.

  18. A study of optical design and optimization of laser optics

    Science.gov (United States)

    Tsai, C.-M.; Fang, Yi-Chin

    2013-09-01

    This paper propose a study of optical design of laser beam shaping optics with aspheric surface and application of genetic algorithm (GA) to find the optimal results. Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using collimated laser beam light, aspheric lenses in order to achieve best results.

  19. Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts

    Science.gov (United States)

    Zherdeva, Victoria; Kazachkina, Natalia I.; Shcheslavskiy, Vladislav; Savitsky, Alexander P.

    2018-03-01

    Caspase-3 is known for its role in apoptosis and programmed cell death regulation. We detected caspase-3 activation in vivo in tumor xenografts via shift of mean fluorescence lifetimes of a caspase-3 sensor. We used the genetically encoded sensor TR23K based on the red fluorescent protein TagRFP and chromoprotein KFP linked by 23 amino acid residues (TagRFP-23-KFP) containing a specific caspase cleavage DEVD motif to monitor the activity of caspase-3 in tumor xenografts by means of fluorescence lifetime imaging-Forster resonance energy transfer. Apoptosis was induced by injection of paclitaxel for A549 lung adenocarcinoma and etoposide and cisplatin for HEp-2 pharynx adenocarcinoma. We observed a shift in lifetime distribution from 1.6 to 1.9 ns to 2.1 to 2.4 ns, which indicated the activation of caspase-3. Even within the same tumor, the lifetime varied presumably due to the tumor heterogeneity and the different depth of tumor invasion. Thus, processing time-resolved fluorescence images allows detection of both the cleaved and noncleaved states of the TR23K sensor in real-time mode during the course of several weeks noninvasively. This approach can be used in drug screening, facilitating the development of new anticancer agents as well as improvement of chemotherapy efficiency and its adaptation for personal treatment.

  20. Secure Communications in High Speed Fiber Optical Networks Using Code Division Multiple Access (CDMA) Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Han, I; Bond, S; Welty, R; Du, Y; Yoo, S; Reinhardt, C; Behymer, E; Sperry, V; Kobayashi, N

    2004-02-12

    This project is focused on the development of advanced components and system technologies for secure data transmission on high-speed fiber optic data systems. This work capitalizes on (1) a strong relationship with outstanding faculty at the University of California-Davis who are experts in high speed fiber-optic networks, (2) the realization that code division multiple access (CDMA) is emerging as a bandwidth enhancing technique for fiber optic networks, (3) the realization that CDMA of sufficient complexity forms the basis for almost unbreakable one-time key transmissions, (4) our concepts for superior components for implementing CDMA, (5) our expertise in semiconductor device processing and (6) our Center for Nano and Microtechnology, which is where the majority of the experimental work was done. Here we present a novel device concept, which will push the limits of current technology, and will simultaneously solve system implementation issues by investigating new state-of-the-art fiber technologies. This will enable the development of secure communication systems for the transmission and reception of messages on deployed commercial fiber optic networks, through the CDMA phase encoding of broad bandwidth pulses. CDMA technology has been developed as a multiplexing technology, much like wavelength division multiplexing (WDM) or time division multiplexing (TDM), to increase the potential number of users on a given communication link. A novel application of the techniques created for CDMA is to generate secure communication through physical layer encoding. Physical layer encoding devices are developed which utilize semiconductor waveguides with fast carrier response times to phase encode spectral components of a secure signal. Current commercial technology, most commonly a spatial light modulator, allows phase codes to be changed at rates of only 10's of Hertz ({approx}25ms response). The use of fast (picosecond to nanosecond) carrier dynamics of semiconductors

  1. Robust and scalable optical one-way quantum computation

    International Nuclear Information System (INIS)

    Wang Hefeng; Yang Chuiping; Nori, Franco

    2010-01-01

    We propose an efficient approach for deterministically generating scalable cluster states with photons. This approach involves unitary transformations performed on atoms coupled to optical cavities. Its operation cost scales linearly with the number of qubits in the cluster state, and photon qubits are encoded such that single-qubit operations can be easily implemented by using linear optics. Robust optical one-way quantum computation can be performed since cluster states can be stored in atoms and then transferred to photons that can be easily operated and measured. Therefore, this proposal could help in performing robust large-scale optical one-way quantum computation.

  2. Experimental demonstration of all-optical CDMA using bipolar codes

    Science.gov (United States)

    Dennis, Tasshi

    1999-10-01

    Fiber optic networks capable of supporting a large pool of subscribers, many simultaneous users, and high data rates are receiving heightened interest as solutions to a growing communications need. The experiments reported in this study constitute the first experimental demonstration of a novel bipolar equivalent code-division multiple-access (CDMA) scheme. The sophisticated encoding increases noise tolerance, provides user security, and enables network flexibility. The scheme is based on an established bipolar radio frequency (RF) technique adapted to the unipolar optical domain. Whereas the phase of an RF signal can be readily detected, the high carrier frequency ( ~ 200 THz at 1.5 μm) of an optical wave necessitates that optical signals be detected and processed solely by intensity. Asynchronous operation makes the CDMA scheme data rate independent, while all-optical implementation avoids the bandwidth limitations imposed by electrical processing. A proof-of-principle experiment was conducted by spectrally encoding an erbium-doped superfluorescent fiber source (SFS) using a diffraction grating and an amplitude mask. The optical properties of the system were measured and the bipolar correlation of codes was verified. The practical implementation of the scheme was investigated by the design, construction, and operation of a fiber-based testbed. Correlation measurements performed with modulated signals confirmed that the scheme can recover a binary information symbol while rejecting multiple access interference. A theoretical analysis of the optical correlation process was conducted, which identified key optical parameters important to future implementations. The theory of excess noise associated with the photodetection of a thermal source was considered, followed by noise measurements of a light bulb and the erbium-doped SFS used for spectral encoding. Finally, the ability of the proposed scheme to effectively transmit data was investigated. Signal-to- noise

  3. Biometrics based key management of double random phase encoding scheme using error control codes

    Science.gov (United States)

    Saini, Nirmala; Sinha, Aloka

    2013-08-01

    In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.

  4. The molecular mechanisms of OPA1-mediated optic atrophy in Drosophila model and prospects for antioxidant treatment.

    Directory of Open Access Journals (Sweden)

    Will Yarosh

    2008-01-01

    Full Text Available Mutations in optic atrophy 1 (OPA1, a nuclear gene encoding a mitochondrial protein, is the most common cause for autosomal dominant optic atrophy (DOA. The condition is characterized by gradual loss of vision, color vision defects, and temporal optic pallor. To understand the molecular mechanism by which OPA1 mutations cause optic atrophy and to facilitate the development of an effective therapeutic agent for optic atrophies, we analyzed phenotypes in the developing and adult Drosophila eyes produced by mutant dOpa1 (CG8479, a Drosophila ortholog of human OPA1. Heterozygous mutation of dOpa1 by a P-element or transposon insertions causes no discernable eye phenotype, whereas the homozygous mutation results in embryonic lethality. Using powerful Drosophila genetic techniques, we created eye-specific somatic clones. The somatic homozygous mutation of dOpa1 in the eyes caused rough (mispatterning and glossy (decreased lens and pigment deposition eye phenotypes in adult flies; this phenotype was reversible by precise excision of the inserted P-element. Furthermore, we show the rough eye phenotype is caused by the loss of hexagonal lattice cells in developing eyes, suggesting an increase in lattice cell apoptosis. In adult flies, the dOpa1 mutation caused an increase in reactive oxygen species (ROS production as well as mitochondrial fragmentation associated with loss and damage of the cone and pigment cells. We show that superoxide dismutase 1 (SOD1, Vitamin E, and genetically overexpressed human SOD1 (hSOD1 is able to reverse the glossy eye phenotype of dOPA1 mutant large clones, further suggesting that ROS play an important role in cone and pigment cell death. Our results show dOpa1 mutations cause cell loss by two distinct pathogenic pathways. This study provides novel insights into the pathogenesis of optic atrophy and demonstrates the promise of antioxidants as therapeutic agents for this condition.

  5. Wolfram syndrome (diabetes insipidus, diabetes, optic atrophy, and deafness): clinical and genetic study.

    Science.gov (United States)

    d'Annunzio, Giuseppe; Minuto, Nicola; D'Amato, Elena; de Toni, Teresa; Lombardo, Fortunato; Pasquali, Lorenzo; Lorini, Renata

    2008-09-01

    Wolfram syndrome is an autosomal recessive neurodegenerative disorder characterized by diabetes insipidus, diabetes (nonautoimmune), optic atrophy, and deafness (a set of conditions referred to as DIDMOAD). The WFS1 gene is located on the short arm of chromosome 4. Wolfram syndrome prevalence is 1 in 770,000 live births, with a 1 in 354 carrier frequency. We evaluated six Italian children from five unrelated families. Genetic analysis for Wolfram syndrome was performed by PCR amplification and direct sequencing. Mutation screening revealed five distinct variants, one novel mutation (c.1346C>T; p.T449I) and four previously described, all located in exon 8. Phenotype-genotype correlation is difficult, and the same mutation gives very different phenotypes. Severely inactivating mutations result in a more severe phenotype than mildly inactivating ones. Clinical follow-up showed the progressive syndrome's seriousness.

  6. Design and implementation of the one-step MSD adder of optical computer.

    Science.gov (United States)

    Song, Kai; Yan, Liping

    2012-03-01

    On the basis of the symmetric encoding algorithm for the modified signed-digit (MSD), a 7*7 truth table that can be realized with optical methods was developed. And based on the truth table, the optical path structures and circuit implementations of the one-step MSD adder of ternary optical computer (TOC) were designed. Experiments show that the scheme is correct, feasible, and efficient. © 2012 Optical Society of America

  7. Population genetics and comparative genetics of CLDN1, a gene involved in hepatitis C virus entry

    NARCIS (Netherlands)

    Bekker, Vincent; O'Brien, Thomas R.; Chanock, Stephen

    2009-01-01

    The claudin-1 gene (CLDN1) is a member of a family of genes that encodes proteins found in tight junctions and it has recently been implicated as one of several receptors for late stage binding of hepatitis C virus (HCV). Exploration of the population genetics of this gene could be informative,

  8. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    triplication analysis in B. oleracea, B. rapa and A. thaliana genomes, our study provides insight into the evolutionary history of NBS-encoding genes after divergence of A. thaliana and the Brassica lineage. These results together with expression pattern analysis of NBS-encoding orthologous genes provide useful resource for functional characterization of these genes and genetic improvement of relevant crops.

  9. Real-time optical correlator using computer-generated holographic filter on a liquid crystal light valve

    Science.gov (United States)

    Chao, Tien-Hsin; Yu, Jeffrey

    1990-01-01

    Limitations associated with the binary phase-only filter often used in optical correlators are presently circumvented in the writing of complex-valued data on a gray-scale spatial light modulator through the use of a computer-generated hologram (CGH) algorithm. The CGH encodes complex-valued data into nonnegative real CGH data in such a way that it may be encoded in any of the available gray-scale spatial light modulators. A CdS liquid-crystal light valve is used for the complex-valued CGH encoding; computer simulations and experimental results are compared, and the use of such a CGH filter as the synapse hologram in a holographic optical neural net is discussed.

  10. Time domain spectral phase encoding/DPSK data modulation using single phase modulator for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Gao, Zhensen; Kataoka, Nobuyuki; Wada, Naoya

    2010-05-10

    A novel scheme using single phase modulator for simultaneous time domain spectral phase encoding (SPE) signal generation and DPSK data modulation is proposed and experimentally demonstrated. Array- Waveguide-Grating and Variable-Bandwidth-Spectrum-Shaper based devices can be used for decoding the signal directly in spectral domain. The effects of fiber dispersion, light pulse width and timing error on the coding performance have been investigated by simulation and verified in experiment. In the experiment, SPE signal with 8-chip, 20GHz/chip optical code patterns has been generated and modulated with 2.5 Gbps DPSK data using single modulator. Transmission of the 2.5 Gbps data over 34km fiber with BEROCDMA) and secure optical communication applications. (c) 2010 Optical Society of America.

  11. Measurement strategy for spatially encoded photonic qubits

    International Nuclear Information System (INIS)

    Solis-Prosser, M. A.; Neves, L.

    2010-01-01

    We propose a measurement strategy which can, probabilistically, reproduce the statistics of any observable for spatially encoded photonic qubits. It comprises the implementation of a two-outcome positive operator-valued measure followed by a detection in a fixed transverse position, making the displacement of the detection system unnecessary, unlike previous methods. This strategy generalizes a scheme recently demonstrated by one of us and co-workers, restricted to measurement of observables with equatorial eigenvectors only. The method presented here can be implemented with the current technology of programmable multipixel liquid-crystal displays. In addition, it can be straightforwardly extended to high-dimensional qudits and may be a valuable tool in optical implementations of quantum information protocols with spatial qubits and qudits.

  12. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites.

    Science.gov (United States)

    Hunt, Paul; Afonso, Ana; Creasey, Alison; Culleton, Richard; Sidhu, Amar Bir Singh; Logan, John; Valderramos, Stephanie G; McNae, Iain; Cheesman, Sandra; do Rosario, Virgilio; Carter, Richard; Fidock, David A; Cravo, Pedro

    2007-07-01

    Artemisinin- and artesunate-resistant Plasmodium chabaudi mutants, AS-ART and AS-ATN, were previously selected from chloroquine-resistant clones AS-30CQ and AS-15CQ respectively. Now, a genetic cross between AS-ART and the artemisinin-sensitive clone AJ has been analysed by Linkage Group Selection. A genetic linkage group on chromosome 2 was selected under artemisinin treatment. Within this locus, we identified two different mutations in a gene encoding a deubiquitinating enzyme. A distinct mutation occurred in each of the clones AS-30CQ and AS-ATN, relative to their respective progenitors in the AS lineage. The mutations occurred independently in different clones under drug selection with chloroquine (high concentration) or artesunate. Each mutation maps to a critical residue in a homologous human deubiquitinating protein structure. Although one mutation could theoretically account for the resistance of AS-ATN to artemisinin derivates, the other cannot account solely for the resistance of AS-ART, relative to the responses of its sensitive progenitor AS-30CQ. Two lines of Plasmodium falciparum with decreased susceptibility to artemisinin were also selected. Their drug-response phenotype was not genetically stable. No mutations in the UBP-1 gene encoding the P. falciparum orthologue of the deubiquitinating enzyme were observed. The possible significance of these mutations in parasite responses to chloroquine or artemisinin is discussed.

  13. Method of developing all-optical trinary JK, D-type, and T-type flip-flops using semiconductor optical amplifiers.

    Science.gov (United States)

    Garai, Sisir Kumar

    2012-04-10

    To meet the demand of very fast and agile optical networks, the optical processors in a network system should have a very fast execution rate, large information handling, and large information storage capacities. Multivalued logic operations and multistate optical flip-flops are the basic building blocks for such fast running optical computing and data processing systems. In the past two decades, many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitations because of the low switching response of active devices. The frequency encoding technique has been used because of its many advantages. It can preserve its identity throughout data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. The action of polarization-rotation-based very fast switching of semiconductor optical amplifiers increases processing speed. At the same time, tristate optical flip-flops increase information handling capacity.

  14. Linear position sensitive neutron detector using fiber optic encoded scintillators

    International Nuclear Information System (INIS)

    Davidson, P.L.; Wroe, H.

    1983-01-01

    A linear position sensitive slow neutron detector with 3 mm resolution is described. It uses the fiber optic coding principle in which the resolution elements are separate pieces of lithium loaded glass scintillator each coupled by means of flexible polymer optical fibers to a unique combination of 3 photo multipliers (PM's) out of a bank of 12. A decoder circuit repsponds to a triple coincidence between PM outputs and generates a 12 bit work which identifies the scintillator element which stopped the incident neutron. Some details of the construction and decoding electronics are given together with test results obtained using a laboratory isotope neutron source and a monochomated, collimated neutron beam from a reactor. The count rate in the absence of neutron sources is 2 to 3 c min - 1 per element; the element to element variation in response to a uniform flux is a few percent for 95% of the elements; the resolution as measured by a 1 mm wide prode neutron beam is 3 mm; the relative long term stability is about 0.1% over 3 days and the detection efficiency measured by comparison with an end windowed, high pressure gas counter is about 65% at a neutron wavelength of 0.9A 0

  15. Selecting Operations for Assembler Encoding

    Directory of Open Access Journals (Sweden)

    Tomasz Praczyk

    2010-04-01

    Full Text Available Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
    The performance of Assembler Encoding strongly depends on operations used in Assembler Encoding Programs. To select the most effective operations, experiments in the optimization and the predator-prey problem were carried out. In the experiments, Assembler Encoding Programs equipped with different types of operations were tested. The results of the tests are presented at the end of the paper.

  16. Impact of optical hard limiter on the performance of an optical overlapped-code division multiple access system

    Science.gov (United States)

    Inaty, Elie; Raad, Robert; Tablieh, Nicole

    2011-08-01

    Throughout this paper, a closed form expression of the multiple access interference (MAI) limited bit error rate (BER) is provided for the multiwavelength optical code-division multiple-access system when the system is working above the nominal transmission rate limit imposed by the passive encoding-decoding operation. This system is known in literature as the optical overlapped code division multiple access (OV-CDMA) system. A unified analytical framework is presented emphasizing the impact of optical hard limiter (OHL) on the BER performance of such a system. Results show that the performance of the OV-CDMA system may be highly improved when using OHL preprocessing at the receiver side.

  17. Visualisation of an nsPEF induced calcium wave using the genetically encoded calcium indicator GCaMP in U87 human glioblastoma cells.

    Science.gov (United States)

    Carr, Lynn; Bardet, Sylvia M; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2018-02-01

    Cytosolic, synthetic chemical calcium indicators are typically used to visualise the rapid increase in intracellular calcium ion concentration that follows nanosecond pulsed electric field (nsPEF) application. This study looks at the application of genetically encoded calcium indicators (GECIs) to investigate the spatiotemporal nature of nsPEF-induced calcium signals using fluorescent live cell imaging. Calcium responses to 44kV/cm, 10ns pulses were observed in U87-MG cells expressing either a plasma membrane targeted GECI (GCaMP5-G), or one cytosolically expressed (GCaMP6-S), and compared to the response of cells loaded with cytosolic or plasma membrane targeted chemical calcium indicators. Application of 100 pulses, to cells containing plasma membrane targeted indicators, revealed a wave of calcium across the cell initiating at the cathode side. A similar spatial wave was not observed with cytosolic indicators with mobile calcium buffering properties. The speed of the wave was related to pulse application frequency and it was not propagated by calcium induced calcium release. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. COHERENT DETECTION FOR SPECTRAL AMPLITUDE-CODED OPTICAL LABEL SWITCHING SYSTEMS

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Tafur Monroy, Idelfonso

    2010-01-01

    Coherent detection for spectrally encoded optical labels is proposed and experimentally demonstrated for three label tones spectrally spaced at 1 GHz. The proposed method utilizes a frequency swept local oscillator in a coherent receiver supported by digital signal processing for improved...... flexibility and upgradeability while reducing label detection subsystem complexity as compared with the conventional optical autocorrelation based approaches....

  19. Improving Multi Access Interference Suppression in Optical CDMA by using all-Optical Signal Processing

    Directory of Open Access Journals (Sweden)

    T. B. Osadola

    2013-06-01

    Full Text Available This paper presents the study of a novel all-optical method for processing optical CDMA signals towards improving suppression of multi access interference. The main focus is on incoherent OCDMA systems using multiwavelength 2D-WH/TS codes generated using FBG based encoders and decoders. The MAI suppression capabilities based on its ability to eliminate selective wavelength pulse processing have been shown. A novel transmitter architecture that achieves up to 3dB power saving was also presented. As a result of hardware savings, processing cost will be significantly reduced and power budget improvement resulted in improved performance.

  20. Association of susceptible genetic markers and autoantibodies in ...

    Indian Academy of Sciences (India)

    antigen (HLA) locus accounting for at least 30% of overall genetic risk. Non-HLA genes, i.e. ..... to specific regions of DNA and helps control the activity of certain genes. Encodes a transcription factor ..... The cost of such an extensive panel may ...

  1. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements.

    Science.gov (United States)

    Coyne, Michael J; Roelofs, Kevin G; Comstock, Laurie E

    2016-01-15

    Type VI secretion systems (T6SSs) are contact-dependent antagonistic systems employed by Gram negative bacteria to intoxicate other bacteria or eukaryotic cells. T6SSs were recently discovered in a few Bacteroidetes strains, thereby extending the presence of these systems beyond Proteobacteria. The present study was designed to analyze in a global nature the diversity, abundance, and properties of T6SSs in the Bacteroidales, the most predominant Gram negative bacterial order of the human gut. By performing extensive bioinformatics analyses and creating hidden Markov models for Bacteroidales Tss proteins, we identified 130 T6SS loci in 205 human gut Bacteroidales genomes. Of the 13 core T6SS proteins of Proteobacteria, human gut Bacteroidales T6SS loci encode orthologs of nine, and an additional five other core proteins not present in Proteobacterial T6SSs. The Bacteroidales T6SS loci segregate into three distinct genetic architectures with extensive DNA identity between loci of a given genetic architecture. We found that divergent DNA regions of a genetic architecture encode numerous types of effector and immunity proteins and likely include new classes of these proteins. TheT6SS loci of genetic architecture 1 are contained on highly similar integrative conjugative elements (ICEs), as are the T6SS loci of genetic architecture 2, whereas the T6SS loci of genetic architecture 3 are not and are confined to Bacteroides fragilis. Using collections of co-resident Bacteroidales strains from human subjects, we provide evidence for the transfer of genetic architecture 1 T6SS loci among co-resident Bacteroidales species in the human gut. However, we also found that established ecosystems can harbor strains with distinct T6SS of all genetic architectures. This is the first study to comprehensively analyze of the presence and diversity of T6SS loci within an order of bacteria and to analyze T6SSs of bacteria from a natural community. These studies demonstrate that more than

  2. Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions.

    Science.gov (United States)

    Kang, Bok Eum; Baker, Bradley J

    2016-04-04

    An in silico search strategy was developed to identify potential voltage-sensing domains (VSD) for the development of genetically encoded voltage indicators (GEVIs). Using a conserved charge distribution in the S2 α-helix, a single in silico search yielded most voltage-sensing proteins including voltage-gated potassium channels, voltage-gated calcium channels, voltage-gated sodium channels, voltage-gated proton channels, and voltage-sensing phosphatases from organisms ranging from mammals to bacteria and plants. A GEVI utilizing the VSD from a voltage-gated proton channel identified from that search was able to optically report changes in membrane potential. In addition this sensor was capable of manipulating the internal pH while simultaneously reporting that change optically since it maintains the voltage-gated proton channel activity of the VSD. Biophysical characterization of this GEVI, Pado, demonstrated that the voltage-dependent signal was distinct from the pH-dependent signal and was dependent on the movement of the S4 α-helix. Further investigation into the mechanism of the voltage-dependent optical signal revealed that inhibiting the dimerization of the fluorescent protein greatly reduced the optical signal. Dimerization of the FP thereby enabled the movement of the S4 α-helix to mediate a fluorescent response.

  3. Artificial neural networks using complex numbers and phase encoded weights.

    Science.gov (United States)

    Michel, Howard E; Awwal, Abdul Ahad S

    2010-04-01

    The model of a simple perceptron using phase-encoded inputs and complex-valued weights is proposed. The aggregation function, activation function, and learning rule for the proposed neuron are derived and applied to Boolean logic functions and simple computer vision tasks. The complex-valued neuron (CVN) is shown to be superior to traditional perceptrons. An improvement of 135% over the theoretical maximum of 104 linearly separable problems (of three variables) solvable by conventional perceptrons is achieved without additional logic, neuron stages, or higher order terms such as those required in polynomial logic gates. The application of CVN in distortion invariant character recognition and image segmentation is demonstrated. Implementation details are discussed, and the CVN is shown to be very attractive for optical implementation since optical computations are naturally complex. The cost of the CVN is less in all cases than the traditional neuron when implemented optically. Therefore, all the benefits of the CVN can be obtained without additional cost. However, on those implementations dependent on standard serial computers, CVN will be more cost effective only in those applications where its increased power can offset the requirement for additional neurons.

  4. Spatially multiplexed orbital-angular-momentum-encoded single photon and classical channels in a free-space optical communication link.

    Science.gov (United States)

    Ren, Yongxiong; Liu, Cong; Pang, Kai; Zhao, Jiapeng; Cao, Yinwen; Xie, Guodong; Li, Long; Liao, Peicheng; Zhao, Zhe; Tur, Moshe; Boyd, Robert W; Willner, Alan E

    2017-12-01

    We experimentally demonstrate spatial multiplexing of an orbital angular momentum (OAM)-encoded quantum channel and a classical Gaussian beam with a different wavelength and orthogonal polarization. Data rates as large as 100 MHz are achieved by encoding on two different OAM states by employing a combination of independently modulated laser diodes and helical phase holograms. The influence of OAM mode spacing, encoding bandwidth, and interference from the co-propagating Gaussian beam on registered photon count rates and quantum bit error rates is investigated. Our results show that the deleterious effects of intermodal crosstalk effects on system performance become less important for OAM mode spacing Δ≥2 (corresponding to a crosstalk value of less than -18.5  dB). The use of OAM domain can additionally offer at least 10.4 dB isolation besides that provided by wavelength and polarization, leading to a further suppression of interference from the classical channel.

  5. Integrated devices for quantum information and quantum simulation with polarization encoded qubits

    Science.gov (United States)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-06-01

    The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. The technology for handling polarization-encoded qubits, the most commonly adopted approach, was still missing in quantum optical circuits until the ultrafast laser writing (ULW) technique was adopted for the first time to realize integrated devices able to support and manipulate polarization encoded qubits.1 Thanks to this method, polarization dependent and independent devices can be realized. In particular the maintenance of polarization entanglement was demonstrated in a balanced polarization independent integrated beam splitter1 and an integrated CNOT gate for polarization qubits was realized and carachterized.2 We also exploited integrated optics for quantum simulation tasks: by adopting the ULW technique an integrated quantum walk circuit was realized3 and, for the first time, we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such experiment has been realized by adopting two-photon entangled states and an array of integrated symmetric directional couplers. The polarization entanglement was exploited to simulate the bunching-antibunching feature of non interacting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behaviour, maintaining a remarkable control on both phase and balancement of the directional couplers.

  6. Sequence variation in the alpha-toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens

    DEFF Research Database (Denmark)

    Abildgaard, L; Engberg, RM; Pedersen, Karl

    2009-01-01

    The aim of the present study was to analyse the genetic diversity of the alpha-toxin encoding plc gene and the variation in a-toxin production of Clostridium perfringens type A strains isolated from presumably healthy chickens and chickens suffering from either necrotic enteritis (NE) or cholangio......-hepatitis. The a-toxin encoding plc genes from 60 different pulsed-field gel electrophoresis (PFGE) types (strains) of C perfringens were sequenced and translated in silico to amino acid sequences and the a-toxin production was investigated in batch cultures of 45 of the strains using an enzyme...

  7. Mapping DNA damage-dependent genetic interactions in yeast via party mating and barcode fusion genetics.

    Science.gov (United States)

    Díaz-Mejía, J Javier; Celaj, Albi; Mellor, Joseph C; Coté, Atina; Balint, Attila; Ho, Brandon; Bansal, Pritpal; Shaeri, Fatemeh; Gebbia, Marinella; Weile, Jochen; Verby, Marta; Karkhanina, Anna; Zhang, YiFan; Wong, Cassandra; Rich, Justin; Prendergast, D'Arcy; Gupta, Gaurav; Öztürk, Sedide; Durocher, Daniel; Brown, Grant W; Roth, Frederick P

    2018-05-28

    Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via en masse "party" mating can also be monitored en masse for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving MAG1 , SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites§

    Science.gov (United States)

    Hunt, Paul; Afonso, Ana; Creasey, Alison; Culleton, Richard; Sidhu, Amar Bir Singh; Logan, John; Valderramos, Stephanie G; McNae, Iain; Cheesman, Sandra; do Rosario, Virgilio; Carter, Richard; Fidock, David A; Cravo, Pedro

    2007-01-01

    Artemisinin- and artesunate-resistant Plasmodium chabaudi mutants, AS-ART and AS-ATN, were previously selected from chloroquine-resistant clones AS-30CQ and AS-15CQ respectively. Now, a genetic cross between AS-ART and the artemisinin-sensitive clone AJ has been analysed by Linkage Group Selection. A genetic linkage group on chromosome 2 was selected under artemisinin treatment. Within this locus, we identified two different mutations in a gene encoding a deubiquitinating enzyme. A distinct mutation occurred in each of the clones AS-30CQ and AS-ATN, relative to their respective progenitors in the AS lineage. The mutations occurred independently in different clones under drug selection with chloroquine (high concentration) or artesunate. Each mutation maps to a critical residue in a homologous human deubiquitinating protein structure. Although one mutation could theoretically account for the resistance of AS-ATN to artemisinin derivates, the other cannot account solely for the resistance of AS-ART, relative to the responses of its sensitive progenitor AS-30CQ. Two lines of Plasmodium falciparum with decreased susceptibility to artemisinin were also selected. Their drug-response phenotype was not genetically stable. No mutations in the UBP-1 gene encoding the P. falciparum orthologue of the deubiquitinating enzyme were observed. The possible significance of these mutations in parasite responses to chloroquine or artemisinin is discussed. PMID:17581118

  9. A Naturally Encoded Dipeptide Handle for Bioorthogonal Chan-Lam Coupling.

    Science.gov (United States)

    Ohata, Jun; Zeng, Yimeng; Segatori, Laura; Ball, Zachary T

    2018-04-03

    Manipulation of biomacromolecules is ideally achieved through unique and bioorthogonal chemical reactions of genetically encoded, naturally occurring functional groups. The toolkit of methods for site-specific conjugation is limited by selectivity concerns and a dearth of naturally occurring functional groups with orthogonal reactivity. We report that pyroglutamate amide N-H bonds exhibit bioorthogonal copper-catalyzed Chan-Lam coupling at pyroglutamate-histidine dipeptide sequences. The pyroglutamate residue is readily incorporated into proteins of interest by natural enzymatic pathways, allowing specific bioconjugation at a minimalist dipeptide tag. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields

    Directory of Open Access Journals (Sweden)

    Keith P. Johnson

    2018-02-01

    Full Text Available The spike trains of retinal ganglion cells (RGCs are the only source of visual information to the brain. Here, we genetically identify an RGC type in mice that functions as a pixel encoder and increases firing to light increments (PixON-RGC. PixON-RGCs have medium-sized dendritic arbors and non-canonical center-surround receptive fields. From their receptive field center, PixON-RGCs receive only excitatory input, which encodes contrast and spatial information linearly. From their receptive field surround, PixON-RGCs receive only inhibitory input, which is temporally matched to the excitatory center input. As a result, the firing rate of PixON-RGCs linearly encodes local image contrast. Spatially offset (i.e., truly lateral inhibition of PixON-RGCs arises from spiking GABAergic amacrine cells. The receptive field organization of PixON-RGCs is independent of stimulus wavelength (i.e., achromatic. PixON-RGCs project predominantly to the dorsal lateral geniculate nucleus (dLGN of the thalamus and likely contribute to visual perception.

  11. Simplification of genotyping techniques of the ABO blood type experiment and exploration of population genetics.

    Science.gov (United States)

    Hu, Jian; Zhou, Yi-ren; Ding, Jia-lin; Wang, Zhi-yuan; Liu, Ling; Wang, Ye-kai; Lou, Hui-ling; Qiao, Shou-yi; Wu, Yan-hua

    2017-05-20

    The ABO blood type is one of the most common and widely used genetic traits in humans. Three glycosyltransferase-encoding gene alleles, I A , I B and i, produce three red blood cell surface antigens, by which the ABO blood type is classified. By using the ABO blood type experiment as an ideal case for genetics teaching, we can easily introduce to the students several genetic concepts, including multiple alleles, gene interaction, single nucleotide polymorphism (SNP) and gene evolution. Herein we have innovated and integrated our ABO blood type genetics experiments. First, in the section of Molecular Genetics, a new method of ABO blood genotyping was established: specific primers based on SNP sites were designed to distinguish three alleles through quantitative real-time PCR. Next, the experimental teaching method of Gene Evolution was innovated in the Population Genetics section: a gene-evolution software was developed to simulate the evolutionary tendency of the ABO genotype encoding alleles under diverse conditions. Our reform aims to extend the contents of genetics experiments, to provide additional teaching approaches, and to improve the learning efficiency of our students eventually.

  12. Optogenetics: a new enlightenment age for zebrafish neurobiology.

    Science.gov (United States)

    Del Bene, Filippo; Wyart, Claire

    2012-03-01

    Zebrafish became a model of choice for neurobiology because of the transparency of its brain and because of its amenability to genetic manipulation. In particular, at early stages of development the intact larva is an ideal system to apply optical techniques for deep imaging in the nervous system, as well as genetically encoded tools for targeting subsets of neurons and monitoring and manipulating their activity. For these applications,new genetically encoded optical tools, fluorescent sensors, and light-gated channels have been generated,creating the field of "optogenetics." It is now possible to monitor and control neuronal activity with minimal perturbation and unprecedented spatio-temporal resolution.We describe here the main achievements that have occurred in the last decade in imaging and manipulating neuronal activity in intact zebrafish larvae. We provide also examples of functional dissection of neuronal circuits achieved with the applications of these techniques in the visual and locomotor systems.

  13. Contrast improvement of continuous wave diffuse optical tomography reconstruction by hybrid approach using least square and genetic algorithm

    Science.gov (United States)

    Patra, Rusha; Dutta, Pranab K.

    2015-07-01

    Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in functional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an observed contrast of 98.4%, mean square error of 0.638×10-3, and object centroid error of (0.001 to 0.22) mm. Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows a significant improvement in image quality and thus establishes the potential of the method for functional diffuse optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the concentration measurement of a region of interest in a turbid medium.

  14. Genetic manipulation of structural color in bacterial colonies

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Catón, Laura; Hamidjaja, Raditijo

    2018-01-01

    analysis, we obtained a detailed correlation of how genetic modifications alter structural color in bacterial colonies. Understanding of genotype and phenotype relations in this system opens the way to genetic engineering of on-demand living optical materials, for use as paints and living sensors.......Naturally occurring photonic structures are responsible for the bright and vivid coloration in a large variety of living organisms. Despite efforts to understand their biological functions, development, and complex optical response, little is known of the underlying genes involved...

  15. An optical CDMA system based on chaotic sequences

    Science.gov (United States)

    Liu, Xiao-lei; En, De; Wang, Li-guo

    2014-03-01

    In this paper, a coherent asynchronous optical code division multiple access (OCDMA) system is proposed, whose encoder/decoder is an all-optical generator. This all-optical generator can generate analog and bipolar chaotic sequences satisfying the logistic maps. The formula of bit error rate (BER) is derived, and the relationship of BER and the number of simultaneous transmissions is analyzed. Due to the good property of correlation, this coherent OCDMA system based on these bipolar chaotic sequences can support a large number of simultaneous users, which shows that these chaotic sequences are suitable for asynchronous OCDMA system.

  16. Recent genetic discoveries in osteoporosis, sarcopenia and obesity.

    Science.gov (United States)

    Urano, Tomohiko; Inoue, Satoshi

    2015-01-01

    Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and an increased susceptibility to fractures. Evidence from genetic studies indicates that BMD, a complex quantitative trait with a normal distribution, is genetically controlled. Genome-wide association studies (GWAS) as well as studies using candidate gene approaches have identified single-nucleotide polymorphisms (SNPs) that are associated with BMD, osteoporosis and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding WNT/β-catenin signaling proteins. Understanding the genetics of osteoporosis will help to identify novel candidates for diagnostic and therapeutic targets. Genetic factors are also important for the development of sarcopenia, which is characterized by a loss of lean body mass, and obesity, which is characterized by high fat mass. Hence, in this review, we discuss the genetic factors, identified by genetic studies, which regulate the body components related to osteoporosis, sarcopenia, and obesity.

  17. Genetic Dissection of Anopheles gambiae Gut Epithelial Responses to Serratia marcescens

    Science.gov (United States)

    Stathopoulos, Stavros; Neafsey, Daniel E.; Lawniczak, Mara K. N.; Muskavitch, Marc A. T.; Christophides, George K.

    2014-01-01

    Genetic variation in the mosquito Anopheles gambiae profoundly influences its ability to transmit malaria. Mosquito gut bacteria are shown to influence the outcome of infections with Plasmodium parasites and are also thought to exert a strong drive on genetic variation through natural selection; however, a link between antibacterial effects and genetic variation is yet to emerge. Here, we combined SNP genotyping and expression profiling with phenotypic analyses of candidate genes by RNAi-mediated silencing and 454 pyrosequencing to investigate this intricate biological system. We identified 138 An. gambiae genes to be genetically associated with the outcome of Serratia marcescens infection, including the peptidoglycan recognition receptor PGRPLC that triggers activation of the antibacterial IMD/REL2 pathway and the epidermal growth factor receptor EGFR. Silencing of three genes encoding type III fibronectin domain proteins (FN3Ds) increased the Serratia load and altered the gut microbiota composition in favor of Enterobacteriaceae. These data suggest that natural genetic variation in immune-related genes can shape the bacterial population structure of the mosquito gut with high specificity. Importantly, FN3D2 encodes a homolog of the hypervariable pattern recognition receptor Dscam, suggesting that pathogen-specific recognition may involve a broader family of immune factors. Additionally, we showed that silencing the gene encoding the gustatory receptor Gr9 that is also associated with the Serratia infection phenotype drastically increased Serratia levels. The Gr9 antibacterial activity appears to be related to mosquito feeding behavior and to mostly rely on changes of neuropeptide F expression, together suggesting a behavioral immune response following Serratia infection. Our findings reveal that the mosquito response to oral Serratia infection comprises both an epithelial and a behavioral immune component. PMID:24603764

  18. Multiplex immunoassay for persistent organic pollutants in tilapia: comparison of imaging- and flow cytometry-based platforms using spectrally encoded paramagnetic microspheres

    NARCIS (Netherlands)

    Meimaridou, A.; Haasnoot, W.; Shelver, W.L.; Franek, M.; Nielen, M.W.F.

    2013-01-01

    Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays require a flow cytometer with sophisticated fluidics and optics. A new imaging super-paramagnetic SEMs-based alternative platform transports SEMs with

  19. How to design fiber optic sensors that work: basic technology, main problems, pitfalls, and potential solutions

    OpenAIRE

    Dakin, J.P.

    1999-01-01

    Summary• Overview of optical fibre sensor types(Classified according to operating principles)• Difference between intrinsic and extrinsic sensors• Intensity-based sensors• Spectrally-encoded sensors• Propagation-time-encoded sensors• Interferometric sensors• Discussion of how to avoid problems and make practical sensors• Multiplexed and distributed sensors

  20. Realization of manchester encoding and decoding and fast-speed communication for digital power supply based on FPGA

    International Nuclear Information System (INIS)

    Chen Huanguang; Xu Ruinian; Shen Tianjian; Li Deming

    2008-01-01

    A design and simulation to realize the process of Manchester encoding and decoding, to realize the process of SPI communication between FPGA and DSP, using Altera company's Quartus II IDE on FPGA is presented in this paper. And the application on the digital power supply controller with Manchester communication by optical fiber is introduced. (authors)

  1. Next-Generation Theranostic Agents Based on Polyelectrolyte Microcapsules Encoded with Semiconductor Nanocrystals: Development and Functional Characterization

    Science.gov (United States)

    Nifontova, Galina; Zvaigzne, Maria; Baryshnikova, Maria; Korostylev, Evgeny; Ramos-Gomes, Fernanda; Alves, Frauke; Nabiev, Igor; Sukhanova, Alyona

    2018-01-01

    Fabrication of polyelectrolyte microcapsules and their use as carriers of drugs, fluorescent labels, and metal nanoparticles is a promising approach to designing theranostic agents. Semiconductor quantum dots (QDs) are characterized by extremely high brightness and photostability that make them attractive fluorescent labels for visualization of intracellular penetration and delivery of such microcapsules. Here, we describe an approach to design, fabricate, and characterize physico-chemical and functional properties of polyelectrolyte microcapsules encoded with water-solubilized and stabilized with three-functional polyethylene glycol derivatives core/shell QDs. Developed microcapsules were characterized by dynamic light scattering, electrophoretic mobility, scanning electronic microscopy, and fluorescence and confocal microscopy approaches, providing exact data on their size distribution, surface charge, morphological, and optical characteristics. The fluorescence lifetimes of the QD-encoded microcapsules were also measured, and their dependence on time after preparation of the microcapsules was evaluated. The optimal content of QDs used for encoding procedure providing the optimal fluorescence properties of the encoded microcapsules was determined. Finally, the intracellular microcapsule uptake by murine macrophages was demonstrated, thus confirming the possibility of efficient use of developed system for live cell imaging and visualization of microcapsule transportation and delivery within the living cells.

  2. Genetics of osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Urano, Tomohiko [Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan)

    2014-09-19

    Highlights: • Single-nucleotide polymorphisms (SNPs) associated with osteoporosis were identified. • SNPs mapped close to or within VDR and ESR1 are associated with bone mineral density. • WNT signaling pathway plays a pivotal role in regulating bone mineral density. • Genetic studies will be useful for identification of new therapeutic targets. - Abstract: Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50–90% of the cases), according to studies on twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets.

  3. Analysing and Comparing Encodability Criteria

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2015-08-01

    Full Text Available Encodings or the proof of their absence are the main way to compare process calculi. To analyse the quality of encodings and to rule out trivial or meaningless encodings, they are augmented with quality criteria. There exists a bunch of different criteria and different variants of criteria in order to reason in different settings. This leads to incomparable results. Moreover it is not always clear whether the criteria used to obtain a result in a particular setting do indeed fit to this setting. We show how to formally reason about and compare encodability criteria by mapping them on requirements on a relation between source and target terms that is induced by the encoding function. In particular we analyse the common criteria full abstraction, operational correspondence, divergence reflection, success sensitiveness, and respect of barbs; e.g. we analyse the exact nature of the simulation relation (coupled simulation versus bisimulation that is induced by different variants of operational correspondence. This way we reduce the problem of analysing or comparing encodability criteria to the better understood problem of comparing relations on processes.

  4. Optimal entangling operations between deterministic blocks of qubits encoded into single photons

    Science.gov (United States)

    Smith, Jake A.; Kaplan, Lev

    2018-01-01

    Here, we numerically simulate probabilistic elementary entangling operations between rail-encoded photons for the purpose of scalable universal quantum computation or communication. We propose grouping logical qubits into single-photon blocks wherein single-qubit rotations and the controlled-not (cnot) gate are fully deterministic and simple to implement. Interblock communication is then allowed through said probabilistic entangling operations. We find a promising trend in the increasing probability of successful interblock communication as we increase the number of optical modes operated on by our elementary entangling operations.

  5. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy.

    Science.gov (United States)

    Flex, Elisabetta; Niceta, Marcello; Cecchetti, Serena; Thiffault, Isabelle; Au, Margaret G; Capuano, Alessandro; Piermarini, Emanuela; Ivanova, Anna A; Francis, Joshua W; Chillemi, Giovanni; Chandramouli, Balasubramanian; Carpentieri, Giovanna; Haaxma, Charlotte A; Ciolfi, Andrea; Pizzi, Simone; Douglas, Ganka V; Levine, Kara; Sferra, Antonella; Dentici, Maria Lisa; Pfundt, Rolph R; Le Pichon, Jean-Baptiste; Farrow, Emily; Baas, Frank; Piemonte, Fiorella; Dallapiccola, Bruno; Graham, John M; Saunders, Carol J; Bertini, Enrico; Kahn, Richard A; Koolen, David A; Tartaglia, Marco

    2016-10-06

    Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause neurodevelopmental and neurodegenerative disorders. Growing evidence suggests that altered microtubule dynamics may also underlie or contribute to neurodevelopmental disorders and neurodegeneration. We report that biallelic mutations in TBCD, encoding one of the five co-chaperones required for assembly and disassembly of the αβ-tubulin heterodimer, the structural unit of microtubules, cause a disease with neurodevelopmental and neurodegenerative features characterized by early-onset cortical atrophy, secondary hypomyelination, microcephaly, thin corpus callosum, developmental delay, intellectual disability, seizures, optic atrophy, and spastic quadriplegia. Molecular dynamics simulations predicted long-range and/or local structural perturbations associated with the disease-causing mutations. Biochemical analyses documented variably reduced levels of TBCD, indicating relative instability of mutant proteins, and defective β-tubulin binding in a subset of the tested mutants. Reduced or defective TBCD function resulted in decreased soluble α/β-tubulin levels and accelerated microtubule polymerization in fibroblasts from affected subjects, demonstrating an overall shift toward a more rapidly growing and stable microtubule population. These cells displayed an aberrant mitotic spindle with disorganized, tangle-shaped microtubules and reduced aster formation, which however did not alter appreciably the rate of cell proliferation. Our findings establish that defective TBCD function underlies a recognizable encephalopathy and drives accelerated microtubule polymerization and enhanced microtubule stability, underscoring an additional cause of altered microtubule dynamics with

  6. Landscape encodings enhance optimization.

    Directory of Open Access Journals (Sweden)

    Konstantin Klemm

    Full Text Available Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state.

  7. Landscape Encodings Enhance Optimization

    Science.gov (United States)

    Klemm, Konstantin; Mehta, Anita; Stadler, Peter F.

    2012-01-01

    Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state. PMID:22496860

  8. Current View on Phytoplasma Genomes and Encoded Metabolism

    Directory of Open Access Journals (Sweden)

    Michael Kube

    2012-01-01

    Full Text Available Phytoplasmas are specialised bacteria that are obligate parasites of plant phloem tissue and insects. These bacteria have resisted all attempts of cell-free cultivation. Genome research is of particular importance to analyse the genetic endowment of such bacteria. Here we review the gene content of the four completely sequenced ‘Candidatus Phytoplasma’ genomes that include those of ‘Ca. P. asteris’ strains OY-M and AY-WB, ‘Ca. P. australiense,’ and ‘Ca. P. mali’. These genomes are characterized by chromosome condensation resulting in sizes below 900 kb and a G + C content of less than 28%. Evolutionary adaption of the phytoplasmas to nutrient-rich environments resulted in losses of genetic modules and increased host dependency highlighted by the transport systems and limited metabolic repertoire. On the other hand, duplication and integration events enlarged the chromosomes and contribute to genome instability. Present differences in the content of membrane and secreted proteins reflect the host adaptation in the phytoplasma strains. General differences are obvious between different phylogenetic subgroups. ‘Ca. P. mali’ is separated from the other strains by its deviating chromosome organization, the genetic repertoire for recombination and excision repair of nucleotides or the loss of the complete energy-yielding part of the glycolysis. Apart from these differences, comparative analysis exemplified that all four phytoplasmas are likely to encode an alternative pathway to generate pyruvate and ATP.

  9. Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress.

    Science.gov (United States)

    Ritchey, Maureen; McCullough, Andrew M; Ranganath, Charan; Yonelinas, Andrew P

    2017-01-01

    Acute stress has been shown to modulate memory for recently learned information, an effect attributed to the influence of stress hormones on medial temporal lobe (MTL) consolidation processes. However, little is known about which memories will be affected when stress follows encoding. One possibility is that stress interacts with encoding processes to selectively protect memories that had elicited responses in the hippocampus and amygdala, two MTL structures important for memory formation. There is limited evidence for interactions between encoding processes and consolidation effects in humans, but recent studies of consolidation in rodents have emphasized the importance of encoding "tags" for determining the impact of consolidation manipulations on memory. Here, we used functional magnetic resonance imaging in humans to test the hypothesis that the effects of post-encoding stress depend on MTL processes observed during encoding. We found that changes in stress hormone levels were associated with an increase in the contingency of memory outcomes on hippocampal and amygdala encoding responses. That is, for participants showing high cortisol reactivity, memories became more dependent on MTL activity observed during encoding, thereby shifting the distribution of recollected events toward those that had elicited relatively high activation. Surprisingly, this effect was generally larger for neutral, compared to emotionally negative, memories. The results suggest that stress does not uniformly enhance memory, but instead selectively preserves memories tagged during encoding, effectively acting as mnemonic filter. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Single integrated device for optical CDMA code processing in dual-code environment.

    Science.gov (United States)

    Huang, Yue-Kai; Glesk, Ivan; Greiner, Christoph M; Iazkov, Dmitri; Mossberg, Thomas W; Wang, Ting; Prucnal, Paul R

    2007-06-11

    We report on the design, fabrication and performance of a matching integrated optical CDMA encoder-decoder pair based on holographic Bragg reflector technology. Simultaneous encoding/decoding operation of two multiple wavelength-hopping time-spreading codes was successfully demonstrated and shown to support two error-free OCDMA links at OC-24. A double-pass scheme was employed in the devices to enable the use of longer code length.

  11. Molecular genetics and epigenetics of CACTA elements

    KAUST Repository

    Fedoroff, Nina V.

    2013-08-21

    The CACTA transposons, so named for a highly conserved motif at element ends, comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) plant transposons. CACTA transposons characteristically include subterminal sequences of several hundred nucleotides containing closely spaced direct and inverted repeats of a short, conserved sequence of 14-15 bp. The Supressor-mutator (Spm) transposon, identified and subjected to detailed genetic analysis by Barbara McClintock, remains the paradigmatic element of the CACTA family. The Spm transposon encodes two proteins required for transposition, the transposase (TnpD) and a regulatory protein (TnpA) that binds to the subterminal repeats. Spm expression is subject to both genetic and epigenetic regulation. The Spm-encoded TnpA serves as an activator of the epigenetically inactivated, methylated Spm, stimulating both transient and heritable activation of the transposon. TnpA also serves as a negative regulator of the demethylated active element promoter and is required, in addition to the TnpD, for transposition. © Springer Science+Business Media, New York 2013.

  12. Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein.

    Science.gov (United States)

    Lacroix, Benoît; Citovsky, Vitaly

    2015-11-20

    During Agrobacterium-mediated genetic transformation of plants, several bacterial virulence (Vir) proteins are translocated into the host cell to facilitate infection. One of the most important of such translocated factors is VirF, an F-box protein produced by octopine strains of Agrobacterium, which presumably facilitates proteasomal uncoating of the invading T-DNA from its associated proteins. The presence of VirF also is thought to be involved in differences in host specificity between octopine and nopaline strains of Agrobacterium, with the current dogma being that no functional VirF is encoded by nopaline strains. Here, we show that a protein with homology to octopine VirF is encoded by the Ti plasmid of the nopaline C58 strain of Agrobacterium. This protein, C58VirF, possesses the hallmarks of functional F-box proteins: it contains an active F-box domain and specifically interacts, via its F-box domain, with SKP1-like (ASK) protein components of the plant ubiquitin/proteasome system. Thus, our data suggest that nopaline strains of Agrobacterium have evolved to encode a functional F-box protein VirF.

  13. Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek's disease lymphomas.

    Directory of Open Access Journals (Sweden)

    Yuguang Zhao

    2011-02-01

    Full Text Available Notwithstanding the well-characterised roles of a number of oncogenes in neoplastic transformation, microRNAs (miRNAs are increasingly implicated in several human cancers. Discovery of miRNAs in several oncogenic herpesviruses such as KSHV has further highlighted the potential of virus-encoded miRNAs to contribute to their oncogenic capabilities. Nevertheless, despite the identification of several possible cancer-related genes as their targets, the direct in vivo role of virus-encoded miRNAs in neoplastic diseases such as those induced by KSHV is difficult to demonstrate in the absence of suitable models. However, excellent natural disease models of rapid-onset Marek's disease (MD lymphomas in chickens allow examination of the oncogenic potential of virus-encoded miRNAs. Using viruses modified by reverse genetics of the infectious BAC clone of the oncogenic RB-1B strain of MDV, we show that the deletion of the six-miRNA cluster 1 from the viral genome abolished the oncogenicity of the virus. This loss of oncogenicity appeared to be primarily due to the single miRNA within the cluster, miR-M4, the ortholog of cellular miR-155, since its deletion or a 2-nucleotide mutation within its seed region was sufficient to inhibit the induction of lymphomas. The definitive role of this miR-155 ortholog in oncogenicity was further confirmed by the rescue of oncogenic phenotype by revertant viruses that expressed either the miR-M4 or the cellular homolog gga-miR-155. This is the first demonstration of the direct in vivo role of a virus-encoded miRNA in inducing tumors in a natural infection model. Furthermore, the use of viruses deleted in miRNAs as effective vaccines against virulent MDV challenge, enables the prospects of generating genetically defined attenuated vaccines.

  14. Design of reproducible polarized and non-polarized edge filters using genetic algorithm

    International Nuclear Information System (INIS)

    Ejigu, Efrem Kebede; Lacquet, B M

    2010-01-01

    Recent advancement in optical fibre communications technology is partly due to the advancement of optical thin film technology. The advancement of optical thin film technology includes the development of new and existing optical filter design methods. The genetic algorithm is one of the new design methods that show promising results in designing a number of complicated design specifications. It is the finding of this study that the genetic algorithm design method, through its optimization capability, can give more reliable and reproducible designs of any specifications. The design method in this study optimizes the thickness of each layer to get to the best possible solution. Its capability and unavoidable limitations in designing polarized and non-polarized edge filters from absorptive and dispersive materials is well demonstrated. It is also demonstrated that polarized and non-polarized designs from the genetic algorithm are reproducible with great success. This research has accomplished the great task of formulating a computer program using the genetic algorithm in a Matlab environment for the design of a reproducible polarized and non-polarized filters of any sort from any kind of materials

  15. Analysis of the Spectral Efficiency of Frequency-Encoded OCDMA Systems With Incoherent Sources

    Science.gov (United States)

    Rochette, Martin; Ayotte, Simon; Rusch, Leslie A.

    2005-04-01

    This paper presents the spectral efficiency of frequency-encoded (FE) optical code-division multiple-access (OCDMA) systems with incoherent sources. The spectral efficiency of five code families compatible with FE-OCDMA is calculated as a function of the number of users. Analytical equations valid in the limiting case of Gaussian noise are also developed for the bit-error rate and the spectral efficiency. Among the code families considered, the modified quadratic congruence code leads to the maximum achievable spectral efficiency.

  16. Unnatural reactive amino acid genetic code additions

    Energy Technology Data Exchange (ETDEWEB)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, Christopher J.; Schultz, Peter G.

    2017-10-25

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  17. Identification of functional elements and regulatory circuits by Drosophila modENCODE

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V.; Kheradpour, Pouya; Negre, Nicolas; Eaton, Matthew L.; Landolin, Jane M.; Bristow, Christopher A.; Ma, Lijia; Lin, Michael F.; Washietl, Stefan; Arshinoff, Bradley I.; Ay, Ferhat; Meyer, Patrick E.; Robine, Nicolas; Washington, Nicole L.; Stefano, Luisa Di; Berezikov, Eugene; Brown, Christopher D.; Candeias, Rogerio; Carlson, Joseph W.; Carr, Adrian; Jungreis, Irwin; Marbach, Daniel; Sealfon, Rachel; Tolstorukov, Michael Y.; Will, Sebastian; Alekseyenko, Artyom A.; Artieri, Carlo; Booth, Benjamin W.; Brooks, Angela N.; Dai, Qi; Davis, Carrie A.; Duff, Michael O.; Feng, Xin; Gorchakov, Andrey A.; Gu, Tingting; Henikoff, Jorja G.; Kapranov, Philipp; Li, Renhua; MacAlpine, Heather K.; Malone, John; Minoda, Aki; Nordman, Jared; Okamura, Katsutomo; Perry, Marc; Powell, Sara K.; Riddle, Nicole C.; Sakai, Akiko; Samsonova, Anastasia; Sandler, Jeremy E.; Schwartz, Yuri B.; Sher, Noa; Spokony, Rebecca; Sturgill, David; van Baren, Marijke; Wan, Kenneth H.; Yang, Li; Yu, Charles; Feingold, Elise; Good, Peter; Guyer, Mark; Lowdon, Rebecca; Ahmad, Kami; Andrews, Justen; Berger, Bonnie; Brenner, Steven E.; Brent, Michael R.; Cherbas, Lucy; Elgin, Sarah C. R.; Gingeras, Thomas R.; Grossman, Robert; Hoskins, Roger A.; Kaufman, Thomas C.; Kent, William; Kuroda, Mitzi I.; Orr-Weaver, Terry; Perrimon, Norbert; Pirrotta, Vincenzo; Posakony, James W.; Ren, Bing; Russell, Steven; Cherbas, Peter; Graveley, Brenton R.; Lewis, Suzanna; Micklem, Gos; Oliver, Brian; Park, Peter J.; Celniker, Susan E.; Henikoff, Steven; Karpen, Gary H.; Lai, Eric C.; MacAlpine, David M.; Stein, Lincoln D.; White, Kevin P.; Kellis, Manolis

    2010-12-22

    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation. Several years after the complete genetic sequencing of many species, it is still unclear how to translate genomic information into a functional map of cellular and developmental programs. The Encyclopedia of DNA Elements (ENCODE) (1) and model organism ENCODE (modENCODE) (2) projects use diverse genomic assays to comprehensively annotate the Homo sapiens (human), Drosophila melanogaster (fruit fly), and Caenorhabditis elegans (worm) genomes, through systematic generation and computational integration of functional genomic data sets. Previous genomic studies in flies have made seminal contributions to our understanding of basic biological mechanisms and genome functions, facilitated by genetic, experimental, computational, and manual annotation of the euchromatic and heterochromatic genome (3), small genome size, short life cycle, and a deep knowledge of development, gene function, and chromosome biology. The functions

  18. Method for the production of l-serine using genetically engineered microorganisms deficient in serine degradation pathways

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the microbiological industry, and specifically to the production of L-serine using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes encoding for enzymes...... concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms....

  19. Diffusion tensor imaging of occult injury of optic radiation following optic neuritis in multiple sclerosis.

    Science.gov (United States)

    Chen, Jiafeng; Zhu, Lijun; Li, He; Lu, Ziwen; Chen, Xin; Fang, Shaokuan

    2016-10-01

    Multiple sclerosis (MS) is easily detected by routine magnetic resonance imaging (MRI). However, it is not possible to detect early or occult lesions in MS by routine MRI, and this may explain the inconsistency between the severity of the lesions found by MRI and the degree of clinical disability of patients with MS. The present study included 10 patients with relapsing-remitting MS and 10 healthy volunteers. Each patient underwent routine 3.0 T MRI, diffusion tensor imaging (DTI), and diffusion tensor tractography (DTT). Optic nerve and optic radiation were analyzed by DTI and DTT. The fractional anisotropy (FA), mean diffusivity (MD), λ // , and λ ┴ values were measured. In the 10 patients with MS, 7 optic nerves were affected, and 13 optic nerves were not affected. Cranial MRI showed that optic nerve thickening and hyperintensity occurred in 2 patients with MS. In the directionally encoded color maps, a hypointensive green signal in the optic nerve was observed in 3 patients with MS. The FA values were significantly lower and the MD, λ // , and λ ┴ values were significantly higher in the affected and unaffected optic nerves and optic radiations in patients with MS in comparison with controls (P0.05). Diffusion tensor imaging is sensitive in the detection of occult injury of the optic nerve and optic radiation following optic neuritis. Diffusion tensor imaging may be a useful tool for the early diagnosis, treatment and management of MS.

  20. Genetic databases and consent for use of medical records

    NARCIS (Netherlands)

    Gevers, J. K. M.

    2004-01-01

    The legislation on the Icelandic genetic database provides for an opting-out system for the collection of encoded medical information from individual medical records. From the beginning this has raised criticism, in Iceland itself and abroad. The Supreme Court has now decided that this approach of

  1. Optical multiple-image encryption based on multiplane phase retrieval and interference

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong

    2011-01-01

    In this paper, we propose a new method for optical multiple-image encryption based on multiplane phase retrieval and interference. An optical encoding system is developed in the Fresnel domain. A phase-only map is iteratively extracted based on a multiplane phase retrieval algorithm, and multiple plaintexts are simultaneously encrypted. Subsequently, the extracted phase-only map is further encrypted into two phase-only masks based on a non-iterative interference algorithm. During image decryption, the advantages and security of the proposed optical cryptosystem are analyzed. Numerical results are presented to demonstrate the validity of the proposed optical multiple-image encryption method

  2. An optimization method of relativistic backward wave oscillator using particle simulation and genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zaigao; Wang, Jianguo [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi' an, Shaanxi 710024 (China); Wang, Yue; Qiao, Hailiang; Zhang, Dianhui [Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi' an, Shaanxi 710024 (China); Guo, Weijie [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2013-11-15

    Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.

  3. Neurons Forming Optic Glomeruli Compute Figure–Ground Discriminations in Drosophila

    Science.gov (United States)

    Aptekar, Jacob W.; Keleş, Mehmet F.; Lu, Patrick M.; Zolotova, Nadezhda M.

    2015-01-01

    Many animals rely on visual figure–ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure–ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula—one of the four, primary neuropiles of the fly optic lobe—performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure–ground stimuli in a homologous manner to the behavior; “figure-like” stimuli are coded similar to one another and “ground-like” stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. PMID:25972183

  4. Demonstration of asynchronous, 40 Gbps x 4-user DPSK-OCDMA transmission using a multi-port encoder/decoder.

    Science.gov (United States)

    Kataoka, Nobuyuki; Cincotti, Gabriella; Wada, Naoya; Kitayama, Ken-ichi

    2011-12-12

    We have developed a new 8-chip, 320 Gchip/s encoder/decoder with eight input/output ports, that can be used in 40-Gb/s PON networks. The device has been to multiplex four asynchronous 40 Gb/s users, using DPSK modulation. The transmission over 50 km has been successfully demonstrated for the first time. © 2011 Optical Society of America

  5. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    Science.gov (United States)

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  6. Genetically encoded pH-indicators reveal activity-dependent cytosolic acidification of Drosophila motor nerve termini in vivo

    Science.gov (United States)

    Rossano, Adam J; Chouhan, Amit K; Macleod, Gregory T

    2013-01-01

    All biochemical processes, including those underlying synaptic function and plasticity, are pH sensitive. Cytosolic pH (pHcyto) shifts are known to accompany nerve activity in situ, but technological limitations have prevented characterization of such shifts in vivo. Genetically encoded pH-indicators (GEpHIs) allow for tissue-specific in vivo measurement of pH. We expressed three different GEpHIs in the cytosol of Drosophila larval motor neurons and observed substantial presynaptic acidification in nerve termini during nerve stimulation in situ. SuperEcliptic pHluorin was the most useful GEpHI for studying pHcyto shifts in this model system. We determined the resting pH of the nerve terminal cytosol to be 7.30 ± 0.02, and observed a decrease of 0.16 ± 0.01 pH units when the axon was stimulated at 40 Hz for 4 s. Realkalinization occurred upon cessation of stimulation with a time course of 20.54 ± 1.05 s (τ). The chemical pH-indicator 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein corroborated these changes in pHcyto. Bicarbonate-derived buffering did not contribute to buffering of acid loads from short (≤4 s) trains of action potentials but did buffer slow (∼60 s) acid loads. The magnitude of cytosolic acid transients correlated with cytosolic Ca2+ increase upon stimulation, and partial inhibition of the plasma membrane Ca2+-ATPase, a Ca2+/H+ exchanger, attenuated pHcyto shifts. Repeated stimulus trains mimicking motor patterns generated greater cytosolic acidification (∼0.30 pH units). Imaging through the cuticle of intact larvae revealed spontaneous pHcyto shifts in presynaptic termini in vivo, similar to those seen in situ during fictive locomotion, indicating that presynaptic pHcyto shifts cannot be dismissed as artifacts of ex vivo preparations. PMID:23401611

  7. A model for visual memory encoding.

    Directory of Open Access Journals (Sweden)

    Rodolphe Nenert

    Full Text Available Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA. All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN. Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  8. A model for visual memory encoding.

    Science.gov (United States)

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  9. Clinical and genetic assessment of pediatric patients with Gaucher's ...

    African Journals Online (AJOL)

    Background: Gaucher's disease (GD) is an autosomal recessive genetic disorder that results from pathogenic mutations of GBA gene encoding the enzyme glucocerebrosidase (acid b-glucosidase). Of the approximately 300 mutations associated with GD, 4 accounts for the majority of mutations seen in GD patients: N370S, ...

  10. Encoding of coordination complexes with XML.

    Science.gov (United States)

    Vinoth, P; Sankar, P

    2017-09-01

    An in-silico system to encode structure, bonding and properties of coordination complexes is developed. The encoding is achieved through a semantic XML markup frame. Composition of the coordination complexes is captured in terms of central atom and ligands. Structural information of central atom is detailed in terms of electron status of valence electron orbitals. The ligands are encoded with specific reference to the electron environment of ligand centre atoms. Behaviour of ligands to form low or high spin complexes is accomplished by assigning a Ligand Centre Value to every ligand based on the electronic environment of ligand centre atom. Chemical ontologies are used for categorization purpose and to control different hybridization schemes. Complexes formed by the central atoms of transition metal, non-transition elements belonging to s-block, p-block and f-block are encoded with a generic encoding platform. Complexes of homoleptic, heteroleptic and bridged types are also covered by this encoding system. Utility of the encoded system to predict redox electron transfer reaction in the coordination complexes is demonstrated with a simple application. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Wave-guided Optical Waveguides tracked and coupled using dynamic diffractive optics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael

    With light’s miniscule momentum, shrinking robotics down to the micro- and nano-scale regime creates opportunities for exploiting optical forces and near-field light delivery in advanced actuation and control atthe smallest physical dimensions. Advancing light-driven nano- or micro-actuation requ......With light’s miniscule momentum, shrinking robotics down to the micro- and nano-scale regime creates opportunities for exploiting optical forces and near-field light delivery in advanced actuation and control atthe smallest physical dimensions. Advancing light-driven nano- or micro...... waveguides (WOWs) [2]. As the WOWs are optically trapped and maneuvered in 3D-space, it is important to maintain efficient light-coupling through these free-standing waveguides within their operating volume [3]. We propose the use ofdynamic diffractive techniques to create focal spots that will track...... and couple to the WOWs during full volume operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking...

  12. Detection of β-lactamase encoding genes in feces, soil and water from a Brazilian pig farm.

    Science.gov (United States)

    Furlan, João Pedro Rueda; Stehling, Eliana Guedes

    2018-01-10

    β-lactam antibiotics are widely used for the treatment of different types of infections worldwide and the resistance to these antibiotics has grown sharply, which is of great concern. Resistance to β-lactams in gram-negative bacteria is mainly due to the production of β-lactamases, which are classified according to their functional activities. The aim of this study was to verify the presence of β-lactamases encoding genes in feces, soil, and water from a Brazilian pig farm. Different β-lactamases encoding genes were found, including bla CTX-M-Gp1 , bla CTX-M-Gp9 , bla SHV , bla OXA-1-like , bla GES , and bla VEB . The bla SHV and bla CTX-M-Gp1 genes have been detected in all types of samples, indicating the spread of β-lactam resistant bacteria among farm pigs and the environment around them. These results indicate that β-lactamase encoding genes belonging to the cloxacillinase, ESBL, and carbapenemase and they have high potential to spread in different sources, due to the fact that genes are closely related to mobile genetic elements, especially plasmids.

  13. Acral peeling skin syndrome resulting from a homozygous nonsense mutation in the CSTA gene encoding cystatin A.

    Science.gov (United States)

    Krunic, Aleksandar L; Stone, Kristina L; Simpson, Michael A; McGrath, John A

    2013-01-01

    Acral peeling skin syndrome (APSS) is a clinically and genetically heterogeneous disorder. We used whole-exome sequencing to identify the molecular basis of APSS in a consanguineous Jordanian-American pedigree. We identified a homozygous nonsense mutation (p.Lys22X) in the CSTA gene, encoding cystatin A, that was confirmed using Sanger sequencing. Cystatin A is a protease inhibitor found in the cornified cell envelope, and loss-of-function mutations have previously been reported in two cases of exfoliative ichthyosis. Our study expands the molecular pathology of APSS and demonstrates the value of next-generation sequencing in the genetic characterization of inherited skin diseases. © 2013 Wiley Periodicals, Inc.

  14. Constructs and methods for genome editing and genetic engineering of fungi and protists

    Science.gov (United States)

    Hittinger, Christopher Todd; Alexander, William Gerald

    2018-01-30

    Provided herein are constructs for genome editing or genetic engineering in fungi or protists, methods of using the constructs and media for use in selecting cells. The construct include a polynucleotide encoding a thymidine kinase operably connected to a promoter, suitably a constitutive promoter; a polynucleotide encoding an endonuclease operably connected to an inducible promoter; and a recognition site for the endonuclease. The constructs may also include selectable markers for use in selecting recombinations.

  15. Optical label-controlled transparent metro-access network interface

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich

    This thesis presents results obtained during the course of my PhD research on optical signal routing and interfacing between the metropolitan and access segments of optical networks. Due to both increasing capacity demands and variety of emerging services types, new technological challenges...... control. Highlights of my research include my proposal and experimental proof of principle of an optical coherent detection based optical access network architecture providing support for a large number of users over a single distribution fiber; a spectral amplitude encoded label detection technique...... are arising for seamlessly interfacing metropolitan and access networks. Therefore, in this PhD project, I have analyzed those technological challenges and identified the key aspects to be addressed. I have also proposed and experimentally verified a number of solutions to metropolitan and access networks...

  16. Emotional arousal and memory after deep encoding.

    Science.gov (United States)

    Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica

    2018-05-22

    Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been observed: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and deep-encoding on memory across three studies. In Study 1, adult participants completed a writing task (deep-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was observed for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for deep vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that deep encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.

  17. Optical colour image watermarking based on phase-truncated linear canonical transform and image decomposition

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun

    2018-05-01

    This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.

  18. Monitoring changes in genetic diversity

    CSIR Research Space (South Africa)

    Bruford, MW

    2018-01-01

    Full Text Available has thrived in many different environments over the billions of years, encoding its solutions into DNA—the heredity material. Thanks to this genetic patrimony, many species are equipped with sufficient evolutionary resi- lience to overcome rapid... for food, shelter, medicines, fuel and ecotourism income but may also include those that are ecologically important providing other key ecosystem services such as 120 M.W. Bruford et al. pollination, nutrient cycling and pest regulation (Bailey 2011...

  19. [Genetic counseling and testing for families with Alzheimer's disease].

    Science.gov (United States)

    Kowalska, Anna

    2004-01-01

    With the identification of the genes responsible for autosomal dominant early-onset familial Alzheimer's disease (FAD genes), there is a considerable interest in the application of this genetic information in medical practice through genetic testing and counseling. Pathogenic mutations in the PSEN1 and PSEN2 genes encoding presenilin-1 and -2, and the APP gene encoding amyloid b precursor protein, account for 18-50% of familial EOAD cases with autosomal dominant pattern of inheritance. A clinical algorithm of genetic testing and counseling proposed for families with AD has been presented here. A screening for mutations in the APP, PSEN1, and PSEN2 genes is available to individuals with AD symptoms and at-risk children or siblings of patients with early-onset disease determined by a known mutation. In an early-onset family, a known mutation in an affected patient puts the siblings and children at a 50% risk of inheriting the same mutation. The goal of genetic testing is to identify at-risk individuals in order to facilitate early and effective treatments in the symptomatic person based on an individual's genotype and strategies to delay the onset of disease in the presymptomatic mutation carriers. However, there are several arguments against the use of genetic testing both presymptomatically (unpredictable psychological consequences of information about a genetic defect for family members) and as a diagnostic tool for the differential diagnosis of dementia in general practice (a risk of errors in an interpretation of mutation penetrance and its secondary effects on family members, especially for novel mutations; the possibility of coexistence of another form of dementia at the presence of a mutation). Currently, APOE genotyping for presymptomatic individuals with a family history of late-onset disease is not recommended. The APOE4 allele may only confer greater risk for disease, but its presence is not conclusive for the development of AD.

  20. Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential

    Directory of Open Access Journals (Sweden)

    Amelie Perron

    2009-06-01

    Full Text Available Over the last decade, optical neuroimaging methods have been enriched by engineered biosensors derived from fluorescent protein (FP reporters fused to protein detectors that convert physiological signals into changes of intrinsic FP fluorescence. These FP-based indicators are genetically encoded, and hence targetable to specific cell populations within networks of heterologous cell types. Among this class of biosensors, the development of optical probes for membrane potential is both highly desirable and challenging. A suitable FP voltage sensor would indeed be a valuable tool for monitoring the activity of thousands of individual neurons simultaneously in a non-invasive manner. Previous prototypic genetically-encoded FP voltage indicators achieved a proof of principle but also highlighted several difficulties such as poor cell surface targeting and slow kinetics. Recently, we developed a new series of FRET-based Voltage-Sensitive Fluorescent Proteins (VSFPs, referred to as VSFP2s, with efficient targeting to the plasma membrane and high responsiveness to membrane potential signaling in excitable cells. In addition to these FRET-based voltage sensors, we also generated a third series of probes consisting of single FPs with response kinetics suitable for the optical imaging of fast neuronal signals. These newly available genetically-encoded reporters for membrane potential will be instrumental for future experimental approaches directed toward the understanding of neuronal network dynamics and information processing in the brain. Here, we review the development and current status of these novel fluorescent probes.

  1. Genetic engineering of syringyl-enriched lignin in plants

    Science.gov (United States)

    Chiang, Vincent Lee; Li, Laigeng

    2004-11-02

    The present invention relates to a novel DNA sequence, which encodes a previously unidentified lignin biosynthetic pathway enzyme, sinapyl alcohol dehydrogenase (SAD) that regulates the biosynthesis of syringyl lignin in plants. Also provided are methods for incorporating this novel SAD gene sequence or substantially similar sequences into a plant genome for genetic engineering of syringyl-enriched lignin in plants.

  2. Optical asymmetric cryptography using a three-dimensional space-based model

    International Nuclear Information System (INIS)

    Chen, Wen; Chen, Xudong

    2011-01-01

    In this paper, we present optical asymmetric cryptography combined with a three-dimensional (3D) space-based model. An optical multiple-random-phase-mask encoding system is developed in the Fresnel domain, and one random phase-only mask and the plaintext are combined as a series of particles. Subsequently, the series of particles is translated along an axial direction, and is distributed in a 3D space. During image decryption, the robustness and security of the proposed method are further analyzed. Numerical simulation results are presented to show the feasibility and effectiveness of the proposed optical image encryption method

  3. Complementary Walsh-Hadamard coded optical CDMA coder/decoders structured over arrayed-waveguide grating routers

    Science.gov (United States)

    Huang, Jen-Fa; Yang, Chao-Chin; Tseng, Shin-Pin

    2004-01-01

    In this paper, an optical code-division multiple-access (OCDMA) system with complementary Walsh-Hadamard coded optical encoder/decoder configuration structured over arrayed-waveguide grating (AWG) routers is examined. In the proposed system, each network user requires only two AWG routers to accomplish spectral encoding and decoding for complementary keying, thus, resulting a simpler and low cost system. Performance of the proposed system is analyzed by taking the effect of phase-induced intensity noise into account. The result indicates that the established system not only preserves the capability of suppressing multiple-access interference (MAI), but also improves bit-error-rate performance as compared to the conventional coders employing simple on-off keying.

  4. Cryptographic analysis on the key space of optical phase encryption algorithm based on the design of discrete random phase mask

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Li, Zengyan

    2013-07-01

    The key space of phase encryption algorithm using discrete random phase mask is investigated by numerical simulation in this paper. Random phase mask with finite and discrete phase levels is considered as the core component in most practical optical encryption architectures. The key space analysis is based on the design criteria of discrete random phase mask. The role of random amplitude mask and random phase mask in optical encryption system is identified from the perspective of confusion and diffusion. The properties of discrete random phase mask in a practical double random phase encoding scheme working in both amplitude encoding (AE) and phase encoding (PE) modes are comparably analyzed. The key space of random phase encryption algorithm is evaluated considering both the encryption quality and the brute-force attack resistibility. A method for enlarging the key space of phase encryption algorithm is also proposed to enhance the security of optical phase encryption techniques.

  5. Time-reversed ultrasonically encoded (TRUE) focusing for deep-tissue optogenetic modulation

    Science.gov (United States)

    Brake, Joshua; Ruan, Haowen; Robinson, J. Elliott; Liu, Yan; Gradinaru, Viviana; Yang, Changhuei

    2018-02-01

    The problem of optical scattering was long thought to fundamentally limit the depth at which light could be focused through turbid media such as fog or biological tissue. However, recent work in the field of wavefront shaping has demonstrated that by properly shaping the input light field, light can be noninvasively focused to desired locations deep inside scattering media. This has led to the development of several new techniques which have the potential to enhance the capabilities of existing optical tools in biomedicine. Unfortunately, extending these methods to living tissue has a number of challenges related to the requirements for noninvasive guidestar operation, speed, and focusing fidelity. Of existing wavefront shaping methods, time-reversed ultrasonically encoded (TRUE) focusing is well suited for applications in living tissue since it uses ultrasound as a guidestar which enables noninvasive operation and provides compatibility with optical phase conjugation for high-speed operation. In this paper, we will discuss the results of our recent work to apply TRUE focusing for optogenetic modulation, which enables enhanced optogenetic stimulation deep in tissue with a 4-fold spatial resolution improvement in 800-micron thick acute brain slices compared to conventional focusing, and summarize future directions to further extend the impact of wavefront shaping technologies in biomedicine.

  6. Photonic band gap materials: towards an all-optical transistor

    Science.gov (United States)

    Florescu, Marian

    2002-05-01

    The transmission of information as optical signals encoded on light waves traveling through optical fibers and optical networks is increasingly moving to shorter and shorter distance scales. In the near future, optical networking is poised to supersede conventional transmission over electric wires and electronic networks for computer-to-computer communications, chip-to-chip communications, and even on-chip communications. The ever-increasing demand for faster and more reliable devices to process the optical signals offers new opportunities in developing all-optical signal processing systems (systems in which one optical signal controls another, thereby adding "intelligence" to the optical networks). All-optical switches, two-state and many-state all-optical memories, all-optical limiters, all-optical discriminators and all-optical transistors are only a few of the many devices proposed during the last two decades. The "all-optical" label is commonly used to distinguish the devices that do not involve dissipative electronic transport and require essentially no electrical communication of information. The all-optical transistor action was first observed in the context of optical bistability [1] and consists in a strong differential gain regime, in which, for small variations in the input intensity, the output intensity has a very strong variation. This analog operation is for all-optical input what transistor action is for electrical inputs.

  7. Characterization and immunological identification of cDNA clones encoding two human DNA topoisomerase II isozymes

    International Nuclear Information System (INIS)

    Chung, T.D.Y.; Drake, F.H.; Tan, K.B.; Per, S.R.; Crooke, S.T.; Mirabelli, C.K.

    1989-01-01

    Several DNA topoisomerase II partial cDNA clones obtained from a human Raji-HN2 cDNA library were sequenced and two classes of nucleotide sequences were found. One member of the first class, SP1, was identical to an internal fragment of human HeLa cell Topo II cDNA described earlier. A member of the second class, SP11, shared extensive nucleotide (75%) and predicted peptide (92%) sequence similarities with the first two-thirds of HeLa Topo II. Each class of cDNAs hybridized to unique, nonoverlapping restriction enzyme fragments of genomic DNA from several human cell lines. Synthetic 24-mer oligonucleotide probes specific for each cDNA class hybridized to 6.5-kilobase mRNAs; furthermore, hybridization of probe specific for one class was not blocked by probe specific for the other. Antibodies raised against a synthetic SP1-encoded dodecapeptide specifically recognized the 170-kDa form of Topo II, while antibodies raised against the corresponding SP11-encoded dodecapeptide, or a second unique SP11-encoded tridecapeptide, selectively recognized the 180-kDa form of Topo II. These data provide genetic and immunochemical evidence for two Topo II isozymes

  8. The rise of photoresponsive protein technologies applications in vivo: a spotlight on zebrafish developmental and cell biology [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Renee Wei-Yan Chow

    2017-04-01

    Full Text Available The zebrafish (Danio rerio is a powerful vertebrate model to study cellular and developmental processes in vivo. The optical clarity and their amenability to genetic manipulation make zebrafish a model of choice when it comes to applying optical techniques involving genetically encoded photoresponsive protein technologies. In recent years, a number of fluorescent protein and optogenetic technologies have emerged that allow new ways to visualize, quantify, and perturb developmental dynamics. Here, we explain the principles of these new tools and describe some of their representative applications in zebrafish.

  9. Multidimensionally encoded magnetic resonance imaging.

    Science.gov (United States)

    Lin, Fa-Hsuan

    2013-07-01

    Magnetic resonance imaging (MRI) typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here, we propose the multidimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel radiofrequency coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. Copyright © 2012 Wiley Periodicals, Inc.

  10. High resolution optical DNA mapping

    Science.gov (United States)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  11. Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.

    Science.gov (United States)

    Aptekar, Jacob W; Keleş, Mehmet F; Lu, Patrick M; Zolotova, Nadezhda M; Frye, Mark A

    2015-05-13

    Many animals rely on visual figure-ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure-ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula--one of the four, primary neuropiles of the fly optic lobe--performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure-ground stimuli in a homologous manner to the behavior; "figure-like" stimuli are coded similar to one another and "ground-like" stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. Copyright © 2015 the authors 0270-6474/15/357587-13$15.00/0.

  12. Parallel encoders for pixel detectors

    International Nuclear Information System (INIS)

    Nikityuk, N.M.

    1991-01-01

    A new method of fast encoding and determining the multiplicity and coordinates of fired pixels is described. A specific example construction of parallel encodes and MCC for n=49 and t=2 is given. 16 refs.; 6 figs.; 2 tabs

  13. Experimental demonstration of SCMA-OFDM for passive optical network

    Science.gov (United States)

    Lin, Bangjiang; Tang, Xuan; Shen, Xiaohuan; Zhang, Min; Lin, Chun; Ghassemlooy, Zabih

    2017-12-01

    We introduces a novel architecture for next generation passive optical network (PON) based on the employment of sparse code multiple access (SCMA) combined with orthogonal frequency division multiplexing (OFDM) modulation, in which the binary data is directly encoded to multi-dimensional codewords and then spread over OFDM subcarriers. The feasibility of SCMA-OFDM-PON is verified with experimental demonstration. We show that the SCMA-OFDM offers 150% overloading gain in the number of optical network units compared with the orthogonal frequency division multiplexing access.

  14. Fast frequency hopping codes applied to SAC optical CDMA network

    Science.gov (United States)

    Tseng, Shin-Pin

    2015-06-01

    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  15. RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements

    NARCIS (Netherlands)

    Jore, M.M.; Brouns, S.J.J.; Oost, van der J.

    2010-01-01

    Once thought to be just a messenger that allows genetic information encoded in DNA to direct the formation of proteins, RNA (ribonucleic acid) is now known to be a highly versatile molecule that has multiple roles in cells. It can function as an enzyme, scaffold various subcellular structures, and

  16. Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch (Taeniopygia guttata.

    Directory of Open Access Journals (Sweden)

    Dennis eEckmeier

    2013-09-01

    Full Text Available The retinal image changes that occur during locomotion, the optic flow, carry information about self-motion and the three-dimensional structure of the environment. Especially fast moving animals with only little binocular vision depend on these depth cues for manoeuvring. They actively control their gaze to facilitate perception of depth based on cues in the optic flow. In the visual system of birds, nucleus rotundus neurons were originally found to respond to object motion but not to background motion. However, when background and object were both moving, responses increase the more the direction and velocity of object and background motion on the retina differed. These properties may play a role in representing depth cues in the optic flow. We therefore investigated how neurons in nucleus rotundus respond to optic flow that contains depth cues. We presented simplified and naturalistic optic flow on a panoramic LED display while recording from single neurons in nucleus rotundus of anaesthetized zebra finches. Unlike most studies on motion vision in birds, our stimuli included depth information.We found extensive responses of motion selective neurons in nucleus rotundus to optic flow stimuli. Simplified stimuli revealed preferences for optic flow reflecting translational or rotational self-motion. Naturalistic optic flow stimuli elicited complex response modulations, but the presence of objects was signalled by only few neurons. The neurons that did respond to objects in the optic flow, however, show interesting properties.

  17. Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography.

    Science.gov (United States)

    Larocque, Hugo; Gagnon-Bischoff, Jérémie; Mortimer, Dominic; Zhang, Yingwen; Bouchard, Frédéric; Upham, Jeremy; Grillo, Vincenzo; Boyd, Robert W; Karimi, Ebrahim

    2017-08-21

    The orbital angular momentum (OAM) carried by optical beams is a useful quantity for encoding information. This form of encoding has been incorporated into various works ranging from telecommunications to quantum cryptography, most of which require methods that can rapidly process the OAM content of a beam. Among current state-of-the-art schemes that can readily acquire this information are so-called OAM sorters, which consist of devices that spatially separate the OAM components of a beam. Such devices have found numerous applications in optical communications, a field that is in constant demand for additional degrees of freedom, such as polarization and wavelength, into which information can also be encoded. Here, we report the implementation of a device capable of sorting a beam based on its OAM and polarization content, which could be of use in works employing both of these degrees of freedom as information channels. After characterizing our fabricated device, we demonstrate how it can be used for quantum communications via a quantum key distribution protocol.

  18. An Intensional Concurrent Faithful Encoding of Turing Machines

    Directory of Open Access Journals (Sweden)

    Thomas Given-Wilson

    2014-10-01

    Full Text Available The benchmark for computation is typically given as Turing computability; the ability for a computation to be performed by a Turing Machine. Many languages exploit (indirect encodings of Turing Machines to demonstrate their ability to support arbitrary computation. However, these encodings are usually by simulating the entire Turing Machine within the language, or by encoding a language that does an encoding or simulation itself. This second category is typical for process calculi that show an encoding of lambda-calculus (often with restrictions that in turn simulates a Turing Machine. Such approaches lead to indirect encodings of Turing Machines that are complex, unclear, and only weakly equivalent after computation. This paper presents an approach to encoding Turing Machines into intensional process calculi that is faithful, reduction preserving, and structurally equivalent. The encoding is demonstrated in a simple asymmetric concurrent pattern calculus before generalised to simplify infinite terms, and to show encodings into Concurrent Pattern Calculus and Psi Calculi.

  19. Non-sterilized fermentation of high optically pure D-lactic acid by a genetically modified thermophilic Bacillus coagulans strain.

    Science.gov (United States)

    Zhang, Caili; Zhou, Cheng; Assavasirijinda, Nilnate; Yu, Bo; Wang, Limin; Ma, Yanhe

    2017-11-25

    Optically pure D-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on D-lactic acid fermentation compared with the extensive investigation of L-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure D-lactic acid produced at high temperature not only could reduce the costs of sterilization but also could inhibit the growth of other bacteria, such as L-lactic acid producers. Thermophilic Bacillus coagulans is an excellent producer of L-lactic acid with capable of growing at 50 °C. In our previous study, the roles of two L-lactic acid dehydrogenases have been demonstrated in B. coagulans DSM1. In this study, the function of another annotated possible L-lactate dehydrogenase gene (ldhL3) was verified to be leucine dehydrogenase with an activity of 0.16 units (μmol/min) per mg protein. Furthermore, the activity of native D-lactate dehydrogenase was too low to support efficient D-lactic acid production, even under the control of strong promoter. Finally, an engineered B. coagulans D-DSM1 strain with the capacity for efficient production of D-lactic acid was constructed by deletion of two L-lactate dehydrogenases genes (ldhL1 and ldhL2) and insertion of the D-lactate dehydrogenase gene (LdldhD) from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 at the position of ldhL1. This genetically engineered strain produced only D-lactic acid under non-sterilized condition, and finally 145 g/L of D-lactic acid was produced with an optical purity of 99.9% and a high yield of 0.98 g/g. This is the highest optically pure D-lactic acid titer produced by a thermophilic strain.

  20. 1 S.I. : Genetic pathways to Neurodegeneration Parkinson's Disease ...

    Indian Academy of Sciences (India)

    Dorit Trudler

    Parkinson's Disease: What the Model Systems Have Taught Us So Far? .... triggered by the finding that the protein α-synuclein (encoded by the SNCA gene) is a ... lower dopamine levels in the GI tract in severely constipated PD patients ..... related genetic defects even in healthy carriers, as well as the variable age of onset ...

  1. Type 3 Fimbriae Encoded on Plasmids Are Expressed from a Unique Promoter without Affecting Host Motility, Facilitating an Exceptional Phenotype That Enhances Conjugal Plasmid Transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenlokke; Riber, Leise; Kot, Witold

    2016-01-01

    Horizontal gene transfer (HGT), the transmission of genetic material to a recipient that is not the progeny of the donor, is fundamental in bacterial evolution. HGT is often mediated by mobile genetic elements such as conjugative plasmids, which may be in conflict with the chromosomal elements...... of the genome because they are independent replicons that may petition their own evolutionary strategy. Here we study differences between type 3 fimbriae encoded on wild type plasmids and in chromosomes. Using known and newly characterized plasmids we show that the expression of type 3 fimbriae encoded...... on plasmids is systematically different, as MrkH, a c-di-GMP dependent transcriptional activator is not needed for strong expression of the fimbriae. MrkH is required for expression of type 3 fimbriae of the Klebsiella pneumoniae chromosome, wherefrom the fimbriae operon (mrkABCDF) of plasmids is believed...

  2. Genetic evidence for a novel competence inhibitor in the industrially important Bacillus licheniformis.

    Science.gov (United States)

    Muth, Christine; Buchholz, Meike; Schmidt, Christina; Volland, Sonja; Meinhardt, Friedhelm

    2017-12-01

    Natural genetic competence renders bacteria able to take up and, in case there is sufficient homology to the recipient's chromosome, integrate exogenously supplied DNA. Well studied in Bacillus subtilis, genetic competence is-in several aspects-known to be differently regulated in Bacillus licheniformis. We now report on the identification of a novel, chromosomally encoded homolog of a competence inhibitor in B. licheniformis (ComI) that has hitherto only been described as a plasmid borne trait in the ancestral B. subtilis NCIB3610. Bioinformatical analysis that included 80 Bacillus strains covering 20 different species revealed a ComI encoding gene in all of the examined B. licheniformis representatives, and was identified in few among the other species investigated. The predicted ComI of B. licheniformis is a highly conserved peptide consisting of 28 amino acids. Since deletion of comI in B. licheniformis DSM13 resulted in twofold increased transformation efficiency by genetic competence and overexpression resulted in threefold decreased transformability, the function as a competence inhibitor became evident.

  3. Blind encoding into qudits

    International Nuclear Information System (INIS)

    Shaari, J.S.; Wahiddin, M.R.B.; Mancini, S.

    2008-01-01

    We consider the problem of encoding classical information into unknown qudit states belonging to any basis, of a maximal set of mutually unbiased bases, by one party and then decoding by another party who has perfect knowledge of the basis. Working with qudits of prime dimensions, we point out a no-go theorem that forbids 'shift' operations on arbitrary unknown states. We then provide the necessary conditions for reliable encoding/decoding

  4. A line code with quick-resynchronization capability and low latency for the optical data links of LHC experiments

    International Nuclear Information System (INIS)

    Deng, B; He, M; Chen, J; Guo, D; Hou, S; Teng, P-K; Li, X; Liu, C; Xiang, A C; Ye, J; Gong, D; Liu, T; You, Y

    2014-01-01

    We propose a line code that has fast resynchronization capability and low latency. Both the encoder and decoder have been implemented in FPGAs. The encoder has also been implemented in an ASIC. The latency of the whole optical link (not including the optical fiber) is estimated to be less than 73.9 ns. In the case of radiation-induced link synchronization loss, the decoder can recover the synchronization in 25 ns. The line code will be used in the ATLAS liquid argon calorimeter Phase-I trigger upgrade and can also be potentially used in other LHC experiments

  5. Codon size reduction as the origin of the triplet genetic code.

    Directory of Open Access Journals (Sweden)

    Pavel V Baranov

    Full Text Available The genetic code appears to be optimized in its robustness to missense errors and frameshift errors. In addition, the genetic code is near-optimal in terms of its ability to carry information in addition to the sequences of encoded proteins. As evolution has no foresight, optimality of the modern genetic code suggests that it evolved from less optimal code variants. The length of codons in the genetic code is also optimal, as three is the minimal nucleotide combination that can encode the twenty standard amino acids. The apparent impossibility of transitions between codon sizes in a discontinuous manner during evolution has resulted in an unbending view that the genetic code was always triplet. Yet, recent experimental evidence on quadruplet decoding, as well as the discovery of organisms with ambiguous and dual decoding, suggest that the possibility of the evolution of triplet decoding from living systems with non-triplet decoding merits reconsideration and further exploration. To explore this possibility we designed a mathematical model of the evolution of primitive digital coding systems which can decode nucleotide sequences into protein sequences. These coding systems can evolve their nucleotide sequences via genetic events of Darwinian evolution, such as point-mutations. The replication rates of such coding systems depend on the accuracy of the generated protein sequences. Computer simulations based on our model show that decoding systems with codons of length greater than three spontaneously evolve into predominantly triplet decoding systems. Our findings suggest a plausible scenario for the evolution of the triplet genetic code in a continuous manner. This scenario suggests an explanation of how protein synthesis could be accomplished by means of long RNA-RNA interactions prior to the emergence of the complex decoding machinery, such as the ribosome, that is required for stabilization and discrimination of otherwise weak triplet codon

  6. Genetics for the ophthalmologist

    Directory of Open Access Journals (Sweden)

    Karthikeyan A Sadagopan

    2012-01-01

    Full Text Available The eye has played a major role in human genomics including gene therapy. It is the fourth most common organ system after integument (skin, hair and nails, nervous system, and musculoskeletal system to be involved in genetic disorders. The eye is involved in single gene disorders and those caused by multifactorial etiology. Retinoblastoma was the first human cancer gene to be cloned. Leber hereditary optic neuropathy was the first mitochondrial disorder described. X-Linked red-green color deficiency was the first X-linked disorder described. The eye, unlike any other body organ, allows directly visualization of genetic phenomena such as skewed X-inactivation in the fundus of a female carrier of ocular albinism. Basic concepts of genetics and their application to clinical ophthalmological practice are important not only in making a precise diagnosis and appropriate referral, but also in management and genetic counseling.

  7. Encoder designed to work in harsh environments

    Energy Technology Data Exchange (ETDEWEB)

    Toop, L.

    2007-05-15

    Dynapar has developed the Acuro AX71 absolute encoder for use on offshore or land-based oil rig operations. It provides feedback on the operation of automated systems such as draw works, racking systems, rotary tables and top drives. By ensuring that automated systems function properly, this encoder responds to a need by the oil and gas industry to keep workers safe and improve efficiency, particularly for operations in rugged situations. The encoder provides feedback from motor systems to controllers, giving information about position and speed of downhole drill bits. This newly developed encoder is better than commonly used incremental encoders which are not precise in strong electrical noise environments. Rather, the absolute encoder uses a different method of reporting to the controller. A digital signal is transmitted constantly as the device operates. It is less susceptible to noise issues. It is highly accurate, tolerant of noise and is not affected by power outages. However, the absolute encoder is generally more delicate in drilling applications with high ambient temperatures and shock levels. Dynapar addressed this issue by developing compact stainless steel housing that is useful for corrosion resistance in marine applications. The AX71 absolute encoder can withstand up to 100 G of mechanical shock and ambient temperatures of up to 60 degrees C. The encoder is ATEX certified without barriers, and offers the high resolution feedback of 4,000 counts of multiturn rotation and 16,000 counts of position. 1 fig.

  8. Negative polarity illusions and the format of hierarchical encodings in memory.

    Science.gov (United States)

    Parker, Dan; Phillips, Colin

    2016-12-01

    Linguistic illusions have provided valuable insights into how we mentally navigate complex representations in memory during language comprehension. Two notable cases involve illusory licensing of agreement and negative polarity items (NPIs), where comprehenders fleetingly accept sentences with unlicensed agreement or an unlicensed NPI, but judge those same sentences as unacceptable after more reflection. Existing accounts have argued that illusions are a consequence of faulty memory access processes, and make the additional assumption that the encoding of the sentence remains fixed over time. This paper challenges the predictions made by these accounts, which assume that illusions should generalize to a broader set of structural environments and a wider range of syntactic and semantic phenomena. We show across seven reading-time and acceptability judgment experiments that NPI illusions can be reliably switched "on" and "off", depending on the amount of time from when the potential licensor is processed until the NPI is encountered. But we also find that the same profile does not extend to agreement illusions. This contrast suggests that the mechanisms responsible for switching the NPI illusion on and off are not shared across all illusions. We argue that the contrast reflects changes over time in the encoding of the semantic/pragmatic representations that can license NPIs. Just as optical illusions have been informative about the visual system, selective linguistic illusions are informative not only about the nature of the access mechanisms, but also about the nature of the encoding mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Optical modular arithmetic

    Science.gov (United States)

    Pavlichin, Dmitri S.; Mabuchi, Hideo

    2014-06-01

    Nanoscale integrated photonic devices and circuits offer a path to ultra-low power computation at the few-photon level. Here we propose an optical circuit that performs a ubiquitous operation: the controlled, random-access readout of a collection of stored memory phases or, equivalently, the computation of the inner product of a vector of phases with a binary selector" vector, where the arithmetic is done modulo 2pi and the result is encoded in the phase of a coherent field. This circuit, a collection of cascaded interferometers driven by a coherent input field, demonstrates the use of coherence as a computational resource, and of the use of recently-developed mathematical tools for modeling optical circuits with many coupled parts. The construction extends in a straightforward way to the computation of matrix-vector and matrix-matrix products, and, with the inclusion of an optical feedback loop, to the computation of a weighted" readout of stored memory phases. We note some applications of these circuits for error correction and for computing tasks requiring fast vector inner products, e.g. statistical classification and some machine learning algorithms.

  10. Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor

    Science.gov (United States)

    Gjetting, Kisten Sisse Krag; Ytting, Cecilie Karkov; Schulz, Alexander; Fuglsang, Anja Thoe

    2012-01-01

    Changes in pH are now widely accepted as a signalling mechanism in cells. In plants, proton pumps in the plasma membrane and tonoplast play a key role in regulation of intracellular pH homeostasis and maintenance of transmembrane proton gradients. Proton transport in response to external stimuli can be expected to be finely regulated spatially and temporally. With the ambition to follow such changes live, a new genetically encoded sensor, pHusion, has been developed. pHusion is especially designed for apoplastic pH measurements. It was constitutively expressed in Arabidopsis and targeted for expression in either the cytosol or the apoplast including intracellular compartments. pHusion consists of the tandem concatenation of enhanced green fluorescent protein (EGFP) and monomeric red fluorescent protein (mRFP1), and works as a ratiometric pH sensor. Live microscopy at high spatial and temporal resolution is highly dependent on appropriate immobilization of the specimen for microscopy. Medical adhesive often used in such experiments destroys cell viability in roots. Here a novel system for immobilizing Arabidopsis seedling roots for perfusion experiments is presented which does not impair cell viability. With appropriate immobilization, it was possible to follow changes of the apoplastic and cytosolic pH in mesophyll and root tissue. Rapid pH homeostasis upon external pH changes was reflected by negligible cytosolic pH fluctuations, while the apoplastic pH changed drastically. The great potential for analysing pH regulation in a whole-tissue, physiological context is demonstrated by the immediate alkalinization of the subepidermal apoplast upon external indole-3-acetic acid administration. This change is highly significant in the elongation zone compared with the root hair zone and control roots. PMID:22407646

  11. Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor.

    Science.gov (United States)

    Gjetting, Kisten Sisse Krag; Ytting, Cecilie Karkov; Schulz, Alexander; Fuglsang, Anja Thoe

    2012-05-01

    Changes in pH are now widely accepted as a signalling mechanism in cells. In plants, proton pumps in the plasma membrane and tonoplast play a key role in regulation of intracellular pH homeostasis and maintenance of transmembrane proton gradients. Proton transport in response to external stimuli can be expected to be finely regulated spatially and temporally. With the ambition to follow such changes live, a new genetically encoded sensor, pHusion, has been developed. pHusion is especially designed for apoplastic pH measurements. It was constitutively expressed in Arabidopsis and targeted for expression in either the cytosol or the apoplast including intracellular compartments. pHusion consists of the tandem concatenation of enhanced green fluorescent protein (EGFP) and monomeric red fluorescent protein (mRFP1), and works as a ratiometric pH sensor. Live microscopy at high spatial and temporal resolution is highly dependent on appropriate immobilization of the specimen for microscopy. Medical adhesive often used in such experiments destroys cell viability in roots. Here a novel system for immobilizing Arabidopsis seedling roots for perfusion experiments is presented which does not impair cell viability. With appropriate immobilization, it was possible to follow changes of the apoplastic and cytosolic pH in mesophyll and root tissue. Rapid pH homeostasis upon external pH changes was reflected by negligible cytosolic pH fluctuations, while the apoplastic pH changed drastically. The great potential for analysing pH regulation in a whole-tissue, physiological context is demonstrated by the immediate alkalinization of the subepidermal apoplast upon external indole-3-acetic acid administration. This change is highly significant in the elongation zone compared with the root hair zone and control roots.

  12. Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm.

    Science.gov (United States)

    Cooley, Clarissa Zimmerman; Haskell, Melissa W; Cauley, Stephen F; Sappo, Charlotte; Lapierre, Cristen D; Ha, Christopher G; Stockmann, Jason P; Wald, Lawrence L

    2018-01-01

    Permanent magnet arrays offer several attributes attractive for the development of a low-cost portable MRI scanner for brain imaging. They offer the potential for a relatively lightweight, low to mid-field system with no cryogenics, a small fringe field, and no electrical power requirements or heat dissipation needs. The cylindrical Halbach array, however, requires external shimming or mechanical adjustments to produce B 0 fields with standard MRI homogeneity levels (e.g., 0.1 ppm over FOV), particularly when constrained or truncated geometries are needed, such as a head-only magnet where the magnet length is constrained by the shoulders. For portable scanners using rotation of the magnet for spatial encoding with generalized projections, the spatial pattern of the field is important since it acts as the encoding field. In either a static or rotating magnet, it will be important to be able to optimize the field pattern of cylindrical Halbach arrays in a way that retains construction simplicity. To achieve this, we present a method for designing an optimized cylindrical Halbach magnet using the genetic algorithm to achieve either homogeneity (for standard MRI applications) or a favorable spatial encoding field pattern (for rotational spatial encoding applications). We compare the chosen designs against a standard, fully populated sparse Halbach design, and evaluate optimized spatial encoding fields using point-spread-function and image simulations. We validate the calculations by comparing to the measured field of a constructed magnet. The experimentally implemented design produced fields in good agreement with the predicted fields, and the genetic algorithm was successful in improving the chosen metrics. For the uniform target field, an order of magnitude homogeneity improvement was achieved compared to the un-optimized, fully populated design. For the rotational encoding design the resolution uniformity is improved by 95% compared to a uniformly populated design.

  13. System and method that suppresses intensity fluctuations for free space high-speed optical communication

    Science.gov (United States)

    Berman, Gennady P [Los Alamos, NM; Bishop, Alan R [Los Alamos, NM; Nguyen, Dinh C [Los Alamos, NM; Chernobrod, Boris M [Santa Fe, NM; Gorshkov, Vacheslav N [Kiev, UA

    2009-10-13

    A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.

  14. Balancing Inverted Pendulum by Angle Sensing Using Fuzzy Logic Supervised PID Controller Optimized by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ashutosh K. AGARWAL

    2011-10-01

    Full Text Available Genetic algorithms are robust search techniques based on the principles of evolution. A genetic algorithm maintains a population of encoded solutions and guides the population towards the optimum solution. This important property of genetic algorithm is used in this paper to stabilize the Inverted pendulum system. This paper highlights the application and stability of inverted pendulum using PID controller with fuzzy logic genetic algorithm supervisor . There are a large number of well established search techniques in use within the information technology industry. We propose a method to control inverted pendulum steady state error and overshoot using genetic algorithm technique.

  15. Effect of long-term actual spaceflight on the expression of key genes encoding serotonin and dopamine system

    Science.gov (United States)

    Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda

    The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant No. 14-04-00173.

  16. Meckel Syndrome: Genetics, Perinatal Findings, and Differential Diagnosis

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-03-01

    Full Text Available Meckel syndrome (MKS is a lethal, autosomal recessive disorder characterized by occipital encephalocele, bilateral renal cystic dysplasia, hepatic ductal proliferation, fibrosis and cysts, and polydactyly. Genetic heterogeneity of MKS has been established by three reported MKS loci, i.e., MKS1 on 17q23, MKS2 on 11q13, and MKS3 on 8q21.13-q22.1. MKS1 encodes a component of flagellar apparatus basal body proteome, which is associated with ciliary function. MKS3 encodes a seven-transmembrane receptor protein, meckelin. The identification of the MKS3 gene as well as the MKS1 gene enables molecular genetic testing for at-risk families, and allows accurate genetic counseling, carrier testing, and prenatal diagnosis. Pregnancies with MKS fetuses may be associated with an elevated maternal serum α-fetoprotein level and an abnormal screening result in the second-trimester maternal serum screening test. The classic MKS triad of occipital encephalocele, postaxial polydactyly, and bilateral enlarged multicystic kidneys can be diagnosed before the 14th gestational weeks by ultrasonography. However, later in pregnancy, severe oligohydramnios may make the diagnosis of polydactyly and encephalocele difficult. Differential diagnosis for MKS includes autosomal recessive polycystic kidney disease, trisomy 13, Smith-Lemli-Opitz syndrome, hydrolethalus syndrome, Senior-Loken syndrome, Joubert syndrome, Bardet-Biedl syndrome, and oral-facial-digital syndrome type 1. This article provides an overview of genetics, perinatal findings, and differential diagnosis of MKS. The ciliopathy underlies the pathogenesis of MKS. Prenatal diagnosis of bilateral enlarged multicystic kidneys should alert MKS and prompt a thorough investigation of central nervous system malformations and polydactyly.

  17. Tensor network states in time-bin quantum optics

    Science.gov (United States)

    Lubasch, Michael; Valido, Antonio A.; Renema, Jelmer J.; Kolthammer, W. Steven; Jaksch, Dieter; Kim, M. S.; Walmsley, Ian; García-Patrón, Raúl

    2018-06-01

    The current shift in the quantum optics community towards experiments with many modes and photons necessitates new classical simulation techniques that efficiently encode many-body quantum correlations and go beyond the usual phase-space formulation. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. We extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments.

  18. Molecular and Genetic Basis of Hereditary Connective-Tissue Diseases Accompanied by Frequent Fractures

    Directory of Open Access Journals (Sweden)

    G. T. Yakhyaeva

    2016-01-01

    Full Text Available Frequent bone fractures in infancy require the elimination of a large number (> 100 of genetic disorders. The modern diagnostic method of hereditary diseases characterized by debilitating course is a new generation sequencing. The article presents the results of molecular-genetic study conducted in 18 patients with clinical symptoms of connective tissue disorders. 10 (56% patients had mutations in the genes encoding type I collagen chains, leading to the development of osteogenesis imperfecta, 5 (28% — mutations in IV and V type collagen genes that are responsible for the development of Ehlers-Danlos syndrome. 3 (17% patients had mutations in the gene encoding fibrillin-1 protein, deficiency of which is manifested by Marfan syndrome. However, the correlation between patient's phenotype and discovered mutations in the investigated gene is established not in all cases.

  19. Electroabsorption modulators used for all-optical signal processing and labelling

    DEFF Research Database (Denmark)

    Xu, Lin

    2004-01-01

    This thesis concerns the applications of semiconductor components, primarily electroabsorption modulators (EAMs), in optical signal processing and labelling for future all optical communication networks. An introduction to electroabsorption modulators is given and several mechanisms that form...... function of an EAM is frequency dependent and the main improvement from an EAM-based regenerator is the enhancement of the ER and the suppression of the noise in a space bit. Applications of EAMs in optical label processing using various orthogonal labelling schemes are discussed. Through EAM...... encoding are –25.6/-28.1 dBm and –23.7/-21 dBm, respectively. Using an EAM for optical label insertion and a MZ-SOA for optical label erasure and payload regeneration in the ASK(10 Gb/s)/ Frequency Shift Keying (312 Mb/s) orthogonal modulation format, the complete functionality of a network node including...

  20. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ranjan [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: ranjan.k@ks3.ecs.kyoto-u.ac.jp; Izui, Kazuhiro [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: izui@prec.kyoto-u.ac.jp; Yoshimura, Masataka [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: yoshimura@prec.kyoto-u.ac.jp; Nishiwaki, Shinji [Department of Aeronautics and Astronautics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shinji@prec.kyoto-u.ac.jp

    2009-04-15

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets.

  1. Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization

    International Nuclear Information System (INIS)

    Kumar, Ranjan; Izui, Kazuhiro; Yoshimura, Masataka; Nishiwaki, Shinji

    2009-01-01

    Multilevel redundancy allocation optimization problems (MRAOPs) occur frequently when attempting to maximize the system reliability of a hierarchical system, and almost all complex engineering systems are hierarchical. Despite their practical significance, limited research has been done concerning the solving of simple MRAOPs. These problems are not only NP hard but also involve hierarchical design variables. Genetic algorithms (GAs) have been applied in solving MRAOPs, since they are computationally efficient in solving such problems, unlike exact methods, but their applications has been confined to single-objective formulation of MRAOPs. This paper proposes a multi-objective formulation of MRAOPs and a methodology for solving such problems. In this methodology, a hierarchical GA framework for multi-objective optimization is proposed by introducing hierarchical genotype encoding for design variables. In addition, we implement the proposed approach by integrating the hierarchical genotype encoding scheme with two popular multi-objective genetic algorithms (MOGAs)-the strength Pareto evolutionary genetic algorithm (SPEA2) and the non-dominated sorting genetic algorithm (NSGA-II). In the provided numerical examples, the proposed multi-objective hierarchical approach is applied to solve two hierarchical MRAOPs, a 4- and a 3-level problems. The proposed method is compared with a single-objective optimization method that uses a hierarchical genetic algorithm (HGA), also applied to solve the 3- and 4-level problems. The results show that a multi-objective hierarchical GA (MOHGA) that includes elitism and mechanism for diversity preserving performed better than a single-objective GA that only uses elitism, when solving large-scale MRAOPs. Additionally, the experimental results show that the proposed method with NSGA-II outperformed the proposed method with SPEA2 in finding useful Pareto optimal solution sets

  2. AC-600 reactor reloading pattern optimization by using genetic algorithms

    International Nuclear Information System (INIS)

    Wu Hongchun; Xie Zhongsheng; Yao Dong; Li Dongsheng; Zhang Zongyao

    2000-01-01

    The use of genetic algorithms to optimize reloading pattern of the nuclear power plant reactor is proposed. And a new encoding and translating method is given. Optimization results of minimizing core power peak and maximizing cycle length for both low-leakage and out-in loading pattern of AC-600 reactor are obtained

  3. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  4. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    International Nuclear Information System (INIS)

    Small, Juan E.; Gonzalez, Guido E.; Nagao, Karina E.; Walton, David S.; Caruso, Paul A.

    2009-01-01

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  5. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Science.gov (United States)

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  6. A Novel Optical Morse Code-Based Electronic Lock Using the Ambient Light Sensor and Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Chin-Tan Lee

    2017-02-01

    Full Text Available In this work, a novel electronic lock that can encode and decode optical signals, modulated using Morse code conventions, was developed to build a smart home security system based on the Internet of Things (IoT. There are five topics of interest in this research: (1 optical Morse code encoder; (2 optical Morse code decoder; (3 ambient light sensor circuit; (4 fuzzy controller; (5 cloud monitoring system. We take advantage of the light-emitting components as the encoder, which are readily available in hand-held mobile devices (e.g., Smart phones and photoresistors and a microcontroller as the decoder. By Wi-Fi transferring, even without a personal computer, real-time information about this lock can be uploaded to the cloud service platform, and helps users to ensure home safety on the remote monitoring system. By using the ambient light sensor and fuzzy controller in this novel optical Morse code-based electronic lock, experimental results show that the reliability of this system is much improved from 65% to 100%. That means that it is highly resistant to different illumination conditions in the work environment, and therefore all functions, including coding, emitting, receiving, decoding, uploading and cloud monitoring, can work well. Furthermore, besides the convenience and cost reduction, by incorporating traditional keys into smart phones, as a consumer electronics, our proposed system is suitable for users of all ages because of a user-friendly operation interface.

  7. Optical Finite Element Processor

    Science.gov (United States)

    Casasent, David; Taylor, Bradley K.

    1986-01-01

    A new high-accuracy optical linear algebra processor (OLAP) with many advantageous features is described. It achieves floating point accuracy, handles bipolar data by sign-magnitude representation, performs LU decomposition using only one channel, easily partitions and considers data flow. A new application (finite element (FE) structural analysis) for OLAPs is introduced and the results of a case study presented. Error sources in encoded OLAPs are addressed for the first time. Their modeling and simulation are discussed and quantitative data are presented. Dominant error sources and the effects of composite error sources are analyzed.

  8. Molecular evolution of avian reovirus: evidence for genetic diversity and reassortment of the S-class genome segments and multiple cocirculating lineages

    International Nuclear Information System (INIS)

    Liu, Hung J.; Lee, Long H.; Hsu, Hsiao W.; Kuo, Liam C.; Liao, Ming H.

    2003-01-01

    Nucleotide sequences of the S-class genome segments of 17 field-isolates and vaccine strains of avian reovirus (ARV) isolated over a 23-year period from different hosts, pathotypes, and geographic locations were examined and analyzed to define phylogenetic profiles and evolutionary mechanism. The S1 genome segment showed noticeably higher divergence than the other S-class genes. The σC-encoding gene has evolved into six distinct lineages. In contrast, the other S-class genes showed less divergence than that of the σC-encoding gene and have evolved into two to three major distinct lineages, respectively. Comparative sequence analysis provided evidence indicating extensive sequence divergence between ARV and other orthoreoviruses. The evolutionary trees of each gene were distinct, suggesting that these genes evolve in an independent manner. Furthermore, variable topologies were the result of frequent genetic reassortment among multiple cocirculating lineages. Results showed genetic diversity correlated more closely with date of isolation and geographic sites than with host species and pathotypes. This is the first evidence demonstrating genetic variability among circulating ARVs through a combination of evolutionary mechanisms involving multiple cocirculating lineages and genetic reassortment. The evolutionary rates and patterns of base substitutions were examined. The evolutionary rate for the σC-encoding gene and σC protein was higher than for the other S-class genes and other family of viruses. With the exception of the σC-encoding gene, which nonsynonymous substitutions predominate over synonymous, the evolutionary process of the other S-class genes can be explained by the neutral theory of molecular evolution. Results revealed that synonymous substitutions predominate over nonsynonymous in the S-class genes, even though genetic diversity and substitution rates vary among the viruses

  9. Application of genetic algorithm in the fuel management optimization for the high flux engineering test reactor

    International Nuclear Information System (INIS)

    Shi Xueming; Wu Hongchun; Sun Shouhua; Liu Shuiqing

    2003-01-01

    The in-core fuel management optimization model based on the genetic algorithm has been established. An encode/decode technique based on the assemblies position is presented according to the characteristics of HFETR. Different reproduction strategies have been studied. The expert knowledge and the adaptive genetic algorithms are incorporated into the code to get the optimized loading patterns that can be used in HFETR

  10. The Influence of Genetics on Cystic Fibrosis Phenotypes

    Science.gov (United States)

    Knowles, Michael R.; Drumm, Mitchell

    2012-01-01

    Technological advances in genetics have made feasible and affordable large studies to identify genetic variants that cause or modify a trait. Genetic studies have been carried out to assess variants in candidate genes, as well as polymorphisms throughout the genome, for their associations with heritable clinical outcomes of cystic fibrosis (CF), such as lung disease, meconium ileus, and CF-related diabetes. The candidate gene approach has identified some predicted relationships, while genome-wide surveys have identified several genes that would not have been obvious disease-modifying candidates, such as a methionine sulfoxide transferase gene that influences intestinal obstruction, or a region on chromosome 11 proximate to genes encoding a transcription factor and an apoptosis controller that associates with lung function. These unforeseen associations thus provide novel insight into disease pathophysiology, as well as suggesting new therapeutic strategies for CF. PMID:23209180

  11. A design for an internet router with a digital optical data plane

    Science.gov (United States)

    Touch, Joe; Bannister, Joseph; Suryaputra, Stephen; Willner, Alan E.

    2013-12-01

    This paper presents a complete design for an optical Internet router based on decomposing the steps required for IP packet forwarding. Implementations of hopcount decrement and header matching are integrated with a simulation-based approach to variable-length packet merging that avoids recirculation, resulting in an all-optical data plane. A method for IPv4 checksum computation is introduced, and this and previously designed components are extended from binary to higher-density (multiple bits per symbol) encodings. The implications of this design are considered, including the potential for chip-level and system integration, as well as the requirements of basic optical processing components.

  12. Chemical Space of DNA-Encoded Libraries.

    Science.gov (United States)

    Franzini, Raphael M; Randolph, Cassie

    2016-07-28

    In recent years, DNA-encoded chemical libraries (DECLs) have attracted considerable attention as a potential discovery tool in drug development. Screening encoded libraries may offer advantages over conventional hit discovery approaches and has the potential to complement such methods in pharmaceutical research. As a result of the increased application of encoded libraries in drug discovery, a growing number of hit compounds are emerging in scientific literature. In this review we evaluate reported encoded library-derived structures and identify general trends of these compounds in relation to library design parameters. We in particular emphasize the combinatorial nature of these libraries. Generally, the reported molecules demonstrate the ability of this technology to afford hits suitable for further lead development, and on the basis of them, we derive guidelines for DECL design.

  13. Video encoder/decoder for encoding/decoding motion compensated images

    NARCIS (Netherlands)

    1996-01-01

    Video encoder and decoder, provided with a motion compensator for motion-compensated video coding or decoding in which a picture is coded or decoded in blocks in alternately horizontal and vertical steps. The motion compensator is provided with addressing means (160) and controlled multiplexers

  14. Cloning of gene-encoded stem bromelain on system coming from Pichia pastoris as therapeutic protein candidate

    Science.gov (United States)

    Yusuf, Y.; Hidayati, W.

    2018-01-01

    The process of identifying bacterial recombination using PCR, and restriction, and then sequencing process was done after identifying the bacteria. This research aimed to get a yeast cell of Pichia pastoris which has an encoder gene of stem bromelain enzyme. The production of recombinant stem bromelain enzymes using yeast cells of P. pastoris can produce pure bromelain rod enzymes and have the same conformation with the enzyme’s conformation in pineapple plants. This recombinant stem bromelain enzyme can be used as a therapeutic protein in inflammatory, cancer and degenerative diseases. This study was an early stage of a step series to obtain bromelain rod protein derived from pineapple made with genetic engineering techniques. This research was started by isolating the RNA of pineapple stem which was continued with constructing cDNA using reserve transcriptase-PCR technique (RT-PCR), doing the amplification of bromelain enzyme encoder gene with PCR technique using a specific premiere couple which was designed. The process was continued by cloning into bacterium cells of Escherichia coli. A vector which brought the encoder gene of stem bromelain enzyme was inserted into the yeast cell of P. pastoris and was continued by identifying the yeast cell of P. pastoris which brought the encoder gene of stem bromelain enzyme. The research has not found enzyme gene of stem bromelain in yeast cell of P. pastoris yet. The next step is repeating the process by buying new reagent; RNase inhibitor, and buying liquid nitrogen.

  15. Key Players in the Genetic Switch of Bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Alsing, Anne; Pedersen, Margit; Sneppen, Kim

    2011-01-01

    the bistable genetic switch of bacteriophage TP901-1 through experiments and statistical mechanical modeling. We examine the activity of the lysogenic promoter Pr at different concentrations of the phage repressor, CI, and compare the effect of CI on Pr in the presence or absence of the phage-encoded MOR...

  16. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission.

    Science.gov (United States)

    Kao, Hsuan-Yun; Tsai, Cheng-Ting; Leong, Shan-Fong; Peng, Chun-Yen; Chi, Yu-Chieh; Huang, Jian Jang; Kuo, Hao-Chung; Shih, Tien-Tsorng; Jou, Jau-Ji; Cheng, Wood-Hi; Wu, Chao-Hsin; Lin, Gong-Ru

    2017-07-10

    For high-speed optical OFDM transmission applications, a comprehensive comparison of the homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest emission aperture of 11 μm reveals the highest differential quantum efficiency which provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of only 3 μm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat accumulation. After optimization, with the trade-off set between the receiving signal-to-noise ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m OM4-MMF with same material structure but exhibits different oxide-layer confined gain cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 dB.

  17. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  18. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C

    2016-10-05

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Authors.

  19. Acousto-optic modulation and opto-acoustic gating in piezo-optomechanical circuits

    Science.gov (United States)

    Balram, Krishna C.; Davanço, Marcelo I.; Ilic, B. Robert; Kyhm, Ji-Hoon; Song, Jin Dong; Srinivasan, Kartik

    2017-01-01

    Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modelled through the coupled mode equations of cavity optomechanics. PMID:28580373

  20. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries.

    Science.gov (United States)

    Franzini, Raphael M; Neri, Dario; Scheuermann, Jörg

    2014-04-15

    DNA-encoded chemical libraries (DECLs) represent a promising tool in drug discovery. DECL technology allows the synthesis and screening of chemical libraries of unprecedented size at moderate costs. In analogy to phage-display technology, where large antibody libraries are displayed on the surface of filamentous phage and are genetically encoded in the phage genome, DECLs feature the display of individual small organic chemical moieties on DNA fragments serving as amplifiable identification barcodes. The DNA-tag facilitates the synthesis and allows the simultaneous screening of very large sets of compounds (up to billions of molecules), because the hit compounds can easily be identified and quantified by PCR-amplification of the DNA-barcode followed by high-throughput DNA sequencing. Several approaches have been used to generate DECLs, differing both in the methods used for library encoding and for the combinatorial assembly of chemical moieties. For example, DECLs can be used for fragment-based drug discovery, displaying a single molecule on DNA or two chemical moieties at the extremities of complementary DNA strands. DECLs can vary substantially in the chemical structures and the library size. While ultralarge libraries containing billions of compounds have been reported containing four or more sets of building blocks, also smaller libraries have been shown to be efficient for ligand discovery. In general, it has been found that the overall library size is a poor predictor for library performance and that the number and diversity of the building blocks are rather important indicators. Smaller libraries consisting of two to three sets of building blocks better fulfill the criteria of drug-likeness and often have higher quality. In this Account, we present advances in the DECL field from proof-of-principle studies to practical applications for drug discovery, both in industry and in academia. DECL technology can yield specific binders to a variety of target

  1. Functional analysis of the Gonococcal Genetic Island of Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Emilia Pachulec

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen that is responsible for the sexually-transmitted disease gonorrhea. N. gonorrhoeae encodes a T4SS within the Gonococcal Genetic Island (GGI, which secretes ssDNA directly into the external milieu. Type IV secretion systems (T4SSs play a role in horizontal gene transfer and delivery of effector molecules into target cells. We demonstrate that GGI-like T4SSs are present in other β-proteobacteria, as well as in α- and γ-proteobacteria. Sequence comparison of GGI-like T4SSs reveals that the GGI-like T4SSs form a highly conserved unit that can be found located both on chromosomes and on plasmids. To better understand the mechanism of DNA secretion by N. gonorrhoeae, we performed mutagenesis of all genes encoded within the GGI, and studied the effects of these mutations on DNA secretion. We show that genes required for DNA secretion are encoded within the yaa-atlA and parA-parB regions, while genes encoded in the yfeB-exp1 region could be deleted without any effect on DNA secretion. Genes essential for DNA secretion are encoded within at least four different operons.

  2. Implementing BosonSampling with time-bin encoding: Analysis of loss, mode mismatch, and time jitter

    Science.gov (United States)

    Motes, Keith R.; Dowling, Jonathan P.; Gilchrist, Alexei; Rohde, Peter P.

    2015-11-01

    It was recently shown by Motes, Gilchrist, Dowling, and Rohde [Phys. Rev. Lett. 113, 120501 (2014), 10.1103/PhysRevLett.113.120501] that a time-bin encoded fiber-loop architecture can implement an arbitrary passive linear optics transformation. This was shown in the case of an ideal scheme whereby the architecture has no sources of error. In any realistic implementation, however, physical errors are present, which corrupt the output of the transformation. We investigate the dominant sources of error in this architecture—loss and mode mismatch—and consider how it affects the BosonSampling protocol, a key application for passive linear optics. For our loss analysis we consider two major components that contribute to loss—fiber and switches—and calculate how this affects the success probability and fidelity of the device. Interestingly, we find that errors due to loss are not uniform (unique to time-bin encoding), which asymmetrically biases the implemented unitary. Thus loss necessarily limits the class of unitaries that may be implemented, and therefore future implementations must prioritize minimizing loss rates if arbitrary unitaries are to be implemented. Our formalism for mode mismatch is generalized to account for various phenomenon that may cause mode mismatch, but we focus on two—errors in fiber-loop lengths and time jitter of the photon source. These results provide a guideline for how well future experimental implementations might perform in light of these error mechanisms.

  3. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Pineros, M.

    2005-01-01

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  4. The frequency of genes encoding three putative group B streptococcal virulence factors among invasive and colonizing isolates

    Directory of Open Access Journals (Sweden)

    Borchardt Stephanie M

    2006-07-01

    Full Text Available Abstract Background Group B Streptococcus (GBS causes severe infections in very young infants and invasive disease in pregnant women and adults with underlying medical conditions. GBS pathogenicity varies between and within serotypes, with considerable variation in genetic content between strains. Three proteins, Rib encoded by rib, and alpha and beta C proteins encoded by bca and bac, respectively, have been suggested as potential vaccine candidates for GBS. It is not known, however, whether these genes occur more frequently in invasive versus colonizing GBS strains. Methods We screened 162 invasive and 338 colonizing GBS strains from different collections using dot blot hybridization to assess the frequency of bca, bac and rib. All strains were defined by serotyping for capsular type, and frequency differences were tested using the Chi square test. Results Genes encoding the beta C protein (bac and Rib (rib occurred at similar frequencies among invasive and colonizing isolates, bac (20% vs. 23%, and rib (28% vs. 20%, while the alpha (bca C protein was more frequently found in colonizing strains (46% vs, invasive (29%. Invasive strains were associated with specific serotype/gene combinations. Conclusion Novel virulence factors must be identified to better understand GBS disease.

  5. Bacillus subtilis IolQ (DegA) is a transcriptional repressor of iolX encoding NAD+-dependent scyllo-inositol dehydrogenase.

    Science.gov (United States)

    Kang, Dong-Min; Michon, Christophe; Morinaga, Tetsuro; Tanaka, Kosei; Takenaka, Shinji; Ishikawa, Shu; Yoshida, Ken-Ichi

    2017-07-11

    Bacillus subtilis is able to utilize at least three inositol stereoisomers as carbon sources, myo-, scyllo-, and D-chiro-inositol (MI, SI, and DCI, respectively). NAD + -dependent SI dehydrogenase responsible for SI catabolism is encoded by iolX. Even in the absence of functional iolX, the presence of SI or MI in the growth medium was found to induce the transcription of iolX through an unknown mechanism. Immediately upstream of iolX, there is an operon that encodes two genes, yisR and iolQ (formerly known as degA), each of which could encode a transcriptional regulator. Here we performed an inactivation analysis of yisR and iolQ and found that iolQ encodes a repressor of the iolX transcription. The coding sequence of iolQ was expressed in Escherichia coli and the gene product was purified as a His-tagged fusion protein, which bound to two sites within the iolX promoter region in vitro. IolQ is a transcriptional repressor of iolX. Genetic evidences allowed us to speculate that SI and MI might possibly be the intracellular inducers, however they failed to antagonize DNA binding of IolQ in in vitro experiments.

  6. Three-dimensional vectorial multifocal arrays created by pseudo-period encoding

    Science.gov (United States)

    Zeng, Tingting; Chang, Chenliang; Chen, Zhaozhong; Wang, Hui-Tian; Ding, Jianping

    2018-06-01

    Multifocal arrays have been attracting considerable attention recently owing to their potential applications in parallel optical tweezers, parallel single-molecule orientation determination, parallel recording and multifocal multiphoton microscopy. However, the generation of vectorial multifocal arrays with a tailorable structure and polarization state remains a great challenge, and reports on multifocal arrays have hitherto been restricted either to scalar focal spots without polarization versatility or to regular arrays with fixed spacing. In this work, we propose a specific pseudo-period encoding technique to create three-dimensional (3D) vectorial multifocal arrays with the ability to manipulate the position, polarization state and intensity of each focal spot. We experimentally validated the flexibility of our approach in the generation of 3D vectorial multiple spots with polarization multiplicity and position tunability.

  7. Multiplexed fluorescent microarray for human salivary protein analysis using polymer microspheres and fiber-optic bundles.

    Science.gov (United States)

    Nie, Shuai; Benito-Peña, Elena; Zhang, Huaibin; Wu, Yue; Walt, David R

    2013-10-10

    Herein, we describe a protocol for simultaneously measuring six proteins in saliva using a fiber-optic microsphere-based antibody array. The immuno-array technology employed combines the advantages of microsphere-based suspension array fabrication with the use of fluorescence microscopy. As described in the video protocol, commercially available 4.5 μm polymer microspheres were encoded into seven different types, differentiated by the concentration of two fluorescent dyes physically trapped inside the microspheres. The encoded microspheres containing surface carboxyl groups were modified with monoclonal capture antibodies through EDC/NHS coupling chemistry. To assemble the protein microarray, the different types of encoded and functionalized microspheres were mixed and randomly deposited in 4.5 μm microwells, which were chemically etched at the proximal end of a fiber-optic bundle. The fiber-optic bundle was used as both a carrier and for imaging the microspheres. Once assembled, the microarray was used to capture proteins in the saliva supernatant collected from the clinic. The detection was based on a sandwich immunoassay using a mixture of biotinylated detection antibodies for different analytes with a streptavidin-conjugated fluorescent probe, R-phycoerythrin. The microarray was imaged by fluorescence microscopy in three different channels, two for microsphere registration and one for the assay signal. The fluorescence micrographs were then decoded and analyzed using a homemade algorithm in MATLAB.

  8. Optical spin-1 chain and its use as a quantum-computational wire

    International Nuclear Information System (INIS)

    Darmawan, Andrew S.; Bartlett, Stephen D.

    2010-01-01

    Measurement-based quantum computing, a powerful alternative to the standard circuit model, proceeds using only local adaptive measurements on a highly entangled resource state of many spins on a graph or lattice. Along with the canonical cluster state, the valence-bond solid ground state on a chain of spin-1 particles, studied by Affleck, Kennedy, Lieb, and Tasaki (AKLT), is such a resource state. We propose a simulation of this AKLT state using linear optics, wherein we can make use of the high-fidelity projective measurements that are commonplace in quantum-optical experiments, and describe how quantum logic gates can be performed on this chain. In our proposed implementation, the spin-1 particles comprising the AKLT state are encoded on polarization biphotons: three-level systems consisting of pairs of polarized photons in the same spatio-temporal mode. A logical qubit encoded on the photonic AKLT state can be initialized, read out, and have an arbitrary single-qubit unitary applied to it by performing projective measurements on the constituent biphotons. For MBQC, biphoton measurements are required which cannot be deterministically performed using only linear optics and photodetection.

  9. Encoding entanglement-assisted quantum stabilizer codes

    International Nuclear Information System (INIS)

    Wang Yun-Jiang; Bai Bao-Ming; Li Zhuo; Xiao He-Ling; Peng Jin-Ye

    2012-01-01

    We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n 2 ) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers. (general)

  10. Optical Array Processor: Laboratory Results

    Science.gov (United States)

    Casasent, David; Jackson, James; Vaerewyck, Gerard

    1987-01-01

    A Space Integrating (SI) Optical Linear Algebra Processor (OLAP) is described and laboratory results on its performance in several practical engineering problems are presented. The applications include its use in the solution of a nonlinear matrix equation for optimal control and a parabolic Partial Differential Equation (PDE), the transient diffusion equation with two spatial variables. Frequency-multiplexed, analog and high accuracy non-base-two data encoding are used and discussed. A multi-processor OLAP architecture is described and partitioning and data flow issues are addressed.

  11. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner

    DEFF Research Database (Denmark)

    Alexiadis, V; Waldmann, T; Andersen, Jens S.

    2000-01-01

    The structure of chromatin regulates the genetic activity of the underlying DNA sequence. We report here that the protein encoded by the proto-oncogene DEK, which is involved in acute myelogenous leukemia, induces alterations of the superhelical density of DNA in chromatin. The change in topology...

  12. Markerless Escherichia coli rrn Deletion Strains for Genetic Determination of Ribosomal Binding Sites

    DEFF Research Database (Denmark)

    Quan, Selwyn; Skovgaard, Ole; McLaughlin, Robert E

    2015-01-01

    Single-copy rrn strains facilitate genetic ribosomal studies in Escherichia coli. Consecutive markerless deletion of rrn operons resulted in slower growth upon inactivation of the fourth copy, which was reversed by supplying transfer RNA genes encoded in rrn operons in trans. Removal of the sixth...

  13. Genetics of Vitiligo

    Science.gov (United States)

    Spritz, Richard; Andersen, Genevieve

    2016-01-01

    Synopsis Vitiligo is “complex disorder” (also termed polygenic and multifactorial), reflecting simultaneous contributions of multiple genetic risk factors and environmental triggers. Large-scale genome-wide association studies, principally in European-derived whites and in Chinese, have discovered approximately 50 different genetic loci that contribute to vitiligo risk, some of which also contribute to other autoimmune diseases that are epidemiologically associated with vitiligo. At many of these vitiligo susceptibility loci the corresponding relevant genes have now been identified, and for some of these genes the specific DNA sequence variants that contribute to vitiligo risk are also now known. A large fraction of these genes encode proteins involved in immune regulation, a number of others play roles in cellular apoptosis, and still others are involved in regulating functions of melanocytes. For this last group, there appears to be an opposite relationship between susceptibility to vitiligo and susceptibility to melanoma, suggesting that vitiligo may engage a normal mechanism of immune surveillance for melanoma. While many of the specific biologic mechanisms through which these genetic factors operate to cause vitiligo remain to be elucidated, it is now clear that vitiligo is an autoimmune disease involving a complex relationship between programming and function of the immune system, aspects of the melanocyte autoimmune target, and dysregulation of the immune response. PMID:28317533

  14. Molecular mechanisms for protein-encoded inheritance

    Science.gov (United States)

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  15. Beyond initial encoding: Measures of the post-encoding status of memory traces predict long-term recall in infancy

    OpenAIRE

    Pathman, Thanujeni; Bauer, Patricia J.

    2012-01-01

    The first years of life are witness to rapid changes in long-term recall ability. In the present research, we contributed to explanation of the changes by testing the absolute and relative contributions to long-term recall of encoding and post-encoding processes. Using elicited imitation, we sampled the status of 16-, 20-, and 24-month-old infants’ memory representations at various time points after experience of events. In Experiment 1, infants were tested immediately, 1 week after encoding,...

  16. Dual beam encoded extended fractional Fourier transform security ...

    Indian Academy of Sciences (India)

    This paper describes a simple method for making dual beam encoded extended fractional Fourier transform (EFRT) security holograms. The hologram possesses different stages of encoding so that security features are concealed and remain invisible to the counterfeiter. These concealed and encoded anticounterfeit ...

  17. Sol-Gel Material-Enabled Electro-Optic Polymer Modulators

    Science.gov (United States)

    Himmelhuber, Roland; Norwood, Robert A.; Enami, Yasufumi; Peyghambarian, Nasser

    2015-01-01

    Sol-gels are an important material class, as they provide easy modification of material properties, good processability and are easy to synthesize. In general, an electro-optic (EO) modulator transforms an electrical signal into an optical signal. The incoming electrical signal is most commonly information encoded in a voltage change. This voltage change is then transformed into either a phase change or an intensity change in the light signal. The less voltage needed to drive the modulator and the lower the optical loss, the higher the link gain and, therefore, the better the performance of the modulator. In this review, we will show how sol-gels can be used to enhance the performance of electro-optic modulators by allowing for designs with low optical loss, increased poling efficiency and manipulation of the electric field used for driving the modulator. The optical loss is influenced by the propagation loss in the device, as well as the losses occurring during fiber coupling in and out of the device. In both cases, the use of sol-gel materials can be beneficial due to the wide range of available refractive indices and low optical attenuation. The influence of material properties and synthesis conditions on the device performance will be discussed. PMID:26225971

  18. The Arabic Diatessaron Project: Digitalizing, Encoding, Lemmatization

    Directory of Open Access Journals (Sweden)

    Giuliano Lancioni

    2016-04-01

    Full Text Available The Arabic Diatessaron Project (henceforth ADP is an international research project in Digital Humanities that aims to collect, digitalise and encode all known manuscripts of the Arabic Diatessaron (henceforth AD, a text that has been relatively neglected in scholarly research. ADP’s final goal is to provide a number of tools that can enable scholars to effectively query, compare and investigate all known variants of the text that will be encoded as far as possible in compliance with the Text Encoding Initiative (TEI guidelines. The paper addresses a number of issues involved in the process of digitalising manuscripts included in the two existing editions (Ciasca 1888 and Marmardji 1935, adding variants in unedited manuscripts, encoding and lemmatising the text. Issues involved in the design of the ADP include presentation of variants, choice of the standard text, applicability of TEI guidelines, automatic translation between different encodings, cross-edition concordances and principles of lemmatisation.

  19. Biosynthesis of the 22nd Genetically Encoded Amino Acid Pyrrolysine: Structure and Reaction Mechanism of PylC at 1.5Å Resolution

    KAUST Repository

    Quitterer, Felix; List, Anja; Beck, Philipp; Bacher, Adelbert; Groll, Michael

    2012-01-01

    The second step in the biosynthesis of the 22nd genetically encoded amino acid pyrrolysine (Pyl) is catalyzed by PylC that forms the pseudopeptide l-lysine-Nε-3R-methyl-d-ornithine. Here, we present six crystal structures of the monomeric active ligase in complex with substrates, reaction intermediates, and products including ATP, the non-hydrolyzable ATP analogue 5′-adenylyl-β-γ-imidodiphosphate, ADP, d-ornithine (d-Orn), l-lysine (Lys), phosphorylated d-Orn, l-lysine-Nε-d-ornithine, inorganic phosphate, carbonate, and Mg2 +. The overall structure of PylC reveals similarities to the superfamily of ATP-grasp enzymes; however, there exist unique structural and functional features for a topological control of successive substrate entry and product release. Furthermore, the presented high-resolution structures provide detailed insights into the reaction mechanism of isopeptide bond formation starting with phosphorylation of d-Orn by transfer of a phosphate moiety from activated ATP. The binding of Lys to the enzyme complex is then followed by an SN2 reaction resulting in l-lysine-Nε-d-ornithine and inorganic phosphate. Surprisingly, PylC harbors two adenine nucleotides bound at the active site, what has not been observed in any ATP-grasp protein analyzed to date. Whereas one ATP molecule is involved in catalysis, the second adenine nucleotide functions as a selective anchor for the C- and N-terminus of the Lys substrate and is responsible for protein stability as shown by mutagenesis. © 2012 Elsevier Ltd.

  20. Biosynthesis of the 22nd Genetically Encoded Amino Acid Pyrrolysine: Structure and Reaction Mechanism of PylC at 1.5Å Resolution

    KAUST Repository

    Quitterer, Felix

    2012-12-01

    The second step in the biosynthesis of the 22nd genetically encoded amino acid pyrrolysine (Pyl) is catalyzed by PylC that forms the pseudopeptide l-lysine-Nε-3R-methyl-d-ornithine. Here, we present six crystal structures of the monomeric active ligase in complex with substrates, reaction intermediates, and products including ATP, the non-hydrolyzable ATP analogue 5′-adenylyl-β-γ-imidodiphosphate, ADP, d-ornithine (d-Orn), l-lysine (Lys), phosphorylated d-Orn, l-lysine-Nε-d-ornithine, inorganic phosphate, carbonate, and Mg2 +. The overall structure of PylC reveals similarities to the superfamily of ATP-grasp enzymes; however, there exist unique structural and functional features for a topological control of successive substrate entry and product release. Furthermore, the presented high-resolution structures provide detailed insights into the reaction mechanism of isopeptide bond formation starting with phosphorylation of d-Orn by transfer of a phosphate moiety from activated ATP. The binding of Lys to the enzyme complex is then followed by an SN2 reaction resulting in l-lysine-Nε-d-ornithine and inorganic phosphate. Surprisingly, PylC harbors two adenine nucleotides bound at the active site, what has not been observed in any ATP-grasp protein analyzed to date. Whereas one ATP molecule is involved in catalysis, the second adenine nucleotide functions as a selective anchor for the C- and N-terminus of the Lys substrate and is responsible for protein stability as shown by mutagenesis. © 2012 Elsevier Ltd.

  1. Design and development of the IBL-BOC firmware for the ATLAS Pixel IBL optical datalink system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356268

    The Insertable $b$-Layer (IBL) is the first upgrade of the ATLAS Pixel detector at the LHC. It will be installed in the Pixel detector in 2013. The IBL will use a new sensor and readout technology, therefore the readout components of the current Pixel detector are redesigned for the readout of the IBL. In this diploma thesis the design and development of the firmware for the new IBL Back-of-Crate card (IBL-BOC) are described. The IBL-BOC is located on the off-detector side of the readout and performs the optical-electrical conversion and vice versa for the optical connection to and from the detector. To process the data transmitted to and received from the detector, the IBL-BOC uses multiple Field Programmable Gate Arrays (FPGA). The transmitted signal is a 40~Mb/s BiPhase Mark (BPM) encoded data stream, providing the timing, trigger and control to the detector. The received signal is a 160~Mb/s 8b10b encoded data stream, containing data from the detector. The IBL-BOC encodes and decodes these data streams. T...

  2. Using XML to encode TMA DES metadata

    Directory of Open Access Journals (Sweden)

    Oliver Lyttleton

    2011-01-01

    Full Text Available Background: The Tissue Microarray Data Exchange Specification (TMA DES is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  3. Using XML to encode TMA DES metadata.

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs.

  4. Using XML to encode TMA DES metadata

    Science.gov (United States)

    Lyttleton, Oliver; Wright, Alexander; Treanor, Darren; Lewis, Paul

    2011-01-01

    Background: The Tissue Microarray Data Exchange Specification (TMA DES) is an XML specification for encoding TMA experiment data. While TMA DES data is encoded in XML, the files that describe its syntax, structure, and semantics are not. The DTD format is used to describe the syntax and structure of TMA DES, and the ISO 11179 format is used to define the semantics of TMA DES. However, XML Schema can be used in place of DTDs, and another XML encoded format, RDF, can be used in place of ISO 11179. Encoding all TMA DES data and metadata in XML would simplify the development and usage of programs which validate and parse TMA DES data. XML Schema has advantages over DTDs such as support for data types, and a more powerful means of specifying constraints on data values. An advantage of RDF encoded in XML over ISO 11179 is that XML defines rules for encoding data, whereas ISO 11179 does not. Materials and Methods: We created an XML Schema version of the TMA DES DTD. We wrote a program that converted ISO 11179 definitions to RDF encoded in XML, and used it to convert the TMA DES ISO 11179 definitions to RDF. Results: We validated a sample TMA DES XML file that was supplied with the publication that originally specified TMA DES using our XML Schema. We successfully validated the RDF produced by our ISO 11179 converter with the W3C RDF validation service. Conclusions: All TMA DES data could be encoded using XML, which simplifies its processing. XML Schema allows datatypes and valid value ranges to be specified for CDEs, which enables a wider range of error checking to be performed using XML Schemas than could be performed using DTDs. PMID:21969921

  5. Genetics in Ophthalmology III – Posterior Segment Diseases

    Directory of Open Access Journals (Sweden)

    Canan Aslı Utine

    2012-10-01

    Full Text Available Genetic diseases are congenital or acquired hereditary diseases that result from structural/functional disorders of the human genome. Today, the genetic factors that play a role in many diseases are being highlighted with the rapid progress in the field of genetics science. It becomes increasingly important that physicians from all disciplines have knowledge about the basic principles of genetics, patterns of inheritance, etc., so that they can follow the new developments. In genetic eye diseases, ophthalmologists should know the basic clinical and recently rapidly developing genetic characteristics of these diseases in order to properly approach the diagnosis and treatment and to provide genetic counseling. In this paper, posterior segment eye diseases of genetic origin are reviewed, and retinoblastoma, mitochondrial diseases, retinal dysplasia, retinitis pigmentosa, choroideremia, gyrate atrophy, Alström disease, ocular albinism, optic nerve hypoplasia, anophthalmia/microphthalmia and Leber’s congenital amaurosis are covered. (Turk J Ophthalmol 2012; 42: 386-92

  6. Optical control system for high-voltage terminals

    International Nuclear Information System (INIS)

    Bicek, J.J.

    1978-01-01

    An optical control system for the control of devices in the terminal of an electrostatic accelerator includes a laser that is modulated by a series of preselected codes produced by an encoder. A photodiode receiver is placed in the laser beam at the high-voltage terminal of an electrostatic accelerator. A decoder connected to the photodiode decodes the signals to provide control impulses for a plurality of devices at the high voltage of the terminal

  7. Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations

    OpenAIRE

    Guenthner, Casey J.; Miyamichi, Kazunari; Yang, Helen H.; Heller, H. Craig; Luo, Liqun

    2013-01-01

    Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed a new approach, Targeted Recombination in Active Populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreERT2 is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that expr...

  8. Natural genetic transformation in Acinetobacter sp. BD413 Biofilms: introducing natural genetic transformation as a tool for bioenhancement of biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, L

    2002-07-01

    This study focussed on the localization and quantification of natural genetic transformation using neutral and disadvantageous genes in monoculture biofilms to investigate gene transfer and expression of the transferred genes in the absence of a selective advantage. Data obtained by this investigation were regarded as initial steps for evaluating the applicability of adding catabolic traits into the indigenous bacterial community of biofilm reactors by in situ natural genetic transformation. Because Acinetobacter spp. strains are readily found in waste water treatment plants and because Acinetobacter sp. BD413 possesses a high effective level of competence, natural genetic transformation was investigated in monoculture Acinetobacter sp. BD413 biofilms. The genes used for transformation encoded for the green fluorescent protein (GFP) and its variants. Monitoring of transformation events were performed with the use of automated confocal laser scanning microscopy (CLSM) and semi automated digital image processing and analysis. (orig.)

  9. Extreme expansion of NBS-encoding genes in Rosaceae.

    Science.gov (United States)

    Jia, YanXiao; Yuan, Yang; Zhang, Yanchun; Yang, Sihai; Zhang, Xiaohui

    2015-05-03

    Nucleotide binding site leucine-rich repeats (NBS-LRR) genes encode a large class of disease resistance (R) proteins in plants. Extensive studies have been carried out to identify and investigate NBS-encoding gene families in many important plant species. However, no comprehensive research into NBS-encoding genes in the Rosaceae has been performed. In this study, five whole-genome sequenced Rosaceae species, including apple, pear, peach, mei, and strawberry, were analyzed to investigate the evolutionary pattern of NBS-encoding genes and to compare them to those of three Cucurbitaceae species, cucumber, melon, and watermelon. Considerable differences in the copy number of NBS-encoding genes were observed between Cucurbitaceae and Rosaceae species. In Rosaceae species, a large number and a high proportion of NBS-encoding genes were observed in peach (437, 1.52%), mei (475, 1.51%), strawberry (346, 1.05%) and pear (617, 1.44%), and apple contained a whopping 1303 (2.05%) NBS-encoding genes, which might be the highest number of R-genes in all of these reported diploid plant. However, no more than 100 NBS-encoding genes were identified in Cucurbitaceae. Many more species-specific gene families were classified and detected with the signature of positive selection in Rosaceae species, especially in the apple genome. Taken together, our findings indicate that NBS-encoding genes in Rosaceae, especially in apple, have undergone extreme expansion and rapid adaptive evolution. Useful information was provided for further research on the evolutionary mode of disease resistance genes in Rosaceae crops.

  10. Operation of a general purpose stepping motor-encoder positioning subsystem at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Stubblefield, F.W.

    1985-11-01

    Four copies of a general purpose subsystem for mechanical positioning of detectors, samples, and beam line optical elements which constitute experiments at the National Synchrotron Light Source facility of Brookhaven National Laboratory have been constructed and placed into operation. Construction of a fifth subsystem unit is nearing completion. The subsystems affect mechanical positioning by controlling a set of stepping motor-encoder pairs. The units are general purpose in the sense that they receive commands over a 9600 baud asynchronous serial line compatible with the RS-232-C electrical signal standard, generate TTL-compatible streams of stepping pulses which can be used with a wide variety of stepping motors, and read back position values from a number of different types and models of position encoder. The basic structure of the motor controller subsystem is briefly reviewed. Additions to the subsystem made in response to problems indicated by actual operation of the four installed units are described in more detail

  11. SERODS: a new medium for high-density optical data storage

    Science.gov (United States)

    Vo-Dinh, Tuan; Stokes, David L.

    1998-10-01

    A new optical dada storage technology based on the surface- enhanced Raman scattering (SERS) effect has been developed for high-density optical memory and three-dimensional data storage. With the surface-enhanced Raman optical data storage (SERODS) technology, the molecular interactions between the optical layer molecules and the nanostructured metal substrate are modified by the writing laser, changing their SERS properties to encode information as bits. Since the SERS properties are extremely sensitive to molecular nano- environments, very small 'spectrochemical holes' approaching the diffraction limit can be produced for the writing process. The SERODS device uses a reading laser to induce the SERS emission of molecules on the disk and a photometric detector tuned to the frequency of the RAMAN spectrum to retrieve the stored information. The results illustrate that SERODS is capable of three-dimensional data storage and has the potential to achieve higher storage density than currently available optical data storage systems.

  12. Catechol-O-methyltransferase Val(158)Met association with parahippocampal physiology during memory encoding in schizophrenia.

    Science.gov (United States)

    Di Giorgio, A; Caforio, G; Blasi, G; Taurisano, P; Fazio, L; Romano, R; Ursini, G; Gelao, B; Bianco, L Lo; Papazacharias, A; Sinibaldi, L; Popolizio, T; Bellomo, A; Bertolino, A

    2011-08-01

    Catechol-O-methyltransferase (COMT) Val158Met has been associated with activity of the mesial temporal lobe during episodic memory and it may weakly increase risk for schizophrenia. However, how this variant affects parahippocampal and hippocampal physiology when dopamine transmission is perturbed is unclear. The aim of the present study was to compare the effects of the COMT Val158Met genotype on parahippocampal and hippocampal physiology during encoding of recognition memory in patients with schizophrenia and in healthy subjects. Using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), we studied 28 patients with schizophrenia and 33 healthy subjects matched for a series of sociodemographic and genetic variables while they performed a recognition memory task. We found that healthy subjects had greater parahippocampal and hippocampal activity during memory encoding compared to patients with schizophrenia. We also found different activity of the parahippocampal region between healthy subjects and patients with schizophrenia as a function of the COMT genotype, in that the predicted COMT Met allele dose effect had an opposite direction in controls and patients. Our results demonstrate a COMT Val158Met genotype by diagnosis interaction in parahippocampal activity during memory encoding and may suggest that modulation of dopamine signaling interacts with other disease-related processes in determining the phenotype of parahippocampal physiology in schizophrenia. © Cambridge University Press 2010

  13. Self-tracking optical beam monitor

    International Nuclear Information System (INIS)

    Miyahara, T.; Mitsuhashi, T.

    1992-01-01

    A new optical beam monitor with a self-tracking system was constructed and tested at an undulator beam line of the Photon Factory. The monitor has a feedback system to receive a constant part of the radiation and gives a large range of linearity. The beam position is read out through a linear encoder to detect the self-tracking movement of a pair of photocathodes. The monitor except the feedback system is totally bakeable and UHV compatible and can be installed at a VUV or a soft x-ray beam line

  14. Genetic analysis of the pelA-pelE cluster encoding the acidic and basic pectate lyases in Erwinia chrysanthemi EC16.

    Science.gov (United States)

    Barras, F; Chatterjee, A K

    1987-10-01

    In Erwinia chrysanthemi (EC16) the clustered pelA and pelE genes encode an acidic (pI 4.2) and a basic (pI 10.0) pectate lyase (Pel), respectively. The pelA gene has been isolated on a 1.2 kb restriction fragment and the direction of transcription determined. DNA hybridization analysis showed that the pelE sequence shares DNA homology with pelA but not with pelB or pelC, two genes encoding other Pel species in EC16. Since Pel A and Pel E enzymes showed little similarity in terms of catalytic properties, it is proposed that pelA and pelE are duplicates which have highly diverged.

  15. Radio-over-fiber using an optical antenna based on Rydberg states of atoms

    Science.gov (United States)

    Deb, A. B.; Kjærgaard, N.

    2018-05-01

    We provide an experimental demonstration of a direct fiber-optic link for RF transmission ("radio-over-fiber") using a sensitive optical antenna based on a rubidium vapor cell. The scheme relies on measuring the transmission of laser light at an electromagnetically induced transparency resonance that involves highly excited Rydberg states. By dressing pairs of Rydberg states using microwave fields that act as local oscillators, we encoded RF signals in the optical frequency domain. The light carrying the information is linked via a virtually lossless optical fiber to a photodetector where the signal is retrieved. We demonstrate a signal bandwidth in excess of 1 MHz limited by the available coupling laser power and atomic optical density. Our sensitive, non-metallic and readily scalable optical antenna for microwaves allows extremely low-levels of optical power (˜1 μW) throughput in the fiber-optic link. It offers a promising future platform for emerging wireless network infrastructures.

  16. Alternative Approach of Developing Optical Binary Adder Using Reversible Peres Gates

    Directory of Open Access Journals (Sweden)

    Dhoumendra Mandal

    2018-01-01

    Full Text Available All-optical devices will play a very significant and crucial role in the modern all-optical network by eliminating the bottleneck of opto-electro-opto- (O-E-O- conversion. Unfortunately, the conventional logic gates lose information at the output, and the states of the outputs cannot give any credible impressions of the states of the inputs. In this article, at first, the authors have proposed a method of designing an optical three-input-three-output reversible Peres gate. Authors have deployed polarization switching characteristic of Semiconductor Optical Amplifier (SOA for designing this circuit. The authors have also proposed a method of designing an optical reversible full adder, using two such Peres gates and subsequently a data recovery circuit which can recover the input data of the adder. The authors have chosen frequency encoded data for processing the operation. The proposed scheme has been verified by simulation results.

  17. Study of passive optical network monitoring based on non-OTDR

    Science.gov (United States)

    Li, Chuan-qi; Wang, Da-chi; Hu, Jin-lin

    2014-03-01

    Aiming at the defects of passive optical network (PON) monitoring based on optical time domain reflectometry (OTDR) technology, we research the non-OTDR monitoring technology. The coding scheme based on periodic encoder monitoring is discussed, and its limitation is analyzed. On this basis, the monitoring technology based on optical code division multiple access (OCDMA) is put forward. We analyze the feasibility of monitoring scheme based on PON of OCDMA, design a monitoring plan, and then use OptiSystem to simulate the design. The results of simulation and bit error rate (BER) analysis show that this monitoring technology can overcome the deficiencies of OTDR and distinguish the monitoring signals of different fiber branches clearly, which meets the demands for high beam split ratio of multi-user communication.

  18. Aerobic Exercise During Encoding Impairs Hippocampus-Dependent Memory.

    Science.gov (United States)

    Soga, Keishi; Kamijo, Keita; Masaki, Hiroaki

    2017-08-01

    We investigated how aerobic exercise during encoding affects hippocampus-dependent memory through a source memory task that assessed hippocampus-independent familiarity and hippocampus-dependent recollection processes. Using a within-participants design, young adult participants performed a memory-encoding task while performing a cycling exercise or being seated. The subsequent retrieval phase was conducted while sitting on a chair. We assessed behavioral and event-related brain potential measures of familiarity and recollection processes during the retrieval phase. Results indicated that source accuracy was lower for encoding with exercise than for encoding in the resting condition. Event-related brain potential measures indicated that the parietal old/new effect, which has been linked to recollection processing, was observed in the exercise condition, whereas it was absent in the rest condition, which is indicative of exercise-induced hippocampal activation. These findings suggest that aerobic exercise during encoding impairs hippocampus-dependent memory, which may be attributed to inefficient source encoding during aerobic exercise.

  19. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    Science.gov (United States)

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  20. Polymorphisms of genes encoding P2X7R, IL-1B, OPG and RANK in orthodontic-induced apical root resorption.

    Science.gov (United States)

    Pereira, S; Lavado, N; Nogueira, L; Lopez, M; Abreu, J; Silva, H

    2014-10-01

    Orthodontic-induced external apical root resorption (EARR) is a complex phenotype determined by poorly defined mechanical and patient intrinsic factors. The aim of this work was to construct a multifactorial integrative model, including clinical and genetic susceptibility factors, to analyze the risk of developing this common orthodontic complication. This retrospective study included 195 orthodontic patients. Using a multiple-linear regression model, where the dependent variable was the maximum% of root resorption (%EARRmax) for each patient, we assessed the contribution of nine clinical variables and four polymorphisms of genes involved in bone and tooth root remodeling (rs1718119 from P2RX7, rs1143634 from IL1B, rs3102735 from TNFRSF11B, encoding OPG, and rs1805034 from TNFRSF11A, encoding RANK). Clinical and genetic variables explained 30% of%EARRmax variability. The variables with the most significant unique contribution to the model were: gender (P < 0.05), treatment duration (P < 0.001), premolar extractions (P < 0.01), Hyrax appliance (P < 0.001) and GG genotype of rs1718119 from P2RX7 gene (P < 0.01). Age, overjet, tongue thrust, skeletal class II and the other polymorphisms made minor contributions. This study highlights the P2RX7 gene as a possible factor of susceptibility to EARR. A more extensive genetic profile may improve this model. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Induction of atherosclerosis in mice and hamsters without germline genetic engineering

    DEFF Research Database (Denmark)

    Bjørklund, Martin Mæng; Hollensen, Anne Kruse; Hagensen, Mette Kallestrup

    2014-01-01

    RATIONALE: Atherosclerosis can be achieved in animals by germline genetic engineering, leading to hypercholesterolemia, but such models are constrained to few species and strains, and they are difficult to combine with other powerful techniques involving genetic manipulation or variation. OBJECTIVE......: To develop a method for induction of atherosclerosis without germline genetic engineering. METHODS AND RESULTS: Recombinant adeno-associated viral vectors were engineered to encode gain-of-function proprotein convertase subtilisin/kexin type 9 mutants, and mice were given a single intravenous vector...... injection followed by high-fat diet feeding. Plasma proprotein convertase subtilisin/kexin type 9 and total cholesterol increased rapidly and were maintained at high levels, and after 12 weeks, mice had atherosclerotic lesions in the aorta. Histology of the aortic root showed progression of lesions...

  2. All-optical microwave signal processing based on optical phase modulation

    Science.gov (United States)

    Zeng, Fei

    implemented by use of commercially available devices without increasing significantly the system complexity compared to IM-based systems. More importantly, the PM-IM conversions bring a number of very interesting features which would be used to implement different signal processing functionalities. First, the PM-IM conversion plus direct detection has a frequency response with a notch at the dc, this feature can be used to achieve all-optical microwave bandpass filtering. Second, in the PM-IM conversion based on frequency discrimination, the polarity of the detected electrical signal can be easily reversed by simply tuning the optical wavelength, which provides the possibility to achieve bipolar operation, a feature highly desirable and extremely important in all-optical microwave signal processing. In this thesis, the use of the PM-IM conversion features for all-optical signal processing is investigated. Specifically, (1) We propose and demonstrate three different filter architectures for all-optical microwave bandpass filtering. (2) We propose and demonstrate, for the first time, an all-optical microwave signal processor that can realize all-optical mixing and filtering simultaneously. (3) We propose and demonstrate a scheme to implement unipolar-bipolar phase-time encoding/decoding for optical CDMA. (4) UWB pulses are usually generated in the electrical domain for short-range high-data rate wireless communications. To extend its coverage, UWB signal distributed over optical fiber is a topic of interest recently. In the thesis, we propose and demonstrate two approaches to generating and distributing UWB pulses in the optical domain.

  3. Optically Highlighting Basement Membrane Components in C. elegans

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Elliott Hagedorn & David Sherwood ### Abstract Green fluorescent protein (GFP) and other genetically encoded fluorescent proteins provide a means to study gene expression pattern and protein localization in living tissues. Recently discovered GFP-like fluorophores and engineered variants have further expanded the fluorescent protein toolkit for in vivo imaging. Here we describe a technique using transgenic C. elegans that contain laminin or type IV collagen fused to the green...

  4. Convolutional over Recurrent Encoder for Neural Machine Translation

    Directory of Open Access Journals (Sweden)

    Dakwale Praveen

    2017-06-01

    Full Text Available Neural machine translation is a recently proposed approach which has shown competitive results to traditional MT approaches. Standard neural MT is an end-to-end neural network where the source sentence is encoded by a recurrent neural network (RNN called encoder and the target words are predicted using another RNN known as decoder. Recently, various models have been proposed which replace the RNN encoder with a convolutional neural network (CNN. In this paper, we propose to augment the standard RNN encoder in NMT with additional convolutional layers in order to capture wider context in the encoder output. Experiments on English to German translation demonstrate that our approach can achieve significant improvements over a standard RNN-based baseline.

  5. Fiber-optics implementation of an asymmetric phase-covariant quantum cloner.

    Science.gov (United States)

    Bartůsková, Lucie; Dusek, Miloslav; Cernoch, Antonín; Soubusta, Jan; Fiurásek, Jaromír

    2007-09-21

    We present the experimental realization of optimal symmetric and asymmetric phase-covariant 1-->2 cloning of qubit states using fiber optics. The state of each qubit is encoded into a single photon which can propagate through two optical fibers. The operation of our device is based on one- and two-photon interference. We have demonstrated the creation of two copies for a wide range of qubit states from the equator of the Bloch sphere. The measured fidelities of both copies are close to the theoretical values and they surpass the theoretical maximum obtainable with the universal cloner.

  6. Exploring the influence of encoding format on subsequent memory.

    Science.gov (United States)

    Turney, Indira C; Dennis, Nancy A; Maillet, David; Rajah, M Natasha

    2017-05-01

    Distinctive encoding is greatly influenced by gist-based processes and has been shown to suffer when highly similar items are presented in close succession. Thus, elucidating the mechanisms underlying how presentation format affects gist processing is essential in determining the factors that influence these encoding processes. The current study utilised multivariate partial least squares (PLS) analysis to identify encoding networks directly associated with retrieval performance in a blocked and intermixed presentation condition. Subsequent memory analysis for successfully encoded items indicated no significant differences between reaction time and retrieval performance and presentation format. Despite no significant behavioural differences, behaviour PLS revealed differences in brain-behaviour correlations and mean condition activity in brain regions associated with gist-based vs. distinctive encoding. Specifically, the intermixed format encouraged more distinctive encoding, showing increased activation of regions associated with strategy use and visual processing (e.g., frontal and visual cortices, respectively). Alternatively, the blocked format exhibited increased gist-based processes, accompanied by increased activity in the right inferior frontal gyrus. Together, results suggest that the sequence that information is presented during encoding affects the degree to which distinctive encoding is engaged. These findings extend our understanding of the Fuzzy Trace Theory and the role of presentation format on encoding processes.

  7. Source-constrained retrieval influences the encoding of new information.

    Science.gov (United States)

    Danckert, Stacey L; MacLeod, Colin M; Fernandes, Myra A

    2011-11-01

    Jacoby, Shimizu, Daniels, and Rhodes (Psychonomic Bulletin & Review, 12, 852-857, 2005) showed that new words presented as foils among a list of old words that had been deeply encoded were themselves subsequently better recognized than new words presented as foils among a list of old words that had been shallowly encoded. In Experiment 1, by substituting a deep-versus-shallow imagery manipulation for the levels-of-processing manipulation, we demonstrated that the effect is robust and that it generalizes, also occurring with a different type of encoding. In Experiment 2, we provided more direct evidence for context-related encoding during tests of deeply encoded words, showing enhanced priming for foils presented among deeply encoded targets when participants made the same deep-encoding judgments on those items as had been made on the targets during study. In Experiment 3, we established that the findings from Experiment 2 are restricted to this specific deep judgment task and are not a general consequence of these foils being associated with deeply encoded items. These findings provide support for the source-constrained retrieval hypothesis of Jacoby, Shimizu, Daniels, and Rhodes: New information can be influenced by how surrounding items are encoded and retrieved, as long as the surrounding items recruit a coherent mode of processing.

  8. Sudden infant death syndrome and the genetics of inflammation

    Directory of Open Access Journals (Sweden)

    Linda eFerrante

    2015-02-01

    Full Text Available Several studies report signs of slight infection prior to death in cases of sudden infant death syndrome (SIDS. Based on this, a hypothesis of an altered immunological homeostasis has been postulated. The cytokines are important cellular mediators that are crucial for infant health by regulating cell activity during the inflammatory process. The pro-inflammatory cytokines favor inflammation; the most important of these are IL-1α, IL-1β, IL-6, IL-8, IL-12, IL-18, TNF-α and IFN-γ. These cytokines are controlled by the anti-inflammatory cytokines. This is accomplished by reducing the pro-inflammatory cytokine production, and thus counteracts their biological effect. The major anti-inflammatory cytokines are interleukin 1 receptor antagonist (IL-1ra, IL-4, IL-10, IL-11, and IL-13. The last decade there has been focus on genetic studies within genes that are important for the immune system, for SIDS with a special interest of the genes encoding the cytokines. This is because the cytokine genes are considered to be the genes most likely to explain the vulnerability to infection, and several studies have investigated these genes in an attempt to uncover associations between SIDS and different genetic variants. So far the genes encoding IL-1, IL-6, IL-10 and TNF-α are the most investigated within SIDS research, and several studies indicates associations between specific variants of these genes and SIDS. Taken together this may indicate that in at least a subset of SIDS predisposing genetic variants of the immune genes are involved. However, the immune system and the cytokine network are complex, and more studies are needed in order to better understand the interplay between different genetic variations and how this may contribute to an unfavorable immunological response.

  9. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication

    KAUST Repository

    Oubei, Hassan M.

    2015-08-26

    We experimentally demonstrate an underwater wireless optical communications (UWOC) employing 450-nm TO-9 packaged and fiberpigtailed laser diode (LD) directly encoded with an orthogonal frequency division multiplexed quadrature amplitude modulation (QAM-OFDM) data. A record data rate of up to 4.8 Gbit/s over 5.4-m transmission distance is achieved. By encoding the full 1.2-GHz bandwidth of the 450-nm LD with a 16-QAM-OFDM data, an error vector magnitude (EVM) of 16.5%, a signal-to-noise ratio (SNR) of 15.63 dB and a bit error rate (BER) of 2.6 × 10-3, well pass the forward error correction (FEC) criterion, were obtained. © 2015 Optical Society of America.

  10. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication

    KAUST Repository

    Oubei, Hassan M.; Duran, Jose R.; Janjua, Bilal; Wang, Huai-Yung; Tsai, Cheng-Ting; Chi, Yu-Cheih; Ng, Tien Khee; Kuo, Hao-Chung; He, Jr-Hau; Alouini, Mohamed-Slim; Lin, Gong-Ru; Ooi, Boon S.

    2015-01-01

    We experimentally demonstrate an underwater wireless optical communications (UWOC) employing 450-nm TO-9 packaged and fiberpigtailed laser diode (LD) directly encoded with an orthogonal frequency division multiplexed quadrature amplitude modulation (QAM-OFDM) data. A record data rate of up to 4.8 Gbit/s over 5.4-m transmission distance is achieved. By encoding the full 1.2-GHz bandwidth of the 450-nm LD with a 16-QAM-OFDM data, an error vector magnitude (EVM) of 16.5%, a signal-to-noise ratio (SNR) of 15.63 dB and a bit error rate (BER) of 2.6 × 10-3, well pass the forward error correction (FEC) criterion, were obtained. © 2015 Optical Society of America.

  11. Genetical and functional investigation of fliC genes encoding flagellar serotype H4 in wildtype strains of Escherichia coli and in a laboratory E. coli K-12 strain expressing flagellar antigen type H48

    Directory of Open Access Journals (Sweden)

    Schaudinn Christoph

    2005-01-01

    Full Text Available Abstract Background Serotyping of O-(lipopolysaccharide and H-(flagellar antigens is a wideley used method for identification of pathogenic strains and clones of Escherichia coli. At present, 176 O- and 53 H-antigens are described for E. coli which occur in different combinations in the strains. The flagellar antigen H4 is widely present in E. coli strains of different O-serotypes and pathotypes and we have investigated the genetic relationship between H4 encoding fliC genes by PCR, nucleotide sequencing and expression studies. Results The complete nucleotide sequence of fliC genes present in E. coli reference strains U9-41 (O2:K1:H4 and P12b (O15:H17 was determined and both were found 99.3% (1043 of 1050 nucleotides identical in their coding sequence. A PCR/RFLP protocol was developed for typing of fliC-H4 strains and 88 E. coli strains reacting with H4 antiserum were investigated. Nucleotide sequencing of complete fliC genes of six E. coli strains which were selected based on serum agglutination titers, fliC-PCR genotyping and reference data revealed 96.6 to 100% identity on the amino acid level. The functional expression of flagellin encoded by fliC-H4 from strain U9-41 and from our strain P12b which is an H4 expressing variant type was investigated in the E. coli K-12 strain JM109 which encodes flagellar type H48. The fliC recombinant plasmid carrying JM109 strains reacted with both H4 and H48 specific antisera whereas JM109 reacted only with the H48 antiserum. By immunoelectron microscopy, we could show that the flagella made by the fliC-H4 recombinant plasmid carrying strain are constituted of H48 and H4 flagellins which are co-assembled into functional flagella. Conclusion The flagellar serotype H4 is encoded by closely related fliC genes present in serologically different types of E. coli strainswhich were isolated at different time periods and geographical locations. Our expression studies show for the first time, that flagellins of

  12. On-line Vibration Diagnostics of the Optical Elements at BL-28 of the Photon Factory

    International Nuclear Information System (INIS)

    Maruyama, T.; Kashiwagi, T.; Kikuchi, T.; Toyoshima, A.; Kubota, M.; Ono, K.

    2007-01-01

    We have analyzed the data of encoders attached to optical elements and developed an on-line vibration diagnostics system of the monochromator. After eliminating the vibration source we have been able to improve the performance of the monochromator

  13. Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype

    Directory of Open Access Journals (Sweden)

    Johnathan Cooper-Knock

    2017-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs. We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72. We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes (n = 274 genes was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72. We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies (p = 5.31E-18. Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression (t-test, p = 0.033. We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course (t-test, p = 0.025. Our data are

  14. Gene therapy for carcinoma of the breast: Genetic immunotherapy

    International Nuclear Information System (INIS)

    Strong, Theresa V

    2000-01-01

    Advances in gene transfer technology have greatly expanded the opportunities for developing immunotherapy strategies for breast carcinoma. Genetic immunotherapy approaches include the transfer of genes encoding cytokines and costimulatory molecules to modulate immune function, as well as genetic immunization strategies which rely on the delivery of cloned tumor antigens. Improved gene transfer vectors, coupled with a better understanding of the processes that are necessary to elicit an immune response and an expanding number of target breast tumor antigens, have led to renewed enthusiasm that effective immunotherapy may be achieved. It is likely that immunotherapeutic interventions will find their greatest clinical application as adjuvants to traditional first-line therapies, targeting micrometastatic disease and thereby reducing the risk of cancer recurrence

  15. Hall effect encoding of brushless dc motors

    Science.gov (United States)

    Berard, C. A.; Furia, T. J.; Goldberg, E. A.; Greene, R. C.

    1970-01-01

    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member.

  16. Multichannel compressive sensing MRI using noiselet encoding.

    Directory of Open Access Journals (Sweden)

    Kamlesh Pawar

    Full Text Available The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS. In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding.

  17. Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243.

    Directory of Open Access Journals (Sweden)

    Andrea J Dowling

    2010-12-01

    Full Text Available Burkholderia pseudomallei is an important human pathogen whose infection biology is still poorly understood. The bacterium is endemic to tropical regions, including South East Asia and Northern Australia, where it causes melioidosis, a serious disease associated with both high mortality and antibiotic resistance. B. pseudomallei is a Gram-negative facultative intracellular pathogen that is able to replicate in macrophages. However despite the critical nature of its interaction with macrophages, few anti-macrophage factors have been characterized to date. Here we perform a genome-wide gain of function screen of B. pseudomallei strain K96243 to identify loci encoding factors with anti-macrophage activity. We identify a total of 113 such loci scattered across both chromosomes, with positive gene clusters encoding transporters and secretion systems, enzymes/toxins, secondary metabolite, biofilm, adhesion and signal response related factors. Further phenotypic analysis of four of these regions shows that the encoded factors cause striking cellular phenotypes relevant to infection biology, including apoptosis, formation of actin 'tails' and multi-nucleation within treated macrophages. The detailed analysis of the remaining host of loci will facilitate genetic dissection of the interaction of this important pathogen with host macrophages and thus further elucidate this critical part of its infection cycle.

  18. Generation of Recombinant Ebola Viruses Using Reverse Genetics.

    Science.gov (United States)

    Groseth, Allison

    2017-01-01

    Reverse genetics systems encompass a wide array of tools aimed at recapitulating some or all of the virus life cycle. In their most complete form, full-length clone systems allow us to use plasmid-encoded versions of the ribonucleoprotein (RNP) components to initiate the transcription and replication of a plasmid-encoded version of the complete viral genome, thereby initiating the complete virus life cycle and resulting in infectious virus. As such this approach is ideal for the generation of tailor-made recombinant filoviruses, which can be used to study virus biology. In addition, the generation of tagged and particularly fluorescent or luminescent viruses can be applied as tools for both diagnostic applications and for screening to identify novel countermeasures. Here we describe the generation and basic characterization of recombinant Ebola viruses rescued from cloned cDNA using a T7-driven system.

  19. Four-dimensional optical manipulation of colloidal particles

    DEFF Research Database (Denmark)

    Rodrigo, P.J.; Daria, V.R.; Glückstad, J.

    2005-01-01

    We transform a TEM00 laser mode into multiple counterpropagating optical traps to achieve four-dimensional simultaneous manipulation of multiple particles. Efficient synthesis and dynamic control of the counterpropagating-beam traps is carried out via the generalized phase contrast method......, and a spatial polarization-encoding scheme. Our experiments genuinely demonstrate real-time, interactive particle-position control for forming arbitrary volumetric constellations and complex three-dimensional trajectories of multiple particles. This opens up doors for cross-disciplinary cutting-edge research...

  20. Low Complexity HEVC Encoder for Visual Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhaoqing Pan

    2015-12-01

    Full Text Available Visual sensor networks (VSNs can be widely applied in security surveillance, environmental monitoring, smart rooms, etc. However, with the increased number of camera nodes in VSNs, the volume of the visual information data increases significantly, which becomes a challenge for storage, processing and transmitting the visual data. The state-of-the-art video compression standard, high efficiency video coding (HEVC, can effectively compress the raw visual data, while the higher compression rate comes at the cost of heavy computational complexity. Hence, reducing the encoding complexity becomes vital for the HEVC encoder to be used in VSNs. In this paper, we propose a fast coding unit (CU depth decision method to reduce the encoding complexity of the HEVC encoder for VSNs. Firstly, the content property of the CU is analyzed. Then, an early CU depth decision method and a low complexity distortion calculation method are proposed for the CUs with homogenous content. Experimental results show that the proposed method achieves 71.91% on average encoding time savings for the HEVC encoder for VSNs.

  1. Advantages and limitations of the use of optogenetic approach in studying fast-scale spike encoding.

    Directory of Open Access Journals (Sweden)

    Aleksey Malyshev

    Full Text Available Understanding single-neuron computations and encoding performed by spike-generation mechanisms of cortical neurons is one of the central challenges for cell electrophysiology and computational neuroscience. An established paradigm to study spike encoding in controlled conditions in vitro uses intracellular injection of a mixture of signals with fluctuating currents that mimic in vivo-like background activity. However this technique has two serious limitations: it uses current injection, while synaptic activation leads to changes of conductance, and current injection is technically most feasible in the soma, while the vast majority of synaptic inputs are located on the dendrites. Recent progress in optogenetics provides an opportunity to circumvent these limitations. Transgenic expression of light-activated ionic channels, such as Channelrhodopsin2 (ChR2, allows induction of controlled conductance changes even in thin distant dendrites. Here we show that photostimulation provides a useful extension of the tools to study neuronal encoding, but it has its own limitations. Optically induced fluctuating currents have a low cutoff (~70 Hz, thus limiting the dynamic range of frequency response of cortical neurons. This leads to severe underestimation of the ability of neurons to phase-lock their firing to high frequency components of the input. This limitation could be worked around by using short (2 ms light stimuli which produce membrane potential responses resembling EPSPs by their fast onset and prolonged decay kinetics. We show that combining application of short light stimuli to different parts of dendritic tree for mimicking distant EPSCs with somatic injection of fluctuating current that mimics fluctuations of membrane potential in vivo, allowed us to study fast encoding of artificial EPSPs photoinduced at different distances from the soma. We conclude that dendritic photostimulation of ChR2 with short light pulses provides a powerful tool to

  2. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron

    Science.gov (United States)

    Morgan, Neil V; Westaway, Shawn K; Morton, Jenny E V; Gregory, Allison; Gissen, Paul; Sonek, Scott; Cangul, Hakan; Coryell, Jason; Canham, Natalie; Nardocci, Nardo; Zorzi, Giovanna; Pasha, Shanaz; Rodriguez, Diana; Desguerre, Isabelle; Mubaidin, Amar; Bertini, Enrico; Trembath, Richard C; Simonati, Alessandro; Schanen, Carolyn; Johnson, Colin A; Levinson, Barbara; Woods, C Geoffrey; Wilmot, Beth; Kramer, Patricia; Gitschier, Jane; Maher, Eamonn R; Hayflick, Susan J

    2007-01-01

    Neurodegenerative disorders with high brain iron include Parkinson disease, Alzheimer disease and several childhood genetic disorders categorized as neuroaxonal dystrophies. We mapped a locus for infantile neuroaxonal dystrophy (INAD) and neurodegeneration with brain iron accumulation (NBIA) to chromosome 22q12-q13 and identified mutations in PLA2G6, encoding a calcium-independent group VI phospholipase A2, in NBIA, INAD and the related Karak syndrome. This discovery implicates phospholipases in the pathogenesis of neurodegenerative disorders with iron dyshomeostasis. PMID:16783378

  3. Polarization diversity scheme on spectral polarization coding optical code-division multiple-access network

    Science.gov (United States)

    Yen, Chih-Ta; Huang, Jen-Fa; Chang, Yao-Tang; Chen, Bo-Hau

    2010-12-01

    We present an experiment demonstrating the spectral-polarization coding optical code-division multiple-access system introduced with a nonideal state of polarization (SOP) matching conditions. In the proposed system, the encoding and double balanced-detection processes are implemented using a polarization-diversity scheme. Because of the quasiorthogonality of Hadamard codes combining with array waveguide grating routers and a polarization beam splitter, the proposed codec pair can encode-decode multiple code words of Hadamard code while retaining the ability for multiple-access interference cancellation. The experimental results demonstrate that when the system is maintained with an orthogonal SOP for each user, an effective reduction in the phase-induced intensity noise is obtained. The analytical SNR values are found to overstate the experimental results by around 2 dB when the received effective power is large. This is mainly limited by insertion losses of components and a nonflattened optical light source. Furthermore, the matching conditions can be improved by decreasing nonideal influences.

  4. Encoding asymmetry of the N-glycosylation motif facilitates glycoprotein evolution.

    Directory of Open Access Journals (Sweden)

    Ryan Williams

    Full Text Available Protein N-glycosylation is found in all domains of life and has a conserved role in glycoprotein folding and stability. In animals, glycoproteins transit through the Golgi where the N-glycans are trimmed and rebuilt with sequences that bind lectins, an innovation that greatly increases structural diversity and redundancy of glycoprotein-lectin interaction at the cell surface. Here we ask whether the natural tension between increasing diversity (glycan-protein interactions and site multiplicity (backup and status quo might be revealed by a phylogenic examination of glycoproteins and NXS/T(X ≠ P N-glycosylation sites. Site loss is more likely by mutation at Asn encoded by two adenosine (A-rich codons, while site gain is more probable by generating Ser or Thr downstream of an existing Asn. Thus mutations produce sites at novel positions more frequently than the reversal of recently lost sites, and therefore more paths though sequence space are made available to natural selection. An intra-species comparison of secretory and cytosolic proteins revealed a departure from equilibrium in sequences one-mutation-away from NXS/T and in (A content, indicating strong selective pressures and exploration of N-glycosylation positions during vertebrate evolution. Furthermore, secretory proteins have evolved at rates proportional to N-glycosylation site number, indicating adaptive interactions between the N-glycans and underlying protein. Given the topology of the genetic code, mutation of (A is more often nonsynonomous, and Lys, another target of many PTMs, is also encoded by two (A-rich codons. An examination of acetyl-Lys sites in proteins indicated similar evolutionary dynamics, consistent with asymmetry of the target and recognition portions of modified sites. Our results suggest that encoding asymmetry is an ancient mechanism of evolvability that increases diversity and experimentation with PTM site positions. Strong selective pressures on PTMs may have

  5. Trinary Encoder, Decoder, Multiplexer and Demultiplexer Using Savart Plate and Spatial Light Modulator

    Science.gov (United States)

    Ghosh, Amal K.; Singha Roy, Souradip; Mandal, Sudipta; Basuray, Amitabha

    Optoelectronic processors have already been developed with the strong potentiality of optics in information and data processing. Encoder, Decoder, Multiplexers and Demultiplexers are the most important components in modern system designs and in communications. We have implemented the same using trinary logic gates with signed magnitude defined as Modified Trinary Number (MTN). The Spatial Light Modulator (SLM) based optoelectronic circuit is suitable for high speed data processing and communications using photon as carrier. We also presented here a possible method of implementing the same using light with photon as carrier of information. The importance of the method is that all the basic gates needed may be fabricated based on basic building block.

  6. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

    Science.gov (United States)

    Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa

    2015-11-24

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  7. Adaptive phase measurements in linear optical quantum computation

    International Nuclear Information System (INIS)

    Ralph, T C; Lund, A P; Wiseman, H M

    2005-01-01

    Photon counting induces an effective non-linear optical phase shift in certain states derived by linear optics from single photons. Although this non-linearity is non-deterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode-so-called 'single-rail' logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to 'dual-rail' logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state α vertical bar 0>+β vertical bar 1> can be prepared deterministically

  8. Negative affect promotes encoding of and memory for details at the expense of the gist: affect, encoding, and false memories.

    Science.gov (United States)

    Storbeck, Justin

    2013-01-01

    I investigated whether negative affective states enhance encoding of and memory for item-specific information reducing false memories. Positive, negative, and neutral moods were induced, and participants then completed a Deese-Roediger-McDermott (DRM) false-memory task. List items were presented in unique spatial locations or unique fonts to serve as measures for item-specific encoding. The negative mood conditions had more accurate memories for item-specific information, and they also had fewer false memories. The final experiment used a manipulation that drew attention to distinctive information, which aided learning for DRM words, but also promoted item-specific encoding. For the condition that promoted item-specific encoding, false memories were reduced for positive and neutral mood conditions to a rate similar to that of the negative mood condition. These experiments demonstrated that negative affective cues promote item-specific processing reducing false memories. People in positive and negative moods encode events differently creating different memories for the same event.

  9. Targeted Metabolomics Reveals Early Dominant Optic Atrophy Signature in Optic Nerves of Opa1delTTAG/+ Mice.

    Science.gov (United States)

    Chao de la Barca, Juan Manuel; Simard, Gilles; Sarzi, Emmanuelle; Chaumette, Tanguy; Rousseau, Guillaume; Chupin, Stéphanie; Gadras, Cédric; Tessier, Lydie; Ferré, Marc; Chevrollier, Arnaud; Desquiret-Dumas, Valérie; Gueguen, Naïg; Leruez, Stéphanie; Verny, Christophe; Miléa, Dan; Bonneau, Dominique; Amati-Bonneau, Patrizia; Procaccio, Vincent; Hamel, Christian; Lenaers, Guy; Reynier, Pascal; Prunier-Mirebeau, Delphine

    2017-02-01

    Dominant optic atrophy (MIM No. 165500) is a blinding condition related to mutations in OPA1, a gene encoding a large GTPase involved in mitochondrial inner membrane dynamics. Although several mouse models mimicking the disease have been developed, the pathophysiological mechanisms responsible for retinal ganglion cell degeneration remain poorly understood. Using a targeted metabolomic approach, we measured the concentrations of 188 metabolites in nine tissues, that is, brain, three types of skeletal muscle, heart, liver, retina, optic nerve, and plasma in symptomatic 11-month-old Opa1delTTAG/+ mice. Significant metabolic signatures were found only in the optic nerve and plasma of female mice. The optic nerve signature was characterized by altered concentrations of phospholipids, amino acids, acylcarnitines, and carnosine, whereas the plasma signature showed decreased concentrations of amino acids and sarcosine associated with increased concentrations of several phospholipids. In contrast, the investigation of 3-month-old presymptomatic Opa1delTTAG/+ mice showed no specific plasma signature but revealed a significant optic nerve signature in both sexes, although with a sex effect. The Opa1delTTAG/+ versus wild-type optic nerve signature was characterized by the decreased concentrations of 10 sphingomyelins and 10 lysophosphatidylcholines, suggestive of myelin sheath alteration, and by alteration in the concentrations of metabolites involved in neuroprotection, such as dimethylarginine, carnitine, spermine, spermidine, carnosine, and glutamate, suggesting a concomitant axonal metabolic dysfunction. Our comprehensive metabolomic investigations revealed in symptomatic as well as in presymptomatic Opa1delTTAG/+ mice, a specific sensitiveness of the optic nerve to Opa1 insufficiency, opening new routes for protective therapeutic strategies.

  10. Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes

    Directory of Open Access Journals (Sweden)

    Bih-Chyun Yeh

    2016-01-01

    Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.

  11. A Design for an Internet Router with a Digital Optical Data Plane

    Directory of Open Access Journals (Sweden)

    Joe Touch

    2017-02-01

    Full Text Available This paper presents a complete design for an optical Internet router based on the component steps required for Internet protocol (IP packet forwarding. Implementations of hop count decrement and header matching are integrated with a simulation-based approach to variable-length packet traffic merging that avoids recirculation, demonstrating an approach for an all-optical data plane. A method for IPv4 checksum computation is introduced, and this and previously designed components are extended from binary to higher-density (multiple bits per symbol encodings. The implications of this design are considered, including the potential for chip-level and system integration, as well as the requirements of basic optical processing components.

  12. Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides

    DEFF Research Database (Denmark)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.

    2013-01-01

    in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process...... in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion....

  13. Study on the Method of Association Rules Mining Based on Genetic Algorithm and Application in Analysis of Seawater Samples

    Directory of Open Access Journals (Sweden)

    Qiuhong Sun

    2014-04-01

    Full Text Available Based on the data mining research, the data mining based on genetic algorithm method, the genetic algorithm is briefly introduced, while the genetic algorithm based on two important theories and theoretical templates principle implicit parallelism is also discussed. Focuses on the application of genetic algorithms for association rule mining method based on association rule mining, this paper proposes a genetic algorithm fitness function structure, data encoding, such as the title of the improvement program, in particular through the early issues study, proposed the improved adaptive Pc, Pm algorithm is applied to the genetic algorithm, thereby improving efficiency of the algorithm. Finally, a genetic algorithm based association rule mining algorithm, and be applied in sea water samples database in data mining and prove its effective.

  14. [New type distributed optical fiber temperature sensor (DTS) based on Raman scattering and its' application].

    Science.gov (United States)

    Wang, Jian-Feng; Liu, Hong-Lin; Zhang, Shu-Qin; Yu, Xiang-Dong; Sun, Zhong-Zhou; Jin, Shang-Zhong; Zhang, Zai-Xuan

    2013-04-01

    Basic principles, development trends and applications status of distributed optical fiber Raman temperature sensor (DTS) are introduced. Performance parameters of DTS system include the sensing optical fiber length, temperature measurement uncertainty, spatial resolution and measurement time. These parameters have a certain correlation and it is difficult to improve them at the same time by single technology. So a variety of key techniques such as Raman amplification, pulse coding technique, Raman related dual-wavelength self-correction technique and embedding optical switching technique are researched to improve the performance of the DTS system. A 1 467 nm continuous laser is used as pump laser and the light source of DTS system (1 550 nm pulse laser) is amplified. When the length of sensing optical fiber is 50 km the Raman gain is about 17 dB. Raman gain can partially compensate the transmission loss of optical fiber, so that the sensing length can reach 50 km. In DTS system using pulse coding technique, pulse laser is coded by 211 bits loop encoder and correlation calculation is used to demodulate temperature. The encoded laser signal is related, whereas the noise is not relevant. So that signal-to-noise ratio (SNR) of DTS system can be improved significantly. The experiments are carried out in DTS system with single mode optical fiber and multimode optical fiber respectively. Temperature measurement uncertainty can all reach 1 degrees C. In DTS system using Raman related dual-wavelength self-correction technique, the wavelength difference of the two light sources must be one Raman frequency shift in optical fiber. For example, wavelength of the main laser is 1 550 nm and wavelength of the second laser must be 1 450 nm. Spatial resolution of DTS system is improved to 2 m by using dual-wavelength self-correction technique. Optical switch is embedded in DTS system, so that the temperature measurement channel multiply extended and the total length of the sensing

  15. Genetic Variations Involved in Vitamin E Status

    Directory of Open Access Journals (Sweden)

    Patrick Borel

    2016-12-01

    Full Text Available Vitamin E (VE is the generic term for four tocopherols and four tocotrienols that exhibit the biological activity of α-tocopherol. VE status, which is usually estimated by measuring fasting blood VE concentration, is affected by numerous factors, such as dietary VE intake, VE absorption efficiency, and VE catabolism. Several of these factors are in turn modulated by genetic variations in genes encoding proteins involved in these factors. To identify these genetic variations, two strategies have been used: genome-wide association studies and candidate gene association studies. Each of these strategies has its advantages and its drawbacks, nevertheless they have allowed us to identify a list of single nucleotide polymorphisms associated with fasting blood VE concentration and α-tocopherol bioavailability. However, much work remains to be done to identify, and to replicate in different populations, all the single nucleotide polymorphisms involved, to assess the possible involvement of other kind of genetic variations, e.g., copy number variants and epigenetic modifications, in order to establish a reliable list of genetic variations that will allow us to predict the VE status of an individual by knowing their genotype in these genetic variations. Yet, the potential usefulness of this area of research is exciting with regard to personalized nutrition and for future clinical trials dedicated to assessing the biological effects of the various isoforms of VE.

  16. Diffractive generalized phase contrast for adaptive phase imaging and optical security

    DEFF Research Database (Denmark)

    Palima, Darwin; Glückstad, Jesper

    2012-01-01

    We analyze the properties of Generalized Phase Contrast (GPC) when the input phase modulation is implemented using diffractive gratings. In GPC applications for patterned illumination, the use of a dynamic diffractive optical element for encoding the GPC input phase allows for onthe- fly optimiza...... security applications and can be used to create phasebased information channels for enhanced information security....

  17. Evaluation of color encodings for high dynamic range pixels

    Science.gov (United States)

    Boitard, Ronan; Mantiuk, Rafal K.; Pouli, Tania

    2015-03-01

    Traditional Low Dynamic Range (LDR) color spaces encode a small fraction of the visible color gamut, which does not encompass the range of colors produced on upcoming High Dynamic Range (HDR) displays. Future imaging systems will require encoding much wider color gamut and luminance range. Such wide color gamut can be represented using floating point HDR pixel values but those are inefficient to encode. They also lack perceptual uniformity of the luminance and color distribution, which is provided (in approximation) by most LDR color spaces. Therefore, there is a need to devise an efficient, perceptually uniform and integer valued representation for high dynamic range pixel values. In this paper we evaluate several methods for encoding colour HDR pixel values, in particular for use in image and video compression. Unlike other studies we test both luminance and color difference encoding in a rigorous 4AFC threshold experiments to determine the minimum bit-depth required. Results show that the Perceptual Quantizer (PQ) encoding provides the best perceptual uniformity in the considered luminance range, however the gain in bit-depth is rather modest. More significant difference can be observed between color difference encoding schemes, from which YDuDv encoding seems to be the most efficient.

  18. Security enhanced BioEncoding for protecting iris codes

    Science.gov (United States)

    Ouda, Osama; Tsumura, Norimichi; Nakaguchi, Toshiya

    2011-06-01

    Improving the security of biometric template protection techniques is a key prerequisite for the widespread deployment of biometric technologies. BioEncoding is a recently proposed template protection scheme, based on the concept of cancelable biometrics, for protecting biometric templates represented as binary strings such as iris codes. The main advantage of BioEncoding over other template protection schemes is that it does not require user-specific keys and/or tokens during verification. Besides, it satisfies all the requirements of the cancelable biometrics construct without deteriorating the matching accuracy. However, although it has been shown that BioEncoding is secure enough against simple brute-force search attacks, the security of BioEncoded templates against more smart attacks, such as record multiplicity attacks, has not been sufficiently investigated. In this paper, a rigorous security analysis of BioEncoding is presented. Firstly, resistance of BioEncoded templates against brute-force attacks is revisited thoroughly. Secondly, we show that although the cancelable transformation employed in BioEncoding might be non-invertible for a single protected template, the original iris code could be inverted by correlating several templates used in different applications but created from the same iris. Accordingly, we propose an important modification to the BioEncoding transformation process in order to hinder attackers from exploiting this type of attacks. The effectiveness of adopting the suggested modification is validated and its impact on the matching accuracy is investigated empirically using CASIA-IrisV3-Interval dataset. Experimental results confirm the efficacy of the proposed approach and show that it preserves the matching accuracy of the unprotected iris recognition system.

  19. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium.

    Directory of Open Access Journals (Sweden)

    Elena Kondratieva

    2010-05-01

    Full Text Available Development of lung granulomata is a hallmark of infections caused by virulent mycobacteria, reflecting both protective host response that restricts infection spreading and inflammatory pathology. The role of host genetics in granuloma formation is not well defined. Earlier we have shown that mice of the I/St strain are extremely susceptible to Mycobacterium tuberculosis but resistant to M. avium infection, whereas B6 mice show a reversed pattern of susceptibility. Here, by directly comparing: (i characteristics of susceptibility to two infections in vivo; (ii architecture of lung granulomata assessed by immune staining; and (iii expression of genes encoding regulatory factors of neutrophil influx in the lung tissue, we demonstrate that genetic susceptibility of the host largely determines the pattern of lung pathology. Necrotizing granuloma surrounded by hypoxic zones, as well as a massive neutrophil influx, develop in the lungs of M. avium-infected B6 mice and in the lungs of M. tuberculosis-infected I/St mice, but not in the lungs of corresponding genetically resistant counterparts. The mirror-type lung tissue responses to two virulent mycobacteria indicate that the level of genetic susceptibility of the host to a given mycobacterial species largely determines characteristics of pathology, and directly demonstrate the importance of host genetics in pathogenesis.

  20. Eternal 5D optical data storage in glass (Conference Presentation)

    Science.gov (United States)

    Kazansky, Peter G.; Cerkauskaite, Ausra; Drevinskas, Rokas; Zhang, Jingyu

    2016-09-01

    A decade ago it has been discovered that during femtosecond laser writing self-organized subwavelength structures with record small features of 20 nm, could be created in the volume of silica glass. On the macroscopic scale the self-assembled nanostructure behaves as a uniaxial optical crystal with negative birefringence. The optical anisotropy, which results from the alignment of nano-platelets, referred to as form birefringence, is of the same order of magnitude as positive birefringence in crystalline quartz. The two independent parameters describing birefringence, the slow axis orientation (4th dimension) and the strength of retardance (5th dimension), are explored for the optical encoding of information in addition to three spatial coordinates. The slow axis orientation and the retardance are independently manipulated by the polarization and intensity of the femtosecond laser beam. The data optically encoded into five dimensions is successfully retrieved by quantitative birefringence measurements. The storage allows unprecedented parameters including hundreds of terabytes per disc data capacity and thermal stability up to 1000°. Even at elevated temperatures of 160oC, the extrapolated decay time of nanogratings is comparable with the age of the Universe - 13.8 billion years. The recording of the digital documents, which will survive the human race, including the eternal copies of Universal Declaration of Human Rights, Newton's Opticks, Kings James Bible and Magna Carta, is a vital step towards an eternal archive. Additionally, a number of projects (such as Time Capsule to Mars, MoonMail, and the Google Lunar XPRIZE) could benefit from the technique's extreme durability, which fulfills a crucial requirement for storage on the Moon or Mars.