WorldWideScience

Sample records for genetically distinct environment

  1. Distinct genetic architectures for phenotype means and plasticities in Zea mays.

    Science.gov (United States)

    Kusmec, Aaron; Srinivasan, Srikant; Nettleton, Dan; Schnable, Patrick S

    2017-09-01

    Phenotypic plasticity describes the phenotypic variation of a trait when a genotype is exposed to different environments. Understanding the genetic control of phenotypic plasticity in crops such as maize is of paramount importance for maintaining and increasing yields in a world experiencing climate change. Here, we report the results of genome-wide association analyses of multiple phenotypes and two measures of phenotypic plasticity in a maize nested association mapping (US-NAM) population grown in multiple environments and genotyped with ~2.5 million single-nucleotide polymorphisms. We show that across all traits the candidate genes for mean phenotype values and plasticity measures form structurally and functionally distinct groups. Such independent genetic control suggests that breeders will be able to select semi-independently for mean phenotype values and plasticity, thereby generating varieties with both high mean phenotype values and levels of plasticity that are appropriate for the target performance environments.

  2. Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Lloyd, Colton J.; Palsson, Bernhard O.

    2017-01-01

    conditions and different adaptation strategies depending on the substrates being switched between; in some environments, a persistent "generalist" strain developed, while in another, two "specialist" subpopulations arose that alternated dominance. Diauxic lag phenotype varied across the generalists...... maintain simple, static culturing environments so as to reduce selection pressure complexity. In this study, we investigated the adaptive strategies underlying evolution to fluctuating environments by evolving Escherichia coli to conditions of frequently switching growth substrate. Characterization...... of evolved strains via a number of different data types revealed the various genetic and phenotypic changes implemented in pursuit of growth optimality and how these differed across the different growth substrates and switching protocols. This work not only helps to establish general principles of adaptation...

  3. Genetically Distinct Subsets within ANCA-Associated Vasculitis

    Science.gov (United States)

    Lyons, Paul A.; Rayner, Tim F.; Trivedi, Sapna; Holle, Julia U.; Watts, Richard A.; Jayne, David R.W.; Baslund, Bo; Brenchley, Paul; Bruchfeld, Annette; Chaudhry, Afzal N.; Tervaert, Jan Willem Cohen; Deloukas, Panos; Feighery, Conleth; Gross, Wolfgang L.; Guillevin, Loic; Gunnarsson, Iva; P, Lorraine Harper M.R.C; Hrušková, Zdenka; Little, Mark A.; Martorana, Davide; Neumann, Thomas; Ohlsson, Sophie; Padmanabhan, Sandosh; Pusey, Charles D.; Salama, Alan D.; Sanders, Jan-Stephan F.; Savage, Caroline O.; Segelmark, Mårten; Stegeman, Coen A.; Tesař, Vladimir; Vaglio, Augusto; Wieczorek, Stefan; Wilde, Benjamin; Zwerina, Jochen; Rees, Andrew J.; Clayton, David G.; Smith, Kenneth G.C.

    2013-01-01

    BACKGROUND Antineutrophil cytoplasmic antibody (ANCA)–associated vasculitis is a severe condition encompassing two major syndromes: granulomatosis with polyangiitis (formerly known as Wegener’s granulomatosis) and microscopic polyangiitis. Its cause is unknown, and there is debate about whether it is a single disease entity and what role ANCA plays in its pathogenesis. We investigated its genetic basis. METHODS A genomewide association study was performed in a discovery cohort of 1233 U.K. patients with ANCA-associated vasculitis and 5884 controls and was replicated in 1454 Northern European case patients and 1666 controls. Quality control, population stratification, and statistical analyses were performed according to standard criteria. RESULTS We found both major-histocompatibility-complex (MHC) and non-MHC associations with ANCA-associated vasculitis and also that granulomatosis with polyangiitis and microscopic polyangiitis were genetically distinct. The strongest genetic associations were with the antigenic specificity of ANCA, not with the clinical syndrome. Anti–proteinase 3 ANCA was associated with HLA-DP and the genes encoding α1-antitrypsin (SERPINA1) and proteinase 3 (PRTN3) (P = 6.2×10−89, P = 5.6×10−12, and P = 2.6×10−7, respectively). Anti–myeloperoxidase ANCA was associated with HLA-DQ (P = 2.1×10−8). CONCLUSIONS This study confirms that the pathogenesis of ANCA-associated vasculitis has a genetic component, shows genetic distinctions between granulomatosis with polyangiitis and microscopic polyangiitis that are associated with ANCA specificity, and suggests that the response against the autoantigen proteinase 3 is a central pathogenic feature of proteinase 3 ANCA–associated vasculitis. These data provide preliminary support for the concept that proteinase 3 ANCA–associated vasculitis and myeloperoxidase ANCA–associated vasculitis are distinct autoimmune syndromes. (Funded by the British Heart Foundation and others.) PMID

  4. Population genetic diversity and fitness in multiple environments

    Directory of Open Access Journals (Sweden)

    McGreevy Thomas J

    2010-07-01

    Full Text Available Abstract Background When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater and stressful conditions (diluted seawater. The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis. Results Populations with very low genetic diversity demonstrated reduced fitness relative to high diversity populations even under permissive conditions. Population performance decreased in the stressful environment for all levels of genetic diversity relative to performance in the permissive environment. Twenty percent of the lowest diversity populations went extinct before the end of the study in permissive conditions, whereas 73% of the low diversity lines went extinct in the stressful environment. All high genetic diversity populations persisted for the duration of the study, although population sizes and reproduction were reduced under stressful environmental conditions. Levels of fitness varied more among replicate low diversity populations than among replicate populations with high genetic diversity. There was a significant correlation

  5. Genetic Determinism and the Innate-Acquired Distinction in Medicine

    Science.gov (United States)

    2009-01-01

    This article illustrates in which sense genetic determinism is still part of the contemporary interactionist consensus in medicine. Three dimensions of this consensus are discussed: kinds of causes, a continuum of traits ranging from monogenetic diseases to car accidents, and different kinds of determination due to different norms of reaction. On this basis, this article explicates in which sense the interactionist consensus presupposes the innate–acquired distinction. After a descriptive Part 1, Part 2 reviews why the innate–acquired distinction is under attack in contemporary philosophy of biology. Three arguments are then presented to provide a limited and pragmatic defense of the distinction: an epistemic, a conceptual, and a historical argument. If interpreted in a certain manner, and if the pragmatic goals of prevention and treatment (ideally specifying what medicine and health care is all about) are taken into account, then the innate–acquired distinction can be a useful epistemic tool. It can help, first, to understand that genetic determination does not mean fatalism, and, second, to maintain a system of checks and balances in the continuing nature–nurture debates. PMID:20234831

  6. Genetic architecture of the Delis-Kaplan Executive Function System Trail Making Test: evidence for distinct genetic influences on executive function.

    Science.gov (United States)

    Vasilopoulos, Terrie; Franz, Carol E; Panizzon, Matthew S; Xian, Hong; Grant, Michael D; Lyons, Michael J; Toomey, Rosemary; Jacobson, Kristen C; Kremen, William S

    2012-03-01

    To examine how genes and environments contribute to relationships among Trail Making Test (TMT) conditions and the extent to which these conditions have unique genetic and environmental influences. Participants included 1,237 middle-aged male twins from the Vietnam Era Twin Study of Aging. The Delis-Kaplan Executive Function System TMT included visual searching, number and letter sequencing, and set-shifting components. Phenotypic correlations among TMT conditions ranged from 0.29 to 0.60, and genes accounted for the majority (58-84%) of each correlation. Overall heritability ranged from 0.34 to 0.62 across conditions. Phenotypic factor analysis suggested a single factor. In contrast, genetic models revealed a single common genetic factor but also unique genetic influences separate from the common factor. Genetic variance (i.e., heritability) of number and letter sequencing was completely explained by the common genetic factor while unique genetic influences separate from the common factor accounted for 57% and 21% of the heritabilities of visual search and set shifting, respectively. After accounting for general cognitive ability, unique genetic influences accounted for 64% and 31% of those heritabilities. A common genetic factor, most likely representing a combination of speed and sequencing, accounted for most of the correlation among TMT 1-4. Distinct genetic factors, however, accounted for a portion of variance in visual scanning and set shifting. Thus, although traditional phenotypic shared variance analysis techniques suggest only one general factor underlying different neuropsychological functions in nonpatient populations, examining the genetic underpinnings of cognitive processes with twin analysis can uncover more complex etiological processes.

  7. Local environment but not genetic differentiation influences biparental care in ten plover populations.

    Directory of Open Access Journals (Sweden)

    Orsolya Vincze

    Full Text Available Social behaviours are highly variable between species, populations and individuals. However, it is contentious whether behavioural variations are primarily moulded by the environment, caused by genetic differences, or a combination of both. Here we establish that biparental care, a complex social behaviour that involves rearing of young by both parents, differs between closely related populations, and then test two potential sources of variation in parental behaviour between populations: ambient environment and genetic differentiation. We use 2904 hours behavioural data from 10 geographically distinct Kentish (Charadrius alexandrinus and snowy plover (C. nivosus populations in America, Europe, the Middle East and North Africa to test these two sources of behavioural variation. We show that local ambient temperature has a significant influence on parental care: with extreme heat (above 40 °C total incubation (i.e. % of time the male or female incubated the nest increased, and female share (% female share of incubation decreased. By contrast, neither genetic differences between populations, nor geographic distances predicted total incubation or female's share of incubation. These results suggest that the local environment has a stronger influence on a social behaviour than genetic differentiation, at least between populations of closely related species.

  8. Puerto Rico and Florida manatees represent genetically distinct groups

    Science.gov (United States)

    Hunter, Margaret E.; Mignucci-Giannoni, Antonio A.; Tucker, Kimberly Pause; King, Timothy L.; Bonde, Robert K.; Gray, Brian A.; McGuire, Peter M.

    2012-01-01

    The West Indian manatee (Trichechus manatus) populations in Florida (T. m. latirostris) and Puerto Rico (T. m. manatus) are considered distinct subspecies and are listed together as endangered under the United States Endangered Species Act. Sustained management and conservation efforts for the Florida subspecies have led to the suggested reclassification of the species to a threatened or delisted status. However, the two populations are geographically distant, morphologically distinct, and habitat degradation and boat strikes continue to threaten the Puerto Rico population. Here, 15 microsatellite markers and mitochondrial control region sequences were used to determine the relatedness of the two populations and investigate the genetic diversity and phylogeographic organization of the Puerto Rico population. Highly divergent allele frequencies were identified between Florida and Puerto Rico using microsatellite (F ST = 0.16; R ST = 0.12 (P ST = 0.66; Φ ST = 0.50 (P E = 0.45; NA = 3.9), were similar, but lower than those previously identified in Florida (HE = 0.48, NA = 4.8). Within Puerto Rico, the mitochondrial genetic diversity values (π = 0.001; h = 0.49) were slightly lower than those previously reported (π = 0.002; h = 0.54) and strong phylogeographic structure was identified (F ST global = 0.82; Φ ST global = 0.78 (P population size (N = 250), and distinct threats and habitat emphasize the need for separate protections in Puerto Rico. Conservation efforts including threat mitigation, migration corridors, and protection of subpopulations could lead to improved genetic variation in the endangered Puerto Rico manatee population.

  9. Complex Genotype by Environment interactions and changing genetic architectures across thermal environments in the Australian field cricket, Teleogryllus oceanicus

    Directory of Open Access Journals (Sweden)

    Dowling Damian K

    2011-07-01

    Full Text Available Abstract Background Biologists studying adaptation under sexual selection have spent considerable effort assessing the relative importance of two groups of models, which hinge on the idea that females gain indirect benefits via mate discrimination. These are the good genes and genetic compatibility models. Quantitative genetic studies have advanced our understanding of these models by enabling assessment of whether the genetic architectures underlying focal phenotypes are congruent with either model. In this context, good genes models require underlying additive genetic variance, while compatibility models require non-additive variance. Currently, we know very little about how the expression of genotypes comprised of distinct parental haplotypes, or how levels and types of genetic variance underlying key phenotypes, change across environments. Such knowledge is important, however, because genotype-environment interactions can have major implications on the potential for evolutionary responses to selection. Results We used a full diallel breeding design to screen for complex genotype-environment interactions, and genetic architectures underlying key morphological traits, across two thermal environments (the lab standard 27°C, and the cooler 23°C in the Australian field cricket, Teleogryllus oceanicus. In males, complex three-way interactions between sire and dam parental haplotypes and the rearing environment accounted for up to 23 per cent of the scaled phenotypic variance in the traits we measured (body mass, pronotum width and testes mass, and each trait harboured significant additive genetic variance in the standard temperature (27°C only. In females, these three-way interactions were less important, with interactions between the paternal haplotype and rearing environment accounting for about ten per cent of the phenotypic variance (in body mass, pronotum width and ovary mass. Of the female traits measured, only ovary mass for crickets

  10. Evaluation of the genetic distinctiveness of Greater Sage-grouse in the Bi-State Planning Area

    Science.gov (United States)

    Oyler-McCance, Sara J.; Casazza, Michael L.

    2011-01-01

    The purpose of this study was to further characterize a distinct population of Greater Sage-grouse: the population located along the border between Nevada and California (Bi-State Planning Area) and centered around the Mono Basin. This population was previously determined to be genetically distinct from other Greater Sage-grouse populations across their range. Previous genetic work focused on characterizing genetic variation across the species' range and thereby used a coarse sampling approach for species characterization. The goal of this study was to investigate this population further by obtaining samples from breeding locations within the population and analyzing those samples with the same mitochondrial and microsatellite loci used in previous studies. Blood samples were collected in six locations within the Bi-State Planning Area. Genetic data from subpopulations were then compared with each other and also with two populations outside of the Bi-State Planning Area. Particular attention was paid to subpopulation boundaries and internal dynamics by drawing comparisons among particular regions within the Bi-State Planning Area and regions proximal to it. All newly sampled subpopulations contained mitochondrial haplotypes and allele frequencies that were consistent with the genetically unique Bi-State (Mono Basin) Greater Sage-grouse described previously. This reinforces the fact that this group of Greater Sage-grouse is genetically unique and warrants special attention. Maintaining the genetic integrity of this population could protect the evolutionary potential of this population of Greater Sage-grouse. Additionally, the White Mountains subpopulation was found to be significantly distinct from all other Bi-State subpopulations.

  11. Intraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage.

    Science.gov (United States)

    Marshall, Kate L A; Philpot, Kate E; Damas-Moreira, Isabel; Stevens, Martin

    2015-01-01

    Within-species colour variation is widespread among animals. Understanding how this arises can elucidate evolutionary mechanisms, such as those underlying reproductive isolation and speciation. Here, we investigated whether five island populations of Aegean wall lizards (Podarcis erhardii) have more effective camouflage against their own (local) island substrates than against other (non-local) island substrates to avian predators, and whether this was linked to island differences in substrate appearance. We also investigated whether degree of local substrate matching varied among island populations and between sexes. In most populations, both sexes were better matched against local backgrounds than against non-local backgrounds, particularly in terms of luminance (perceived lightness), which usually occurred when local and non-local backgrounds were different in appearance. This was found even between island populations that historically had a land connection and in populations that have been isolated relatively recently, suggesting that isolation in these distinct island environments has been sufficient to cause enhanced local background matching, sometimes on a rapid evolutionary time-scale. However, heightened local matching was poorer in populations inhabiting more variable and unstable environments with a prolonged history of volcanic activity. Overall, these results show that lizard coloration is tuned to provide camouflage in local environments, either due to genetic adaptation or changes during development. Yet, the occurrence and extent of selection for local matching may depend on specific conditions associated with local ecology and biogeographic history. These results emphasize how anti-predator adaptations to different environments can drive divergence within a species, which may contribute to reproductive isolation among populations and lead to ecological speciation.

  12. High Genetic Diversity and Distinctiveness of Rear-Edge Climate Relicts Maintained by Ancient Tetraploidisation for Alnus glutinosa

    Science.gov (United States)

    Lepais, Olivier; Muller, Serge D.; Ben Saad-Limam, Samia; Benslama, Mohamed; Rhazi, Laila; Belouahem-Abed, Djamila; Daoud-Bouattour, Amina; Gammar, Amor Mokhtar; Ghrabi-Gammar, Zeineb; Bacles, Cécile Fanny Emilie

    2013-01-01

    Populations located at the rear-edge of a species’ distribution may have disproportionate ecological and evolutionary importance for biodiversity conservation in a changing global environment. Yet genetic studies of such populations remain rare. This study investigates the evolutionary history of North-African low latitude marginal populations of Alnus glutinosa Gaertn., a European tree species that plays a significant ecological role as a keystone of riparian ecosystems. We genotyped 551 adults from 19 populations located across North Africa at 12 microsatellite loci and applied a coalescent-based simulation approach to reconstruct the demographic and evolutionary history of these populations. Surprisingly, Moroccan trees were tetraploids demonstrating a strong distinctiveness of these populations within a species otherwise known as diploid. Best-fitting models of demographic reconstruction revealed the relict nature of Moroccan populations that were found to have withstood past climate change events and to be much older than Algerian and Tunisian populations. This study highlights the complex demographic history that can be encountered in rear-edge distribution margins that here consist of both old stable climate relict and more recent populations, distinctively diverse genetically both quantitatively and qualitatively. We emphasize the high evolutionary and conservation value of marginal rear-edge populations of a keystone riparian species in the context of on-going climate change in the Mediterranean region. PMID:24098677

  13. Intraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage

    Science.gov (United States)

    Marshall, Kate L. A.; Philpot, Kate E.; Damas-Moreira, Isabel; Stevens, Martin

    2015-01-01

    Within-species colour variation is widespread among animals. Understanding how this arises can elucidate evolutionary mechanisms, such as those underlying reproductive isolation and speciation. Here, we investigated whether five island populations of Aegean wall lizards (Podarcis erhardii) have more effective camouflage against their own (local) island substrates than against other (non-local) island substrates to avian predators, and whether this was linked to island differences in substrate appearance. We also investigated whether degree of local substrate matching varied among island populations and between sexes. In most populations, both sexes were better matched against local backgrounds than against non-local backgrounds, particularly in terms of luminance (perceived lightness), which usually occurred when local and non-local backgrounds were different in appearance. This was found even between island populations that historically had a land connection and in populations that have been isolated relatively recently, suggesting that isolation in these distinct island environments has been sufficient to cause enhanced local background matching, sometimes on a rapid evolutionary time-scale. However, heightened local matching was poorer in populations inhabiting more variable and unstable environments with a prolonged history of volcanic activity. Overall, these results show that lizard coloration is tuned to provide camouflage in local environments, either due to genetic adaptation or changes during development. Yet, the occurrence and extent of selection for local matching may depend on specific conditions associated with local ecology and biogeographic history. These results emphasize how anti-predator adaptations to different environments can drive divergence within a species, which may contribute to reproductive isolation among populations and lead to ecological speciation. PMID:26372454

  14. Intraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage.

    Directory of Open Access Journals (Sweden)

    Kate L A Marshall

    Full Text Available Within-species colour variation is widespread among animals. Understanding how this arises can elucidate evolutionary mechanisms, such as those underlying reproductive isolation and speciation. Here, we investigated whether five island populations of Aegean wall lizards (Podarcis erhardii have more effective camouflage against their own (local island substrates than against other (non-local island substrates to avian predators, and whether this was linked to island differences in substrate appearance. We also investigated whether degree of local substrate matching varied among island populations and between sexes. In most populations, both sexes were better matched against local backgrounds than against non-local backgrounds, particularly in terms of luminance (perceived lightness, which usually occurred when local and non-local backgrounds were different in appearance. This was found even between island populations that historically had a land connection and in populations that have been isolated relatively recently, suggesting that isolation in these distinct island environments has been sufficient to cause enhanced local background matching, sometimes on a rapid evolutionary time-scale. However, heightened local matching was poorer in populations inhabiting more variable and unstable environments with a prolonged history of volcanic activity. Overall, these results show that lizard coloration is tuned to provide camouflage in local environments, either due to genetic adaptation or changes during development. Yet, the occurrence and extent of selection for local matching may depend on specific conditions associated with local ecology and biogeographic history. These results emphasize how anti-predator adaptations to different environments can drive divergence within a species, which may contribute to reproductive isolation among populations and lead to ecological speciation.

  15. Genetically distinct isolates of Spirocerca sp. from a naturally infected red fox (Vulpes vulpes) from Denmark

    DEFF Research Database (Denmark)

    Al-Sabi, Mohammad Nafi Solaiman; Hansen, Mette Sif; Chriél, Mariann

    2014-01-01

    sugar-salt solu-tion, and sieving failed to detect eggs of Spirocerca sp. in feces collected from the colon.This is the first report of spirocercosis in Denmark, and may have been caused by a recentintroduction by migrating paratenic or definitive host. Analysis of two overlapping par-tial sequences...... of the cox1 gene, from individual worms, revealed distinct genetic variation(7–9%) between the Danish worms and isolates of S. lupi from Europe, Asia and Africa.This was confirmed by phylogenetic analysis that clearly separated the Danish worms fromother isolates of S. lupi. The distinct genetic differences...

  16. Common and distinct genetic properties of ESCRT-II components in Drosophila.

    Directory of Open Access Journals (Sweden)

    Hans-Martin Herz

    Full Text Available BACKGROUND: Genetic studies in yeast have identified class E vps genes that form the ESCRT complexes required for protein sorting at the early endosome. In Drosophila, mutations of the ESCRT-II component vps25 cause endosomal defects leading to accumulation of Notch protein and increased Notch pathway activity. These endosomal and signaling defects are thought to account for several phenotypes. Depending on the developmental context, two different types of overgrowth can be detected. Tissue predominantly mutant for vps25 displays neoplastic tumor characteristics. In contrast, vps25 mutant clones in a wild-type background trigger hyperplastic overgrowth in a non-autonomous manner. In addition, vps25 mutant clones also promote apoptotic resistance in a non-autonomous manner. PRINCIPAL FINDINGS: Here, we genetically characterize the remaining ESCRT-II components vps22 and vps36. Like vps25, mutants of vps22 and vps36 display endosomal defects, accumulate Notch protein and--when the tissue is predominantly mutant--show neoplastic tumor characteristics. However, despite these common phenotypes, they have distinct non-autonomous phenotypes. While vps22 mutations cause strong non-autonomous overgrowth, they do not affect apoptotic resistance. In contrast, vps36 mutations increase apoptotic resistance, but have little effect on non-autonomous proliferation. Further characterization reveals that although all ESCRT-II mutants accumulate Notch protein, only vps22 and vps25 mutations trigger Notch activity. CONCLUSIONS/SIGNIFICANCE: The ESCRT-II components vps22, vps25 and vps36 display common and distinct genetic properties. Our data redefine the role of Notch for hyperplastic and neoplastic overgrowth in these mutants. While Notch is required for hyperplastic growth, it appears to be dispensable for neoplastic transformation.

  17. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.

    Science.gov (United States)

    Yang, Shengxiang

    2008-01-01

    In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

  18. Altering BDNF expression by genetics and/or environment: impact for emotional and depression-like behaviour in laboratory mice.

    Science.gov (United States)

    Chourbaji, Sabine; Brandwein, Christiane; Gass, Peter

    2011-01-01

    According to the "neurotrophin hypothesis", brain-derived neurotrophic factor (BDNF) is an important candidate gene in depression. Moreover, environmental stress is known to represent a risk factor in the pathophysiology and treatment of this disease. To elucidate, whether changes of BDNF availability signify cause or consequence of depressive-like alterations, it is essential to look for endophenotypes under distinct genetic conditions (e.g. altered BDNF expression). Furthermore it is crucial to examine environment-driven BDNF regulation and its effect on depressive-linked features. Consequently, gene × environment studies investigating prospective genetic mouse models of depression in different environmental contexts become increasingly important. The present review summarizes recent findings in BDNF-mutant mice, which have been controversially discussed as models of depression and anxiety. It furthermore illustrates the potential of environment to serve as naturalistic stressor with the potential to modulate the phenotype in wildtype and mutant mice. Moreover, environment may exert protective effects by regulating BDNF levels as attributed to "environmental enrichment". The effect of this beneficial condition will also be discussed with regard to probable "curative/therapeutic" approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia.

    Science.gov (United States)

    Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J Rovie-Ryan; Snounou, Georges; Escalante, Ananias A; Lau, Yee Ling

    2016-08-01

    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.

  20. The genetics of aging in optimal and stressful environments

    International Nuclear Information System (INIS)

    Parsons, P.A.

    1978-01-01

    The genetic basis of aging in Drosophila varies according to environment, as shown by variations in temperatures and levels of 60 Co-γ irradiation. Under conditions of extreme stress large additive differences occur not found under less acute stresses. In addition, longevities of strains are not necessarily correlated across levels of 60 C0-γ irradiation or temperatures, so that studies of the genetics of aging are not only relevant to the environment selected. Given these results on experimental animals, it appears impossible to separate clearly genetic and environmental factors determining longevity in man - a conclusion that in any case appears likely from human studies. In experimental organisms such as Drosophila, differences between genotypes for longevity are magnified under stress compared with optimal environments. Hybrid and heterozygote superiority frequently occur for density-independent physical stresses of the environment as well as density-dependent behavioral stresses due to crowding levels. It is argued that these conclusions apply to man, so that for maximum longevity genotypes are likely to be highly heterozygous. (author)

  1. Selfish genetic elements favor the evolution of a distinction between soma and germline.

    Science.gov (United States)

    Johnson, Louise J

    2008-08-01

    Many multicellular organisms have evolved a dedicated germline. This can benefit the whole organism, but its advantages to genetic parasites have not been explored. Here I model the evolutionary success of a selfish element, such as a transposable element or endosymbiont, which is capable of creating or strengthening a germline-soma distinction in a primitively multicellular host, and find that it will always benefit the element to do so. Genes causing germline sequestration can therefore spread in a population even if germline sequestration is maladaptive for the host organism. Costly selfish elements are expected to survive only in sexual populations, so sexual species may experience an additional push toward germline-soma distinction, and hence toward cell differentiation and multicellularity.

  2. The contribution of genetics and environment to obesity.

    Science.gov (United States)

    Albuquerque, David; Nóbrega, Clévio; Manco, Licínio; Padez, Cristina

    2017-09-01

    Obesity is a global health problem mainly attributed to lifestyle changes such as diet, low physical activity or socioeconomics factors. However, several evidences consistently showed that genetics contributes significantly to the weight-gain susceptibility. A systematic literature search of most relevant original, review and meta-analysis, restricted to English was conducted in PubMed, Web of Science and Google scholar up to May 2017 concerning the contribution of genetics and environmental factors to obesity. Several evidences suggest that obesogenic environments contribute to the development of an obese phenotype. However, not every individual from the same population, despite sharing the same obesogenic environment, develop obesity. After more than 10 years of investigation on the genetics of obesity, the variants found associated with obesity represent only 3% of the estimated BMI-heritability, which is around 47-80%. Moreover, genetic factors per se were unable to explain the rapid spread of obesity prevalence. The integration of multi-omics data enables scientists having a better picture and to elucidate unknown pathways contributing to obesity. New studies based on case-control or gene candidate approach will be important to identify new variants associated with obesity susceptibility and consequently unveiling its genetic architecture. This will lead to an improvement of our understanding about underlying mechanisms involved in development and origin of the actual obesity epidemic. The integration of several omics will also provide insights about the interplay between genes and environments contributing to the obese phenotype. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. Genetic approach identifies distinct asthma pathways in overweight vs normal weight children.

    Science.gov (United States)

    Butsch Kovacic, M; Martin, L J; Biagini Myers, J M; He, H; Lindsey, M; Mersha, T B; Khurana Hershey, G K

    2015-08-01

    The pathogenesis of asthma in the context of excess body weight may be distinct from asthma that develops in normal weight children. The study's objective was to explore the biology of asthma in the context of obesity and normal weight status using genetic methodologies. Associations between asthma and SNPs in 49 genes were assessed, as well as, interactions between SNPs and overweight status in child participants of the Greater Cincinnati Pediatric Clinic Repository. Asthma was significantly associated with weight (OR = 1.38; P = 0.037). The number of genes and the magnitude of their associations with asthma were notably greater when considering overweight children alone vs normal weight and overweight children together. When considering weight, distinct sets of asthma-associated genes were observed, many times with opposing effects. We demonstrated that the underlying heterogeneity of asthma is likely due in part to distinct pathogenetic pathways that depend on preceding/comorbid overweight and/or allergy. It is therefore important to consider both obesity and asthma when conducting studies of asthma. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Comparative linkage meta-analysis reveals regionally-distinct, disparate genetic architectures: application to bipolar disorder and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Brady Tang

    2011-04-01

    Full Text Available New high-throughput, population-based methods and next-generation sequencing capabilities hold great promise in the quest for common and rare variant discovery and in the search for "missing heritability." However, the optimal analytic strategies for approaching such data are still actively debated, representing the latest rate-limiting step in genetic progress. Since it is likely a majority of common variants of modest effect have been identified through the application of tagSNP-based microarray platforms (i.e., GWAS, alternative approaches robust to detection of low-frequency (1-5% MAF and rare (<1% variants are of great importance. Of direct relevance, we have available an accumulated wealth of linkage data collected through traditional genetic methods over several decades, the full value of which has not been exhausted. To that end, we compare results from two different linkage meta-analysis methods--GSMA and MSP--applied to the same set of 13 bipolar disorder and 16 schizophrenia GWLS datasets. Interestingly, we find that the two methods implicate distinct, largely non-overlapping, genomic regions. Furthermore, based on the statistical methods themselves and our contextualization of these results within the larger genetic literatures, our findings suggest, for each disorder, distinct genetic architectures may reside within disparate genomic regions. Thus, comparative linkage meta-analysis (CLMA may be used to optimize low-frequency and rare variant discovery in the modern genomic era.

  5. Canine Cutaneous Leishmaniasis: Dissemination and Tissue Tropism of Genetically Distinct Leishmania (Viannia braziliensis Populations

    Directory of Open Access Journals (Sweden)

    Guilherme Marx de Oliveira

    2013-01-01

    Full Text Available Little is known regarding the internal dissemination of initial cutaneous lesions and tissue tropism of Leishmania (Viannia braziliensis populations in naturally infected dogs. The aim of this study was to investigate genetic polymorphisms of L. (V. braziliensis populations in different anatomic sites of naturally infected dogs by using polymerase chain reaction (PCR and low-stringency single specific primer-PCR (LSSP-PCR techniques. The amplified products were analyzed by LSSP-PCR to investigate the genetic variability of the parasite populations present in different anatomical sites. Twenty-three out of the 52 samples gave PCR-positive results. The existence of L. (V. braziliensis strains that remained restricted to cutaneous lesions and others showing characteristics of dissemination to internal organs and healthy skin was observed. LSSP-PCR and numerical analyses revealed that parasite populations that do not disseminate were genetically similar and belonged to a separate phenetic cluster. In contrast, populations that showed spreading to internal organs displayed a more polymorphic genetic profile. Despite the heterogeneity, L. (V. braziliensis populations with identical genetic profiles were observed in popliteal and cervical lymph nodes of the same animal. Our results indicate that infection in dogs can be manifested by dissemination and tissue tropism of genetically distinct populations of L. (V. braziliensis.

  6. Clinical characteristics in genetically distinct forms of the congenital long QT syndrome

    International Nuclear Information System (INIS)

    Kawahara, Yosuke; Sawayama, Toshitami; Samukawa, Masanobu; Nezuo, Shoso; Tanaka, Junji; Suetsuna, Ryoji; Kamiyama, Norio

    1998-01-01

    The clinical characteristics in genetically distinct forms of the congenital long QT syndrome (LQTs) were examined on the balance of bilateral sympathetic nerves, and ECG findings. The subjects (mean: 19.4 years old) were three genetically distinct forms of LQTs, including 3 patients in A-family (the high risk family with sudden death), 2 patients in B-family and 3 patients in C-family. All patients met the standard diagnostic criteria according to Schwartz. As the index of the balance of bilateral sympathetic nerves, the dissociation of Tl and MIBG uptake (D) was examined and the radioactivity ratio (the A/L ratio) of anteroseptal wall to posterolateral wall was calculated. The T-wave patterns of ECG and the situation at syncope were examined. In A-family, all 3 patients showed the lowered A/L ratio, D(+), and similar T-wave patterns in ECG. The syndrome developed at exercise, and their QTc extended at exercise. In B-family, all 2 patients showed normal A/L ratio and long T-wave at QT onset, and their QTc shortened at exercise. All patients had developed syncope at rest. In C-family, all 3 patients showed a little decrease of A/L ratio and similar T-wave patterns. Their QTc extended at exercise. These results suggest that the characteristics of the sympathetic nerve balance, ECG wave patterns and the syndrome may depend on each family. (K.H.)

  7. Psoriasis and cardiometabolic traits: modest association but distinct genetic architectures

    Science.gov (United States)

    Koch, Manja; Baurecht, Hansjörg; Ried, Janina S.; Rodriguez, Elke; Schlesinger, Sabrina; Volks, Natalie; Gieger, Christian; Rückert, Ina-Maria; Heinrich, Luise; Willenborg, Christina; Smith, Catherine; Peters, Annette; Thorand, Barbara; Koenig, Wolfgang; Lamina, Claudia; Jansen, Henning; Kronenberg, Florian; Seissler, Jochen; Thiery, Joachim; Rathmann, Wolfgang; Schunkert, Heribert; Erdmann, Jeanette; Barker, Jonathan; Nair, Rajan P; Tsoi, Lam C; Elder, James T; Mrowietz, Ulrich; Weichenthal, Michael; Mucha, Sören; Schreiber, Stefan; Franke, Andre; Schmitt, Jochen; Lieb, Wolfgang; Weidinger, Stephan

    2015-01-01

    Psoriasis has been linked to cardiometabolic diseases, but epidemiological findings are inconsistent. We investigated the association between psoriasis and cardiometabolic outcomes in a German cross-sectional study (n=4.185) and a prospective cohort of German Health Insurance beneficiaries (n=1.811.098). A potential genetic overlap was explored using genome-wide data from >22.000 coronary artery disease (CAD) and >4.000 psoriasis cases, and with a dense genotyping study of cardiometabolic risk loci on 927 psoriasis cases and 3.717 controls. Controlling for major confounders, in the cross-sectional analysis psoriasis was significantly associated with type 2 diabetes (T2D, adjusted odd’s ratio OR=2.36; 95% confidence interval CI=1.26–4.41) and myocardial infarction (MI, OR=2.26, 95% CI=1.03–4.96). In the longitudinal study, psoriasis slightly increased the risk for incident T2D (adjusted relative risk RR=1.11; 95%CI=1.08–1.14) and MI (RR=1.14; 95%CI=1.06–1.22), with highest risk increments in systemically treated psoriasis, which accounted for 11 and 17 excess cases of T2D and MI per 10,000 person-years. Except for weak signals from within the MHC, there was no evidence for genetic risk loci shared between psoriasis and cardiometabolic traits. Our findings suggest that psoriasis, in particular severe psoriasis, increases risk for T2D and MI, and that the genetic architecture of psoriasis and cardiometabolic traits is largely distinct. PMID:25599394

  8. Environment Changes Genetic Effects on Respiratory Conditions and Allergic Phenotypes

    DEFF Research Database (Denmark)

    Song, Yong; Schwager, Michelle J; Backer, Vibeke

    2017-01-01

    The prevalence of asthma and allergic diseases is disproportionately distributed among different populations, with an increasing trend observed in Western countries. Here we investigated how the environment affected genotype-phenotype association in a genetically homogeneous, but geographically...... separated population. We evaluated 18 single nucleotide polymorphisms (SNPs) corresponding to 8 genes (ADAM33, ALOX5, LT-α, LTC4S, NOS1, ORMDL3, TBXA2R and TNF-α), the lung function and five respiratory/allergic conditions (ever asthma, bronchitis, rhinitis, dermatitis and atopy) in two populations of Inuit......-phenotype associations relating to bronchitis and allergy susceptibility are dependent on the environment and that environmental factors/lifestyles modify genetic predisposition and change the genetic effects on diseases....

  9. Genetic variants determining survival and fertility in an adverse African environment

    DEFF Research Database (Denmark)

    Koopman, Jacob J E; Pijpe, Jeroen; Böhringer, Stefan

    2016-01-01

    Human survival probability and fertility decline strongly with age. These life history traits have been shaped by evolution. However, research has failed to uncover a consistent genetic determination of variation in survival and fertility. As an explanation, such genetic determinants have been...... selected in adverse environments, in which humans have lived during most of their history, but are almost exclusively studied in populations in modern affluent environments. Here, we present a large-scale candidate gene association study in a rural African population living in an adverse environment...

  10. Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana.

    Science.gov (United States)

    Postma, Froukje M; Ågren, Jon

    2015-02-01

    The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions. © 2015 John Wiley & Sons Ltd.

  11. Manipulations in maternal environment reverse periodontitis in genetically predisposed rats.

    NARCIS (Netherlands)

    Sluyter, F.; Breivik, T.; Cools, A.R.

    2002-01-01

    The predisposition to develop periodontitis is partly genetically determined in humans as well as in animals. Here we demonstrate, however, that early manipulations in the maternal environment of an animal (rat) model of periodontitis can fully reverse the genetic predisposition to develop

  12. ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties.

    Science.gov (United States)

    St Pourcain, B; Robinson, E B; Anttila, V; Sullivan, B B; Maller, J; Golding, J; Skuse, D; Ring, S; Evans, D M; Zammit, S; Fisher, S E; Neale, B M; Anney, R J L; Ripke, S; Hollegaard, M V; Werge, T; Ronald, A; Grove, J; Hougaard, D M; Børglum, A D; Mortensen, P B; Daly, M J; Davey Smith, G

    2018-02-01

    Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether overlap in common genetic influences between these clinical conditions and impairments in social communication depends on the developmental stage of the assessed trait. Social communication difficulties were measured in typically-developing youth (Avon Longitudinal Study of Parents and Children, N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases, 11 359 controls) and schizophrenia (PGC-SCZ2: 34 241 cases, 45 604 controls, 1235 trios) were either obtained through the Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic influences between ASD and social communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD sample. Genetic overlap between schizophrenia and social communication difficulties, by contrast, persisted across age, as observed within two independent PGC-SCZ2 subsamples, and showed an increase in magnitude for traits assessed during later adolescence. ASD- and schizophrenia-related polygenic effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of genetic factors influencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic influences with impairments in social communication, but reveal distinct developmental profiles in their genetic links, consistent with the onset of clinical symptoms.

  13. The Glass is Half Full and Half Empty: A population-representative twin study testing if Optimism and Pessimism are distinct systems

    Science.gov (United States)

    Bates, Timothy C.

    2015-01-01

    Optimism and pessimism are associated with important outcomes including health and depression. Yet it is unclear if these apparent polar opposites form a single dimension or reflect two distinct systems. The extent to which personality accounts for differences in optimism/pessimism is also controversial. Here, we addressed these questions in a genetically informative sample of 852 pairs of twins. Distinct genetic influences on optimism and pessimism were found. Significant family-level environment effects also emerged, accounting for much of the negative relationship between optimism and pessimism, as well as a link to neuroticism. A general positive genetics factor exerted significant links among both personality and life-orientation traits. Both optimism bias and pessimism also showed genetic variance distinct from all effects of personality, and from each other. PMID:26561494

  14. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments

    OpenAIRE

    Yang, S

    2008-01-01

    Copyright @ 2008 by the Massachusetts Institute of Technology In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical inform...

  15. Measuring the genetic influence on human life span: gene-environment interaction and sex-specific genetic effects

    DEFF Research Database (Denmark)

    Tan, Qihua; De Benedictis, G; Yashin, Annatoli

    2001-01-01

    New approaches are needed to explore the different ways in which genes affect the human life span. One needs to assess the genetic effects themselves, as well as gene–environment interactions and sex dependency. In this paper, we present a new model that combines both genotypic and demographicinf......New approaches are needed to explore the different ways in which genes affect the human life span. One needs to assess the genetic effects themselves, as well as gene–environment interactions and sex dependency. In this paper, we present a new model that combines both genotypic...

  16. Are Genetics and Environment Substitutes or Complements in Affecting Entrepreneurial Choice?

    DEFF Research Database (Denmark)

    Zunino, Diego

    Recent twin and adoption studies have shown that genes matter for entrepreneurial choice. This related study addresses how a genetic predisposition to entrepreneurship interacts with the (entrepreneurship friendliness of the) environment, using a dataset of Italian twins. In particular, we study ...... a role, and that a favorable environment to entrepreneurship selects those with higher predisposition rather than simply increasing the rate of self-employment....... whether the genetic effect is different across genders, based on the stylized fact that barriers to entrepreneurship entry are stronger for females than for males. Using regression analysis, the study confirms earlier findings showing substantial genetic effects. More interestingly, the study finds...

  17. Manipulations in Maternal Environment Reverse Periodontitis in Genetically Predisposed Rats

    Science.gov (United States)

    Sluyter, Frans; Breivik, Torbjørn; Cools, Alexander

    2002-01-01

    The predisposition to develop periodontitis is partly genetically determined in humans as well as in animals. Here we demonstrate, however, that early manipulations in the maternal environment of an animal (rat) model of periodontitis can fully reverse the genetic predisposition to develop periodontitis at adult age. PMID:12093700

  18. The genetics of music accomplishment: evidence for gene-environment correlation and interaction.

    Science.gov (United States)

    Hambrick, David Z; Tucker-Drob, Elliot M

    2015-02-01

    Theories of skilled performance that emphasize training history, such as K. Anders Ericsson and colleagues' deliberate-practice theory, have received a great deal of recent attention in both the scientific literature and the popular press. Twin studies, however, have demonstrated evidence for moderate-to-strong genetic influences on skilled performance. Focusing on musical accomplishment in a sample of over 800 pairs of twins, we found evidence for gene-environment correlation, in the form of a genetic effect on music practice. However, only about one quarter of the genetic effect on music accomplishment was explained by this genetic effect on music practice, suggesting that genetically influenced factors other than practice contribute to individual differences in music accomplishment. We also found evidence for gene-environment interaction, such that genetic effects on music accomplishment were most pronounced among those engaging in music practice, suggesting that genetic potentials for skilled performance are most fully expressed and fostered by practice.

  19. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation.

    Science.gov (United States)

    Lande, Russell

    2009-07-01

    Adaptation to a sudden extreme change in environment, beyond the usual range of background environmental fluctuations, is analysed using a quantitative genetic model of phenotypic plasticity. Generations are discrete, with time lag tau between a critical period for environmental influence on individual development and natural selection on adult phenotypes. The optimum phenotype, and genotypic norms of reaction, are linear functions of the environment. Reaction norm elevation and slope (plasticity) vary among genotypes. Initially, in the average background environment, the character is canalized with minimum genetic and phenotypic variance, and no correlation between reaction norm elevation and slope. The optimal plasticity is proportional to the predictability of environmental fluctuations over time lag tau. During the first generation in the new environment the mean fitness suddenly drops and the mean phenotype jumps towards the new optimum phenotype by plasticity. Subsequent adaptation occurs in two phases. Rapid evolution of increased plasticity allows the mean phenotype to closely approach the new optimum. The new phenotype then undergoes slow genetic assimilation, with reduction in plasticity compensated by genetic evolution of reaction norm elevation in the original environment.

  20. Genetic erosion impedes adaptive responses to stressful environments

    NARCIS (Netherlands)

    Bijlsma, R.; Loeschcke, Volker

    Biodiversity is increasingly subjected to human-induced changes of the environment. To persist, populations continually have to adapt to these often stressful changes including pollution and climate change. Genetic erosion in small populations, owing to fragmentation of natural habitats, is expected

  1. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments.

    Science.gov (United States)

    Hiraishi, A; Furuhata, K; Matsumoto, A; Koike, K A; Fukuyama, M; Tabuchi, K

    1995-01-01

    Strains of pink-pigmented facultative methylotrophs which were isolated previously from various environments and assigned tentatively to the genus Methylobacterium were characterized in comparison with authentic strains of previously known species of this genus. Most of the isolates derived from chlorinated water supplies exhibited resistance to chlorine, whereas 29 to 40% of the isolates from air, natural aquatic environments, and clinical materials were chlorine resistant. None of the tested authentic strains of Methylobacterium species obtained from culture collections exhibited chlorine resistance. Numerical analysis of phenotypic profiles showed that the test organisms tested were separated from each other except M. organophilum and M. rhodesianum. The chlorine-resistant isolates were randomly distributed among all clusters. The 16S ribosomal DNA (rDNA) sequence-based phylogenetic analyses showed that representatives of the isolates together with known Methylobacterium species formed a line of descent distinct from that of members of related genera in the alpha-2 subclass of the Proteobacteria and were divided into three subclusters within the Methylobacterium group. These results demonstrate that there is phenotypic and genetic diversity among chlorine-resistant Methylobacterium strains within the genus. PMID:7793931

  2. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments.

    Science.gov (United States)

    Hiraishi, A; Furuhata, K; Matsumoto, A; Koike, K A; Fukuyama, M; Tabuchi, K

    1995-06-01

    Strains of pink-pigmented facultative methylotrophs which were isolated previously from various environments and assigned tentatively to the genus Methylobacterium were characterized in comparison with authentic strains of previously known species of this genus. Most of the isolates derived from chlorinated water supplies exhibited resistance to chlorine, whereas 29 to 40% of the isolates from air, natural aquatic environments, and clinical materials were chlorine resistant. None of the tested authentic strains of Methylobacterium species obtained from culture collections exhibited chlorine resistance. Numerical analysis of phenotypic profiles showed that the test organisms tested were separated from each other except M. organophilum and M. rhodesianum. The chlorine-resistant isolates were randomly distributed among all clusters. The 16S ribosomal DNA (rDNA) sequence-based phylogenetic analyses showed that representatives of the isolates together with known Methylobacterium species formed a line of descent distinct from that of members of related genera in the alpha-2 subclass of the Proteobacteria and were divided into three subclusters within the Methylobacterium group. These results demonstrate that there is phenotypic and genetic diversity among chlorine-resistant Methylobacterium strains within the genus.

  3. Personality disorder traits, family environment, and alcohol misuse: a multivariate behavioural genetic analysis.

    Science.gov (United States)

    Jang, K L; Vernon, P A; Livesley, W J

    2000-06-01

    This study seeks to estimate the extent to which a common genetic and environmental basis is shared between (i) traits delineating specific aspects of antisocial personality and alcohol misuse, and (ii) childhood family environments, traits delineating broad domains of personality pathology and alcohol misuse. Postal survey data were collected from monozygotic and dizygotic twin pairs. Twin pairs were recruited from Vancouver, British Columbia and London, Ontario, Canada using newspaper advertisements, media stories and twin clubs. Data obtained from 324 monozygotic and 335 dizygotic twin pairs were used to estimate the extent to which traits delineating specific antisocial personality traits and alcohol misuse shared a common genetic and environmental aetiology. Data from 81 monozygotic and 74 dizygotic twin pairs were used to estimate the degree to which traits delineating personality pathology, childhood family environment and alcohol misuse shared a common aetiology. Current alcohol misuse and personality pathology were measured using scales contained in the self-report Dimensional Assessment of Personality Pathology. Perceptions of childhood family environment were measured using the self-report Family Environment Scale. Multivariate genetic analyses showed that a subset of traits delineating components of antisocial personality (i.e. grandiosity, attention-seeking, failure to adopt social norms, interpersonal violence and juvenile antisocial behaviours) are influenced by genetic factors in common to alcohol misuse. Genetically based perceptions of childhood family environment had little relationship with alcohol misuse. Heritable personality factors that influence the perception of childhood family environment play only a small role in the liability to alcohol misuse. Instead, liability to alcohol misuse is related to genetic factors common a specific subset of antisocial personality traits describing conduct problems, narcissistic and stimulus

  4. Across-environment genetic correlations and the frequency of selective environments shape the evolutionary dynamics of growth rate in Impatiens capensis.

    Science.gov (United States)

    Stinchcombe, John R; Izem, Rima; Heschel, M Shane; McGoey, Brechann V; Schmitt, Johanna

    2010-10-01

    Trade-offs can exist within and across environments, and constrain evolutionary trajectories. To examine the effects of competition and resource availability on trade-offs, we grew individuals of recombinant inbred lines of Impatiens capensis in a factorial combination of five densities with two light environments (full light and neutral shade) and used a Bayesian logistic growth analysis to estimate intrinsic growth rates. To estimate across-environment constraints, we developed a variance decomposition approach to principal components analysis, which accounted for sample size, model-fitting, and within-RIL variation prior to eigenanalysis. We detected negative across-environment genetic covariances in intrinsic growth rates, although only under full-light. To evaluate the potential importance of these covariances, we surveyed natural populations of I. capensis to measure the frequency of different density environments across space and time. We combined our empirical estimates of across-environment genetic variance-covariance matrices and frequency of selective environments with hypothetical (yet realistic) selection gradients to project evolutionary responses in multiple density environments. Selection in common environments can lead to correlated responses to selection in rare environments that oppose and counteract direct selection in those rare environments. Our results highlight the importance of considering both the frequency of selective environments and the across-environment genetic covariances in traits simultaneously. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.

  5. Intraspecific ecomorphological variations in Poecilia reticulata (Actinopterygii, Cyprinodontiformes: comparing populations of distinct environments

    Directory of Open Access Journals (Sweden)

    Fábio T. Mise

    2015-06-01

    Full Text Available ABSTRACT Morphological variations, according to the principles of ecomorphology, can be related to different aspects of the organism way of life, such as occupation of habitats and feeding behavior. The present study sought to examine the intraspecific variation in two populations of Poecilia reticulata Peters, 1859, that occur in two types of environments, a lotic (Maringá Stream and a lentic (Jaboti Lake. Due to a marked sexual dimorphism, males and females were analyzed separately. Thus, the proposed hypotheses were that the populations that occur in distinct environments present morphological differences. The morphological variables were obtained using morphometric measurements and the ecomorphological indexes. The data were summarized in a Principal Component Analysis (PCA. A Multivariate Analysis of Variance (Manova was made to verify significant differences in morphology between the populations. Males and females showed similar ecomorphological patterns according to the environment they occur. In general the population from Maringá Stream had fins with major areas, and the Jaboti Lake population eyes located more dorsally. Additionally, others morphological differences such as wider mouth of the males from Maringá Stream, wider heads on Jaboti Lake females and more protractible mouths on males from Jaboti Lake suggest a set of environmental variables that can possibly influence the ecomorphological patterns of the populations, as the water current, availability of food resources and predation. In summary, the initial hypotheses could be confirmed, evidencing the occurrence of distinct ecomorphotypes in the same species according to the environment type.

  6. Genetic and environmental-genetic interaction rules for the myopia based on a family exposed to risk from a myopic environment.

    Science.gov (United States)

    Wenbo, Li; Congxia, Bai; Hui, Liu

    2017-08-30

    To quantitatively assess the role of heredity and environmental factors in myopia based on the family with enough exposed to risk from myopic environment for establishment of environmental and genetic index (EGI). A pedigree analysis unit was defined as one child (university student), father, and mother. Information pertaining to visual acuity, experience in participating in the college entrance examination in mainland of China (regarded as a strong environmental risk for myopia), and occupation for pedigree analysis units were obtained. The difference between effect of both genetic and environmental factors (myopia prevalence in children with two myopic parents) and environmental factors (myopia prevalence in children of whom neither parent was myopic) was defined as the EGI. Multiple regression analysis was performed for 114 pedigree using diopters of father, mother, average diopters in parents, maximum and minimum diopters in father and mother as variables. A total of 353 farmers and 162 farmer families were used as a control group. A distinct difference in myopia rate (96.2% versus 57.7%) was observed for children from parents with myopia and parents without myopia (EGI=0.385). The maximum diopter was included to regression equation which was statistically significant. The prevalence of myopia was 9.9% in the farmer. The prevalence in children is similar between the farmer and other families. A new genetic rule that myopia in children was directly related with maximum diopters in father and mother may be suggested. Environmental factors may play a leading role in the formation of myopia. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models.

    Science.gov (United States)

    Moran, Paula; Stokes, Jennifer; Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John; O'Tuathaigh, Colm

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  8. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Science.gov (United States)

    Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia. PMID:27725886

  9. Koalas (Phascolarctos cinereus) From Queensland Are Genetically Distinct From 2 Populations in Victoria.

    Science.gov (United States)

    Ruiz-Rodriguez, Christina T; Ishida, Yasuko; Murray, Neil D; O'Brien, Stephen J; Graves, Jennifer A M; Greenwood, Alex D; Roca, Alfred L

    2016-01-01

    The koala (Phascolarctos cinereus) suffered population declines and local extirpation due to hunting in the early 20th century, especially in southern Australia. Koalas were subsequently reintroduced to the Brisbane Ranges (BR) and Stony Rises (SR) by translocating individuals from a population on French Island descended from a small number of founders. To examine genetic diversity and north-south differentiation, we genotyped 13 microsatellite markers in 46 wild koalas from the BR and SR, and 27 Queensland koalas kept at the US zoos. The Queensland koalas displayed much higher heterozygosity (H O = 0.73) than the 2 southern Australian koala populations examined: H O = 0.49 in the BR, whereas H O = 0.41 in the SR. This is consistent with the historical accounts of bottlenecks and founder events affecting the southern populations and contrasts with reports of high genetic diversity in some southern populations. The 2 southern Australian koala populations were genetically similar (F ST = 0.018, P = 0.052). By contrast, northern and southern Australian koalas were highly differentiated (F ST = 0.27, P < 0.001), thereby suggesting that geographic structuring should be considered in the conservation management of koalas. Sequencing of 648bp of the mtDNA control region in Queensland koalas found 8 distinct haplotypes, one of which had not been previously detected among koalas. Queensland koalas displayed high mitochondrial haplotype diversity (H = 0.753) and nucleotide diversity (π = 0.0072), indicating along with the microsatellite data that North American zoos have maintained high levels of genetic diversity among their Queensland koalas. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Coffee, Genetic Variants, and Parkinson's Disease: Gene–Environment Interactions

    OpenAIRE

    Yamada-Fowler, Naomi; Söderkvist, Peter

    2015-01-01

    Studies of gene–environment interactions may help us to understand the disease mechanisms of common and complex diseases such as Parkinson's disease (PD). Sporadic PD, the common form of PD, is thought to be a multifactorial disorder caused by combinations of multiple genetic factors and environmental or life-style exposures. Since one of the most extensively studied life-style factors in PD is coffee/caffeine intake, here, the studies of genetic polymorphisms with life-style interactions of ...

  11. Short-range phenotypic divergence among genetically distinct parapatric populations of an Australian funnel-web spider.

    Science.gov (United States)

    Wong, Mark K L; Woodman, James D; Rowell, David M

    2017-07-01

    Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel-web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum 62 , 285-392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110-kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders' behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.

  12. Revealing the distinct habitat ranges and hybrid zone of genetic sub-populations within Pseudo-nitzschia pungens (Bacillariophyceae) in the West Pacific area.

    Science.gov (United States)

    Kim, Jin Ho; Wang, Pengbin; Park, Bum Soo; Kim, Joo-Hwan; Patidar, Shailesh Kumar; Han, Myung-Soo

    2018-03-01

    Genetic sub-populations (clades) of cosmopolitan marine diatom Pseudo-nitzschia pungens might have distinct habitats, and their hybrid zone is suspected in higher latitude area of the West Pacific area, however, it is still unrevealed because of technical difficulties and lack of evidences in natural environments. The aim of this study is to investigate the habitat characteristics of each clade of P. pungens on geographical distribution with the habitat temperature ranges of each clade and to reveal their hybrid zone in the West Pacific area. We employed the 137 number of nucleotide sequences of P. pungens and its sampling data (spatial and temporal scale) originated from the West Pacific area, and used field application of qPCR assay for intra-specific level of P. pungens. Only two genotypes, clade I and III, were identified in the West Pacific area. Clade I was distributed from 39 to 32.3°N, and clade III were from 1.4 to 34.4°N. The estimated habitat temperature for the clade I and clade III ranges were 8.1-26.9 °C and 24.2-31.2 °C, respectively. The latitudinal distributions and temperature ranges of each clade were significantly different. The qPCR assay employed, and results suggested that the hybrid zone for clade I and III has been observed in the southern Korean coasts, and clade III might be introduced from the Southern Pacific area. The cell abundances of clade III were strongly related with the higher seawater temperature and warm current force. This study has defined distinct habitat characteristics of genetically different sub-populations of P. pungens, and revealed its hybrid zone in natural environment for the first time. We also provided strong evidences about dispersion of the population of clade III to higher latitude in the West Pacific area. Copyright © 2018. Published by Elsevier B.V.

  13. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    Directory of Open Access Journals (Sweden)

    Paula Moran

    2016-01-01

    Full Text Available The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.

  14. Genomic single-nucleotide polymorphisms confirm that Gunnison and Greater sage-grouse are genetically well differentiated and that the Bi-State population is distinct

    Science.gov (United States)

    Oyler-McCance, Sara J.; Cornman, Robert S.; Jones, Kenneth L.; Fike, Jennifer

    2015-01-01

    Sage-grouse are iconic, declining inhabitants of sagebrush habitats in western North America, and their management depends on an understanding of genetic variation across the landscape. Two distinct species of sage-grouse have been recognized, Greater (Centrocercus urophasianus) and Gunnison sage-grouse (C. minimus), based on morphology, behavior, and variation at neutral genetic markers. A parapatric group of Greater Sage-Grouse along the border of California and Nevada ("Bi-State") is also genetically distinct at the same neutral genetic markers, yet not different in behavior or morphology. Because delineating taxonomic boundaries and defining conservation units is often difficult in recently diverged taxa and can be further complicated by highly skewed mating systems, we took advantage of new genomic methods that improve our ability to characterize genetic variation at a much finer resolution. We identified thousands of single-nucleotide polymorphisms (SNPs) among Gunnison, Greater, and Bi-State sage-grouse and used them to comprehensively examine levels of genetic diversity and differentiation among these groups. The pairwise multilocus fixation index (FST) was high (0.49) between Gunnison and Greater sage-grouse, and both principal coordinates analysis and model-based clustering grouped samples unequivocally by species. Standing genetic variation was lower within the Gunnison Sage-Grouse. The Bi-State population was also significantly differentiated from Greater Sage-Grouse, albeit more weakly (FST = 0.09), and genetic clustering results were consistent with reduced gene flow with Greater Sage-Grouse. No comparable genetic divisions were found within the Greater Sage-Grouse sample, which spanned the southern half of the range. Thus, we provide much stronger genetic evidence supporting the recognition of Gunnison Sage-Grouse as a distinct species with low genetic diversity. Further, our work confirms that the Bi-State population is differentiated from other

  15. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    Science.gov (United States)

    Takai, K; Horikoshi, K

    1999-08-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.

  16. Possible people, complaints, and the distinction between genetic planning and genetic engineering.

    Science.gov (United States)

    Delaney, James J

    2011-07-01

    Advances in the understanding of genetics have led to the belief that it may become possible to use genetic engineering to manipulate the DNA of humans at the embryonic stage to produce certain desirable traits. Although this currently cannot be done on a large scale, many people nevertheless object in principle to such practices. Most often, they argue that genetic enhancements would harm the children who were engineered, cause societal harms, or that the risks of perfecting the procedures are too high to proceed. However, many of these same people do not have serious objections to what is called 'genetic planning' procedures (such as the selection of sperm donors with desirable traits) that essentially have the same ends. The author calls the view that genetic engineering enhancements are impermissible while genetic planning enhancements are permissible the 'popular view', and argues that the typical reasons people give for the popular view fail to distinguish the two practices. This paper provides a principle that can salvage the popular view, which stresses that offspring from genetic engineering practices have grounds for complaint because they are identical to the pre-enhanced embryo, whereas offspring who are the result of genetic planning have no such grounds.

  17. Potential uses of genetic geological modelling to identify new uranium provinces

    International Nuclear Information System (INIS)

    Finch, W.I.

    1982-01-01

    Genetic-geological modelling is the placing of the various processes of the development of a uranium province into distinct stages that are ordered chronologically and made part of a matrix with corresponding geologic evidence. The models can be applied to a given region by using one of several methods to determine a numerical favorability rating. Two of the possible methods, geologic decision analysis and an oil-and-gas type of play analysis, are briefly described. Simplified genetic models are given for environments of the quartz-pebble conglomerate, unconformity-related vein, and sandstone types of deposits. Comparison of the genetic models of these three sedimentary-related environments reveals several common attributes that may define a general uranium province environment

  18. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  19. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

    Science.gov (United States)

    Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M

    2018-01-30

    Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Biology, Genetics, and Environment

    Science.gov (United States)

    Wall, Tamara L.; Luczak, Susan E.; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)—particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles—have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person’s alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity). PMID:27163368

  1. Appendiceal goblet cell carcinoids and adenocarcinomas ex-goblet cell carcinoid are genetically distinct from primary colorectal-type adenocarcinoma of the appendix

    DEFF Research Database (Denmark)

    Jesinghaus, Moritz; Konukiewitz, Björn; Foersch, Sebastian

    2018-01-01

    The appendix gives rise to goblet cell carcinoids, which represent special carcinomas with distinct biological and histological features. Their genetic background and molecular relationship to colorectal adenocarcinoma is largely unknown. We therefore performed a next-generation sequencing analysis...... a morphomolecular entity, histologically and genetically distinct from appendiceal colorectal-type adenocarcinomas and its colorectal counterparts. Altered Wnt-signaling associated genes, apart from APC, may act as potential drivers of these neoplasms. The absence of KRAS/NRAS mutations might render some....../adenocarcinoma ex-goblet cell carcinoid (n=2, respectively). Mutations in colorectal cancer-related genes (eg, TP53, KRAS, APC) were rare to absent in both, goblet cell carcinoids and adenocarcinomas ex-goblet cell carcinoid, but frequent in primary colorectal-type adenocarcinomas of the appendix. Additional large...

  2. Genetically distinct isolates of Spirocerca sp. from a naturally infected red fox (Vulpes vulpes) from Denmark.

    Science.gov (United States)

    Al-Sabi, Mohammad Nafi Solaiman; Hansen, Mette Sif; Chriél, Mariann; Holm, Elisabeth; Larsen, Gitte; Enemark, Heidi Larsen

    2014-09-15

    Spirocerca lupi causes formation of nodules that may transform into sarcoma in the walls of aorta, esophagus and stomach of infected canids. In February 2013, post mortem examination of a red fox (Vulpes vulpes) hunted in Denmark revealed the presence of several nodules containing adult worms of Spirocerca sp. in the stomach and the omentum. The nodules largely consisted of fibrous tissue with infiltration of mononuclear cells, neutrophilic granulocytes and macrophages with hemosiderin deposition. Parasitological examination by three copromicroscopic methods, sedimentation, flotation with saturated sugar-salt solution, and sieving failed to detect eggs of Spirocerca sp. in feces collected from the colon. This is the first report of spirocercosis in Denmark, and may have been caused by a recent introduction by migrating paratenic or definitive host. Analysis of two overlapping partial sequences of the cox1 gene, from individual worms, revealed distinct genetic variation (7-9%) between the Danish worms and isolates of S. lupi from Europe, Asia and Africa. This was confirmed by phylogenetic analysis that clearly separated the Danish worms from other isolates of S. lupi. The distinct genetic differences of the current worms compared to other isolates of S. lupi may suggest the presence of a cryptic species within Spirocerca. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Distinct Immunoregulatory Mechanisms in Mesenchymal Stem Cells: Role of the Cytokine Environment

    Czech Academy of Sciences Publication Activity Database

    Holáň, Vladimír; Heřmánková, Barbora; Boháčová, Pavla; Kössl, Jan; Chudíčková, Milada; Hájková, Michaela; Krulová, Magdaléna; Zajícová, Alena; Javorková, Eliška

    2016-01-01

    Roč. 12, č. 6 (2016), s. 654-663 ISSN 1550-8943 R&D Projects: GA ČR(CZ) GA14-12580S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LO1508; GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : mesenchymal stem cells * regulatory B cells * cytokine environment Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.967, year: 2016

  4. ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social-communication difficulties

    OpenAIRE

    St Pourcain, B.; Robinson, E.; Anttila, V.; Sullivan, B.; Maller, J.; Golding, J.; Skuse, D.; Ring, S.; Evans, D.; Zammit, S.; Fisher, S.; Neale, B.; Anney, R.; Ripke, S.; Hollegaard, M.

    2017-01-01

    Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and\\ud schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early\\ud childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether\\ud overlap in common genetic influences between these clinical conditions and impairments in social communication depends ...

  5. Division of Giardia isolates from humans into two genetically distinct assemblages by electrophoretic analysis of enzymes encoded at 27 loci and comparison with Giardia muris.

    Science.gov (United States)

    Mayrhofer, G; Andrews, R H; Ey, P L; Chilton, N B

    1995-07-01

    Giardia that infect humans are known to be heterogeneous but they are assigned currently to a single species, Giardia intestinalis (syn. G. lamblia). The genetic differences that exist within G. intestinalis have not yet been assessed quantitatively and neither have they been compared in magnitude with those that exist between G. intestinalis and species that are morphologically similar (G. duodenalis) or morphologically distinct (e.g. G. muris). In this study, 60 Australian isolates of G. intestinalis were analysed electrophoretically at 27 enzyme loci and compared with G. muris and a feline isolate of G. duodenalis. Isolates of G. intestinalis were distinct genetically from both G. muris (approximately 80% fixed allelic differences) and the feline G. duodenalis isolate (approximately 75% fixed allelic differences). The G. intestinalis isolates were extremely heterogeneous but they fell into 2 major genetic assemblages, separated by fixed allelic differences at approximately 60% of loci examined. The magnitude of the genetic differences between the G. intestinalis assemblages approached the level that distinguished the G. duodenalis isolate from the morphologically distinct G. muris. This raises important questions about the evolutionary relationships of the assemblages with Homo sapiens, the possibility of ancient or contemporary transmission from animal hosts to humans and the biogeographical origins of the two clusters.

  6. The Molecular Epidemiology and Genetic Environment of Carbapenemases Detected in Africa.

    Science.gov (United States)

    Sekyere, John Osei; Govinden, Usha; Essack, Sabiha

    2016-01-01

    Research articles describing carbapenemases and their genetic environments in Gram-negative bacteria were reviewed to determine the molecular epidemiology of carbapenemases in Africa. The emergence of resistance to the carbapenems, the last resort antibiotic for difficult to treat bacterial infections, affords clinicians few therapeutic options, with a resulting increase in morbidities, mortalities, and healthcare costs. However, the molecular epidemiology of carbapenemases throughout Africa is less described. Research articles and conference proceedings describing the genetic environment and molecular epidemiology of carbapenemases in Africa were retrieved from Google Scholar, Scifinder, Pubmed, Web of Science, and Science Direct databases. Predominant carbapenemase genes so far described in Africa include the blaOXA-48 type, blaIMP, blaVIM, and blaNDM in Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, Citrobacter spp., and Escherichia coli carried on various plasmid types and sizes, transposons, and integrons. Class D and class B carbapenemases, mainly prevalent in A. baumannii, K. pneumoniae, E. cloacae, Citrobacter spp., and E. coli were the commonest carbapenemases. Carbapenemases are mainly reported in North and South Africa as under-resourced laboratories, lack of awareness and funding preclude the detection and reporting of carbapenemase-mediated resistance. Consequently, the true molecular epidemiology of carbapenemases and their genetic environment in Africa is still unknown.

  7. Understanding the Science-Learning Environment: A Genetically Sensitive Approach

    Science.gov (United States)

    Haworth, Claire M. A.; Davis, Oliver S. P.; Hanscombe, Ken B.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2013-01-01

    Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000…

  8. Genetic architecture of carbon isotope composition and growth in Eucalyptus across multiple environments.

    Science.gov (United States)

    Bartholomé, Jérôme; Mabiala, André; Savelli, Bruno; Bert, Didier; Brendel, Oliver; Plomion, Christophe; Gion, Jean-Marc

    2015-06-01

    In the context of climate change, the water-use efficiency (WUE) of highly productive tree varieties, such as eucalypts, has become a major issue for breeding programmes. This study set out to dissect the genetic architecture of carbon isotope composition (δ(13) C), a proxy of WUE, across several environments. A family of Eucalyptus urophylla × E. grandis was planted in three trials and phenotyped for δ(13) C and growth traits. High-resolution genetic maps enabled us to target genomic regions underlying δ(13) C quantitative trait loci (QTLs) on the E. grandis genome. Of the 15 QTLs identified for δ(13) C, nine were stable across the environments and three displayed significant QTL-by-environment interaction, suggesting medium to high genetic determinism for this trait. Only one colocalization was found between growth and δ(13) C. Gene ontology (GO) term enrichment analysis suggested candidate genes related to foliar δ(13) C, including two involved in the regulation of stomatal movements. This study provides the first report of the genetic architecture of δ(13) C and its relation to growth in Eucalyptus. The low correlations found between the two traits at phenotypic and genetic levels suggest the possibility of improving the WUE of Eucalyptus varieties without having an impact on breeding for growth. © 2015 CIRAD. New Phytologist © 2015 New Phytologist Trust.

  9. Hierarchical spatial genetic structure in a distinct population segment of greater sage-grouse

    Science.gov (United States)

    Oyler-McCance, Sara J.; Casazza, Michael L.; Fike, Jennifer A.; Coates, Peter S.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus) within the Bi-State Management Zone (area along the border between Nevada and California) are geographically isolated on the southwestern edge of the species’ range. Previous research demonstrated that this population is genetically unique, with a high proportion of unique mitochondrial DNA (mtDNA) haplotypes and with significant differences in microsatellite allele frequencies compared to populations across the species’ range. As a result, this population was considered a distinct population segment (DPS) and was recently proposed for listing as threatened under the U.S. Endangered Species Act. A more comprehensive understanding of the boundaries of this genetically unique population (where the Bi-State population begins) and an examination of genetic structure within the Bi-State is needed to help guide effective management decisions. We collected DNA from eight sampling locales within the Bi-State (N = 181) and compared those samples to previously collected DNA from the two most proximal populations outside of the Bi-State DPS, generating mtDNA sequence data and amplifying 15 nuclear microsatellites. Both mtDNA and microsatellite analyses support the idea that the Bi-State DPS represents a genetically unique population, which has likely been separated for thousands of years. Seven mtDNA haplotypes were found exclusively in the Bi-State population and represented 73 % of individuals, while three haplotypes were shared with neighboring populations. In the microsatellite analyses both STRUCTURE and FCA separate the Bi-State from the neighboring populations. We also found genetic structure within the Bi-State as both types of data revealed differences between the northern and southern part of the Bi-State and there was evidence of isolation-by-distance. STRUCTURE revealed three subpopulations within the Bi-State consisting of the northern Pine Nut Mountains (PNa), mid Bi-State, and White Mountains (WM) following a

  10. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    OpenAIRE

    Takai, K; Horikoshi, K

    1999-01-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the...

  11. Cross-packaging of genetically distinct mouse and primate retroviral RNAs

    Directory of Open Access Journals (Sweden)

    Jaballah Soumeya

    2009-07-01

    Full Text Available Abstract Background The mouse mammary tumor virus (MMTV is unique from other retroviruses in having multiple viral promoters, which can be regulated by hormones in a tissue specific manner. This unique property has lead to increased interest in studying MMTV replication with the hope of developing MMTV based vectors for human gene therapy. However, it has recently been reported that related as well as unrelated retroviruses can cross-package each other's genome raising safety concerns towards the use of candidate retroviral vectors for human gene therapy. Therefore, using a trans complementation assay, we looked at the ability of MMTV RNA to be cross-packaged and propagated by an unrelated primate Mason-Pfizer monkey virus (MPMV that has intracellular assembly process similar to that of MMTV. Results Our results revealed that MMTV and MPMV RNAs could be cross-packaged by the heterologous virus particles reciprocally suggesting that pseudotyping between two genetically distinct retroviruses can take place at the RNA level. However, the cross-packaged RNAs could not be propagated further indicating a block at post-packaging events in the retroviral life cycle. To further confirm that the specificity of cross-packaging was conferred by the packaging sequences (ψ, we cloned the packaging sequences of these viruses on expression plasmids that generated non-viral RNAs. Test of these non-viral RNAs confirmed that the reciprocal cross-packaging was primarily due to the recognition of ψ by the heterologous virus proteins. Conclusion The results presented in this study strongly argue that MPMV and MMTV are promiscuous in their ability to cross-package each other's genome suggesting potential RNA-protein interactions among divergent retroviral RNAs proposing that these interactions are more complicated than originally thought. Furthermore, these observations raise the possibility that MMTV and MPMV genomes could also co-package providing substrates for

  12. Genetic and Epigenetic Tumor Suppressor Gene Silencing are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Non small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Marsit, C. J.; Kelsey, K. T.; Houseman, E. A.; Kelsey, K. T.; Houseman, E. A.; Nelson, H. H.

    2008-01-01

    Both genetic and epigenetic alterations characterize human non small cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hyper methylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hyper methylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hyper methylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hyper methylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  13. The Hydrodynamic Distinctiveness of Living Organisms: Communication in Complex Hydraulic Environments

    Science.gov (United States)

    Johnson, M.

    2015-12-01

    Animals make decisions about the suitability of habitat and their reaction to other organisms based on the sensory information that they first obtain. This information is transmitted, masked and filtered by fluvial processes, such as turbulent flow. Despite governing how animals interact with the environment, limited attention has been paid to the controls on the propagation of sensory signals through rivers. Some animals interpret hydraulic events and use the characteristics of wakes to sense the presence of other organisms. This implies that at least some animals can differentiate turbulent flow generated by the presence of living organisms from ambient environmental turbulence. We investigate whether there are specific flow characteristics, distinct from the ambient environment, that potentially flag the presence of organisms to other animals. ADV and PIV measurements in a series of laboratory flume experiments quantified the flow around living Signal Crayfish (Pacifastacus leniusculus) and two inanimate objects of equivalent shape and size. Experiments were repeated across a gradient of turbulence intensities generated over nine combinations of flow velocity and relative submergence. Flows downstream of living crayfish were distinct from inanimate objects, with greater turbulent intensities, higher energy in low- to intermediate frequencies, and flow structures that were less coherent in comparison to those measured downstream of inanimate objects. However, the hydrodynamic signature of crayfish became masked as the intensity of ambient turbulence exceeded that generated by living crayfish. These results demonstrate the importance of the fluvial processes in the transmission of sensory information and suggest that the ability of animals to perceive hydraulic signatures is likely to be limited in many situations in rivers. Thus, animals may need to rely on other senses, such as sight or hearing, especially where depth is shallow relative to grain size.

  14. Genetic Characterization of Spondweni and Zika Viruses and Susceptibility of Geographically Distinct Strains of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae to Spondweni Virus.

    Directory of Open Access Journals (Sweden)

    Andrew D Haddow

    2016-10-01

    Full Text Available Zika virus (ZIKV has extended its known geographic distribution to the New World and is now responsible for severe clinical complications in a subset of patients. While substantial genetic and vector susceptibility data exist for ZIKV, less is known for the closest related flavivirus, Spondweni virus (SPONV. Both ZIKV and SPONV have been known to circulate in Africa since the mid-1900s, but neither has been genetically characterized by gene and compared in parallel. Furthermore, the susceptibility of peridomestic mosquito species incriminated or suspected in the transmission of ZIKV to SPONV was unknown.In this study, two geographically distinct strains of SPONV were genetically characterized and compared to nine genetically and geographically distinct ZIKV strains. Additionally, the susceptibility of both SPONV strains was determined in three mosquito species. The open reading frame (ORF of the SPONV 1952 Nigerian Chuku strain, exhibited a nucleotide and amino acid identity of 97.8% and 99.2%, respectively, when compared to the SPONV 1954 prototype South African SA Ar 94 strain. The ORF of the SPONV Chuku strain exhibited a nucleotide and amino acid identity that ranged from 68.3% to 69.0% and 74.6% to 75.0%, respectively, when compared to nine geographically and genetically distinct strains of ZIKV. The ORF of the nine African and Asian lineage ZIKV strains exhibited limited nucleotide divergence. Aedes aegypti, Ae. albopictus and Culex quinquefasciatus susceptibility and dissemination was low or non-existent following artificial infectious blood feeding of moderate doses of both SPONV strains.SPONV and ZIKV nucleotide and amino acid divergence coupled with differences in geographic distribution, ecology and vector species support previous reports that these viruses are separate species. Furthermore, the low degree of SPONV infection or dissemination in Ae. albopictus, Ae. aegypti and Cx. quinquefasciatus following exposure to two

  15. Genetic distinctiveness of the Herdwick sheep breed and two other locally adapted hill breeds of the UK.

    Science.gov (United States)

    Bowles, Dianna; Carson, Amanda; Isaac, Peter

    2014-01-01

    There is considerable interest in locally adapted breeds of livestock as reservoirs of genetic diversity that may provide important fitness traits for future use in agriculture. In marginal areas, these animals contribute to food security and extract value from land unsuitable for other systems of farming. In England, close to 50% of the national sheep flock is farmed on grassland designated as disadvantaged areas for agricultural production. Many of these areas are in the uplands, where some native breeds of sheep continue to be commercially farmed only in highly localised geographical regions to which they are adapted. This study focuses on three of these breeds, selected for their adaptation to near identical environments and their geographical concentration in regions close to one another. Our objective has been to use retrotyping, microsatellites and single nucleotide polymorphisms to explore the origins of the breeds and whether, despite their similar adaptations and proximity, they are genetically distinctive. We find the three breeds each have a surprisingly different pattern of retrovirus insertions into their genomes compared with one another and with other UK breeds. Uniquely, there is a high incidence of the R0 retrotype in the Herdwick population, characteristic of a primitive genome found previously in very few breeds worldwide and none in the UK mainland. The Herdwick and Rough Fells carry two rare retroviral insertion events, common only in Texels, suggesting sheep populations in the northern uplands have a historical association with the original pin-tail sheep of Texel Island. Microsatellite data and analyses of SNPs associated with RXFP2 (horn traits) and PRLR (reproductive performance traits) also distinguished the three breeds. Significantly, an SNP linked to TMEM154, a locus controlling susceptibility to infection by Maedi-Visna, indicated that all three native hill breeds have a lower than average risk of infection to the lentivirus.

  16. Genetic distinctiveness of the Herdwick sheep breed and two other locally adapted hill breeds of the UK.

    Directory of Open Access Journals (Sweden)

    Dianna Bowles

    Full Text Available There is considerable interest in locally adapted breeds of livestock as reservoirs of genetic diversity that may provide important fitness traits for future use in agriculture. In marginal areas, these animals contribute to food security and extract value from land unsuitable for other systems of farming. In England, close to 50% of the national sheep flock is farmed on grassland designated as disadvantaged areas for agricultural production. Many of these areas are in the uplands, where some native breeds of sheep continue to be commercially farmed only in highly localised geographical regions to which they are adapted. This study focuses on three of these breeds, selected for their adaptation to near identical environments and their geographical concentration in regions close to one another. Our objective has been to use retrotyping, microsatellites and single nucleotide polymorphisms to explore the origins of the breeds and whether, despite their similar adaptations and proximity, they are genetically distinctive. We find the three breeds each have a surprisingly different pattern of retrovirus insertions into their genomes compared with one another and with other UK breeds. Uniquely, there is a high incidence of the R0 retrotype in the Herdwick population, characteristic of a primitive genome found previously in very few breeds worldwide and none in the UK mainland. The Herdwick and Rough Fells carry two rare retroviral insertion events, common only in Texels, suggesting sheep populations in the northern uplands have a historical association with the original pin-tail sheep of Texel Island. Microsatellite data and analyses of SNPs associated with RXFP2 (horn traits and PRLR (reproductive performance traits also distinguished the three breeds. Significantly, an SNP linked to TMEM154, a locus controlling susceptibility to infection by Maedi-Visna, indicated that all three native hill breeds have a lower than average risk of infection to the

  17. A genetically diverse but distinct North American population of Sarcocystis neurona includes an overrepresented clone described by 12 microsatellite alleles.

    Science.gov (United States)

    Asmundsson, Ingrid M; Dubey, J P; Rosenthal, Benjamin M

    2006-09-01

    The population genetics and systematics of most coccidians remain poorly defined despite their impact on human and veterinary health. Non-recombinant parasite clones characterized by distinct transmission and pathogenesis traits persist in the coccidian Toxoplasma gondii despite opportunities for sexual recombination. In order to determine whether this may be generally true for tissue-cyst forming coccidia, and to address evolutionary and taxonomic problems within the genus Sarcocystis, we characterized polymorphic microsatellite markers in Sarcocystis neurona, the major causative agent of equine protozoal myeloencephalitis (EPM). Bayesian statistical modeling, phylogenetic reconstruction based on genotypic chord distances, and analyses of linkage disequilibrium were employed to examine the population structure within S. neurona and closely related Sarcocystis falcatula isolates from North and South America. North American S. neurona were clearly differentiated from those of South America and also from isolates of S. falcatula. Although S. neurona is characterized by substantial allelic and genotypic diversity typical of interbreeding populations, one genotype occurs with significantly excessive frequency; thus, some degree of asexual propagation of S. neurona clones may naturally occur. Finally, S. neurona isolated from disparate North American localities and diverse hosts (opossums, a Southern sea otter, and horses) comprise a single genetic population. Isolates associated with clinical neurological disease bear no obvious distinction as measured by these presumably neutral genetic markers.

  18. The genetics of human longevity: an intricacy of genes, environment, culture and microbiome.

    Science.gov (United States)

    Dato, Serena; Rose, Giuseppina; Crocco, Paolina; Monti, Daniela; Garagnani, Paolo; Franceschi, Claudio; Passarino, Giuseppe

    2017-07-01

    Approximately one-quarter of the variation in lifespan in developed countries can be attributed to genetic factors. However, even large population based studies investigating genetic influence on human lifespan have been disappointing, identifying only a few genes accounting for genetic susceptibility to longevity. Some environmental and lifestyle determinants associated with longevity have been identified, which interplay with genetic factors in an intricate way. The study of gene-environment and gene-gene interactions can significantly improve our chance to disentangle this complex scenario. In this review, we first describe the most recent approaches for genetic studies of longevity, from those enriched with health parameters and frailty measures to pathway-based and SNP-SNP interaction analyses. Then, we go deeper into the concept of "environmental influences" in human aging and longevity, focusing on the contribution of life style changes, social and cultural influences, as important determinants of survival differences among individuals in a population. Finally, we discuss the contribution of the microbiome in human longevity, as an example of complex interaction between organism and environment. In conclusion, evidences collected from the latest studies on human longevity provide a support for the collection of life-long genetic and environmental/lifestyle variables with beneficial or detrimental effects on health, to improve our understanding of the determinants of human lifespan. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Genetic history of the African Sahelian populations.

    Science.gov (United States)

    Černý, V; Kulichová, I; Poloni, E S; Nunes, J M; Pereira, L; Mayor, A; Sanchez-Mazas, A

    2018-03-01

    From a biogeographic perspective, Africa is subdivided into distinct horizontal belts. Human populations living along the Sahel/Savannah belt south of the Sahara desert have often been overshadowed by extensive studies focusing on other African populations such as hunter-gatherers or Bantu in particular. However, the Sahel together with the Savannah bordering it in the south is a challenging region where people had and still have to cope with harsh climatic conditions and show resilient behaviours. Besides exponentially growing urban populations, several local groups leading various lifestyles and speaking languages belonging to three main linguistic families still live in rural localities across that region today. Thanks to several years of consistent population sampling throughout this area, the genetic history of the African Sahelian populations has been largely reconstructed and a deeper knowledge has been acquired regarding their adaptation to peculiar environments and/or subsistence modes. Distinct exposures to pathogens-in particular, malaria-likely contributed to their genetic differentiation for HLA genes. In addition, although food-producing strategies spread within the Sahel/Savannah belt relatively recently, during the last five millennia according to recent archaeological and archaeobotanical studies, remarkable amounts of genetic differences are also observed between sedentary farmers and more mobile pastoralists at multiple neutral and selected loci, reflecting both demographic effects and genetic adaptations to distinct cultural traits, such as dietary habits. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    Directory of Open Access Journals (Sweden)

    Nicholas John Deacon

    Full Text Available Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses.High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation.Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by

  1. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    Science.gov (United States)

    Deacon, Nicholas John; Cavender-Bares, Jeannine

    2015-01-01

    Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses. High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation. Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by examining a common

  2. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model.

    Directory of Open Access Journals (Sweden)

    Tetsuro Ikegami

    Full Text Available Rift Valley fever phlebovirus (RVFV causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2-3 dpi. Recombinant SA51 (rSA51 and Zinga (rZinga strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies.

  3. Shared versus distinct genetic contributions of mental wellbeing with depression and anxiety symptoms in healthy twins.

    Science.gov (United States)

    Routledge, Kylie M; Burton, Karen L O; Williams, Leanne M; Harris, Anthony; Schofield, Peter R; Clark, C Richard; Gatt, Justine M

    2016-10-30

    Mental wellbeing and mental illness symptoms are typically conceptualized as opposite ends of a continuum, despite only sharing about a quarter in common variance. We investigated the normative variation in measures of wellbeing and of depression and anxiety in 1486 twins who did not meet clinical criteria for an overt diagnosis. We quantified the shared versus distinct genetic and environmental variance between wellbeing and depression and anxiety symptoms. The majority of participants (93%) reported levels of depression and anxiety symptoms within the healthy range, yet only 23% reported a wellbeing score within the "flourishing" range: the remainder were within the ranges of "moderate" (67%) or "languishing" (10%). In twin models, measures of wellbeing and of depression and anxiety shared 50.09% of variance due to genetic factors and 18.27% due to environmental factors; the rest of the variance was due to unique variation impacting wellbeing or depression and anxiety symptoms. These findings suggest that an absence of clinically-significant symptoms of depression and anxiety does not necessarily indicate that an individual is flourishing. Both unique and shared genetic and environmental factors may determine why some individuals flourish in the absence of symptoms while others do not. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Deliberate release of genetically modified plants into the environment in Slovenia

    Directory of Open Access Journals (Sweden)

    Zlata LUTHAR

    2015-11-01

    Full Text Available Deliberate release of genetically modified higher plants (GMHPs into the environment in Slovenia is regulated by the Law on the Management of Genetically Modified Organisms (ZRGSO Ur. l. RS 23/2005 and 21/2010, III chapter. For each deliberate release of GMPs into the environment a license issued by the Ministry of Environment and Spatial Planning (MESP must be acquired. The application or notification should contain a very accurate and complex description of the GMP, of the field where it will be released and of wider surroundings or environment. The application consists of Annex 2 with accessories: 1. Part A (technical data for the authorization of deliberate GMP release into the environment; 2. Part B (environmental risk assessment; 3. Application summary in Slovenian and English language for the release of GMP into environment, which is transmitted to Brussels by MESP; 4. Extract from the Land Cadastre of the field to which the GMP will be released. The release procedure runs (till here under the above mentioned Law, which has been in place for several years and which clearly defines that it is possible to release GMP in Slovenia. In the case of GM rice in 2011, the law applied till the site selection of the experiment. Here, the law was not sufficiently taken into account. It was prevailed by the regulation of Farmland and Forest Fund of the Republic of Slovenia and municipal decision, which was stronger than the national law and prevented the cultivation of GM rice in an area that is legally suitable for release of GMO into the environment. Rice is not grown in Slovenia and does not have wild ancestors or close relatives with whom it might mate. Nearest area of cultivation is in neighboring Italy, which is from potentially selected location in Slovenia more than 70 km away.

  5. Genetic interactions matter more in less-optimal environments: a focused review

    Directory of Open Access Journals (Sweden)

    Dustin A. Landers

    2014-08-01

    Full Text Available An increase in the distribution of data points indicates the presence of genetic or environmental modifiers. Mapping of the genetic control of the spread of points, the uniformity, allows us to allocate genetic difference in point distribution to adjacent, cis effects or to independently segregating, trans genetic effects. Our genetic architecture-mapping experiment elucidated the ‘environmental context specificity’ of modifiers, the number and effect size of positive and negative alleles important for uniformity in single and combined stress, and the extent of additivity in estimated allele effects in combined stress environments. We found no alleles for low uniformity in combined stress treatments in the maize mapping population we examined.The major advances in this research area since early 2011 have been in improved methods for modeling of distributions and means and detection of important loci. Double hierarchical general linear models and, more recently, a likelihood ratio formulation have been developed to better model and estimate the genetic and environmental effects in populations. These new methods have been applied to real data sets by the method authors and we now encourage additional development of the software and wider application of the methods. We also propose that simulations of genetic regulatory network models to examine differences in uniformity and systematic exploration of models using shared simulations across communities of researchers would be constructive avenues for developing further insight into the genetic mechanisms of variation control.

  6. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix.

    Science.gov (United States)

    Friedman, Lisa; Kolter, Roberto

    2004-07-01

    Pseudomonas aeruginosa forms biofilms, which are cellular aggregates encased in an extracellular matrix. Molecular genetics studies of three common autoaggregative phenotypes, namely wrinkled colonies, pellicles, and solid-surface-associated biofilms, led to the identification of two loci, pel and psl, that are involved in the production of carbohydrate-rich components of the biofilm matrix. The pel gene cluster is involved in the production of a glucose-rich matrix material in P. aeruginosa strain PA14 (L. Friedman and R. Kolter, Mol. Microbiol. 51:675-690, 2004). Here we investigate the role of the pel gene cluster in P. aeruginosa strain ZK2870 and identify a second genetic locus, termed psl, involved in the production of a mannose-rich matrix material. The 11 predicted protein products of the psl genes are homologous to proteins involved in carbohydrate processing. P. aeruginosa is thus able to produce two distinct carbohydrate-rich matrix materials. Either carbohydrate-rich matrix component appears to be sufficient for mature biofilm formation, and at least one of them is required for mature biofilm formation in P. aeruginosa strains PA14 and ZK2870. Copyright 2004 American Society for Microbiology

  7. Chemical variation in a dominant tree species: population divergence, selection and genetic stability across environments.

    Directory of Open Access Journals (Sweden)

    Julianne M O'Reilly-Wapstra

    Full Text Available Understanding among and within population genetic variation of ecologically important plant traits provides insight into the potential evolutionary processes affecting those traits. The strength and consistency of selection driving variability in traits would be affected by plasticity in differences among genotypes across environments (G×E. We investigated population divergence, selection and environmental plasticity of foliar plant secondary metabolites (PSMs in a dominant tree species, Eucalyptus globulus. Using two common garden trials we examined variation in PSMs at multiple genetic scales; among 12 populations covering the full geographic range of the species and among up to 60 families within populations. Significant genetic variation in the expression of many PSMs resides both among and within populations of E. globulus with moderate (e.g., sideroxylonal A h(2op = 0.24 to high (e.g., macrocarpal G h(2op = 0.48 narrow sense heritabilities and high coefficients of additive genetic variation estimated for some compounds. A comparison of Qst and Fst estimates suggest that variability in some of these traits may be due to selection. Importantly, there was no genetic by environment interaction in the expression of any of the quantitative chemical traits despite often significant site effects. These results provide evidence that natural selection has contributed to population divergence in PSMs in E. globulus, and identifies the formylated phloroglucinol compounds (particularly sideroxylonal and a dominant oil, 1,8-cineole, as candidates for traits whose genetic architecture has been shaped by divergent selection. Additionally, as the genetic differences in these PSMs that influence community phenotypes is stable across environments, the role of plant genotype in structuring communities is strengthened and these genotypic differences may be relatively stable under global environmental changes.

  8. Neighborhood alcohol outlet density and genetic influences on alcohol use: evidence for gene-environment interaction.

    Science.gov (United States)

    Slutske, Wendy S; Deutsch, Arielle R; Piasecki, Thomas M

    2018-05-07

    Genetic influences on alcohol involvement are likely to vary as a function of the 'alcohol environment,' given that exposure to alcohol is a necessary precondition for genetic risk to be expressed. However, few gene-environment interaction studies of alcohol involvement have focused on characteristics of the community-level alcohol environment. The goal of this study was to examine whether living in a community with more alcohol outlets would facilitate the expression of the genetic propensity to drink in a genetically-informed national survey of United States young adults. The participants were 2434 18-26-year-old twin, full-, and half-sibling pairs from Wave III of the National Longitudinal Study of Adolescent to Adult Health. Participants completed in-home interviews in which alcohol use was assessed. Alcohol outlet densities were extracted from state-level liquor license databases aggregated at the census tract level to derive the density of outlets. There was evidence that the estimates of genetic and environmental influences on alcohol use varied as a function of the density of alcohol outlets in the community. For example, the heritability of the frequency of alcohol use for those residing in a neighborhood with ten or more outlets was 74% (95% confidence limits = 55-94%), compared with 16% (95% confidence limits = 0-34%) for those in a neighborhood with zero outlets. This moderating effect of alcohol outlet density was not explained by the state of residence, population density, or neighborhood sociodemographic characteristics. The results suggest that living in a neighborhood with many alcohol outlets may be especially high-risk for those individuals who are genetically predisposed to frequently drink.

  9. Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia.

    Science.gov (United States)

    Godbout, Julie; Fazekas, Aron; Newton, Craig H; Yeh, Francis C; Bousquet, Jean

    2008-05-01

    The Canadian side of the Pacific Northwest was almost entirely covered by ice during the last glacial maximum, which has induced vicariance and genetic population structure for several plant and animal taxa. Lodgepole pine (Pinus contorta Dougl. ex. Loud.) has a wide latitudinal and longitudinal distribution in the Pacific Northwest. Our main objective was to identify relictual signatures of glacial vicariance in the population structure of the species and search for evidence of distinct glacial refugia in the Pacific Northwest. A maternally inherited mitochondrial DNA minisatellite-like marker was used to decipher haplotype diversity in 91 populations of lodgepole pine located across the natural range. Overall population differentiation was sizeable (G(ST) = 0.365 and R(ST) = 0.568). Four relatively homogeneous groups of populations, possibly representative of as many genetically distinct glacial populations, were identified for the two main subspecies, ssp. latifolia and ssp. contorta. For ssp. contorta, one glacial lineage is suggested to have been located at high latitudes and possibly off the coast of mainland British Columbia (BC), while the other is considered to have been located south of the ice sheet along the Pacific coast. For ssp. latifolia, two genetically distinct glacial populations probably occurred south of the ice sheet: in the area bounded by the Cascades and Rocky Mountains ranges, and on the eastern side of the Rockies. A possible fifth refugium located in the Yukon may have also been present for ssp. latifolia. Zones of contact between these ancestral lineages were also apparent in interior and northern BC. These results indicate the role of the Queen Charlotte Islands and the Alexander Archipelago as a refugial zone for some Pacific Northwest species and the vicariant role played by the Cascades and the American Rocky Mountains during glaciation.

  10. Pauci- and Multibacillary Leprosy: Two Distinct, Genetically Neglected Diseases

    Science.gov (United States)

    Gaschignard, Jean; Grant, Audrey Virginia; Thuc, Nguyen Van; Orlova, Marianna; Cobat, Aurélie; Huong, Nguyen Thu; Ba, Nguyen Ngoc; Thai, Vu Hong; Abel, Laurent; Schurr, Erwin; Alcaïs, Alexandre

    2016-01-01

    After sustained exposure to Mycobacterium leprae, only a subset of exposed individuals develops clinical leprosy. Moreover, leprosy patients show a wide spectrum of clinical manifestations that extend from the paucibacillary (PB) to the multibacillary (MB) form of the disease. This “polarization” of leprosy has long been a major focus of investigation for immunologists because of the different immune response in these two forms. But while leprosy per se has been shown to be under tight human genetic control, few epidemiological or genetic studies have focused on leprosy subtypes. Using PubMed, we collected available data in English on the epidemiology of leprosy polarization and the possible role of human genetics in its pathophysiology until September 2015. At the genetic level, we assembled a list of 28 genes from the literature that are associated with leprosy subtypes or implicated in the polarization process. Our bibliographical search revealed that improved study designs are needed to identify genes associated with leprosy polarization. Future investigations should not be restricted to a subanalysis of leprosy per se studies but should instead contrast MB to PB individuals. We show the latter approach to be the most powerful design for the identification of genetic polarization determinants. Finally, we bring to light the important resource represented by the nine-banded armadillo model, a unique animal model for leprosy. PMID:27219008

  11. High and distinct range-edge genetic diversity despite local bottlenecks.

    Directory of Open Access Journals (Sweden)

    Jorge Assis

    Full Text Available The genetic consequences of living on the edge of distributional ranges have been the subject of a largely unresolved debate. Populations occurring along persistent low latitude ranges (rear-edge are expected to retain high and unique genetic diversity. In contrast, currently less favourable environmental conditions limiting population size at such range-edges may have caused genetic erosion that prevails over past historical effects, with potential consequences on reducing future adaptive capacity. The present study provides an empirical test of whether population declines towards a peripheral range might be reflected on decreasing diversity and increasing population isolation and differentiation. We compare population genetic differentiation and diversity with trends in abundance along a latitudinal gradient towards the peripheral distribution range of Saccorhiza polyschides, a large brown seaweed that is the main structural species of kelp forests in SW Europe. Signatures of recent bottleneck events were also evaluated to determine whether the recently recorded distributional shifts had a negative influence on effective population size. Our findings show decreasing population density and increasing spatial fragmentation and local extinctions towards the southern edge. Genetic data revealed two well supported groups with a central contact zone. As predicted, higher differentiation and signs of bottlenecks were found at the southern edge region. However, a decrease in genetic diversity associated with this pattern was not verified. Surprisingly, genetic diversity increased towards the edge despite bottlenecks and much lower densities, suggesting that extinctions and recolonizations have not strongly reduced diversity or that diversity might have been even higher there in the past, a process of shifting genetic baselines.

  12. The complete nucleotide sequences of the 5 genetically distinct plastid genomes of Oenothera, subsection Oenothera: II. A microevolutionary view using bioinformatics and formal genetic data.

    Science.gov (United States)

    Greiner, Stephan; Wang, Xi; Herrmann, Reinhold G; Rauwolf, Uwe; Mayer, Klaus; Haberer, Georg; Meurer, Jörg

    2008-09-01

    A unique combination of genetic features and a rich stock of information make the flowering plant genus Oenothera an appealing model to explore the molecular basis of speciation processes including nucleus-organelle coevolution. From representative species, we have recently reported complete nucleotide sequences of the 5 basic and genetically distinguishable plastid chromosomes of subsection Oenothera (I-V). In nature, Oenothera plastid genomes are associated with 6 distinct, either homozygous or heterozygous, diploid nuclear genotypes of the 3 basic genomes A, B, or C. Artificially produced plastome-genome combinations that do not occur naturally often display interspecific plastome-genome incompatibility (PGI). In this study, we compare formal genetic data available from all 30 plastome-genome combinations with sequence differences between the plastomes to uncover potential determinants for interspecific PGI. Consistent with an active role in speciation, a remarkable number of genes have high Ka/Ks ratios. Different from the Solanacean cybrid model Atropa/tobacco, RNA editing seems not to be relevant for PGIs in Oenothera. However, predominantly sequence polymorphisms in intergenic segments are proposed as possible sources for PGI. A single locus, the bidirectional promoter region between psbB and clpP, is suggested to contribute to compartmental PGI in the interspecific AB hybrid containing plastome I (AB-I), consistent with its perturbed photosystem II activity.

  13. Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium.

    Directory of Open Access Journals (Sweden)

    Pim Bongaerts

    2010-05-01

    Full Text Available Coral reefs are hotspots of biodiversity, yet processes of diversification in these ecosystems are poorly understood. The environmental heterogeneity of coral reef environments could be an important contributor to diversification, however, evidence supporting ecological speciation in corals is sparse. Here, we present data from a widespread coral species that reveals a strong association of host and symbiont lineages with specific habitats, consistent with distinct, sympatric gene pools that are maintained through ecologically-based selection.Populations of a common brooding coral, Seriatopora hystrix, were sampled from three adjacent reef habitats (spanning a approximately 30 m depth range at three locations on the Great Barrier Reef (n = 336. The populations were assessed for genetic structure using a combination of mitochondrial (putative control region and nuclear (three microsatellites markers for the coral host, and the ITS2 region of the ribosomal DNA for the algal symbionts (Symbiodinium. Our results show concordant genetic partitioning of both the coral host and its symbionts across the different habitats, independent of sampling location.This study demonstrates that coral populations and their associated symbionts can be highly structured across habitats on a single reef. Coral populations from adjacent habitats were found to be genetically isolated from each other, whereas genetic similarity was maintained across similar habitat types at different locations. The most parsimonious explanation for the observed genetic partitioning across habitats is that adaptation to the local environment has caused ecological divergence of distinct genetic groups within S. hystrix.

  14. When three traits make a line: evolution of phenotypic plasticity and genetic assimilation through linear reaction norms in stochastic environments.

    Science.gov (United States)

    Ergon, T; Ergon, R

    2017-03-01

    Genetic assimilation emerges from selection on phenotypic plasticity. Yet, commonly used quantitative genetics models of linear reaction norms considering intercept and slope as traits do not mimic the full process of genetic assimilation. We argue that intercept-slope reaction norm models are insufficient representations of genetic effects on linear reaction norms and that considering reaction norm intercept as a trait is unfortunate because the definition of this trait relates to a specific environmental value (zero) and confounds genetic effects on reaction norm elevation with genetic effects on environmental perception. Instead, we suggest a model with three traits representing genetic effects that, respectively, (i) are independent of the environment, (ii) alter the sensitivity of the phenotype to the environment and (iii) determine how the organism perceives the environment. The model predicts that, given sufficient additive genetic variation in environmental perception, the environmental value at which reaction norms tend to cross will respond rapidly to selection after an abrupt environmental change, and eventually becomes equal to the new mean environment. This readjustment of the zone of canalization becomes completed without changes in genetic correlations, genetic drift or imposing any fitness costs of maintaining plasticity. The asymptotic evolutionary outcome of this three-trait linear reaction norm generally entails a lower degree of phenotypic plasticity than the two-trait model, and maximum expected fitness does not occur at the mean trait values in the population. © 2016 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  15. Genetic differentiation across multiple spatial scales of the Red Sea of the corals Stylophora pistillata and Pocillopora verrucosa

    KAUST Repository

    Monroe, Alison

    2015-12-01

    Observing populations at different spatial scales gives greater insight into the specific processes driving genetic differentiation and population structure. Here we determined population connectivity across multiple spatial scales in the Red Sea to determine the population structures of two reef building corals Stylophora pistillata and Pocillopora verrucosa. The Red sea is a 2,250 km long body of water with extremely variable latitudinal environmental gradients. Mitochondrial and microsatellite markers were used to determine distinct lineages and to look for genetic differentiation among sampling sites. No distinctive population structure across the latitudinal gradient was discovered within this study suggesting a phenotypic plasticity of both these species to various environments. Stylophora pistillata displayed a heterogeneous distribution of three distinct genetic populations on both a fine and large scale. Fst, Gst, and Dest were all significant (p-value<0.05) and showed moderate genetic differentiation between all sampling sites. However this seems to be byproduct of the heterogeneous distribution, as no distinct genetic population breaks were found. Stylophora pistillata showed greater population structure on a fine scale suggesting genetic selection based on fine scale environmental variations. However, further environmental and oceanographic data is needed to make more inferences on this structure at small spatial scales. This study highlights the deficits of knowledge of both the Red Sea and coral plasticity in regards to local environmental conditions.

  16. A distinct alleles and genetic recombination of pmrCAB operon in species of Acinetobacter baumannii complex isolates.

    Science.gov (United States)

    Kim, Dae Hun; Ko, Kwan Soo

    2015-07-01

    To investigate pmrCAB sequence divergence in 5 species of Acinetobacter baumannii complex, a total of 80 isolates from a Korean hospital were explored. We evaluated nucleotide and amino acid polymorphisms of pmrCAB operon, and phylogenetic trees were constructed for each gene of prmCAB operon. Colistin and polymyxin B susceptibility was determined for all isolates, and multilocus sequence typing was also performed for A. baumannii isolates. Our results showed that each species of A. baumannii complex has divergent pmrCAB operon sequences. We identified a distinct pmrCAB allele allied with Acinetobacter nosocomialis in gene trees. Different grouping in each gene tree suggests sporadic recombination or emergence of pmrCAB genes among Acinetobacter species. Sequence polymorphisms among Acinetobacter species might not be associated with colistin resistance. We revealed that a distinct pmrCAB allele may be widespread across the continents such as North America and Asia and that sporadic genetic recombination or emergence of pmrCAB genes might occur. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Host Genetics and Environment Drive Divergent Responses of Two Resource Sharing Gall-Formers on Norway Spruce: A Common Garden Analysis.

    Science.gov (United States)

    Axelsson, E Petter; Iason, Glenn R; Julkunen-Tiitto, Riitta; Whitham, Thomas G

    2015-01-01

    A central issue in the field of community genetics is the expectation that trait variation among genotypes play a defining role in structuring associated species and in forming community phenotypes. Quantifying the existence of such community phenotypes in two common garden environments also has important consequences for our understanding of gene-by-environment interactions at the community level. The existence of community phenotypes has not been evaluated in the crowns of boreal forest trees. In this study we address the influence of tree genetics on needle chemistry and genetic x environment interactions on two gall-inducing adelgid aphids (Adelges spp. and Sacchiphantes spp.) that share the same elongating bud/shoot niche. We examine the hypothesis that the canopies of different genotypes of Norway spruce (Picea abies L.) support different community phenotypes. Three patterns emerged. First, the two gallers show clear differences in their response to host genetics and environment. Whereas genetics significantly affected the abundance of Adelges spp. galls, Sacchiphantes spp. was predominately affected by the environment suggesting that the genetic influence is stronger in Adelges spp. Second, the among family variation in genetically controlled resistance was large, i.e. fullsib families differed as much as 10 fold in susceptibility towards Adelges spp. (0.57 to 6.2 galls/branch). Also, the distribution of chemical profiles was continuous, showing both overlap as well as examples of significant differences among fullsib families. Third, despite the predicted effects of host chemistry on galls, principal component analyses using 31 different phenolic substances showed only limited association with galls and a similarity test showed that trees with similar phenolic chemical characteristics, did not host more similar communities of gallers. Nonetheless, the large genetic variation in trait expression and clear differences in how community members respond to host

  18. Host Genetics and Environment Drive Divergent Responses of Two Resource Sharing Gall-Formers on Norway Spruce: A Common Garden Analysis.

    Directory of Open Access Journals (Sweden)

    E Petter Axelsson

    Full Text Available A central issue in the field of community genetics is the expectation that trait variation among genotypes play a defining role in structuring associated species and in forming community phenotypes. Quantifying the existence of such community phenotypes in two common garden environments also has important consequences for our understanding of gene-by-environment interactions at the community level. The existence of community phenotypes has not been evaluated in the crowns of boreal forest trees. In this study we address the influence of tree genetics on needle chemistry and genetic x environment interactions on two gall-inducing adelgid aphids (Adelges spp. and Sacchiphantes spp. that share the same elongating bud/shoot niche. We examine the hypothesis that the canopies of different genotypes of Norway spruce (Picea abies L. support different community phenotypes. Three patterns emerged. First, the two gallers show clear differences in their response to host genetics and environment. Whereas genetics significantly affected the abundance of Adelges spp. galls, Sacchiphantes spp. was predominately affected by the environment suggesting that the genetic influence is stronger in Adelges spp. Second, the among family variation in genetically controlled resistance was large, i.e. fullsib families differed as much as 10 fold in susceptibility towards Adelges spp. (0.57 to 6.2 galls/branch. Also, the distribution of chemical profiles was continuous, showing both overlap as well as examples of significant differences among fullsib families. Third, despite the predicted effects of host chemistry on galls, principal component analyses using 31 different phenolic substances showed only limited association with galls and a similarity test showed that trees with similar phenolic chemical characteristics, did not host more similar communities of gallers. Nonetheless, the large genetic variation in trait expression and clear differences in how community members

  19. Molecular genetic gene-environment studies using candidate genes in schizophrenia: a systematic review.

    Science.gov (United States)

    Modinos, Gemma; Iyegbe, Conrad; Prata, Diana; Rivera, Margarita; Kempton, Matthew J; Valmaggia, Lucia R; Sham, Pak C; van Os, Jim; McGuire, Philip

    2013-11-01

    The relatively high heritability of schizophrenia suggests that genetic factors play an important role in the etiology of the disorder. On the other hand, a number of environmental factors significantly influence its incidence. As few direct genetic effects have been demonstrated, and there is considerable inter-individual heterogeneity in the response to the known environmental factors, interactions between genetic and environmental factors may be important in determining whether an individual develops the disorder. To date, a considerable number of studies of gene-environment interactions (G×E) in schizophrenia have employed a hypothesis-based molecular genetic approach using candidate genes, which have led to a range of different findings. This systematic review aims to summarize the results from molecular genetic candidate studies and to review challenges and opportunities of this approach in psychosis research. Finally, we discuss the potential of future prospects, such as new studies that combine hypothesis-based molecular genetic candidate approaches with agnostic genome-wide association studies in determining schizophrenia risk. © 2013 Elsevier B.V. All rights reserved.

  20. Genetically distinct subsets within ANCA-associated vasculitis.

    LENUS (Irish Health Repository)

    Lyons, Paul A

    2012-07-19

    Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a severe condition encompassing two major syndromes: granulomatosis with polyangiitis (formerly known as Wegener\\'s granulomatosis) and microscopic polyangiitis. Its cause is unknown, and there is debate about whether it is a single disease entity and what role ANCA plays in its pathogenesis. We investigated its genetic basis.

  1. Abraham's children in the genome era: major Jewish diaspora populations comprise distinct genetic clusters with shared Middle Eastern Ancestry.

    Science.gov (United States)

    Atzmon, Gil; Hao, Li; Pe'er, Itsik; Velez, Christopher; Pearlman, Alexander; Palamara, Pier Francesco; Morrow, Bernice; Friedman, Eitan; Oddoux, Carole; Burns, Edward; Ostrer, Harry

    2010-06-11

    For more than a century, Jews and non-Jews alike have tried to define the relatedness of contemporary Jewish people. Previous genetic studies of blood group and serum markers suggested that Jewish groups had Middle Eastern origin with greater genetic similarity between paired Jewish populations. However, these and successor studies of monoallelic Y chromosomal and mitochondrial genetic markers did not resolve the issues of within and between-group Jewish genetic identity. Here, genome-wide analysis of seven Jewish groups (Iranian, Iraqi, Syrian, Italian, Turkish, Greek, and Ashkenazi) and comparison with non-Jewish groups demonstrated distinctive Jewish population clusters, each with shared Middle Eastern ancestry, proximity to contemporary Middle Eastern populations, and variable degrees of European and North African admixture. Two major groups were identified by principal component, phylogenetic, and identity by descent (IBD) analysis: Middle Eastern Jews and European/Syrian Jews. The IBD segment sharing and the proximity of European Jews to each other and to southern European populations suggested similar origins for European Jewry and refuted large-scale genetic contributions of Central and Eastern European and Slavic populations to the formation of Ashkenazi Jewry. Rapid decay of IBD in Ashkenazi Jewish genomes was consistent with a severe bottleneck followed by large expansion, such as occurred with the so-called demographic miracle of population expansion from 50,000 people at the beginning of the 15th century to 5,000,000 people at the beginning of the 19th century. Thus, this study demonstrates that European/Syrian and Middle Eastern Jews represent a series of geographical isolates or clusters woven together by shared IBD genetic threads.

  2. Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria.

    Directory of Open Access Journals (Sweden)

    Max J Feldman

    2017-06-01

    Full Text Available Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber. The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.

  3. Time dependent genetic analysis links field and controlled environment phenotypes in the model C4 grass Setaria.

    Science.gov (United States)

    Feldman, Max J; Paul, Rachel E; Banan, Darshi; Barrett, Jennifer F; Sebastian, Jose; Yee, Muh-Ching; Jiang, Hui; Lipka, Alexander E; Brutnell, Thomas P; Dinneny, José R; Leakey, Andrew D B; Baxter, Ivan

    2017-06-01

    Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.

  4. Rapid changes in genetic architecture of behavioural syndromes following colonization of a novel environment.

    Science.gov (United States)

    Karlsson Green, K; Eroukhmanoff, F; Harris, S; Pettersson, L B; Svensson, E I

    2016-01-01

    Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat-specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  5. Mate choice for genetic quality when environments vary: suggestions for empirical progress.

    Science.gov (United States)

    Bussière, Luc F; Hunt, John; Stölting, Kai N; Jennions, Michael D; Brooks, Robert

    2008-09-01

    Mate choice for good-genes remains one of the most controversial evolutionary processes ever proposed. This is partly because strong directional choice should theoretically deplete the genetic variation that explains the evolution of this type of female mating preference (the so-called lek paradox). Moreover, good-genes benefits are generally assumed to be too small to outweigh opposing direct selection on females. Here, we review recent progress in the study of mate choice for genetic quality, focussing particularly on the potential for genotype by environment interactions (GEIs) to rescue additive genetic variation for quality, and thereby resolve the lek paradox. We raise five questions that we think will stimulate empirical progress in this field, and suggest directions for research in each area: (1) How is condition-dependence affected by environmental variation? (2) How important are GEIs for maintaining additive genetic variance in condition? (3) How much do GEIs reduce the signalling value of male condition? (4) How does GEI affect the multivariate version of the lek paradox? (5) Have mating biases for high-condition males evolved because of indirect benefits?

  6. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa.

    Science.gov (United States)

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-09-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted "mountain refugia hypothesis" states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity.

  7. Genomic tools for evolution and conservation in the chimpanzee: Pan troglodytes ellioti is a genetically distinct population.

    Directory of Open Access Journals (Sweden)

    Rory Bowden

    Full Text Available In spite of its evolutionary significance and conservation importance, the population structure of the common chimpanzee, Pan troglodytes, is still poorly understood. An issue of particular controversy is whether the proposed fourth subspecies of chimpanzee, Pan troglodytes ellioti, from parts of Nigeria and Cameroon, is genetically distinct. Although modern high-throughput SNP genotyping has had a major impact on our understanding of human population structure and demographic history, its application to ecological, demographic, or conservation questions in non-human species has been extremely limited. Here we apply these tools to chimpanzee population structure, using ∼700 autosomal SNPs derived from chimpanzee genomic data and a further ∼100 SNPs from targeted re-sequencing. We demonstrate conclusively the existence of P. t. ellioti as a genetically distinct subgroup. We show that there is clear differentiation between the verus, troglodytes, and ellioti populations at the SNP and haplotype level, on a scale that is greater than that separating continental human populations. Further, we show that only a small set of SNPs (10-20 is needed to successfully assign individuals to these populations. Tellingly, use of only mitochondrial DNA variation to classify individuals is erroneous in 4 of 54 cases, reinforcing the dangers of basing demographic inference on a single locus and implying that the demographic history of the species is more complicated than that suggested analyses based solely on mtDNA. In this study we demonstrate the feasibility of developing economical and robust tests of individual chimpanzee origin as well as in-depth studies of population structure. These findings have important implications for conservation strategies and our understanding of the evolution of chimpanzees. They also act as a proof-of-principle for the use of cheap high-throughput genomic methods for ecological questions.

  8. Using Genetic Algorithms for Navigation Planning in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Ferhat Uçan

    2012-01-01

    Full Text Available Navigation planning can be considered as a combination of searching and executing the most convenient flight path from an initial waypoint to a destination waypoint. Generally the aim is to follow the flight path, which provides minimum fuel consumption for the air vehicle. For dynamic environments, constraints change dynamically during flight. This is a special case of dynamic path planning. As the main concern of this paper is flight planning, the conditions and objectives that are most probable to be used in navigation problem are considered. In this paper, the genetic algorithm solution of the dynamic flight planning problem is explained. The evolutionary dynamic navigation planning algorithm is developed for compensating the existing deficiencies of the other approaches. The existing fully dynamic algorithms process unit changes to topology one modification at a time, but when there are several such operations occurring in the environment simultaneously, the algorithms are quite inefficient. The proposed algorithm may respond to the concurrent constraint updates in a shorter time for dynamic environment. The most secure navigation of the air vehicle is planned and executed so that the fuel consumption is minimum.

  9. HLA-DRB1 Analysis Identified a Genetically Unique Subset within Rheumatoid Arthritis and Distinct Genetic Background of Rheumatoid Factor Levels from Anticyclic Citrullinated Peptide Antibodies.

    Science.gov (United States)

    Hiwa, Ryosuke; Ikari, Katsunori; Ohmura, Koichiro; Nakabo, Shuichiro; Matsuo, Keitaro; Saji, Hiroh; Yurugi, Kimiko; Miura, Yasuo; Maekawa, Taira; Taniguchi, Atsuo; Yamanaka, Hisashi; Matsuda, Fumihiko; Mimori, Tsuneyo; Terao, Chikashi

    2018-04-01

    HLA-DRB1 is the most important locus associated with rheumatoid arthritis (RA) and anticitrullinated protein antibodies (ACPA). However, fluctuations of rheumatoid factor (RF) over the disease course have made it difficult to define fine subgroups according to consistent RF positivity for the analyses of genetic background and the levels of RF. A total of 2873 patients with RA and 2008 healthy controls were recruited. We genotyped HLA-DRB1 alleles for the participants and collected consecutive data of RF in the case subjects. In addition to RF+ and RF- subsets, we classified the RF+ subjects into group 1 (constant RF+) and group 2 (seroconversion). We compared HLA-DRB1 alleles between the RA subsets and controls and performed linear regression analysis to identify HLA-DRB1 alleles associated with maximal RF levels. Omnibus tests were conducted to assess important amino acid positions. RF positivity was 88%, and 1372 and 970 RF+ subjects were classified into groups 1 and 2, respectively. RF+ and RF- showed similar genetic associations to ACPA+ and ACPA- RA, respectively. We found that shared epitope (SE) was more enriched in group 2 than 1, p = 2.0 × 10 -5 , and that amino acid position 11 showed a significant association between 1 and 2, p = 2.7 × 10 -5 . These associations were independent of ACPA positivity. SE showed a tendency to be negatively correlated with RF titer (p = 0.012). HLA-DRB1*09:01, which reduces ACPA titer, was not associated with RF levels (p = 0.70). The seroconversion group was shown to have distinct genetic characteristics. The genetic architecture of RF levels is different from that of ACPA.

  10. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    OpenAIRE

    Zhu, Yong-Guan; Rosen, Barry P

    2009-01-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loa...

  11. The Human Salivary Microbiome Is Shaped by Shared Environment Rather than Genetics: Evidence from a Large Family of Closely Related Individuals.

    Science.gov (United States)

    Shaw, Liam; Ribeiro, Andre L R; Levine, Adam P; Pontikos, Nikolas; Balloux, Francois; Segal, Anthony W; Roberts, Adam P; Smith, Andrew M

    2017-09-12

    The human microbiome is affected by multiple factors, including the environment and host genetics. In this study, we analyzed the salivary microbiomes of an extended family of Ashkenazi Jewish individuals living in several cities and investigated associations with both shared household and host genetic similarities. We found that environmental effects dominated over genetic effects. While there was weak evidence of geographical structuring at the level of cities, we observed a large and significant effect of shared household on microbiome composition, supporting the role of the immediate shared environment in dictating the presence or absence of taxa. This effect was also seen when including adults who had grown up in the same household but moved out prior to the time of sampling, suggesting that the establishment of the salivary microbiome earlier in life may affect its long-term composition. We found weak associations between host genetic relatedness and microbiome dissimilarity when using family pedigrees as proxies for genetic similarity. However, this association disappeared when using more-accurate measures of kinship based on genome-wide genetic markers, indicating that the environment rather than host genetics is the dominant factor affecting the composition of the salivary microbiome in closely related individuals. Our results support the concept that there is a consistent core microbiome conserved across global scales but that small-scale effects due to a shared living environment significantly affect microbial community composition. IMPORTANCE Previous research shows that the salivary microbiomes of relatives are more similar than those of nonrelatives, but it remains difficult to distinguish the effects of relatedness and shared household environment. Furthermore, pedigree measures may not accurately measure host genetic similarity. In this study, we include genetic relatedness based on genome-wide single nucleotide polymorphisms (SNPs) (rather than

  12. Genetic characterization of commercial Saccharomyces cerevisiae isolates recovered from vineyard environments.

    Science.gov (United States)

    Schuller, Dorit; Pereira, Leonor; Alves, Hugo; Cambon, Brigitte; Dequin, Sylvie; Casal, Margarida

    2007-08-01

    One hundred isolates of the commercial Saccharomyces cerevisiae strain Zymaflore VL1 were recovered from spontaneous fermentations carried out with grapes collected from vineyards located close to wineries in the Vinho Verde wine region of Portugal. Isolates were differentiated based on their mitochondrial DNA restriction patterns and the evaluation of genetic polymorphisms was carried out by microsatellite analysis, interdelta sequence typing and pulsed-field gel electrophoresis (PFGE). Genetic patterns were compared to those obtained for 30 isolates of the original commercialized Zymaflore VL1 strain. Among the 100 recovered isolates we found a high percentage of chromosomal size variations, most evident for the smaller chromosomes III and VI. Complete loss of heterozygosity was observed for two isolates that had also lost chromosomal heteromorphism; their growth and fermentative capacity in a synthetic must medium was also affected. A considerably higher number of variant patterns for interdelta sequence amplifications was obtained for grape-derived strains compared to the original VL1 isolates. Our data show that the long-term presence of strain VL1 in natural grapevine environments induced genetic changes that can be detected using different fingerprinting methods. The observed genetic changes may reflect adaptive mechanisms to changed environmental conditions that yeast cells encounter during their existence in nature. (c) 2007 John Wiley & Sons, Ltd.

  13. Detection vs. selection: integration of genetic, epigenetic and environmental cues in fluctuating environments.

    Science.gov (United States)

    McNamara, John M; Dall, Sasha R X; Hammerstein, Peter; Leimar, Olof

    2016-10-01

    There are many inputs during development that influence an organism's fit to current or upcoming environments. These include genetic effects, transgenerational epigenetic influences, environmental cues and developmental noise, which are rarely investigated in the same formal framework. We study an analytically tractable evolutionary model, in which cues are integrated to determine mature phenotypes in fluctuating environments. Environmental cues received during development and by the mother as an adult act as detection-based (individually observed) cues. The mother's phenotype and a quantitative genetic effect act as selection-based cues (they correlate with environmental states after selection). We specify when such cues are complementary and tend to be used together, and when using the most informative cue will predominate. Thus, we extend recent analyses of the evolutionary implications of subsets of these effects by providing a general diagnosis of the conditions under which detection and selection-based influences on development are likely to evolve and coexist. © 2016 John Wiley & Sons Ltd/CNRS.

  14. A chemical-genetic strategy reveals distinct temporal requirements for SAD-1 kinase in neuronal polarization and synapse formation

    Directory of Open Access Journals (Sweden)

    Shokat Kevan M

    2008-09-01

    Full Text Available Abstract Background Neurons assemble into a functional network through a sequence of developmental processes including neuronal polarization and synapse formation. In Caenorhabditis elegans, the serine/threonine SAD-1 kinase is essential for proper neuronal polarity and synaptic organization. To determine if SAD-1 activity regulates the establishment or maintenance of these neuronal structures, we examined its temporal requirements using a chemical-genetic method that allows for selective and reversible inactivation of its kinase activity in vivo. Results We generated a PP1 analog-sensitive variant of SAD-1. Through temporal inhibition of SAD-1 kinase activity we show that its activity is required for the establishment of both neuronal polarity and synaptic organization. However, while SAD-1 activity is needed strictly when neurons are polarizing, the temporal requirement for SAD-1 is less stringent in synaptic organization, which can also be re-established during maintenance. Conclusion This study reports the first temporal analysis of a neural kinase activity using the chemical-genetic system. It reveals that neuronal polarity and synaptic organization have distinct temporal requirements for SAD-1.

  15. Single Particle Tracking reveals two distinct environments for CD4 receptors at the surface of living T lymphocytes

    International Nuclear Information System (INIS)

    Mascalchi, Patrice; Lamort, Anne Sophie; Salomé, Laurence; Dumas, Fabrice

    2012-01-01

    Highlights: ► We studied the diffusion of single CD4 receptors on living lymphocytes. ► This study reveals that CD4 receptors have either a random or confined diffusion. ► The dynamics of unconfined CD4 receptors was accelerated by a temperature raise. ► The dynamics of confined CD4 receptors was unchanged by a temperature raise. ► Our results suggest the existence of two different environments for CD4 receptors. -- Abstract: We investigated the lateral diffusion of the HIV receptor CD4 at the surface of T lymphocytes at 20 °C and 37 °C by Single Particle Tracking using Quantum Dots. We found that the receptors presented two major distinct behaviors that were not equally affected by temperature changes. About half of the receptors showed a random diffusion with a diffusion coefficient increasing upon raising the temperature. The other half of the receptors was permanently or transiently confined with unchanged dynamics on raising the temperature. These observations suggest that two distinct subpopulations of CD4 receptors with different environments are present at the surface of living T lymphocytes.

  16. Genetic distinctions between autoimmune hepatitis in Italy and North America.

    Science.gov (United States)

    Muratori, Paolo; Czaja, Albert-J; Muratori, Luigi; Pappas, Georgios; Maccariello, Silvana; Cassani, Fabio; Granito, Alessandro; Ferrari, Rodolfo; Mantovani, Vilma; Lenzi, Marco; Bianchi, Francesco-B

    2005-03-28

    Our goals were to analyze the known genetic predispositions for autoimmune hepatitis (AIH) in AIH Italian population and to compare them with North American counterparts. Human leukocyte antigens (HLA) B8, C7, DR3, DR4, DR7, DR11, DR13, DQ2 and the B8-DR3-DQ2 phenotype were determined by microlymphocytotoxicity and polymerase chain reaction in 74 Italian patients (57 with type 1 and 17 with type 2 AIH) and 149 North American patients with type 1 AIH, and in adequate controls. B8-DR3-DQ2 occurred more frequently in Italian patients with type 1 AIH than in Italian controls (30% vs 7%, P<0.0001), but less frequently than in North American counterparts (30% vs 48%, P = 0.02). DR4 occurred less frequently in Italian patients with type 1 AIH (23% vs 43%, P = 0.01) and in controls (16% vs 34%, P = 0.0003) than in North American counterparts. No differences were found in alleles' frequency between type 1 and type 2 Italian AIH patients. DR11 had a frequency lower in type 1 Italian AIH patients than controls (17% vs 35%, P = 0.01). HLA DR4 is not associated with AIH in Italy. The known HLA risk factors for AIH occur similarly in Italian patients with type 1 and type 2 AIH, and they are less frequent than in North American patients. B8-DR3-DQ2 is the predominant phenotype of type 1 AIH also in Italy, and HLA DR11 may be a regionally distinctive protective factor against type 1 AIH.

  17. Genetic correlations between milk production and health and fertility dependent on herd environment

    NARCIS (Netherlands)

    Windig, J.J.; Calus, M.P.L.; Beerda, B.; Veerkamp, R.F.

    2006-01-01

    High milk production in dairy cattle can have negative side effects on health and fertility traits. This paper explores the genetic relationship of milk yield with health and fertility depending on herd environment. A total of 71,720 lactations from heifers calving in 1997 to 1999 in the Netherlands

  18. Constant, cycling, hot and cold thermal environments: strong effects on mean viability but not on genetic estimates

    DEFF Research Database (Denmark)

    Ketola, Tarmo; Kellermann, Vanessa; Kristensen, Torsten Nygård

    2012-01-01

    and their fluctuations. How species will respond to these changes is uncertain, particularly as there is a lack of studies which compare genetic performances in constant vs. fluctuating environments. In this study, we used a nested full-sib/half-sib breeding design to examine how the genetic variances and heritabilities...

  19. Genotype by environment interaction effects in genetic evaluation of preweaning gain for Line 1 Hereford cattle from Miles City, Montana.

    Science.gov (United States)

    MacNeil, M D; Cardoso, F F; Hay, E

    2017-09-01

    It has long been recognized that genotype × environment interaction potentially influences genetic evaluation of beef cattle. However, this recognition has largely been ignored in systems for national cattle evaluation. The objective of this investigation was to determine if direct and maternal genetic effects on preweaning gain would be reranked depending on an environmental gradient as determined by year effects. Data used were from the 76-yr selection experiment with the Line 1 Hereford cattle raised at Miles City, MT. The data comprised recorded phenotypes from 7,566 animals and an additional 1,862 ancestral records included in the pedigree. The presence of genotype × environment interaction was examined using reaction norms wherein year effects on preweaning gain were hypothesized to linearly influence the EBV. Estimates of heritability for direct and maternal effects, given the average environment, were 10 ± 2 and 26 ± 3%, respectively. In an environment that is characterized by the 5th (95th) percentile of the distribution of year effects, the corresponding estimates of heritability were 18 ± 3 (22 ± 3%) and 30 ± 3% (30 ± 3%), respectively. Rank correlations of direct and maternal EBV appropriate to the 5th and 95th percentiles of the year effects were 0.67 and 0.92, respectively. In the average environment, the genetic trends were 255 ± 1 g/yr for direct effects and 557 ± 3 g/yr for maternal effects. In the fifth percentile environment, the corresponding estimates of genetic trend were 271 ± 1 and 540 ± 3 g/yr, respectively, and in the 95th percentile environment, they were 236 ± 1 and 578 ± 3 g/yr, respectively. Linear genetic trends in environmental sensitivity were observed for both the direct (-8.06 × 10 ± 0.49 × 10) and maternal (8.72 × 10 ± 0.43 × 10) effects. Therefore, changing systems of national cattle evaluation to more fully account for potential genotype × environment interaction would improve the assessment of breeding

  20. An example of genetically distinct HIV type 1 variants in cerebrospinal fluid and plasma during suppressive therapy.

    Science.gov (United States)

    Dahl, Viktor; Gisslen, Magnus; Hagberg, Lars; Peterson, Julia; Shao, Wei; Spudich, Serena; Price, Richard W; Palmer, Sarah

    2014-05-15

    We sequenced the genome of human immunodeficiency virus type 1 (HIV-1) recovered from 70 cerebrospinal fluid (CSF) specimens and 29 plasma samples and corresponding samples obtained before treatment initiation from 17 subjects receiving suppressive therapy. More CSF sequences than plasma sequences were hypermutants. We determined CSF sequences and plasma sequences in specimens obtained from 2 subjects after treatment initiation. In one subject, we found genetically distinct CSF and plasma sequences, indicating that they came from HIV-1 from 2 different compartments, one potentially the central nervous system, during suppressive therapy. In addition, there was little evidence of viral evolution in the CSF during therapy, suggesting that continuous virus replication is not the major cause of viral persistence in the central nervous system.

  1. Distinct genetic difference between the Duffy binding protein (PkDBPαII) of Plasmodium knowlesi clinical isolates from North Borneo and Peninsular Malaysia.

    Science.gov (United States)

    Fong, Mun-Yik; Rashdi, Sarah A A; Yusof, Ruhani; Lau, Yee-Ling

    2015-02-21

    Plasmodium knowlesi is one of the monkey malaria parasites that can cause human malaria. The Duffy binding protein of P. knowlesi (PkDBPαII) is essential for the parasite's invasion into human and monkey erythrocytes. A previous study on P. knowlesi clinical isolates from Peninsular Malaysia reported high level of genetic diversity in the PkDBPαII. Furthermore, 36 amino acid haplotypes were identified and these haplotypes could be separated into allele group I and allele group II. In the present study, the PkDBPαII of clinical isolates from the Malaysian states of Sarawak and Sabah in North Borneo was investigated, and compared with the PkDBPαII of Peninsular Malaysia isolates. Blood samples from 28 knowlesi malaria patients were used. These samples were collected between 2011 and 2013 from hospitals in North Borneo. The PkDBPαII region of the isolates was amplified by PCR, cloned into Escherichia coli, and sequenced. The genetic diversity, natural selection and phylogenetics of PkDBPαII haplotypes were analysed using MEGA5 and DnaSP ver. 5.10.00 programmes. Forty-nine PkDBPαII sequences were obtained. Comparison at the nucleotide level against P. knowlesi strain H as reference sequence revealed 58 synonymous and 102 non-synonymous mutations. Analysis on these mutations showed that PkDBPαII was under purifying (negative) selection. At the amino acid level, 38 different PkDBPαII haplotypes were identified. Twelve of the 28 blood samples had mixed haplotype infections. Phylogenetic analysis revealed that all the haplotypes were in allele group I, but they formed a sub-group that was distinct from those of Peninsular Malaysia. Wright's FST fixation index indicated high genetic differentiation between the North Borneo and Peninsular Malaysia haplotypes. This study is the first to report the genetic diversity and natural selection of PkDBPαII of P. knowlesi from Borneo Island. The PkDBPαII haplotypes found in this study were distinct from those from

  2. Genetic Analysis of Embryo, Cytoplasm and Maternal Effects and Their Environment Interactions for Isoflavone Content in Soybean [Glycine max(L.) Merr.

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soybean seed products contain isoflavones (genistein, daidzein, and glycitein) that display biological effects when ingested by humans and animals. These effects are species, dose and age dependent. Therefore, the content and quality of isoflavones in soybeans is a key factor to the biological effect. Our objective was to identify the genetic effects that underlie the isoflavone content in soybean seeds. A genetic model for quantitative traits of seeds in diploid plants was applied to estimate the genetic main effects and genotype × environment (GE) interaction effects for the isoflavone content (IC) of soybean seeds by using two years experimental data with an incomplete diallel mating design of six parents. Results showed that the IC of soybean seeds was simultaneously controlled by the genetic effects of maternal,embryo, and cytoplasm, of which maternal genetic effects were most important, followed by embryo and cytoplasmic genetic effects. The main effects of different genetic systems on IC trait were more important than environment interaction effects. The strong dominance effects on isoflavone from residual was made easily by environment conditions. Therefore,the improvement of the IC of soybean seeds would be more efficient when selection is based on maternal plants than that on the single seed. Maternal heritability (65.73%) was most important for IC, followed by embryo heritability (25.87%) and cytoplasmic heritability (8.39%). Based on predicated genetic effects, Yudou 29 and Zheng 90007 were better than other parents for increasing IC in the progeny and improving the quality of soybean. The significant effects of maternal and embryo dominance effects in variance show that the embryo heterosis and maternal heterosis are existent and uninfluenced by environment interaction effects.

  3. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat.

    Science.gov (United States)

    Ovenden, Ben; Milgate, Andrew; Wade, Len J; Rebetzke, Greg J; Holland, James B

    2018-05-31

    Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat under field conditions. A panel of 358 varieties and breeding lines constrained for maturity was evaluated under rainfed and irrigated treatments across two locations and two years. Whole-genome marker profiles and factor analytic mixed models were used to generate genomic estimated breeding values (GEBVs) for specific environments and environment groups. Additive genetic variance was smaller than residual genetic variance for WSCC, such that genotypic values were dominated by residual genetic effects rather than additive breeding values. As a result, GEBVs were not accurate predictors of genotypic values of the extant lines, but GEBVs should be reliable selection criteria to choose parents for intermating to produce new populations. The accuracy of GEBVs for untested lines was sufficient to increase predicted genetic gain from genomic selection per unit time compared to phenotypic selection if the breeding cycle is reduced by half by the use of GEBVs in off-season generations. Further, genomic prediction accuracy depended on having phenotypic data from environments with strong correlations with target production environments to build prediction models. By combining high-density marker genotypes, stress-managed field evaluations, and mixed models that model simultaneously covariances among genotypes and covariances of complex trait performance between pairs of environments, we were able to train models with good accuracy to facilitate genetic gain from genomic selection. Copyright © 2018 Ovenden et al.

  4. qnrA6 genetic environment and quinolone resistance conferred on Proteus mirabilis.

    Science.gov (United States)

    Jayol, Aurélie; Janvier, Frédéric; Guillard, Thomas; Chau, Françoise; Mérens, Audrey; Robert, Jérôme; Fantin, Bruno; Berçot, Béatrice; Cambau, Emmanuelle

    2016-04-01

    To determine the genetic location and environment of the qnrA6 gene in Proteus mirabilis PS16 where it was first described and to characterize the quinolone resistance qnrA6 confers. Transformation experiments and Southern blotting were performed for plasmid and genomic DNA of P. mirabilis PS16 to determine the qnrA6 location. Combinatorial PCRs with primers in qnrA6 and genes usually surrounding qnrA genes were used to determine the genetic environment. The qnrA6 coding region, including or not the promoter region, was cloned into vectors pTOPO and pBR322 and the MICs of six quinolones were measured for transformants of Escherichia coli TOP10 and P. mirabilis ATCC 29906 Rif(R). qnrA6 was shown to be chromosomally encoded in P. mirabilis PS16 and its genetic environment was 81%-87% similar to that of qnrA2 in the Shewanella algae chromosome. The 5138 bp region up- and downstream of qnrA6 contained an IS10 sequence surrounded by two ISCR1. This resulted in qnrA6 being displaced 1.9 kb from its native promoter but supplied a promoter present in ISCR1. qnrA6 cloned into pTOPO and pBR322 conferred a 4-32-fold increase in fluoroquinolone MICs when expressed in E. coli but only 2-3-fold in P. mirabilis. When including the promoter region, a further increase in resistance was observed in both species, reaching MIC values above clinical breakpoints for only P. mirabilis. qnrA6 is the first chromosomally located qnrA gene described in Enterobacteriaceae. The quinolone resistance conferred by qnrA6 depends on the proximity of an efficient promoter and the host strain where it is expressed. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Distinct genetic diversity of Oncomelania hupensis, intermediate host of Schistosoma japonicum in mainland China as revealed by ITS sequences.

    Directory of Open Access Journals (Sweden)

    Qin Ping Zhao

    Full Text Available BACKGROUND: Oncomelania hupensis is the unique intermediate host of Schistosoma japonicum, which causes schistosomiasis endemic in the Far East, and especially in mainland China. O. hupensis largely determines the parasite's geographical range. How O. hupensis's genetic diversity is distributed geographically in mainland China has never been well examined with DNA sequence data. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigate the genetic variation among O. hupensis from different geographical origins using the combined complete internal transcribed spacer 1 (ITS1 and ITS2 regions of nuclear ribosomal DNA. 165 O. hupensis isolates were obtained in 29 localities from 7 provinces across mainland China: lake/marshland and hill regions in Anhui, Hubei, Hunan, Jiangxi and Jiangsu provinces, located along the middle and lower reaches of Yangtze River, and mountainous regions in Sichuan and Yunnan provinces. Phylogenetic and haplotype network analyses showed distinct genetic diversity and no shared haplotypes between populations from lake/marshland regions of the middle and lower reaches of the Yangtze River and populations from mountainous regions of Sichuan and Yunnan provinces. The genetic distance between these two groups is up to 0.81 based on Fst, and branch time was estimated as 2-6 Ma. As revealed in the phylogenetic tree, snails from Sichuan and Yunnan provinces were also clustered separately. Geographical separation appears to be an important factor accounting for the diversification of the two groups of O. hupensis in mainland China, and probably for the separate clades between snails from Sichuan and Yunnan provinces. In lake/marshland and hill regions along the middle and lower reaches of the Yangtze River, three clades were identified in the phylogenetic tree, but without any obvious clustering of snails from different provinces. CONCLUSIONS: O. hupensis in mainland China may have considerable genetic diversity, and a more

  6. Sensation seeking, peer deviance, and genetic influences on adolescent delinquency: Evidence for person-environment correlation and interaction.

    Science.gov (United States)

    Mann, Frank D; Patterson, Megan W; Grotzinger, Andrew D; Kretsch, Natalie; Tackett, Jennifer L; Tucker-Drob, Elliot M; Harden, K Paige

    2016-07-01

    Both sensation seeking and affiliation with deviant peer groups are risk factors for delinquency in adolescence. In this study, we use a sample of adolescent twins (n = 549), 13 to 20 years old (M age = 15.8 years), in order to test the interactive effects of peer deviance and sensation seeking on delinquency in a genetically informative design. Consistent with a socialization effect, affiliation with deviant peers was associated with higher delinquency even after controlling for selection effects using a co-twin-control comparison. At the same time, there was evidence for person-environment correlation; adolescents with genetic dispositions toward higher sensation seeking were more likely to report having deviant peer groups. Genetic influences on sensation seeking substantially overlapped with genetic influences on adolescent delinquency. Finally, the environmentally mediated effect of peer deviance on adolescent delinquency was moderated by individual differences in sensation seeking. Adolescents reporting high levels of sensation seeking were more susceptible to deviant peers, a Person × Environment interaction. These results are consistent with both selection and socialization processes in adolescent peer relationships, and they highlight the role of sensation seeking as an intermediary phenotype for genetic risk for delinquency. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds.

    Science.gov (United States)

    Kato, Shin; Sayama, Takashi; Fujii, Kenichiro; Yumoto, Setsuzo; Kono, Yuhi; Hwang, Tae-Young; Kikuchi, Akio; Takada, Yoshitake; Tanaka, Yu; Shiraiwa, Tatsuhiko; Ishimoto, Masao

    2014-06-01

    We detected a QTL for single seed weight in soybean that was stable across multiple environments and genetic backgrounds with the use of two recombinant inbred line populations. Single seed weight (SSW) in soybean is a key determinant of both seed yield and the quality of soy food products, and it exhibits wide variation. SSW is under genetic control, but the molecular mechanisms of such control remain unclear. We have now investigated quantitative trait loci (QTLs) for SSW in soybean and have identified such a QTL that is stable across multiple environments and genetic backgrounds. Two populations of 225 and 250 recombinant inbred lines were developed from crosses between Japanese and US cultivars of soybean that differ in SSW by a factor of ~2, and these populations were grown in at least three different environments. A whole-genome panel comprising 304 simple sequence repeat (SSR) loci was applied to mapping in each population. We identified 15 significant QTLs for SSW dispersed among 11 chromosomes in the two populations. One QTL located between Sat_284 and Sat_292 on chromosome 17 was detected (3.6 soybean.

  8. Genetic and Nongenetic Determinants of Cell Growth Variation Assessed by High-Throughput Microscopy

    Science.gov (United States)

    Ziv, Naomi; Siegal, Mark L.; Gresham, David

    2013-01-01

    In microbial populations, growth initiation and proliferation rates are major components of fitness and therefore likely targets of selection. We used a high-throughput microscopy assay, which enables simultaneous analysis of tens of thousands of microcolonies, to determine the sources and extent of growth rate variation in the budding yeast (Saccharomyces cerevisiae) in different glucose environments. We find that cell growth rates are regulated by the extracellular concentration of glucose as proposed by Monod (1949), but that significant heterogeneity in growth rates is observed among genetically identical individuals within an environment. Yeast strains isolated from different geographic locations and habitats differ in their growth rate responses to different glucose concentrations. Inheritance patterns suggest that the genetic determinants of growth rates in different glucose concentrations are distinct. In addition, we identified genotypes that differ in the extent of variation in growth rate within an environment despite nearly identical mean growth rates, providing evidence that alleles controlling phenotypic variability segregate in yeast populations. We find that the time to reinitiation of growth (lag) is negatively correlated with growth rate, yet this relationship is strain-dependent. Between environments, the respirative activity of individual cells negatively correlates with glucose abundance and growth rate, but within an environment respirative activity and growth rate show a positive correlation, which we propose reflects differences in protein expression capacity. Our study quantifies the sources of genetic and nongenetic variation in cell growth rates in different glucose environments with unprecedented precision, facilitating their molecular genetic dissection. PMID:23938868

  9. Childhood temperament: passive gene-environment correlation, gene-environment interaction, and the hidden importance of the family environment.

    Science.gov (United States)

    Lemery-Chalfant, Kathryn; Kao, Karen; Swann, Gregory; Goldsmith, H Hill

    2013-02-01

    Biological parents pass on genotypes to their children, as well as provide home environments that correlate with their genotypes; thus, the association between the home environment and children's temperament can be genetically (i.e., passive gene-environment correlation) or environmentally mediated. Furthermore, family environments may suppress or facilitate the heritability of children's temperament (i.e., gene-environment interaction). The sample comprised 807 twin pairs (mean age = 7.93 years) from the longitudinal Wisconsin Twin Project. Important passive gene-environment correlations emerged, such that home environments were less chaotic for children with high effortful control, and this association was genetically mediated. Children with high extraversion/surgency experienced more chaotic home environments, and this correlation was also genetically mediated. In addition, heritability of children's temperament was moderated by home environments, such that effortful control and extraversion/surgency were more heritable in chaotic homes, and negative affectivity was more heritable under crowded or unsafe home conditions. Modeling multiple types of gene-environment interplay uncovered the complex role of genetic factors and the hidden importance of the family environment for children's temperament and development more generally.

  10. Predicting evolutionary responses when genetic variance and selection covary with the environment: a large-scale Open Access Data approach

    NARCIS (Netherlands)

    Ramakers, J.J.C.; Culina, A.; Visser, M.E.; Gienapp, P.

    2017-01-01

    Additive genetic variance and selection are the key ingredients for evolution. In wild populations, however, predicting evolutionary trajectories is difficult, potentially by an unrecognised underlying environment dependency of both (additive) genetic variance and selection (i.e. G×E and S×E).

  11. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms

    International Nuclear Information System (INIS)

    Paul, J.H.; David, A.W.

    1989-01-01

    The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [ 3 H]thymidine or [ 3 H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degree C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physicochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms

  12. Distinctiveness of Saudi Arabian EFL Learners

    Directory of Open Access Journals (Sweden)

    Manssour Habbash

    2016-04-01

    Full Text Available In view of the increasing concern among English language teachers dealing with students from Saudi Arabia, as it manifests in TESOL community discussions, about the uniqueness of Saudi Arabian EFL learners, this paper attempts to document the outcome of a study of their distinctiveness from the perspective of expatriate teachers working for PYPs (Preparatory Year Programs in Saudi Arabia. This study examines the distinctiveness with regard to the learning attitudes of Saudi students that are often cultivated by the culture and academic environment in their homeland. Employing an emic approach for collecting the required data an analysis was carried out in light of the other studies on ‘education’ in Saudi Arabia that have particular reference to the factors that can positively influence student motivation, student success and the academic environment. The findings were used in constructing the rationale behind such distinctiveness. Assuming that the outcome of the discussion on the findings of this exploration can be helpful for teachers in adapting their teaching methodology and improving their teacher efficacy in dealing with students both from the kingdom and in the kingdom, some recommendations are made. Keywords: China Distinctiveness, Saudi Arabian University context, Expatriate teachers’ perspective, Distinctiveness Theory

  13. Age of Jupiter inferred from the distinct genetics and formation times of meteorites.

    Science.gov (United States)

    Kruijer, Thomas S; Burkhardt, Christoph; Budde, Gerrit; Kleine, Thorsten

    2017-06-27

    The age of Jupiter, the largest planet in our Solar System, is still unknown. Gas-giant planet formation likely involved the growth of large solid cores, followed by the accumulation of gas onto these cores. Thus, the gas-giant cores must have formed before dissipation of the solar nebula, which likely occurred within less than 10 My after Solar System formation. Although such rapid accretion of the gas-giant cores has successfully been modeled, until now it has not been possible to date their formation. Here, using molybdenum and tungsten isotope measurements on iron meteorites, we demonstrate that meteorites derive from two genetically distinct nebular reservoirs that coexisted and remained spatially separated between ∼1 My and ∼3-4 My after Solar System formation. The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disk and preventing the exchange of material between the two reservoirs. As such, our results indicate that Jupiter's core grew to ∼20 Earth masses within Jupiter is the oldest planet of the Solar System, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation.

  14. Phenotypic and genetic effects of contrasting ethanol environments on physiological and developmental traits in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Luis E Castañeda

    Full Text Available A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (covariances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile, using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (covariances of developmental traits, whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster.

  15. Phenotypic and Genetic Effects of Contrasting Ethanol Environments on Physiological and Developmental Traits in Drosophila melanogaster

    Science.gov (United States)

    Castañeda, Luis E.; Nespolo, Roberto F.

    2013-01-01

    A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (co)variances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile), using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity) to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (co)variances of developmental traits), whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster. PMID:23505567

  16. Childhood quality influences genetic sensitivity to environmental influences across adulthood: A life-course Gene × Environment interaction study.

    Science.gov (United States)

    Keers, Robert; Pluess, Michael

    2017-12-01

    While environmental adversity has been shown to increase risk for psychopathology, individuals differ in their sensitivity to these effects. Both genes and childhood experiences are thought to influence sensitivity to the environment, and these factors may operate synergistically such that the effects of childhood experiences on later sensitivity are greater in individuals who are more genetically sensitive. In line with this hypothesis, several recent studies have reported a significant three-way interaction (Gene × Environment × Environment) between two candidate genes and childhood and adult environment on adult psychopathology. We aimed to replicate and extend these findings in a large, prospective multiwave longitudinal study using a polygenic score of environmental sensitivity and objectively measured childhood and adult material environmental quality. We found evidence for both Environment × Environment and Gene × Environment × Environment effects on psychological distress. Children with a poor-quality material environment were more sensitive to the negative effects of a poor environment as adults, reporting significantly higher psychological distress scores. These effects were further moderated by a polygenic score of environmental sensitivity. Genetically sensitive children were more vulnerable to adversity as adults, if they had experienced a poor childhood environment but were significantly less vulnerable if their childhood environment was positive. These findings are in line with the differential susceptibility hypothesis and suggest that a life course approach is necessary to elucidate the role of Gene × Environment in the development of mental illnesses.

  17. Moral Fantasy in Genetic Engineering.

    Science.gov (United States)

    Boone, C. Keith

    1984-01-01

    Discusses the main ethical issues generated by the new genetics and suggests ways to think about them. Concerns include "playing God," violation of the natural order of the universe, and abuse of genetic technology. Critical distinctions for making difficult decisions about genetic engineering issues are noted. (DH)

  18. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    Science.gov (United States)

    Zhu, Yong-Guan; Rosen, Barry P

    2009-04-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization.

  19. Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering

    Directory of Open Access Journals (Sweden)

    Warren eAlbertin

    2016-01-01

    Full Text Available Hanseniaspora uvarum is one of the most abundant yeast species found on grapes and in grape must, at least before the onset of alcoholic fermentation which is usually performed by Saccharomyces species. The aim of this study was to characterise the genetic and phenotypic variability within the H. uvarum species. One hundred and fifteen strains isolated from winemaking environments in different geographical origins were analysed using 11 microsatellite markers and a subset of 47 strains were analysed by AFLP. H. uvarum isolates clustered mainly on the basis of their geographical localisation as revealed by microsatellites. In addition, a strong clustering based on year of isolation was evidenced, indicating that the genetic diversity of Hanseniaspora uvarum isolates was related to both spatial and temporal variations. Conversely, clustering analysis based on AFLP data provided a different picture with groups showing no particular characteristics, but provided higher strain discrimination. This result indicated that AFLP approaches are inadequate to establish the genetic relationship between individuals, but allowed good strain discrimination. At the phenotypic level, several extracellular enzymatic activities of enological relevance (pectinase, chitinase, protease, β-glucosidase were measured but showed low diversity. The impact of environmental factors of enological interest (temperature, anaerobia and copper addition on growth was also assessed and showed poor variation. Altogether, this work provided both new analytical tool (microsatellites and new insights into the genetic and phenotypic diversity of H. uvarum, a yeast species that has previously been identified as a potential candidate for co-inoculation in grape must, but whose intraspecific variability had never been fully assessed.

  20. The dominant Australian community-acquired methicillin-resistant Staphylococcus aureus clone ST93-IV [2B] is highly virulent and genetically distinct.

    Directory of Open Access Journals (Sweden)

    Kyra Y L Chua

    Full Text Available Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA USA300 has spread rapidly across North America, and CA-MRSA is also increasing in Australia. However, the dominant Australian CA-MRSA strain, ST93-IV [2B] appears distantly related to USA300 despite strikingly similar clinical and epidemiological profiles. Here, we compared the virulence of a recent Australian ST93 isolate (JKD6159 to other MRSA, including USA300, and found that JKD6159 was the most virulent in a mouse skin infection model. We fully sequenced the genome of JKD6159 and confirmed that JKD6159 is a distinct clone with 7616 single nucleotide polymorphisms (SNPs distinguishing this strain from all other S. aureus genomes. Despite its high virulence there were surprisingly few virulence determinants. However, genes encoding α-hemolysin, Panton-Valentine leukocidin (PVL and α-type phenol soluble modulins were present. Genome comparisons revealed 32 additional CDS in JKD6159 but none appeared to encode new virulence factors, suggesting that this clone's enhanced pathogenicity could lie within subtler genome changes, such as SNPs within regulatory genes. To investigate the role of accessory genome elements in CA-MRSA epidemiology, we next sequenced three additional Australian non-ST93 CA-MRSA strains and compared them with JKD6159, 19 completed S. aureus genomes and 59 additional S. aureus genomes for which unassembled genome sequence data was publicly available (82 genomes in total. These comparisons showed that despite its distinctive genotype, JKD6159 and other CA-MRSA clones (including USA300 share a conserved repertoire of three notable accessory elements (SSCmecIV, PVL prophage, and pMW2. This study demonstrates that the genetically distinct ST93 CA-MRSA from Australia is highly virulent. Our comparisons of geographically and genetically diverse CA-MRSA genomes suggest that apparent convergent evolution in CA-MRSA may be better explained by the rapid

  1. ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties

    DEFF Research Database (Denmark)

    St Pourcain, B; Robinson, E B; Anttila, V

    2017-01-01

    Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic......-developing youth (Avon Longitudinal Study of Parents and Children, N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases, 11 359 controls) and schizophrenia (PGC-SCZ2: 34...... 241 cases, 45 604 controls, 1235 trios) were either obtained through the Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic influences between ASD and social communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD...

  2. Contribution of conservation genetics in assessing neotropical freshwater fish biodiversity

    Directory of Open Access Journals (Sweden)

    NM. Piorski

    Full Text Available Human activities have a considerable impact on hydrographic systems and fish fauna. The present review on conservation genetics of neotropical freshwater fish reveals that DNA analyses have been promoting increased knowledge on the genetic structure of fish species and their response to environmental changes. This knowledge is fundamental to the management of wild fish populations and the establishment of Evolutionary Significant Units capable of conserving genetic integrity. While population structuring can occur even in long-distance migratory fish, isolated populations can show reduced genetic variation and be at greater risk of extinction. Phylogeography and phylogeny have been powerful tools in understanding the evolution of fish populations, species and communities in distinct neotropic environments. Captive fish can be used to introduce new individuals and genes into the wild and their benefits and disadvantages can be monitored through genetic analysis. Understanding how fish biodiversity in neotropical freshwaters is generated and maintained is highly important, as these habitats are transformed by human development and fish communities are increasingly exploited as food sources to sustain a growing human population.

  3. Genetic data from algae sedimentary DNA reflect the influence of environment over geography.

    Science.gov (United States)

    Stoof-Leichsenring, Kathleen R; Herzschuh, Ulrike; Pestryakova, Luidmila A; Klemm, Juliane; Epp, Laura S; Tiedemann, Ralph

    2015-08-11

    Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern.

  4. The Genetic Architecture of Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Samuel T Jerram

    2017-08-01

    Full Text Available Type 1 diabetes (T1D is classically characterised by the clinical need for insulin, the presence of disease-associated serum autoantibodies, and an onset in childhood. The disease, as with other autoimmune diseases, is due to the interaction of genetic and non-genetic effects, which induce a destructive process damaging insulin-secreting cells. In this review, we focus on the nature of this interaction, and how our understanding of that gene–environment interaction has changed our understanding of the nature of the disease. We discuss the early onset of the disease, the development of distinct immunogenotypes, and the declining heritability with increasing age at diagnosis. Whilst Human Leukocyte Antigens (HLA have a major role in causing T1D, we note that some of these HLA genes have a protective role, especially in children, whilst other non-HLA genes are also important. In adult-onset T1D, the disease is often not insulin-dependent at diagnosis, and has a dissimilar immunogenotype with reduced genetic predisposition. Finally, we discuss the putative nature of the non-genetic factors and how they might interact with genetic susceptibility, including preliminary studies of the epigenome associated with T1D.

  5. Non-additive costs and interactions alter the competitive dynamics of co-occurring ecologically distinct plasmids.

    Science.gov (United States)

    Morton, Elise R; Platt, Thomas G; Fuqua, Clay; Bever, James D

    2014-03-22

    Plasmids play an important role in shaping bacterial evolution and adaptation to heterogeneous environments. As modular genetic elements that are often conjugative, the selective pressures that act on plasmid-borne genes are distinct from those that act on the chromosome. Many bacteria are co-infected by multiple plasmids that impart niche-specific phenotypes. Thus, in addition to host-plasmid dynamics, interactions between co-infecting plasmids are likely to be important drivers of plasmid population dynamics, evolution and ecology. Agrobacterium tumefaciens is a facultative plant pathogen that commonly harbours two distinct megaplasmids. Virulence depends on the presence of the tumour-inducing (Ti) plasmid, with benefits that are primarily restricted to the disease environment. Here, we demonstrate that a second megaplasmid, the At plasmid, confers a competitive advantage in the rhizosphere. To assess the individual and interactive costs of these plasmids, we generated four isogenic derivatives: plasmidless, pAt only, pTi only and pAtpTi, and performed pairwise competitions under carbon-limiting conditions. These studies reveal a low cost to the virulence plasmid when outside of the disease environment, and a strikingly high cost to the At plasmid. In addition, the costs of pAt and pTi in the same host were significantly lower than predicted based on single plasmid costs, signifying the first demonstration of non-additivity between naturally occurring co-resident plasmids. Based on these empirically demonstrated costs and benefits, we developed a resource-consumer model to generate predictions about the frequencies of these genotypes in relevant environments, showing that non-additivity between co-residing plasmids allows for their stable coexistence across environments.

  6. Comparative analysis of Edwardsiella isolates from fish in the eastern United States identifies two distinct genetic taxa amongst organisms phenotypically classified as E. tarda

    Science.gov (United States)

    Griffin, Matt J.; Quiniou, Sylvie M.; Cody, Theresa; Tabuchi, Maki; Ware, Cynthia; Cipriano, Rocco C.; Mauel, Michael J.; Soto, Esteban

    2013-01-01

    Edwardsiella tarda, a Gram-negative member of the family Enterobacteriaceae, has been implicated in significant losses in aquaculture facilities worldwide. Here, we assessed the intra-specific variability of E. tarda isolates from 4 different fish species in the eastern United States. Repetitive sequence mediated PCR (rep-PCR) using 4 different primer sets (ERIC I & II, ERIC II, BOX, and GTG5) and multi-locus sequence analysis of 16S SSU rDNA, groEl, gyrA, gyrB, pho, pgi, pgm, and rpoA gene fragments identified two distinct genotypes of E. tarda (DNA group I; DNA group II). Isolates that fell into DNA group II demonstrated more similarity to E. ictaluri than DNA group I, which contained the reference E. tarda strain (ATCC #15947). Conventional PCR analysis using published E. tarda-specific primer sets yielded variable results, with several primer sets producing no observable amplification of target DNA from some isolates. Fluorometric determination of G + C content demonstrated 56.4% G + C content for DNA group I, 60.2% for DNA group II, and 58.4% for E. ictaluri. Surprisingly, these isolates were indistinguishable using conventional biochemical techniques, with all isolates demonstrating phenotypic characteristics consistent with E. tarda. Analysis using two commercial test kits identified multiple phenotypes, although no single metabolic characteristic could reliably discriminate between genetic groups. Additionally, anti-microbial susceptibility and fatty acid profiles did not demonstrate remarkable differences between groups. The significant genetic variation (<90% similarity at gyrA, gyrB, pho, phi and pgm; <40% similarity by rep-PCR) between these groups suggests organisms from DNA group II may represent an unrecognized, genetically distinct taxa of Edwardsiella that is phenotypically indistinguishable from E. tarda.

  7. Genetic by environment interaction for post weaning growth traits in tropical cattle

    OpenAIRE

    Navès, Michel; Menendez Buxadera, Alberto; Farant, Alain; Mandonnet, Nathalie

    2006-01-01

    Genetic by environment interactions for post weaning traits were studied in a local breed of cattle, well adapted to tropical conditions. After weaning, 444 beef calves of both sexes were separated within two management systems, either in intensive fattening or at pasture. The traits analysed included weights at standard age, of 365 days (W12), 455 days (W15) and 545 days (W18), and post weaning growth rates from weaning until 15 months (PWG15) or 18 months (PWG18). (Co)varianc...

  8. Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef.

    Science.gov (United States)

    Ulstrup, K E; Van Oppen, M J H

    2003-12-01

    Intra- and intercolony diversity and distribution of zooxanthellae in acroporid corals is largely uncharted. In this study, two molecular methods were applied to determine the distribution of zooxanthellae in the branching corals Acropora tenuis and A. valida at several reef locations in the central section of the Great Barrier Reef. Sun-exposed and shaded parts of all colonies were examined. Single-stranded conformational polymorphism analysis showed that individual colonies of A. tenuis at two locations harbour two strains of Symbiodinium belonging to clade C (C1 and C2), whereas conspecific colonies at two other reefs harboured a single zooxanthella strain. A. valida was found to simultaneously harbour strains belonging to two distinct phylogenetic clades (C and D) at all locations sampled. A novel method with improved sensitivity (quantitative polymerase chain reaction using Taqman fluorogenic probes) was used to map the relative abundance distribution of the two zooxanthella clades. At two of the five sampling locations both coral species were collected. At these two locations, composition of the zooxanthella communities showed the same pattern in both coral species, i.e. correlation with ambient light in Pioneer Bay and an absence thereof in Nelly Bay. The results show that the distribution of genetically distinct zooxanthellae is correlated with light regime and possibly temperature in some (but not all) colonies of A. tenuis and A. valida and at some reef locations, which we interpret as acclimation to local environmental conditions.

  9. COMPARISON AND INTERACTION GENOTIPE-ENVIRONMENT OF THE PRODUCTIVE PERFORMANCE IN THREE GENETIC LINES OF TILAPIA Oreochromis sp.

    Directory of Open Access Journals (Sweden)

    Jorge Luis Pérez-Fuentes

    2016-05-01

    Full Text Available Tilapia is the second most widely cultivated species in the international scope, due to their fast growing and breeding capacity in captivity. Its biggest problem is the unpredictability of the productive performance of varieties in different environments and management types. For this reason, the productive performance of three lines: Oreochromis niloticus (N, red Oreochromis mossambicus (M and Rocky Mountain (R, cultured in five sites in two environments (Presses: Miguel de la Madrid and Miguel Aleman in the State of Oaxaca, Mexico was compared. Cages with dimensions between 18 and 48 m3 with stocking density of 7 to 28 fish m-3 were used. Feeding varied depending on the producers (1 to 3 portions a day/cage (300 to 1200 g of feed. Total length (TL, weight (P, survival (SUP and fillet yield (RF were evaluated in each genetic line. Results from physicochemical parameters of water, environments of culture and production efficiency of the strains indicated no significant differences, except for weight gain (g between sites of culture. However, it was considered that the differences were mainly due to handling during the culture, rather than the genetic line. Genetic lines showed similar performance (Tilapia R: LT 16.5 ± 3.1 cm, P 99.0± 46.6 g, 28 % RF, SUP 91.6 %. Tilapia N: LT 16.7 ± 3.7 cm, P 98.2 ± 40.9, RF 23 % SUP 86 %. Tilapia M: LT 15.4 ± 4.6 cm, P 100.1 ± 112.5 g, 30 % RF, SUP 91.6 %. Under the conditions evaluated, type of management could influence the efficiency of the culture more than the genetic line.

  10. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  11. Global genetic diversity of Aedes aegypti.

    Science.gov (United States)

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi Bin; Fernandez-Salas, Ildefonso; Kamal, Hany A; Kamgang, Basile; Khater, Emad I M; Kramer, Laura D; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B; Saleh, Amag A; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A; Tabachnick, Walter J; Troyo, Adriana; Powell, Jeffrey R

    2016-11-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations. © 2016 John Wiley & Sons Ltd.

  12. Global Genetic Diversity of Aedes aegypti

    Science.gov (United States)

    Gloria-Soria, Andrea; Ayala, Diego; Bheecarry, Ambicadutt; Calderon-Arguedas, Olger; Chadee, Dave D.; Chiappero, Marina; Coetzee, Maureen; Elahee, Khouaildi bin; Fernandez-Salas, Ildefonso; Kamal, Hany A.; Kamgang, Basile; Khater, Emad I. M.; Kramer, Laura D.; Kramer, Vicki; Lopez-Solis, Alma; Lutomiah, Joel; Martins, Ademir; Micieli, Maria Victoria; Paupy, Christophe; Ponlawat, Alongkot; Rahola, Nil; Rasheed, Syed Basit; Richardson, Joshua B.; Saleh, Amag A.; Sanchez-Casas, Rosa Maria; Seixas, Gonçalo; Sousa, Carla A.; Tabachnick, Walter J.; Troyo, Adriana; Powell, Jeffrey R.

    2016-01-01

    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti, from 30 countries in six continents and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya) the two subspecies remain genetically distinct whereas in urban settings they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats, and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th Centuries was followed by its introduction to Asia in the late 19th Century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l.. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for methods using genetic modification of populations. PMID:27671732

  13. Genetic population structure of muskellunge in the Great Lakes

    Science.gov (United States)

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  14. Multiple analytical approaches reveal distinct gene-environment interactions in smokers and non smokers in lung cancer.

    Directory of Open Access Journals (Sweden)

    Rakhshan Ihsan

    Full Text Available Complex disease such as cancer results from interactions of multiple genetic and environmental factors. Studying these factors singularly cannot explain the underlying pathogenetic mechanism of the disease. Multi-analytical approach, including logistic regression (LR, classification and regression tree (CART and multifactor dimensionality reduction (MDR, was applied in 188 lung cancer cases and 290 controls to explore high order interactions among xenobiotic metabolizing genes and environmental risk factors. Smoking was identified as the predominant risk factor by all three analytical approaches. Individually, CYP1A1*2A polymorphism was significantly associated with increased lung cancer risk (OR = 1.69;95%CI = 1.11-2.59,p = 0.01, whereas EPHX1 Tyr113His and SULT1A1 Arg213His conferred reduced risk (OR = 0.40;95%CI = 0.25-0.65,p<0.001 and OR = 0.51;95%CI = 0.33-0.78,p = 0.002 respectively. In smokers, EPHX1 Tyr113His and SULT1A1 Arg213His polymorphisms reduced the risk of lung cancer, whereas CYP1A1*2A, CYP1A1*2C and GSTP1 Ile105Val imparted increased risk in non-smokers only. While exploring non-linear interactions through CART analysis, smokers carrying the combination of EPHX1 113TC (Tyr/His, SULT1A1 213GG (Arg/Arg or AA (His/His and GSTM1 null genotypes showed the highest risk for lung cancer (OR = 3.73;95%CI = 1.33-10.55,p = 0.006, whereas combined effect of CYP1A1*2A 6235CC or TC, SULT1A1 213GG (Arg/Arg and betel quid chewing showed maximum risk in non-smokers (OR = 2.93;95%CI = 1.15-7.51,p = 0.01. MDR analysis identified two distinct predictor models for the risk of lung cancer in smokers (tobacco chewing, EPHX1 Tyr113His, and SULT1A1 Arg213His and non-smokers (CYP1A1*2A, GSTP1 Ile105Val and SULT1A1 Arg213His with testing balance accuracy (TBA of 0.6436 and 0.6677 respectively. Interaction entropy interpretations of MDR results showed non-additive interactions of tobacco chewing with

  15. 'Faceness' and affectivity: evidence for genetic contributions to distinct components of electrocortical response to human faces.

    Science.gov (United States)

    Shannon, Robert W; Patrick, Christopher J; Venables, Noah C; He, Sheng

    2013-12-01

    The ability to recognize a variety of different human faces is undoubtedly one of the most important and impressive functions of the human perceptual system. Neuroimaging studies have revealed multiple brain regions (including the FFA, STS, OFA) and electrophysiological studies have identified differing brain event-related potential (ERP) components (e.g., N170, P200) possibly related to distinct types of face information processing. To evaluate the heritability of ERP components associated with face processing, including N170, P200, and LPP, we examined ERP responses to fearful and neutral face stimuli in monozygotic (MZ) and dizygotic (DZ) twins. Concordance levels for early brain response indices of face processing (N170, P200) were found to be stronger for MZ than DZ twins, providing evidence of a heritable basis to each. These findings support the idea that certain key neural mechanisms for face processing are genetically coded. Implications for understanding individual differences in recognition of facial identity and the emotional content of faces are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism.

    Science.gov (United States)

    Wall, Tamara L; Luczak, Susan E; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)--particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles--have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person's alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity).

  17. Genetics of phenotypic plasticity and biomass traits in hybrid willows across contrasting environments and years.

    Science.gov (United States)

    Berlin, Sofia; Hallingbäck, Henrik R; Beyer, Friderike; Nordh, Nils-Erik; Weih, Martin; Rönnberg-Wästljung, Ann-Christin

    2017-07-01

    Phenotypic plasticity can affect the geographical distribution of taxa and greatly impact the productivity of crops across contrasting and variable environments. The main objectives of this study were to identify genotype-phenotype associations in key biomass and phenology traits and the strength of phenotypic plasticity of these traits in a short-rotation coppice willow population across multiple years and contrasting environments to facilitate marker-assisted selection for these traits. A hybrid Salix viminalis  × ( S. viminalis × Salix schwerinii ) population with 463 individuals was clonally propagated and planted in three common garden experiments comprising one climatic contrast between Sweden and Italy and one water availability contrast in Italy. Several key phenotypic traits were measured and phenotypic plasticity was estimated as the trait value difference between experiments. Quantitative trait locus (QTL) mapping analyses were conducted using a dense linkage map and phenotypic effects of S. schwerinii haplotypes derived from detected QTL were assessed. Across the climatic contrast, clone predictor correlations for biomass traits were low and few common biomass QTL were detected. This indicates that the genetic regulation of biomass traits was sensitive to environmental variation. Biomass QTL were, however, frequently shared across years and across the water availability contrast. Phenology QTL were generally shared between all experiments. Substantial phenotypic plasticity was found among the hybrid offspring, that to a large extent had a genetic origin. Individuals carrying influential S. schwerinii haplotypes generally performed well in Sweden but less well in Italy in terms of biomass production. The results indicate that specific genetic elements of S. schwerinii are more suited to Swedish conditions than to those of Italy. Therefore, selection should preferably be conducted separately for such environments in order to maximize biomass

  18. CoaSim: A Flexible Environment for Simulating Genetic Data under Coalescent Models

    DEFF Research Database (Denmark)

    Mailund; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2005-01-01

    get insight into these. Results We have created the CoaSim application as a flexible environment for Monte various types of genetic data under equilibrium and non-equilibrium coalescent variety of applications. Interaction with the tool is through the Guile version scripting language. Scheme scripts......Background Coalescent simulations are playing a large role in interpreting large scale intra- polymorphism surveys and for planning and evaluating association studies. Coalescent of data sets under different models can be compared to the actual data to test different evolutionary factors and thus...

  19. Mobile genetic elements, a key to microbial adaptation in extreme environments

    Science.gov (United States)

    van Houdt, Rob; Mijnendonckx, Kristel; Provoost, Ann; Monsieurs, Pieter; Mergeay, Max; Leys, Natalie

    To ensure well-being of the crew during manned spaceflight, continuous monitoring of different microbial contaminants in air, in water and on surfaces in the spacecraft is vital. Next to microorganisms originating mainly from human activity, strains from the closely related gen-era Cupriavidus and Ralstonia have been identified and isolated during numerous monitoring campaigns from different space-related environments. These strains have been found in the air of the Mars Exploration Rover assembly room, on the surface of the Mars Odyssey Orbiter and in different water sources from the International Space Station, Shuttle and Mir space station. In previous studies, we investigated the response of the model bacterium Cupriavidus metallidurans CH34 when cultured in the international space station (ISS) and space gravity and radiation simulation facilities, to understand it's ways to adapt to space flight conditions. It was also demonstrated that genetic rearrangements due to the movement of IS (insertion sequence) elements, enabled CH34 to adapt to toxic zinc concentrations, in space flight and on ground. In this study, we screened the full genome sequence of C. metallidurans CH34 for the presence of mobile genetic elements (MGEs), with the purpose to identified their putative role in adaptation to the new environments. Eleven genomic islands (GI) were identified in chro-mosome 1, three on the native plasmid pMOL28 and two on the native plasmid pMOL30. On the plasmids pMOL28 and pMOL30, all genes involved in the response to metals were located within GIs. Three of the GIs on chromosome 1 contained genes involved in the response to metals. Three GIs (CMGI-2, -3 and -4) on chromosome 1 belonged to the Tn4371 family, with CMGI-2 containing at least 25 genes involved in the degradation of toluene corresponding to CH34's ability to grow at expense of toluene, benzene or xylene as sole carbon source. CMGI-3 sheltered accessory genes involved in CO2 fixation and

  20. Genetic signature of natural selection in first Americans.

    Science.gov (United States)

    Amorim, Carlos Eduardo; Nunes, Kelly; Meyer, Diogo; Comas, David; Bortolini, Maria Cátira; Salzano, Francisco Mauro; Hünemeier, Tábita

    2017-02-28

    When humans moved from Asia toward the Americas over 18,000 y ago and eventually peopled the New World they encountered a new environment with extreme climate conditions and distinct dietary resources. These environmental and dietary pressures may have led to instances of genetic adaptation with the potential to influence the phenotypic variation in extant Native American populations. An example of such an event is the evolution of the fatty acid desaturases ( FADS ) genes, which have been claimed to harbor signals of positive selection in Inuit populations due to adaptation to the cold Greenland Arctic climate and to a protein-rich diet. Because there was evidence of intercontinental variation in this genetic region, with indications of positive selection for its variants, we decided to compare the Inuit findings with other Native American data. Here, we use several lines of evidence to show that the signal of FADS-positive selection is not restricted to the Arctic but instead is broadly observed throughout the Americas. The shared signature of selection among populations living in such a diverse range of environments is likely due to a single and strong instance of local adaptation that took place in the common ancestral population before their entrance into the New World. These first Americans peopled the whole continent and spread this adaptive variant across a diverse set of environments.

  1. Genetic basis of autism: is there a way forward?

    Science.gov (United States)

    Eapen, Valsamma

    2011-05-01

    This paper outlines some of the key findings from genetic research carried out in the last 12-18 months, which indicate that autism spectrum disorder (ASD) is a complex disorder involving interactions between genetic, epigenetic and environmental factors. The current literature highlights the presence of genetic and phenotypic heterogeneity in ASD with a number of underlying pathogenetic mechanisms. In this regard, there are at least three phenotypic presentations with distinct genetic underpinnings: autism plus phenotype characterized by syndromic ASD caused by rare, single-gene disorders; broad autism phenotype caused by genetic variations in single or multiple genes, each of these variations being common and distributed continually in the general population, but resulting in varying clinical phenotypes when it reaches a certain threshold through complex gene-gene and gene-environment interactions; and severe and specific phenotype caused by 'de-novo' mutations in the patient or transmitted through asymptomatic carriers of such mutation. Understanding the neurobiological processes by which genotypes become phenotypes, along with the advances in developmental neuroscience and neuronal networks at the cellular and molecular level, is paving the way for translational research involving targeted interventions of affected molecular pathways and early intervention programs that promote normal brain responses to stimuli and alter the developmental trajectory.

  2. A comparison between legume technologies and fallow, and their effects on maize and soil traits, in two distinct environments of the West African savannah

    NARCIS (Netherlands)

    Franke, A.C.; Laberge, G.; Oyewole, B.D.; Schulz, S.; Tobe, O.

    2008-01-01

    Legume¿maize rotation and maize nitrogen (N)-response trials were carried out simultaneously from 1998 to 2004 in two distinct agro-ecological environments of West Africa: the humid derived savannah (Ibadan) and the drier northern Guinea savannah (Zaria). In the N-response trial, maize was grown

  3. Genetics of nonsyndromic obesity.

    Science.gov (United States)

    Lee, Yung Seng

    2013-12-01

    Common obesity is widely regarded as a complex, multifactorial trait influenced by the 'obesogenic' environment, sedentary behavior, and genetic susceptibility contributed by common and rare genetic variants. This review describes the recent advances in understanding the role of genetics in obesity. New susceptibility loci and genetic variants are being uncovered, but the collective effect is relatively small and could not explain most of the BMI heritability. Yet-to-be identified common and rare variants, epistasis, and heritable epigenetic changes may account for part of the 'missing heritability'. Evidence is emerging about the role of epigenetics in determining obesity susceptibility, mediating developmental plasticity, which confers obesity risk from early life experiences. Genetic prediction scores derived from selected genetic variants, and also differential DNA methylation levels and methylation scores, have been shown to correlate with measures of obesity and response to weight loss intervention. Genetic variants, which confer susceptibility to obesity-related morbidities like nonalcoholic fatty liver disease, were also discovered recently. We can expect discovery of more rare genetic variants with the advent of whole exome and genome sequencing, and also greater understanding of epigenetic mechanisms by which environment influences genetic expression and which mediate the gene-environment interaction.

  4. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we...... examine definitions of the relevant concepts in order to illustrate this point. The concepts are i) prenatal, ii) genetic screening, iii) screening, scanning and testing, iv) maternal and foetal tests, v) test techniques and vi) genetic conditions. So far, prenatal screening has little connection...... with precisely defined genetics. There are benefits but also disadvantages in overstating current links between them in the term genetic screening. Policy making and professional and public understandings about screening could be clarified if the distinct meanings of prenatal screening and genetic screening were...

  5. A comparative study on genetic and environmental influences on metabolic phenotypes in Eastern (Chinese) and Western (Danish) populations

    DEFF Research Database (Denmark)

    Li, Shuxia

    2015-01-01

    the risk of clinic diseases e.g. diabetes, atherosclerosis, stroke and cardiovascular disease. Metabolic phenotypes, similar to most complex traits, can be influenced by both genetic and environmental factors as well as their interplay. Many family and twin studies have demonstrated both genetic...... and environmental factors play important role in the variation of metabolic phenotypes and intra-individual change over time. Although both genetic and environmental factors are involved the development of metabolic disorders, the role of environment should be emphasized as the expression or function of gene can...... be regulated to adapt to existing environmental circumstance. In other words, adaptive evolution in populations under distinct environmental and cultural circumstances could have resulted in varying genetic basis of metabolic factors and development of metabolic disorders or diseases. Thus, it can...

  6. Distinct genetic alterations in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Hassan Ashktorab

    Full Text Available BACKGROUND: Colon cancer (CRC development often includes chromosomal instability (CIN leading to amplifications and deletions of large DNA segments. Epidemiological, clinical, and cytogenetic studies showed that there are considerable differences between CRC tumors from African Americans (AAs and Caucasian patients. In this study, we determined genomic copy number aberrations in sporadic CRC tumors from AAs, in order to investigate possible explanations for the observed disparities. METHODOLOGY/PRINCIPAL FINDINGS: We applied genome-wide array comparative genome hybridization (aCGH using a 105k chip to identify copy number aberrations in samples from 15 AAs. In addition, we did a population comparative analysis with aCGH data in Caucasians as well as with a widely publicized list of colon cancer genes (CAN genes. There was an average of 20 aberrations per patient with more amplifications than deletions. Analysis of DNA copy number of frequently altered chromosomes revealed that deletions occurred primarily in chromosomes 4, 8 and 18. Chromosomal duplications occurred in more than 50% of cases on chromosomes 7, 8, 13, 20 and X. The CIN profile showed some differences when compared to Caucasian alterations. CONCLUSIONS/SIGNIFICANCE: Chromosome X amplification in male patients and chromosomes 4, 8 and 18 deletions were prominent aberrations in AAs. Some CAN genes were altered at high frequencies in AAs with EXOC4, EPHB6, GNAS, MLL3 and TBX22 as the most frequently deleted genes and HAPLN1, ADAM29, SMAD2 and SMAD4 as the most frequently amplified genes. The observed CIN may play a distinctive role in CRC in AAs.

  7. Low interbasin connectivity in a facultatively diadromous fish: evidence from genetics and otolith chemistry.

    Science.gov (United States)

    Hughes, Jane M; Schmidt, Daniel J; Macdonald, Jed I; Huey, Joel A; Crook, David A

    2014-03-01

    Southern smelts (Retropinna spp.) in coastal rivers of Australia are facultatively diadromous, with populations potentially containing individuals with diadromous or wholly freshwater life histories. The presence of diadromous individuals is expected to reduce genetic structuring between river basins due to larval dispersal via the sea. We use otolith chemistry to distinguish between diadromous and nondiadromous life histories and population genetics to examine interbasin connectivity resulting from diadromy. Otolith strontium isotope ((87) Sr:(86) Sr) transects identified three main life history patterns: amphidromy, freshwater residency and estuarine/marine residency. Despite the potential for interbasin connectivity via larval mixing in the marine environment, we found unprecedented levels of genetic structure for an amphidromous species. Strong hierarchical structure along putative taxonomic boundaries was detected, along with highly structured populations within groups using microsatellites (FST  = 0.046-0.181), and mtDNA (ΦST  = 0.498-0.816). The presence of strong genetic subdivision, despite the fact that many individuals reside in saline water during their early life history, appears incongruous. However, analysis of multielemental signatures in the otolith cores of diadromous fish revealed strong discrimination between river basins, suggesting that diadromous fish spend their early lives within chemically distinct estuaries rather than the more homogenous marine environment, thus avoiding dispersal and maintaining genetic structure. © 2014 John Wiley & Sons Ltd.

  8. KEYNOTE ADDRESS: CONSERVATION GENETICS OF FRESHWATER ORGANISMS

    OpenAIRE

    WEISS S.

    2005-01-01

    This manuscript serves as a summary of both the importance of genetics in conservation, and the range of methodological approaches available. Two somewhat distinct realms of conservation genetics are outlined. The first theoretically rests upon the field of population genetics, and primarily concerns itself with the conservation of genetic diversity within and among populations, both in the wild and captivity. Basic concepts such as heterozygosity, genetic drift, and effective population size...

  9. Genetic programming for evolving due-date assignment models in job shop environments.

    Science.gov (United States)

    Nguyen, Su; Zhang, Mengjie; Johnston, Mark; Tan, Kay Chen

    2014-01-01

    Due-date assignment plays an important role in scheduling systems and strongly influences the delivery performance of job shops. Because of the stochastic and dynamic nature of job shops, the development of general due-date assignment models (DDAMs) is complicated. In this study, two genetic programming (GP) methods are proposed to evolve DDAMs for job shop environments. The experimental results show that the evolved DDAMs can make more accurate estimates than other existing dynamic DDAMs with promising reusability. In addition, the evolved operation-based DDAMs show better performance than the evolved DDAMs employing aggregate information of jobs and machines.

  10. Extremely low microsatellite diversity but distinct population structure in a long-lived threatened species, the Australian lungfish Neoceratodus forsteri (Dipnoi.

    Directory of Open Access Journals (Sweden)

    Jane M Hughes

    Full Text Available The Australian lungfish is a unique living representative of an ancient dipnoan lineage, listed as 'vulnerable' to extinction under Australia's Environment Protection and Biodiversity Conservation Act 1999. Historical accounts indicate this species occurred naturally in two adjacent river systems in Australia, the Burnett and Mary. Current day populations in other rivers are thought to have arisen by translocation from these source populations. Early genetic work detected very little variation and so had limited power to answer questions relevant for management including how genetic variation is partitioned within and among sub-populations. In this study, we use newly developed microsatellite markers to examine samples from the Burnett and Mary Rivers, as well as from two populations thought to be of translocated origin, Brisbane and North Pine. We test whether there is significant genetic structure among and within river drainages; assign putatively translocated populations to potential source populations; and estimate effective population sizes. Eleven polymorphic microsatellite loci genotyped in 218 individuals gave an average within-population heterozygosity of 0.39 which is low relative to other threatened taxa and for freshwater fishes in general. Based on FST values (average over loci = 0.11 and STRUCTURE analyses, we identify three distinct populations in the natural range, one in the Burnett and two distinct populations in the Mary. These analyses also support the hypothesis that the Mary River is the likely source of translocated populations in the Brisbane and North Pine rivers, which agrees with historical published records of a translocation event giving rise to these populations. We were unable to obtain bounded estimates of effective population size, as we have too few genotype combinations, although point estimates were low, ranging from 29 - 129. We recommend that, in order to preserve any local adaptation in the three distinct

  11. Optimization of Grillages Using Genetic Algorithms for Integrating Matlab and Fortran Environments

    Directory of Open Access Journals (Sweden)

    Darius Mačiūnas

    2013-02-01

    Full Text Available The purpose of the paper is to present technology applied for the global optimization of grillage-type pile foundations (further grillages. The goal of optimization is to obtain the optimal layout of pile placement in the grillages. The problem can be categorized as a topology optimization problem. The objective function is comprised of maximum reactive force emerging in a pile. The reactive force is minimized during the procedure of optimization during which variables enclose the positions of piles beneath connecting beams. Reactive forces in all piles are computed utilizing an original algorithm implemented in the Fortran programming language. The algorithm is integrated into the MatLab environment where the optimization procedure is executed utilizing a genetic algorithm. The article also describes technology enabling the integration of MatLab and Fortran environments. The authors seek to evaluate the quality of a solution to the problem analyzing experimental results obtained applying the proposed technology.

  12. Optimization of Grillages Using Genetic Algorithms for Integrating Matlab and Fortran Environments

    Directory of Open Access Journals (Sweden)

    Darius Mačiūnas

    2012-12-01

    Full Text Available The purpose of the paper is to present technology applied for the global optimization of grillage-type pile foundations (further grillages. The goal of optimization is to obtain the optimal layout of pile placement in the grillages. The problem can be categorized as a topology optimization problem. The objective function is comprised of maximum reactive force emerging in a pile. The reactive force is minimized during the procedure of optimization during which variables enclose the positions of piles beneath connecting beams. Reactive forces in all piles are computed utilizing an original algorithm implemented in the Fortran programming language. The algorithm is integrated into the MatLab environment where the optimization procedure is executed utilizing a genetic algorithm. The article also describes technology enabling the integration of MatLab and Fortran environments. The authors seek to evaluate the quality of a solution to the problem analyzing experimental results obtained applying the proposed technology.

  13. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa.

    Science.gov (United States)

    La Rosa, Ruggero; Johansen, Helle Krogh; Molin, Søren

    2018-04-10

    Evolution by natural selection under complex and dynamic environmental conditions occurs through intricate and often counterintuitive trajectories affecting many genes and metabolic solutions. To study short- and long-term evolution of bacteria in vivo , we used the natural model system of cystic fibrosis (CF) infection. In this work, we investigated how and through which trajectories evolution of Pseudomonas aeruginosa occurs when migrating from the environment to the airways of CF patients, and specifically, we determined reduction of growth rate and metabolic specialization as signatures of adaptive evolution. We show that central metabolic pathways of three distinct Pseudomonas aeruginosa lineages coevolving within the same environment become restructured at the cost of versatility during long-term colonization. Cell physiology changes from naive to adapted phenotypes resulted in (i) alteration of growth potential that particularly converged to a slow-growth phenotype, (ii) alteration of nutritional requirements due to auxotrophy, (iii) tailored preference for carbon source assimilation from CF sputum, (iv) reduced arginine and pyruvate fermentation processes, and (v) increased oxygen requirements. Interestingly, although convergence was evidenced at the phenotypic level of metabolic specialization, comparative genomics disclosed diverse mutational patterns underlying the different evolutionary trajectories. Therefore, distinct combinations of genetic and regulatory changes converge to common metabolic adaptive trajectories leading to within-host metabolic specialization. This study gives new insight into bacterial metabolic evolution during long-term colonization of a new environmental niche. IMPORTANCE Only a few examples of real-time evolutionary investigations in environments outside the laboratory are described in the scientific literature. Remembering that biological evolution, as it has progressed in nature, has not taken place in test tubes, it is not

  14. Genetically Distinct Glossina fuscipes fuscipes Populations in the Lake Kyoga Region of Uganda and Its Relevance for Human African Trypanosomiasis

    Directory of Open Access Journals (Sweden)

    Richard Echodu

    2013-01-01

    Full Text Available Tsetse flies (Glossina spp. are the sole vectors of Trypanosoma brucei—the agent of human (HAT and animal (AAT trypanosomiasis. Glossina fuscipes fuscipes (Gff is the main vector species in Uganda—the only country where the two forms of HAT disease (rhodesiense and gambiense occur, with gambiense limited to the northwest. Gff populations cluster in three genetically distinct groups in northern, southern, and western Uganda, respectively, with a contact zone present in central Uganda. Understanding the dynamics of this contact zone is epidemiologically important as the merger of the two diseases is a major health concern. We used mitochondrial and microsatellite DNA data from Gff samples in the contact zone to understand its spatial extent and temporal stability. We show that this zone is relatively narrow, extending through central Uganda along major rivers with south to north introgression but displaying no sex-biased dispersal. Lack of obvious vicariant barriers suggests that either environmental conditions or reciprocal competitive exclusion could explain the patterns of genetic differentiation observed. Lack of admixture between northern and southern populations may prevent the sympatry of the two forms of HAT disease, although continued control efforts are needed to prevent the recolonization of tsetse-free regions by neighboring populations.

  15. Comparison of weighting approaches for genetic risk scores in gene-environment interaction studies.

    Science.gov (United States)

    Hüls, Anke; Krämer, Ursula; Carlsten, Christopher; Schikowski, Tamara; Ickstadt, Katja; Schwender, Holger

    2017-12-16

    Weighted genetic risk scores (GRS), defined as weighted sums of risk alleles of single nucleotide polymorphisms (SNPs), are statistically powerful for detection gene-environment (GxE) interactions. To assign weights, the gold standard is to use external weights from an independent study. However, appropriate external weights are not always available. In such situations and in the presence of predominant marginal genetic effects, we have shown in a previous study that GRS with internal weights from marginal genetic effects ("GRS-marginal-internal") are a powerful and reliable alternative to single SNP approaches or the use of unweighted GRS. However, this approach might not be appropriate for detecting predominant interactions, i.e. interactions showing an effect stronger than the marginal genetic effect. In this paper, we present a weighting approach for such predominant interactions ("GRS-interaction-training") in which parts of the data are used to estimate the weights from the interaction terms and the remaining data are used to determine the GRS. We conducted a simulation study for the detection of GxE interactions in which we evaluated power, type I error and sign-misspecification. We compared this new weighting approach to the GRS-marginal-internal approach and to GRS with external weights. Our simulation study showed that in the absence of external weights and with predominant interaction effects, the highest power was reached with the GRS-interaction-training approach. If marginal genetic effects were predominant, the GRS-marginal-internal approach was more appropriate. Furthermore, the power to detect interactions reached by the GRS-interaction-training approach was only slightly lower than the power achieved by GRS with external weights. The power of the GRS-interaction-training approach was confirmed in a real data application to the Traffic, Asthma and Genetics (TAG) Study (N = 4465 observations). When appropriate external weights are unavailable, we

  16. Genetic, Ecological and Morphological Distinctness of the Blue Mussels Mytilus trossulus Gould and M. edulis L. in the White Sea.

    Directory of Open Access Journals (Sweden)

    Marina Katolikova

    Full Text Available Two blue mussel lineages of Pliocene origin, Mytilus edulis (ME and M. trossulus (MT, co-occur and hybridize in several regions on the shores of the North Atlantic. The two species were distinguished from each other by molecular methods in the 1980s, and a large amount of comparative data on them has been accumulated since that time. However, while ME and MT are now routinely distinguished by various genetic markers, they tend to be overlooked in ecological studies since morphological characters for taxonomic identification have been lacking, and no consistent habitat differences between lineages have been reported. Surveying a recently discovered area of ME and MT co-occurrence in the White Sea and employing a set of allozyme markers for identification, we address the issue whether ME and MT are true biological species with distinct ecological characteristics or just virtual genetic entities with no matching morphological and ecological identities. We find that: (1 in the White Sea, the occurrence of MT is largely concentrated in harbors, in line with observations from other subarctic regions of Europe; (2 mixed populations of ME and MT are always dominated by purebred individuals, animals classified as hybrids constituting only ca. 18%; (3 in terms of shell morphology, 80% of MT bear a distinct uninterrupted dark prismatic strip under the ligament while 97% of ME lack this character; (4 at sites of sympatry MT is more common on algal substrates while ME mostly lives directly on the bottom. This segregation by the substrate may contribute to maintaining reproductive isolation and decreasing competition between taxa. We conclude that while ME and MT are not fully reproductively isolated, they do represent clearly distinguishable biological, ecological and morphological entities in the White Sea. It remains to be documented whether the observed morphological and ecological differences are of a local character, or whether they have simply been

  17. Genetic diversity and geographic distribution of genetically distinct rabies viruses in the Philippines.

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    Full Text Available BACKGROUND: Rabies continues to be a major public health problem in the Philippines, where 200-300 human cases were reported annually between 2001 and 2011. Understanding the phylogeography of rabies viruses is important for establishing a more effective and feasible control strategy. METHODS: We performed a molecular analysis of rabies viruses in the Philippines using rabied animal brain samples. The samples were collected from 11 of 17 regions, which covered three island groups (Luzon, Visayas, and Mindanao. Partial nucleoprotein (N gene sequencing was performed on 57 samples and complete glycoprotein (G gene sequencing was performed on 235 samples collected between 2004 and 2010. RESULTS: The Philippine strains of rabies viruses were included in a distinct phylogenetic cluster, previously named Asian 2b, which appeared to have diverged from the Chinese strain named Asian 2a. The Philippine strains were further divided into three major clades, which were found exclusively in different island groups: clades L, V, and M in Luzon, Visayas, and Mindanao, respectively. Clade L was subdivided into nine subclades (L1-L9 and clade V was subdivided into two subclades (V1 and V2. With a few exceptions, most strains in each subclade were distributed in specific geographic areas. There were also four strains that were divided into two genogroups but were not classified into any of the three major clades, and all four strains were found in the island group of Luzon. CONCLUSION: We detected three major clades and two distinct genogroups of rabies viruses in the Philippines. Our data suggest that viruses of each clade and subclade evolved independently in each area without frequent introduction into other areas. An important implication of these data is that geographically targeted dog vaccination using the island group approach may effectively control rabies in the Philippines.

  18. Distinct patterns of epigenetic marks and transcription factor binding ...

    Indian Academy of Sciences (India)

    Distinct patterns of epigenetic marks and transcription factor binding sites across promoters of sense-intronic long noncoding RNAs. Sourav Ghosh, Satish Sati, Shantanu Sengupta and Vinod Scaria. J. Genet. 94, 17–25. Gencode V9 lncRNA gene : 11004. Known lncRNA : 1175. Novel lncRNA : 5898. Putative lncRNA :.

  19. Analysis of genetic and genotype X environment interaction effects for agronomic traits of rice (oryza sativa l.) in salt tolerance

    International Nuclear Information System (INIS)

    Zhou, H.K.; Hayat, Y.; Fang, L.J.; Guo, R.F.; He, J.M.; Xu, H.M.

    2010-01-01

    A diallel cross experiment of 4 rice (Oryza sativa L.) female and 6 male varieties was conducted to study the genetic effects and their interaction with salt-stress condition of 7 agronomic traits in normal and salt-stressed planting conditions. The panicle length (PL), effective number of panicles per plant (ENP), plumped number of grains per panicles (PNG), total number of grains per panicles (TNG), 1000-grain weight (W), seed setting ratio (SSR) and grain weight per plant (PGW), were investigated. A genetic model including additive effect, dominance effect and their interaction effects with environment (ADE) was employed for analysis of data. It was observed that significant (p<0.05) additive effects, dominance effects, additive X environment interaction effects and dominance X environment interaction effects exist for most of the agronomic traits of rice. In addition, significant (p<0.05) narrow sense heritabilities of ENP, PNG, TNG, W and PGW were found, indicating that the genetic performance of these traits are greatly affected by salt stress condition. A significant (p<0.05) negative correlations in the additive effects and additive X environment interaction effects detected between ENP and PNG suggesting that selection on increasing of ENP can reduce PNG. In addition, there exist a highly significant (p<0.01) positive dominance correlation among the dominance effects of the ENP, PNG and TNG, which shows that it is possible to breed salt-tolerant rice variety by coordinating large panicle and multi-panicle in utilization of heterosis. (author)

  20. Genetic Diversity of Clinical and Environmental Strains of Salmonella enterica Serotype Weltevreden Isolated in Malaysia

    OpenAIRE

    Thong, K. L.; Goh, Y. L.; Radu, S.; Noorzaleha, S.; Yasin, R.; Koh, Y. T.; Lim, V. K. E.; Rusul, G.; Puthucheary, S. D.

    2002-01-01

    The incidence of food-borne salmonellosis due to Salmonella enterica serotype Weltevreden is reported to be on the increase in Malaysia. The pulsed-field gel electrophoresis (PFGE) subtyping method was used to assess the extent of genetic diversity and clonality of Salmonella serotype Weltevreden strains from humans and the environment. PFGE of XbaI-digested chromosomal DNA from 95 strains of Salmonella serotype Weltevreden gave 39 distinct profiles with a wide range of Dice coefficients (0.2...

  1. Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand.

    Science.gov (United States)

    Ruffel, Sandrine; Krouk, Gabriel; Ristova, Daniela; Shasha, Dennis; Birnbaum, Kenneth D; Coruzzi, Gloria M

    2011-11-08

    As sessile organisms, root plasticity enables plants to forage for and acquire nutrients in a fluctuating underground environment. Here, we use genetic and genomic approaches in a "split-root" framework--in which physically isolated root systems of the same plant are challenged with different nitrogen (N) environments--to investigate how systemic signaling affects genome-wide reprogramming and root development. The integration of transcriptome and root phenotypes enables us to identify distinct mechanisms underlying "N economy" (i.e., N supply and demand) of plants as a system. Under nitrate-limited conditions, plant roots adopt an "active-foraging strategy", characterized by lateral root outgrowth and a shared pattern of transcriptome reprogramming, in response to either local or distal nitrate deprivation. By contrast, in nitrate-replete conditions, plant roots adopt a "dormant strategy", characterized by a repression of lateral root outgrowth and a shared pattern of transcriptome reprogramming, in response to either local or distal nitrate supply. Sentinel genes responding to systemic N signaling identified by genome-wide comparisons of heterogeneous vs. homogeneous split-root N treatments were used to probe systemic N responses in Arabidopsis mutants impaired in nitrate reduction and hormone synthesis and also in decapitated plants. This combined analysis identified genetically distinct systemic signaling underlying plant N economy: (i) N supply, corresponding to a long-distance systemic signaling triggered by nitrate sensing; and (ii) N demand, experimental support for the transitive closure of a previously inferred nitrate-cytokinin shoot-root relay system that reports the nitrate demand of the whole plant, promoting a compensatory root growth in nitrate-rich patches of heterogeneous soil.

  2. Impact of genetically modified organisms on aquatic environments: Review of available data for the risk assessment.

    Science.gov (United States)

    Pott, Antonia; Otto, Mathias; Schulz, Ralf

    2018-09-01

    The aquatic environment is strongly connected to the surrounding agricultural landscapes, which regularly serve as sources of stressors such as agrochemicals. Genetically modified crops, which are cultivated on a large scale in many countries, may also act as stressors. Despite the commercial use of genetically modified organisms (GMOs) for over 20years, their impact on the aquatic environment came into focus only 10years ago. We present the status quo of the available scientific data in order to provide an input for informed aquatic risk assessment of GMOs. We could identify only 39 publications, including 84 studies, dealing with GMOs in the aquatic environment, and our analysis shows substantial knowledge gaps. The available information is restricted to a small number of crop plants, traits, events, and test organisms. The analysis of effect studies reveals that only a narrow range of organisms has been tested and that studies on combinatorial actions of stressors are virtually absent. The analysis of fate studies shows that many aspects, such as the fate of leached toxins, degradation of plant material, and distribution of crop residues in the aquatic habitat, are insufficiently investigated. Together with these research needs, we identify standardization of test methods as an issue of high priority, both for research and risk assessment needed for GMO regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Family environment and child development

    Directory of Open Access Journals (Sweden)

    Tina Kavčič

    2005-04-01

    Full Text Available The paper presents an overview of research findings on influence of family environment, especially parental behaviour, on child's development. Contemporary authors question early socialization researchers' claims that family characteristics and parental behaviour have important influence on behaviour of their children. Later researchers examined the size and durability of possible effects of family environment on child development. In addition, they focused on establishing whether it is actually the parental behaviour that influences child's development or, on the contrary, parental behaviour represents mainly a reaction to child's characteristics. Behaviour genetic studies have provided evidence that many traditional measures of family environment, including measures of parental behaviour, show genetic influence, thus reflecting genetically influenced child characteristics. Behaviour geneticists also suggest that environmental influences on child (personality development include predominantly non-shared environment, i.e. individual child's specific experiences, his/her own perceptions and interpretations of objectively same events. Based on empirically determined significant genetic effects on most behavioural traits and inconclusive results of studies on effects of family environment on child development some authors believe that it is not the parents, but rather genetic factor and/or peers who have the key role in child development. With respect to findings of behaviour genetics numerous recent studies of relations between family environment and child development involve child specific measures of (extrafamilial environment and examine the interactions between characteristics of an individual and those of his/her environment.

  4. An Underlying Common Factor, Influenced by Genetics and Unique Environment, Explains the Covariation Between Major Depressive Disorder, Generalized Anxiety Disorder, and Burnout: A Swedish Twin Study.

    Science.gov (United States)

    Mather, Lisa; Blom, Victoria; Bergström, Gunnar; Svedberg, Pia

    2016-12-01

    Depression and anxiety are highly comorbid due to shared genetic risk factors, but less is known about whether burnout shares these risk factors. We aimed to examine whether the covariation between major depressive disorder (MDD), generalized anxiety disorder (GAD), and burnout is explained by common genetic and/or environmental factors. This cross-sectional study included 25,378 Swedish twins responding to a survey in 2005-2006. Structural equation models were used to analyze whether the trait variances and covariances were due to additive genetics, non-additive genetics, shared environment, and unique environment. Univariate analyses tested sex limitation models and multivariate analysis tested Cholesky, independent pathway, and common pathway models. The phenotypic correlations were 0.71 (0.69-0.74) between MDD and GAD, 0.58 (0.56-0.60) between MDD and burnout, and 0.53 (0.50-0.56) between GAD and burnout. Heritabilities were 45% for MDD, 49% for GAD, and 38% for burnout; no statistically significant sex differences were found. A common pathway model was chosen as the final model. The common factor was influenced by genetics (58%) and unique environment (42%), and explained 77% of the variation in MDD, 69% in GAD, and 44% in burnout. GAD and burnout had additive genetic factors unique to the phenotypes (11% each), while MDD did not. Unique environment explained 23% of the variability in MDD, 20% in GAD, and 45% in burnout. In conclusion, the covariation was explained by an underlying common factor, largely influenced by genetics. Burnout was to a large degree influenced by unique environmental factors not shared with MDD and GAD.

  5. Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed.

    Science.gov (United States)

    Bouchet, Anne-Sophie; Laperche, Anne; Bissuel-Belaygue, Christine; Baron, Cécile; Morice, Jérôme; Rousseau-Gueutin, Mathieu; Dheu, Jean-Eric; George, Pierre; Pinochet, Xavier; Foubert, Thomas; Maes, Olivier; Dugué, Damien; Guinot, Florent; Nesi, Nathalie

    2016-09-15

    Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition

  6. Transgene x environment interactions in genetically modified wheat.

    Science.gov (United States)

    Zeller, Simon L; Kalinina, Olena; Brunner, Susanne; Keller, Beat; Schmid, Bernhard

    2010-07-12

    The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM) plants. We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.

  7. Transgene x environment interactions in genetically modified wheat.

    Directory of Open Access Journals (Sweden)

    Simon L Zeller

    Full Text Available BACKGROUND: The introduction of transgenes into plants may cause unintended phenotypic effects which could have an impact on the plant itself and the environment. Little is published in the scientific literature about the interrelation of environmental factors and possible unintended effects in genetically modified (GM plants. METHODS AND FINDINGS: We studied transgenic bread wheat Triticum aestivum lines expressing the wheat Pm3b gene against the fungus powdery mildew Blumeria graminis f.sp. tritici. Four independent offspring pairs, each consisting of a GM line and its corresponding non-GM control line, were grown under different soil nutrient conditions and with and without fungicide treatment in the glasshouse. Furthermore, we performed a field experiment with a similar design to validate our glasshouse results. The transgene increased the resistance to powdery mildew in all environments. However, GM plants reacted sensitive to fungicide spraying in the glasshouse. Without fungicide treatment, in the glasshouse GM lines had increased vegetative biomass and seed number and a twofold yield compared with control lines. In the field these results were reversed. Fertilization generally increased GM/control differences in the glasshouse but not in the field. Two of four GM lines showed up to 56% yield reduction and a 40-fold increase of infection with ergot disease Claviceps purpurea compared with their control lines in the field experiment; one GM line was very similar to its control. CONCLUSIONS: Our results demonstrate that, depending on the insertion event, a particular transgene can have large effects on the entire phenotype of a plant and that these effects can sometimes be reversed when plants are moved from the glasshouse to the field. However, it remains unclear which mechanisms underlie these effects and how they may affect concepts in molecular plant breeding and plant evolutionary ecology.

  8. Environmental confounding in gene-environment interaction studies.

    Science.gov (United States)

    Vanderweele, Tyler J; Ko, Yi-An; Mukherjee, Bhramar

    2013-07-01

    We show that, in the presence of uncontrolled environmental confounding, joint tests for the presence of a main genetic effect and gene-environment interaction will be biased if the genetic and environmental factors are correlated, even if there is no effect of either the genetic factor or the environmental factor on the disease. When environmental confounding is ignored, such tests will in fact reject the joint null of no genetic effect with a probability that tends to 1 as the sample size increases. This problem with the joint test vanishes under gene-environment independence, but it still persists if estimating the gene-environment interaction parameter itself is of interest. Uncontrolled environmental confounding will bias estimates of gene-environment interaction parameters even under gene-environment independence, but it will not do so if the unmeasured confounding variable itself does not interact with the genetic factor. Under gene-environment independence, if the interaction parameter without controlling for the environmental confounder is nonzero, then there is gene-environment interaction either between the genetic factor and the environmental factor of interest or between the genetic factor and the unmeasured environmental confounder. We evaluate several recently proposed joint tests in a simulation study and discuss the implications of these results for the conduct of gene-environment interaction studies.

  9. Linear reaction norm models for genetic merit prediction of Angus cattle under genotype by environment interaction.

    Science.gov (United States)

    Cardoso, F F; Tempelman, R J

    2012-07-01

    The objectives of this work were to assess alternative linear reaction norm (RN) models for genetic evaluation of Angus cattle in Brazil. That is, we investigated the interaction between genotypes and continuous descriptors of the environmental variation to examine evidence of genotype by environment interaction (G×E) in post-weaning BW gain (PWG) and to compare the environmental sensitivity of national and imported Angus sires. Data were collected by the Brazilian Angus Improvement Program from 1974 to 2005 and consisted of 63,098 records and a pedigree file with 95,896 animals. Six models were implemented using Bayesian inference and compared using the Deviance Information Criterion (DIC). The simplest model was M(1), a traditional animal model, which showed the largest DIC and hence the poorest fit when compared with the 4 alternative RN specifications accounting for G×E. In M(2), a 2-step procedure was implemented using the contemporary group posterior means of M(1) as the environmental gradient, ranging from -92.6 to +265.5 kg. Moreover, the benefits of jointly estimating all parameters in a 1-step approach were demonstrated by M(3). Additionally, we extended M(3) to allow for residual heteroskedasticity using an exponential function (M(4)) and the best fitting (smallest DIC) environmental classification model (M(5)) specification. Finally, M(6) added just heteroskedastic residual variance to M(1). Heritabilities were less at harsh environments and increased with the improvement of production conditions for all RN models. Rank correlations among genetic merit predictions obtained by M(1) and by the best fitting RN models M(3) (homoskedastic) and M(5) (heteroskedastic) at different environmental levels ranged from 0.79 and 0.81, suggesting biological importance of G×E in Brazilian Angus PWG. These results suggest that selection progress could be optimized by adopting environment-specific genetic merit predictions. The PWG environmental sensitivity of

  10. Quantitative genetic analysis of responses to larval food limitation in a polyphenic butterfly indicates environment- and trait-specific effects

    NARCIS (Netherlands)

    Saastamoinen, M.; Brommer, J.E.; Brakefield, P.M.; Zwaan, B.J.

    2013-01-01

    Different components of heritability, including genetic variance (VG), are influenced by environmental conditions. Here, we assessed phenotypic responses of life-history traits to two different developmental conditions, temperature and food limitation. The former represents an environment that

  11. Diabetes mellitus in two genetically distinct populations in Jordan. A comparison between Arabs and Circassians/Chechens living with diabetes

    Directory of Open Access Journals (Sweden)

    Laith N. Al-Eitan

    2017-02-01

    Full Text Available Objectives: To compare clinical, anthropometric, and laboratory characteristics in diabetes type 2 patients of 2 genetically-distinct ethnicities living in Jordan, Arabs and Circassians/Chechens. Methods: This cross sectional ethnic comparison study was conducted in King Abdullah University Hospital, Irbid and The National Center for Diabetes, Endocrinology, and Genetics, Amman, Jordan between June 2013 and February 2014. A sample of 347 (237 Arab and 110 Circassian/Chechen people living with diabetes were included in the study. Data were collected through direct interviews with the participants. Clinical data were collected using a questionnaire and anthropometric measurements. Laboratory data were extracted from the patients’ medical records. Results: More Arabs with diabetes had hypertension as a comorbidity than Circassians/Chechens with diabetes. Arabs living with diabetes were generally more obese, whereas Circassians/Chechens living with diabetes had worse lipid control. Arabs with diabetes had higher means of glycated haemoglobin (HbA1c and fasting blood sugar, and more Arabs with diabetes had unsatisfactory glycemic control (60.6% than Circassians/Chechens with diabetes (38.2% (HbA1c ≥7.0%. Most participants (88.8% had at least one lipid abnormality (dyslipidemia. Conclusion: Multiple discrepancies among the 2 ethnic diabetic populations were found. New diabetes management recommendations and policies should be used when treating people living with diabetes of those ethnicities, particularly in areas of glycemic control, lipid control, and obesity.

  12. Genetic diversity of Escherichia coli isolates from surface water and groundwater in a rural environment.

    Science.gov (United States)

    Gambero, Maria Laura; Blarasin, Monica; Bettera, Susana; Giuliano Albo, Jesica

    2017-10-01

    The genetic characteristics among Escherichia coli strains can be grouped by origin of isolation. Then, it is possible to use the genotypes as a tool to determine the source of water contamination. The aim of this study was to define water aptitude for human consumption in a rural basin and to assess the diversity of E. coli water populations. Thus, it was possible to identify the main sources of fecal contamination and to explore linkages with the hydrogeological environment and land uses. The bacteriological analysis showed that more than 50% of samples were unfit for human consumption. DNA fingerprinting analysis by BOX-PCR indicated low genotypic diversity of E. coli isolates taken from surface water and groundwater. The results suggested the presence of a dominant source of fecal contamination. The relationship between low genotypic diversity and land use would prove that water contamination comes from livestock. The genetic diversity of E. coli isolated from surface water was less than that identified in groundwater because of the different hydraulic features of both environments. Furthermore, each one of the two big strain groups identified in this basin is located in different sub-basins, showing that hydrological dynamics exerts selective pressure on bacteria DNA.

  13. Unique genetic loci identified for emotional behavior in control and chronic stress conditions.

    Directory of Open Access Journals (Sweden)

    Kimberly AK Carhuatanta

    2014-10-01

    Full Text Available An individual’s genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual’s genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.

  14. The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. sequence evaluation and plastome evolution.

    Science.gov (United States)

    Greiner, Stephan; Wang, Xi; Rauwolf, Uwe; Silber, Martina V; Mayer, Klaus; Meurer, Jörg; Haberer, Georg; Herrmann, Reinhold G

    2008-04-01

    The flowering plant genus Oenothera is uniquely suited for studying molecular mechanisms of speciation. It assembles an intriguing combination of genetic features, including permanent translocation heterozygosity, biparental transmission of plastids, and a general interfertility of well-defined species. This allows an exchange of plastids and nuclei between species often resulting in plastome-genome incompatibility. For evaluation of its molecular determinants we present the complete nucleotide sequences of the five basic, genetically distinguishable plastid chromosomes of subsection Oenothera (=Euoenothera) of the genus, which are associated in distinct combinations with six basic genomes. Sizes of the chromosomes range from 163 365 bp (plastome IV) to 165 728 bp (plastome I), display between 96.3% and 98.6% sequence similarity and encode a total of 113 unique genes. Plastome diversification is caused by an abundance of nucleotide substitutions, small insertions, deletions and repetitions. The five plastomes deviate from the general ancestral design of plastid chromosomes of vascular plants by a subsection-specific 56 kb inversion within the large single-copy segment. This inversion disrupted operon structures and predates the divergence of the subsection presumably 1 My ago. Phylogenetic relationships suggest plastomes I-III in one clade, while plastome IV appears to be closest to the common ancestor.

  15. The complete nucleotide sequences of the five genetically distinct plastid genomes of Oenothera, subsection Oenothera: I. Sequence evaluation and plastome evolution†

    Science.gov (United States)

    Greiner, Stephan; Wang, Xi; Rauwolf, Uwe; Silber, Martina V.; Mayer, Klaus; Meurer, Jörg; Haberer, Georg; Herrmann, Reinhold G.

    2008-01-01

    The flowering plant genus Oenothera is uniquely suited for studying molecular mechanisms of speciation. It assembles an intriguing combination of genetic features, including permanent translocation heterozygosity, biparental transmission of plastids, and a general interfertility of well-defined species. This allows an exchange of plastids and nuclei between species often resulting in plastome–genome incompatibility. For evaluation of its molecular determinants we present the complete nucleotide sequences of the five basic, genetically distinguishable plastid chromosomes of subsection Oenothera (=Euoenothera) of the genus, which are associated in distinct combinations with six basic genomes. Sizes of the chromosomes range from 163 365 bp (plastome IV) to 165 728 bp (plastome I), display between 96.3% and 98.6% sequence similarity and encode a total of 113 unique genes. Plastome diversification is caused by an abundance of nucleotide substitutions, small insertions, deletions and repetitions. The five plastomes deviate from the general ancestral design of plastid chromosomes of vascular plants by a subsection-specific 56 kb inversion within the large single-copy segment. This inversion disrupted operon structures and predates the divergence of the subsection presumably 1 My ago. Phylogenetic relationships suggest plastomes I–III in one clade, while plastome IV appears to be closest to the common ancestor. PMID:18299283

  16. Genotype-by-environment interactions leads to variable selection on life-history strategy in Common Evening Primrose (Oenothera biennis).

    Science.gov (United States)

    Johnson, M T J

    2007-01-01

    Monocarpic plant species, where reproduction is fatal, frequently exhibit variation in the length of their prereproductive period prior to flowering. If this life-history variation in flowering strategy has a genetic basis, genotype-by-environment interactions (G x E) may maintain phenotypic diversity in flowering strategy. The native monocarpic plant Common Evening Primrose (Oenothera biennis L., Onagraceae) exhibits phenotypic variation for annual vs. biennial flowering strategies. I tested whether there was a genetic basis to variation in flowering strategy in O. biennis, and whether environmental variation causes G x E that imposes variable selection on flowering strategy. In a field experiment, I randomized more than 900 plants from 14 clonal families (genotypes) into five distinct habitats that represented a natural productivity gradient. G x E strongly affected the lifetime fruit production of O. biennis, with the rank-order in relative fitness of genotypes changing substantially between habitats. I detected genetic variation in annual vs. biennial strategies in most habitats, as well as a G x E effect on flowering strategy. This variation in flowering strategy was correlated with genetic variation in relative fitness, and phenotypic and genotypic selection analyses revealed that environmental variation resulted in variable directional selection on annual vs. biennial strategies. Specifically, a biennial strategy was favoured in moderately productive environments, whereas an annual strategy was favoured in low-productivity environments. These results highlight the importance of variable selection for the maintenance of genetic variation in the life-history strategy of a monocarpic plant.

  17. Genetic variation between ecotypic populations of Chloris ...

    African Journals Online (AJOL)

    Genetic variation between ecotypic populations of Chloris roxburghiana grass detected through RAPD analysis. ... frequency indicated that the four populations of C. roxburghiana were genetically distinct, probably as a result of variation in soil fertility, geographical isolation and socio-ecological history of the study sites.

  18. Distinctive Dynamic Capabilities for New Business Creation

    DEFF Research Database (Denmark)

    Rosenø, Axel; Enkel, Ellen; Mezger, Florian

    2013-01-01

    This study examines the distinctive dynamic capabilities for new business creation in established companies. We argue that these are very different from those for managing incremental innovation within a company's core business. We also propose that such capabilities are needed in both slow...... and fast-paced industries, and that similarities exist across industries. Hence, the study contributes to dynamic capabilities literature by: 1) identifying the distinctive dynamic capabilities for new business creation; 2) shifting focus away from dynamic capabilities in environments characterised by high...... clock-speed and uncertainty towards considering dynamic capabilities for the purpose of developing new businesses, which also implies a high degree of uncertainty. Based on interviews with 33 companies, we identify distinctive dynamic capabilities for new business creation, find that dynamic...

  19. Genetic polymorphisms in varied environments.

    Science.gov (United States)

    Powell, J R

    1971-12-03

    Thirteen experimenital populationis of Drosophila willistoni were maintained in cages, in some of which the environments were relatively constant and in others varied. After 45 weeks, the populations were assayed by gel electrophoresis for polymorphisms at 22 protein loci. The average heterozygosity per individual and the average unmber of alleles per locus were higher in populations maintained in heterogeneous environments than in populations in more constant enviroments.

  20. NUTM2A-CIC fusion small round cell sarcoma: a genetically distinct variant of CIC-rearranged sarcoma.

    Science.gov (United States)

    Sugita, Shintaro; Arai, Yasuhito; Aoyama, Tomoyuki; Asanuma, Hiroko; Mukai, Wakako; Hama, Natsuko; Emori, Makoto; Shibata, Tatsuhiro; Hasegawa, Tadashi

    2017-07-01

    CIC-rearranged sarcoma is a new entity of undifferentiated small round cell sarcoma characterized by chimeric fusions with CIC rearrangement. We report a NUTM2A-CIC fusion sarcoma in a 43-year-old woman who died of rapidly progressive disease. Histologic analysis revealed multinodular proliferation of small round tumor cells with mild nuclear pleomorphism. The sclerotic fibrous septa separated the tumor into multiple nodules. Immunohistochemistry showed that the tumor cells were diffusely positive for vimentin, focally positive for cytokeratin, and negative for CD99 and NKX2.2. Tumor cells were also negative for ETV4, which was recently identified as a specific marker for CIC-rearranged sarcoma. High-throughput RNA sequencing of a formalin-fixed, paraffin-embedded clinical sample unveiled a novel NUTM2A-CIC fusion between NUTM2A exon 7 and CIC exon 12, and fluorescence in situ hybridization identified CIC and NUTM2A split signals. This case shared several clinicopathological findings with previously reported CIC-rearranged cases. We recognized the tumor as a genetically distinct variant of CIC-rearranged sarcomas with a novel NUTM2A-CIC fusion. Copyright © 2017. Published by Elsevier Inc.

  1. [Analytic methods for seed models with genotype x environment interactions].

    Science.gov (United States)

    Zhu, J

    1996-01-01

    Genetic models with genotype effect (G) and genotype x environment interaction effect (GE) are proposed for analyzing generation means of seed quantitative traits in crops. The total genetic effect (G) is partitioned into seed direct genetic effect (G0), cytoplasm genetic of effect (C), and maternal plant genetic effect (Gm). Seed direct genetic effect (G0) can be further partitioned into direct additive (A) and direct dominance (D) genetic components. Maternal genetic effect (Gm) can also be partitioned into maternal additive (Am) and maternal dominance (Dm) genetic components. The total genotype x environment interaction effect (GE) can also be partitioned into direct genetic by environment interaction effect (G0E), cytoplasm genetic by environment interaction effect (CE), and maternal genetic by environment interaction effect (GmE). G0E can be partitioned into direct additive by environment interaction (AE) and direct dominance by environment interaction (DE) genetic components. GmE can also be partitioned into maternal additive by environment interaction (AmE) and maternal dominance by environment interaction (DmE) genetic components. Partitions of genetic components are listed for parent, F1, F2 and backcrosses. A set of parents, their reciprocal F1 and F2 seeds is applicable for efficient analysis of seed quantitative traits. MINQUE(0/1) method can be used for estimating variance and covariance components. Unbiased estimation for covariance components between two traits can also be obtained by the MINQUE(0/1) method. Random genetic effects in seed models are predictable by the Adjusted Unbiased Prediction (AUP) approach with MINQUE(0/1) method. The jackknife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects, which can be further used in a t-test for parameter. Unbiasedness and efficiency for estimating variance components and predicting genetic effects are tested by

  2. Implications of host genetic variation on the risk and prevalence of infectious diseases transmitted through the environment.

    Science.gov (United States)

    Doeschl-Wilson, Andrea B; Davidson, R; Conington, J; Roughsedge, T; Hutchings, M R; Villanueva, B

    2011-07-01

    Previous studies have shown that host genetic heterogeneity in the response to infectious challenge can affect the emergence risk and the severity of diseases transmitted through direct contact between individuals. However, there is substantial uncertainty about the degree and direction of influence owing to different definitions of genetic variation, most of which are not in line with the current understanding of the genetic architecture of disease traits. Also, the relevance of previous results for diseases transmitted through environmental sources is unclear. In this article a compartmental genetic-epidemiological model was developed to quantify the impact of host genetic diversity on epidemiological characteristics of diseases transmitted through a contaminated environment. The model was parameterized for footrot in sheep. Genetic variation was defined through continuous distributions with varying shape and degree of dispersion for different disease traits. The model predicts a strong impact of genetic heterogeneity on the disease risk and its progression and severity, as well as on observable host phenotypes, when dispersion in key epidemiological parameters is high. The impact of host variation depends on the disease trait for which variation occurs and on environmental conditions affecting pathogen survival. In particular, compared to homogeneous populations with the same average susceptibility, disease risk and severity are substantially higher in populations containing a large proportion of highly susceptible individuals, and the differences are strongest when environmental contamination is low. The implications of our results for the recording and analysis of disease data and for predicting response to selection are discussed.

  3. Genetic variability of garlic accessions as revealed by agro-morphological traits evaluated under different environments.

    Science.gov (United States)

    Hoogerheide, E S S; Azevedo Filho, J A; Vencovsky, R; Zucchi, M I; Zago, B W; Pinheiro, J B

    2017-05-31

    The cultivated garlic (Allium sativum L.) displays a wide phenotypic diversity, which is derived from natural mutations and phenotypic plasticity, due to dependence on soil type, moisture, latitude, altitude and cultural practices, leading to a large number of cultivars. This study aimed to evaluate the genetic variability shown by 63 garlic accessions belonging to Instituto Agronômico de Campinas and the Escola Superior de Agricultura "Luiz de Queiroz" germplasm collections. We evaluated ten quantitative characters in experimental trials conducted under two localities of the State of São Paulo: Monte Alegre do Sul and Piracicaba, during the agricultural year of 2007, in a randomized blocks design with five replications. The Mahalanobis distance was used to measure genetic dissimilarities. The UPGMA method and Tocher's method were used as clustering procedures. Results indicated significant variation among accessions (P < 0.01) for all evaluated characters, except for the percentage of secondary bulb growth in MAS, indicating the existence of genetic variation for bulb production, and germplasm evaluation considering different environments is more reliable for the characterization of the genotypic variability among garlic accessions, since it diminishes the environmental effects in the clustering of genotypes.

  4. The genetical theory of social behaviour.

    Science.gov (United States)

    Lehmann, Laurent; Rousset, François

    2014-05-19

    We survey the population genetic basis of social evolution, using a logically consistent set of arguments to cover a wide range of biological scenarios. We start by reconsidering Hamilton's (Hamilton 1964 J. Theoret. Biol. 7, 1-16 (doi:10.1016/0022-5193(64)90038-4)) results for selection on a social trait under the assumptions of additive gene action, weak selection and constant environment and demography. This yields a prediction for the direction of allele frequency change in terms of phenotypic costs and benefits and genealogical concepts of relatedness, which holds for any frequency of the trait in the population, and provides the foundation for further developments and extensions. We then allow for any type of gene interaction within and between individuals, strong selection and fluctuating environments and demography, which may depend on the evolving trait itself. We reach three conclusions pertaining to selection on social behaviours under broad conditions. (i) Selection can be understood by focusing on a one-generation change in mean allele frequency, a computation which underpins the utility of reproductive value weights; (ii) in large populations under the assumptions of additive gene action and weak selection, this change is of constant sign for any allele frequency and is predicted by a phenotypic selection gradient; (iii) under the assumptions of trait substitution sequences, such phenotypic selection gradients suffice to characterize long-term multi-dimensional stochastic evolution, with almost no knowledge about the genetic details underlying the coevolving traits. Having such simple results about the effect of selection regardless of population structure and type of social interactions can help to delineate the common features of distinct biological processes. Finally, we clarify some persistent divergences within social evolution theory, with respect to exactness, synergies, maximization, dynamic sufficiency and the role of genetic arguments.

  5. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities

    International Nuclear Information System (INIS)

    Press, Joshua Z; Smith, Margaret; Spellman, Paul T; Wang, Yuker; Miller, Dianne M; Horsman, Doug; Faham, Malek; Gilks, C Blake; Gray, Joe; Huntsman, David G; De Luca, Alessandro; Boyd, Niki; Young, Sean; Troussard, Armelle; Ridge, Yolanda; Kaurah, Pardeep; Kalloger, Steve E; Blood, Katherine A

    2008-01-01

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumours were high-grade serous or undifferentiated type. None of the endometrioid (n = 5), clear cell (n = 4), or low grade serous (n = 2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumours with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways

  6. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Gilks, C. Blake; Press, Joshua Z.; De Luca, Alessandro; Boyd, Niki; Young, Sean; Troussard, Armelle; Ridge, Yolanda; Kaurah, Pardeep; Kalloger, Steve E.; Blood, Katherine A.; Smith, Margaret; Spellman, Paul T.; Wang, Yuker; Miller, Dianne M.; Horsman, Doug; Faham, Malek; Gilks, C. Blake; Gray, Joe; Huntsman, David G.

    2008-05-02

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteen (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumors were high-grade serous or undifferentiated type. None of the endometrioid (n=5), clear cell (n=4), or low grade serous (n=2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumors with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.

  7. Differential genetic basis for pre-menopausal and post-menopausal salt-sensitive hypertension.

    Science.gov (United States)

    Herrera, Victoria L M; Pasion, Khristine A; Moran, Ann Marie; Ruiz-Opazo, Nelson

    2012-01-01

    Essential hypertension affects 75% of post-menopausal women in the United States causing greater cardiovascular complications compared with age-matched men and pre-menopausal women. Hormone replacement and current anti-hypertensive therapies do not correct this post-menopausal increased risk suggesting a distinct pathogenic framework. We investigated the hypothesis that distinct genetic determinants might underlie susceptibility to salt sensitive hypertension in pre-menopausal and post-menopausal states. To determine whether distinct genetic loci contribute to post-menopausal salt-sensitive hypertension, we performed a genome-wide scan for quantitative trait loci (QTLs) affecting blood pressure (BP) in 16-month old post-menopausal F2 (Dahl S×R)-intercross female rats characterized for blood pressure by radiotelemetry. Given identical environments and high salt challenge, post-menopausal BP levels were significantly higher than observed in pre-menopausal (post-menopausal versus pre-menopausal SBP, P<0.0001) and ovariectomized (post-menopausal versus ovariectomized SBP, P<0.001) F2-intercross female rats. We detected four significant to highly significant BP-QTLs (BP-pm1 on chromosome 13, LOD 3.78; BP-pm2 on chromosome 11, LOD 2.76; BP-pm3 on chromosome 2, LOD 2.61; BP-pm4 on chromosome 4, LOD 2.50) and two suggestive BP-QTLs (BP-pm5 on chromosome 15, LOD 2.37; BP-f1 on chromosome 5, LOD 1.65), four of which (BP-pm2, BP-pm3, BP-pm4, BP-pm5) were unique to this post-menopausal cohort. These data demonstrate distinct polygenic susceptibility underlying post-menopausal salt-sensitive hypertension providing a pathway towards the identification of mechanism-based therapy for post-menopausal hypertension and ensuing target-organ complications.

  8. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries

    Directory of Open Access Journals (Sweden)

    Juha eKantanen

    2015-02-01

    Full Text Available Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources.There are several genetic questions that should be considered in strategies promoting adaptation to climate change and mitigation of environmental effects of livestock production. For example, it may become important to choose among breeds and even among farm animal species according to their suitability to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment.Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation of harmful greenhouse gas effects induced by livestock production is the reduction of methane (CH4 emissions from ruminants. There are differences in CH4 emissions among breeds and among individual animals within breeds that suggest a potential for improvement in the trait through genetic selection.Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programmes for farm animal genetic resources. We conclude that phenotyping and genomic technologies and adoption of new breeding approaches, such as genomic selection introgression, will promote breeding for useful characters in livestock species.

  9. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries

    Science.gov (United States)

    Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling; Eythorsdottir, Emma; Li, Meng-Hua; Kettunen-Præbel, Anne; Berg, Peer; Meuwissen, Theo

    2015-01-01

    Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources. There are several genetic questions that should be considered in strategies promoting adaptation to climate change and mitigation of environmental effects of livestock production. For example, it may become important to choose among breeds and even among farm animal species according to their suitability to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation of harmful greenhouse gas effects induced by livestock production is the reduction of methane (CH4) emissions from ruminants. There are differences in CH4 emissions among breeds and among individual animals within breeds that suggest a potential for improvement in the trait through genetic selection. Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programs for farm animal genetic resources. We conclude that phenotyping and genomic technologies and adoption of new breeding approaches, such as genomic selection introgression, will promote breeding for useful characters in livestock species. PMID:25767477

  10. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites

    Science.gov (United States)

    Budde, Gerrit; Burkhardt, Christoph; Brennecka, Gregory A.; Fischer-Gödde, Mario; Kruijer, Thomas S.; Kleine, Thorsten

    2016-11-01

    Nucleosynthetic isotope anomalies are powerful tracers to determine the provenance of meteorites and their components, and to identify genetic links between these materials. Here we show that chondrules and matrix separated from the Allende CV3 chondrite have complementary nucleosynthetic Mo isotope anomalies. These anomalies result from the enrichment of a presolar carrier enriched in s-process Mo into the matrix, and the corresponding depletion of this carrier in the chondrules. This carrier most likely is a metal and so the uneven distribution of presolar material probably results from metal-silicate fractionation during chondrule formation. The Mo isotope anomalies correlate with those reported for W isotopes on the same samples in an earlier study, suggesting that the isotope variations for both Mo and W are caused by the heterogeneous distribution of the same carrier. The isotopic complementary of chondrules and matrix indicates that both components are genetically linked and formed together from one common reservoir of solar nebula dust. As such, the isotopic data require that most chondrules formed in the solar nebula and are not a product of protoplanetary impacts. Allende chondrules and matrix together with bulk carbonaceous chondrites and some iron meteorites (groups IID, IIIF, and IVB) show uniform excesses in 92Mo, 95Mo, and 97Mo that result from the addition of supernova material to the solar nebula region in which these carbonaceous meteorites formed. Non-carbonaceous meteorites (enstatite and ordinary chondrites as well as most iron meteorites) do not contain this material, demonstrating that two distinct Mo isotope reservoirs co-existed in the early solar nebula that remained spatially separated for several million years. This separation was most likely achieved through the formation of the gas giants, which cleared the disk between the inner and outer solar system regions parental to the non-carbonaceous and carbonaceous meteorites. The Mo isotope

  11. Genetic disruptions of Drosophila Pavlovian learning leave extinction learning intact.

    Science.gov (United States)

    Qin, H; Dubnau, J

    2010-03-01

    Individuals who experience traumatic events may develop persistent posttraumatic stress disorder. Patients with this disorder are commonly treated with exposure therapy, which has had limited long-term success. In experimental neurobiology, fear extinction is a model for exposure therapy. In this behavioral paradigm, animals are repeatedly exposed in a safe environment to the fearful stimulus, which leads to greatly reduced fear. Studying animal models of extinction already has lead to better therapeutic strategies and development of new candidate drugs. Lack of a powerful genetic model of extinction, however, has limited progress in identifying underlying molecular and genetic factors. In this study, we established a robust behavioral paradigm to study the short-term effect (acquisition) of extinction in Drosophila melanogaster. We focused on the extinction of olfactory aversive 1-day memory with a task that has been the main workhorse for genetics of memory in flies. Using this paradigm, we show that extinction can inhibit each of two genetically distinct forms of consolidated memory. We then used a series of single-gene mutants with known impact on associative learning to examine the effects on extinction. We find that extinction is intact in each of these mutants, suggesting that extinction learning relies on different molecular mechanisms than does Pavlovian learning.

  12. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. ZHONGJIE CHANG. Articles written in Journal of Genetics. Volume 89 Issue 2 August 2010 pp 183-192 Research Article. cDNA cloning and expression analysis of two distinct Sox8 genes in Paramisgurnus dabryanus (Cypriniformes) · Xiaohua Xia Jie Zhao Qiyan Du Zhongjie Chang.

  13. Anagenetic speciation in Ullung Island, Korea: genetic diversity and structure in the island endemic species, Acer takesimense (Sapindaceae).

    Science.gov (United States)

    Takayama, Koji; Sun, Byung-Yun; Stuessy, Tod F

    2013-05-01

    Anagenetic speciation is an important mode of speciation in oceanic islands; one-fourth of the endemic plants are estimated to have been derived via this process. Few studies, however, have critically examined the genetic consequences of anagenesis in comparison with cladogenesis (involved with adaptive radiation). We hypothesize that endemic species originating via anagenetic speciation in a relatively uniform environment should accumulate genetic variation with limited populational differentiation. We undertook a population genetic analysis using nine nuclear microsatellite loci of Acer takesimense, an anagenetically derived species endemic to Ullung Island, Korea, and its continental progenitor A. pseudosieboldianum on the Korean Peninsula. Microsatellite data reveal a clear genetic distinction between the two species. A high F value in the cluster of A. takesimense was found by Bayesian clustering analysis, suggesting a strong episode of genetic drift during colonization and speciation. In comparison with A. pseudosieboldianum, A. takesimense has slightly lower genetic diversity and possesses less than half the number of private and rare alleles. Consistent with predictions, weak geographical genetic structure within the island was found in A. takesimense. These results imply that anagenetic speciation leads to a different pattern of specific and genetic diversity than often seen with cladogenesis.

  14. "Genetic exceptionalism" in medicine: clarifying the differences between genetic and nongenetic tests.

    Science.gov (United States)

    Green, Michael J; Botkin, Jeffrey R

    2003-04-01

    Predictive genetic tests are now available for assessing susceptibility to a variety of conditions, including breast and colon cancer, hemochromatosis, and Alzheimer and Huntington disease. Much controversy surrounds the application of these tests, stemming from their similarities to and differences from other tests commonly used in asymptomatic persons. Some have argued that genetic tests are unique and therefore justify special consideration with regard to informed consent and privacy. This paper examines the arguments for such "genetic exceptionalism" and concludes that no clear, significant distinctions between genetic and nongenetic tests justify a different approach to testing by clinicians. Nevertheless, with many genetic tests, the results may cause stigmatization, family discord, and psychological distress. Regardless of whether a test is genetic, when this combination of characteristics is present and when health care providers are not specifically trained to interpret results, testing should be performed with particular caution and the highest standards of informed consent and privacy protection should be applied.

  15. Adaptive Incremental Genetic Algorithm for Task Scheduling in Cloud Environments

    Directory of Open Access Journals (Sweden)

    Kairong Duan

    2018-05-01

    Full Text Available Cloud computing is a new commercial model that enables customers to acquire large amounts of virtual resources on demand. Resources including hardware and software can be delivered as services and measured by specific usage of storage, processing, bandwidth, etc. In Cloud computing, task scheduling is a process of mapping cloud tasks to Virtual Machines (VMs. When binding the tasks to VMs, the scheduling strategy has an important influence on the efficiency of datacenter and related energy consumption. Although many traditional scheduling algorithms have been applied in various platforms, they may not work efficiently due to the large number of user requests, the variety of computation resources and complexity of Cloud environment. In this paper, we tackle the task scheduling problem which aims to minimize makespan by Genetic Algorithm (GA. We propose an incremental GA which has adaptive probabilities of crossover and mutation. The mutation and crossover rates change according to generations and also vary between individuals. Large numbers of tasks are randomly generated to simulate various scales of task scheduling problem in Cloud environment. Based on the instance types of Amazon EC2, we implemented virtual machines with different computing capacity on CloudSim. We compared the performance of the adaptive incremental GA with that of Standard GA, Min-Min, Max-Min , Simulated Annealing and Artificial Bee Colony Algorithm in finding the optimal scheme. Experimental results show that the proposed algorithm can achieve feasible solutions which have acceptable makespan with less computation time.

  16. Developmental Etiologies of Alcohol Use and Their Relations to Parent and Peer Influences Over Adolescence and Young Adulthood: A Genetically Informed Approach.

    Science.gov (United States)

    Deutsch, Arielle R; Wood, Phillip K; Slutske, Wendy S

    2017-12-01

    Distinct changes in alcohol use etiologies occur during adolescence and young adulthood. Additionally, measured environments known to influence alcohol use such as peers and parenting practice can interact or be associated with this genetic influence. However, change in genetic and environmental influences over age, as well as how associations with measured environments change over age, is understudied. The National Longitudinal Study of Adolescent Health (Add Health) sibling subsample was used to examine data-driven biometric models of alcohol use over ages 13 to 27. Associations between friends' drinking, parental autonomy granting, and maternal closeness were also examined. The best-fitting model included a 5-factor model consisting of early (ages 13 to 20) and overall (ages 13 to 27) additive genetic and unique environmental factors, as well as 1 overall common environment factor. The overall additive genetic factor and the early unique environment factor explained the preponderance of mean differences in the alcohol use over this portion of the life span. The most important factors explaining variance attributed to alcohol use changed over age. Additionally, friend use had the strongest associations with genetic and environmental factors at all ages, while parenting practices had almost no associations at any age. These results supplement previous studies indicating changes in genetic and environmental influences in alcohol use over adolescence and adulthood. However, prior research suggesting that constraining exogenous predictors of genetic and environmental factors to have effects of the same magnitude across age overlooks the differential role of factors associated with alcohol use during adolescence. Consonant with previous research, friend use appears to have a more pervasive influence on alcohol use than parental influence during this age. Interventions and prevention programs geared toward reducing alcohol use in younger populations may benefit from

  17. Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy.

    Science.gov (United States)

    du Toit, Nina; van Vuuren, Bettine Jansen; Matthee, Sonja; Matthee, Conrad A

    2012-10-01

    Within southern Africa, a link between past climatic changes and faunal diversification has been hypothesized for a diversity of taxa. To test the hypothesis that evolutionary divergences may be correlated to vegetation changes (induced by changes in climate), we selected the widely distributed four-striped mouse, Rhabdomys, as a model. Two species are currently recognized, the mesic-adapted R. dilectus and arid-adapted R. pumilio. However, the morphology-based taxonomy and the distribution boundaries of previously described subspecies remain poorly defined. The current study, which spans seven biomes, focuses on the spatial genetic structure of the arid-adapted R. pumilio (521 specimens from 31 localities), but also includes limited sampling of the mesic-adapted R. dilectus (33 specimens from 10 localities) to act as a reference for interspecific variation within the genus. The mitochondrial COI gene and four nuclear introns (Eef1a1, MGF, SPTBN1, Bfib7) were used for the construction of gene trees. Mitochondrial DNA analyses indicate that Rhabdomys consists of four reciprocally monophyletic, geographically structured clades, with three distinct lineages present within the arid-adapted R. pumilio. These monophyletic lineages differ by at least 7.9% (±0.3) and these results are partly confirmed by a multilocus network of the combined nuclear intron dataset. Ecological niche modeling in MaxEnt supports a strong correlation between regional biomes and the distribution of distinct evolutionary lineages of Rhabdomys. A Bayesian relaxed molecular clock suggests that the geographic clades diverged between 3.09 and 4.30Ma, supporting the hypothesis that the radiation within the genus coincides with paleoclimatic changes (and the establishment of the biomes) characterizing the Miocene-Pliocene boundary. Marked genetic divergence at the mitochondrial DNA level, coupled with strong nuclear and mtDNA signals of non-monophyly of R. pumilio, support the notion that a taxonomic

  18. Genetic data and the listing of species under the U.S. Endangered Species Act.

    Science.gov (United States)

    Fallon, Sylvia M

    2007-10-01

    Genetic information is becoming an influential factor in determining whether species, subspecies, and distinct population segments qualify for protection under the U.S. Endangered Species Act. Nevertheless, there are currently no standards or guidelines that define how genetic information should be used by the federal agencies that administer the act. I examined listing decisions made over a 10-year period (February 1996-February 2006) that relied on genetic information. There was wide variation in the genetic data used to inform listing decisions in terms of which genomes (mitochondrial vs. nuclear) were sampled and the number of markers (or genetic techniques) and loci evaluated. In general, whether the federal agencies identified genetic distinctions between putative taxonomic units or populations depended on the type and amount of genetic data. Studies that relied on multiple genetic markers were more likely to detect distinctions, and those organisms were more likely to receive protection than studies that relied on a single genetic marker. Although the results may, in part, reflect the corresponding availability of genetic techniques over the given time frame, the variable use of genetic information for listing decisions has the potential to misguide conservation actions. Future management policy would benefit from guidelines for the critical evaluation of genetic information to list or delist organisms under the Endangered Species Act.

  19. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors.

    Science.gov (United States)

    Yachida, Shinichi; Vakiani, Efsevia; White, Catherine M; Zhong, Yi; Saunders, Tyler; Morgan, Richard; de Wilde, Roeland F; Maitra, Anirban; Hicks, Jessica; Demarzo, Angelo M; Shi, Chanjuan; Sharma, Rajni; Laheru, Daniel; Edil, Barish H; Wolfgang, Christopher L; Schulick, Richard D; Hruban, Ralph H; Tang, Laura H; Klimstra, David S; Iacobuzio-Donahue, Christine A

    2012-02-01

    Poorly differentiated neuroendocrine carcinomas (NECs) of the pancreas are rare malignant neoplasms with a poor prognosis. The aim of this study was to determine the clinicopathologic and genetic features of poorly differentiated NECs and compare them with other types of pancreatic neoplasms. We investigated alterations of KRAS, CDKN2A/p16, TP53, SMAD4/DPC4, DAXX, ATRX, PTEN, Bcl2, and RB1 by immunohistochemistry and/or targeted exomic sequencing in surgically resected specimens of 9 small cell NECs, 10 large cell NECs, and 11 well-differentiated neuroendocrine tumors (PanNETs) of the pancreas. Abnormal immunolabeling patterns of p53 and Rb were frequent (p53, 18 of 19, 95%; Rb, 14 of 19, 74%) in both small cell and large cell NECs, whereas Smad4/Dpc4, DAXX, and ATRX labeling was intact in virtually all of these same carcinomas. Abnormal immunolabeling of p53 and Rb proteins correlated with intragenic mutations in the TP53 and RB1 genes. In contrast, DAXX and ATRX labeling was lost in 45% of PanNETs, whereas p53 and Rb immunolabeling was intact in these same cases. Overexpression of Bcl-2 protein was observed in all 9 small cell NECs (100%) and in 5 of 10 (50%) large cell NECs compared with only 2 of 11 (18%) PanNETs. Bcl-2 overexpression was significantly correlated with higher mitotic rate and Ki67 labeling index in neoplasms in which it was present. Small cell NECs are genetically similar to large cell NECs, and these genetic changes are distinct from those reported in PanNETs. The finding of Bcl-2 overexpression in poorly differentiated NECs, particularly small cell NEC, suggests that Bcl-2 antagonists/inhibitors may be a viable treatment option for these patients.

  20. Analysis of conditional genetic effects and variance components in developmental genetics.

    Science.gov (United States)

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  1. The genetic difference principle.

    Science.gov (United States)

    Farrelly, Colin

    2004-01-01

    In the newly emerging debates about genetics and justice three distinct principles have begun to emerge concerning what the distributive aim of genetic interventions should be. These principles are: genetic equality, a genetic decent minimum, and the genetic difference principle. In this paper, I examine the rationale of each of these principles and argue that genetic equality and a genetic decent minimum are ill-equipped to tackle what I call the currency problem and the problem of weight. The genetic difference principle is the most promising of the three principles and I develop this principle so that it takes seriously the concerns of just health care and distributive justice in general. Given the strains on public funds for other important social programmes, the costs of pursuing genetic interventions and the nature of genetic interventions, I conclude that a more lax interpretation of the genetic difference principle is appropriate. This interpretation stipulates that genetic inequalities should be arranged so that they are to the greatest reasonable benefit of the least advantaged. Such a proposal is consistent with prioritarianism and provides some practical guidance for non-ideal societies--that is, societies that do not have the endless amount of resources needed to satisfy every requirement of justice.

  2. Morphological and ecological preadaptations as the basis of bird synanthropization under transformed environment conditions

    Science.gov (United States)

    Rakhimov, I. I.; Ibragimova, K. K.

    2018-01-01

    Bird synanthropization is connected with a thorough and serious reconstruction of their biology and is a demonstration of changes currently occurring in the biosphere due to human influence. Nutritional and nesting conditions as well as protection due to urban characteristics are advantage factors that affect their populations. Under these conditions, the adaptive potential of species can be realized. Adaptations to a new and in-distinctive environment appear due to preadaptations. The synanthropization process of species happens without speciation by expression of existing genetic variation of morphological and ecological characteristics.

  3. Environmental change, phenotypic plasticity, and genetic compensation.

    Science.gov (United States)

    Grether, Gregory F

    2005-10-01

    When a species encounters novel environmental conditions, some phenotypic characters may develop differently than in the ancestral environment. Most environmental perturbations of development are likely to reduce fitness, and thus selection would usually be expected to favor genetic changes that restore the ancestral phenotype. I propose the term "genetic compensation" to refer to this form of adaptive evolution. Genetic compensation is a subset of genetic accommodation and the reverse of genetic assimilation. When genetic compensation has occurred along a spatial environmental gradient, the mean trait values of populations in different environments may be more similar in the field than when representatives of the same populations are raised in a common environment (i.e., countergradient variation). If compensation is complete, genetic divergence between populations may be cryptic, that is, not detectable in the field. Here I apply the concept of genetic compensation to three examples involving carotenoid-based sexual coloration and then use these and other examples to discuss the concept in a broader context. I show that genetic compensation may lead to a cryptic form of reproductive isolation between populations evolving in different environments, may explain some puzzling cases in which heritable traits exposed to strong directional selection fail to show the expected evolutionary response, and may complicate efforts to monitor populations for signs of environmental deterioration.

  4. High Prevalence and Genetic Polymorphisms of Legionella in Natural and Man-Made Aquatic Environments in Wenzhou, China

    Directory of Open Access Journals (Sweden)

    Leyi Zhang

    2017-02-01

    Full Text Available Natural and engineered water systems are the main sources of Legionnaires’ disease. It is essential from a public health perspective to survey water environments for the existence of Legionella. To analyze the main serogroups, genotypes and pathogenicity of the pathogen, a stratified sampling method was adopted to collect water samples randomly from shower water, cooling tower water, and local public hot springs in Wenzhou, China. Suspected strains were isolated from concentrated water samples. Serum agglutination assay and real-time PCR (Polymerase chain reaction were used to identify L. pneumophila. Sequence-based typing (SBT and pulsed-field gel electrophoresis (PFGE were used to elucidate the genetic polymorphisms in the collected isolates. The intracellular growth ability of the isolates was determined through their interaction with J774 cells and plating them onto BCYE (Buffered Charcoal Yeast Extract agar plates. Overall, 25.56% (46/180 of water samples were Legionella-positive; fifty-two strains were isolated and two kinds of serogroups were co-detected from six water samples from 2015 to 2016. Bacterial concentrations ranged from 20 CFU/100 mL to 10,720 CFU/100 mL. In detail, the Legionella-positive rates of shower water, cooling tower water and hot springs water were 15.45%, 13.33%, and 62.5%, respectively. The main serogroups were LP1 (30.69% and LP3 (28.85% and all strains carried the dot gene. Among them, 52 isolates and another 10 former isolates were analyzed by PFGE. Nineteen distinct patterns were observed in 52 strains isolated from 2015 to 2016 with three patterns being observed in 10 strains isolated from 2009 to 2014. Seventy-three strains containing 52 from this study and 21 former isolates were selected for SBT analysis and divided into 25 different sequence types in 4 main clonal groups belonging to 4 homomorphic types. Ten strains were chosen to show their abilities to grow and multiply in J744 cells. Taken together

  5. Maternal Genetic Variants of IL4/IL13 Pathway Genes on IgE With "Western or Eastern Environments/Lifestyles".

    Science.gov (United States)

    Zhang, Guicheng; Khoo, Siew-Kim; Mäkelä, Mika J; Candelaria, Pierre; Hayden, Catherine M; von Hertzen, Leena; Laatikainen, Tiina; Vartiainen, Erkki; Goldblatt, Jack; Haahtela, Tari; LeSouëf, Peter N

    2014-07-01

    We investigated maternal genetic effects of four IL-4/IL-13 pathway genes as well as their interactions with the "Western or Eastern lifestyles/environments" on IgE in Karelian children. This study included 609 children and their mothers. Total IgE levels in children and mothers were measured and 10 single nucleotide polymorphisms (SNPs) in IL-4, IL-4Ra, IL-13, and STAT6 were genotyped in mothers and their children. The maternal G allele of IL-13 130 (rs20541) was significantly (P=0.001) associated with decreased IgE in children in the Karelian population (Pooling Finnish and Russian children), as well as in Finnish (P=0.030) and Russian children (P=0.018). The IgE levels were significantly (P=0.001) higher in Russian children whose mothers were homozygous for the G allele of the IL-4Ra 50 (rs1805010) SNP than that in Russian children of mothers who were AG heterozygotes or AA homozygotes. After accounting for children's genotypes, we observed interactive effects on children's IgE for maternal IL-13 130 genotypes (P=0.014) and maternal IL-4Ra 50 genotypes (P=0.0003) with "Western or Eastern" lifestyles/environments. With the adjustment for multiple comparisons using a false discovery rate (FDR) of 0.05, the interactive effect of the maternal IL-4Ra50 SNP was significant. Maternal genetic variants in IL-4/IL-13 pathway genes, such as IL-13 130 and IL-4Ra50, influenced IgE levels in school children that were independent of the children's genetic effects. These effects differ in "Western or Eastern" environments.

  6. Quantitative genetic analysis of life-history traits of Caenorhabditis elegans in stressful environments

    Directory of Open Access Journals (Sweden)

    Shorto Alison

    2008-01-01

    Full Text Available Abstract Background Organisms live in environments that vary. For life-history traits that vary across environments, fitness will be maximised when the phenotype is appropriately matched to the environmental conditions. For the free-living nematode Caenorhabditis elegans, we have investigated how two major life-history traits, (i the development of environmentally resistant dauer larvae and (ii reproduction, respond to environmental stress (high population density and low food availability, and how these traits vary between lines and the genetic basis of this variation. Results We found that lines of C. elegans vary in their phenotypic plasticity of dauer larva development, i.e. there is variation in the likelihood of developing into a dauer larva for the same environmental change. There was also variation in how lifetime fecundity and the rate of reproduction changed under conditions of environmental stress. These traits were related, such that lines that are highly plastic for dauer larva development also maintain a high population growth rate when stressed. We identified quantitative trait loci (QTL on two chromosomes that control the dauer larva development and population size phenotypes. The QTLs affecting the dauer larva development and population size phenotypes on chromosome II are closely linked, but are genetically separable. This chromosome II QTL controlling dauer larva development does not encompass any loci previously identified to control dauer larva development. This chromosome II region contains many predicted 7-transmembrane receptors. Such proteins are often involved in information transduction, which is clearly relevant to the control of dauer larva development. Conclusion C. elegans alters both its larval development and adult reproductive strategy in response to environmental stress. Together the phenotypic and genotypic data suggest that these two major life-history traits are co-ordinated responses to environmental stress

  7. Inbred or Outbred? Genetic Diversity in Laboratory Rodent Colonies

    Science.gov (United States)

    Brekke, Thomas D.; Steele, Katherine A.; Mulley, John F.

    2017-01-01

    Nonmodel rodents are widely used as subjects for both basic and applied biological research, but the genetic diversity of the study individuals is rarely quantified. University-housed colonies tend to be small and subject to founder effects and genetic drift; so they may be highly inbred or show substantial genetic divergence from other colonies, even those derived from the same source. Disregard for the levels of genetic diversity in an animal colony may result in a failure to replicate results if a different colony is used to repeat an experiment, as different colonies may have fixed alternative variants. Here we use high throughput sequencing to demonstrate genetic divergence in three isolated colonies of Mongolian gerbil (Meriones unguiculatus) even though they were all established recently from the same source. We also show that genetic diversity in allegedly “outbred” colonies of nonmodel rodents (gerbils, hamsters, house mice, deer mice, and rats) varies considerably from nearly no segregating diversity to very high levels of polymorphism. We conclude that genetic divergence in isolated colonies may play an important role in the “replication crisis.” In a more positive light, divergent rodent colonies represent an opportunity to leverage genetically distinct individuals in genetic crossing experiments. In sum, awareness of the genetic diversity of an animal colony is paramount as it allows researchers to properly replicate experiments and also to capitalize on other genetically distinct individuals to explore the genetic basis of a trait. PMID:29242387

  8. Genetic versus rearing-environment effects on phenotype: hatchery and natural rearing effects on hatchery- and wild-born coho salmon.

    Directory of Open Access Journals (Sweden)

    Cedar M Chittenden

    Full Text Available With the current trends in climate and fisheries, well-designed mitigative strategies for conserving fish stocks may become increasingly necessary. The poor post-release survival of hatchery-reared Pacific salmon indicates that salmon enhancement programs require assessment. The objective of this study was to determine the relative roles that genotype and rearing environment play in the phenotypic expression of young salmon, including their survival, growth, physiology, swimming endurance, predator avoidance and migratory behaviour. Wild- and hatchery-born coho salmon adults (Oncorhynchus kisutch returning to the Chehalis River in British Columbia, Canada, were crossed to create pure hatchery, pure wild, and hybrid offspring. A proportion of the progeny from each cross was reared in a traditional hatchery environment, whereas the remaining fry were reared naturally in a contained side channel. The resulting phenotypic differences between replicates, between rearing environments, and between cross types were compared. While there were few phenotypic differences noted between genetic groups reared in the same habitat, rearing environment played a significant role in smolt size, survival, swimming endurance, predator avoidance and migratory behaviour. The lack of any observed genetic differences between wild- and hatchery-born salmon may be due to the long-term mixing of these genotypes from hatchery introgression into wild populations, or conversely, due to strong selection in nature--capable of maintaining highly fit genotypes whether or not fish have experienced part of their life history under cultured conditions.

  9. Differential genetic basis for pre-menopausal and post-menopausal salt-sensitive hypertension.

    Directory of Open Access Journals (Sweden)

    Victoria L M Herrera

    Full Text Available Essential hypertension affects 75% of post-menopausal women in the United States causing greater cardiovascular complications compared with age-matched men and pre-menopausal women. Hormone replacement and current anti-hypertensive therapies do not correct this post-menopausal increased risk suggesting a distinct pathogenic framework. We investigated the hypothesis that distinct genetic determinants might underlie susceptibility to salt sensitive hypertension in pre-menopausal and post-menopausal states. To determine whether distinct genetic loci contribute to post-menopausal salt-sensitive hypertension, we performed a genome-wide scan for quantitative trait loci (QTLs affecting blood pressure (BP in 16-month old post-menopausal F2 (Dahl S×R-intercross female rats characterized for blood pressure by radiotelemetry. Given identical environments and high salt challenge, post-menopausal BP levels were significantly higher than observed in pre-menopausal (post-menopausal versus pre-menopausal SBP, P<0.0001 and ovariectomized (post-menopausal versus ovariectomized SBP, P<0.001 F2-intercross female rats. We detected four significant to highly significant BP-QTLs (BP-pm1 on chromosome 13, LOD 3.78; BP-pm2 on chromosome 11, LOD 2.76; BP-pm3 on chromosome 2, LOD 2.61; BP-pm4 on chromosome 4, LOD 2.50 and two suggestive BP-QTLs (BP-pm5 on chromosome 15, LOD 2.37; BP-f1 on chromosome 5, LOD 1.65, four of which (BP-pm2, BP-pm3, BP-pm4, BP-pm5 were unique to this post-menopausal cohort. These data demonstrate distinct polygenic susceptibility underlying post-menopausal salt-sensitive hypertension providing a pathway towards the identification of mechanism-based therapy for post-menopausal hypertension and ensuing target-organ complications.

  10. Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature associated plastic recombination.

    Science.gov (United States)

    Kohl, Kathryn P; Singh, Nadia D

    2018-04-01

    Phenotypic plasticity is pervasive in nature. One mechanism underlying the evolution and maintenance of such plasticity is environmental heterogeneity. Indeed, theory indicates that both spatial and temporal variation in the environment should favor the evolution of phenotypic plasticity under a variety of conditions. Cyclical environmental conditions have also been shown to yield evolved increases in recombination frequency. Here, we use a panel of replicated experimental evolution populations of D. melanogaster to test whether variable environments favor enhanced plasticity in recombination rate and/or increased recombination rate in response to temperature. In contrast to expectation, we find no evidence for either enhanced plasticity in recombination or increased rates of recombination in the variable environment lines. Our data confirm a role of temperature in mediating recombination fraction in D. melanogaster, and indicate that recombination is genetically and plastically depressed under lower temperatures. Our data further suggest that the genetic architectures underlying plastic recombination and population-level variation in recombination rate are likely to be distinct. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  11. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution.

    Science.gov (United States)

    Kendall, Michelle; Colijn, Caroline

    2016-10-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. phylogenetics, evolution, tree metrics, genetics, sequencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. A population on the edge: genetic diversity and population structure of the world's northernmost harbour seals (Phoca vitulina)

    DEFF Research Database (Denmark)

    Andersen, Liselotte Wesley; Lydersen, Christian; Frie, Anne Kirstine

    2011-01-01

    insight into consequences of population declines in a broader conservation context. The harbour seal population at Svalbard is the world's northernmost harbour seal population. Nothing is known about the genetic diversity, distinctiveness or origin of this small, marginalized mammalian population. Thus......  It is crucial to examine the genetic diversity and structure of small, isolated populations, especially those at the edge of their distribution range, because they are vulnerable to stochastic processes if genetic diversity is low and isolation level high, and because such populations provide...... microsatellites and variation in the D-loop. Each of the four locations was a genetically distinct population. The Svalbard population was highly genetically distinct, had reduced genetic diversity, received limited gene flow, had a rather low effective population size and showed an indication of having...

  13. Genetic distinction between contiguous urban and rural multimammate mice in Tanzania despite gene flow

    Czech Academy of Sciences Publication Activity Database

    Gryseels, S.; Goüy de Bellocq, Joëlle; Makundi, R.; Vanmechelen, K.; Broeckhove, J.; Mazoch, V.; Šumbera, R.; Zima Jr., Jan; Leirs, H.; Baird, Stuart J. E.

    2016-01-01

    Roč. 29, č. 10 (2016), s. 1952-1967 ISSN 1010-061X R&D Projects: GA ČR GCP502/11/J070; GA ČR GAP506/10/0983; GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 Keywords : Mastomys natalensis * urbanisation * synanthropy * population genetics * IMa2 * spatial genetics * Tanzania Subject RIV: EG - Zoology Impact factor: 2.792, year: 2016

  14. Applying ecological models to communities of genetic elements: the case of neutral theory.

    Science.gov (United States)

    Linquist, Stefan; Cottenie, Karl; Elliott, Tyler A; Saylor, Brent; Kremer, Stefan C; Gregory, T Ryan

    2015-07-01

    A promising recent development in molecular biology involves viewing the genome as a mini-ecosystem, where genetic elements are compared to organisms and the surrounding cellular and genomic structures are regarded as the local environment. Here, we critically evaluate the prospects of ecological neutral theory (ENT), a popular model in ecology, as it applies at the genomic level. This assessment requires an overview of the controversy surrounding neutral models in community ecology. In particular, we discuss the limitations of using ENT both as an explanation of community dynamics and as a null hypothesis. We then analyse a case study in which ENT has been applied to genomic data. Our central finding is that genetic elements do not conform to the requirements of ENT once its assumptions and limitations are made explicit. We further compare this genome-level application of ENT to two other, more familiar approaches in genomics that rely on neutral mechanisms: Kimura's molecular neutral theory and Lynch's mutational-hazard model. Interestingly, this comparison reveals that there are two distinct concepts of neutrality associated with these models, which we dub 'fitness neutrality' and 'competitive neutrality'. This distinction helps to clarify the various roles for neutral models in genomics, for example in explaining the evolution of genome size. © 2015 John Wiley & Sons Ltd.

  15. Genetic studies on the South African Mutton Merino: growth traits

    African Journals Online (AJOL)

    Unknown

    breed has undergone such a metamorphosis that it no longer bears much, if any, resemblance to its European ancestor. The need for a separate genetic characterization of this distinct South African strain is therefore evident. The aim of this study was to determine the applicable non-genetic factors and to estimate genetic ...

  16. Responses to the change in the environment in pairs of male rats genetically selected for activity level.

    Science.gov (United States)

    Franková, S; Tikal, K

    1989-12-01

    Laboratory Wistar strain rats were genetically selected for high (+A) and low (-A) activity level. In thirteen pairs of adult males of the 23rd filial generation reactions to changes in the external environment were studied. The animals were housed in breeding cages four each. Two parallel studies were conducted: in pairs simultaneously placed into a novel environment (NOV), empty cages of the same dimensions as the home cage (HC), in the second, behaviour of the second pair that remained in the HC, after removal of two cage-mates, was tested. Once a minute, for a period of one hour, the type of activity was recorded and noted whether it was an element effected in contact with the partner or without any contact. The animals +A and -A differed in the frequency of various types of activity and immobility, in the ratio between behavioural manifestations shown in or without contact as well as in the response to the type of modified environment. To changes in the situation, whether removed cage-mates from the HC or placed into NOV +A animals reacted with a high wave of environment exploration which gradually habituated. -A rats equally responded with exploration but on a lower level. In +rats we recorded more frequently exploration without contact with the partner in HC and NOV in comparison with -A, more frequent grooming, less immobility in contact and with no contact. Between +A partners there was a greater number of contacts in NOV than in HC whereas in the -A group the incidence of contact did not differ between HC and NOV. ANOVA revealed the influence of factors of genetics and environment and interaction in several behavioural categories. The simple and in time economical method demonstrated the possibility of use for the detection of differences between +A and -A lines even at relatively small changes in the external stimulatory situation.

  17. Genetic risk for violent behavior and environmental exposure to disadvantage and violent crime: the case for gene-environment interaction.

    Science.gov (United States)

    Barnes, J C; Jacobs, Bruce A

    2013-01-01

    Despite mounds of evidence to suggest that neighborhood structural factors predict violent behavior, almost no attention has been given to how these influences work synergistically (i.e., interact) with an individual's genetic propensity toward violent behavior. Indeed, two streams of research have, heretofore, flowed independently of one another. On one hand, criminologists have underscored the importance of neighborhood context in the etiology of violence. On the other hand, behavioral geneticists have argued that individual-level genetic propensities are important for understanding violence. The current study seeks to integrate these two compatible frameworks by exploring gene-environment interactions (GxE). Two GxEs were examined and supported by the data (i.e., the National Longitudinal Study of Adolescent Health). Using a scale of genetic risk based on three dopamine genes, the analysis revealed that genetic risk had a greater influence on violent behavior when the individual was also exposed to neighborhood disadvantage or when the individual was exposed to higher violent crime rates. The relevance of these findings for criminological theorizing was considered.

  18. The evolution of environmental and genetic sex determination in fluctuating environments.

    Science.gov (United States)

    Van Dooren, Tom J M; Leimar, Olof

    2003-12-01

    Twenty years ago, Bulmer and Bull suggested that disruptive selection, produced by environmental fluctuations, can result in an evolutionary transition from environmental sex determination (ESD) to genetic sex determination (GSD). We investigated the feasibility of such a process, using mutation-limited adaptive dynamics and individual-based computer simulations. Our model describes the evolution of a reaction norm for sex determination in a metapopulation setting with partial migration and variation in an environmental variable both within and between local patches. The reaction norm represents the probability of becoming a female as a function of environmental state and was modeled as a sigmoid function with two parameters, one giving the location (i.e., the value of the environmental variable for which an individual has equal chance of becoming either sex) and the other giving the slope of the reaction norm for that environment. The slope can be interpreted as being set by the level of developmental noise in morph determination, with less noise giving a steeper slope and a more switchlike reaction norm. We found convergence stable reaction norms with intermediate to large amounts of developmental noise for conditions characterized by low migration rates, small differential competitive advantages between the sexes over environments, and little variation between individual environments within patches compared to variation between patches. We also considered reaction norms with the slope parameter constrained to a high value, corresponding to little developmental noise. For these we found evolutionary branching in the location parameter and a transition from ESD toward GSD, analogous to the original analysis by Bulmer and Bull. Further evolutionary change, including dominance evolution, produced a polymorphism acting as a GSD system with heterogamety. Our results point to the role of developmental noise in the evolution of sex determination.

  19. Maternal-by-environment but not genotype-by-environment interactions in a fish without parental care.

    Science.gov (United States)

    Vega-Trejo, Regina; Head, Megan L; Jennions, Michael D; Kruuk, Loeske E B

    2018-01-01

    The impact of environmental conditions on the expression of genetic variance and on maternal effects variance remains an important question in evolutionary quantitative genetics. We investigate here the effects of early environment on variation in seven adult life history, morphological, and secondary sexual traits (including sperm characteristics) in a viviparous poeciliid fish, the mosquitofish Gambusia holbrooki. Specifically, we manipulated food availability during early development and then assessed additive genetic and maternal effects contributions to the overall phenotypic variance in adults. We found higher heritability for female than male traits, but maternal effects variance for traits in both sexes. An interaction between maternal effects variance and rearing environment affected two adult traits (female age at maturity and male size at maturity), but there was no evidence of trade-offs in maternal effects across environments. Our results illustrate (i) the potential for pre-natal maternal effects to interact with offspring environment during development, potentially affecting traits through to adulthood and (ii) that genotype-by-environment interactions might be overestimated if maternal-by-environment interactions are not accounted for, similar to heritability being overestimated if maternal effects are ignored. We also discuss the potential for dominance genetic variance to contribute to the estimate of maternal effects variance.

  20. Environment-dependent microevolution in a Mediterranean pine (Pinus pinaster Aiton).

    Science.gov (United States)

    Alía, Ricardo; Chambel, Regina; Notivol, Eduardo; Climent, José; González-Martínez, Santiago C

    2014-09-23

    A central question for understanding the evolutionary responses of plant species to rapidly changing environments is the assessment of their potential for short-term (in one or a few generations) genetic change. In our study, we consider the case of Pinus pinaster Aiton (maritime pine), a widespread Mediterranean tree, and (i) test, under different experimental conditions (growth chamber and semi-natural), whether higher recruitment in the wild from the most successful mothers is due to better performance of their offspring; and (ii) evaluate genetic change in quantitative traits across generations at two different life stages (mature trees and seedlings) that are known to be under strong selection pressure in forest trees. Genetic control was high for most traits (h2 = 0.137-0.876) under the milder conditions of the growth chamber, but only for ontogenetic change (0.276), total height (0.415) and survival (0.719) under the more stressful semi-natural conditions. Significant phenotypic selection gradients were found in mature trees for traits related to seed quality (germination rate and number of empty seeds). Moreover, female relative reproductive success was significantly correlated with offspring performance for specific leaf area (SLA) in the growth chamber experiment, and stem mass fraction (SMF) in the experiment under semi-natural conditions, two adaptive traits related to abiotic stress-response in pines. Selection gradients based on genetic covariance of seedling traits and responses to selection at this stage involved traits related to biomass allocation (SMF) and growth (as decomposed by a Gompertz model) or delayed ontogenetic change, depending also on the testing environment. Despite the evidence of microevolutionary change in adaptive traits in maritime pine, directional or disruptive changes are difficult to predict due to variable selection at different life stages and environments. At mature-tree stages, higher female effective reproductive

  1. Development of an RT-qPCR assay for the specific detection of a distinct genetic lineage of the infectious bursal disease virus.

    Science.gov (United States)

    Tomás, Gonzalo; Hernández, Martín; Marandino, Ana; Techera, Claudia; Grecco, Sofia; Hernández, Diego; Banda, Alejandro; Panzera, Yanina; Pérez, Ruben

    2017-04-01

    The infectious bursal disease virus (IBDV) is a major health threat to the world's poultry industry despite intensive controls including proper biosafety practices and vaccination. IBDV (Avibirnavirus, Birnaviridae) is a non-enveloped virus with a bisegmented double-stranded RNA genome. The virus is traditionally classified into classic, variant and very virulent strains, each with different epidemiological relevance and clinical implications. Recently, a novel worldwide spread genetic lineage was described and denoted as distinct (d) IBDV. Here, we report the development and validation of a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay for the specific detection of dIBDVs in the global poultry industry. The assay employs a TaqMan-MGB probe that hybridizes with a unique molecular signature of dIBDV. The assay successfully detected all the assessed strains belonging to the dIBDV genetic lineage, showing high specificity and absence of cross-reactivity with non-dIBDVs, IBDV-negative samples and other common avian viruses. Using serial dilutions of in vitro-transcribed RNA we obtained acceptable PCR efficiencies and determination coefficients, and relatively small intra- and inter-assay variability. The assay demonstrated a wide dynamic range between 10 3 and 10 8 RNA copies/reaction. This rapid, specific and quantitative assay is expected to improve IBDV surveillance and control worldwide and to increase our understanding of the molecular epidemiology of this economically detrimental poultry pathogen.

  2. Fine-scale population genetic structure of arctic foxes (Vulpes lagopus) in the High Arctic.

    Science.gov (United States)

    Lai, Sandra; Quiles, Adrien; Lambourdière, Josie; Berteaux, Dominique; Lalis, Aude

    2017-12-01

    The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north-south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales.

  3. Can environmental pollution by metals change genetic diversity? Ucides cordatus (Linnaeus, 1763) as a study case in Southeastern Brazilian mangroves.

    Science.gov (United States)

    Banci, Karina Rodrigues da Silva; Mori, Gustavo Maruyama; Oliveira, Marcos Antonio de; Paganelli, Fernanda Laroza; Pereira, Mariana Rangel; Pinheiro, Marcelo Antonio Amaro

    2017-03-15

    Industrial areas on estuarine systems are commonly affected by heavy metals, affecting all local biota. Random Amplified Polymorphic DNA (RAPD) was used to evaluate genetic diversity of Ucides cordatus at mangroves in southeastern Brazil (Juréia, J; São Vicente, SV; and Cubatão, C), with distinct pollution levels by metals. The genetic diversity of this species was compared with concentrations of metals (Cd, Pb, Cu, Cr and Hg) in the environment. A pollution gradient was confirmed (SV>C>J), with low levels detected in water, except for mercury in SV. All metals in the sediment samples were below Threshold Effect Level (TEL), without an apparent biological risk to the biota. Genetic distance was very similar between J and C, with SV occurring as an out-group. RAPD was a powerful tool to investigate the effect of metal pollution on genetic diversity of this mangrove crab, and to evaluate the conservation status of the mangrove ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids.

    Directory of Open Access Journals (Sweden)

    Mart Krupovic

    Full Text Available Mobilome of hyperthermophilic archaea dwelling in deep-sea hydrothermal vents is poorly characterized. To gain insight into genetic diversity and dynamics of mobile genetic elements in these environments we have sequenced five new plasmids from different Thermococcus strains that have been isolated from geographically remote hydrothermal vents. The plasmids were ascribed to two subfamilies, pTN2-like and pEXT9a-like. Gene content and phylogenetic analyses illuminated a robust connection between pTN2-like plasmids and Pyrococcus abyssi virus 1 (PAV1, with roughly half of the viral genome being composed of genes that have homologues in plasmids. Unexpectedly, pEXT9a-like plasmids were found to be closely related to the previously sequenced plasmid pMETVU01 from Methanocaldococcus vulcanius M7. Our data suggests that the latter observation is most compatible with an unprecedented horizontal transfer of a pEXT9a-like plasmid from Thermococcales to Methanococcales. Gene content analysis revealed that thermococcal plasmids encode Hfq-like proteins and toxin-antitoxin (TA systems of two different families, VapBC and RelBE. Notably, although abundant in archaeal genomes, to our knowledge, TA and hfq-like genes have not been previously found in archaeal plasmids or viruses. Finally, the plasmids described here might prove to be useful in developing new genetic tools for hyperthermophiles.

  5. Comparative epigenetic and genetic spatial structure of the perennial herb Helleborus foetidus: Isolation by environment, isolation by distance, and functional trait divergence.

    Science.gov (United States)

    Herrera, Carlos M; Medrano, Mónica; Bazaga, Pilar

    2017-08-16

    Epigenetic variation can play a role in local adaptation; thus, there should be associations among epigenetic variation, environmental variation, and functional trait variation across populations. This study examines these relationships in the perennial herb Helleborus foetidus (Ranunculaceae). Plants from 10 subpopulations were characterized genetically (AFLP, SSR markers), epigenetically (MSAP markers), and phenotypically (20 functional traits). Habitats were characterized using six environmental variables. Isolation-by-distance (IBD) and isolation-by-environment (IBE) patterns of genetic and epigenetic divergence were assessed, as was the comparative explanatory value of geographical and environmental distance as predictors of epigenetic, genetic, and functional differentiation. Subpopulations were differentiated genetically, epigenetically, and phenotypically. Genetic differentiation was best explained by geographical distance, while epigenetic differentiation was best explained by environmental distance. Divergence in functional traits was correlated with environmental and epigenetic distances, but not with geographical and genetic distances. Results are compatible with the hypothesis that epigenetic IBE and functional divergence reflected responses to environmental variation. Spatial analyses simultaneously considering epigenetic, genetic, phenotypic and environmental information provide a useful tool to evaluate the role of environmental features as drivers of natural epigenetic variation between populations. © 2017 Botanical Society of America.

  6. Shared and Distinct Genetic Variants in Type 1 Diabetes and Celiac Disease

    NARCIS (Netherlands)

    Smyth, Deborah J.; Plagnol, Vincent; Walker, Neil M.; Cooper, Jason D.; Downes, Kate; Yang, Jennie H. M.; Howson, Joanna M. M.; Stevens, Helen; McManus, Ross; Wijmenga, Cisca; Heap, Graham A.; Dubois, Patrick C.; Clayton, David G.; Hunt, Karen A.; van Heel, David A.; Todd, John A.

    2008-01-01

    Background: Two inflammatory disorders, type 1 diabetes and celiac disease, cosegregate in populations, suggesting a common genetic origin. Since both diseases are associated with the HLA class II genes on chromosome 6p21, we tested whether non-HLA loci are shared. Methods: We evaluated the

  7. Detection of Evolutionarily Distinct Avian Influenza A Viruses in Antarctica

    Science.gov (United States)

    Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M. Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G.; González-Acuña, Daniel

    2014-01-01

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. PMID:24803521

  8. Using imputed genotype data in the joint score tests for genetic association and gene-environment interactions in case-control studies.

    Science.gov (United States)

    Song, Minsun; Wheeler, William; Caporaso, Neil E; Landi, Maria Teresa; Chatterjee, Nilanjan

    2018-03-01

    Genome-wide association studies (GWAS) are now routinely imputed for untyped single nucleotide polymorphisms (SNPs) based on various powerful statistical algorithms for imputation trained on reference datasets. The use of predicted allele counts for imputed SNPs as the dosage variable is known to produce valid score test for genetic association. In this paper, we investigate how to best handle imputed SNPs in various modern complex tests for genetic associations incorporating gene-environment interactions. We focus on case-control association studies where inference for an underlying logistic regression model can be performed using alternative methods that rely on varying degree on an assumption of gene-environment independence in the underlying population. As increasingly large-scale GWAS are being performed through consortia effort where it is preferable to share only summary-level information across studies, we also describe simple mechanisms for implementing score tests based on standard meta-analysis of "one-step" maximum-likelihood estimates across studies. Applications of the methods in simulation studies and a dataset from GWAS of lung cancer illustrate ability of the proposed methods to maintain type-I error rates for the underlying testing procedures. For analysis of imputed SNPs, similar to typed SNPs, the retrospective methods can lead to considerable efficiency gain for modeling of gene-environment interactions under the assumption of gene-environment independence. Methods are made available for public use through CGEN R software package. © 2017 WILEY PERIODICALS, INC.

  9. Genetic and neurobiological aspects of attention deficit hyperactive disorder: a review.

    OpenAIRE

    Hechtman, L

    1994-01-01

    This paper reviews key studies that have addressed genetic and neurobiological aspects in attention deficit hyperactive disorder. Genetic studies can be divided into three distinct types: twin, adoption, and family studies. Evidence for a particular mode of inheritance and the possible specific genetic abnormalities are also explored. There is strong evidence of genetic involvement in this condition, although a clear-cut mode of inheritance and specific genetic abnormalities are yet to be det...

  10. Genetic variation for parental effects on the propensity to gregarise in Locusta migratoria

    Directory of Open Access Journals (Sweden)

    Foucart Antoine

    2008-02-01

    Full Text Available Abstract Background Environmental parental effects can have important ecological and evolutionary consequences, yet little is known about genetic variation among populations in the plastic responses of offspring phenotypes to parental environmental conditions. This type of variation may lead to rapid phenotypic divergence among populations and facilitate speciation. With respect to density-dependent phenotypic plasticity, locust species (Orthoptera: family Acrididae, exhibit spectacular developmental and behavioural shifts in response to population density, called phase change. Given the significance of phase change in locust outbreaks and control, its triggering processes have been widely investigated. Whereas crowding within the lifetime of both offspring and parents has emerged as a primary causal factor of phase change, less is known about intraspecific genetic variation in the expression of phase change, and in particular in response to the parental environment. We conducted a laboratory experiment that explicitly controlled for the environmental effects of parental rearing density. This design enabled us to compare the parental effects on offspring expression of phase-related traits between two naturally-occurring, genetically distinct populations of Locusta migratoria that differed in their historical patterns of high population density outbreak events. Results We found that locusts from a historically outbreaking population of L. migratoria expressed parentally-inherited density-dependent phase changes to a greater degree than those from a historically non-outbreaking population. Conclusion Because locusts from both populations were raised in a common environment during our experiment, a genetically-based process must be responsible for the observed variation in the propensity to express phase change. This result emphasizes the importance of genetic factors in the expression of phase traits and calls for further investigations on density

  11. Variation in sclerophylly among Iberian populations of Quercus coccifera L. is associated with genetic differentiation across contrasting environments.

    Science.gov (United States)

    Rubio de Casas, R; Vargas, P; Pérez-Corona, E; Cano, E; Manrique, E; García-Verdugo, C; Balaguer, L

    2009-05-01

    Evergreen oaks are an emblematic element of the Mediterranean vegetation and have a leaf phenotype that seems to have remained unchanged since the Miocene. We hypothesise that variation of the sclerophyll phenotype among Iberian populations of Quercus coccifera is partly due to an ulterior process of ecotypic differentiation. We analysed the genetic structure of nine Iberian populations using ISSR fingerprints, and their leaf phenotypes using mean and intracanopy plasticity values of eight morphological (leaf angle, area, spinescence, lobation and specific area) and biochemical traits (VAZ pool, chlorophyll and beta-carotene content). Climate and soil were also characterised at the population sites. Significant genetic and phenotypic differences were found among populations and between NE Iberia and the rest of the populations of the peninsula. Mean phenotypes showed a strong and independent correlation with both genetic and geographic distances. Northeastern plants were smaller, less plastic, with smaller, spinier and thicker leaves, a phenotype consistent with the stressful conditions that prevailed in the steppe environments of the refugia within this geographic area during glaciations. These genetic, phenotypic, geographic and environmental patterns are consistent with previously reported palaeoecological and common evidence. Such consistency leads us to conclude that there has been a Quaternary divergence within the sclerophyllous syndrome that was at least partially driven by ecological factors.

  12. Predictors for reproductive isolation in a ring species complex following genetic and ecological divergence.

    Science.gov (United States)

    Pereira, Ricardo J; Monahan, William B; Wake, David B

    2011-07-06

    Reproductive isolation (RI) is widely accepted as an important "check point" in the diversification process, since it defines irreversible evolutionary trajectories. Much less consensus exists about the processes that might drive RI. Here, we employ a formal quantitative analysis of genetic interactions at several stages of divergence within the ring species complex Ensatina eschscholtzii in order to assess the relative contribution of genetic and ecological divergence for the development of RI. By augmenting previous genetic datasets and adding new ecological data, we quantify levels of genetic and ecological divergence between populations and test how they correlate with a restriction of genetic admixture upon secondary contact. Our results indicate that the isolated effect of ecological divergence between parental populations does not result in reproductively isolated taxa, even when genetic transitions between parental taxa are narrow. Instead, processes associated with overall genetic divergence are the best predictors of reproductive isolation, and when parental taxa diverge in nuclear markers we observe a complete cessation of hybridization, even to sympatric occurrence of distinct evolutionary lineages. Although every parental population has diverged in mitochondrial DNA, its degree of divergence does not predict the extent of RI. These results show that in Ensatina, the evolutionary outcomes of ecological divergence differ from those of genetic divergence. While evident properties of taxa may emerge via ecological divergence, such as adaptation to local environment, RI is likely to be a byproduct of processes that contribute to overall genetic divergence, such as time in geographic isolation, rather than being a direct outcome of local adaptation.

  13. Preferences of newborn mice for odours indicating closer genetic relatedness: is experience necessary?

    Science.gov (United States)

    Todrank, Josephine; Busquet, Nicolas; Baudoin, Claude; Heth, Giora

    2005-10-07

    Evidence from studies with adult rodents indicates that individual recognition enables distinctions between familiar individuals irrespective of relatedness (but including close kin) and a separate mechanism enables discriminations based on genetic relatedness without prior familiarity. For example, adult mice could assess the extent of their genetic relatedness to unfamiliar individuals using perceptual similarities between their individual odours. The ontogeny of this genetic relatedness assessment mechanism, however, had not been investigated. Here, in two-choice tests, newborn mice differentially preferred odours of more genetically similar lactating females (paternal aunts to unrelated conspecific and conspecific to heterospecific) even without prior direct exposure to adults with the tested genotypes. The results provide a direct demonstration of genetic relatedness assessment abilities in newborns and show that experience with parental odours is not necessary for genetic relatedness distinctions. Future studies will be necessary to determine whether exposure to odours of other foetuses in the womb or littermates shortly after birth affects this genetic relatedness assessment process.

  14. Assessing Genetic Structure in Common but Ecologically Distinct Carnivores: The Stone Marten and Red Fox.

    Directory of Open Access Journals (Sweden)

    Mafalda P Basto

    Full Text Available The identification of populations and spatial genetic patterns is important for ecological and conservation research, and spatially explicit individual-based methods have been recognised as powerful tools in this context. Mammalian carnivores are intrinsically vulnerable to habitat fragmentation but not much is known about the genetic consequences of fragmentation in common species. Stone martens (Martes foina and red foxes (Vulpes vulpes share a widespread Palearctic distribution and are considered habitat generalists, but in the Iberian Peninsula stone martens tend to occur in higher quality habitats. We compared their genetic structure in Portugal to see if they are consistent with their differences in ecological plasticity, and also to illustrate an approach to explicitly delineate the spatial boundaries of consistently identified genetic units. We analysed microsatellite data using spatial Bayesian clustering methods (implemented in the software BAPS, GENELAND and TESS, a progressive partitioning approach and a multivariate technique (Spatial Principal Components Analysis-sPCA. Three consensus Bayesian clusters were identified for the stone marten. No consensus was achieved for the red fox, but one cluster was the most probable clustering solution. Progressive partitioning and sPCA suggested additional clusters in the stone marten but they were not consistent among methods and were geographically incoherent. The contrasting results between the two species are consistent with the literature reporting stricter ecological requirements of the stone marten in the Iberian Peninsula. The observed genetic structure in the stone marten may have been influenced by landscape features, particularly rivers, and fragmentation. We suggest that an approach based on a consensus clustering solution of multiple different algorithms may provide an objective and effective means to delineate potential boundaries of inferred subpopulations. sPCA and progressive

  15. Assessing Genetic Structure in Common but Ecologically Distinct Carnivores: The Stone Marten and Red Fox

    Science.gov (United States)

    Basto, Mafalda P.; Santos-Reis, Margarida; Simões, Luciana; Grilo, Clara; Cardoso, Luís; Cortes, Helder; Bruford, Michael W.; Fernandes, Carlos

    2016-01-01

    The identification of populations and spatial genetic patterns is important for ecological and conservation research, and spatially explicit individual-based methods have been recognised as powerful tools in this context. Mammalian carnivores are intrinsically vulnerable to habitat fragmentation but not much is known about the genetic consequences of fragmentation in common species. Stone martens (Martes foina) and red foxes (Vulpes vulpes) share a widespread Palearctic distribution and are considered habitat generalists, but in the Iberian Peninsula stone martens tend to occur in higher quality habitats. We compared their genetic structure in Portugal to see if they are consistent with their differences in ecological plasticity, and also to illustrate an approach to explicitly delineate the spatial boundaries of consistently identified genetic units. We analysed microsatellite data using spatial Bayesian clustering methods (implemented in the software BAPS, GENELAND and TESS), a progressive partitioning approach and a multivariate technique (Spatial Principal Components Analysis-sPCA). Three consensus Bayesian clusters were identified for the stone marten. No consensus was achieved for the red fox, but one cluster was the most probable clustering solution. Progressive partitioning and sPCA suggested additional clusters in the stone marten but they were not consistent among methods and were geographically incoherent. The contrasting results between the two species are consistent with the literature reporting stricter ecological requirements of the stone marten in the Iberian Peninsula. The observed genetic structure in the stone marten may have been influenced by landscape features, particularly rivers, and fragmentation. We suggest that an approach based on a consensus clustering solution of multiple different algorithms may provide an objective and effective means to delineate potential boundaries of inferred subpopulations. sPCA and progressive partitioning

  16. Assessing Genetic Structure in Common but Ecologically Distinct Carnivores: The Stone Marten and Red Fox.

    Science.gov (United States)

    Basto, Mafalda P; Santos-Reis, Margarida; Simões, Luciana; Grilo, Clara; Cardoso, Luís; Cortes, Helder; Bruford, Michael W; Fernandes, Carlos

    2016-01-01

    The identification of populations and spatial genetic patterns is important for ecological and conservation research, and spatially explicit individual-based methods have been recognised as powerful tools in this context. Mammalian carnivores are intrinsically vulnerable to habitat fragmentation but not much is known about the genetic consequences of fragmentation in common species. Stone martens (Martes foina) and red foxes (Vulpes vulpes) share a widespread Palearctic distribution and are considered habitat generalists, but in the Iberian Peninsula stone martens tend to occur in higher quality habitats. We compared their genetic structure in Portugal to see if they are consistent with their differences in ecological plasticity, and also to illustrate an approach to explicitly delineate the spatial boundaries of consistently identified genetic units. We analysed microsatellite data using spatial Bayesian clustering methods (implemented in the software BAPS, GENELAND and TESS), a progressive partitioning approach and a multivariate technique (Spatial Principal Components Analysis-sPCA). Three consensus Bayesian clusters were identified for the stone marten. No consensus was achieved for the red fox, but one cluster was the most probable clustering solution. Progressive partitioning and sPCA suggested additional clusters in the stone marten but they were not consistent among methods and were geographically incoherent. The contrasting results between the two species are consistent with the literature reporting stricter ecological requirements of the stone marten in the Iberian Peninsula. The observed genetic structure in the stone marten may have been influenced by landscape features, particularly rivers, and fragmentation. We suggest that an approach based on a consensus clustering solution of multiple different algorithms may provide an objective and effective means to delineate potential boundaries of inferred subpopulations. sPCA and progressive partitioning

  17. Spatial genetic structure and asymmetrical gene flow within the Pacific walrus

    Science.gov (United States)

    Sonsthagen, Sarah A.; Jay, Chadwick V.; Fischbach, Anthony S.; Sage, George K.; Talbot, Sandra L.

    2012-01-01

    Pacific walruses (Odobenus rosmarus divergens) occupying shelf waters of Pacific Arctic seas migrate during spring and summer from 3 breeding areas in the Bering Sea to form sexually segregated nonbreeding aggregations. We assessed genetic relationships among 2 putative breeding populations and 6 nonbreeding aggregations. Analyses of mitochondrial DNA (mtDNA) control region sequence data suggest that males are distinct among breeding populations (ΦST=0.051), and between the eastern Chukchi and other nonbreeding aggregations (ΦST=0.336–0.449). Nonbreeding female aggregations were genetically distinct across marker types (microsatellite FST=0.019; mtDNA ΦST=0.313), as was eastern Chukchi and all other nonbreeding aggregations (microsatellite FST=0.019–0.035; mtDNA ΦST=0.386–0.389). Gene flow estimates are asymmetrical from St. Lawrence Island into the southeastern Bering breeding population for both sexes. Partitioning of haplotype frequencies among breeding populations suggests that individuals exhibit some degree of philopatry, although weak. High levels of genetic differentiation among eastern Chukchi and all other nonbreeding aggregations, but considerably lower genetic differentiation between breeding populations, suggest that at least 1 genetically distinct breeding population remained unsampled. Limited genetic structure at microsatellite loci between assayed breeding areas can emerge from several processes, including male-mediated gene flow, or population admixture following a decrease in census size (i.e., due to commercial harvest during 1880–1950s) and subsequent recovery. Nevertheless, high levels of genetic diversity in the Pacific walrus, which withstood prolonged decreases in census numbers with little impact on neutral genetic diversity, may reflect resiliency in the face of past environmental challenges.

  18. Beyond mean allelic effects: A locus at the major color gene MC1R associates also with differing levels of phenotypic and genetic (co)variance for coloration in barn owls.

    Science.gov (United States)

    San-Jose, Luis M; Ducret, Valérie; Ducrest, Anne-Lyse; Simon, Céline; Roulin, Alexandre

    2017-10-01

    The mean phenotypic effects of a discovered variant help to predict major aspects of the evolution and inheritance of a phenotype. However, differences in the phenotypic variance associated to distinct genotypes are often overlooked despite being suggestive of processes that largely influence phenotypic evolution, such as interactions between the genotypes with the environment or the genetic background. We present empirical evidence for a mutation at the melanocortin-1-receptor gene, a major vertebrate coloration gene, affecting phenotypic variance in the barn owl, Tyto alba. The white MC1R allele, which associates with whiter plumage coloration, also associates with a pronounced phenotypic and additive genetic variance for distinct color traits. Contrarily, the rufous allele, associated with a rufous coloration, relates to a lower phenotypic and additive genetic variance, suggesting that this allele may be epistatic over other color loci. Variance differences between genotypes entailed differences in the strength of phenotypic and genetic associations between color traits, suggesting that differences in variance also alter the level of integration between traits. This study highlights that addressing variance differences of genotypes in wild populations provides interesting new insights into the evolutionary mechanisms and the genetic architecture underlying the phenotype. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Review of genetic concepts

    International Nuclear Information System (INIS)

    Robinson, A.

    1984-01-01

    In recent years, practitioners of medicine have become increasingly aware of the importance of genetics in the understanding of physical and mental health and in the management of disease. The last decades have witnessed unprecedented developments in genetics that have increased our understanding of the basic processes of heredity enormously. New techniques and understanding have provided insights directly applicable to medicine. The fundamental fact of heredity may be considered the ability of living organisms to produce offspring that resemble their parents more than others. One of the basic characteristics of the human condition is the uniqueness and diversity of all individuals. This results from their genetic individuality (with the exception of identical twins) and the interaction of the genetic constitution (the genome) with the environment, which is generally unique to the individual as well. In short, the interaction of genes with the environment is what confers biologic uniqueness to all humans

  20. Effect of Genetics, Environment, and Phenotype on the Metabolome of Maize Hybrids Using GC/MS and LC/MS.

    Science.gov (United States)

    Tang, Weijuan; Hazebroek, Jan; Zhong, Cathy; Harp, Teresa; Vlahakis, Chris; Baumhover, Brian; Asiago, Vincent

    2017-06-28

    We evaluated the variability of metabolites in various maize hybrids due to the effect of environment, genotype, phenotype as well as the interaction of the first two factors. We analyzed 480 forage and the same number of grain samples from 21 genetically diverse non-GM Pioneer brand maize hybrids, including some with drought tolerance and viral resistance phenotypes, grown at eight North American locations. As complementary platforms, both GC/MS and LC/MS were utilized to detect a wide diversity of metabolites. GC/MS revealed 166 and 137 metabolites in forage and grain samples, respectively, while LC/MS captured 1341 and 635 metabolites in forage and grain samples, respectively. Univariate and multivariate analyses were utilized to investigate the response of the maize metabolome to the environment, genotype, phenotype, and their interaction. Based on combined percentages from GC/MS and LC/MS datasets, the environment affected 36% to 84% of forage metabolites, while less than 7% were affected by genotype. The environment affected 12% to 90% of grain metabolites, whereas less than 27% were affected by genotype. Less than 10% and 11% of the metabolites were affected by phenotype in forage and grain, respectively. Unsupervised PCA and HCA analyses revealed similar trends, i.e., environmental effect was much stronger than genotype or phenotype effects. On the basis of comparisons of disease tolerant and disease susceptible hybrids, neither forage nor grain samples originating from different locations showed obvious phenotype effects. Our findings demonstrate that the combination of GC/MS and LC/MS based metabolite profiling followed by broad statistical analysis is an effective approach to identify the relative impact of environmental, genetic and phenotypic effects on the forage and grain composition of maize hybrids.

  1. Expansion Under Climate Change: The Genetic Consequences.

    Science.gov (United States)

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  2. Genetic Liability, Environment, and the Development of Fussiness in Toddlers: The Roles of Maternal Depression and Parental Responsiveness

    OpenAIRE

    Natsuaki, Misaki N.; Ge, Xiaojia; Leve, Leslie D.; Neiderhiser, Jenae M.; Shaw, Daniel S.; Conger, Rand D.; Scaramella, Laura V.; Reid, John B.; Reiss, David

    2010-01-01

    Using a longitudinal, prospective adoption design, this study examined the effects of the environment (adoptive parents’ depressive symptoms and responsiveness) and genetic liability of maternal depression (inferred by birth mothers’ major depressive disorder [MDD]) on the development of fussiness between 9 and 18 months of age in adopted children. The sample included 281 families linked through adoption, with each family including four individuals (i.e., adopted child, birth mother, adoptive...

  3. Commonalities and distinctions among mechanisms of addiction to alcohol and other drugs

    Science.gov (United States)

    Ozburn, Angela R.; Janowsky, Aaron J.; Crabbe, John C.

    2015-01-01

    Alcohol abuse is comorbid with abuse of many other drugs, some with similar pharmacology and others quite different. This leads to the hypothesis of an underlying, unitary dysfunctional neurobiological basis for substance abuse risk and consequences. In this review, we discuss commonalities and distinctions of addiction to alcohol and other drugs. We focus on recent advances in pre-clinical studies using rodent models of drug self-administration. While there are specific behavioral and molecular manifestations common to alcohol, psychostimulant, opioid, and nicotine dependence, attempts to propose a unifying theory of the addictions inevitably face details where distinctions are found among classes of drugs. For alcohol, versus other drugs of abuse, we discuss and compare advances in: 1) neurocircuitry important for the different stages of drug dependence; 2) transcriptomics and genetical genomics; and 3) enduring effects. We note in particular the contributions of behavioral genetics and animal models: discussions of progress specifically relevant to treatment development can be found in the accompanying review (Karoly et al, this issue). PMID:26431116

  4. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways.

    Science.gov (United States)

    Gupta, Richa; Barkan, Daniel; Redelman-Sidi, Gil; Shuman, Stewart; Glickman, Michael S

    2011-01-01

    Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in Escherichia coli and constitute the major pathway of error-free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via non-homologous end-joining (NHEJ) catalysed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways. © 2010 Blackwell Publishing Ltd.

  5. An enriched rearing environment calms adult male rat sexual activity: implication for distinct serotonergic and hormonal responses to females.

    Directory of Open Access Journals (Sweden)

    Susumu Urakawa

    Full Text Available Early life events induce alterations in neural function in adulthood. Although rearing in an enriched environment (EE has a great impact on behavioral development, the effects of enriched rearing on sociosexual behavior remain unclear. In this study, we investigated the effects of rearing in an EE on male copulatory behavior and its underlying neurobiological mechanisms in Wistar-Imamichi rats. Three-week-old, recently weaned rats were continuously subjected to a standard environment (SE or an EE comprised of a large cage with several objects, such as toys, tunnels, ladders, and a running wheel. After 6 weeks, rats reared in an EE (EE rats showed decreased sexual activity compared with rats reared in a SE (SE rats. This included a lower number of ejaculations and longer latencies in three consecutive copulatory tests. In addition, EE rats showed decreased emotional responsiveness and less locomotor behavior in an open field. In a runway test, on the other hand, sexual motivation toward receptive females in EE males was comparable to that of SE males. Furthermore, following exposure to a female, increases in serotonin levels in the nucleus accumbens and the striatum were significantly suppressed in EE males, whereas dopaminergic responses were similar between the groups. Female-exposure-induced increases in the levels of plasma corticosterone and testosterone were also suppressed in EE rats compared to SE rats. These data suggest that rearing in an EE decreases male copulatory behavior, and serotonin and hormonal regulating systems may regulate the differences in sociosexual interactions that result from distinct rearing environments.

  6. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries

    DEFF Research Database (Denmark)

    Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling

    2015-01-01

    Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects...... to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation...

  7. Comprehensive genetic analyses reveal evolutionary distinction of a mouse (Zapus hudsonius preblei) proposed for delisting from the US Endangered Species Act.

    Science.gov (United States)

    King, Tim L; Switzer, John F; Morrison, Cheryl L; Eackles, Michael S; Young, Colleen C; Lubinski, Barbara A; Cryan, Paul

    2006-12-01

    Zapus hudsonius preblei, listed as threatened under the US Endangered Species Act (ESA), is one of 12 recognized subspecies of meadow jumping mice found in North America. Recent morphometric and phylogenetic comparisons among Z. h. preblei and neighbouring conspecifics questioned the taxonomic status of selected subspecies, resulting in a proposal to delist the Z. h. preblei from the ESA. We present additional analyses of the phylogeographic structure within Z. hudsonius that calls into question previously published data (and conclusions) and confirms the original taxonomic designations. A survey of 21 microsatellite DNA loci and 1380 base pairs from two mitochondrial DNA (mtDNA) regions (control region and cytochrome b) revealed that each Z. hudsonius subspecies is genetically distinct. These data do not support the null hypothesis of a homogeneous gene pool among the five subspecies found within the southwestern portion of the species' range. The magnitude of the observed differentiation was considerable and supported by significant findings for nearly every statistical comparison made, regardless of the genome or the taxa under consideration. Structuring of nuclear multilocus genotypes and subspecies-specific mtDNA haplotypes corresponded directly with the disjunct distributions of the subspecies investigated. Given the level of correspondence between the observed genetic population structure and previously proposed taxonomic classification of subspecies (based on the geographic separation and surveys of morphological variation), we conclude that the nominal subspecies surveyed in this study do not warrant synonymy, as has been proposed for Z. h. preblei, Z. h. campestris, and Z. h. intermedius.

  8. The Genetics of Canine Skull Shape Variation

    Science.gov (United States)

    Schoenebeck, Jeffrey J.; Ostrander, Elaine A.

    2013-01-01

    A dog’s craniofacial diversity is the result of continual human intervention in natural selection, a process that began tens of thousands of years ago. To date, we know little of the genetic underpinnings and developmental mechanisms that make dog skulls so morphologically plastic. In this Perspectives, we discuss the origins of dog skull shapes in terms of history and biology and highlight recent advances in understanding the genetics of canine skull shapes. Of particular interest are those molecular genetic changes that are associated with the development of distinct breeds. PMID:23396475

  9. From observational to dynamic genetics

    Directory of Open Access Journals (Sweden)

    Claire M. A. Haworth

    2014-01-01

    Full Text Available Twin and family studies have shown that most traits are at least moderately heritable. But what are the implications of finding genetic influence for the design of intervention and prevention programs? For complex traits, heritability does not mean immutability, and research has shown that genetic influences can change with age, context and in response to behavioural and drug interventions. The most significant implications for intervention will come when we move from observational genetics to investigating dynamic genetics, including genetically sensitive interventions. Future interventions should be designed to overcome genetic risk and draw upon genetic strengths by changing the environment.

  10. Epigenetics and the environment in bioethics.

    Science.gov (United States)

    Dupras, Charles; Ravitsky, Vardit; Williams-Jones, Bryn

    2014-09-01

    A rich literature in public health has demonstrated that health is strongly influenced by a host of environmental factors that can vary according to social, economic, geographic, cultural or physical contexts. Bioethicists should, we argue, recognize this and--where appropriate--work to integrate environmental concerns into their field of study and their ethical deliberations. In this article, we present an argument grounded in scientific research at the molecular level that will be familiar to--and so hopefully more persuasive for--the biomedically-inclined in the bioethics community. Specifically, we argue that the relatively new field of molecular epigenetics provides novel information that should serve as additional justification for expanding the scope of bioethics to include environmental and public health concerns. We begin by presenting two distinct visions of bioethics: the individualistic and rights-oriented and the communitarian and responsibility-oriented. We follow with a description of biochemical characteristics distinguishing epigenetics from genetics, in order to emphasize the very close relationship that exists between the environment and gene expression. This then leads to a discussion of the importance of the environment in determining individual and population health, which, we argue, should shift bioethics towards a Potterian view that promotes a communitarian-based sense of responsibility for the environment, in order to fully account for justice considerations and improve public health. © 2012 John Wiley & Sons Ltd.

  11. Genetic and Environmental Regulation on Longitudinal Change of Metabolic Phenotypes in Danish and Chinese Adult Twins

    DEFF Research Database (Denmark)

    Li, Shuxia; Kyvik, Kirsten Ohm; Pang, Zengchang

    2016-01-01

    OBJECTIVE: The rate of change in metabolic phenotypes can be highly indicative of metabolic disorders and disorder-related modifications. We analyzed data from longitudinal twin studies on multiple metabolic phenotypes in Danish and Chinese twins representing two populations of distinct ethnic...... pairs traced for about 7 years with a mean baseline age of 39.5 years (range: 23-64). The classical twin models were fitted to the longitudinal change in each phenotype (Δphenotype) to estimate the genetic and environmental contributions to the variation in Δphenotype. RESULTS: Moderate to high...... contributions by the unique environment were estimated for all phenotypes in both Danish (from 0.51 for low density lipoprotein cholesterol up to 0.72 for triglycerides) and Chinese (from 0.41 for triglycerides up to 0.73 for diastolic blood pressure) twins; low to moderate genetic components were estimated...

  12. Presidential address: distinction or extinction.

    Science.gov (United States)

    Pressman, Barry D

    2008-10-01

    Despite its continuing scientific successes in imaging, radiology as a specialty is faced with a very difficult and competitive environment. Nonradiologists are more and more interested in vertically integrating imaging into their practices, while teleradiology and picture archiving and communication systems are resulting in the greater isolation of radiologists. Commoditization is a realistic and devastating threat to the survival and professionalism of the specialty. To remain viable as a specialty, radiologists must elevate their practice by subspecializing, becoming more involved with clinical care, and actively interacting with patients and referring clinicians. Distinction will prevent extinction.

  13. Correlation of cell surface proteins of distinct Beauveria bassiana cell types and adaption to varied environment and interaction with the host insect.

    Science.gov (United States)

    Yang, Zhi; Jiang, Hongyan; Zhao, Xin; Lu, Zhuoyue; Luo, Zhibing; Li, Xuebing; Zhao, Jing; Zhang, Yongjun

    2017-02-01

    The insect fungal pathogen Beauveria bassiana produces a number of distinct cell types that include aerial conidia, blastospores and haemolymph-derived cells, termed hyphal bodies, to adapt varied environment niches and within the host insect. These cells display distinct biochemical properties and surface structures, and a highly ordered outermost brush-like structure uniquely present on hyphal bodies, but not on any in vitro cells. Here, we found that the outermost structure on the hyphal bodies mainly consisted of proteins associated to structural wall components in that most of it could be removed by dithiothreitol (DTT) or proteinase K. DTT-treatment also caused delayed germination, decreased tolerance to ultraviolet irradiation and virulence of conidia or blastospores, with decreased adherence and alternated carbohydrate epitopes, suggesting involvement in fungal development, stress responses and virulence. To characterize these cell surface molecules, proteins were released from the living cells using DTT, and identified and quantitated using label-free quantitative mass spectrometry. Thereafter, a series of bioinformatics programs were used to predict cell surface-associated proteins (CSAPs), and 96, 166 and 54 CSAPs were predicted from the identified protein pools of conidia, blastospores and hyphal bodies, respectively, which were involved in utilization of carbohydrate, nitrogen, and lipid, detoxification, pathogen-host interaction, and likely other cellular processes. Thirteen, sixty-nine and six CSAPs were exclusive in conidia, blastospores and hyphal bodies, respectively, which were verified by eGFP-tagged proteins at their N-terminus. Our data provide a crucial cue to understand mechanism of B. bassiana to adapt to varied environment and interaction with insect host. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Combining ability × environment interaction and genetic analysis for agronomic traits in safflower (Carthamus tinctorius L.: biplot as a tool for diallel data

    Directory of Open Access Journals (Sweden)

    Pooran Golkar

    2017-09-01

    Full Text Available Combining ability × environment interaction is considerable to identify the effect of environment on the combining ability and gene action of the traits to select appropriate parents for safflower hybrid production. The 36 genotype (28 F2 progenies of eight-parent half-diallel crosses across 8 parental genotypes of safflower were studied to investigate the mentioned parameters across different geographical regions of Iran. The results indicated significant differences among parents for general and specific combining ability, except for seeds per capitulum across three environments. The overall results indicated that K21 and Mex.22-191 were excellent parents with greater general combining ability for the improvement of seed yield in safflower. The K21 × Mex.22-191 hybrid could be, therefore, employed for the production of high seed yield in safflower breeding. The estimates of genetic variance components recommended the importance of additive- dominance genetic effects that contributed to variation in yield per plant. Such gene action expression for seed yield needs auxiliary methods based on hybridization and selection for seed yield advancement in safflower.

  15. The Distinct Genetics of Carbonaceous and Non-Carbonaceous Meteorites Inferred from Molybdenum Isotopes

    Science.gov (United States)

    Budde, G.; Burkhardt, C.; Kleine, T.

    2017-07-01

    Mo isotope systematics manifest a fundamental dichotomy in the genetic heritage of carbonaceous and non-carbonaceous meteorites. We discuss its implications in light of the most recent literature data and new isotope data for primitive achondrites.

  16. Comparison of the levels of intra-specific genetic variation within Giardia muris and Giardia intestinalis.

    Science.gov (United States)

    Andrews, R H; Monis, P T; Ey, P L; Mayrhofer, G

    1998-08-01

    The extent of intra-specific genetic variation between isolates of Giardia muris was assessed by allozyme electrophoresis. Additionally, the levels of allozymic variation detected within G. muris were compared with those observed between members of the two major assemblages of the morphologically distinct species Giardia intestinalis. Four isolates of G. muris were analysed. Three (Ad-120, -150, -151) were isolated from mice in Australia, while the fourth (R-T) was isolated from a golden hamster in North America. The 11 isolates of G. intestinalis (Ad-1, -12, -2, -62, representing genetic Groups I and II of Assemblage A and BAH-12, BRIS/87/HEPU/694, Ad-19, -22, -28, -45, -52, representing genetic Groups III and IV of Assemblage B) were from humans in Australia. Intra-specific genetic variation was detected between G. muris isolates at four of the 23 enzyme loci examined. Similar levels of variation were found within the genetic groups that comprise Assemblages A and B of G. intestinalis. These levels of intra-specific variation are similar to those observed within other morphologically-distinct species of protozoan parasites. We suggest that the magnitude of the genetic differences detected within G. muris provides an indication of the range of genetic variation within other species of Giardia and that this can be used as a model to delineate morphologically similar but genetically distinct (cryptic) species within this genus.

  17. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    based STRUCTURE grouped all the accessions in two clusters with significant intermixing between populations, therefore, revealed that two genetically distinct gene pools are operating in the A. malaccensis populations cultivated in home gardens ...

  18. 76 FR 58867 - Endangered and Threatened Species; Determination of Nine Distinct Population Segments of...

    Science.gov (United States)

    2011-09-22

    ... Northern District of California modified the February 19, 2010, deadline to March 8, 2010. On March 16... markedly separated from other populations of the same taxon (an organism or group of organisms) as a... to identify two genetically distinct nesting populations in the Pacific--a northern hemisphere...

  19. Genetic consequences of anagenetic speciation in Acer okamotoanum (Sapindaceae) on Ullung Island, Korea.

    Science.gov (United States)

    Takayama, Koji; Sun, Byung-Yun; Stuessy, Tod F

    2012-02-01

    Anagenesis (also known as phyletic speciation) is an important process of speciation in endemic species of oceanic islands. We investigated genetic variation in Acer okamotoanum, an anagenetically derived species endemic to Ullung Island, South Korea, to infer genetic consequences of anagenesis in comparison with other groups that have undergone cladogenesis (and adaptive radiation). We examined genetic variation based on eight polymorphic microsatellite markers from 145 individuals of A. okamotoanum and 134 individuals of its putative progenitor A. mono. We employed standard population genetic analyses, clustering analyses, Bayesian clustering analyses in STRUCTURE and bottleneck analyses. Based on both the Neighbor-Joining tree and Bayesian clustering analyses, clear genetic distinctions were found between the two species. Genetic diversity in terms of allelic richness and heterozygosity shows slightly lower levels in A. okamotoanum in comparison with A. mono. Bayesian clustering analyses showed a relatively high F-value in the cluster of A. okamotoanum, suggesting a strong episode of genetic drift during colonization and speciation. There was no clear evidence of a bottleneck based on allelic frequency distribution and excess of observed heterozygotes, but the M-ratio indicated a historical bottleneck in several populations of A. okamotoanum. No geographical genetic structure within the island was found, and the genetic variation among populations of A. okamotoanum was quite low. We hypothesized that genetic consequences of oceanic-endemic plants derived via anagenesis would be quite different from those derived via cladogenesis. Populations of A. okamotoanum form a cluster and are clearly differentiated from A. mono, which suggests a single origin for the anagenetically derived island endemic. No pattern of geographical differentiation of populations occurs in A. okamotoanum, which supports the concept of initial founder populations diverging through time by

  20. Spatially and genetically distinct control of seed germination by phytochromes A and B

    Czech Academy of Sciences Publication Activity Database

    Lee, K. P.; Piskurewicz, U.; Turečková, Veronika; Carat, S.; Chappuis, R.; Strnad, Miroslav; Fankhauser, Ch.; Lopez-Molina, L.

    2012-01-01

    Roč. 26, č. 17 (2012), s. 1984-1996 ISSN 0890-9369 Institutional research plan: CEZ:AV0Z50380511 Keywords : ABI5 * DELLA factors * abscisic acid Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 12.444, year: 2012

  1. Phylogeography and genetic ancestry of tigers (Panthera tigris.

    Directory of Open Access Journals (Sweden)

    Shu-Jin Luo

    2004-12-01

    Full Text Available Eight traditional subspecies of tiger (Panthera tigris,of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1 4.0 kb of mitochondrial DNA (mtDNA sequence; (2 allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3 composite nuclear microsatellite genotypes based on 30 loci. Relatively low genetic variation with mtDNA,DRB,and microsatellite loci was found, but significant population subdivision was nonetheless apparent among five living subspecies. In addition, a distinct partition of the Indochinese subspecies P. t. corbetti in to northern Indochinese and Malayan Peninsula populations was discovered. Population genetic structure would suggest recognition of six taxonomic units or subspecies: (1 Amur tiger P. t. altaica; (2 northern Indochinese tiger P. t. corbetti; (3 South China tiger P. t. amoyensis; (4 Malayan tiger P. t. jacksoni, named for the tiger conservationist Peter Jackson; (5 Sumatran tiger P. t. sumatrae; and (6 Bengal tiger P. t. tigris. The proposed South China tiger lineage is tentative due to limited sampling. The age of the most recent common ancestor for tiger mtDNA was estimated to be 72,000-108,000 y, relatively younger than some other Panthera species. A combination of population expansions, reduced gene flow, and genetic drift following the last genetic diminution, and the recent anthropogenic range contraction, have led to the distinct genetic partitions. These results provide an explicit basis for subspecies recognition and will lead to the improved management and conservation of these recently

  2. Genetic similarity of the Hainan medaka populations collected from hyper- and hypo-osmotic environments in northern Vietnam

    Science.gov (United States)

    Hayakawa, Hideki; Le, Quang Dung; Kinoshita, Masato; Takehana, Yusuke; Sakuma, Kei; Takeshima, Hirohiko; Kojima, Shigeaki; Naruse, Kiyoshi; Inoue, Koji

    2015-06-01

    Ricefishes of the genus Oryzias, including Japanese medaka ( O. latipes), are known as excellent model organisms for studies in various fields of science. Some species of the genus inhabit brackish water, and such species are recognized to be useful to investigate physiological phenomena in seawater. However, only a limited number of species have been recorded from brackish waters. In addition, there is no information about the genetic relationship among populations inhabiting sites with different salinities. Here we report the discovery of Oryzias fish in two locations near Haiphong, northern Vietnam, a brackish mangrove planting area and a freshwater pond. A phylogenetic analysis using mitochondrial 12S and 16S ribosomal RNA (rRNA) gene sequences indicated that the fish from the two localities are the same species, Hainan medaka, O. curvinotus. Population genetic analysis using the mitochondrial 12S and 16S rRNA gene sequences revealed a close genetic relationship between the two populations. These results suggest that O. curvinotus is adaptable to both hyperosmotic and hypoosmotic environments. Due to its osmotic adaptability and ease of rearing in the laboratory, this species is expected to become a model for marine environmental and toxicological studies, as well as for studies of osmotic adaptation mechanisms.

  3. Learning Abilities and Disabilities: Generalist Genes, Specialist Environments.

    Science.gov (United States)

    Kovas, Yulia; Plomin, Robert

    2007-10-01

    Twin studies comparing identical and fraternal twins consistently show substantial genetic influence on individual differences in learning abilities such as reading and mathematics, as well as in other cognitive abilities such as spatial ability and memory. Multivariate genetic research has shown that the same set of genes is largely responsible for genetic influence on these diverse cognitive areas. We call these "generalist genes." What differentiates these abilities is largely the environment, especially nonshared environments that make children growing up in the same family different from one another. These multivariate genetic findings of generalist genes and specialist environments have far-reaching implications for diagnosis and treatment of learning disabilities and for understanding the brain mechanisms that mediate these effects.

  4. Education and Training: Is There Any Longer a Useful Distinction?

    Science.gov (United States)

    Hager, Paul; Laurent, John

    1990-01-01

    Although education and training were distinct concepts when Taylorism dominated the workplace, it is no longer appropriate to separate them. Today's highly competitive environment requires the education of a flexible, multiskilled workforce, not training for narrowly defined employment tasks. (SK)

  5. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease

    DEFF Research Database (Denmark)

    Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S

    2018-01-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns...... the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes...... in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely...

  6. Adolescent Age Moderates Genetic and Environmental Influences on Parent-Adolescent Positivity and Negativity: Implications for Genotype-Environment Correlation

    Science.gov (United States)

    Marceau, Kristine; Knopik, Valerie S.; Neiderhiser, Jenae M.; Lichtenstein, Paul; Spotts, Erica L.; Ganiban, Jody M.; Reiss, David

    2015-01-01

    In the present study we examined how genotype-environment correlation processes differ as a function of adolescent age. We tested whether adolescent age moderates genetic and environmental influences on positivity and negativity in mother-adolescent and father-adolescent relationships using parallel samples of twin parents from the Twin and Offspring Study in Sweden and twin/sibling adolescents from the Nonshared Environment in Adolescent Development Study. We inferred differences in the role of passive and non-passive genotype-environment correlation based on biometric moderation findings. Findings indicated that non-passive rGE played a stronger role for positivity in mother- and father- adolescent relationships in families with older adolescents than families with younger adolescents, and that passive rGE played a stronger role for positivity in the mother-adolescent relationship in families with younger adolescents than in families with older adolescents. Implications of these findings for the timing and targeting of interventions on family relationships are discussed. PMID:25924807

  7. Turtle carapace anomalies: the roles of genetic diversity and environment.

    Directory of Open Access Journals (Sweden)

    Guillermo Velo-Antón

    2011-04-01

    Full Text Available Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales.In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium.Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations.

  8. Causal models in epidemiology: past inheritance and genetic future

    Directory of Open Access Journals (Sweden)

    Kriebel David

    2006-07-01

    Full Text Available Abstract The eruption of genetic research presents a tremendous opportunity to epidemiologists to improve our ability to identify causes of ill health. Epidemiologists have enthusiastically embraced the new tools of genomics and proteomics to investigate gene-environment interactions. We argue that neither the full import nor limitations of such studies can be appreciated without clarifying underlying theoretical models of interaction, etiologic fraction, and the fundamental concept of causality. We therefore explore different models of causality in the epidemiology of disease arising out of genes, environments, and the interplay between environments and genes. We begin from Rothman's "pie" model of necessary and sufficient causes, and then discuss newer approaches, which provide additional insights into multifactorial causal processes. These include directed acyclic graphs and structural equation models. Caution is urged in the application of two essential and closely related concepts found in many studies: interaction (effect modification and the etiologic or attributable fraction. We review these concepts and present four important limitations. 1. Interaction is a fundamental characteristic of any causal process involving a series of probabilistic steps, and not a second-order phenomenon identified after first accounting for "main effects". 2. Standard methods of assessing interaction do not adequately consider the life course, and the temporal dynamics through which an individual's sufficient cause is completed. Different individuals may be at different stages of development along the path to disease, but this is not usually measurable. Thus, for example, acquired susceptibility in children can be an important source of variation. 3. A distinction must be made between individual-based and population-level models. Most epidemiologic discussions of causality fail to make this distinction. 4. At the population level, there is additional

  9. The death of distinctions: From 9/11 to Abu Ghraib.

    Science.gov (United States)

    Moon, John Ellis van Courtland

    2004-09-01

    War, the great simplifier, is the inevitable enemy of distinctions, especially when conflicts evoke survival fears, sounding echoes from humanity's environment of evolutionary adaptation. Throughout the twentieth century, attackers and targets grew more distant, weaponry grew more destructive, and distinctions -- between combatants and civilians, between legitimate and protected targets, between defensive and offensive strategies, between the innocent and the guilty -- faded. In the twenty-first century's first major conflict, "the war against terror," distinctions have faded still further, making nearly indistinguishable the frontier between preemption and prevention and between interrogation and torture. Proclaimed a "new type of war" in which old rules and customary safeguards would often be inapplicable, this conflict quickly came to be characterized by political embarrassment and operational scandal.

  10. Altered amygdalar resting-state connectivity in depression is explained by both genes and environment.

    Science.gov (United States)

    Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes

    2015-10-01

    Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.

  11. Distinct effects of Cr bulk doping and surface deposition on the chemical environment and electronic structure of the topological insulator Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Turgut, E-mail: yilmaz@phys.uconn.edu [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Hines, William [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Sun, Fu-Chang [Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269 (United States); Pletikosić, Ivo [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Budnick, Joseph [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Valla, Tonica [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Sinkovic, Boris [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2017-06-15

    Highlights: • Cr doping into the bulk of Bi{sub 2}Se{sub 3} opens an energy gap at the Dirac point which is observable in the non-magnetic state. • Cr surface deposition does not lead to open an energy gap at the Dirac point of Bi{sub 2}Se{sub 3}. • Formation of two distinct Bi and Cr core level peaks was observed upon the deposition of Cr on the surface of Bi{sub 2}Se{sub 3}. - Abstract: In this report, it is shown that Cr doped into the bulk and Cr deposited on the surface of Bi{sub 2}Se{sub 3} films produced by molecular beam epitaxy (MBE) have strikingly different effects on both the electronic structure and chemical environment. Angle resolved photoemission spectroscopy (ARPES) shows that Cr doped into the bulk opens a surface state energy gap which can be seen at room temperature; much higher than the measured ferromagnetic transition temperature of ≈10 K. On the other hand, similar ARPES measurements show that the surface states remain gapless down to 15 K for films with Cr surface deposition. In addition, core-level photoemission spectroscopy of the Bi 5d, Se 3d, and Cr 3p core levels show distinct differences in the chemical environment for the two methods of Cr introduction. Surface deposition of Cr results in the formation of shoulders on the lower binding energy side for the Bi 5d peaks and two distinct Cr 3p peaks indicative of two Cr sites. These striking differences suggests an interesting possibility that better control of doping at only near surface region may offer a path to quantum anomalous Hall states at higher temperatures than reported in the literature.

  12. Genetic relationships among West African okra ( Abelmoschus caillei )

    African Journals Online (AJOL)

    Abelmoschus caillei) and 43 Asian genotypes (A. esculentus) were assessed for genetic distinctiveness and relationships using random amplified polymorphic DNA (RAPD). The molecular analysis showed that all the thirteen primers used ...

  13. Shared effects of genetic and intrauterine and perinatal environment on the development of metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Patricia M Vuguin

    Full Text Available Genetic and environmental factors, including the in utero environment, contribute to Metabolic Syndrome. Exposure to high fat diet exposure in utero and lactation increases incidence of Metabolic Syndrome in offspring. Using GLUT4 heterozygous (G4+/- mice, genetically predisposed to Type 2 Diabetes Mellitus, and wild-type littermates we demonstrate genotype specific differences to high fat in utero and lactation. High fat in utero and lactation increased adiposity and impaired insulin and glucose tolerance in both genotypes. High fat wild type offspring had increased serum glucose and PAI-1 levels and decreased adiponectin at 6 wks of age compared to control wild type. High fat G4+/- offspring had increased systolic blood pressure at 13 wks of age compared to all other groups. Potential fetal origins of adult Metabolic Syndrome were investigated. Regardless of genotype, high fat in utero decreased fetal weight and crown rump length at embryonic day 18.5 compared to control. Hepatic expression of genes involved in glycolysis, gluconeogenesis, oxidative stress and inflammation were increased with high fat in utero. Fetal serum glucose levels were decreased in high fat G4+/- compared to high fat wild type fetuses. High fat G4+/-, but not high fat wild type fetuses, had increased levels of serum cytokines (IFN-γ, MCP-1, RANTES and M-CSF compared to control. This data demonstrates that high fat during pregnancy and lactation increases Metabolic Syndrome male offspring and that heterozygous deletion of GLUT4 augments susceptibility to increased systolic blood pressure. Fetal adaptations to high fat in utero that may predispose to Metabolic Syndrome in adulthood include changes in fetal hepatic gene expression and alterations in circulating cytokines. These results suggest that the interaction between in utero-perinatal environment and genotype plays a critical role in the developmental origin of health and disease.

  14. Genetic Algorithm Based Economic Dispatch with Valve Point Effect

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Nam; Park, Kyung Won; Kim, Ji Hong; Kim, Jin O [Hanyang University (Korea, Republic of)

    1999-03-01

    This paper presents a new approach on genetic algorithm to economic dispatch problem for valve point discontinuities. Proposed approach in this paper on genetic algorithms improves the performance to solve economic dispatch problem for valve point discontinuities through improved death penalty method, generation-apart elitism, atavism and sexual selection with sexual distinction. Numerical results on a test system consisting of 13 thermal units show that the proposed approach is faster, more robust and powerful than conventional genetic algorithms. (author). 8 refs., 10 figs.

  15. Peer deviance, parental divorce, and genetic risk in the prediction of drug abuse in a nationwide Swedish sample: evidence of environment-environment and gene-environment interaction.

    Science.gov (United States)

    Kendler, Kenneth S; Ohlsson, Henrik; Sundquist, Kristina; Sundquist, Jan

    2014-04-01

    Peer deviance (PD) strongly predicts externalizing psychopathologic conditions but has not been previously assessable in population cohorts. We sought to develop such an index of PD and to clarify its effects on risk of drug abuse (DA). To examine how strongly PD increases the risk of DA and whether this community-level liability indicator interacts with key DA risk factors at the individual and family levels. Studies of future DA registration in 1,401,698 Swedish probands born from January 1, 1970, through December 31, 1985, and their adolescent peers in approximately 9200 small community areas. Peer deviance was defined as the proportion of individuals born within 5 years of the proband living in the same small community when the proband was 15 years old who eventually were registered for DA. Drug abuse recorded in medical, legal, or pharmacy registry records. Peer deviance was associated with future DA in the proband, with rates of DA in older and male peers more strongly predictive than in younger or female peers. The predictive power of PD was only slightly attenuated by adding measures of community deprivation, collective efficacy, or family socioeconomic status. Probands whose parents were divorced were more sensitive to the pathogenic effects of high PD environments. A robust positive interaction was also seen between genetic risk of DA (indexed by rates of DA in first-, second-, and third-degree relatives) and PD exposure. With sufficient data, PD can be measured in populations and strongly predicts DA. In a nationwide sample, risk factors at the level of the individual (genetic vulnerability), family (parental loss), and community (PD) contribute substantially to risk of DA. Individuals at elevated DA risk because of parental divorce or high genetic liability are more sensitive to the pathogenic effects of PD. Although the effect of our PD measure on DA liability cannot be explained by standard measures of community or family risk, we cannot, with

  16. Biological and genetic properties of the p53 null preneoplastic mammary epithelium

    Science.gov (United States)

    Medina, Daniel; Kittrell, Frances S.; Shepard, Anne; Stephens, L. Clifton; Jiang, Cheng; Lu, Junxuan; Allred, D. Craig; McCarthy, Maureen; Ullrich, Robert L.

    2002-01-01

    The absence of the tumor suppressor gene p53 confers an increased tumorigenic risk for mammary epithelial cells. In this report, we describe the biological and genetic properties of the p53 null preneoplastic mouse mammary epithelium in a p53 wild-type environment. Mammary epithelium from p53 null mice was transplanted serially into the cleared mammary fat pads of p53 wild-type BALB/c female to develop stable outgrowth lines. The outgrowth lines were transplanted for 10 generations. The outgrowths were ductal in morphology and progressed through ductal hyperplasia and ductal carcinoma in situ before invasive cancer. The preneoplastic outgrowth lines were immortal and exhibited activated telomerase activity. They are estrogen and progesterone receptor-positive, and aneuploid, and had various levels of tumorigenic potential. The biological and genetic properties of these lines are distinct from those found in most hyperplastic alveolar outgrowth lines, the form of mammary preneoplasia occurring in most traditional models of murine mammary tumorigenesis. These results indicate that the preneoplastic cell populations found in this genetically engineered model are similar in biological properties to a subset of precurser lesions found in human breast cancer and provide a unique model to identify secondary events critical for tumorigenicity and invasiveness.

  17. Intraspecific morphological and genetic differentiation in Scrophularia grayana (Scrophulariaceae).

    Science.gov (United States)

    Kamada, Takuro; Yamashiro, Tadashi; Maki, Masayuki

    2007-05-01

    Scrophularia grayana, which is distributed throughout northern Japan and Sakhalin, and its locally endemic variety var. grayanoides, have been examined morphometrically and genetically. Principal-component analysis using a total of 26 morphological characteristics revealed that these taxa are morphologically differentiated, but that the difference is not distinct. These two taxa have the same number of chromosomes in the somatic cells, 2n = 94, suggesting that ploidal level difference is not relevant to their divergence. The distributions of the taxa are adjoining in the north of Japanese mainland Honshu. Nevertheless, principal-coordinate analysis using putative 112 ISSR loci indicated they are genetically very distinct. Many taxon-specific alleles were found, and many of the alleles were fixed in each taxon. This genetic information suggests that a relatively long time has passed since the taxa became differentiated and that gene flow has rarely occurred between them, although morphological similarity has been maintained, probably because of natural selective forces.

  18. Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Liu, Xueying; Teng, Zhonghua; Wang, Jinxia; Wu, Tiantian; Zhang, Zhiqin; Deng, Xianping; Fang, Xiaomei; Tan, Zhaoyun; Ali, Iftikhar; Liu, Dexin; Zhang, Jian; Liu, Dajun; Liu, Fang; Zhang, Zhengsheng

    2017-12-01

    Cotton is a significant commercial crop that plays an indispensable role in many domains. Constructing high-density genetic maps and identifying stable quantitative trait locus (QTL) controlling agronomic traits are necessary prerequisites for marker-assisted selection (MAS). A total of 14,899 SSR primer pairs designed from the genome sequence of G. raimondii were screened for polymorphic markers between mapping parents CCRI 35 and Yumian 1, and 712 SSR markers showing polymorphism were used to genotype 180 lines from a (CCRI 35 × Yumian 1) recombinant inbred line (RIL) population. Genetic linkage analysis was conducted on 726 loci obtained from the 712 polymorphic SSR markers, along with 1379 SSR loci obtained in our previous study, and a high-density genetic map with 2051 loci was constructed, which spanned 3508.29 cM with an average distance of 1.71 cM between adjacent markers. Marker orders on the linkage map are highly consistent with the corresponding physical orders on a G. hirsutum genome sequence. Based on fiber quality and yield component trait data collected from six environments, 113 QTLs were identified through two analytical methods. Among these 113 QTLs, 50 were considered stable (detected in multiple environments or for which phenotypic variance explained by additive effect was greater than environment effect), and 18 of these 50 were identified with stability by both methods. These 18 QTLs, including eleven for fiber quality and seven for yield component traits, could be priorities for MAS.

  19. Plasmodium vivax merozoite surface protein-3 alpha: a high-resolution marker for genetic diversity studies.

    Science.gov (United States)

    Prajapati, Surendra Kumar; Joshi, Hema; Valecha, Neena

    2010-06-01

    Malaria, an ancient human infectious disease caused by five species of Plasmodium, among them Plasmodium vivax is the most widespread human malaria species and causes huge morbidity to its host. Identification of genetic marker to resolve higher genetic diversity for an ancient origin organism is a crucial task. We have analyzed genetic diversity of P. vivax field isolates using highly polymorphic antigen gene merozoite surface protein-3 alpha (msp-3 alpha) and assessed its suitability as high-resolution genetic marker for population genetic studies. 27 P. vivax field isolates collected during chloroquine therapeutic efficacy study at Chennai were analyzed for genetic diversity. PCR-RFLP was employed to assess the genetic variations using highly polymorphic antigen gene msp-3 alpha. We observed three distinct PCR alleles at msp-3 alpha, and among them allele A showed significantly high frequency (53%, chi2 = 8.22, p = 0.001). PCR-RFLP analysis revealed 14 and 17 distinct RFLP patterns for Hha1 and Alu1 enzymes respectively. Further, RFLP analysis revealed that allele A at msp-3 alpha is more diverse in the population compared with allele B and C. Combining Hha1 and Alu1 RFLP patterns revealed 21 distinct genotypes among 22 isolates reflects higher diversity resolution power of msp-3 alpha in the field isolates. P. vivax isolates from Chennai region revealed substantial amount of genetic diversity and comparison of allelic diversity with other antigen genes and microsatellites suggesting that msp-3 alpha could be a high-resolution marker for genetic diversity studies among P. vivax field isolates.

  20. Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments.

    Directory of Open Access Journals (Sweden)

    Xianshan Wu

    Full Text Available BACKGROUND: Grain yield is a key economic driver of successful wheat production. Due to its complex nature, little is known regarding its genetic control. The goal of this study was to identify important quantitative trait loci (QTL directly and indirectly affecting grain yield using doubled haploid lines derived from a cross between Hanxuan 10 and Lumai 14. METHODOLOGY/PRINCIPAL FINDINGS: Ten yield-associated traits, including yield per plant (YP, number of spikes per plant (NSP, number of grains per spike (NGS, one-thousand grain weight (TGW, total number of spikelets per spike (TNSS, number of sterile spikelets per spike (NSSS, proportion of fertile spikelets per spike (PFSS, spike length (SL, density of spikelets per spike (DSS and plant height (PH, were assessed across 14 (for YP to 23 (for TGW year × location × water regime environments in China. Then, the genetic effects were partitioned into additive main effects (a, epistatic main effects (aa and their environment interaction effects (ae and aae by using composite interval mapping in a mixed linear model. CONCLUSIONS/SIGNIFICANCE: Twelve (YP to 33 (PH QTLs were identified on all 21 chromosomes except 6D. QTLs were more frequently observed on chromosomes 1B, 2B, 2D, 5A and 6B, and were concentrated in a few regions on individual chromosomes, exemplified by three striking yield-related QTL clusters on chromosomes 2B, 1B and 4B that explained the correlations between YP and other traits. The additive main-effect QTLs contributed more phenotypic variation than the epistasis and environmental interaction. Consistent with agronomic analyses, a group of progeny derived by selecting TGW and NGS, with higher grain yield, had an increased frequency of QTL for high YP, NGS, TGW, TNSS, PFSS, SL, PH and fewer NSSS, when compared to low yielding progeny. This indicated that it is feasible by marker-assisted selection to facilitate wheat production.

  1. High Prevalence, Genetic Diversity and Intracellular Growth Ability of Legionella in Hot Spring Environments

    Science.gov (United States)

    Zhou, Haijian; Wang, Huanxin; Xu, Ying; Zhao, Mingqiang; Guan, Hong; Li, Machao; Shao, Zhujun

    2013-01-01

    Background Legionella is the causative agent of Legionnaires' disease, and hot springs are a major source of outbreaks of this disease. It is important from a public health perspective to survey hot spring environments for the presence of Legionella. Methods Prospective surveillance of the extent of Legionella pollution was conducted at three hot spring recreational areas in Beijing, China in 2011. Pulsed-field gel electrophoresis (PFGE) and sequence-based typing (SBT) were used to describe the genetic polymorphism of isolates. The intracellular growth ability of the isolates was determined by interacting with J774 cells and plating the dilutions onto BCYE agar plates. Results Overall, 51.9% of spring water samples showed Legionella-positive, and their concentrations ranged from 1 CFU/liter to 2,218 CFU/liter. The positive rates of Legionella were significantly associated with a free chlorine concentration of ≥0.2 mg/L, urea concentration of ≥0.05 mg/L, total microbial counts of ≥400 CFU/ml and total coliform of ≥3 MPN/L (pLegionella concentrations were significantly associated with sample temperature, pH, total microbial counts and total coliform (pLegionella pneumophila was the most frequently isolated species (98.9%), and the isolated serogroups included serogroups 3 (25.3%), 6 (23.4%), 5 (19.2%), 1 (18.5%), 2 (10.2%), 8 (0.4%), 10 (0.8%), 9 (1.9%) and 12 (0.4%). Two hundred and twenty-eight isolates were analyzed by PFGE and 62 different patterns were obtained. Fifty-seven L. pneumophila isolates were selected for SBT analysis and divided into 35 different sequence types with 5 main clonal groups. All the 57 isolates had high intracellular growth ability. Conclusions Our results demonstrated high prevalence and genetic polymorphism of Legionella in springs in Beijing, China, and the SBT and intracellular growth assay results suggested that the Legionella isolates of hot spring environments were pathogenic. Improved control and prevention strategies are

  2. High prevalence, genetic diversity and intracellular growth ability of Legionella in hot spring environments.

    Directory of Open Access Journals (Sweden)

    Tian Qin

    Full Text Available BACKGROUND: Legionella is the causative agent of Legionnaires' disease, and hot springs are a major source of outbreaks of this disease. It is important from a public health perspective to survey hot spring environments for the presence of Legionella. METHODS: Prospective surveillance of the extent of Legionella pollution was conducted at three hot spring recreational areas in Beijing, China in 2011. Pulsed-field gel electrophoresis (PFGE and sequence-based typing (SBT were used to describe the genetic polymorphism of isolates. The intracellular growth ability of the isolates was determined by interacting with J774 cells and plating the dilutions onto BCYE agar plates. RESULTS: Overall, 51.9% of spring water samples showed Legionella-positive, and their concentrations ranged from 1 CFU/liter to 2,218 CFU/liter. The positive rates of Legionella were significantly associated with a free chlorine concentration of ≥0.2 mg/L, urea concentration of ≥0.05 mg/L, total microbial counts of ≥400 CFU/ml and total coliform of ≥3 MPN/L (p<0.01. The Legionella concentrations were significantly associated with sample temperature, pH, total microbial counts and total coliform (p<0.01. Legionella pneumophila was the most frequently isolated species (98.9%, and the isolated serogroups included serogroups 3 (25.3%, 6 (23.4%, 5 (19.2%, 1 (18.5%, 2 (10.2%, 8 (0.4%, 10 (0.8%, 9 (1.9% and 12 (0.4%. Two hundred and twenty-eight isolates were analyzed by PFGE and 62 different patterns were obtained. Fifty-seven L. pneumophila isolates were selected for SBT analysis and divided into 35 different sequence types with 5 main clonal groups. All the 57 isolates had high intracellular growth ability. CONCLUSIONS: Our results demonstrated high prevalence and genetic polymorphism of Legionella in springs in Beijing, China, and the SBT and intracellular growth assay results suggested that the Legionella isolates of hot spring environments were pathogenic. Improved control

  3. Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance.

    Science.gov (United States)

    Vickruck, J L; Richards, M H

    2017-05-01

    While most organisms are negatively affected by anthropogenic disturbance, a few species thrive in landscapes altered by humans. Typically, native bees are negatively impacted by anthropogenic environmental change, including habitat alteration and climate change. Here, we investigate the population structure of the eastern carpenter bee Xylocopa virginica, a generalist pollinator with a broad geographic range spanning eastern North America. Eastern carpenter bees now nest almost exclusively in artificial wooden structures, linking their geographic distribution and population structure to human activities and disturbance. To investigate the population structure of these bees, we sampled females from 16 different populations from across their range. Nine species-specific microsatellite loci showed that almost all populations are genetically distinct, but with high levels of genetic diversity and low levels of inbreeding overall. Broadly speaking, populations clustered into three distinct genetic groups: a northern group, a western group and a core group. The northern group had low effective population sizes, decreased genetic variability and the highest levels of inbreeding in the data set, suggesting that carpenter bees may be expanding their range northward. The western group was genetically distinct, but lacked signals of a recent range expansion. Climatic data showed that summer and winter temperatures explained a significant amount of the genetic differentiation seen among populations, while precipitation did not. Our results indicate that X. virginica may be one of the rare 'anthrophilic' species that thrive in the face of anthropogenic disturbance. © 2017 John Wiley & Sons Ltd.

  4. Genetics and pathogenesis of feline infectious peritonitis virus.

    Science.gov (United States)

    Brown, Meredith A; Troyer, Jennifer L; Pecon-Slattery, Jill; Roelke, Melody E; O'Brien, Stephen J

    2009-09-01

    Feline coronavirus (FCoV) is endemic in feral cat populations and cat colonies, frequently preceding outbreaks of fatal feline infectious peritonitis (FIP). FCoV exhibits 2 biotypes: the pathogenic disease and a benign infection with feline enteric coronavirus (FECV). Uncertainty remains regarding whether genetically distinctive avirulent and virulent forms coexist or whether an avirulent form mutates in vivo, causing FIP. To resolve these alternative hypotheses, we isolated viral sequences from FCoV-infected clinically healthy and sick cats (8 FIP cases and 48 FECV-asymptomatic animals); 735 sequences from 4 gene segments were generated and subjected to phylogenetic analyses. Viral sequences from healthy cats were distinct from sick cats on the basis of genetic distances observed in the membrane and nonstructural protein 7b genes. These data demonstrate distinctive circulating virulent and avirulent strains in natural populations. In addition, 5 membrane protein amino acid residues with functional potential differentiated healthy cats from cats with FIP. These findings may have potential as diagnostic markers for virulent FIP-associated FCoV.

  5. Genetic differentiation of spring-spawning and fall-spawning male Atlantic sturgeon in the James River, Virginia.

    Directory of Open Access Journals (Sweden)

    Matthew T Balazik

    Full Text Available Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae populations are currently at severely depleted levels due to historic overfishing, habitat loss, and pollution. The importance of biologically correct stock structure for effective conservation and management efforts is well known. Recent improvements in our understanding of Atlantic sturgeon migrations, movement, and the occurrence of putative dual spawning groups leads to questions regarding the true stock structure of this endangered species. In the James River, VA specifically, captures of spawning Atlantic sturgeon and accompanying telemetry data suggest there are two discrete spawning groups of Atlantic sturgeon. The two putative spawning groups were genetically evaluated using a powerful microsatellite marker suite to determine if they are genetically distinct. Specifically, this study evaluates the genetic structure, characterizes the genetic diversity, estimates effective population size, and measures inbreeding of Atlantic sturgeon in the James River. The results indicate that fall and spring spawning James River Atlantic sturgeon groups are genetically distinct (overall FST = 0.048, F'ST = 0.181 with little admixture between the groups. The observed levels of genetic diversity and effective population sizes along with the lack of detected inbreeding all indicated that the James River has two genetically healthy populations of Atlantic sturgeon. The study also demonstrates that samples from adult Atlantic sturgeon, with proper sample selection criteria, can be informative when creating reference population databases. The presence of two genetically-distinct spawning groups of Atlantic sturgeon within the James River raises concerns about the current genetic assignment used by managers. Other nearby rivers may also have dual spawning groups that either are not accounted for or are pooled in reference databases. Our results represent the second documentation of genetically

  6. Graphical models for genetic analyses

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt; Sheehan, Nuala A.

    2003-01-01

    This paper introduces graphical models as a natural environment in which to formulate and solve problems in genetics and related areas. Particular emphasis is given to the relationships among various local computation algorithms which have been developed within the hitherto mostly separate areas...... of graphical models and genetics. The potential of graphical models is explored and illustrated through a number of example applications where the genetic element is substantial or dominating....

  7. Do species conservation assessments capture genetic diversity?

    Directory of Open Access Journals (Sweden)

    Malin C. Rivers

    2014-12-01

    Full Text Available The best known system for classifying threat status of species, the IUCN Red List, currently lacks explicit considerations of genetic diversity, and consequently may not account for potential adaptation of species to future environmental change. To address this gap, we integrate range-wide genetic analysis with IUCN Red List assessments.We calculated the loss of genetic diversity under simulated range loss for species of Delonix (Leguminosae. Simulated range loss involved random loss of populations and was intended to model ongoing habitat destruction. We found a strong relationship between loss of genetic diversity and range. Moreover, we found correspondence between levels of genetic diversity and thresholds for ‘non-threatened’ versus ‘threatened’ IUCN Red List categories.Our results support the view that current threat thresholds of the IUCN Red List criteria reflect genetic diversity, and hence evolutionary potential; although the genetic diversity distinction between threatened categories was less evident. Thus, by supplementing conventional conservation assessments with genetic data, new insights into the biological robustness of IUCN Red List assessments for targeted conservation initiatives can be achieved. Keywords: Conservation assessment, Conservation genetics, Extinction risk, Genetic diversity, IUCN Red List, Range

  8. Evolution of Genetic Variance during Adaptive Radiation.

    Science.gov (United States)

    Walter, Greg M; Aguirre, J David; Blows, Mark W; Ortiz-Barrientos, Daniel

    2018-04-01

    Genetic correlations between traits can concentrate genetic variance into fewer phenotypic dimensions that can bias evolutionary trajectories along the axis of greatest genetic variance and away from optimal phenotypes, constraining the rate of evolution. If genetic correlations limit adaptation, rapid adaptive divergence between multiple contrasting environments may be difficult. However, if natural selection increases the frequency of rare alleles after colonization of new environments, an increase in genetic variance in the direction of selection can accelerate adaptive divergence. Here, we explored adaptive divergence of an Australian native wildflower by examining the alignment between divergence in phenotype mean and divergence in genetic variance among four contrasting ecotypes. We found divergence in mean multivariate phenotype along two major axes represented by different combinations of plant architecture and leaf traits. Ecotypes also showed divergence in the level of genetic variance in individual traits and the multivariate distribution of genetic variance among traits. Divergence in multivariate phenotypic mean aligned with divergence in genetic variance, with much of the divergence in phenotype among ecotypes associated with changes in trait combinations containing substantial levels of genetic variance. Overall, our results suggest that natural selection can alter the distribution of genetic variance underlying phenotypic traits, increasing the amount of genetic variance in the direction of natural selection and potentially facilitating rapid adaptive divergence during an adaptive radiation.

  9. Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana

    NARCIS (Netherlands)

    Davila Olivas, Nelson H.; Kruijer, Willem; Gort, Gerrit; Wijnen, Cris L.; Loon, van Joop J.A.; Dicke, Marcel

    2017-01-01

    Plants are commonly exposed to abiotic and biotic stresses. We used 350 Arabidopsis thaliana accessions grown under controlled conditions. We employed genome-wide association analysis to investigate the genetic architecture and underlying loci involved in genetic variation in resistance to: two

  10. Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis

    OpenAIRE

    Ciofi, C.; Beaumont, M. A.; Swingland, I. R.; Bruford, M. W.

    1999-01-01

    In the past decade much attention has focused on the role that genetics can play in the formation of management strategies in conservation. Here, we describe genetic diversity in the world's largest lizard, the Komodo dragon (Varanus komodoensis), examining the evolutionary relationships and population genetic history of the four islands in south-east Indonesia, which form the vast majority of its range. We identify distinct genetic groups for conservation. The population on the island of Kom...

  11. Gene, environment and cognitive function

    DEFF Research Database (Denmark)

    Xu, Chunsheng; Sun, Jianping; Duan, Haiping

    2015-01-01

    BACKGROUND: the genetic and environmental contributions to cognitive function in the old people have been well addressed for the Western populations using twin modelling showing moderate to high heritability. No similar study has been conducted in the world largest and rapidly ageing Chinese...... population living under distinct environmental condition as the Western populations. OBJECTIVE: this study aims to explore the genetic and environmental impact on normal cognitive ageing in the Chinese twins. DESIGN/SETTING: cognitive function was measured on 384 complete twin pairs with median age of 50...... years for seven cognitive measurements including visuospatial, linguistic skills, naming, memory, attention, abstraction and orientation abilities. Data were analysed by fitting univariate and bivariate twin models to estimate the genetic and environmental components in the variance and co...

  12. Estimating genetic effect sizes under joint disease-endophenotype models in presence of gene-environment interactions

    Directory of Open Access Journals (Sweden)

    Alexandre eBureau

    2015-07-01

    Full Text Available Effects of genetic variants on the risk of complex diseases estimated from association studies are typically small. Nonetheless, variants may have important effects in presence of specific levels of environmental exposures, and when a trait related to the disease (endophenotype is either normal or impaired. We propose polytomous and transition models to represent the relationship between disease, endophenotype, genotype and environmental exposure in family studies. Model coefficients were estimated using generalized estimating equations and were used to derive gene-environment interaction effects and genotype effects at specific levels of exposure. In a simulation study, estimates of the effect of a genetic variant were substantially higher when both an endophenotype and an environmental exposure modifying the variant effect were taken into account, particularly under transition models, compared to the alternative of ignoring the endophenotype. Illustration of the proposed modeling with the metabolic syndrome, abdominal obesity, physical activity and polymorphisms in the NOX3 gene in the Quebec Family Study revealed that the positive association of the A allele of rs1375713 with the metabolic syndrome at high levels of physical activity was only detectable in subjects without abdominal obesity, illustrating the importance of taking into account the abdominal obesity endophenotype in this analysis.

  13. Has the "Equal Environments" assumption been tested in twin studies?

    Science.gov (United States)

    Eaves, Lindon; Foley, Debra; Silberg, Judy

    2003-12-01

    A recurring criticism of the twin method for quantifying genetic and environmental components of human differences is the necessity of the so-called "equal environments assumption" (EEA) (i.e., that monozygotic and dizygotic twins experience equally correlated environments). It has been proposed to test the EEA by stratifying twin correlations by indices of the amount of shared environment. However, relevant environments may also be influenced by genetic differences. We present a model for the role of genetic factors in niche selection by twins that may account for variation in indices of the shared twin environment (e.g., contact between members of twin pairs). Simulations reveal that stratification of twin correlations by amount of contact can yield spurious evidence of large shared environmental effects in some strata and even give false indications of genotype x environment interaction. The stratification approach to testing the equal environments assumption may be misleading and the results of such tests may actually be consistent with a simpler theory of the role of genetic factors in niche selection.

  14. Asymmetry in family history implicates nonstandard genetic mechanisms: application to the genetics of breast cancer.

    Directory of Open Access Journals (Sweden)

    Clarice R Weinberg

    2014-03-01

    Full Text Available Genome-wide association studies typically target inherited autosomal variants, but less studied genetic mechanisms can play a role in complex disease. Sex-linked variants aside, three genetic phenomena can induce differential risk in maternal versus paternal lineages of affected individuals: 1. maternal effects, reflecting the maternal genome's influence on prenatal development; 2. mitochondrial variants, which are inherited maternally; 3. autosomal genes, whose effects depend on parent of origin. We algebraically show that small asymmetries in family histories of affected individuals may reflect much larger genetic risks acting via those mechanisms. We apply these ideas to a study of sisters of women with breast cancer. Among 5,091 distinct families of women reporting that exactly one grandmother had breast cancer, risk was skewed toward maternal grandmothers (p<0.0001, especially if the granddaughter was diagnosed between age 45 and 54. Maternal genetic effects, mitochondrial variants, or variant genes with parent-of-origin effects may influence risk of perimenopausal breast cancer.

  15. Genetic engineering applied to agriculture has a long row to hoe.

    Science.gov (United States)

    Miller, Henry I

    2018-01-02

    In spite of the lack of scientific justification for skepticism about crops modified with molecular techniques of genetic engineering, they have been the most scrutinized agricultural products in human history. The assumption that "genetically engineered" or "genetically modified" is a meaningful - and dangerous - classification has led to excessive and dilatory regulation. The modern molecular techniques are an extension, or refinement, of older, less precise, less predictable methods of genetic modification, but as long as today's activists and regulators remain convinced that so called "GMOs" represent a distinct and dangerous category of research and products, genetic engineering will fall short of its potential.

  16. Ontogenic retinal changes in three ecologically distinct elopomorph fishes (Elopomorpha:Teleostei) correlate with light environment and behavior.

    Science.gov (United States)

    Taylor, Scott M; Loew, Ellis R; Grace, Michael S

    2015-01-01

    Unlike the mammalian retina, the teleost fish retina undergoes persistent neurogenesis from intrinsic stem cells. In marine teleosts, most cone photoreceptor genesis occurs early in the embryonic and larval stages, and rods are added primarily during and after metamorphosis. This study demonstrates a developmental paradigm in elopomorph fishes in which retinas are rod-dominated in larvae, but undergo periods of later cone genesis. Retinal characteristics were compared at different developmental stages among three ecologically distinct elopomorph fishes-ladyfish (Elops saurus), bonefish (Albula vulpes), and speckled worm eel (Myrophis punctatus). The objectives were to improve our understanding of (1) the developmental strategy in the elopomorph retina, (2) the functional architecture of the retina as it relates to ecology, and (3) how the light environment influences photoreceptor genesis. Photoreceptor morphologies, distributions, and spectral absorption were studied at larval, juvenile, and adult stages. Premetamorphic retinas in all three species are rod-dominated, but the retinas of these species undergo dramatic change over the course of development, resulting in juvenile and adult retinal characteristics that correlate closely with ecology. Adult E. saurus has high rod densities, grouped photoreceptors, a reflective tapetum, and longer-wavelength photopigments, supporting vision in turbid, low-light conditions. Adult A. vulpes has high cone densities, low rod densities, and shorter-wavelength photopigments, supporting diurnal vision in shallow, clear water. M. punctatus loses cones during metamorphosis, develops new cones after settlement, and maintains high rod but low cone densities, supporting primarily nocturnal vision. M. punctatus secondary cone genesis occurs rapidly throughout the retina, suggesting a novel mechanism of vertebrate photoreceptor genesis. Finally, in postsettlement M. punctatus, the continuous presence or absence of visible light

  17. Genetic Influences on Conduct Disorder

    Science.gov (United States)

    Salvatore, Jessica E.; Dick, Danielle M.

    2016-01-01

    Conduct disorder (CD) is a moderately heritable psychiatric disorder of childhood and adolescence characterized by aggression toward people and animals, destruction of property, deceitfulness or theft, and serious violation of rules. Genome-wide scans using linkage and association methods have identified a number of suggestive genomic regions that are pending replication. A small number of candidate genes (e.g., GABRA2, MAOA, SLC6A4, AVPR1A) are associated with CD related phenotypes across independent studies; however, failures to replicate also exist. Studies of gene-environment interplay show that CD genetic predispositions also contribute to selection into higher-risk environments, and that environmental factors can alter the importance of CD genetic factors and differentially methylate CD candidate genes. The field’s understanding of CD etiology will benefit from larger, adequately powered studies in gene identification efforts; the incorporation of polygenic approaches in gene-environment interplay studies; attention to the mechanisms of risk from genes to brain to behavior; and the use of genetically informative data to test quasi-causal hypotheses about purported risk factors. PMID:27350097

  18. Distinct population structure for co-occurring Anopheles goeldii and Anopheles triannulatus in Amazonian Brazil

    Directory of Open Access Journals (Sweden)

    Sascha Naomi McKeon

    2013-08-01

    Full Text Available To evaluate whether environmental heterogeneity contributes to the genetic heterogeneity in Anopheles triannulatus, larval habitat characteristics across the Brazilian states of Roraima and Pará and genetic sequences were examined. A comparison with Anopheles goeldii was utilised to determine whether high genetic diversity was unique to An. triannulatus. Student t test and analysis of variance found no differences in habitat characteristics between the species. Analysis of population structure of An. triannulatus and An. goeldii revealed distinct demographic histories in a largely overlapping geographic range. Cytochrome oxidase I sequence parsimony networks found geographic clustering for both species; however nuclear marker networks depicted An. triannulatus with a more complex history of fragmentation, secondary contact and recent divergence. Evidence of Pleistocene expansions suggests both species are more likely to be genetically structured by geographic and ecological barriers than demography. We hypothesise that niche partitioning is a driving force for diversity, particularly in An. triannulatus.

  19. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, M.; Nazam, M.; Yao, L.; Baig, S.A.; Abrar, M.; Zia-ur-Rehman, M.

    2017-07-01

    The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM). Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS) problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS) problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS) decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM) and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS) under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM) with fuzzy coefficients constructed in present research should be helpful for solving real world

  20. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    Directory of Open Access Journals (Sweden)

    Muhammad Hashim

    2017-05-01

    Full Text Available Purpose:  The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM. Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM with fuzzy coefficients constructed in present research should be helpful for

  1. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    International Nuclear Information System (INIS)

    Hashim, M.; Nazam, M.; Yao, L.; Baig, S.A.; Abrar, M.; Zia-ur-Rehman, M.

    2017-01-01

    The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM). Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS) problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS) problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS) decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM) and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS) under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM) with fuzzy coefficients constructed in present research should be helpful for solving real world

  2. Genetic Structuration, Demography and Evolutionary History of Mycobacterium tuberculosis LAM9 Sublineage in the Americas as Two Distinct Subpopulations Revealed by Bayesian Analyses

    Science.gov (United States)

    Reynaud, Yann; Millet, Julie; Rastogi, Nalin

    2015-01-01

    Tuberculosis (TB) remains broadly present in the Americas despite intense global efforts for its control and elimination. Starting from a large dataset comprising spoligotyping (n = 21183 isolates) and 12-loci MIRU-VNTRs data (n = 4022 isolates) from a total of 31 countries of the Americas (data extracted from the SITVIT2 database), this study aimed to get an overview of lineages circulating in the Americas. A total of 17119 (80.8%) strains belonged to the Euro-American lineage 4, among which the most predominant genotypic family belonged to the Latin American and Mediterranean (LAM) lineage (n = 6386, 30.1% of strains). By combining classical phylogenetic analyses and Bayesian approaches, this study revealed for the first time a clear genetic structuration of LAM9 sublineage into two subpopulations named LAM9C1 and LAM9C2, with distinct genetic characteristics. LAM9C1 was predominant in Chile, Colombia and USA, while LAM9C2 was predominant in Brazil, Dominican Republic, Guadeloupe and French Guiana. Globally, LAM9C2 was characterized by higher allelic richness as compared to LAM9C1 isolates. Moreover, LAM9C2 sublineage appeared to expand close to twenty times more than LAM9C1 and showed older traces of expansion. Interestingly, a significant proportion of LAM9C2 isolates presented typical signature of ancestral LAM-RDRio MIRU-VNTR type (224226153321). Further studies based on Whole Genome Sequencing of LAM strains will provide the needed resolution to decipher the biogeographical structure and evolutionary history of this successful family. PMID:26517715

  3. Macro-environment of breast carcinoma: frequent genetic alterations in the normal appearing skins of patients with breast cancer.

    Science.gov (United States)

    Moinfar, Farid; Beham, Alfred; Friedrich, Gerhard; Deutsch, Alexander; Hrzenjak, Andelko; Luschin, Gero; Tavassoli, Fattaneh A

    2008-05-01

    Genetic abnormalities in microenvironmental tissues with subsequent alterations of reciprocal interactions between epithelial and mesenchymal cells play a key role in the breast carcinogenesis. Although a few reports have demonstrated abnormal fibroblastic functions in normal-appearing fibroblasts taken from the skins of breast cancer patients, the genetic basis of this phenomenon and its implication for carcinogenesis are unexplored. We analyzed 12 mastectomy specimens showing invasive ductal carcinomas. In each case, morphologically normal epidermis and dermis, carcinoma, normal stroma close to carcinoma, and stroma at a distant from carcinoma were microdissected. Metastatic-free lymphatic tissues from lymph nodes served as a control. Using PCR, DNA extracts were examined with 11 microsatellite markers known for a high frequency of allelic imbalances in breast cancer. Losses of heterozygosity and/or microsatellite instability were detected in 83% of the skin samples occurring either concurrently with or independently from the cancerous tissues. In 80% of these cases at least one microsatellite marker displayed loss of heterozygosity or microsatellite instability in the skin, which was absent in carcinoma. A total of 41% of samples showed alterations of certain loci observed exclusively in the carcinoma but not in the skin compartments. Our study suggests that breast cancer is not just a localized genetic disorder, but rather part of a larger field of genetic alterations/instabilities affecting multiple cell populations in the organ with various cellular elements, ultimately contributing to the manifestation of the more 'localized' carcinoma. These data indicate that more global assessment of tumor micro- and macro-environment is crucial for our understanding of breast carcinogenesis.

  4. Genetic relatedness among indigenous rice varieties in the Eastern Himalayan region based on nucleotide sequences of the Waxy gene.

    Science.gov (United States)

    Choudhury, Baharul I; Khan, Mohammed L; Dayanandan, Selvadurai

    2014-12-29

    Indigenous rice varieties in the Eastern Himalayan region of Northeast India are traditionally classified into sali, boro and jum ecotypes based on geographical locality and the season of cultivation. In this study, we used DNA sequence data from the Waxy (Wx) gene to infer the genetic relatedness among indigenous rice varieties in Northeast India and to assess the genetic distinctiveness of ecotypes. The results of all three analyses (Bayesian, Maximum Parsimony and Neighbor Joining) were congruent and revealed two genetically distinct clusters of rice varieties in the region. The large group comprised several varieties of sali and boro ecotypes, and all agronomically improved varieties. The small group consisted of only traditionally cultivated indigenous rice varieties, which included one boro, few sali and all jum varieties. The fixation index analysis revealed a very low level of differentiation between sali and boro (F(ST) = 0.005), moderate differentiation between sali and jum (F(ST) = 0.108) and high differentiation between jum and boro (F(ST) = 0.230) ecotypes. The genetic relatedness analyses revealed that sali, boro and jum ecotypes are genetically heterogeneous, and the current classification based on cultivation type is not congruent with the genetic background of rice varieties. Indigenous rice varieties chosen from genetically distinct clusters could be used in breeding programs to improve genetic gain through heterosis, while maintaining high genetic diversity.

  5. Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection

    Czech Academy of Sciences Publication Activity Database

    Kurey, Irina; Kobets, Tetyana; Havelková, Helena; Slapničková, Martina; Quan, L.; Trtková, Kateřina; Grekov, Igor; Svobodová, M.; Stassen, A. P. M.; Hutson, A.; Demant, P.; Lipoldová, Marie

    2009-01-01

    Roč. 61, č. 9 (2009), s. 619-633 ISSN 0093-7711 R&D Projects: GA ČR GA310/06/1745; GA MŠk(CZ) LC06009 Grant - others:EC(XE) 05-1000004-7761 Institutional research plan: CEZ:AV0Z50520514 Keywords : Leishmania major * Parasite elimination * QTL mapping Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.988, year: 2009

  6. Estimating the relative contributions of maternal genetic, paternal genetic and intrauterine factors to offspring birth weight and head circumference.

    Science.gov (United States)

    Rice, Frances; Thapar, Anita

    2010-07-01

    Genetic factors and the prenatal environment contribute to birth weight. However, very few types of study design can disentangle their relative contribution. To examine maternal genetic and intrauterine contributions to offspring birth weight and head circumference. To compare the contribution of maternal and paternal genetic effects. Mothers and fathers were either genetically related or unrelated to their offspring who had been conceived by in vitro fertilization. 423 singleton full term offspring, of whom 262 were conceived via homologous IVF (both parents related), 66 via sperm donation (mother only related) and 95 via egg donation (father only related). Maternal weight at antenatal booking, current weight and maternal height. Paternal current weight and height were all predictors. Infant birth weight and head circumference were outcomes. Genetic relatedness was the main contributing factor between measures of parental weight and offspring birth weight as correlations were only significant when the parent was related to the child. However, there was a contribution of the intrauterine environment to the association between maternal height and both infant birth weight and infant head circumference as these were significant even when mothers were unrelated to their child. Both maternal and paternal genes made contributions to infant birth weight. Maternal height appeared to index a contribution of the intrauterine environment to infant growth and gestational age. Results suggested a possible biological interaction between the intrauterine environment and maternal inherited characteristics which suppresses the influence of paternal genes. 2010 Elsevier Ltd. All rights reserved.

  7. Salmonella Typhimurium undergoes distinct genetic adaption during chronic infections of mice

    DEFF Research Database (Denmark)

    Søndberg, Emilie; Jelsbak, Lotte

    2016-01-01

    Background Typhoid fever caused by Salmonella enterica serovar Typhi (S. Typhi) is a severe systemic human disease and endemic in regions of the world with poor drinking water quality and sewage treatment facilities. A significant number of patients become asymptomatic life-long carriers of S....... Typhi and serve as the reservoir for the disease. The specific mechanisms and adaptive strategies enabling S. Typhi to survive inside the host for extended periods are incompletely understood. Yet, elucidation of these processes is of major importance for improvement of therapeutic strategies...... been transmitted to the other two mice. Re-infection with this clone confirmed that it is superior to the wild type for intestinal colonisation. Conclusions During 4 to 6 weeks of chronic infections, S. Typhimurium acquired distinct SNPs in known regulators of metabolic and virulence genes. One SNP...

  8. Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum.

    Science.gov (United States)

    Wójcik, Małgorzata; Dresler, Sławomir; Jawor, Emilia; Kowalczyk, Krzysztof; Tukiendorf, Anna

    2013-01-01

    Waste deposits produced by metal mining and smelting activities provide extremely difficult habitats for plant colonization and growth. Therefore, plants spontaneously colonizing such areas represent a very interesting system for studying evolution of plant adaptation and population differentiation between contaminated and noncontaminated environments. In this study, two populations of Dianthus carthusianorum, one originating from Zn-Pb waste deposit (a metallicolous population, M) and the other from unpolluted soil (a nonmetallicolous population, NM), were analyzed in respect of their morphological and physiological traits as well as genetic markers. It was found that the plants inhabiting the waste heap differed significantly from the NM plants in terms of leaf size and shape, and these differences were persistent between the first generation of the plants of both populations cultivated under uniform, controlled laboratory conditions. In contrast with the evident morphological differences, no significant differentiation between the populations regarding the physiological traits measured (accumulation of proline, anthocyanins, chlorophyll, carotenoids) was found. These traits can be regarded as neither population specific nor stress markers. The genetic variability was analyzed using 17 random amplified polymorphic DNA (RAPD) and four inter simple sequence repeat (ISSR) markers; this proved that the differentiation between the M and NM populations exists also at the genetic level. Analysis of molecular variance (AMOVA) showed that 24% of the total genetic diversity resided among populations, while 76% - within the populations. However, no significant differences in intrapopulation genetic diversity (Hj) between the M and NM populations of D. carthusianorum was found, which contradicts the theory that acquisition of adaptation mechanisms to adverse, isolated growth habitats is related to reduction in genetic diversity. Distinct genetic differences between the two

  9. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Feral cattle residing in Chirikof Island, Alaska, are relatively distinct from breeds used in commercial production in North America. However, preliminary evidence suggested that they exhibit substantial genetic relationship with cattle fromYakutian region of Siberia. Thus, our objective was to further elucidate quantify the ...

  10. Genetics of Post-Traumatic Stress Disorder: Informing Clinical Conceptualizations and Promoting Future Research

    Science.gov (United States)

    Nugent, Nicole R.; Amstadter, Ananda B.; Koenen, Karestan C.

    2009-01-01

    The purpose of this article is to provide an overview of genetic research involving post-traumatic stress disorder (PTSD). First, we summarize evidence for genetic influences on PTSD from family investigations. Second, we discuss the distinct contributions to our understanding of the genetics of PTSD permitted by twin studies. Finally, we summarize findings from molecular genetic studies, which have the potential to inform our understanding of underlying biological mechanisms for the development of PTSD. PMID:18412098

  11. X-linked deafness, stapes gushers and a distinctive defect of the inner ear

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, P.D. (Royal National Throat, Nose and Ear Hospital, London (United Kingdom)); Reardon, W.; Pembrey, M. (Institute of Child Health, London (United Kingdom)); Bellman, S. (Hospital for Sick Children, London (United Kingdom)); Luxom, L. (National Hospital for Neurology and Neurosurgery, London (United Kingdom))

    1991-08-01

    We have made genetic linkage studies in 7 pedigrees in whom deafness was inherited in an X-linked manner. All patients had a full range of audiometric and vestibular function tests. Thin section high resolution CT in two planes was used to assess the state of the middle and inner ears. We found a distinctive inner ear deformity in some of the deaf males. Moreover, some of the obligate feamle carriers seem to have a milder form of the same anomaly associated with slight hearing loss. Genetic studies on some of the deaf males with apparently normal inner ear anatomy suggest a different locus on the X chromosome and hence a different pathogenesis for the deafness. (orig./GDG).

  12. X-linked deafness, stapes gushers and a distinctive defect of the inner ear

    International Nuclear Information System (INIS)

    Phelps, P.D.; Reardon, W.; Pembrey, M.; Bellman, S.; Luxom, L.

    1991-01-01

    We have made genetic linkage studies in 7 pedigrees in whom deafness was inherited in an X-linked manner. All patients had a full range of audiometric and vestibular function tests. Thin section high resolution CT in two planes was used to assess the state of the middle and inner ears. We found a distinctive inner ear deformity in some of the deaf males. Moreover, some of the obligate feamle carriers seem to have a milder form of the same anomaly associated with slight hearing loss. Genetic studies on some of the deaf males with apparently normal inner ear anatomy suggest a different locus on the X chromosome and hence a different pathogenesis for the deafness. (orig./GDG)

  13. A quantitative genetic analysis of intermediate asthma phenotypes

    DEFF Research Database (Denmark)

    Thomsen, S.F.; Ferreira, M.A.R.; Kyvik, K.O.

    2009-01-01

    to the observed data using maximum likelihood methods. RESULTS: Additive genetic factors explained 67% of the variation in FeNO, 43% in airway responsiveness, 22% in airway obstruction, and 81% in serum total IgE. In general, traits had genetically and environmentally distinct variance structures. The most......AIM: To study the relative contribution of genetic and environmental factors to the correlation between exhaled nitric oxide (FeNO), airway responsiveness, airway obstruction, and serum total immunoglobulin E (IgE). METHODS: Within a sampling frame of 21,162 twin subjects, 20-49 years of age, from...... substantial genetic similarity was observed between FeNO and serum total IgE, genetic correlation (rhoA) = 0.37, whereas the strongest environmental resemblance was observed between airway responsiveness and airway obstruction, specific environmental correlation (rhoE) = -0.46, and between FeNO and airway...

  14. A quantitative genetic analysis of intermediate asthma phenotypes

    DEFF Research Database (Denmark)

    Thomsen, S F; Ferreira, M A R; Kyvik, K O

    2009-01-01

    to the observed data using maximum likelihood methods. Results: Additive genetic factors explained 67% of the variation in FeNO, 43% in airway responsiveness, 22% in airway obstruction, and 81% in serum total IgE. In general, traits had genetically and environmentally distinct variance structures. The most......Aim: To study the relative contribution of genetic and environmental factors to the correlation between exhaled nitric oxide (FeNO), airway responsiveness, airway obstruction, and serum total immunoglobulin E (IgE). Methods: Within a sampling frame of 21 162 twin subjects, 20-49 years of age, from...... substantial genetic similarity was observed between FeNO and serum total IgE, genetic correlation (rho(A)) = 0.37, whereas the strongest environmental resemblance was observed between airway responsiveness and airway obstruction, specific environmental correlation (rho(E)) = -0.46, and between FeNO and airway...

  15. Pollution breaks down the genetic architecture of life history traits in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Morgan Dutilleul

    Full Text Available When pollution occurs in an environment, populations present suffer numerous negative and immediate effects on their life history traits. Their evolutionary potential to live in a highly stressful environment will depend on the selection pressure strengths and on the genetic structure, the trait heritability, and the genetic correlations between them. If expression of this structure changes in a stressful environment, it becomes necessary to quantify these changes to estimate the evolutionary potential of the population in this new environment. We studied the genetic structure for survival, fecundity, and early and late growth in isogenic lines of a Caenorhabditis elegans population subject to three different environments: a control environment, an environment polluted with uranium, and a high salt concentration environment. We found a heritability decrease in the polluted environments for fecundity and early growth, two traits that were the most heritable in the control environment. The genetic structure of the traits was particularly affected in the uranium polluted environment, probably due to generally low heritability in this environment. This could prevent selection from acting on traits despite the strong selection pressures exerted on them. Moreover, phenotypic traits were more strongly affected in the salt than in the uranium environment and the heritabilities were also lower in the latter environment. Consequently the decrease in heritability was not proportional to the population fitness reduction in the polluted environments. Our results suggest that pollution can alter the genetic structure of a C. elegans population, and thus modify its evolutionary potential.

  16. Recent Advances in Human Genetics and Epigenetics of Adiposity: Pathway to Precision Medicine?

    Science.gov (United States)

    Fall, Tove; Mendelson, Michael; Speliotes, Elizabeth K

    2017-05-01

    Obesity is a heritable trait that contributes to substantial global morbidity and mortality. Here, we summarize findings from the past decade of genetic and epigenetic research focused on unravelling the underpinnings of adiposity. More than 140 genetic regions now are known to influence adiposity traits. The genetics of general adiposity, as measured by body mass index, and that of abdominal obesity, as measured by waist-to-hip ratio, have distinct biological backgrounds. Gene expression associated with general adiposity is enriched in the nervous system. In contrast, genes associated with abdominal adiposity function in adipose tissue. Recent population-based epigenetic analyses have highlighted additional distinct loci. We discuss how associated genetic variants can lead to understanding causal mechanisms, and to disentangling reverse causation in epigenetic analyses. Discoveries emerging from population genomics are identifying new disease markers and potential novel drug targets to better define and combat obesity and related diseases. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. antagonistic pleiotropy; balancer chromosomes; environmental heterogeneity; maintenance of genetic variation; trade-offs. Abstract. A fundamental assumption of models for the maintenance of genetic variation by environmental heterogeneity is that selection favours different genotypes in different environments.

  18. Genetic variation in social influence on mate preferences

    Science.gov (United States)

    Rebar, Darren; Rodríguez, Rafael L.

    2013-01-01

    Patterns of phenotypic variation arise in part from plasticity owing to social interactions, and these patterns contribute, in turn, to the form of selection that shapes the variation we observe in natural populations. This proximate–ultimate dynamic brings genetic variation in social environments to the forefront of evolutionary theory. However, the extent of this variation remains largely unknown. Here, we use a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess how mate preferences are influenced by genetic variation in the social environment. We used full-sibling split-families as ‘treatment’ social environments, and reared focal females alongside each treatment family, describing the mate preferences of the focal females. With this method, we detected substantial genetic variation in social influence on mate preferences. The mate preferences of focal females varied according to the treatment families along with which they grew up. We discuss the evolutionary implications of the presence of such genetic variation in social influence on mate preferences, including potential contributions to the maintenance of genetic variation, the promotion of divergence, and the adaptive evolution of social effects on fitness-related traits. PMID:23698010

  19. Gene–obesogenic environment interactions in the UK Biobank study

    Science.gov (United States)

    Tyrrell, Jessica; Wood, Andrew R; Ames, Ryan M; Yaghootkar, Hanieh; Beaumont, Robin N; Jones, Samuel E; Tuke, Marcus A; Ruth, Katherine S; Freathy, Rachel M; Davey Smith, George; Joost, Stéphane; Guessous, Idris; Murray, Anna; Strachan, David P; Kutalik, Zoltán; Weedon, Michael N; Frayling, Timothy M

    2017-01-01

    Abstract Background: Previous studies have suggested that modern obesogenic environments accentuate the genetic risk of obesity. However, these studies have proven controversial as to which, if any, measures of the environment accentuate genetic susceptibility to high body mass index (BMI). Methods: We used up to 120 000 adults from the UK Biobank study to test the hypothesis that high-risk obesogenic environments and behaviours accentuate genetic susceptibility to obesity. We used BMI as the outcome and a 69-variant genetic risk score (GRS) for obesity and 12 measures of the obesogenic environment as exposures. These measures included Townsend deprivation index (TDI) as a measure of socio-economic position, TV watching, a ‘Westernized’ diet and physical activity. We performed several negative control tests, including randomly selecting groups of different average BMIs, using a simulated environment and including sun-protection use as an environment. Results: We found gene–environment interactions with TDI (Pinteraction = 3 × 10–10), self-reported TV watching (Pinteraction = 7 × 10–5) and self-reported physical activity (Pinteraction = 5 × 10–6). Within the group of 50% living in the most relatively deprived situations, carrying 10 additional BMI-raising alleles was associated with approximately 3.8 kg extra weight in someone 1.73 m tall. In contrast, within the group of 50% living in the least deprivation, carrying 10 additional BMI-raising alleles was associated with approximately 2.9 kg extra weight. The interactions were weaker, but present, with the negative controls, including sun-protection use, indicating that residual confounding is likely. Conclusions: Our findings suggest that the obesogenic environment accentuates the risk of obesity in genetically susceptible adults. Of the factors we tested, relative social deprivation best captures the aspects of the obesogenic environment responsible. PMID:28073954

  20. Applying landscape genomic tools to forest management and restoration of Hawaiian koa (Acacia koa) in a changing environment.

    Science.gov (United States)

    Gugger, Paul F; Liang, Christina T; Sork, Victoria L; Hodgskiss, Paul; Wright, Jessica W

    2018-02-01

    Identifying and quantifying the importance of environmental variables in structuring population genetic variation can help inform management decisions for conservation, restoration, or reforestation purposes, in both current and future environmental conditions. Landscape genomics offers a powerful approach for understanding the environmental factors that currently associate with genetic variation, and given those associations, where populations may be most vulnerable under future environmental change. Here, we applied genotyping by sequencing to generate over 11,000 single nucleotide polymorphisms from 311 trees and then used nonlinear, multivariate environmental association methods to examine spatial genetic structure and its association with environmental variation in an ecologically and economically important tree species endemic to Hawaii, Acacia koa . Admixture and principal components analyses showed that trees from different islands are genetically distinct in general, with the exception of some genotypes that match other islands, likely as the result of recent translocations. Gradient forest and generalized dissimilarity models both revealed a strong association between genetic structure and mean annual rainfall. Utilizing a model for projected future climate on the island of Hawaii, we show that predicted changes in rainfall patterns may result in genetic offset, such that trees no longer may be genetically matched to their environment. These findings indicate that knowledge of current and future rainfall gradients can provide valuable information for the conservation of existing populations and also help refine seed transfer guidelines for reforestation or replanting of koa throughout the state.

  1. Genetic selection for coping style predicts stressor susceptibility

    NARCIS (Netherlands)

    Veenema, AH; Meijer, OC; de Kloet, ER; Koolhaas, JM

    Genetically selected aggressive (SAL) and nonaggressive (LAL) male wild house-mice which show distinctly different coping styles, also display a differential regulation of the hypothalamic-pituitary-adrenal axis after exposure to an acute stressor. To test the hypothesis that coping style predicts

  2. Epstein-Barr virus-positive gastric cancer: a distinct molecular subtype of the disease?

    Science.gov (United States)

    Jácome, Alexandre Andrade Dos Anjos; Lima, Enaldo Melo de; Kazzi, Ana Izabela; Chaves, Gabriela Freitas; Mendonça, Diego Cavalheiro de; Maciel, Marina Mara; Santos, José Sebastião Dos

    2016-04-01

    Approximately 90% of the world population is infected by Epstein-Barr virus (EBV). Usually, it infects B lymphocytes, predisposing them to malignant transformation. Infection of epithelial cells occurs rarely, and it is estimated that about to 10% of gastric cancer patients harbor EBV in their malignant cells. Given that gastric cancer is the third leading cause of cancer-related mortality worldwide, with a global annual incidence of over 950,000 cases, EBV-positive gastric cancer is the largest group of EBV-associated malignancies. Based on gene expression profile studies, gastric cancer was recently categorized into four subtypes; EBV-positive, microsatellite unstable, genomically stable and chromosomal instability. Together with previous studies, this report provided a more detailed molecular characterization of gastric cancer, demonstrating that EBV-positive gastric cancer is a distinct molecular subtype of the disease, with unique genetic and epigenetic abnormalities, reflected in a specific phenotype. The recognition of characteristic molecular alterations in gastric cancer allows the identification of molecular pathways involved in cell proliferation and survival, with the potential to identify therapeutic targets. These findings highlight the enormous heterogeneity of gastric cancer, and the complex interplay between genetic and epigenetic alterations in the disease, and provide a roadmap to implementation of genome-guided personalized therapy in gastric cancer. The present review discusses the initial studies describing EBV-positive gastric cancer as a distinct clinical entity, presents recently described genetic and epigenetic alterations, and considers potential therapeutic insights derived from the recognition of this new molecular subtype of gastric adenocarcinoma.

  3. Animal models of gene-environment interactions in schizophrenia.

    Science.gov (United States)

    Ayhan, Yavuz; Sawa, Akira; Ross, Christopher A; Pletnikov, Mikhail V

    2009-12-07

    The pathogenesis of schizophrenia and related mental illnesses likely involves multiple interactions between susceptibility genes of small effects and environmental factors. Gene-environment interactions occur across different stages of neurodevelopment to produce heterogeneous clinical and pathological manifestations of the disease. The main obstacle for mechanistic studies of gene-environment interplay has been the paucity of appropriate experimental systems for elucidating the molecular pathways that mediate gene-environment interactions relevant to schizophrenia. Recent advances in psychiatric genetics and a plethora of experimental data from animal studies allow us to suggest a new approach to gene-environment interactions in schizophrenia. We propose that animal models based on identified genetic mutations and measurable environment factors will help advance studies of the molecular mechanisms of gene-environment interplay.

  4. Genetically Modified Foods and Consumer Perspective.

    Science.gov (United States)

    Boccia, Flavio; Sarnacchiaro, Pasquale

    2015-01-01

    Genetically modified food is able to oppose the world's hunger and preserve the environment, even if the patents in this matter are symptomatic of several doubts. And also, transgenic consumption causes problems and skepticism among consumers in several European countries, but above all in Italy, where there is a strong opposition over recent years. So, the present study conducted a research to study the consumption of genetically modified food products by Italian young generation. This research presented the following purposes: firstly, to analyze genetically modified products' consumption among a particular category of consumers; secondly, to implement a quantitative model to understand behaviour about this particular kind of consumption and identify the factors that determine their purchase. The proposed model shows that transgenic consumption is especially linked to knowledge and impact on environment and mankind's health.

  5. Teacher quality moderates the genetic effects on early reading.

    Science.gov (United States)

    Taylor, J; Roehrig, A D; Soden Hensler, B; Connor, C M; Schatschneider, C

    2010-04-23

    Children's reading achievement is influenced by genetics as well as by family and school environments. The importance of teacher quality as a specific school environmental influence on reading achievement is unknown. We studied first- and second-grade students in Florida from schools representing diverse environments. Comparison of monozygotic and dizygotic twins, differentiating genetic similarities of 100% and 50%, provided an estimate of genetic variance in reading achievement. Teacher quality was measured by how much reading gain the non-twin classmates achieved. The magnitude of genetic variance associated with twins' oral reading fluency increased as the quality of their teacher increased. In circumstances where the teachers are all excellent, the variability in student reading achievement may appear to be largely due to genetics. However, poor teaching impedes the ability of children to reach their potential.

  6. Population genetic structure and conservation genetics of threatened Okaloosa darters (Etheostoma okaloosae).

    Science.gov (United States)

    Austin, James D.; Jelks, Howard L.; Tate, Bill; Johnson, Aria R.; Jordan, Frank

    2011-01-01

    Imperiled Okaloosa darters (Etheostoma okaloosae) are small, benthic fish limited to six streams that flow into three bayous of Choctawhatchee Bay in northwest Florida, USA. We analyzed the complete mitochondrial cytochrome b gene and 10 nuclear microsatellite loci for 255 and 273 Okaloosa darters, respectively. Bayesian clustering analyses and AMOVA reflect congruent population genetic structure in both mitochondrial and microsatellite DNA. This structure reveals historical isolation of Okaloosa darter streams nested within bayous. Most of the six streams appear to have exchanged migrants though they remain genetically distinct. The U.S. Fish and Wildlife Service recently reclassified Okaloosa darters from endangered to threatened status. Our genetic data support the reclassification of Okaloosa darter Evolutionary Significant Units (ESUs) in the larger Tom's, Turkey, and Rocky creeks from endangered to threatened status. However, the three smaller drainages (Mill, Swift, and Turkey Bolton creeks) remain at risk due to their small population sizes and anthropogenic pressures on remaining habitat. Natural resource managers now have the evolutionary information to guide recovery actions within and among drainages throughout the range of the Okaloosa darter.

  7. Response to A Different Vantage Point Commentary: Psychotherapeutic Genetic Counseling, Is it?

    Science.gov (United States)

    Austin, Jehannine; Caleshu, Colleen

    2016-01-01

    Whether genetic counseling is a form of psychotherapy is open for debate. Early practicioners in genetic counseling described it as such, and this claim has been replicated in recent publications. This commentary is a rebuttal to the claim that genetic counseling is distinct from psychotherapty. We argue that it is a a form of psychoterapy that aims to help clients manage a health threat that affects their psychological wellbeing, paralleling the goals of psychotherapy. PMID:27804046

  8. Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task.

    Science.gov (United States)

    Kas, Martien J H; de Mooij-van Malsen, Annetrude J G; Olivier, Berend; Spruijt, Berry M; van Ree, Jan M

    2008-08-01

    Traditional behavioral tests, such as the open field test, measure an animal's responsiveness to a novel environment. However, it is generally difficult to assess whether the behavioral response obtained from these tests relates to the expression level of motor activity and/or to avoidance of anxiogenic areas. Here, an automated home cage environment for mice was designed to obtain independent measures of motor activity levels and of sheltered feeding preference during three consecutive days. Chronic treatment with the anxiolytic drug chlordiazepoxide (5 and 10 mg/kg/day) in C57BL/6J mice reduced sheltered feeding preference without altering motor activity levels. Furthermore, two distinct chromosome substitution strains, derived from C57BL/6J (host strain) and A/J (donor strain) inbred strains, expressed either increased sheltering preference in females (chromosome 15) or reduced motor activity levels in females and males (chromosome 1) when compared to C57BL/6J. Longitudinal behavioral monitoring revealed that these phenotypic differences maintained after adaptation to the home cage. Thus, by using new automated behavioral phenotyping approaches, behavior can be dissociated into distinct behavioral domains (e.g., anxiety-related and motor activity domains) with different underlying genetic origin and pharmacological responsiveness.

  9. Genetic liability, prenatal health, stress and family environment: risk factors in the Harvard Adolescent Family High Risk for schizophrenia study.

    Science.gov (United States)

    Walder, Deborah J; Faraone, Stephen V; Glatt, Stephen J; Tsuang, Ming T; Seidman, Larry J

    2014-08-01

    The familial ("genetic") high-risk (FHR) paradigm enables assessment of individuals at risk for schizophrenia based on a positive family history of schizophrenia in first-degree, biological relatives. This strategy presumes genetic transmission of abnormal traits given high heritability of the illness. It is plausible, however, that adverse environmental factors are also transmitted in these families. Few studies have evaluated both biological and environmental factors within a FHR study of adolescents. We conceptualize four precursors to psychosis pathogenesis: two biological (genetic predisposition, prenatal health issues (PHIs)) and two environmental (family environment, stressful life events (SLEs)). Participants assessed between 1998 and 2007 (ages 13-25) included 40 (20F/20M) adolescents at FHR for schizophrenia (FHRs) and 55 (31F/24M) community controls. 'Genetic load' indexed number of affected family members relative to pedigree size. PHI was significantly greater among FHRs, and family cohesion and expressiveness were less (and family conflict was higher) among FHRs; however, groups did not significantly differ in SLE indices. Among FHRs, genetic liability was significantly associated with PHI and family expressiveness. Prenatal and family environmental disruptions are elevated in families with a first-degree relative with schizophrenia. Findings support our proposed 'polygenic neurodevelopmental diathesis-stress model' whereby psychosis susceptibility (and resilience) involves the independent and synergistic confluence of (temporally-sensitive) biological and environmental factors across development. Recognition of biological and social environmental influences across critical developmental periods points to key issues relevant for enhanced identification of psychosis susceptibility, facilitation of more precise models of illness risk, and development of novel prevention strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Identification of Four Distinct Phylogenetic Groups in Flavobacterium columnare With Fish Host Associations

    Directory of Open Access Journals (Sweden)

    Benjamin R. LaFrentz

    2018-03-01

    Full Text Available Columnaris disease, caused by the Gram-negative bacterium Flavobacterium columnare, is one of the most prevalent fish diseases worldwide. An exceptionally high level of genetic diversity among isolates of F. columnare has long been recognized, whereby six established genomovars have been described to date. However, little has been done to quantify or characterize this diversity further in a systematic fashion. The objective of this research was to perform phylogenetic analyses of 16S rRNA and housekeeping gene sequences to decipher the genetic diversity of F. columnare. Fifty isolates and/or genomes of F. columnare, originating from diverse years, geographic locations, fish hosts, and representative of the six genomovars were analyzed in this study. A multilocus phylogenetic analysis (MLPA of the 16S rRNA and six housekeeping genes supported four distinct F. columnare genetic groups. There were associations between genomovar and genetic group, but these relationships were imperfect indicating that genomovar assignment does not accurately reflect F. columnare genetic diversity. To expand the dataset, an additional 90 16S rRNA gene sequences were retrieved from GenBank and a phylogenetic analysis of this larger dataset also supported the establishment of four genetic groups. Examination of isolate historical data indicated biological relevance to the identified genetic diversity, with some genetic groups isolated preferentially from specific fish species or families. It is proposed that F. columnare isolates be assigned to the four genetic groups defined in this study rather than genomovar in order to facilitate a standard nomenclature across the scientific community. An increased understanding of which genetic groups are most prevalent in different regions and/or aquaculture industries may allow for the development of improved targeted control and treatment measures for columnaris disease.

  11. Genetic Programming for Sea Level Predictions in an Island Environment

    Directory of Open Access Journals (Sweden)

    M.A. Ghorbani

    2010-03-01

    Full Text Available Accurate predictions of sea-level are important for geodetic applications, navigation, coastal, industrial and tourist activities. In the current work, the Genetic Programming (GP and artificial neural networks (ANNs were applied to forecast half-daily and daily sea-level variations from 12 hours to 5 days ahead. The measurements at the Cocos (Keeling Islands in the Indian Ocean were used for training and testing of the employed artificial intelligence techniques. A comparison was performed of the predictions from the GP model and the ANN simulations. Based on the comparison outcomes, it was found that the Genetic Programming approach can be successfully employed in forecasting of sea level variations.

  12. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes

    Directory of Open Access Journals (Sweden)

    Piechota Marcin

    2006-06-01

    Full Text Available Abstract Background Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. Results Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q Khdrbs1 and ATPase Na+/K+ alpha2 subunit (Atp1a2 with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt gene. Conclusion The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.

  13. Genetic affinities of Helicobacter pylori isolates from ethnic Arabs in Kuwait

    Directory of Open Access Journals (Sweden)

    Albert M John

    2010-07-01

    Full Text Available Abstract Helicobacter pylori is one of the most genetically diverse of bacterial species, and since the 5'-end of cagA gene and the middle allele of vacA gene of H. pylori from different populations exhibit considerable polymorphisms, these sequence diversities were used to gain insights into the genetic affinities of this gastric pathogen from different populations. Because the genetic affinity of Arab strains from the Arabian Gulf is not known, we carried out genetic analysis based on sequence diversities of the cagA and the vacA genes of H. pylori from 9 ethnic Arabs in Kuwait. The analysis showed that the Kuwaiti isolates are closely related to the Indo-European group of strains, although some strains have a tendency to form a separate cluster close to the Indo- European group, but clearly distinct from East Asian strains. However, these results need to be confirmed by analyses of neutral markers (house-keeping genes in a multi-locus sequence typing [MLST] platform. The profiling of virulence-associated genes may have resulted from ecologically distinct populations due to human migration and geographical separation over long periods of time.

  14. Whole genome population genetics analysis of Sudanese goats identifies regions harboring genes associated with major traits.

    Science.gov (United States)

    Rahmatalla, Siham A; Arends, Danny; Reissmann, Monika; Said Ahmed, Ammar; Wimmers, Klaus; Reyer, Henry; Brockmann, Gudrun A

    2017-10-23

    Sudan is endowed with a variety of indigenous goat breeds which are used for meat and milk production and which are well adapted to the local environment. The aim of the present study was to determine the genetic diversity and relationship within and between the four main Sudanese breeds of Nubian, Desert, Taggar and Nilotic goats. Using the 50 K SNP chip, 24 animals of each breed were genotyped. More than 96% of high quality SNPs were polymorphic with an average minor allele frequency of 0.3. In all breeds, no significant difference between observed (0.4) and expected (0.4) heterozygosity was found and the inbreeding coefficients (F IS ) did not differ from zero. F st coefficients for the genetic distance between breeds also did not significantly deviate from zero. In addition, the analysis of molecular variance revealed that 93% of the total variance in the examined population can be explained by differences among individuals, while only 7% result from differences between the breeds. These findings provide evidence for high genetic diversity and little inbreeding within breeds on one hand, and low diversity between breeds on the other hand. Further examinations using Nei's genetic distance and STRUCTURE analysis clustered Taggar goats distinct from the other breeds. In a principal component (PC) analysis, PC1 could separate Taggar, Nilotic and a mix of Nubian and Desert goats into three groups. The SNPs that contributed strongly to PC1 showed high F st values in Taggar goat versus the other goat breeds. PCA allowed us to identify target genomic regions which contain genes known to influence growth, development, bone formation and the immune system. The information on the genetic variability and diversity in this study confirmed that Taggar goat is genetically different from the other goat breeds in Sudan. The SNPs identified by the first principal components show high F st values in Taggar goat and allowed to identify candidate genes which can be used in the

  15. Molecular evidence for species-level distinctions in clouded leopards.

    Science.gov (United States)

    Buckley-Beason, Valerie A; Johnson, Warren E; Nash, Willliam G; Stanyon, Roscoe; Menninger, Joan C; Driscoll, Carlos A; Howard, JoGayle; Bush, Mitch; Page, John E; Roelke, Melody E; Stone, Gary; Martelli, Paolo P; Wen, Ci; Ling, Lin; Duraisingam, Ratna K; Lam, Phan V; O'Brien, Stephen J

    2006-12-05

    Among the 37 living species of Felidae, the clouded leopard (Neofelis nebulosa) is generally classified as a monotypic genus basal to the Panthera lineage of great cats. This secretive, mid-sized (16-23 kg) carnivore, now severely endangered, is traditionally subdivided into four southeast Asian subspecies (Figure 1A). We used molecular genetic methods to re-evaluate subspecies partitions and to quantify patterns of population genetic variation among 109 clouded leopards of known geographic origin (Figure 1A, Tables S1 ans S2 in the Supplemental Data available online). We found strong phylogeographic monophyly and large genetic distances between N. n. nebulosa (mainland) and N. n. diardi (Borneo; n = 3 individuals) with mtDNA (771 bp), nuclear DNA (3100 bp), and 51 microsatellite loci. Thirty-six fixed mitochondrial and nuclear nucleotide differences and 20 microsatellite loci with nonoverlapping allele-size ranges distinguished N. n. nebulosa from N. n. diardi. Along with fixed subspecies-specific chromosomal differences, this degree of differentiation is equivalent to, or greater than, comparable measures among five recognized Panthera species (lion, tiger, leopard, jaguar, and snow leopard). These distinctions increase the urgency of clouded leopard conservation efforts, and if affirmed by morphological analysis and wider sampling of N. n. diardi in Borneo and Sumatra, would support reclassification of N. n. diardi as a new species (Neofelis diardi).

  16. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats.

    Science.gov (United States)

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten Bh; Kurtz, Joachim

    2012-06-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences.

  17. Presence relates to distinct outcomes in two virtual environments employing different learning modalities.

    Science.gov (United States)

    Persky, Susan; Kaphingst, Kimberly A; McCall, Cade; Lachance, Christina; Beall, Andrew C; Blascovich, Jim

    2009-06-01

    Presence in virtual learning environments (VLEs) has been associated with a number of outcome factors related to a user's ability and motivation to learn. The extant but relatively small body of research suggests that a high level of presence is related to better performance on learning outcomes in VLEs. Different configurations of form and content variables such as those associated with active (self-driven, interactive activities) versus didactic (reading or lecture) learning may, however, influence how presence operates and on what content it operates. We compared the influence of presence between two types of immersive VLEs (i.e., active versus didactic techniques) on comprehension and engagement-related outcomes. The findings revealed that the active VLE promoted greater presence. Although we found no relationship between presence and learning comprehension outcomes for either virtual environment, presence was related to information engagement variables in the didactic immersive VLE but not the active environment. Results demonstrate that presence is not uniformly elicited or effective across immersive VLEs. Educational delivery mode and environment complexity may influence the impact of presence on engagement.

  18. Access and benefits sharing of genetic resources and associated traditional knowledge in northern Canada: understanding the legal environment and creating effective research agreements.

    Science.gov (United States)

    Geary, Janis; Jardine, Cynthia G; Guebert, Jenilee; Bubela, Tania

    2013-01-01

    Research in northern Canada focused on Aboriginal peoples has historically benefited academia with little consideration for the people being researched or their traditional knowledge (TK). Although this attitude is changing, the complexity of TK makes it difficult to develop mechanisms to preserve and protect it. Protecting TK becomes even more important when outside groups become interested in using TK or materials with associated TK. In the latter category are genetic resources, which may have commercial value and are the focus of this article. This article addresses access to and use of genetic resources and associated TK in the context of the historical power-imbalances in research relationships in Canadian north. Review. Research involving genetic resources and TK is becoming increasingly relevant in northern Canada. The legal framework related to genetic resources and the cultural shift of universities towards commercial goals in research influence the environment for negotiating research agreements. Current guidelines for research agreements do not offer appropriate guidelines to achieve mutual benefit, reflect unequal bargaining power or take the relationship between parties into account. Relational contract theory may be a useful framework to address the social, cultural and legal hurdles inherent in creating research agreements.

  19. Response to A Different Vantage Point Commentary: Psychotherapeutic Genetic Counseling, Is it?

    Science.gov (United States)

    Biesecker, Barbara; Austin, Jehannine; Caleshu, Colleen

    2017-04-01

    Whether genetic counseling is a form of psychotherapy is open for debate. Early practicioners in genetic counseling described it as such, and this claim has been replicated in recent publications. This commentary is a rebuttal to the claim that genetic counseling is distinct from psychotherapty. We argue that it is a a form of psychoterapy that aims to help clients manage a health threat that affects their psychological wellbeing, paralleling the goals of psychotherapy.

  20. Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat.

    Science.gov (United States)

    Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine

    2015-09-01

    Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations.

    Science.gov (United States)

    Wang, Yuchen; Lu, Dongsheng; Chung, Yeun-Jun; Xu, Shuhua

    2018-01-01

    Han Chinese, Japanese and Korean, the three major ethnic groups of East Asia, share many similarities in appearance, language and culture etc., but their genetic relationships, divergence times and subsequent genetic exchanges have not been well studied. We conducted a genome-wide study and evaluated the population structure of 182 Han Chinese, 90 Japanese and 100 Korean individuals, together with the data of 630 individuals representing 8 populations wordwide. Our analyses revealed that Han Chinese, Japanese and Korean populations have distinct genetic makeup and can be well distinguished based on either the genome wide data or a panel of ancestry informative markers (AIMs). Their genetic structure corresponds well to their geographical distributions, indicating geographical isolation played a critical role in driving population differentiation in East Asia. The most recent common ancestor of the three populations was dated back to 3000 ~ 3600 years ago. Our analyses also revealed substantial admixture within the three populations which occurred subsequent to initial splits, and distinct gene introgression from surrounding populations, of which northern ancestral component is dominant. These estimations and findings facilitate to understanding population history and mechanism of human genetic diversity in East Asia, and have implications for both evolutionary and medical studies.

  2. Gene-environment interplay in the etiology of psychosis.

    Science.gov (United States)

    Zwicker, Alyson; Denovan-Wright, Eileen M; Uher, Rudolf

    2018-01-15

    Schizophrenia and other types of psychosis incur suffering, high health care costs and loss of human potential, due to the combination of early onset and poor response to treatment. Our ability to prevent or cure psychosis depends on knowledge of causal mechanisms. Molecular genetic studies show that thousands of common and rare variants contribute to the genetic risk for psychosis. Epidemiological studies have identified many environmental factors associated with increased risk of psychosis. However, no single genetic or environmental factor is sufficient to cause psychosis on its own. The risk of developing psychosis increases with the accumulation of many genetic risk variants and exposures to multiple adverse environmental factors. Additionally, the impact of environmental exposures likely depends on genetic factors, through gene-environment interactions. Only a few specific gene-environment combinations that lead to increased risk of psychosis have been identified to date. An example of replicable gene-environment interaction is a common polymorphism in the AKT1 gene that makes its carriers sensitive to developing psychosis with regular cannabis use. A synthesis of results from twin studies, molecular genetics, and epidemiological research outlines the many genetic and environmental factors contributing to psychosis. The interplay between these factors needs to be considered to draw a complete picture of etiology. To reach a more complete explanation of psychosis that can inform preventive strategies, future research should focus on longitudinal assessments of multiple environmental exposures within large, genotyped cohorts beginning early in life.

  3. Genetically meaningful phenotypic subgroups in autism spectrum disorders.

    Science.gov (United States)

    Veatch, O J; Veenstra-Vanderweele, J; Potter, M; Pericak-Vance, M A; Haines, J L

    2014-03-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with strong evidence for genetic susceptibility. However, the effect sizes for implicated chromosomal loci are small, hard to replicate and current evidence does not explain the majority of the estimated heritability. Phenotypic heterogeneity could be one phenomenon complicating identification of genetic factors. We used data from the Autism Diagnostic Interview-Revised, Autism Diagnostic Observation Schedule, Vineland Adaptive Behavior Scales, head circumferences, and ages at exams as classifying variables to identify more clinically similar subgroups of individuals with ASD. We identified two distinct subgroups of cases within the Autism Genetic Resource Exchange dataset, primarily defined by the overall severity of evaluated traits. In addition, there was significant familial clustering within subgroups (odds ratio, OR ≈ 1.38-1.42, P definition that should increase power to detect genetic factors influencing risk for ASD. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning

    Science.gov (United States)

    Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.

    2007-12-01

    also highlights the importance of strain heterogeneity for the maintenance of community structure and function. These findings explain the importance of genetic diversity in facilitating the stable performance of complex microbial processes. Furthermore, although very different in terms of habitat, both microbial communities exhibit distinct functional compartmentalization and demonstrate its role in sustaining microbial community structure.

  5. Social-emotional development through a behavior genetics lens: infancy through preschool.

    Science.gov (United States)

    DiLalla, Lisabeth Fisher; Mullineaux, Paula Y; Biebl, Sara J W

    2012-01-01

    The field of developmental behavior genetics has added significantly to the collective understanding of what factors influence human behavior and human development. Research in this area has helped to explain not only how genes and environment contribute to individual differences but also how the interplay between genes and environment influences behavior and human development. The current chapter provides a background of the theory and methodology behind behavior genetic research and the field of developmental behavior genetics. It also examines three specific developmental periods as they relate to behavior genetic research: infancy, toddlerhood, and early preschool. The behavior genetic literature is reviewed for key socioemotional developmental behaviors that fit under each of these time periods. Temperament, attachment, frustration, empathy, and aggression are behaviors that develop in early life that were examined here. Thus, the general purpose of this chapter is to provide an overview of how genes and environment, as well as the interplay between them, relate to early socioemotional behaviors.

  6. BREEDING AND GENETICS SYMPOSIUM: Resilience and lessons from studies in genetics of heat stress.

    Science.gov (United States)

    Misztal, I

    2017-04-01

    Production environments are expected to change, mostly to a hotter climate but also possibly more extreme and drier. Can the current generation of farm animals cope with the changes or should it be specifically selected for changing conditions? In general, genetic selection produces animals with a smaller environmental footprint but also with smaller environmental flexibility. Some answers are coming from heat-stress research across species, with heat tolerance partly understood as a greater environmental flexibility. Specific studies in various species show the complexities of defining and selecting for heat tolerance. In Holsteins, the genetic component for effect of heat stress on production approximately doubles in second and quadruples in third parity. Cows with elevated body temperature have the greatest production under heat stress but probably are at risk for increased mortality. In hot but less intensive environments, the effect of heat stress on production is minimal, although the negative effect on fertility remains. Mortality peaks under heat stress and increases with parity. In Angus, the effect of heat stress is stronger only in selected regions, probably because of adaptation of calving seasons to local conditions and crossbreeding. Genetically, the direct effect shows variability because of heat stress, but the maternal effect does not, probably because dams shield calves from environmental challenges. In pigs, the effect of heat stress is strong for commercial farms but almost nothing for nucleus farms, which have lower pig density and better heat abatement. Under intensive management, heat stress is less evident in drier environments because of more efficient cooling. A genetic component of heat stress exists, but it is partly masked by improving management and selection based on data from elite farms. Genetic selection may provide superior identification of heat-tolerant animals, but a few cycles may be needed for clear results. Also, simple

  7. Distinct genetic differentiation and species diversification within two marine nematodes with different habitat preference in Antarctic sediments.

    Science.gov (United States)

    Hauquier, Freija; Leliaert, Frederik; Rigaux, Annelien; Derycke, Sofie; Vanreusel, Ann

    2017-05-30

    Dispersal ability, population genetic structure and species divergence in marine nematodes are still poorly understood, especially in remote areas such as the Southern Ocean. We investigated genetic differentiation of species and populations of the free-living endobenthic nematode genera Sabatieria and Desmodora using nuclear 18S rDNA, internal transcribed spacer (ITS) rDNA, and mitochondrial cytochrome oxidase I (COI) gene sequences. Specimens were collected at continental shelf depths (200-500 m) near the Antarctic Peninsula, Scotia Arc and eastern side of the Weddell Sea. The two nematode genera co-occurred at all sampled locations, but with different vertical distribution in the sediment. A combination of phylogenetic (GMYC, Bayesian Inference, Maximum Likelihood) and population genetic (AMOVA) analyses were used for species delimitation and assessment of gene flow between sampling locations. Sequence analyses resulted in the delimitation of four divergent species lineages in Sabatieria, two of which could not be discriminated morphologically and most likely constitute cryptic species. Two species were recognised in Desmodora, one of which showed large intraspecific morphological variation. Both genera comprised species that were restricted to one side of the Weddell Sea and species that were widely spread across it. Population genetic structuring was highly significant and more pronounced in the deeper sediment-dwelling Sabatieria species, which are generally less prone to resuspension and passive dispersal in the water column than surface Desmodora species. Our results indicate that gene flow is restricted at large geographic distance in the Southern Ocean, which casts doubt on the efficiency of the Weddell gyre and Antarctic Circumpolar Current in facilitating circum-Antarctic nematode species distributions. We also show that genetic structuring and cryptic speciation can be very different in nematode species isolated from the same geographic area, but with

  8. Nature, nurture, and capital punishment: How evidence of a genetic-environment interaction, future dangerousness, and deliberation affect sentencing decisions.

    Science.gov (United States)

    Gordon, Natalie; Greene, Edie

    2018-01-01

    Research has shown that the low-activity MAOA genotype in conjunction with a history of childhood maltreatment increases the likelihood of violent behaviors. This genetic-environment (G × E) interaction has been introduced as mitigation during the sentencing phase of capital trials, yet there is scant data on its effectiveness. This study addressed that issue. In a factorial design that varied mitigating evidence offered by the defense [environmental (i.e., childhood maltreatment), genetic, G × E, or none] and the likelihood of the defendant's future dangerousness (low or high), 600 mock jurors read sentencing phase evidence in a capital murder trial, rendered individual verdicts, and half deliberated as members of a jury to decide a sentence of death or life imprisonment. The G × E evidence had little mitigating effect on sentencing preferences: participants who received the G × E evidence were no less likely to sentence the defendant to death than those who received evidence of childhood maltreatment or a control group that received neither genetic nor maltreatment evidence. Participants with evidence of a G × E interaction were more likely to sentence the defendant to death when there was a high risk of future dangerousness than when there was a low risk. Sentencing preferences were more lenient after deliberation than before. We discuss limitations and future directions. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Human genetics of infectious diseases: a unified theory

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2007-01-01

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predisposing the individual to a principal or single type of infection is emerging. In parallel, several common infections have been shown to reflect the inheritance of one major susceptibility gene, at least in some populations. This novel causal relationship (one gene, one infection) blurs the distinction between patient-based Mendelian genetics and population-based complex genetics, and provides a unified conceptual frame for exploring the molecular genetic basis of infectious diseases in humans. PMID:17255931

  10. Genetic diversity and population structure of leaf-nosed bat ...

    African Journals Online (AJOL)

    Genetic variation and population structure of the leaf-nosed bat Hipposideros speoris were estimated using 16S rRNA sequence and microsatellite analysis. Twenty seven distinct mitochondrial haplotypes were identified from 186 individuals, sampled from eleven populations. FST test revealed significant variations ...

  11. Gene-Environment Interplay between Number of Friends and Prosocial Leadership Behavior in Children

    Science.gov (United States)

    Rivizzigno, Alessandra S.; Brendgen, Mara; Feng, Bei; Vitaro, Frank; Dionne, Ginette; Tremblay, Richard E.; Boivin, Michel

    2014-01-01

    Enriched environments may moderate the effect of genetic factors on prosocial leadership (gene-environment interaction, G × E). However, positive environmental experiences may also themselves be influenced by a genetic disposition for prosocial leadership (gene-environment correlation, rGE). Relating these processes to friendships, the present…

  12. Application of the distributed genetic algorithm for in-core fuel optimization problems under parallel computational environment

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Hashimoto, Hiroshi

    2002-01-01

    The distributed genetic algorithm (DGA) is applied for loading pattern optimization problems of the pressurized water reactors. A basic concept of DGA follows that of the conventional genetic algorithm (GA). However, DGA equally distributes candidates of solutions (i.e. loading patterns) to several independent ''islands'' and evolves them in each island. Communications between islands, i.e. migrations of some candidates between islands are performed with a certain period. Since candidates of solutions independently evolve in each island while accepting different genes of migrants, premature convergence in the conventional GA can be prevented. Because many candidate loading patterns should be evaluated in GA or DGA, the parallelization is efficient to reduce turn around time. Parallel efficiency of DGA was measured using our optimization code and good efficiency was attained even in a heterogeneous cluster environment due to dynamic distribution of the calculation load. The optimization code is based on the client/server architecture with the TCP/IP native socket and a client (optimization) module and calculation server modules communicate the objects of loading patterns each other. Throughout the sensitivity study on optimization parameters of DGA, a suitable set of the parameters for a test problem was identified. Finally, optimization capability of DGA and the conventional GA was compared in the test problem and DGA provided better optimization results than the conventional GA. (author)

  13. Conceptus development and transcriptome at preimplantation stages in lactating dairy cows of distinct genetic groups and estrous cyclic statuses.

    Science.gov (United States)

    Ribeiro, E S; Monteiro, A P A; Bisinotto, R S; Lima, F S; Greco, L F; Ealy, A D; Thatcher, W W; Santos, J E P

    2016-06-01

    The objectives were to compare development and transcriptome of preimplantation conceptuses 15 d after synchronized ovulation and artificial insemination (AI) according to the genetic background of the cow and estrous cyclicity at the initiation of the synchronization program. On d 39±3 postpartum, Holstein cows that were anovular (HA; n=10), Holstein cows that were estrous cyclic (HC; n=25), and Jersey/Holstein crossbred cows that were estrous cyclic (CC; n=25) were randomly selected in a grazing herd and subjected to the Ovsynch protocol. All cows were inseminated on d 49±3 postpartum, which was considered study d 0. Blood was sampled and analyzed for concentrations of progesterone, estradiol, insulin, and insulin-like growth factor 1 (IGF-1) on study d -10, -3, -1, 7, and 15 relative to AI. On study d 15, uteri were flushed and recovered fluid had IFN-τ concentrations measured and subjected to metabolomic analysis. Morphology of the recovered conceptuses was evaluated, and mRNA was extracted and subjected to transcriptome microarray analysis. Compared with HC, CC presented greater concentrations of progesterone and estradiol in plasma, with corpora lutea and preovulatory follicles of similar size. Conceptuses from CC were larger, tended to secrete greater amounts of IFN-τ, and had greater transcript expression of peroxisome proliferator-activated receptor gamma (PPARγ), an important transcription factor that coordinates lipid metabolism and elongation at preimplantation development. In addition, pregnant CC had greater concentrations of anandamide in the uterine flush, which might be important for elongation of the conceptus and early implantation. Conceptuses from HA were also longer and secreted greater amounts of IFN-τ than conceptuses from HC, likely because of the distinct progesterone profiles before and after AI. Nonetheless, anovular cows had reduced concentrations of IGF-1 in plasma, and their conceptuses presented remarkable transcriptomic

  14. Gene-Environment Interplay in Twin Models

    Science.gov (United States)

    Hatemi, Peter K.

    2013-01-01

    In this article, we respond to Shultziner’s critique that argues that identical twins are more alike not because of genetic similarity, but because they select into more similar environments and respond to stimuli in comparable ways, and that these effects bias twin model estimates to such an extent that they are invalid. The essay further argues that the theory and methods that undergird twin models, as well as the empirical studies which rely upon them, are unaware of these potential biases. We correct this and other misunderstandings in the essay and find that gene-environment (GE) interplay is a well-articulated concept in behavior genetics and political science, operationalized as gene-environment correlation and gene-environment interaction. Both are incorporated into interpretations of the classical twin design (CTD) and estimated in numerous empirical studies through extensions of the CTD. We then conduct simulations to quantify the influence of GE interplay on estimates from the CTD. Due to the criticism’s mischaracterization of the CTD and GE interplay, combined with the absence of any empirical evidence to counter what is presented in the extant literature and this article, we conclude that the critique does not enhance our understanding of the processes that drive political traits, genetic or otherwise. PMID:24808718

  15. Genomic selection improves response to selection in resilience by exploiting genotype by environment interactions

    NARCIS (Netherlands)

    Mulder, Herman

    2016-01-01

    Genotype by environment interactions (GxE) are very common in livestock and hamper genetic improvement. On the other hand, GxE is a source of genetic variation: genetic variation in response to environment, e.g., environmental perturbations such as heat stress or disease. In livestock breeding,

  16. Characterisation of the genetic diversity of Brucella by multilocus sequencing

    Directory of Open Access Journals (Sweden)

    MacMillan Alastair P

    2007-04-01

    Full Text Available Abstract Background Brucella species include economically important zoonotic pathogens that can infect a wide range of animals. There are currently six classically recognised species of Brucella although, as yet unnamed, isolates from various marine mammal species have been reported. In order to investigate genetic relationships within the group and identify potential diagnostic markers we have sequenced multiple genetic loci from a large sample of Brucella isolates representing the known diversity of the genus. Results Nine discrete genomic loci corresponding to 4,396 bp of sequence were examined from 160 Brucella isolates. By assigning each distinct allele at a locus an arbitrary numerical designation the population was found to represent 27 distinct sequence types (STs. Diversity at each locus ranged from 1.03–2.45% while overall genetic diversity equated to 1.5%. Most loci examined represent housekeeping gene loci and, in all but one case, the ratio of non-synonymous to synonymous change was substantially Brucella species, B. abortus, B. melitensis, B. ovis and B. neotomae correspond to well-separated clusters. With the exception of biovar 5, B. suis isolates cluster together, although they form a more diverse group than other classical species with a number of distinct STs corresponding to the remaining four biovars. B. canis isolates are located on the same branch very closely related to, but distinguishable from, B. suis biovar 3 and 4 isolates. Marine mammal isolates represent a distinct, though rather weakly supported, cluster within which individual STs display one of three clear host preferences. Conclusion The sequence database provides a powerful dataset for addressing ongoing controversies in Brucella taxonomy and a tool for unambiguously placing atypical, phenotypically discordant or newly emerging Brucella isolates. Furthermore, by using the phylogenetic backbone described here, robust and rationally selected markers for use in

  17. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

    Science.gov (United States)

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A.; Burgueño, Juan; Pérez-Rodríguez, Paulino; de los Campos, Gustavo

    2016-01-01

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects (u) that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model (u) plus an extra component, f, that captures random effects between environments that were not captured by the random effects u. We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u. PMID:27793970

  18. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

    Directory of Open Access Journals (Sweden)

    Jaime Cuevas

    2017-01-01

    Full Text Available The phenomenon of genotype × environment (G × E interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects ( u that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP and Gaussian (Gaussian kernel, GK. The other model has the same genetic component as the first model ( u plus an extra component, f, that captures random effects between environments that were not captured by the random effects u . We used five CIMMYT data sets (one maize and four wheat that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u   and   f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u .

  19. Genetic Regulation of Phenotypic Plasticity and Canalisation in Yeast Growth.

    Directory of Open Access Journals (Sweden)

    Anupama Yadav

    Full Text Available The ability of a genotype to show diverse phenotypes in different environments is called phenotypic plasticity. Phenotypic plasticity helps populations to evade extinctions in novel environments, facilitates adaptation and fuels evolution. However, most studies focus on understanding the genetic basis of phenotypic regulation in specific environments. As a result, while it's evolutionary relevance is well established, genetic mechanisms regulating phenotypic plasticity and their overlap with the environment specific regulators is not well understood. Saccharomyces cerevisiae is highly sensitive to the environment, which acts as not just external stimulus but also as signalling cue for this unicellular, sessile organism. We used a previously published dataset of a biparental yeast population grown in 34 diverse environments and mapped genetic loci regulating variation in phenotypic plasticity, plasticity QTL, and compared them with environment-specific QTL. Plasticity QTL is one whose one allele exhibits high plasticity whereas the other shows a relatively canalised behaviour. We mapped phenotypic plasticity using two parameters-environmental variance, an environmental order-independent parameter and reaction norm (slope, an environmental order-dependent parameter. Our results show a partial overlap between pleiotropic QTL and plasticity QTL such that while some plasticity QTL are also pleiotropic, others have a significant effect on phenotypic plasticity without being significant in any environment independently. Furthermore, while some plasticity QTL are revealed only in specific environmental orders, we identify large effect plasticity QTL, which are order-independent such that whatever the order of the environments, one allele is always plastic and the other is canalised. Finally, we show that the environments can be divided into two categories based on the phenotypic diversity of the population within them and the two categories have

  20. Quantum Distinction: Quantum Distinctiones!

    OpenAIRE

    Zeps, Dainis

    2009-01-01

    10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...

  1. [The genetics of addictions].

    Science.gov (United States)

    Ibañez Cuadrado, Angela

    2008-01-01

    The addictions are common chronic psychiatric diseases which represent a serious worldwide public-health problem. They have a high prevalence and negative effects at individual, family and societal level, with a high sanitary cost. Epidemiological genetic research has revealed that addictions are moderately to highly heritable. Also the investigation has evidenced that environmental and genetic factors contribute to individual differences in vulnerability to addictions. Advances in the neurobiology of addiction joined to the development of new molecular genetic technologies, have led to the identification of a variety of underlying genes and pathways in addiction process, leading to the description of common molecular mechanisms in substance and behaviour dependencies. Identifying gene-environment interactions is a crucial issue in future research. Other major goal in genetic research is the identification of new therapeutic targets for treatment and prevention.

  2. Salmonella Typhimurium undergoes distinct genetic adaption during chronic infections of mice

    DEFF Research Database (Denmark)

    Søndberg, Emilie; Jelsbak, Lotte

    2016-01-01

    Background Typhoid fever caused by Salmonella enterica serovar Typhi (S. Typhi) is a severe systemic human disease and endemic in regions of the world with poor drinking water quality and sewage treatment facilities. A significant number of patients become asymptomatic life-long carriers of S....... In the current study genetic adaptation during experimental chronic S. Typhimurium infections of mice, an established model of chronic typhoid fever, was probed as an approach for studying the molecular mechanisms of host-adaptation during long-term host-association. Results Individually sequence-tagged wild...

  3. Genetic manipulation of Methanosarcina spp.

    Directory of Open Access Journals (Sweden)

    Petra Regine Adelheid Kohler

    2012-07-01

    Full Text Available The discovery of the third domain of life, the Archaea, is one of the most exciting findings of the last century. These remarkable prokaryotes are well known for their adaptations to extreme environments; however, Archaea have also conquered moderate environments. Many of the archaeal biochemical processes, such as methane production, are unique in nature and therefore of great scientific interest. Although formerly restricted to biochemical and physiological studies, sophisticated systems for genetic manipulation have been developed during the last two decades for methanogenic archaea, halophilic archaea and thermophilic, sulfur-metabolizing archaea. The availability of these tools has allowed for more complete studies of archaeal physiology and metabolism and most importantly provides the basis for the investigation of gene expression, regulation and function. In this review we provide an overview of methods for genetic manipulation of Methanosarcina spp., a group of methanogenic archaea that are key players in the global carbon cycle and which can be found in a variety of anaerobic environments.

  4. Pediatric schwannomatosis, a rare but distinct form of neurofibromatosis

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Anna K. [University of Tennessee Health Science Center, Department of Radiology, Le Bonheur Children' s Hospital, Memphis, TN (United States); Egelhoff, John C.; Curran, John G. [Phoenix Children' s Hospital, Department of Radiology, Phoenix, AZ (United States); Thomas, Bobby

    2016-03-15

    Schwannomatosis is the third major form of neurofibromatosis, distinct from neurofibromatosis type 2 (NF2) and type 1 (NF1). This condition is rare with a variable phenotypic presentation and complex molecular and genetic findings. In this case, a previously healthy teenager was found to have multiple spinal lesions and an enhancing right parotid mass on MRI. On extensive further work-up, this patient met the existing clinical criteria for schwannomatosis. This case report aims to review the clinical features and current diagnostic criteria for schwannomatosis and compare it to NF1 and NF2. Special emphasis will be placed on imaging features that should prompt the radiologist to suggest this rare diagnosis. (orig.)

  5. Genetic Diversity in Salmonella Isolates from Ducks and their Environments in Penang, Malaysia using Enterobacterial Repetitive Intergenic Consensus

    Directory of Open Access Journals (Sweden)

    Frederick Adzitey 1, Gulam Rusul Rahmat Ali2*, Nurul Huda2 and Rosma Ahmad3

    2013-07-01

    Full Text Available A total of 107 Salmonella isolates (37 S. typhimurium, 26 S. hadar, 15 S. enteritidis, 15 S. braenderup, and 14 S. albany isolated from ducks and their environments in Penang, Malaysia were typed using enterobacterial repetitive intergenic consensus (ERIC to determine their genetic diversity. Analysis of the Salmonella strains by ERIC produced DNA fingerprints of different sizes for differentiation purposes. The DNA fingerprints or band sizes ranged from 14-8300bp for S. Typhimurium, 146-6593bp for S. hadar, 15-4929bp for S. enteritidis, 14-5142bp for S. braenderup and 7-5712bp for S. albany. Cluster analysis at a coefficient of 0.85 grouped the Salmonella strains into various clusters and singletons. S. typhimurium were grouped into 10 clusters and 6 singletons, S. Hadar were grouped into 3 clusters and 18 singletons, S. enteritidis were grouped into 3 clusters and 7 singletons, S. braenderup were grouped into 4 clusters and 7 singletons, and S. albany were grouped into 3 clusters and 7 singletons with discriminatory index (D ranging from 0.92-0.98. ERIC proved to be a useful typing tool for determining the genetic diversity of the duck Salmonella strains.

  6. Identification of intra-accession genetic diversity in selfing crops using AFLP markers: implications for collection management

    NARCIS (Netherlands)

    Treuren, van R.; Hintum, van Th.J.L.

    2001-01-01

    Germplasm conserved as seeds in genebanks requires regular regeneration. In this process, selection and genetic drift may cause loss of genetic diversity from accessions. In the case of selfing crops, separation of distinct lines into different accessions may be an efficient strategy to avoid these

  7. Distinct Biological Potential of Streptococcus gordonii and Streptococcus sanguinis Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Zheng, Wenning; Tan, Mui Fern; Old, Lesley A; Paterson, Ian C; Jakubovics, Nicholas S; Choo, Siew Woh

    2017-06-07

    Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.

  8. Gene-Environment Interactions in Severe Mental Illness

    Directory of Open Access Journals (Sweden)

    Rudolf eUher

    2014-05-01

    Full Text Available Severe mental illness is a broad category that includes schizophrenia, bipolar disorder and severe depression. Both genetic disposition and environmental exposures play important roles in the development of severe mental illness. Multiple lines of evidence suggest that the roles of genetic and environmental depend on each other. Gene-environment interactions may underlie the paradox of strong environmental factors for highly heritable disorders, the low estimates of shared environmental influences in twin studies of severe mental illness and the heritability gap between twin and molecular heritability estimates. Sons and daughters of parents with severe mental illness are more vulnerable to the effects of prenatal and postnatal environmental exposures, suggesting that the expression of genetic liability depends on environment. In the last decade, gene-environment interactions involving specific molecular variants in candidate genes have been identified. Replicated findings include an interaction between a polymorphism in the AKT1 gene and cannabis use in the development of psychosis and an interaction between the length polymorphism of the serotonin transporter gene and childhood maltreatment in the development of persistent depressive disorder. Bipolar disorder has been underinvestigated, with only a single study showing an interaction between a functional polymorphism in BDNF and stressful life events triggering bipolar depressive episodes. The first systematic search for gene-environment interactions has found that a polymorphism in CTNNA3 may sensitise the developing brain to the pathogenic effect of cytomegalovirus in utero, leading to schizophrenia in adulthood. Strategies for genome-wide investigations will likely include coordination between epidemiological and genetic research efforts, systematic assessment of multiple environmental factors in large samples, and prioritization of genetic variants.

  9. Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea

    KAUST Repository

    Nanninga, Gerrit B.

    2014-01-20

    The relatively recent fields of terrestrial landscape and marine seascape genetics seek to identify the influence of biophysical habitat features on the spatial genetic structure of populations or individuals. Over the last few years, there has been accumulating evidence for the effect of environmental heterogeneity on patterns of gene flow and connectivity in marine systems. Here, we investigate the population genetic patterns of an anemonefish, Amphiprion bicinctus, along the Saudi Arabian coast of the Red Sea. We collected nearly one thousand samples from 19 locations, spanning approximately 1500 km, and genotyped them at 38 microsatellite loci. Patterns of gene flow appeared to follow a stepping-stone model along the northern and central Red Sea, which was disrupted by a distinct genetic break at a latitude of approximately 19°N. The Red Sea is characterized by pronounced environmental gradients along its axis, roughly separating the northern and central from the southern basin. Using mean chlorophyll-a concentrations as a proxy for this gradient, we ran tests of isolation by distance (IBD, R2 = 0.52) and isolation by environment (IBE, R2 = 0.64), as well as combined models using partial Mantel tests and multiple matrix regression with randomization (MMRR). We found that genetic structure across our sampling sites may be best explained by a combined model of IBD and IBE (Mantel: R2 = 0.71, MMRR: R2 = 0.86). Our results highlight the potential key role of environmental patchiness in shaping patterns of gene flow in species with pelagic larval dispersal. We support growing calls for the integration of biophysical habitat characteristics into future studies of population genetic structure. © 2014 John Wiley & Sons Ltd.

  10. Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea

    KAUST Repository

    Nanninga, Gerrit B.; Saenz Agudelo, Pablo; Manica, Andrea; Berumen, Michael L.

    2014-01-01

    The relatively recent fields of terrestrial landscape and marine seascape genetics seek to identify the influence of biophysical habitat features on the spatial genetic structure of populations or individuals. Over the last few years, there has been accumulating evidence for the effect of environmental heterogeneity on patterns of gene flow and connectivity in marine systems. Here, we investigate the population genetic patterns of an anemonefish, Amphiprion bicinctus, along the Saudi Arabian coast of the Red Sea. We collected nearly one thousand samples from 19 locations, spanning approximately 1500 km, and genotyped them at 38 microsatellite loci. Patterns of gene flow appeared to follow a stepping-stone model along the northern and central Red Sea, which was disrupted by a distinct genetic break at a latitude of approximately 19°N. The Red Sea is characterized by pronounced environmental gradients along its axis, roughly separating the northern and central from the southern basin. Using mean chlorophyll-a concentrations as a proxy for this gradient, we ran tests of isolation by distance (IBD, R2 = 0.52) and isolation by environment (IBE, R2 = 0.64), as well as combined models using partial Mantel tests and multiple matrix regression with randomization (MMRR). We found that genetic structure across our sampling sites may be best explained by a combined model of IBD and IBE (Mantel: R2 = 0.71, MMRR: R2 = 0.86). Our results highlight the potential key role of environmental patchiness in shaping patterns of gene flow in species with pelagic larval dispersal. We support growing calls for the integration of biophysical habitat characteristics into future studies of population genetic structure. © 2014 John Wiley & Sons Ltd.

  11. Interaction between Social/Psychosocial Factors and Genetic Variants on Body Mass Index: A Gene-Environment Interaction Analysis in a Longitudinal Setting.

    Science.gov (United States)

    Zhao, Wei; Ware, Erin B; He, Zihuai; Kardia, Sharon L R; Faul, Jessica D; Smith, Jennifer A

    2017-09-29

    Obesity, which develops over time, is one of the leading causes of chronic diseases such as cardiovascular disease. However, hundreds of BMI (body mass index)-associated genetic loci identified through large-scale genome-wide association studies (GWAS) only explain about 2.7% of BMI variation. Most common human traits are believed to be influenced by both genetic and environmental factors. Past studies suggest a variety of environmental features that are associated with obesity, including socioeconomic status and psychosocial factors. This study combines both gene/regions and environmental factors to explore whether social/psychosocial factors (childhood and adult socioeconomic status, social support, anger, chronic burden, stressful life events, and depressive symptoms) modify the effect of sets of genetic variants on BMI in European American and African American participants in the Health and Retirement Study (HRS). In order to incorporate longitudinal phenotype data collected in the HRS and investigate entire sets of single nucleotide polymorphisms (SNPs) within gene/region simultaneously, we applied a novel set-based test for gene-environment interaction in longitudinal studies (LGEWIS). Childhood socioeconomic status (parental education) was found to modify the genetic effect in the gene/region around SNP rs9540493 on BMI in European Americans in the HRS. The most significant SNP (rs9540488) by childhood socioeconomic status interaction within the rs9540493 gene/region was suggestively replicated in the Multi-Ethnic Study of Atherosclerosis (MESA) ( p = 0.07).

  12. Interaction between Social/Psychosocial Factors and Genetic Variants on Body Mass Index: A Gene-Environment Interaction Analysis in a Longitudinal Setting

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2017-09-01

    Full Text Available Obesity, which develops over time, is one of the leading causes of chronic diseases such as cardiovascular disease. However, hundreds of BMI (body mass index-associated genetic loci identified through large-scale genome-wide association studies (GWAS only explain about 2.7% of BMI variation. Most common human traits are believed to be influenced by both genetic and environmental factors. Past studies suggest a variety of environmental features that are associated with obesity, including socioeconomic status and psychosocial factors. This study combines both gene/regions and environmental factors to explore whether social/psychosocial factors (childhood and adult socioeconomic status, social support, anger, chronic burden, stressful life events, and depressive symptoms modify the effect of sets of genetic variants on BMI in European American and African American participants in the Health and Retirement Study (HRS. In order to incorporate longitudinal phenotype data collected in the HRS and investigate entire sets of single nucleotide polymorphisms (SNPs within gene/region simultaneously, we applied a novel set-based test for gene-environment interaction in longitudinal studies (LGEWIS. Childhood socioeconomic status (parental education was found to modify the genetic effect in the gene/region around SNP rs9540493 on BMI in European Americans in the HRS. The most significant SNP (rs9540488 by childhood socioeconomic status interaction within the rs9540493 gene/region was suggestively replicated in the Multi-Ethnic Study of Atherosclerosis (MESA (p = 0.07.

  13. Radioprotection of the environment: on the context of biodiversity and evolutionary theory. A reference organism has no genetic properties

    International Nuclear Information System (INIS)

    Cedervall, Bjoern

    2008-01-01

    The recent efforts to define a basis for radioprotection of the environment include some concepts and ideas related to various endpoints which need a clarification. This paper focuses on the biodiversity concept and the context of individuals of a species as well as that of the species as a gene pool. A major problem with the ambition to radioprotect biodiversity is the concept 'reference organism' which has no genetic properties and therefore is in contradiction with a real biological species. Biodiversity and the species (gene pool) concept are, just as any other areas of biology, integral parts of evolutionary theory. With the reference organism as a basis no meaningful reasoning can take place which relates data on radioactivity levels or mutations to potential effects on populations or biodiversity. It is therefore suggested that the national and international bodies involved in radioprotection of the environment take advantage of evolutionary theory as a reference frame. (author)

  14. Genetic engineering, a hope for sustainable biofuel production: review

    Directory of Open Access Journals (Sweden)

    Sudip Paudel

    2014-06-01

    Full Text Available The use of recently developed genetic engineering tools in combination with organisms that have the potential to produce precursors for the production of biodiesel, promises a sustainable and environment friendly energy source. Enhanced lipid production in wild type and/or genetically engineered organisms can offer sufficient raw material for industrial transesterification of plant-based triglycerides. Bio-diesel, produced with the help of genetically modified organisms, might be one of the best alternatives to fossil fuels and to mitigate various environmental hazards. DOI: http://dx.doi.org/10.3126/ije.v3i2.10644 International Journal of the Environment Vol.3(2 2014: 311-323

  15. Demographic history and biologically relevant genetic variation of Native Mexicans inferred from whole-genome sequencing

    OpenAIRE

    Romero-Hidalgo, Sandra; Ochoa-Leyva, Adrián; Garcíarrubio, Alejandro; Acuña-Alonzo, Victor; Antúnez-Argüelles, Erika; Balcazar-Quintero, Martha; Barquera-Lozano, Rodrigo; Carnevale, Alessandra; Cornejo-Granados, Fernanda; Fernández-López, Juan Carlos; García-Herrera, Rodrigo; García-Ortíz, Humberto; Granados-Silvestre, Ángeles; Granados, Julio; Guerrero-Romero, Fernando

    2017-01-01

    Understanding the genetic structure of Native American populations is important to clarify their diversity, demographic history, and to identify genetic factors relevant for biomedical traits. Here, we show a demographic history reconstruction from 12 Native American whole genomes belonging to six distinct ethnic groups representing the three main described genetic clusters of Mexico (Northern, Southern, and Maya). Effective population size estimates of all Native American groups remained bel...

  16. Access and benefits sharing of genetic resources and associated traditional knowledge in northern Canada: understanding the legal environment and creating effective research agreements

    Directory of Open Access Journals (Sweden)

    Janis Geary

    2013-08-01

    Full Text Available Background. Research in northern Canada focused on Aboriginal peoples has historically benefited academia with little consideration for the people being researched or their traditional knowledge (TK. Although this attitude is changing, the complexity of TK makes it difficult to develop mechanisms to preserve and protect it. Protecting TK becomes even more important when outside groups become interested in using TK or materials with associated TK. In the latter category are genetic resources, which may have commercial value and are the focus of this article. Objective. This article addresses access to and use of genetic resources and associated TK in the context of the historical power-imbalances in research relationships in Canadian north. Design. Review. Results. Research involving genetic resources and TK is becoming increasingly relevant in northern Canada. The legal framework related to genetic resources and the cultural shift of universities towards commercial goals in research influence the environment for negotiating research agreements. Current guidelines for research agreements do not offer appropriate guidelines to achieve mutual benefit, reflect unequal bargaining power or take the relationship between parties into account. Conclusions. Relational contract theory may be a useful framework to address the social, cultural and legal hurdles inherent in creating research agreements.

  17. Innate and adaptive immune traits are differentially affected by genetic and environmental factors

    Science.gov (United States)

    Mangino, Massimo; Roederer, Mario; Beddall, Margaret H.; Nestle, Frank O.; Spector, Tim D.

    2017-01-01

    The diversity and activity of leukocytes is controlled by genetic and environmental influences to maintain balanced immune responses. However, the relative contribution of environmental compared with genetic factors that affect variations in immune traits is unknown. Here we analyse 23,394 immune phenotypes in 497 adult female twins. 76% of these traits show a predominantly heritable influence, whereas 24% are mostly influenced by environment. These data highlight the importance of shared childhood environmental influences such as diet, infections or microbes in shaping immune homeostasis for monocytes, B1 cells, γδ T cells and NKT cells, whereas dendritic cells, B2 cells, CD4+ T and CD8+ T cells are more influenced by genetics. Although leukocyte subsets are influenced by genetics and environment, adaptive immune traits are more affected by genetics, whereas innate immune traits are more affected by environment. PMID:28054551

  18. Genetic profiles distinguish different types of hereditary ovarian cancer

    DEFF Research Database (Denmark)

    Domanska, Katarina; Malander, Susanne; Staaf, Johan

    2010-01-01

    (HBOC) syndrome and the hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Genome-wide array comparative genomic hybridization was applied to 12 HBOC associated tumors with BRCA1 mutations and 8 HNPCC associated tumors with mismatch repair gene mutations with 24 sporadic ovarian cancers......Heredity represents the strongest risk factor for ovarian cancer with disease predisposing mutations identified in 15% of the tumors. With the aim to identify genetic classifiers for hereditary ovarian cancer, we profiled hereditary ovarian cancers linked to the hereditary breast and ovarian cancer...... that HBOC and HNPCC associated ovarian cancer develop along distinct genetic pathways and genetic profiles can thus be applied to distinguish between different types of hereditary ovarian cancer....

  19. Agent-specific learning signals for self-other distinction during mentalising.

    Directory of Open Access Journals (Sweden)

    Sam Ereira

    2018-04-01

    Full Text Available Humans have a remarkable ability to simulate the minds of others. How the brain distinguishes between mental states attributed to self and mental states attributed to someone else is unknown. Here, we investigated how fundamental neural learning signals are selectively attributed to different agents. Specifically, we asked whether learning signals are encoded in agent-specific neural patterns or whether a self-other distinction depends on encoding agent identity separately from this learning signal. To examine this, we tasked subjects to learn continuously 2 models of the same environment, such that one was selectively attributed to self and the other was selectively attributed to another agent. Combining computational modelling with magnetoencephalography (MEG enabled us to track neural representations of prediction errors (PEs and beliefs attributed to self, and of simulated PEs and beliefs attributed to another agent. We found that the representational pattern of a PE reliably predicts the identity of the agent to whom the signal is attributed, consistent with a neural self-other distinction implemented via agent-specific learning signals. Strikingly, subjects exhibiting a weaker neural self-other distinction also had a reduced behavioural capacity for self-other distinction and displayed more marked subclinical psychopathological traits. The neural self-other distinction was also modulated by social context, evidenced in a significantly reduced decoding of agent identity in a nonsocial control task. Thus, we show that self-other distinction is realised through an encoding of agent identity intrinsic to fundamental learning signals. The observation that the fidelity of this encoding predicts psychopathological traits is of interest as a potential neurocomputational psychiatric biomarker.

  20. Genetic liability, environment, and the development of fussiness in toddlers: the roles of maternal depression and parental responsiveness.

    Science.gov (United States)

    Natsuaki, Misaki N; Ge, Xiaojia; Leve, Leslie D; Neiderhiser, Jenae M; Shaw, Daniel S; Conger, Rand D; Scaramella, Laura V; Reid, John B; Reiss, David

    2010-09-01

    Using a longitudinal, prospective adoption design, the authors of this study examined the effects of the environment (adoptive parents' depressive symptoms and responsiveness) and genetic liability of maternal depression (inferred by birth mothers' major depressive disorder [MDD]) on the development of fussiness in adopted children between 9 and 18 months old. The sample included 281 families linked through adoption, with each family including 4 individuals (i.e., adopted child, birth mother, adoptive father and mother). Results showed that adoptive mothers' depressive symptoms when their child was 9 months old were positively associated with child fussiness at 18 months. A significant interaction between birth mothers' MDD and adoptive mothers' responsiveness indicated that children of birth mothers with MDD showed higher levels of fussiness at 18 months when adoptive mothers had been less responsive to the children at 9 months. However, in the context of high levels of adoptive mothers' responsiveness, children of birth mothers with MDD did not show elevated fussiness at 18 months. Findings are discussed in terms of gene-environment interactions in the intergenerational risk transmission of depression.

  1. Genetic variation and effects on human eating behavior

    NARCIS (Netherlands)

    de Krom, Mariken; Bauer, Florianne; Collier, David; Adan, R. A. H.; la Fleur, Susanne E.

    2009-01-01

    Feeding is a physiological process, influenced by genetic factors and the environment. In recent years, many studies have been performed to unravel the involvement of genetics in both eating behavior and its pathological forms: eating disorders and obesity. In this review, we provide a condensed

  2. Conceptual Diagnosis Model Based on Distinct Knowledge Dyads for Interdisciplinary Environments

    Directory of Open Access Journals (Sweden)

    Cristian VIZITIU

    2014-06-01

    Full Text Available The present paper has a synergic dual purpose of bringing a psychological and neuroscience related perspective oriented towards decision making and knowledge creation diagnosis in the frame of Knowledge Management. !e conceptual model is built by means ofCognitive-Emotional and Explicit-Tacit knowledge dyads and structured on Analytic Hierarchy Process (AHP according to the hypothesis which designates the first dyad as an accessing mechanism of knowledge stored in the second dyad. Due to the well acknowledged needsconcerning new advanced decision making instruments and enhanced knowledge creation processes in the field of technical space projects emphasized by a high level of complexity, the herein study tries also to prove the relevance of the proposed conceptual diagnosis modelin Systems Engineering (SE methodology which foresees at its turn concurrent engineering within interdisciplinary working environments. !e theoretical model, entitled DiagnoSE, has the potential to provide practical implications to space/space related business sector butnot merely, and on the other hand, to trigger and inspire other knowledge management related researches for refining and testing the proposed instrument in SE or other similar decision making based working environment.

  3. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes.

    Science.gov (United States)

    Chapuy, Bjoern; Stewart, Chip; Dunford, Andrew J; Kim, Jaegil; Kamburov, Atanas; Redd, Robert A; Lawrence, Mike S; Roemer, Margaretha G M; Li, Amy J; Ziepert, Marita; Staiger, Annette M; Wala, Jeremiah A; Ducar, Matthew D; Leshchiner, Ignaty; Rheinbay, Ester; Taylor-Weiner, Amaro; Coughlin, Caroline A; Hess, Julian M; Pedamallu, Chandra S; Livitz, Dimitri; Rosebrock, Daniel; Rosenberg, Mara; Tracy, Adam A; Horn, Heike; van Hummelen, Paul; Feldman, Andrew L; Link, Brian K; Novak, Anne J; Cerhan, James R; Habermann, Thomas M; Siebert, Reiner; Rosenwald, Andreas; Thorner, Aaron R; Meyerson, Matthew L; Golub, Todd R; Beroukhim, Rameen; Wulf, Gerald G; Ott, German; Rodig, Scott J; Monti, Stefano; Neuberg, Donna S; Loeffler, Markus; Pfreundschuh, Michael; Trümper, Lorenz; Getz, Gad; Shipp, Margaret A

    2018-04-30

    Diffuse large B cell lymphoma (DLBCL), the most common lymphoid malignancy in adults, is a clinically and genetically heterogeneous disease that is further classified into transcriptionally defined activated B cell (ABC) and germinal center B cell (GCB) subtypes. We carried out a comprehensive genetic analysis of 304 primary DLBCLs and identified low-frequency alterations, captured recurrent mutations, somatic copy number alterations, and structural variants, and defined coordinate signatures in patients with available outcome data. We integrated these genetic drivers using consensus clustering and identified five robust DLBCL subsets, including a previously unrecognized group of low-risk ABC-DLBCLs of extrafollicular/marginal zone origin; two distinct subsets of GCB-DLBCLs with different outcomes and targetable alterations; and an ABC/GCB-independent group with biallelic inactivation of TP53, CDKN2A loss, and associated genomic instability. The genetic features of the newly characterized subsets, their mutational signatures, and the temporal ordering of identified alterations provide new insights into DLBCL pathogenesis. The coordinate genetic signatures also predict outcome independent of the clinical International Prognostic Index and suggest new combination treatment strategies. More broadly, our results provide a roadmap for an actionable DLBCL classification.

  4. Integration of population genetic structure and plant response to climate change: sustaining genetic resources through evaluation of projected threats

    Science.gov (United States)

    Bryce A. Richardson; Marcus V. Warwell; Mee-Sook Kim; Ned B. Klopfenstein; Geral I. McDonald

    2010-01-01

    To assess threats or predict responses to disturbances, or both, it is essential to recognize and characterize the population structures of forest species in relation to changing environments. Appropriate management of these genetic resources in the future will require (1) understanding the existing genetic diversity/variation and population structure of forest trees...

  5. Morphometrics parallel genetics in a newly discovered and endangered taxon of Galápagos tortoise.

    Directory of Open Access Journals (Sweden)

    Ylenia Chiari

    2009-07-01

    Full Text Available Galápagos tortoises represent the only surviving lineage of giant tortoises that exhibit two different types of shell morphology. The taxonomy of Galápagos tortoises was initially based mainly on diagnostic morphological characters of the shell, but has been clarified by molecular studies indicating that most islands harbor monophyletic lineages, with the exception of Isabela and Santa Cruz. On Santa Cruz there is strong genetic differentiation between the two tortoise populations (Cerro Fatal and La Reserva exhibiting domed shell morphology. Here we integrate nuclear microsatellite and mitochondrial data with statistical analyses of shell shape morphology to evaluate whether the genetic distinction and variability of the two domed tortoise populations is paralleled by differences in shell shape. Based on our results, morphometric analyses support the genetic distinction of the two populations and also reveal that the level of genetic variation is associated with morphological shell shape variation in both populations. The Cerro Fatal population possesses lower levels of morphological and genetic variation compared to the La Reserva population. Because the turtle shell is a complex heritable trait, our results suggest that, for the Cerro Fatal population, non-neutral loci have probably experienced a parallel decrease in variability as that observed for the genetic data.

  6. Genetic background of supernumerary teeth.

    Science.gov (United States)

    Subasioglu, Asli; Savas, Selcuk; Kucukyilmaz, Ebru; Kesim, Servet; Yagci, Ahmet; Dundar, Munis

    2015-01-01

    Supernumerary teeth (ST) are odontostomatologic anomaly characterized by as the existence excessive number of teeth in relation to the normal dental formula. This condition is commonly seen with several congenital genetic disorders such as Gardner's syndrome, cleidocranial dysostosis and cleft lip and palate. Less common syndromes that are associated with ST are; Fabry Disease, Ellis-van Creveld syndrome, Nance-Horan syndrome, Rubinstein-Taybi Syndrome and Trico-Rhino-Phalangeal syndrome. ST can be an important component of a distinctive disorder and an important clue for early diagnosis. Certainly early detecting the abnormalities gives us to make correct management of the patient and also it is important for making well-informed decisions about long-term medical care and treatment. In this review, the genetic syndromes that are related with ST were discussed.

  7. Menstrual blood closely resembles the uterine immune micro-environment and is clearly distinct from peripheral blood

    NARCIS (Netherlands)

    Molen, R.G. van der; Schutten, J.H.; Cranenbroek, B. van; Meer, M. ter; Donckers, J.; Scholten, R.R.; Heijden, O.W.H. van der; Spaanderman, M.E.A.; Joosten, I.

    2014-01-01

    STUDY QUESTION: Is menstrual blood a suitable source of endometrial derived lymphocytes? SUMMARY ANSWER: Mononuclear cells isolated from menstrual samples (menstrual blood mononuclear cells (MMC)) are clearly distinct from peripheral blood mononuclear cells (PBMC) and show a strong resemblance with

  8. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.

    Science.gov (United States)

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A; Burgueño, Juan; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo

    2017-01-05

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]. Copyright © 2017 Cuevas et al.

  9. Conservation genetics in a globally changing environment : present problems, paradoxes and future challenges

    NARCIS (Netherlands)

    Pertoldi, Cino; Bijlsma, R.; Loeschcke, Volker

    2007-01-01

    Despite recent advances in conservation genetics and related disciplines and the growing impact that conservation genetics is having in conservation biology, our knowledge on several key issues in the field is still insufficient. Here we identify some of these issues together with addressing several

  10. Geology of gemstone deposit Ugljarevats (Central Serbia) and contributions to genetic model

    International Nuclear Information System (INIS)

    Kureshevicj, Lidija; Vushovicj, Olivera; Delicj-Nikolicj, Ivana

    2017-01-01

    Silica gemstone deposit Ugljarevats is situated within the ophiolite sequence of the Vardar zone central deep fault. Genetic processes of this deposit are connected to the Neogene calc-alkaline magmatic activity of the Vardar zone and hydrothermal activity triggered by it. Based on surface occurrences of listwenitized serpentinite containing silica mineralization, it can be inferred that the ore body is an elongated oval stock. Within the stock of hydrothermally altered serpentinite, the gemstone mineralization occurs as veins, stock works and irregular bodies. Present gemstone types include chalcedony varieties (jasper, colourless and greenish chalcedony, carnelian and sard) and opal (opalized serpentinite). Homogenous pieces are very rare. Most often, various types of silica are intimately intermixed and combined. The mineralization has formed in two distinct hydrothermal phases, apparently in close time succession. Jasper and coloured chalcedony (and rare magnesite) are the products of the first phase of hydro- thermal activity, while the colourless chalcedony is formed in the second phase. Newly discovered type of silica vein with central-symmetrical parallel banding gives new contributions to a genetic model, proving the precipitation process and its products are unpredictably changeable, heterogeneous and depending on the evolution of the local environment physico-chemical conditions, notably the contents of impurities and system's openness degree. (author)

  11. Genetic variability in environmental isolates of Legionella pneumophila from Comunidad Valenciana (Spain).

    Science.gov (United States)

    Coscollá, Mireia; Gosalbes, María José; Catalán, Vicente; González-Candelas, Fernando

    2006-06-01

    Legionella pneumophila is associated to recurrent outbreaks in several Comunidad Valenciana (Spain) localities, especially in Alcoi, where social and climatic conditions seem to provide an excellent environment for bacterial growth. We have analysed the nucleotide sequences of three loci from 25 environmental isolates from Alcoi and nearby locations sampled over 3 years. The analysis of these isolates has revealed a substantial level of genetic variation, with consistent patterns of variability across loci, and comparable to that found in a large, European-wide sampling of clinical isolates. Among the tree loci studied, fliC showed the highest level of nucleotide diversity. The analysis of isolates sampled in different years revealed a clear differentiation, with samples from 2001 being significantly distinct from those obtained in 2002 and 2003. Furthermore, although linkage disequilibrium measures indicate a clonal nature for population structure in this sample, the presence of some recombination events cannot be ruled out.

  12. Global environment outlook GEO5. Environment for the future we want

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    The main goal of UNEP's Global Environment Outlook (GEO) is to keep governments and stakeholders informed of the state and trends of the global environment. Over the past 15 years, the GEO reports have examined a wealth of data, information and knowledge about the global environment; identified potential policy responses; and provided an outlook for the future. The assessments, and their consultative and collaborative processes, have worked to bridge the gap between science and policy by turning the best available scientific knowledge into information relevant for decision makers. The GEO-5 report is made up of 17 chapters organized into three distinct but linked parts. Part 1 - State and trends of the global environment; Part 2 - Policy options from the regions; Part 3 - Opportunities for a global response.

  13. Global environment outlook GEO5. Environment for the future we want

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    The main goal of UNEP's Global Environment Outlook (GEO) is to keep governments and stakeholders informed of the state and trends of the global environment. Over the past 15 years, the GEO reports have examined a wealth of data, information and knowledge about the global environment; identified potential policy responses; and provided an outlook for the future. The assessments, and their consultative and collaborative processes, have worked to bridge the gap between science and policy by turning the best available scientific knowledge into information relevant for decision makers. The GEO-5 report is made up of 17 chapters organized into three distinct but linked parts. Part 1 - State and trends of the global environment; Part 2 - Policy options from the regions; Part 3 - Opportunities for a global response.

  14. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs.

    Directory of Open Access Journals (Sweden)

    Noah Fahlgren

    Full Text Available In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work.

  15. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs.

    Science.gov (United States)

    Fahlgren, Noah; Bollmann, Stephanie R; Kasschau, Kristin D; Cuperus, Josh T; Press, Caroline M; Sullivan, Christopher M; Chapman, Elisabeth J; Hoyer, J Steen; Gilbert, Kerrigan B; Grünwald, Niklaus J; Carrington, James C

    2013-01-01

    In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work.

  16. Phytophthora Have Distinct Endogenous Small RNA Populations That Include Short Interfering and microRNAs

    Science.gov (United States)

    Fahlgren, Noah; Bollmann, Stephanie R.; Kasschau, Kristin D.; Cuperus, Josh T.; Press, Caroline M.; Sullivan, Christopher M.; Chapman, Elisabeth J.; Hoyer, J. Steen; Gilbert, Kerrigan B.; Grünwald, Niklaus J.; Carrington, James C.

    2013-01-01

    In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work. PMID:24204767

  17. HIV Genetic Diversity and Drug Resistance

    Science.gov (United States)

    Santos, André F.; Soares, Marcelo A.

    2010-01-01

    Most of the current knowledge on antiretroviral (ARV) drug development and resistance is based on the study of subtype B of HIV-1, which only accounts for 10% of the worldwide HIV infections. Cumulative evidence has emerged that different HIV types, groups and subtypes harbor distinct biological properties, including the response and susceptibility to ARV. Recent laboratory and clinical data highlighting such disparities are summarized in this review. Variations in drug susceptibility, in the emergence and selection of specific drug resistance mutations, in viral replicative capacity and in the dynamics of resistance acquisition under ARV selective pressure are discussed. Clinical responses to ARV therapy and associated confounding factors are also analyzed in the context of infections by distinct HIV genetic variants. PMID:21994646

  18. A novel and lethal de novo LQT-3 mutation in a newborn with distinct molecular pharmacology and therapeutic response.

    Directory of Open Access Journals (Sweden)

    John R Bankston

    2007-12-01

    Full Text Available SCN5A encodes the alpha-subunit (Na(v1.5 of the principle Na(+ channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LQTS variant 3 (LQT-3 in adults by disrupting inactivation of the Na(v1.5 channel. Pharmacological targeting of mutation-altered Na(+ channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LQTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults.Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na(+ channel blockers flecainide and mexiletine. Our goal was to determine the Na(+ channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na(+ channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C and a common variant in KCNH2 (K897T. Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na(+ channels revealed significant changes in channel biophysics, all contributing to the proband's phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically.The results of our study provide further evidence of the grave vulnerability of newborns to Na(+ channel defects and suggest that both genetic background and age are

  19. Extensive population genetic structure in the giraffe

    Directory of Open Access Journals (Sweden)

    Grether Gregory F

    2007-12-01

    Full Text Available Abstract Background A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation. Results By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations. Conclusion Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations.

  20. Human murine mammary tumour virus-like agents are genetically distinct from endogenous retroviruses and are not detectable in breast cancer cell lines or biopsies

    International Nuclear Information System (INIS)

    Mant, Christine; Gillett, Cheryl; D'Arrigo, Corrado; Cason, John

    2004-01-01

    It has been reported that a human murine mammary tumour virus (MMTV)-like virus (HMLV), which may be an endogenous human retrovirus (HERV), occurs in the human breast cancer cell lines T47D and MCF-7 and, in 38% of human breast cancer biopsies. As the aetiology of most breast cancers remains unknown, it is important to verify these observations in differing breast cancer populations worldwide. Thus, we sought to determine the genetic relationships between HMLVs, MMTVs, and HERVs, and to investigate the association between HMLVs and breast cancer biopsies from South London, UK. Phylogenetic analyses of the env/pol region indicated that HMLVs are indistinct from MMTVs, and that MMTVS/HMLVs exhibit only low sequence homologies with HERVs. A search of the human genome confirmed that HMLVs are not endogenous. Using MMTV polymerase chain reaction (PCR) primers described previously, we amplified DNA from all cell lines except MCF-7 and from 7 of 44 (16%) breast cancer biopsies. A restriction fragment length polymorphism assay was designed to distinguish between HMLVs and MMTVs, and upon analyses, PCR amplicons appeared to be HMLVs. To confirm these findings, amplicons from the T47D cell line and from four randomly selected breast cancer patients were sequenced. Of 106 DNA sequences obtained, 103 were homologous with a short arm of human chromosome (Chr) 3 (3p13), two with Chr 4, and one with Chr 8. None of the sequences exhibited significant nucleotide homology with MMTVs, HMLVs, or with HERVs (all <50%). Thus, we conclude that (i) HMLVs are integral members of the MMTV family; (ii) MMTVs/HMLVs are genetically distinct from HERVs; (iii) MMTV/HMLV DNA is not present in human breast cancer cell lines or clinical biopsies in our locality

  1. Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis.

    Science.gov (United States)

    Ciofi, C; Bruford, M W

    1999-12-01

    A general concern for the conservation of endangered species is the maintenance of genetic variation within populations, particularly when they become isolated and reduced in size. Estimates of gene flow and effective population size are therefore important for any conservation initiative directed to the long-term persistence of a species in its natural habitat. In the present study, 10 microsatellite loci were used to assess the level of genetic variability among populations of the Komodo dragon Varanus komodoensis. Effective population size was calculated and gene flow estimates were compared with palaeogeographic data in order to assess the degree of vulnerability of four island populations. Rinca and Flores, currently separated by an isthmus of about 200 m, retained a high level of genetic diversity and showed a high degree of genetic similarity, with gene flow values close to one migrant per generation. The island of Komodo showed by far the highest levels of genetic divergence, and its allelic distinctiveness was considered of great importance in the maintenance of genetic variability within the species. A lack of distinct alleles and low levels of gene flow and genetic variability were found for the small population of Gili Motang island, which was identified as vulnerable to stochastic threats. Our results are potentially important for both the short- and long-term management of the Komodo dragon, and are critical in view of future re-introduction or augmentation in areas where the species is now extinct or depleted.

  2. Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers.

    Science.gov (United States)

    Sharma, Rekha; Kishore, Amit; Mukesh, Manishi; Ahlawat, Sonika; Maitra, Avishek; Pandey, Ashwni Kumar; Tantia, Madhu Sudan

    2015-06-30

    Indian agriculture is an economic symbiosis of crop and livestock production with cattle as the foundation. Sadly, the population of indigenous cattle (Bos indicus) is declining (8.94% in last decade) and needs immediate scientific management. Genetic characterization is the first step in the development of proper management strategies for preserving genetic diversity and preventing undesirable loss of alleles. Thus, in this study we investigated genetic diversity and relationship among eleven Indian cattle breeds using 21 microsatellite markers and mitochondrial D loop sequence. The analysis of autosomal DNA was performed on 508 cattle which exhibited sufficient genetic diversity across all the breeds. Estimates of mean allele number and observed heterozygosity across all loci and population were 8.784 ± 0.25 and 0.653 ± 0.014, respectively. Differences among breeds accounted for 13.3% of total genetic variability. Despite high genetic diversity, significant inbreeding was also observed within eight populations. Genetic distances and cluster analysis showed a close relationship between breeds according to proximity in geographic distribution. The genetic distance, STRUCTURE and Principal Coordinate Analysis concluded that the Southern Indian Ongole cattle are the most distinct among the investigated cattle populations. Sequencing of hypervariable mitochondrial DNA region on a subset of 170 cattle revealed sixty haplotypes with haplotypic diversity of 0.90240, nucleotide diversity of 0.02688 and average number of nucleotide differences as 6.07407. Two major star clusters for haplotypes indicated population expansion for Indian cattle. Nuclear and mitochondrial genomes show a similar pattern of genetic variability and genetic differentiation. Various analyses concluded that the Southern breed 'Ongole' was distinct from breeds of Northern/ Central India. Overall these results provide basic information about genetic diversity and structure of Indian cattle which

  3. Gene-Environment Interplay, Family Relationships, and Child Adjustment

    Science.gov (United States)

    Horwitz, Briana N.; Neiderhiser, Jenae M.

    2011-01-01

    This paper reviews behavioral genetic research from the past decade that has moved beyond simply studying the independent influences of genes and environments. The studies considered in this review have instead focused on understanding gene-environment interplay, including genotype-environment correlation (rGE) and genotype x environment…

  4. Laboratory-Cultured Strains of the Sea Anemone Exaiptasia Reveal Distinct Bacterial Communities

    KAUST Repository

    Herrera Sarrias, Marcela; Ziegler, Maren; Voolstra, Christian R.; Aranda, Manuel

    2017-01-01

    Exaiptasia is a laboratory sea anemone model system for stony corals. Two clonal strains are commonly used, referred to as H2 and CC7, that originate from two genetically distinct lineages and that differ in their Symbiodinium specificity. However, little is known about their other microbial associations. Here, we examined and compared the taxonomic composition of the bacterial assemblages of these two symbiotic Exaiptasia strains, both of which have been cultured in the laboratory long-term under identical conditions. We found distinct bacterial microbiota for each strain, indicating the presence of host-specific microbial consortia. Putative differences in the bacterial functional profiles (i.e., enrichment and depletion of various metabolic processes) based on taxonomic inference were also detected, further suggesting functional differences of the microbiomes associated with these lineages. Our study contributes to the current knowledge of the Exaiptasia holobiont by comparing the bacterial diversity of two commonly used strains as models for coral research.

  5. Laboratory-Cultured Strains of the Sea Anemone Exaiptasia Reveal Distinct Bacterial Communities

    KAUST Repository

    Herrera Sarrias, Marcela

    2017-05-02

    Exaiptasia is a laboratory sea anemone model system for stony corals. Two clonal strains are commonly used, referred to as H2 and CC7, that originate from two genetically distinct lineages and that differ in their Symbiodinium specificity. However, little is known about their other microbial associations. Here, we examined and compared the taxonomic composition of the bacterial assemblages of these two symbiotic Exaiptasia strains, both of which have been cultured in the laboratory long-term under identical conditions. We found distinct bacterial microbiota for each strain, indicating the presence of host-specific microbial consortia. Putative differences in the bacterial functional profiles (i.e., enrichment and depletion of various metabolic processes) based on taxonomic inference were also detected, further suggesting functional differences of the microbiomes associated with these lineages. Our study contributes to the current knowledge of the Exaiptasia holobiont by comparing the bacterial diversity of two commonly used strains as models for coral research.

  6. Editorial Introduction [to Female Germ Cells: Biology and Genetic Risk

    Science.gov (United States)

    This is an editorial introduction to the special issue of utation Research, titled, emale Germ Cells: Biology and Genetic isk, which is an attempt to present a collection of papers that emphasize the distinct properties of female germ cells and their characteristic response to mu...

  7. Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis

    Science.gov (United States)

    Ciofi, C.; Beaumont, M. A.; Swingland, I. R.; Bruford, M. W.

    1999-01-01

    In the past decade much attention has focused on the role that genetics can play in the formation of management strategies in conservation. Here, we describe genetic diversity in the world's largest lizard, the Komodo dragon (Varanus komodoensis), examining the evolutionary relationships and population genetic history of the four islands in south-east Indonesia, which form the vast majority of its range. We identify distinct genetic groups for conservation. The population on the island of Komodo shows by far the largest values of genetic divergence and is proposed that it should be a separate conservation management unit. Other populations, surviving either on small islands with substantially reduced genetic variability, or in isolated patches, are identified as particularly vulnerable to stochastic threats and habitat loss. Our results provide an example of how data defining intraspecific levels of genetic divergence can provide information to help management plans, ensure the maintenance of genetic variability across populations and identify evolutionary potential within endangered species.

  8. Molecular and Genetic Determinants of Glioma Cell Invasion

    Directory of Open Access Journals (Sweden)

    Kenta Masui

    2017-12-01

    Full Text Available A diffusely invasive nature is a major obstacle in treating a malignant brain tumor, “diffuse glioma”, which prevents neurooncologists from surgically removing the tumor cells even in combination with chemotherapy and radiation. Recently updated classification of diffuse gliomas based on distinct genetic and epigenetic features has culminated in a multilayered diagnostic approach to combine histologic phenotypes and molecular genotypes in an integrated diagnosis. However, it is still a work in progress to decipher how the genetic aberrations contribute to the aggressive nature of gliomas including their highly invasive capacity. Here we depict a set of recent discoveries involving molecular genetic determinants of the infiltrating nature of glioma cells, especially focusing on genetic mutations in receptor tyrosine kinase pathways and metabolic reprogramming downstream of common cancer mutations. The specific biology of glioma cell invasion provides an opportunity to explore the genotype-phenotype correlation in cancer and develop novel glioma-specific therapeutic strategies for this devastating disease.

  9. Homologous Recombination between Genetically Divergent Campylobacter fetus Lineages Supports Host-Associated Speciation

    Science.gov (United States)

    Duim, Birgitta; van der Graaf-van Bloois, Linda; Wagenaar, Jaap A; Zomer, Aldert L

    2018-01-01

    Abstract Homologous recombination is a major driver of bacterial speciation. Genetic divergence and host association are important factors influencing homologous recombination. Here, we study these factors for Campylobacter fetus, which shows a distinct intraspecific host dichotomy. Campylobacter fetus subspecies fetus (Cff) and venerealis are associated with mammals, whereas C. fetus subsp. testudinum (Cft) is associated with reptiles. Recombination between these genetically divergent C. fetus lineages is extremely rare. Previously it was impossible to show whether this barrier to recombination was determined by the differential host preferences, by the genetic divergence between both lineages or by other factors influencing recombination, such as restriction-modification, CRISPR/Cas, and transformation systems. Fortuitously, a distinct C. fetus lineage (ST69) was found, which was highly related to mammal-associated C. fetus, yet isolated from a chelonian. The whole genome sequences of two C. fetus ST69 isolates were compared with those of mammal- and reptile-associated C. fetus strains for phylogenetic and recombination analysis. In total, 5.1–5.5% of the core genome of both ST69 isolates showed signs of recombination. Of the predicted recombination regions, 80.4% were most closely related to Cft, 14.3% to Cff, and 5.6% to C. iguaniorum. Recombination from C. fetus ST69 to Cft was also detected, but to a lesser extent and only in chelonian-associated Cft strains. This study shows that despite substantial genetic divergence no absolute barrier to homologous recombination exists between two distinct C. fetus lineages when occurring in the same host type, which provides valuable insights in bacterial speciation and evolution. PMID:29608720

  10. Genetic risk for schizophrenia, obstetric complications, and adolescent school outcome: evidence for gene-environment interaction.

    Science.gov (United States)

    Forsyth, Jennifer K; Ellman, Lauren M; Tanskanen, Antti; Mustonen, Ulla; Huttunen, Matti O; Suvisaari, Jaana; Cannon, Tyrone D

    2013-09-01

    Low birth weight (LBW) and hypoxia are among the environmental factors most reliably associated with schizophrenia; however, the nature of this relationship is unclear and both gene-environment interaction and gene-environment covariation models have been proposed as explanations. High-risk (HR) designs that explore whether obstetric complications differentially predict outcomes in offspring at low risk (LR) vs HR for schizophrenia, while accounting for differences in rates of maternal risk factors, may shed light on this question. This study used prospectively obtained data to examine relationships between LBW and hypoxia on school outcome at age 15-16 years in a Finnish sample of 1070 offspring at LR for schizophrenia and 373 offspring at HR for schizophrenia, based on parental psychiatric history. Controlling for offspring sex, maternal smoking, social support, parity, age, and number of prenatal care visits, HR offspring performed worse than LR offspring across academic, nonacademic, and physical education domains. LBW predicted poorer academic and physical education performance in HR offspring, but not in LR offspring, and this association was similar for offspring of fathers vs mothers with schizophrenia. Hypoxia predicted poorer physical education score across risk groups. Rates of LBW and hypoxia were similar for LR and HR offspring and for offspring of fathers vs mothers with schizophrenia. Results support the hypothesis that genetic susceptibility to schizophrenia confers augmented vulnerability of the developing brain to the effects of obstetric complications, possibly via epigenetic mechanisms.

  11. Analyzing age-specific genetic effects on human extreme age survival in cohort-based longitudinal studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Jacobsen, Rune; Sørensen, Mette

    2013-01-01

    The analysis of age-specific genetic effects on human survival over extreme ages is confronted with a deceleration pattern in mortality that deviates from traditional survival models and sparse genetic data available. As human late life is a distinct phase of life history, exploring the genetic...... effects on extreme age survival can be of special interest to evolutionary biology and health science. We introduce a non-parametric survival analysis approach that combines population survival information with individual genotype data in assessing the genetic effects in cohort-based longitudinal studies...

  12. Simulation based virtual learning environment in medical genetics counseling: an example of bridging the gap between theory and practice in medical education.

    Science.gov (United States)

    Makransky, Guido; Bonde, Mads T; Wulff, Julie S G; Wandall, Jakob; Hood, Michelle; Creed, Peter A; Bache, Iben; Silahtaroglu, Asli; Nørremølle, Anne

    2016-03-25

    Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major in medicine, received a 2-h training session in a simulation based learning environment. The main outcomes were pre- to post- changes in knowledge, intrinsic motivation, and self-efficacy, together with post-intervention evaluation of the effect of the simulation on student understanding of everyday clinical practice were demonstrated. Knowledge (Cohen's d = 0.73), intrinsic motivation (d = 0.24), and self-efficacy (d = 0.46) significantly increased from the pre- to post-test. Low knowledge students showed the greatest increases in knowledge (d = 3.35) and self-efficacy (d = 0.61), but a non-significant increase in intrinsic motivation (d = 0.22). The medium and high knowledge students showed significant increases in knowledge (d = 1.45 and 0.36, respectively), motivation (d = 0.22 and 0.31), and self-efficacy (d = 0.36 and 0.52, respectively). Additionally, 90 % of students reported a greater understanding of medical genetics, 82 % thought that medical genetics was more interesting, 93 % indicated that they were more interested and motivated, and had gained confidence by having experienced working on a case story that resembled the real working situation of a doctor, and 78 % indicated that they would feel more confident counseling a patient after the simulation. The simulation based learning environment increased students' learning, intrinsic motivation, and

  13. Wild gazelles of the southern Levant: genetic profiling defines new conservation priorities.

    Directory of Open Access Journals (Sweden)

    Lia Hadas

    Full Text Available The mountain gazelle (Gazella gazelle, Dorcas gazelle (Gazella Dorcas and acacia gazelle (Gazella arabica acacia were historically abundant in the southern Levant, and more specifically in Israel. Anthropogenic and natural changes have caused a rapid decline in gazelle populations, raising concerns about their conservation status and future survival. The genetic profile of 111 wild gazelles from Israel was determined based on three regions of mitochondrial DNA (control region, Cytochrome b and 12S ribosomal RNA and nine nuclear microsatellite markers. Genetic analysis of the mountain gazelle population, the largest known population of this rare species, revealed adequate diversity levels and gene flow between subpopulations. Nevertheless, ongoing habitat degradation and other human effects, such as poaching, suggest the need for drastic measures to prevent species extinction. Dorcas gazelles in Israel displayed inbreeding within subpopulations while still maintaining considerable genetic diversity overall. This stable population, represented by a distinctive genetic profile, is fragmented and isolated from its relatives in neighboring localities. Based on the genetic profile of a newly sampled subpopulation in Israel, we provide an alternative hypothesis for the historic dispersal of Dorcas gazelle, from the Southern Levant to northern Africa. The small acacia gazelle population was closest to gazelles from the Farasan Islands of Saudi Arabia, based on mitochondrial markers. The two populations did not share haplotypes, suggesting that these two populations may be the last remnant wild gazelles of this species worldwide. Only a dozen acacia gazelles survive in Israel, and urgent steps are needed to ensure the survival of this genetically distinctive lineage. The genetic assessments of our study recognize new conservation priorities for each gazelle species in the Southern Levant.

  14. A potential third Manta Ray species near the Yucat?n Peninsula? Evidence for a recently diverged and novel genetic Manta group from the Gulf of Mexico

    OpenAIRE

    Hinojosa-Alvarez, Silvia; Walter, Ryan P.; Diaz-Jaimes, Pindaro; Galv?n-Maga?a, Felipe; Paig-Tran, E. Misty

    2016-01-01

    We present genetic and morphometric support for a third, distinct, and recently diverged group of Manta ray that appears resident to the Yucatán coastal waters of the Gulf of Mexico. Individuals of the genus Manta from Isla Holbox are markedly different from the other described manta rays in their morphology, habitat preference, and genetic makeup. Herein referred to as the Yucatán Manta Ray, these individuals form two genetically distinct groups: (1) a group of mtDNA haplotypes divergent (0....

  15. Genetic Diversity of Rose germplasm based on RAPD analysis

    African Journals Online (AJOL)

    AHSAN IQBAL

    2012-06-12

    Jun 12, 2012 ... identification and analysis of genetic variation within a collection of 4 species and 30 accessions of rose using RAPD analysis technique. The results showed the molecular distinctions among the ... that range in colour from white and yellow to many shades of pink and red have been developed. Since.

  16. Assessment of genetic diversity in different clones of Dalbergia ...

    African Journals Online (AJOL)

    Genetic diversity of forty (40) clones of Dalbergia sissoo Roxb was analyzed using randomly amplified polymorphic DNA (RAPD) markers by selecting 30 decamer primers, which were later reduced to 10 based on the preliminary PCR amplification. A total of 129 distinct DNA fragments (bands) were amplified, of which 104 ...

  17. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    Science.gov (United States)

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  18. Social Relationships Moderate Genetic Influences on Heavy Drinking in Young Adulthood.

    Science.gov (United States)

    Barr, Peter B; Salvatore, Jessica E; Maes, Hermine H; Korhonen, Tellervo; Latvala, Antti; Aliev, Fazil; Viken, Richard; Rose, Richard J; Kaprio, Jaakko; Dick, Danielle M

    2017-11-01

    Social relationships, such as committed partnerships, limit risky behaviors like heavy drinking, in part, because of increased social control. The current analyses examine whether involvement in committed relationships or social support extend beyond a main effect to limit genetic liability in heavy drinking (gene-environment interaction) during young adulthood. Using data from the young adult wave of the Finnish Twin Study, FinnTwin12 (n = 3,269), we tested whether involvement in romantic partnerships or social support moderated genetic influences on heavy drinking using biometric twin modeling for gene-environment interaction. Involvement in a romantic partnership was associated with a decline in genetic variance in both males and females, although the overall magnitude of genetic influence was greater in males. Sex differences emerged for social support: increased social support was associated with increased genetic influence for females and reduced genetic influence for males. These findings demonstrate that social relationships are important moderators of genetic influences on young adult alcohol use. Mechanisms of social control that are important in limiting genetic liability during adolescence extend into young adulthood. In addition, although some relationships limit genetic liability equally, others, such as extensive social networks, may operate differently across sex.

  19. Shared Environment Estimates for Educational Attainment: A Puzzle and Possible Solutions.

    Science.gov (United States)

    Freese, Jeremy; Jao, Yu-Han

    2017-02-01

    Classical behavioral genetics models for twin and other family designs decompose traits into heritability, shared environment, and nonshared environment components. Estimates of heritability of adult traits are pervasively observed to be far higher than those of shared environment, which has been used to make broad claims about the impotence of upbringing. However, the most commonly studied nondemographic variable in many areas of social science, educational attainment, exhibits robustly high estimates both for heritability and for shared environment. When previously noticed, the usual explanation has emphasized family resources, but evidence suggests this is unlikely to explain the anomalous high estimates for shared environment of educational attainment. We articulate eight potential complementary explanations and discuss evidence of their prospective contributions to resolving the puzzle. In so doing, we hope to further consideration of how behavioral genetics findings may advance studies of social stratification beyond the effort to articulate specific genetic influences. © 2015 Wiley Periodicals, Inc.

  20. Analysis of Genetic Diversity of Two Mangrove Species with Morphological Alterations in a Natural Environment

    Directory of Open Access Journals (Sweden)

    Catarina Fonseca Lira-Medeiros

    2015-04-01

    Full Text Available Mangrove is an ecosystem subjected to tide, salinity and nutrient variations. These conditions are stressful to most plants, except to mangrove plants that are well-adapted. However, many mangrove areas have extremely stressful conditions, such as salt marshes, and the plants nearby usually present morphological alterations. In Sepetiba Bay, two species of mangrove plants, Avicennia schaueriana and Laguncularia racemosa, have poor development near a salt marsh (SM compared to plants at the riverside (RS, which is considered a favorable habitat in mangroves. The level of genetic diversity and its possible correlation with the morphological divergence of SM and RS plants of both species were assessed by AFLP molecular markers. We found moderate genetic differentiation between A. schaueriana plants from SM and RS areas and depleted genetic diversity on SM plants. On the other hand, Laguncularia racemosa plants had no genetic differentiation between areas. It is possible that a limited gene flow among the studied areas might be acting more intensely on A. schaueriana plants, resulting in the observed genetic differentiation. The populations of Laguncularia racemosa appear to be well connected, as genetic differentiation was not significant between the SM and RS populations. Gene flow and genetic drift are acting on neutral genetic diversity of these two mangrove species in the studied areas, and the observed genetic differentiation of A. schaueriana plants might be correlated with its morphological variation. For L. racemosa, morphological alterations could be related to epigenetic phenomena or adaptive loci polymorphism that should be further investigated.

  1. Genetic population structure of Shoal Bass within their native range

    Science.gov (United States)

    Taylor, Andrew T.; Tringali, Michael D.; Sammons, Steven M.; Ingram, Travis R.; O'Rouke, Patrick M.; Peterson, Douglas L.; Long, James M.

    2018-01-01

    Endemic to the Apalachicola River basin of the southeastern USA, the Shoal Bass Micropterus cataractae is a fluvial‐specialist sport fish that is imperiled because of anthropogenic habitat alteration. To counter population declines, restorative stocking efforts are becoming an increasingly relevant management strategy. However, population genetic structure within the species is currently unknown, but it could influence management decisions, such as brood source location. Leveraging a collaborative effort to collect and genotype specimens with 16 microsatellite loci, our objective was to characterize hierarchical population structure and genetic differentiation of the Shoal Bass across its native range, including an examination of structuring mechanisms, such as relatedness and inbreeding levels. Specimens identified as Shoal Bass were collected from 13 distinct sites (N ranged from 17 to 209 per location) and were then taxonomically screened to remove nonnative congeners and hybrids (pure Shoal Bass N ranged from 13 to 183 per location). Our results revealed appreciable population structure, with five distinct Shoal Bass populations identifiable at the uppermost hierarchical level that generally corresponded with natural geographic features and anthropogenic barriers. Substructure was recovered within several of these populations, wherein differences appeared related to spatial isolation and local population dynamics. An analysis of molecular variance revealed that 3.6% of the variation in our data set was accounted for among three larger river drainages, but substructure within each river drainage also explained an additional 8.9% of genetic variation, demonstrating that management at a scale lower than the river drainage level would likely best conserve genetic diversity. Results provide a population genetic framework that can inform future management decisions, such as brood source location, so that genetic diversity within and among populations is

  2. [Genetically modified food--unnecessary controversy?].

    Science.gov (United States)

    Tchórz, Michał; Radoniewicz-Chagowska, Anna; Lewandowska-Stanek, Hanna; Szponar, Elzbieta; Szponar, Jarosław

    2012-01-01

    Fast development of genetic engineering and biotechnology allows use of genetically modified organisms (GMO) more and more in different branches of science and economy. Every year we can see an increase of food amount produced with the use of modification of genetic material. In our supermarkets we can find brand new types of plants, products including genetically modified ingredients or meat from animals fed with food containing GMO. This article presents general information about genetically modified organisms, it also explains the range of genetic manipulation, use of newly developed products and current field area for GMO in the world. Based on scientific data the article presents benefits from development of biotechnology in reference to modified food. It also presents the voice of skeptics who are extremely concerned about the impact of those organisms on human health and natural environment. Problems that appear or can appear as a result of an increase of GMO are very important not only from a toxicologist's or a doctor's point of view but first of all from the point of view of ordinary consumers--all of us.

  3. Simulation based virtual learning environment in medical genetics counseling

    DEFF Research Database (Denmark)

    Makransky, Guido; Bonde, Mads T.; Wulff, Julie S. G.

    2016-01-01

    BACKGROUND: Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based...... the perceived relevance of medical educational activities. The results suggest that simulations can help future generations of doctors transfer new understanding of disease mechanisms gained in virtual laboratory settings into everyday clinical practice....... learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. METHODS: An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major...

  4. A comparative study of small RNAs in Toxoplasma gondii of distinct genotypes

    Directory of Open Access Journals (Sweden)

    Wang Jielin

    2012-09-01

    Full Text Available Abstract Background Toxoplasma gondii is an intracellular parasite with a significant impact on human health. Inside the mammalian and avian hosts, the parasite can undergo rapid development or remain inactive in the cysts. The mechanism that regulates parasite proliferation has not been fully understood. Small noncoding RNAs (sncRNA such as microRNAs (miRNAs are endogenous regulatory factors that can modulate cell differentiation and development. It is anticipated that hundreds of miRNAs regulate the expression of thousands of genes in a single organism. SncRNAs have been identified in T. gondii, however the profiles of sncRNAs expression and their potential regulatory function in parasites of distinct genotypes has largely been unknown. Methods The transcription profiles of miRNAs in the two genetically distinct strains, RH and ME49, of T. gondii were investigated and compared by a high-through-put RNA sequencing technique and systematic bioinformatics analysis. The expression of some of the miRNAs was confirmed by Northern blot analysis. Results 1,083,320 unique sequences were obtained. Of which, 17 conserved miRNAs related to 2 metazoan miRNA families and 339 novel miRNAs were identified. A total of 175 miRNAs showed strain-specific expression, of which 155 miRNAs were up-regulated in RH strain and 20 miRNAs were up-regulated in ME49 strain. Strain-specific expression of miRNAs in T. gondii could be due to activation of specific genes at different genomic loci or due to arm-switching of the same pre-miRNA duplex. Conclusions Evidence for the differential expression of miRNAs in the two genetically distinct strains of T. gondii has been identified and defined. MiRNAs of T. gondii are more species-specific as compared to other organisms, which can be developed as diagnostic biomarkers for toxoplasmosis. The data also provide a framework for future studies on RNAi-dependent regulatory mechanisms in the zoonotic parasite.

  5. Impact of virtual learning environment (VLE): A technological approach to genetics teaching on high school students' content knowledge, self-efficacy and career goal aspirations

    Science.gov (United States)

    Kandi, Kamala M.

    This study examines the effect of a technology-based instructional tool 'Geniverse' on the content knowledge gains, Science Self-Efficacy, Technology Self-Efficacy, and Career Goal Aspirations among 283 high school learners. The study was conducted in four urban high schools, two of which have achieved Adequate Yearly Progress (AYP) and two have not. Students in both types of schools were taught genetics either through Geniverse, a virtual learning environment or Dragon genetics, a paper-pencil activity embedded in traditional instructional method. Results indicated that students in all schools increased their knowledge of genetics using either type of instructional approach. Students who were taught using Geniverse demonstrated an advantage for genetics knowledge although the effect was small. These increases were more pronounced in the schools that had been meeting the AYP goal. The other significant effect for Geniverse was that students in the technology-enhanced classrooms increased in science Self-Efficacy while students in the non-technology enhanced classrooms decreased. In addition, students from Non-AYP schools showed an improvement in Science and Technology Self-Efficacy; however the effects were small. The implications of these results for the future use of technology-enriched classrooms were discussed. Keywords: Technology-based instruction, Self-Efficacy, career goals and Adequate Yearly Progress (AYP).

  6. Genetic control of dairy cow reproduction

    OpenAIRE

    Moore, Stephen

    2015-01-01

    The decline in dairy cow reproductive performance compromised the productivity and profitability of dairy production worldwide. The phenotypic performance of lactating cows with similar proportions of Holstein genes, similar genetic merit for milk production traits, but either good (Fert+) or poor (Fert-) genetic merit for fertility traits managed in a standardised environment was compared. The objective of this study was to elucidate the physiological mechanisms contributing to suboptimal re...

  7. Tissue culture-induced genetic and epigenetic alterations in rice pure-lines, F1 hybrids and polyploids.

    Science.gov (United States)

    Wang, Xiaoran; Wu, Rui; Lin, Xiuyun; Bai, Yan; Song, Congdi; Yu, Xiaoming; Xu, Chunming; Zhao, Na; Dong, Yuzhu; Liu, Bao

    2013-05-05

    Genetic and epigenetic alterations can be invoked by plant tissue culture, which may result in heritable changes in phenotypes, a phenomenon collectively termed somaclonal variation. Although extensive studies have been conducted on the molecular nature and spectrum of tissue culture-induced genomic alterations, the issue of whether and to what extent distinct plant genotypes, e.g., pure-lines, hybrids and polyploids, may respond differentially to the tissue culture condition remains poorly understood. We investigated tissue culture-induced genetic and epigenetic alterations in a set of rice genotypes including two pure-lines (different subspecies), a pair of reciprocal F1 hybrids parented by the two pure-lines, and a pair of reciprocal tetraploids resulted from the hybrids. Using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP), both genetic and DNA methylation alterations were detected in calli and regenerants from all six genotypes, but genetic alteration is more prominent than epigenetic alteration. While significant genotypic difference was observed in frequencies of both types of alterations, only genetic alteration showed distinctive features among the three types of genomes, with one hybrid (N/9) being exceptionally labile. Surprisingly, difference in genetic alteration frequencies between the pair of reciprocal F1 hybrids is much greater than that between the two pure-line subspecies. Difference also exists in the pair of reciprocal tetraploids, but is to a less extent than that between the hybrids. The steady-state transcript abundance of genes involved in DNA repair and DNA methylation was significantly altered in both calli and regenerants, and some of which were correlated with the genetic and/or epigenetic alterations. Our results, based on molecular marker analysis of ca. 1,000 genomic loci, document that genetic alteration is the major cause of somaclonal variation in rice

  8. Optimal hydrogenerator governor tuning with a genetic algorithm

    International Nuclear Information System (INIS)

    Lansberry, J.E.; Wozniak, L.; Goldberg, D.E.

    1992-01-01

    Many techniques exist for developing optimal controllers. This paper investigates genetic algorithms as a means of finding optimal solutions over a parameter space. In particular, the genetic algorithm is applied to optimal tuning of a governor for a hydrogenerator plant. Analog and digital simulation methods are compared for use in conjunction with the genetic algorithm optimization process. It is shown that analog plant simulation provides advantages in speed over digital plant simulation. This speed advantage makes application of the genetic algorithm in an actual plant environment feasible. Furthermore, the genetic algorithm is shown to possess the ability to reject plant noise and other system anomalies in its search for optimizing solutions

  9. Population Genetic Structure of the Dwarf Seahorse (Hippocampus zosterae) in Florida.

    Science.gov (United States)

    Fedrizzi, Nathan; Stiassny, Melanie L J; Boehm, J T; Dougherty, Eric R; Amato, George; Mendez, Martin

    2015-01-01

    The dwarf seahorse (Hippocampus zosterae) is widely distributed throughout near-shore habitats of the Gulf of Mexico and is of commercial significance in Florida, where it is harvested for the aquarium and curio trades. Despite its regional importance, the genetic structure of dwarf seahorse populations remains largely unknown. As an aid to ongoing conservation efforts, we employed three commonly applied mtDNA markers (ND4, DLoop and CO1) to investigate the genetic structuring of H. zosterae in Florida using samples collected throughout its range in the state. A total of 1450 bp provided sufficient resolution to delineate four populations of dwarf seahorses, as indicated by significant fixation indices. Despite an overall significant population structure, we observed evidence of interbreeding between individuals from geographically distant sites, supporting the hypothesis that rafting serves to maintain a degree of population connectivity. All individuals collected from Pensacola belong to a single distinct subpopulation, which is highly differentiated from the rest of Floridian dwarf seahorses sampled. Our findings highlight the utility of mtDNA markers in evaluating barriers to gene flow and identifying genetically distinct populations, which are vital to the development of comprehensive conservation strategies for exploited taxa.

  10. The genetics of an early Neolithic pastoralist from the Zagros, Iran

    KAUST Repository

    Gallego-Llorente, M.

    2016-08-09

    The agricultural transition profoundly changed human societies. We sequenced and analysed the first genome (1.39x) of an early Neolithic woman from Ganj Dareh, in the Zagros Mountains of Iran, a site with early evidence for an economy based on goat herding, ca. 10,000 BP. We show that Western Iran was inhabited by a population genetically most similar to hunter-gatherers from the Caucasus, but distinct from the Neolithic Anatolian people who later brought food production into Europe. The inhabitants of Ganj Dareh made little direct genetic contribution to modern European populations, suggesting those of the Central Zagros were somewhat isolated from other populations of the Fertile Crescent. Runs of homozygosity are of a similar length to those from Neolithic farmers, and shorter than those of Caucasus and Western Hunter-Gatherers, suggesting that the inhabitants of Ganj Dareh did not undergo the large population bottleneck suffered by their northern neighbours. While some degree of cultural diffusion between Anatolia, Western Iran and other neighbouring regions is possible, the genetic dissimilarity between early Anatolian farmers and the inhabitants of Ganj Dareh supports a model in which Neolithic societies in these areas were distinct.

  11. The genetics of an early Neolithic pastoralist from the Zagros, Iran

    KAUST Repository

    Gallego-Llorente, M.; Connell, S.; Jones, E. R.; Merrett, D. C.; Jeon, Y.; Eriksson, Anders; Siska, V.; Gamba, C.; Meiklejohn, C.; Beyer, R.; Jeon, S.; Cho, Y. S.; Hofreiter, M.; Bhak, J.; Manica, A.; Pinhasi, R.

    2016-01-01

    The agricultural transition profoundly changed human societies. We sequenced and analysed the first genome (1.39x) of an early Neolithic woman from Ganj Dareh, in the Zagros Mountains of Iran, a site with early evidence for an economy based on goat herding, ca. 10,000 BP. We show that Western Iran was inhabited by a population genetically most similar to hunter-gatherers from the Caucasus, but distinct from the Neolithic Anatolian people who later brought food production into Europe. The inhabitants of Ganj Dareh made little direct genetic contribution to modern European populations, suggesting those of the Central Zagros were somewhat isolated from other populations of the Fertile Crescent. Runs of homozygosity are of a similar length to those from Neolithic farmers, and shorter than those of Caucasus and Western Hunter-Gatherers, suggesting that the inhabitants of Ganj Dareh did not undergo the large population bottleneck suffered by their northern neighbours. While some degree of cultural diffusion between Anatolia, Western Iran and other neighbouring regions is possible, the genetic dissimilarity between early Anatolian farmers and the inhabitants of Ganj Dareh supports a model in which Neolithic societies in these areas were distinct.

  12. The genetics of an early Neolithic pastoralist from the Zagros, Iran

    KAUST Repository

    Gallego Llorente, Marcos; Connell, Sarah; Jones, Eppie R; Merrett, Deborah; Jeon, Jeonsu; Eriksson, Anders; Siska, Veronika; Gamba, Cristina; Meiklejohn, Chris; Beyer, Robert; Jeon, Sungwon; Cho, Yung Sung; Hofreiter, Michael; Bhak, Jong; Manica, Andrea; Pinhasi, Ron

    2016-01-01

    The agricultural transition profoundly changed human societies. We sequenced and analysed the first genome (1.39x) of an early Neolithic woman from Ganj Dareh, in the Zagros Mountains of Iran, a site with early evidence for an economy based on goat herding,ca. 10,000 BP. We show that Western Iran was inhabited by a population genetically most similar to hunter-gatherers from the Caucasus, but distinct from the Neolithic Anatolian people who later brought food production into Europe. The inhabitants of Ganj Dareh made little direct genetic contribution to modern European populations, suggesting they were somewhat isolated from other populations in the region. Runs of homozygosity are of a similar length to those from Neolithic Anatolians, and shorter than those of Caucasus and Western Hunter-Gatherers, suggesting that the inhabitants of Ganj Dareh did not undergo the large population bottleneck suffered by their northern neighbours. While some degree of cultural diffusion between Anatolia, Western Iran and other neighbouring regions is possible, the genetic dissimilarity of early Anatolian farmers and the inhabitants of Ganj Dareh supports a model in which Neolithic societies in these areas were distinct.

  13. The genetics of an early Neolithic pastoralist from the Zagros, Iran

    KAUST Repository

    Gallego Llorente, Marcos

    2016-06-18

    The agricultural transition profoundly changed human societies. We sequenced and analysed the first genome (1.39x) of an early Neolithic woman from Ganj Dareh, in the Zagros Mountains of Iran, a site with early evidence for an economy based on goat herding,ca. 10,000 BP. We show that Western Iran was inhabited by a population genetically most similar to hunter-gatherers from the Caucasus, but distinct from the Neolithic Anatolian people who later brought food production into Europe. The inhabitants of Ganj Dareh made little direct genetic contribution to modern European populations, suggesting they were somewhat isolated from other populations in the region. Runs of homozygosity are of a similar length to those from Neolithic Anatolians, and shorter than those of Caucasus and Western Hunter-Gatherers, suggesting that the inhabitants of Ganj Dareh did not undergo the large population bottleneck suffered by their northern neighbours. While some degree of cultural diffusion between Anatolia, Western Iran and other neighbouring regions is possible, the genetic dissimilarity of early Anatolian farmers and the inhabitants of Ganj Dareh supports a model in which Neolithic societies in these areas were distinct.

  14. Genomic Analysis of Genotype-by-Social Environment Interaction for Drosophila melanogaster Aggressive Behavior.

    Science.gov (United States)

    Rohde, Palle Duun; Gaertner, Bryn; Ward, Kirsty; Sørensen, Peter; Mackay, Trudy F C

    2017-08-01

    Human psychiatric disorders such as schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder often include adverse behaviors including increased aggressiveness. Individuals with psychiatric disorders often exhibit social withdrawal, which can further increase the probability of conducting a violent act. Here, we used the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP) to investigate the genetic basis of variation in male aggressive behavior for flies reared in a socialized and socially isolated environment. We identified genetic variation for aggressive behavior, as well as significant genotype-by-social environmental interaction (GSEI); i.e. , variation among DGRP genotypes in the degree to which social isolation affected aggression. We performed genome-wide association (GWA) analyses to identify genetic variants associated with aggression within each environment. We used genomic prediction to partition genetic variants into gene ontology (GO) terms and constituent genes, and identified GO terms and genes with high prediction accuracies in both social environments and for GSEI. The top predictive GO terms significantly increased the proportion of variance explained, compared to prediction models based on all segregating variants. We performed genomic prediction across environments, and identified genes in common between the social environments that turned out to be enriched for genome-wide associated variants. A large proportion of the associated genes have previously been associated with aggressive behavior in Drosophila and mice. Further, many of these genes have human orthologs that have been associated with neurological disorders, indicating partially shared genetic mechanisms underlying aggression in animal models and human psychiatric disorders. Copyright © 2017 by the Genetics Society of America.

  15. Evidence and characterization of a glide-vowel distinction in American English

    Directory of Open Access Journals (Sweden)

    Zachary Scott Jaggers

    2018-02-01

    Full Text Available This study tests whether native speakers of American English exhibit a glide-vowel distinction ([j]-[i] in a speech elicitation experiment. When reading sentences out loud, participants’ pronunciations of 4 near-minimal pairs of pre-existing lexical items (e.g., 'Eston'[iə] vs. 'pneumon'[jə] exhibit significant differences when acoustically measured, confirming the presence of a [j]-[i] distinction. This distinction is also found to be productively extended to the production of 20 near-minimal pairs of nonce words (e.g., 'Súmia '→ [sumiə] vs. 'Fímya '→ [fimjə], diversified and balanced along different phonologically relevant factors of the surrounding environment. Multiple acoustic measurements are compared to test what aspects most consistently convey the distinction: F2 (frontness, F1 (height, intensity, vocalic sequence duration, transition earliness, and transition speed. This serves the purpose of documenting the distinction’s acoustic phonetic realization. It also serves in the comparison of phonological representations. Multiple types of previously proposed phonological representations are considered along with the competing predictions they generate regarding the acoustic measurements performed. Results suggest that the primary and most consistent characteristic of the distinction is earliness of transition into the following vowel, with results also suggesting that the [j] glide has a greater degree of constriction. The [j] glide is found to have a significantly 'less 'anterior articulation, challenging the application of a representation based on place or articulator differences that would predict [j] to be 'more 'anterior.

  16. How Darwinian reductionism refutes genetic determinism.

    Science.gov (United States)

    Rosoff, Philip M; Rosenberg, Alex

    2006-03-01

    Genetic determinism labels the morally problematical claim that some socially significant traits, traits we care about, such as sexual orientation, gender roles, violence, alcoholism, mental illness, intelligence, are largely the results of the operation of genes and not much alterable by environment, learning or other human intervention. Genetic determinism does not require that genes literally fix these socially significant traits, but rather that they constrain them within narrow channels beyond human intervention. In this essay we analyze genetic determinism in light of what is now known about the inborn error of metabolism phenylketonuria (PKU), which has for so long been the poster child 'simple' argument in favor of some form of genetic determinism. We demonstrate that this case proves the exact opposite of what it has been proposed to support and provides a strong refutation of genetic determinism in all its guises.

  17. Internal Transcribed Spacer 1 (ITS1 based sequence typing reveals phylogenetically distinct Ascaris population

    Directory of Open Access Journals (Sweden)

    Koushik Das

    2015-01-01

    Full Text Available Taxonomic differentiation among morphologically identical Ascaris species is a debatable scientific issue in the context of Ascariasis epidemiology. To explain the disease epidemiology and also the taxonomic position of different Ascaris species, genome information of infecting strains from endemic areas throughout the world is certainly crucial. Ascaris population from human has been genetically characterized based on the widely used genetic marker, internal transcribed spacer1 (ITS1. Along with previously reported and prevalent genotype G1, 8 new sequence variants of ITS1 have been identified. Genotype G1 was significantly present among female patients aged between 10 to 15 years. Intragenic linkage disequilibrium (LD analysis at target locus within our study population has identified an incomplete LD value with potential recombination events. A separate cluster of Indian isolates with high bootstrap value indicate their distinct phylogenetic position in comparison to the global Ascaris population. Genetic shuffling through recombination could be a possible reason for high population diversity and frequent emergence of new sequence variants, identified in present and other previous studies. This study explores the genetic organization of Indian Ascaris population for the first time which certainly includes some fundamental information on the molecular epidemiology of Ascariasis.

  18. Genetic variability and heritability estimates of some polygenic traits in upland cotton

    International Nuclear Information System (INIS)

    Baloch, M.J.

    2004-01-01

    Plant breeders are more interested in genetic variance rather than phenotypic variance because it is amenable to selection and bring further improvement in the character. Twenty-eight F/sub 2/ progenies were tested in two environments so as to predict genetic variances, heritability estimates and genetic gains. Mean squares for locations were significant for all the five traits suggesting that genotypes performed differently under varying environments. Genetic variances, in most cases, however, were about equal to that of phenotypic variances consequently giving high heritability estimates and significant genetic gains. The broad sense heritability estimates were; 94.2, 92.9, 33.6, 81.9 and 86.9% and genetic gains were; 30.19, 10.55,0.20,0.89 and 1.76 in seed cotton yield, bolls per plant, lint %, fibre length and fibre uniformity ratio, respectively. Substantial genetic variances and high heritability estimates implied that these characters could be improved through selection from segregating populations. (author)

  19. Comparative Genomic Analyses of Multiple Pseudomonas Strains Infecting Corylus avellana Trees Reveal the Occurrence of Two Genetic Clusters with Both Common and Distinctive Virulence and Fitness Traits

    Science.gov (United States)

    Marcelletti, Simone; Scortichini, Marco

    2015-01-01

    The European hazelnut (Corylus avellana) is threatened in Europe by several pseudomonads which cause symptoms ranging from twig dieback to tree death. A comparison of the draft genomes of nine Pseudomonas strains isolated from symptomatic C. avellana trees was performed to identify common and distinctive genomic traits. The thorough assessment of genetic relationships among the strains revealed two clearly distinct clusters: P. avellanae and P. syringae. The latter including the pathovars avellanae, coryli and syringae. Between these two clusters, no recombination event was found. A genomic island of approximately 20 kb, containing the hrp/hrc type III secretion system gene cluster, was found to be present without any genomic difference in all nine pseudomonads. The type III secretion system effector repertoires were remarkably different in the two groups, with P. avellanae showing a higher number of effectors. Homologue genes of the antimetabolite mangotoxin and ice nucleation activity clusters were found solely in all P. syringae pathovar strains, whereas the siderophore yersiniabactin was only present in P. avellanae. All nine strains have genes coding for pectic enzymes and sucrose metabolism. By contrast, they do not have genes coding for indolacetic acid and anti-insect toxin. Collectively, this study reveals that genomically different Pseudomonas can converge on the same host plant by suppressing the host defence mechanisms with the use of different virulence weapons. The integration into their genomes of a horizontally acquired genomic island could play a fundamental role in their evolution, perhaps giving them the ability to exploit new ecological niches. PMID:26147218

  20. Genetic Fingerprinting of Sweet Potato [Ipomoea batatas (L.) Lam ...

    African Journals Online (AJOL)

    Prof. Ogunji

    at a space of 1m x 1m in a randomized complete block design in two replications. High genetic diversity was observed among the sweet potato genotypes examined. The morphological data revealed three distinctive clusters. In cluster I, purple vine, green petiole and light pink storage root colour were the dominant traits.

  1. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  2. Rain and Romanticism: The Environment in Outdoor Education

    Science.gov (United States)

    North, Chris

    2015-01-01

    Outdoor education provides an opportunity to engage with natural environments in ways that are distinct from other physical education teacher education (PETE) courses. This research examines how pre-service teachers (PSTs) within a PETE degree experienced "environment" on an outdoor education camp. Using self-study methodology and…

  3. Morphological variation in two genetically distinct groups of the golden-striped salamander, Chioglossa lusitanica (Amphibia: Urodela)

    NARCIS (Netherlands)

    Alexandrino, J.; Ferrand, N.; Arntzen, J.W.

    2005-01-01

    Morphometric and colour pattern variation in the endemic Iberian salamander Chioglossa lusitanica is concordant with the genetic differentiation of two groups of populations separated by the Mondego river in Portugal. Salamanders from the south have shorter digits than those from the north. Clinal

  4. Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene

    Directory of Open Access Journals (Sweden)

    Adriana L. Twerdochlib

    2012-06-01

    Full Text Available Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. To analyze the genetic variability of populations of Aedes aegypti, 156 samples were collected from 10 municipalities in the state of Paraná, Brazil. A 311 base pairs (bp region of the NADH dehydrogenase subunit 4 (ND4 mitochondrial gene was examined. An analysis of this fragment identified eight distinct haplotypes. The mean genetic diversity was high (h = 0.702; p = 0.01556. AMOVA analysis indicated that most of the variation (67% occurred within populations and the F ST value (0.32996 was highly significant. F ST values were significant in most comparisons among cities. The isolation by distance was not significant (r = -0.1216 and p = 0, 7550, indicating that genetic distance is not related to geographic distance. Neighbor-joining analysis showed two genetically distinct groups within Paraná. The DNA polymorphism and AMOVA data indicate a decreased gene flow in populations from Paraná, which can result in increased vectorial competence.

  5. Genetics of SCID

    Directory of Open Access Journals (Sweden)

    Cossu Fausto

    2010-11-01

    Full Text Available Abstract Human SCID (Severe Combined Immunodeficiency is a prenatal disorder of T lymphocyte development, that depends on the expression of numerous genes. The knowledge of the genetic basis of SCID is essential for diagnosis (e.g., clinical phenotype, lymphocyte profile and treatment (e.g., use and type of pre-hematopoietic stem cell transplant conditioning. Over the last years novel genetic defects causing SCID have been discovered, and the molecular and immunological mechanisms of SCID have been better characterized. Distinct forms of SCID show both common and peculiar (e.g., absence or presence of nonimmunological features aspects, and they are currently classified into six groups according to prevalent pathophysiological mechanisms: impaired cytokine-mediated signaling; pre-T cell receptor defects; increased lymphocyte apoptosis; defects in thymus embryogenesis; impaired calcium flux; other mechanisms. This review is the updated, extended and largely modified translation of the article "Cossu F: Le basi genetiche delle SCID", originally published in Italian language in the journal "Prospettive in Pediatria" 2009, 156:228-238.

  6. Mapping DNA damage-dependent genetic interactions in yeast via party mating and barcode fusion genetics.

    Science.gov (United States)

    Díaz-Mejía, J Javier; Celaj, Albi; Mellor, Joseph C; Coté, Atina; Balint, Attila; Ho, Brandon; Bansal, Pritpal; Shaeri, Fatemeh; Gebbia, Marinella; Weile, Jochen; Verby, Marta; Karkhanina, Anna; Zhang, YiFan; Wong, Cassandra; Rich, Justin; Prendergast, D'Arcy; Gupta, Gaurav; Öztürk, Sedide; Durocher, Daniel; Brown, Grant W; Roth, Frederick P

    2018-05-28

    Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via en masse "party" mating can also be monitored en masse for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving MAG1 , SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Study of human genetic diversity : inferences on population origin and history

    OpenAIRE

    Haber, Marc, 1980-

    2013-01-01

    Patterns of human genetic diversity suggest that all modern humans originated from a small population in Africa that expanded rapidly 50,000 years ago to occupy the whole world. While moving into new environments, genetic drift and natural selection affected populations differently, creating genetic structure. By understanding the genetic structure of human populations, we can reconstruct human history and understand the genetic basis of diseases. The work presented here contributes to the on...

  8. Genetically Modified Organisms

    Directory of Open Access Journals (Sweden)

    Claro Llaguno

    2001-06-01

    Full Text Available Recent reports have brought to public attention concerns about Bt corn and genetically modified organisms (GMO in general. The timing, it seems, is most appropriate considering two related developments early this year: the final approval of the Cartagena Protocol on Biosafety in Montreal on January 29, 2001, and the OECD Edinburgh Conference on GM food safety last February 28- March 1, 2001. The protocol makes clear that GMOs include all living modified organisms (LMO defined as "any living organism that possesses a novel combination of genetic material obtained through the use of modern biotechnology". This includes seeds, live fish, and other organisms intentionally obtained for release to the environment. It would seem that the common understanding about GMOs as referring to farm-to-table products is perforce expanded to embrace genetically modified farm animals and aquatic resources. Being a trade agreement, the Montreal accord primarily deals with the safety issues related to the transboundary movement of LMOs around the globe. The OECD conference on the other hand, called for an international body "to address all sides of the GM debate" in response to the public outcry, particularly in Western Europe, regarding the risks the new products pose to human health and the environment. Some points of contention, which remain unresolved, include issues such as whether countries should be allowed to develop their own GM food based on their needs, and whether a global moratorium on GMOs and mandatory labeling should be enforced worldwide.

  9. Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the tibetan plateau.

    Science.gov (United States)

    Wang, Guo-Dong; Fan, Ruo-Xi; Zhai, Weiwei; Liu, Fei; Wang, Lu; Zhong, Li; Wu, Hong; Yang, He-Chuan; Wu, Shi-Fang; Zhu, Chun-Ling; Li, Yan; Gao, Yun; Ge, Ri-Li; Wu, Chung-I; Zhang, Ya-Ping

    2014-08-01

    The high-altitude hypoxic environment represents one of the most extreme challenges for mammals. Previous studies of humans on the Tibetan plateau and in the Andes Mountains have identified statistical signatures of selection in different sets of loci. Here, we first measured the hemoglobin levels in village dogs from Tibet and those from Chinese lowlands. We found that the hemoglobin levels are very similar between the two groups, suggesting that Tibetan dogs might share similar adaptive strategies as the Tibetan people. Through a whole-genome sequencing approach, we have identified EPAS1 and HBB as candidate genes for the hypoxic adaptation on the Tibetan plateau. The population genetic analysis shows a significant convergence between humans and dogs in Tibet. The similarities in the sets of loci that exhibit putative signatures of selection and the hemoglobin levels between humans and dogs of the same environment, but not between human populations in different regions, suggests an extraordinary landscape of convergent evolution between human beings and their best friend on the Tibetan plateau. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. When gene medication is also genetic modification--regulating DNA treatment.

    Science.gov (United States)

    Foss, Grethe S; Rogne, Sissel

    2007-07-26

    The molecular methods used in DNA vaccination and gene therapy resemble in many ways the methods applied in genetic modification of organisms. In some regulatory regimes, this creates an overlap between 'gene medication' and genetic modification. In Norway, an animal injected with plasmid DNA, in the form of DNA vaccine or gene therapy, currently is viewed as being genetically modified for as long as the added DNA is present in the animal. However, regulating a DNA-vaccinated animal as genetically modified creates both regulatory and practical challenges. It is also counter-intuitive to many biologists. Since immune responses can be elicited also to alter traits, the borderline between vaccination and the modification of properties is no longer distinct. In this paper, we discuss the background for the Norwegian interpretation and ways in which the regulatory challenge can be handled.

  11. Evidence of genetic differentiation and karyotype evolution of the sedges Cyperus ligularis L. and C. odoratus L. (Cyperaceae

    Directory of Open Access Journals (Sweden)

    Geyner Alves dos Santos Cruz

    2018-01-01

    Full Text Available ABSTRACT The taxonomy of Cyperaceae is complex, with genera like Cyperus harboring species complexes. We analyzed the genetic similarity between Cyperus ligularis L. and C. odoratus L. based on DNA fingerprinting and cytogenetics. Significative genetic differentiation (G ST = 0.363 and low gene flow (N m = 0.877 indicated a clear genetic distinction between the two species. Moreover, the clustering analysis showed two distinct genetic groups, suggesting a lack of evidence for hybridization. The phenogram revealed two different lineages, and although all individuals of C. odoratus were collected from plots close to each other, they possessed greater genetic diversity than that observed among individuals of C. ligularis, which were sampled over a wider geographic range. Variation in chromosome number within the two species exhibited the opposite pattern, indicating greater karyotype stability in C. odoratus with 2n = 72 and 2n = 76, while the diploid number for C. ligularis varied from 2n = 66 to 88. The lower genetic variation in C. ligularis may be a result of the founder effect associated with seed dispersion and clonal reproduction. Field observations and analysis of reproductive biology should enrich the understanding of the genetic structure of the investigated populations and their role in successional processes.

  12. Generalized Choriocapillaris Dystrophy, a Distinct Phenotype in the Spectrum of ABCA4-Associated Retinopathies

    DEFF Research Database (Denmark)

    Bertelsen, Mette; Zernant, Jana; Larsen, Michael

    2014-01-01

    PURPOSE: We describe a particular form of autosomal recessive generalized choriocapillaris dystrophy phenotype associated with ABCA4 mutations. METHODS: A cohort of 30 patients with identified ABCA4 mutations and a distinct phenotype was studied. A retrospective review of history, fundus photogra......PURPOSE: We describe a particular form of autosomal recessive generalized choriocapillaris dystrophy phenotype associated with ABCA4 mutations. METHODS: A cohort of 30 patients with identified ABCA4 mutations and a distinct phenotype was studied. A retrospective review of history, fundus...... photographs, electroretinography, visual field testing, dark adaptometry, and optical coherence tomography was performed. Genetic analyses were performed by ABCA4 microarray analysis, high resolution melting, and/or next generation sequencing of all protein-coding sequences of the ABCA4 gene. RESULTS...

  13. Built environment and diabetes

    Science.gov (United States)

    Pasala, Sudhir Kumar; Rao, Allam Appa; Sridhar, G. R.

    2010-01-01

    Development of type 2 diabetes mellitus is influenced by built environment, which is, ‘the environments that are modified by humans, including homes, schools, workplaces, highways, urban sprawls, accessibility to amenities, leisure, and pollution.’ Built environment contributes to diabetes through access to physical activity and through stress, by affecting the sleep cycle. With globalization, there is a possibility that western environmental models may be replicated in developing countries such as India, where the underlying genetic predisposition makes them particularly susceptible to diabetes. Here we review published information on the relationship between built environment and diabetes, so that appropriate modifications can be incorporated to reduce the risk of developing diabetes mellitus. PMID:20535308

  14. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    Science.gov (United States)

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  15. A preliminary investigation into genotype x environment interaction ...

    African Journals Online (AJOL)

    uvp

    2014-08-24

    Aug 24, 2014 ... Genotype x environment interaction (G x E) in dairy cattle is a contentious ... environments, if it exists, with a negative impact on genetic response ..... interaction for Holstein milk yield in Colombia, Mexico and Puerto Rico.

  16. Genetic Counselors in Startup Companies: Redefining the Genetic Counselor Role.

    Science.gov (United States)

    Rabideau, Marina M; Wong, Kenny; Gordon, Erynn S; Ryan, Lauren

    2016-08-01

    Genetic counselors (GCs) have recently begun moving into non-clinic based roles in increasing numbers. A relatively new role for GCs is working for startup companies. Startups are newly established companies in the phase of developing and researching new scalable businesses. This article explores the experiences of four GCs working at different startup companies and aims to provide resources for GCs interested in learning more about these types of roles. The article describes startup culture, including a relatively flat organizational structure, quick product iterations, and flexibility, among other unique cultural characteristics. Financial considerations are described, including how to understand and evaluate a company's financial status, along with a brief explanation of alternate forms of compensation including stock options and equity. Specifically, the article details the uncertainties and rewards of working in a fast-paced startup environment that affords opportunities to try new roles and use the genetic counseling skill set in new ways. This article aims to aid GCs in determining whether a startup environment would be a good fit, learning how to evaluate a specific startup, and understanding how to market themselves for positions at startups.

  17. Distinct genetic alteration profiles of acute myeloid leukemia between Caucasian and Eastern Asian population.

    Science.gov (United States)

    Wei, Hui; Wang, Ying; Zhou, Chunlin; Lin, Dong; Liu, Bingcheng; Liu, Kaiqi; Qiu, Shaowei; Gong, Benfa; Li, Yan; Zhang, Guangji; Wei, Shuning; Gong, Xiaoyuan; Liu, Yuntao; Zhao, Xingli; Gu, Runxia; Mi, Yingchang; Wang, Jianxiang

    2018-02-10

    Racial and ethnic disparities in malignancies attract extensive attention. To investigate whether there are racial and ethnic disparities in genetic alteration between Caucasian and Eastern Asian population, data from several prospective AML trials were retrospectively analyzed in this study. We found that there were more patients with core binding factor (CBF) leukemia in Eastern Asian cohorts and there were different CBF leukemia constitutions between them. The ratios of CBF leukemia are 27.7, 22.1, 21.1, and 23.4%, respectively, in our (ChiCTR-TRC-10001202), another Chinese, Korean, and Japanese Eastern Asian cohorts, which are significantly higher than those in ECOG1900, MRC AML15, UK NCRI AML17, HOVON/SAKK AML-42, and German AML2003 (15.5, 12.5, 9.3, 10.2, and 12%, respectively). And CBFbeta-MYH11 occurred more prevalently in HOVON/SAKK AML- 42 and ECOG1900 trials (50.0 and 54.3% of CBF leukemia, respectively) than in Chinese and Japanese trials (20.1 and 20.8%, respectively). The proportion of FLT3-ITD mutation is 11.2% in our cohort, which is lower than that in MRC AML15 and UK NCRI AML17 (24.6 and 17.9%, respectively). Even after excluding the age bias, there are still different incidence rates of mutation between Caucasian and Eastern Asian population. These data suggest that there are racial and ethnic disparities in genetic alteration between Caucasian and Eastern Asian population.

  18. Genes, Culture and Conservatism-A Psychometric-Genetic Approach.

    Science.gov (United States)

    Schwabe, Inga; Jonker, Wilfried; van den Berg, Stéphanie M

    2016-07-01

    The Wilson-Patterson conservatism scale was psychometrically evaluated using homogeneity analysis and item response theory models. Results showed that this scale actually measures two different aspects in people: on the one hand people vary in their agreement with either conservative or liberal catch-phrases and on the other hand people vary in their use of the "?" response category of the scale. A 9-item subscale was constructed, consisting of items that seemed to measure liberalism, and this subscale was subsequently used in a biometric analysis including genotype-environment interaction, correcting for non-homogeneous measurement error. Biometric results showed significant genetic and shared environmental influences, and significant genotype-environment interaction effects, suggesting that individuals with a genetic predisposition for conservatism show more non-shared variance but less shared variance than individuals with a genetic predisposition for liberalism.

  19. Importance of adaptation and genotype × environment interactions in tropical beef breeding systems.

    Science.gov (United States)

    Burrow, H M

    2012-05-01

    This paper examines the relative importance of productive and adaptive traits in beef breeding systems based on Bos taurus and tropically adapted breeds across temperate and (sub)tropical environments. In the (sub)tropics, differences that exist between breeds in temperate environments are masked by the effects of environmental stressors. Hence in tropical environments, breeds are best categorised into breed types to compare their performance across environments. Because of the presence of environmental stressors, there are more sources of genetic variation in tropical breeding programmes. It is therefore necessary to examine the genetic basis of productive and adaptive traits for breeding programmes in those environments. This paper reviews the heritabilities and genetic relationships between economically important productive and adaptive traits relevant to (sub)tropical breeding programmes. It is concluded that it is possible to simultaneously genetically improve productive and adaptive traits in tropically adapted breeds of beef cattle grazed in tropical environments without serious detrimental consequences for either adaptation or production. However, breed-specific parameters are required for genetic evaluations. The paper also reviews the magnitude of genotype × environment (G × E) interactions impacting on production and adaptation of cattle, where 'genotype' is defined as breed (within a crossbreeding system), sire within breed (in a within-breed selection programme) or associations between economically important traits and single nucleotide polymorphisms (SNPs - within a marker-assisted selection programme). It is concluded that re-ranking of breeds across environments is best managed by the use of the breed type(s) best suited to the particular production environment. Re-ranking of sires across environments is apparent in poorly adapted breed types across extreme tropical and temperate environments or where breeding animals are selected in a temperate

  20. Management intensity and genetics affect loblolly pine seedling performance

    Science.gov (United States)

    Scott D. Roberts; Randall J. Rousseau; B. Landis Herrin

    2012-01-01

    Capturing potential genetic gains from tree improvement programs requires selection of the appropriate genetic stock and application of appropriate silvicultural management techniques. Limited information is available on how specific loblolly pine varietal genotypes perform under differing growing environments and management approaches. This study was established in...

  1. Genetics: A New Landscape for Medical Geography

    Science.gov (United States)

    Carrel, Margaret; Emch, Michael

    2014-01-01

    The emergence and re-emergence of human pathogens resistant to medical treatment will present a challenge to the international public health community in the coming decades. Geography is uniquely positioned to examine the progressive evolution of pathogens across space and through time, and to link molecular change to interactions between population and environmental drivers. Landscape as an organizing principle for the integration of natural and cultural forces has a long history in geography, and, more specifically, in medical geography. Here, we explore the role of landscape in medical geography, the emergent field of landscape genetics, and the great potential that exists in the combination of these two disciplines. We argue that landscape genetics can enhance medical geographic studies of local-level disease environments with quantitative tests of how human-environment interactions influence pathogenic characteristics. In turn, such analyses can expand theories of disease diffusion to the molecular scale and distinguish the important factors in ecologies of disease that drive genetic change of pathogens. PMID:24558292

  2. Genetic parameters of body weight and prolificacy in pigeons

    Directory of Open Access Journals (Sweden)

    Beaumont Catherine

    2000-07-01

    Full Text Available Abstract Genetic parameters of body weight at weaning and of prolificacy were estimated in three commercial lines of pigeons selected by BLUP (Best Linear Unbiased Prediction on both traits. The model of analysis took into account the direct genetic effects for both traits and the effect of parental permanent environment for body weight. Depending on the line considered, body weight varied from 556.7 g to 647.6 g and prolificacy ranged from 12.5 to 16.8 pigeons weaned per couple of parents per year. Heritability of body weight was high, varying between 0.46 and 0.60, and permanent environment was responsible for 6% to 9% of the total variability. On the contrary, prolificacy was poorly heritable (0.04 to 0.12. They were highly and negatively correlated (-0.77 to -0.82. Body weight showed significant genetic trends in lines B and C. No significant genetic difference could be observed between males and females for both traits.

  3. Presymptomatic ALS genetic counseling and testing: Experience and recommendations.

    Science.gov (United States)

    Benatar, Michael; Stanislaw, Christine; Reyes, Eliana; Hussain, Sumaira; Cooley, Anne; Fernandez, Maria Catalina; Dauphin, Danielle D; Michon, Sara-Claude; Andersen, Peter M; Wuu, Joanne

    2016-06-14

    Remarkable advances in our understanding of the genetic contributions to amyotrophic lateral sclerosis (ALS) have sparked discussion and debate about whether clinical genetic testing should routinely be offered to patients with ALS. A related, but distinct, question is whether presymptomatic genetic testing should be offered to family members who may be at risk for developing ALS. Existing guidelines for presymptomatic counseling and testing are mostly based on small number of individuals, clinical judgment, and experience from other neurodegenerative disorders. Over the course of the last 8 years, we have provided testing and 317 genetic counseling sessions (including predecision, pretest, posttest, and ad hoc counseling) to 161 first-degree family members participating in the Pre-Symptomatic Familial ALS Study (Pre-fALS), as well as testing and 75 posttest counseling sessions to 63 individuals with familial ALS. Based on this experience, and the real-world challenges we have had to overcome in the process, we recommend an updated set of guidelines for providing presymptomatic genetic counseling and testing to people at high genetic risk for developing ALS. These recommendations are especially timely and relevant given the growing interest in studying presymptomatic ALS. © 2016 American Academy of Neurology.

  4. Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane

    KAUST Repository

    Singh, Ram K.; Jena, Satya N.; Khan, Mohammad Suhail; Yadav, Sonia; Banarjee, Nandita; Raghuvanshi, Saurabh; Bhardwaj, Vasudha; Dattamajumder, Sanjay K.; Kapur, Raman; Solomon, Sushil; Swapna, M.; Srivastava, Sangeeta; Tyagi, Akhilesh K.

    2013-01-01

    for population structure using model-based approach, seven genetically distinct groups or admixtures thereof were observed in sugarcane. Results of principal coordinate analysis or UPGMA to evaluate genetic relationships delineated also the 124 accessions

  5. Behavioural Susceptibility Theory: Professor Jane Wardle and the Role of Appetite in Genetic Risk of Obesity.

    Science.gov (United States)

    Llewellyn, Clare H; Fildes, Alison

    2017-03-01

    There is considerable variability in human body weight, despite the ubiquity of the 'obesogenic' environment. Human body weight has a strong genetic basis and it has been hypothesised that genetic susceptibility to the environment explains variation in human body weight, with differences in appetite being implicated as the mediating mechanism; so-called 'behavioural susceptibility theory' (BST), first described by Professor Jane Wardle. This review summarises the evidence for the role of appetite as a mediator of genetic risk of obesity. Variation in appetitive traits is observable from infancy, drives early weight gain and is highly heritable in infancy and childhood. Obesity-related common genetic variants identified through genome-wide association studies show associations with appetitive traits, and appetite mediates part of the observed association between genetic risk and adiposity. Obesity results from an interaction between genetic susceptibility to overeating and exposure to an 'obesogenic' food environment.

  6. Genetic diversity of Aspergillus fumigatus in indoor hospital environments.

    Science.gov (United States)

    Araujo, Ricardo; Amorim, António; Gusmão, Leonor

    2010-09-01

    Environmental isolates of Aspergillus fumigatus are less studied than those recovered from clinical sources. In the present study, the genetic diversity among such environmental isolates was assessed, as well as their dispersion ability and the acquisition of new strains in 19 medical units of the same hospital. A. fumigatus isolates were genotyped using a single multiplex PCR-based reaction with eight microsatellite markers and an insertion/deletion polymorphism. A total of 130 unique genotypes were found among a total of 250 A. fumigatus isolates. Genotypic diversity ranged from 0.86 to 1 in samples from hospital rooms, and there was no correlation between these samples and the presence of high-efficiency particulate air filters or any other air filtration system. Four of the six most prevalent A. fumigatus strains were recovered from water samples. The occurrence of microvariation was common among environmental isolates, which affected each of the microsatellite markers. The assessment of the genetic diversity of A. fumigatus is a useful tool for illustrating the presence or absence of specific clonal populations in a clinical setting. A. fumigatus populations were highly dynamic indoors, and new populations were found in just a few months. Due to the high indoor dispersion capability of A. fumigatus, more attention should be given to strains with increased pathogenic potential or reduced susceptibility to anti-fungal drugs.

  7. ROAD DETECTION BY NEURAL AND GENETIC ALGORITHM IN URBAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    A. Barsi

    2012-07-01

    Full Text Available In the urban object detection challenge organized by the ISPRS WG III/4 high geometric and radiometric resolution aerial images about Vaihingen/Stuttgart, Germany are distributed. The acquired data set contains optical false color, near infrared images and airborne laserscanning data. The presented research focused exclusively on the optical image, so the elevation information was ignored. The road detection procedure has been built up of two main phases: a segmentation done by neural networks and a compilation made by genetic algorithms. The applied neural networks were support vector machines with radial basis kernel function and self-organizing maps with hexagonal network topology and Euclidean distance function for neighborhood management. The neural techniques have been compared by hyperbox classifier, known from the statistical image classification practice. The compilation of the segmentation is realized by a novel application of the common genetic algorithm and by differential evolution technique. The genes were implemented to detect the road elements by evaluating a special binary fitness function. The results have proven that the evolutional technique can automatically find major road segments.

  8. Trans-National Genetic Distance and Genetic Identity of Barak Valley Hindus en Route the Journey of Mankind from Africa for ABO Gene

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2011-08-01

    Full Text Available The present study aimed at estimating the genetic distance and genetic identity between Barak Valley Hindus and other twenty four nations for ABO blood group gene along the route of historic journey of mankind from Africa as proposed by Stephen Oppenheimer to gain insights on the evolutionary relationship and genetic closeness of the Hindus with other nations. Barak Valley Zone, located in southern part of Assam state in North East India, has inhabited the major endogamous group, the Hindus, for several centuries. Over the last few decades, they have maintained distinct culture and life style. This study used ABO gene frequency data of these populations to estimate Neis standard genetic distance and genetic identity of population genetics between Barak Valley Hindus and other nations. The historic journey of mankind commenced from Africa about 200,000 years ago (www.bradshawfoundation.com. Genetic distance estimate ranged from 0.07 to 5.18%. Barak Valley Hindus (BVH showed relatively low genetic distance for ABO gene with the populations of Saudi Arabia (0.07%, India (0.13%, Borneo (0.40%, Russia (0.59%, Central Asia (0.60%, Siberia (0.60%, South China (0.71% and Sri Lanka (0.93% suggesting high genetic identity and possible evolutionary relationship of BVH during migration with these nations. But the BVH showed highest genetic distance with Australia (5.18% followed by Norway (4.13%, Sudan (3.89% and Sweden (3.60% indicating low genetic identity of BVH with these nations. Migration was not the key determining factor in changing the ABO gene frequency in human populations.

  9. Trans-National Genetic Distance and Genetic Identity of Barak Valley Hindus en Route the Journey of Mankind from Africa for ABO Gene

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2011-08-01

    Full Text Available The present study aimed at estimating the genetic distance and genetic identity between Barak Valley Hindus and other twenty four nations for ABO blood group gene along the route of historic journey of mankind from Africa as proposed by Stephen Oppenheimer to gain insights on the evolutionary relationship and genetic closeness of the Hindus with other nations. Barak Valley Zone, located in southern part of Assam state in North East India, has inhabited the major endogamous group, the Hindus, for several centuries. Over the last few decades, they have maintained distinct culture and life style. This study used ABO gene frequency data of these populations to estimate Nei�s standard genetic distance and genetic identity of population genetics between Barak Valley Hindus and other nations. The historic journey of mankind commenced from Africa about 200,000 years ago (www.bradshawfoundation.com. Genetic distance estimate ranged from 0.07 to 5.18%. Barak Valley Hindus (BVH showed relatively low genetic distance for ABO gene with the populations of Saudi Arabia (0.07%, India (0.13%, Borneo (0.40%, Russia (0.59%, Central Asia (0.60%, Siberia (0.60%, South China (0.71% and Sri Lanka (0.93% suggesting high genetic identity and possible evolutionary relationship of BVH during migration with these nations. But the BVH showed highest genetic distance with Australia (5.18% followed by Norway (4.13%, Sudan (3.89% and Sweden (3.60% indicating low genetic identity of BVH with these nations. Migration was not the key determining factor in changing the ABO gene frequency in human populations.

  10. Developmental and genetic modulation of arsenic biotransformation: A gene by environment interaction?

    International Nuclear Information System (INIS)

    Meza, Mercedes; Gandolfi, A. Jay; Klimecki, Walter T.

    2007-01-01

    The complexity of arsenic toxicology has confounded the identification of specific pathways of disease causation. One focal point of arsenic research is aimed at fully characterizing arsenic biotransformation in humans, a process that appears to be quite variable, producing a mixture of several arsenic species with greatly differing toxic potencies. In an effort to characterize genetic determinants of variability in arsenic biotransformation, a genetic association study of 135 subjects in western Sonora, Mexico was performed by testing 23 polymorphic sites in three arsenic biotransformation candidate genes. One gene, arsenic 3 methyltransferase (AS3MT), was strongly associated with the ratio of urinary dimethylarsinic acid to monomethylarsonic acid (D/M) in children (7-11 years) but not in adults (18-79 years). Subsequent analyses revealed that the high D/M values associated with variant AS3MT alleles were primarily due to lower levels of monomethylarsonic acid as percent of total urinary arsenic (%MMA5). In light of several reports of arsenic-induced disease being associated with relatively high %MMA5 levels, these findings raise the possibility that variant AS3MT individuals may suffer less risk from arsenic exposure than non-variant individuals. These analyses also provide evidence that, in this population, regardless of AS3MT variant status, children tend to have lower %MMA5 values than adults, suggesting that the global developmental regulation of arsenic biotransformation may interact with genetic variants in metabolic genes to result in novel genetic effects such as those in this report

  11. Advances in genetics and immunology: the importance of basic research to prevention of occupational diseases

    International Nuclear Information System (INIS)

    Omenn, G.S.

    1984-01-01

    Differences among workers in susceptibility to workplace exposures to environmental agents such as metals, ultraviolet radiation, and x-radiation are discussed. The distinction is made between the need for (1) monitoring for effects on the genetic material (genetic toxicology) and (2) screening for predisposing inherited traits (eco-genetics). Genetically-determined differences in susceptibility are discussed in relation to mechanisms of metabolism and of target sites. While there is not enough evidence to support routine genetic screening at this time there is common agreement that several promising areas for research on potential genetic predispositions warrant careful study. There is also reassuring evidence that productive relationships for research can be established among unions, management, and universities. 56 references, 3 figures, 7 tables

  12. Genetic differences between avian and human isolates of Candida dubliniensis.

    LENUS (Irish Health Repository)

    McManus, Brenda A

    2009-09-01

    When Candida dubliniensis isolates obtained from seabird excrement and from humans in Ireland were compared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The remaining avian isolate was indistinguishable from a human isolate, suggesting that transmission may occur between humans and birds.

  13. Genetic sorting of subordinate species in grassland modulated by intraspecific variation in dominant species.

    Directory of Open Access Journals (Sweden)

    Danny J Gustafson

    Full Text Available Genetic variation in a single species can have predictable and heritable effects on associated communities and ecosystem processes, however little is known about how genetic variation of a dominant species affects plant community assembly. We characterized the genetic structure of a dominant grass (Sorghastrum nutans and two subordinate species (Chamaecrista fasciculata, Silphium integrifolium, during the third growing season in grassland communities established with genetically distinct (cultivated varieties or local ecotypes seed sources of the dominant grasses. There were genetic differences between subordinate species growing in the cultivar versus local ecotype communities, indicating that intraspecific genetic variation in the dominant grasses affected the genetic composition of subordinate species during community assembly. A positive association between genetic diversity of S. nutans, C. fasciculata, and S. integrifolium and species diversity established the role of an intraspecific biotic filter during community assembly. Our results show that intraspecific variation in dominant species can significantly modulate the genetic composition of subordinate species.

  14. Modeling Gene-Environment Interactions With Quasi-Natural Experiments.

    Science.gov (United States)

    Schmitz, Lauren; Conley, Dalton

    2017-02-01

    This overview develops new empirical models that can effectively document Gene × Environment (G×E) interactions in observational data. Current G×E studies are often unable to support causal inference because they use endogenous measures of the environment or fail to adequately address the nonrandom distribution of genes across environments, confounding estimates. Comprehensive measures of genetic variation are incorporated into quasi-natural experimental designs to exploit exogenous environmental shocks or isolate variation in environmental exposure to avoid potential confounders. In addition, we offer insights from population genetics that improve upon extant approaches to address problems from population stratification. Together, these tools offer a powerful way forward for G×E research on the origin and development of social inequality across the life course. © 2015 Wiley Periodicals, Inc.

  15. Genomic Selection in Multi-environment Crop Trials.

    Science.gov (United States)

    Oakey, Helena; Cullis, Brian; Thompson, Robin; Comadran, Jordi; Halpin, Claire; Waugh, Robbie

    2016-05-03

    Genomic selection in crop breeding introduces modeling challenges not found in animal studies. These include the need to accommodate replicate plants for each line, consider spatial variation in field trials, address line by environment interactions, and capture nonadditive effects. Here, we propose a flexible single-stage genomic selection approach that resolves these issues. Our linear mixed model incorporates spatial variation through environment-specific terms, and also randomization-based design terms. It considers marker, and marker by environment interactions using ridge regression best linear unbiased prediction to extend genomic selection to multiple environments. Since the approach uses the raw data from line replicates, the line genetic variation is partitioned into marker and nonmarker residual genetic variation (i.e., additive and nonadditive effects). This results in a more precise estimate of marker genetic effects. Using barley height data from trials, in 2 different years, of up to 477 cultivars, we demonstrate that our new genomic selection model improves predictions compared to current models. Analyzing single trials revealed improvements in predictive ability of up to 5.7%. For the multiple environment trial (MET) model, combining both year trials improved predictive ability up to 11.4% compared to a single environment analysis. Benefits were significant even when fewer markers were used. Compared to a single-year standard model run with 3490 markers, our partitioned MET model achieved the same predictive ability using between 500 and 1000 markers depending on the trial. Our approach can be used to increase accuracy and confidence in the selection of the best lines for breeding and/or, to reduce costs by using fewer markers. Copyright © 2016 Oakey et al.

  16. Stress-induced evolution and the biosafety of genetically modified

    Indian Academy of Sciences (India)

    This article is focused on the problems of reduction of the risk associated with the deliberate release of genetically modified microorganisms (GMMs) into the environment. Special attention is given to overview the most probable physiological and genetic processes which could be induced in the released GMMs by adverse ...

  17. PRM1 and KAR5 function in cell-cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex.

    Directory of Open Access Journals (Sweden)

    Ci Fu

    2017-11-01

    Full Text Available Sexual reproduction is critical for successful evolution of eukaryotic organisms in adaptation to changing environments. In the opportunistic human fungal pathogens, the Cryptococcus pathogenic species complex, C. neoformans primarily undergoes bisexual reproduction, while C. deneoformans undergoes both unisexual and bisexual reproduction. During both unisexual and bisexual cycles, a common set of genetic circuits regulates a yeast-to-hyphal morphological transition, that produces either monokaryotic or dikaryotic hyphae. As such, both the unisexual and bisexual cycles can generate genotypic and phenotypic diversity de novo. Despite the similarities between these two cycles, genetic and morphological differences exist, such as the absence of an opposite mating-type partner and monokaryotic instead of dikaryotic hyphae during C. deneoformans unisexual cycle. To better understand the similarities and differences between these modes of sexual reproduction, we focused on two cellular processes involved in sexual reproduction: cell-cell fusion and karyogamy. We identified orthologs of the plasma membrane fusion protein Prm1 and the nuclear membrane fusion protein Kar5 in both Cryptococcus species, and demonstrated their conserved roles in cell fusion and karyogamy during C. deneoformans α-α unisexual reproduction and C. deneoformans and C. neoformans a-α bisexual reproduction. Notably, karyogamy occurs inside the basidum during bisexual reproduction in C. neoformans, but often occurs earlier following cell fusion during bisexual reproduction in C. deneoformans. Characterization of these two genes also showed that cell fusion is dispensable for solo unisexual reproduction in C. deneoformans. The blastospores produced along hyphae during C. deneoformans unisexual reproduction are diploid, suggesting that diploidization occurs early during hyphal development, possibly through either an endoreplication pathway or cell fusion-independent karyogamy

  18. Jaffe-Campanacci syndrome, revisited: detailed clinical and molecular analyses determine whether patients have neurofibromatosis type 1, coincidental manifestations, or a distinct disorder

    NARCIS (Netherlands)

    Stewart, Douglas R.; Brems, Hilde; Gomes, Alicia G.; Ruppert, Sarah L.; Callens, Tom; Williams, Jennifer; Claes, Kathleen; Bober, Michael B.; Hachen, Rachel; Kaban, Leonard B.; Li, Hua; Lin, Angela; McDonald, Marie; Melancon, Serge; Ortenberg, June; Radtke, Heather B.; Samson, Ignace; Saul, Robert A.; Shen, Joseph; Siqveland, Elizabeth; Toler, Tomi L.; van Maarle, Merel; Wallace, Margaret; Williams, Misti; Legius, Eric; Messiaen, Ludwine

    2014-01-01

    "Jaffe-Campanacci syndrome" describes the complex of multiple nonossifying fibromas of the long bones, mandibular giant cell lesions, and café-au-lait macules in individuals without neurofibromas. We sought to determine whether Jaffe-Campanacci syndrome is a distinct genetic entity or a variant of

  19. Genes and Aggressive Behavior: Epigenetic Mechanisms Underlying Individual Susceptibility to Aversive Environments

    Directory of Open Access Journals (Sweden)

    Sara Palumbo

    2018-06-01

    Full Text Available Over the last two decades, the study of the relationship between nature and nurture in shaping human behavior has encountered a renewed interest. Behavioral genetics showed that distinct polymorphisms of genes that code for proteins that control neurotransmitter metabolic and synaptic function are associated with individual vulnerability to aversive experiences, such as stressful and traumatic life events, and may result in an increased risk of developing psychopathologies associated with violence. On the other hand, recent studies indicate that experiencing aversive events modulates gene expression by introducing stable changes to DNA without modifying its sequence, a mechanism known as “epigenetics”. For example, experiencing adversities during periods of maximal sensitivity to the environment, such as prenatal life, infancy and early adolescence, may introduce lasting epigenetic marks in genes that affect maturational processes in brain, thus favoring the emergence of dysfunctional behaviors, including exaggerate aggression in adulthood. The present review discusses data from recent research, both in humans and animals, concerning the epigenetic regulation of four genes belonging to the neuroendocrine, serotonergic and oxytocinergic pathways—Nuclear receptor subfamily 3-group C-member 1 (NR3C1, oxytocin receptor (OXTR, solute carrier-family 6 member 4 (SLC6A4 and monoamine oxidase A (MAOA—and their role in modulating vulnerability to proactive and reactive aggressive behavior. Behavioral genetics and epigenetics are shedding a new light on the fine interaction between genes and environment, by providing a novel tool to understand the molecular events that underlie aggression. Overall, the findings from these studies carry important implications not only for neuroscience, but also for social sciences, including ethics, philosophy and law.

  20. Nurture net of nature: Re-evaluating the role of shared environments in academic achievement and verbal intelligence.

    Science.gov (United States)

    Daw, Jonathan; Guo, Guang; Harris, Kathie Mullan

    2015-07-01

    Prominent authors in the behavioral genetics tradition have long argued that shared environments do not meaningfully shape intelligence and academic achievement. However, we argue that these conclusions are erroneous due to large violations of the additivity assumption underlying behavioral genetics methods - that sources of genetic and shared and nonshared environmental variance are independent and non-interactive. This is compounded in some cases by the theoretical equation of the effective and objective environments, where the former is defined by whether siblings are made more or less similar, and the latter by whether siblings are equally subject to the environmental characteristic in question. Using monozygotic twin fixed effects models, which compare outcomes among genetically identical pairs, we show that many characteristics of objectively shared environments significantly moderate the effects of nonshared environments on adolescent academic achievement and verbal intelligence, violating the additivity assumption of behavioral genetic methods. Importantly, these effects would be categorized as nonshared environmental influences in standard twin models despite their roots in shared environments. These findings should encourage caution among those who claim that the frequently trivial variance attributed to shared environments in behavioral genetic models means that families, schools, and neighborhoods do not meaningfully influence these outcomes. Copyright © 2015. Published by Elsevier Inc.