WorldWideScience

Sample records for genetically based variation

  1. Genetic Variation among 11 Abies concolor Populations Based on Allozyme Analysis

    Institute of Scientific and Technical Information of China (English)

    Zhang Jin-feng; Li Hui; Dong Jian-sheng; Wang Jun-hui

    2005-01-01

    In order to obtain information on the genetic structure of Abies concolor and the genetic variation among 11 populations introduced from America to China, allozyme analysis based on starch gel electrophoresis technology was used. 24 loci of 10allozyme systems were mensurated, and the genetic structure and genetic diversity of the 11 populations of A. concolor evaluated.The results show that the genetic variation among is significant, and the genetic variation within A. concolor populations is more important. In contrast with other conifers, the variation of A. concolor is above the average level of conifers, and higher than the same level ofAbies. The percentage of polymorphic loci (P) was 62.5%, the number of alleles per locus (A) 2.08, the number of effective alleles per locus (Ae) was 1.37, the expected heterozygosity (H) 0.204, and the Shannon information index (I) 0.351 7. There is a short genetic distance (D=0.061) and a low gene flow (Nm=0.839 4) among the 11 introduced populations of A. concolor with high genetic variation. The genetic differentiation coefficient (Gst) was 0.229 5, which is higher than that of the mean in Abies or Pinus.

  2. Genetic variation in variability

    NARCIS (Netherlands)

    Mulder, Herman; Gienapp, Phillip; Visser, Marcel E.

    2016-01-01

    Variation in traits is essential for natural selection to operate and genetic and environmental effects can contribute to this phenotypic variation. From domesticated populations, we know that families can differ in their level of within-family variance, which leads to the intriguing situation th

  3. Genetic analysis of environmental variation

    NARCIS (Netherlands)

    Hill, W.G.; Mulder, H.A.

    2010-01-01

    Environmental variation (VE) in a quantitative trait – variation in phenotype that cannot be explained by genetic variation or identifiable genetic differences – can be regarded as being under some degree of genetic control. Such variation may be either between repeated expressions of the same trait

  4. Genetic analysis of environmental variation

    NARCIS (Netherlands)

    Hill, W.G.; Mulder, H.A.

    2010-01-01

    Environmental variation (VE) in a quantitative trait – variation in phenotype that cannot be explained by genetic variation or identifiable genetic differences – can be regarded as being under some degree of genetic control. Such variation may be either between repeated expressions of the same trait

  5. Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation.

    Science.gov (United States)

    Kuroda, Y; Kaga, A; Tomooka, N; Vaughan, D A

    2006-04-01

    The research objectives were to determine aspects of the population dynamics relevant to effective monitoring of gene flow in the soybean crop complex in Japan. Using 20 microsatellite primers, 616 individuals from 77 wild soybean (Glycine soja) populations were analysed. All samples were of small seed size ( 10 km) events among populations, and spatial autocorrelation analysis revealed that populations within a radius of 100 km showed a close genetic relationship to one another. When analysis of graphical ordination was applied to compare the microsatellite variation of wild soybean with that of 53 widely grown Japanese varieties of cultivated soybean (Glycine max), the primary factor of genetic differentiation was based on differences between wild and cultivated soybeans and the secondary factor was geographical differentiation of wild soybean populations. Admixture analysis revealed that 6.8% of individuals appear to show introgression from cultivated soybeans. These results indicated that population genetic structure of Japanese wild soybean is (i) strongly affected by the founder effect due to seed dispersal and inbreeding strategy, (ii) generally well differentiated from cultivated soybean, but (iii) introgression from cultivated soybean occurs. The implications of the results for the release of transgenic soybeans where wild soybeans grow are discussed.

  6. Genetic variation and phylogenetic relationships in oil palm (Elaeis guineensis Jacq. based on RAPD analysis

    Directory of Open Access Journals (Sweden)

    Nualsri, C.

    2005-05-01

    Full Text Available The genetic variability and phylogenetic relationships in oil palm (Elaeis guineensis Jacq. were studied using RAPD (Random Amplified Polymorphic DNA. Leaf samples of 151 plants were collected from different areas in southern Thailand. DNA from the leaf samples was isolated using CTAB buffer and screened by decamer oligonucleotide primers. Among the total of 160 primers screened, 7 primers (OPB-08, OPR-11, OPT-06, OPT-19, OPAB-01, OPAB-09 and OPAB-14 were chosen to analyse for genetic variation in 151 individuals representing 52 dura, 60 tenera and 39 pisifera. Two hundred and nine amplified fragments were obtained from 7 primers with an average of 29.85 RAPD markers per primer. A dendrogram showing genetic similarities among oil palm was constructed based on polymorphic bands using UPGMA (Unweighted Pair-Group Method Using Arithmetic Average. Cluster analysis was performed using the SPSS program, which revealed four major clusters: 1 dura, tenera and pisifera from Paorong Oil Palm Company, Oil Palm Research Center, dura and tenera from private plantation in Krabi, and dura from Thepa Research Station;2 dura and tenera from Thai Boonthong Company, pisifera and tenera from Thepa Research Station, dura, tenera and pisifera from Klong Hoi Khong Research Station; 3 and 4 dura and tenera from Univanit Company, respectively. In general, a similarity index showed relatively high levels of 0.6 or greater.

  7. Genetic variation of Taenia pisiformis collected from Sichuan, China, based on the mitochondrial cytochrome B gene.

    Science.gov (United States)

    Yang, Deying; Ren, Yongjun; Fu, Yan; Xie, Yue; Nie, Huaming; Nong, Xiang; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2013-08-01

    Taenia pisiformis is one of the most important parasites of canines and rabbits. T. pisiformis cysticercus (the larval stage) causes severe damage to rabbit breeding, which results in huge economic losses. In this study, the genetic variation of T. pisiformis was determined in Sichuan Province, China. Fragments of the mitochondrial cytochrome b (cytb) (922 bp) gene were amplified in 53 isolates from 8 regions of T. pisiformis. Overall, 12 haplotypes were found in these 53 cytb sequences. Molecular genetic variations showed 98.4% genetic variation derived from intra-region. FST and Nm values suggested that 53 isolates were not genetically differentiated and had low levels of genetic diversity. Neutrality indices of the cytb sequences showed the evolution of T. pisiformis followed a neutral mode. Phylogenetic analysis revealed no correlation between phylogeny and geographic distribution. These findings indicate that 53 isolates of T. pisiformis keep a low genetic variation, which provide useful knowledge for monitoring changes in parasite populations for future control strategies.

  8. Nucleotide Base Variation of Blast Disease Resistance Gene Pi33 in Rice Selected Broad Genetic Background

    Directory of Open Access Journals (Sweden)

    DWINITA WIKAN UTAMI

    2011-09-01

    Full Text Available Rice is one of the most important crops for human beings, thus increasing productivity are continually persecuted. Blast disease can reduce the rate of productivity of rice cultivation. Therefore, the program of blast disease-resistant varieties needs to do effectively. One of broad-spectrum blast disease-resistant gene is Pi33. This study was aimed to identify the variation in the sequence of nucleotide bases of Pi33 gene in five interspesific lines which derived from Bio46 (IR64/Oryza rufipogon and CT13432 crossing. DNA of five rice lines were amplified using the spesific primer for Pi33, G1010. Amplification results purified through Exonuclease 1 and Shrimp Alkaline Phosphatase protocols. Labelling using fluorescent dyes done before sequencing nucleotide base using CEQ8000 instrument. The results showed that lines number 28 showed introgesion of the three control parent genome (subspecies of Indica, subspecies of Japonica, and O. rufipogon while the Lines number 79, 136, and 143 were identical to Indica genome. Strain number 195 was identical to Japonica genome. These broad genetic background lines promise as durable performance to attack the expansion of the dynamic nature of the pathogen to blast. The result of ortholog sequence analysis found conserved nucleotide base sequence (CAGCAGCC which involved in heterotrimeric G-protein group. This protein has role as plant receptor for recognizing pathogen elicitor in interaction of rice and blast pathogen.

  9. Genetic Variation of the First Generation of Rodent Tuber (Typhonium flagelliforme Lodd. Mutants Based on RAPD Molecular Markers

    Directory of Open Access Journals (Sweden)

    Nesti Fronika Sianipar

    2015-04-01

    Full Text Available Rodent tuber (Typhonium flagelliforme Lodd. is a herbal plant from the Araceae family. The plant has high medical potential and is effective to cure cancer. However, the low level of its genetic variation limits its exploration for desirable traits. The low level of genetic variation in Rodent tuber is mainly due to its asexual reproduction system. It usually reproduces vegetatively via tuber separation. Therefore, gamma irradiation had been applied to rodent tuber in vitro to increase its genetic diversity. The objective of this study was to analyze the genetic diversity of the first generation (MV1 of gamma irradiated rodent tuber mutant using random amplified polymorphic DNA (RAPD markers. A total of 14 mutant DNA samples were analyzed with 14 RAPD primers. The result showed that 67 out of 123 DNA bands were polymorphic among mutant lines. Based on cluster analysis these mutants showed 0.78-0.97 genetic similarity. Cutting of dendogram at genetic distance of 0.89 produced four main clusters. Mutants with high genetic variation are now available. This increases the opportunity of obtaining mutant lines with high anti-cancer activity.

  10. Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas L Turner

    2011-03-01

    Full Text Available Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size.

  11. Population-based study of genetic variation in individuals with autism spectrum disorders from Croatia

    Directory of Open Access Journals (Sweden)

    Gidaya Nicole

    2010-09-01

    Full Text Available Abstract Background Genome-wide studies on autism spectrum disorders (ASDs have mostly focused on large-scale population samples, but examination of rare variations in isolated populations may provide additional insights into the disease pathogenesis. Methods As a first step in the genetic analysis of ASD in Croatia, we characterized genetic variation in a sample of 103 subjects with ASD and 203 control individuals, who were genotyped using the Illumina HumanHap550 BeadChip. We analyzed the genetic diversity of the Croatian population and its relationship to other populations, the degree of relatedness via Runs of Homozygosity (ROHs, and the distribution of large (>500 Kb copy number variations. Results Combining the Croatian cohort with several previously published populations in the FastME analysis (an alternative to Neighbor Joining revealed that Croatian subjects cluster, as expected, with Southern Europeans; in addition, individuals from the same geographic region within Europe cluster together. Whereas Croatian subjects could be separated from a sample of healthy control subjects of European origin from North America, Croatian ASD cases and controls are well mixed. A comparison of runs of homozygosity indicated that the number and the median length of regions of homozygosity are higher for ASD subjects than for controls (p = 6 × 10-3. Furthermore, analysis of copy number variants found a higher frequency of large chromosomal rearrangements (>2 Mb in ASD cases (5/103 than in ethnically matched control subjects (1/197, p = 0.019. Conclusions Our findings illustrate the remarkable utility of high-density genotype data for subjects from a limited geographic area in dissecting genetic heterogeneity with respect to population and disease related variation.

  12. Genetic variation and human longevity.

    Science.gov (United States)

    Soerensen, Mette

    2012-05-01

    The overall aim of the PhD project was to elucidate the association of human longevity with genetic variation in major candidate genes and pathways of longevity. Based on a thorough literature and database search we chose to apply a pathway approach; to explore variation in genes composing the DNA damage signaling, DNA repair, GH/IGF-1/insulin signaling and pro-/antioxidant pathways. In addition, 16 genes which did not belong to the core of either pathway, however recurrently regarded as candidate genes of longevity (e.g. APOE), were included. In this way a total of 168 genes were selected for investigation. We decided to explore the genetic variation in the form of single nucleotide polymorphisms (SNPs), a highly investigated type of genetic variation. SNPs having potential functional impact (e.g. affecting binding of transcription factors) were identified, so were specific SNPs in the candidate genes previously published to be associated with human longevity. To cover the majority of the common genetic variation in the 168 gene regions (encoding regions plus 5,000 bp upstream and 1,000 downstream) we applied the tagging SNP approach via the HapMap Consortium. Consequently 1,536 SNPs were selected. The majority of the previous publications on genetic variation and human longevity had employed a case-control study design, e.g. comparing centenarians to middle-aged controls. This type of study design is somehow prone to bias introduced by for instance cohort effects, i.e. differences in characteristics of cases and controls, a kind of bias which is avoided when a prospective cohort is under study. Therefore, we chose to investigate 1,200 individuals of the Danish 1905 birth cohort, which have been followed since 1998 when the members were 92-93 years old. The genetic contribution to human longevity has been estimated to be most profound during the late part of life, thus these oldest-old individuals are excellent for investigating such effect. The follow-up survival

  13. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    Directory of Open Access Journals (Sweden)

    Annalise B. Paaby

    2016-06-01

    Full Text Available Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits.

  14. Cryptic Genetic Variation in Evolutionary Developmental Genetics.

    Science.gov (United States)

    Paaby, Annalise B; Gibson, Greg

    2016-06-13

    Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes-processes that cannot be fully observed in continuously varying visible traits.

  15. Genetic variation in the zebrafish

    NARCIS (Netherlands)

    Guryev, V.; Koudijs, M.J.; Berezikov, E.; Johnson, S.L.; Plasterk, R.; van Eeden, F.; Cuppen, E.

    2006-01-01

    Although zebrafish was introduced as a laboratory model organism several decades ago and now serves as a primary model for developmental biology, there is only limited data on its genetic variation. An establishment of a dense polymorphism map becomes a requirement for effective linkage analysis and

  16. Genetic structure of Xiphinema pachtaicum and X. index populations based on mitochondrial DNA variation.

    Science.gov (United States)

    Gutiérrez-Gutiérrez, Carlos; Castillo, Pablo; Cantalapiedra-Navarrete, Carolina; Landa, Blanca B; Derycke, Sofie; Palomares-Rius, Juan E

    2011-10-01

    The dagger nematodes Xiphinema pachtaicum and X. index are two of the most widespread and frequently occurring Xiphinema spp. co-infesting vineyards and other crops and natural habitats worldwide. Sexual reproduction is rare in these species. The primary objective of this study was to determine the genetic structure of X. pachtaicum and X. index populations using eight and seven populations, respectively, from different "wine of denomination of origin (D.O.) zones" in Spain and Sardinia (Italy), by studying mitochondrial (cytochrome oxidase c subunit 1 or COI) and nuclear (D2-D3 expansion segments of 28S rDNA) markers. Both Xiphinema spp. showed low intraspecific divergence among COI sequences, ranging from 0.2% (1 base substitution) to 2.3% (10 substitutions) in X. pachtaicum and from 0.2% (1 base substitution) to 0.4% (2 substitutions) in X. index. Population genetic structure was strong for both species. Nevertheless, molecular differences among grapevine-growing areas were not significant, and intrapopulation diversity was very low. It is hypothesized that this genetic homogeneity in the nematode populations reflects their predominant parthenogenetic reproduction mode and low dispersal abilities. Our results also show that X. pachtaicum populations in Spain have possibly been established from two different populations of origin. Results also demonstrated that the two DNA regions studied are suitable diagnostic markers for X. index and X. pachtaicum.

  17. Genetic variations of Lansium domesticum Corr. accessions from Java, Sumatra and Ceram based on Random Amplified Polymorphic DNA fingerprints

    Directory of Open Access Journals (Sweden)

    KUSUMADEWI SRI YULITA

    2011-07-01

    Full Text Available Yulita KS (2011 Genetic variations of Lansium domesticum Corr. accessions from Java, Bengkulu and Ceram based on Random Amplified Polymorphic DNA fingerprints. Biodiversitas 12: 125-130. Duku (Lansium domesticum Corr. is one of popular tropical fruits in SE Asia. The spesies has three varieties, known as duku, langsat and kokosan; and duku is the most popular one for being the sweetiest fruit. Indonesia has several local varieties of duku, such as duku Condet, duku Sumber and duku Palembang. This present study aimed to assess genetic diversity of 47 accessions of duku from Java, Sumatra, and Ceram based on RAPD fingerprints. Ten RAPD’s primers were initially screened and five were selected for the analysis. These five primers (OPA 7, 13, 18, OPB 7, and OPN 12 generated 53 scorable bands with an average of 10.6 polymorphic fragment per primer. Percentage of polymorphism ranged from 16.89% (OPA 7 and OPN 12 to 24.54% (OPB 7 with an average of 20.16% polymorphism. OPB 7 at 450 bp was exclusively possessed by accession 20 (Java, OPA 18 at 500 bp was by accession 6 (Java, 550 bp by 3 clones from Bengkulu. While OPN 12 at 300 bp and OPA 13 at 450 bp were shared among the accessions. Clustering analysis was performed based on RAPD profiles using the UPGMA method. The range of genetic similarity value among accessions was 0.02-0.65 suggesting high variation of gene pool existed among accessions.

  18. ASSESSMENT OF GENETIC VARIATION OF PEARL OYSTER, Pinctada maxima, BASED ON THE ANALYSIS OF MITOCHONDRIAL CYTOCHROME OXIDASE SUBUNIT I GENE

    Directory of Open Access Journals (Sweden)

    Achmad Sudradjat

    2009-06-01

    Full Text Available Pearl oyster, Pinctada maxima is one of economical ly important species in aquaculture, particularly in pearl industry. Information on genetic variation of pearl oyster is required in order to be able to make a sound management of it’s natural populations and to utilize it to improve the quality of pearl culture. Five populations from different geographic locations of pearl oyster, Pinctada maxima, (Sumbawa, Bali, Selat Sunda, Belitung, and South Sulawesi were analyzed for genetic variation within a 750-base pair region of the Mitochondrial Cytochrome Oxidase subunit I (MtCOI gene using Restriction Fragment Length Polymorphism (RFLP technique. The analysis of 25 pearl oyster samples, their haplotype diversity ranged from 0.0970 to 0.1939 and the number of haplotype in each population ranged from three to five haplotypes. Clustering of populations based on Nei’s genetic distances and constructed using unweighted pair-group method with Arithmetic mean (UPGMA showed that the populations were clustered into two groups: Belitung, Selat Sunda, Bali and Sumbawa in one group, while South Sulawesi in the second group.

  19. Genetic Variation of Cassava Mealybug, Phenacoccus manihoti (Hemiptera: Pseudococcidae, Based on DNA Sequences from Mitochondrial and Nuclear Genes

    Directory of Open Access Journals (Sweden)

    Atsalek RATTANAWANNEE

    2016-02-01

    Full Text Available The present study aimed to investigate the genetic variation and genetic structure of the Phenacoccus manihoti Matile-Ferrero, one of the most serious insect pests of cassava worldwide, in populations in Thailand, using mitochondrial and nuclear DNA sequence based analysis. The samples of P. manihoti were collected from 28 major cassava-growing areas within 18 provinces in Thailand. Our field survey results showed that the northeastern and eastern regions of Thailand were widely and highly infested with P. manihoti. Phylogenetic analysis revealed 2 mitochondrial clades and a single nuclear clade, which corresponded to low genetic variability. This suggests that P. manihoti has a high potential to spread aggressively throughout the cassava-growing areas in Thailand that in which it was first found in 2008. In addition, the generally low genetic divergence observed may be due to the highly prevalent parthenogenetic reproduction of this insect pest species. Further research is therefore necessary to develop proportional prevention and surveillance programs for early detection and rapid response. In addition, the genetic structure and variability of P. manihoti populations from neighboring countries should be studied.

  20. Genetic variation in dieback resistance

    DEFF Research Database (Denmark)

    Lobo, Albin; Hansen, Jon Kehlet; McKinney, Lea Vig

    2014-01-01

    -eastern Zealand, Denmark, and confirmed the presence of substantial genetic variation in ash dieback susceptibility. The average crown damage increased in the trial from 61% in 2009 to 66% in 2012 and 72% in 2014, while the estimated heritability was 0.42 in both 2009 and 2012 but increased to 0.53 in 2014....... Genetic correlation between assessments was 0.88 between 2009 and 2012 and 0.91 between 2009 and 2014, suggesting fairly good possibilities for early selection of superior genotypes in the presence of high infection levels in the trial. The level of crown damage had strong negative effect on growth...

  1. Nucleotide Base Variation of Blast Disease Resistance Gene Pi33 in Rice Selected Broad Genetic Background

    OpenAIRE

    DWINITA WIKAN UTAMI; KALIA BARNITA; SITI YURIAH; IDA HANARIDA

    2011-01-01

    Rice is one of the most important crops for human beings, thus increasing productivity are continually persecuted. Blast disease can reduce the rate of productivity of rice cultivation. Therefore, the program of blast disease-resistant varieties needs to do effectively. One of broad-spectrum blast disease-resistant gene is Pi33. This study was aimed to identify the variation in the sequence of nucleotide bases of Pi33 gene in five interspesific lines which derived from Bio46 (IR64/Oryza rufip...

  2. Genetic variation of contact dermatitis in broilers

    DEFF Research Database (Denmark)

    Ask, Birgitte

    2010-01-01

    This study aimed to investigate the presence of genetic variation in footpad dermatitis (FPD) and hock burns (HB) and the possibility to genetically select against these. A field trial including 10 commercial broiler lines (n = 102 to 265) was carried out at 2 Dutch farms. Footpad dermatitis and HB...... to welfare. Genetic variation between and within lines was present for both FPD and HB as indicated by between-line differences and heritabilities, and selection against FPD and HB is, therefore, possible. It is important that selection is done against both FPD and HB, and such selection should not have...... were subjectively scored at ~4, 5, and 7 wk on a scale from 0 through 5. Genetic parameters were estimated in 2 lines based on a larger data set. The overall agreement of repeated FPD and HB scores was high (0.66 to 0.86) and the scoring system was, therefore, considered reliable. Kendall's tau between...

  3. Genetic Variation, Heritability, and Diversity Analysis of Upland Rice (Oryza sativa L. Genotypes Based on Quantitative Traits

    Directory of Open Access Journals (Sweden)

    Mst. Tuhina-Khatun

    2015-01-01

    Full Text Available Upland rice is important for sustainable crop production to meet future food demands. The expansion in area of irrigated rice faces limitations due to water scarcity resulting from climate change. Therefore, this research aimed to identify potential genotypes and suitable traits of upland rice germplasm for breeding programmes. Forty-three genotypes were evaluated in a randomised complete block design with three replications. All genotypes exhibited a wide and significant variation for 22 traits. The highest phenotypic and genotypic coefficient of variation was recorded for the number of filled grains/panicle and yields/plant (g. The highest heritability was found for photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2, and number of filled grains/panicle and yields/plant (g. Cluster analysis based on 22 traits grouped the 43 rice genotypes into five clusters. Cluster II was the largest and consisted of 20 genotypes mostly originating from the Philippines. The first four principle components of 22 traits accounted for about 72% of the total variation and indicated a wide variation among the genotypes. The selected best trait of the number of filled grains/panicle and yields/plant (g, which showed high heritability and high genetic advance, could be used as a selection criterion for hybridisation programmes in the future.

  4. Genetic Variation, Heritability, and Diversity Analysis of Upland Rice (Oryza sativa L.) Genotypes Based on Quantitative Traits.

    Science.gov (United States)

    Tuhina-Khatun, Mst; Hanafi, Mohamed M; Rafii Yusop, Mohd; Wong, M Y; Salleh, Faezah M; Ferdous, Jannatul

    2015-01-01

    Upland rice is important for sustainable crop production to meet future food demands. The expansion in area of irrigated rice faces limitations due to water scarcity resulting from climate change. Therefore, this research aimed to identify potential genotypes and suitable traits of upland rice germplasm for breeding programmes. Forty-three genotypes were evaluated in a randomised complete block design with three replications. All genotypes exhibited a wide and significant variation for 22 traits. The highest phenotypic and genotypic coefficient of variation was recorded for the number of filled grains/panicle and yields/plant (g). The highest heritability was found for photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO₂, and number of filled grains/panicle and yields/plant (g). Cluster analysis based on 22 traits grouped the 43 rice genotypes into five clusters. Cluster II was the largest and consisted of 20 genotypes mostly originating from the Philippines. The first four principle components of 22 traits accounted for about 72% of the total variation and indicated a wide variation among the genotypes. The selected best trait of the number of filled grains/panicle and yields/plant (g), which showed high heritability and high genetic advance, could be used as a selection criterion for hybridisation programmes in the future.

  5. Genetic analysis of seven Italian horse breeds based on mitochondrial DNA D-loop variation.

    Science.gov (United States)

    Bigi, D; Perrotta, G; Zambonelli, P

    2014-08-01

    To understand the origin and genetic diversity of Italian horses, mitochondrial DNA D-loop sequences were generated for 163 horses from seven breeds. Sequence analysis of a 480-bp segment revealed a total of 84 haplotypes with 57 polymorphic sites, indicating multiple maternal origins and high genetic diversity. Comparison of the haplotypes with the equine mtDNA haplotype/haplogroup nomenclature showed a haplogroup distribution in the Italian breeds more similar to that found in the Middle East breeds than in the European breeds, probably due to the economic and cultural relationship with the Middle East in the past centuries. © 2014 Stichting International Foundation for Animal Genetics.

  6. Genetic variation of contact dermatitis in broilers.

    Science.gov (United States)

    Ask, B

    2010-05-01

    This study aimed to investigate the presence of genetic variation in footpad dermatitis (FPD) and hock burns (HB) and the possibility to genetically select against these. A field trial including 10 commercial broiler lines (n = 102 to 265) was carried out at 2 Dutch farms. Footpad dermatitis and HB were subjectively scored at approximately 4, 5, and 7 wk on a scale from 0 through 5. Genetic parameters were estimated in 2 lines based on a larger data set. The overall agreement of repeated FPD and HB scores was high (0.66 to 0.86) and the scoring system was, therefore, considered reliable. Kendall's tau between left and right scores was lower than 1 (FPD: 0.73 and HB: 0.57), and both left and right FPD and HB must, therefore, be evaluated. High prevalences of FPD, but also HB, were achieved in the field trial, but lower prevalences may be sufficient for genetic evaluations and would be less detrimental to welfare. Genetic variation between and within lines was present for both FPD and HB as indicated by between-line differences and heritabilities, and selection against FPD and HB is, therefore, possible. It is important that selection is done against both FPD and HB, and such selection should not have a negative influence on the genetic improvement in BW. In contrast, continued selection for increased BW while ignoring FPD in the breeding goal is likely to lead to an increased propensity to develop FPD in broilers.

  7. Single-strand conformation polymorphism-based analysis reveals genetic variation within Spirometra erinacei (Cestoda: Pseudophyllidea) from Australia.

    Science.gov (United States)

    Zhu, X Q; Beveridge, I; Berger, L; Barton, D; Gasser, R B

    2002-04-01

    This study examined genetic variability within Spirometra erinacei (Cestoda: Pseudophyllidea) from different host species and geographical origins in Australia using a polymerase chain reaction (PCR)-based mutation detection approach, followed by DNA sequencing. Part of the cytochrome c oxidase subunit 1 gene (p cox 1) was amplified by PCR, scanned for sequence variation by single-strand conformation polymorphism (SSCP), and representative samples from different host species were selected for DNA sequencing. While no variation in SSCP profiles was detected among S. erinacei samples from dog, fox, cat, tiger snake and python, they differed in profile from 5 specimens from the green tree frog (Litoria caerulea). This was supported by sequence data which demonstrated that p cox 1 sequences of samples from the latter host species differed at 8 of 393 (2%) nucleotide positions from those from the non-amphibian host. Using a nucleotide difference in the p cox 1 sequence, a PCR-linked restriction fragment length polymorphism (RFLP) could be employed to unequivocally delineate between samples from non-amphibian and amphibian hosts. These findings demonstrate the existence of at least two genotypes within S. erinacei, which may have important implications for studying the epidemiology, ecology and systematics of this cestode.

  8. Genetic Variation in Base Excision Repair Pathway Genes, Pesticide Exposure, and Prostate Cancer Risk

    National Research Council Canada - National Science Library

    Kathryn Hughes Barry; Stella Koutros; Sonja I. Berndt; Gabriella Andreotti; Jane A. Hoppin; Dale P. Sandler; Laurie A. Burdette; Meredith Yeager; Laura E. Beane Freeman; Jay H. Lubin; Xiaomei Ma; Tongzhang Zheng; Michael C. R. Alavanja

    2011-01-01

    .... OBJECTIVES: Because base excision repair (BER) is the predominant pathway involved in repairing oxidative damage, we evaluated interactions between 39 pesticides and 394 tag single-nucleotide polymorphisms (SNPs...

  9. Genetic background of phenotypic variation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A noteworthy feature of the living world is its bewildering variability. A key issue in several biological disciplines is the achievement of an understanding of the hereditary basis of this variability. Two opposing, but not necessarily irreconcilable conceptions attempt to explain the underlying mechanism. The gene function paradigm postulates that phenotypic variance is generated by the polymorphism in the coding sequences of genes. However, comparisons of a great number of homologous gene and protein sequences have revealed that they predominantly remained functionally conserved even across distantly related phylogenic taxa. Alternatively, the gene regulation paradigm assumes that differences in the cis-regulatory region of genes do account for phenotype variation within species. An extension of this latter concept is that phenotypic variability is generated by the polyrnorphism in the overall gene expression profiles of gene networks.In other words, the activity of a particular gene is a system property determined both by the cis-regulatory sequences of the given genes and by the other genes of a gene network, whose expressions vary among individuals, too. Novel proponents of gene function paradigm claim that functional genetic variance within the coding sequences of regulatory genes is critical for the generation of morphological polymorphism. Note, however, that these developmental genes play direct regulatory roles in the control of gene expression.

  10. Genetic variation in Opisthorchis viverrini (Trematoda: Opisthorchiidae) from northeast Thailand and Laos PDR based on random amplified polymorphic DNA analyses

    Science.gov (United States)

    Chilton, Neil B.; Andrews, Ross H.

    2007-01-01

    Genetic variation in Opisthorchis viverrini adults originating from different locations in northeast Thailand and Laos, People’s Democratic Republic (PDR), was examined using random amplified polymorphic DNA (RAPD) analyses. In an initial analysis, the genomic DNA of one fluke from each of ten localities was amplified using 15 random primers (10-mers); however, genetic variation among O. viverrini specimens was detected reliably for only four primers. A more detailed RAPD analysis using these four primers was conducted on ten individuals from nine localities. Considerable genetic variation was detected among O. viverrini from different geographical areas and among some individuals from the same collecting locality. Comparison of the RAPD profiles revealed that O. viverrini adults from Laos PDR were genetically distinct from those from northeast Thailand. The taxonomic significance of this finding needs to be explored in more detail. The RAPD markers established in the present study provide opportunities to examine the biology and epidemiology of O. viverrini and fish-borne trematodes within the region. Additionally, application of these markers in such studies could have important implications in relation to the prevalence of cholangiocarcinoma in different regions of Asia. PMID:17016722

  11. Genetic variations in multiple myeloma I

    DEFF Research Database (Denmark)

    Vangsted, A.; Klausen, T.W.; Vogel, Ulla Birgitte

    2012-01-01

    Few risk factors have been established for the plasma cell disorder multiple myeloma, but some of these like African American ethnicity and a family history of B-cell lymphoproliferative diseases suggest a genetic component for the disease. Genetic variation represents the genetic basis...

  12. Sex reduces genetic variation: a multidisciplinary review.

    Science.gov (United States)

    Gorelick, Root; Heng, Henry H Q

    2011-04-01

    For over a century, the paradigm has been that sex invariably increases genetic variation, despite many renowned biologists asserting that sex decreases most genetic variation. Sex is usually perceived as the source of additive genetic variance that drives eukaryotic evolution vis-à-vis adaptation and Fisher's fundamental theorem. However, evidence for sex decreasing genetic variation appears in ecology, paleontology, population genetics, and cancer biology. The common thread among many of these disciplines is that sex acts like a coarse filter, weeding out major changes, such as chromosomal rearrangements (that are almost always deleterious), but letting minor variation, such as changes at the nucleotide or gene level (that are often neutral), flow through the sexual sieve. Sex acts as a constraint on genomic and epigenetic variation, thereby limiting adaptive evolution. The diverse reasons for sex reducing genetic variation (especially at the genome level) and slowing down evolution may provide a sufficient benefit to offset the famed costs of sex. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  13. Fitness-related patterns of genetic variation in rhesus macaques.

    Science.gov (United States)

    Blomquist, Gregory E

    2009-03-01

    The patterning of quantitative genetic descriptions of genetic and residual variation for 15 skeletal and six life history traits was explored in a semi-free-ranging group of rhesus macaques (Macaca mulatta Zimmerman 1780). I tested theoretical predictions that explain the magnitude of genetic and residual variation as a result of 1. strength of a trait's association with evolutionary fitness, or 2. developmental and physiological relationships among traits. I found skeletal traits had higher heritabilities and lower coefficients of residual variation than more developmentally and physiologically dependent life history traits. Total lifetime fertility had a modest heritability (0.336) in this population, and traits with stronger correlations to fitness had larger amounts of residual variance. Censoring records of poorly-performing individuals on lifetime fertility and lifespan substantially reduced their heritabilities. These results support models for the fitness-related patterning of genetic variation based on developmental and physiological relationships among traits rather than the action of selection eroding variation.

  14. Genetic variation in bovine milk fat composition

    NARCIS (Netherlands)

    Stoop, W.M.

    2009-01-01

    In her thesis, Stoop shows that there is considerable genetic variation in milk fat composition, which opens opportunities to improve milk fat composition by selective breeding. Short and medium chain fatty acids had high heritabilities, whereas variation due to herd (mainly feed effects) was modera

  15. Genetic variation in natural honeybee populations, Apis mellifera capensis

    Science.gov (United States)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  16. Genetic variation in scaly hair-fin anchovy Setipinna tenuifilis (Engraulididae) based on the mitochondrial DNA control region.

    Science.gov (United States)

    Xu, Shengyong; Song, Na; Lu, Zhichuang; Wang, Jun; Cai, Shanshan; Gao, Tianxiang

    2014-06-01

    Scaly hair-fin anchovy (Setipinna tenuifilis) is a small, pelagic and economical species and widely distributed in Chinese coastal water. However, resources of S. tenuifilis have been reduced due to overfishing. For better fishery management, it is necessary to understand the pattern of S. tenuifilis's biogeography. Genetic analyses were taken place to detect their population genetic variation. A total of 153 individuals from 7 locations (Dongying, Yantai, Qingdao, Nantong, Wenzhou, Xiamen and Beibu Bay) were sequenced at the 5' end of mtDNA control region. A 39-bp tandem repeated sequence was found at the 5' end of the segment and a polymorphism of tandem repeated sequence was detected among 7 populations. Both mismatch distribution analysis and neutrality tests showed S. tenuifilis had experienced a recent population expansion. The topology of neighbor-joining tree and Bayesian evolutionary tree showed no significant genealogical branches or clusters of samples corresponding to sampling locality. Hierarchical analysis of molecular variance and conventional pairwise population Fst value at group hierarchical level implied that there might have genetic divergence between southern group (population WZ, XM and BB) and northern group (population DY, YT, QD and NT). We concluded that there might have three different fishery management groups of S. tenuifilis and the late Pleistocene glacial event might have a crucial effect on present-day demography of S. tenuifilis in this region.

  17. Genetic variation in KCNA5

    DEFF Research Database (Denmark)

    Christophersen, Ingrid E; Olesen, Morten S; Liang, Bo

    2012-01-01

    (Kur). Three studies have identified loss-of-function mutations in KCNA5 in patients with idiopathic AF. We hypothesized that early-onset lone AF is associated with high prevalence of genetic variants in KCNA5 and KCNAB2.Methods and resultsThe coding sequences of KCNA5 and KCNAB2 were sequenced in 307 patients......AimsGenetic factors may be important in the development of atrial fibrillation (AF) in the young. KCNA5 encodes the potassium channel a-subunit K(V)1.5, which underlies the voltage-gated atrial-specific potassium current I(Kur). KCNAB2 encodes K(V)ß2, a ß-subunit of K(V)1.5, which increases I...

  18. Genetic variation between two Tibetan macaque (Macaca thibetana) populations in the eastern China based on mitochondrial DNA control region sequences.

    Science.gov (United States)

    Yao, Yongfang; Zhong, Lijing; Liu, Bofeng; Li, Jiayi; Ni, Qingyong; Xu, Huailiang

    2013-06-01

    Tibetan macaque (Macaca thibetana) is a threatened primate species endemic to China. Population genetic and phylogenetic analyses were conducted in 66 Tibetan individuals from Sichuan (SC), Huangshan (HS), and Fujian (FJ) based on a 477-bp fragment of mitochondrial DNA control region. Four new haplotypes were defined, and a relatively high level of genetic diversity was first observed in FJ populations (Hd = 0.7661). Notably, a continuous approximately 10 bp-fragment deletion was observed near the 5' end of the mtDNA control region of both HS and FJ populations when compared with that of SC population, and a sharing haplotype was found between the two populations, revealing a closer genetic relationship. However, significant genetic differentiation (FST = 0.8700) and more poor gene exchange (Nm < 1) had occurred among three populations. This study mainly provide a further insight into the genetic relationship between HS and FJ Tibetan macaque populations, but it may be necessary to carry out further study with extra samples from other locations in the geographic coverage of the two subspecies (M. thibetana pullus and M. thibetana huangshanensis).

  19. Genetic Variations Involved in Vitamin E Status

    Directory of Open Access Journals (Sweden)

    Patrick Borel

    2016-12-01

    Full Text Available Vitamin E (VE is the generic term for four tocopherols and four tocotrienols that exhibit the biological activity of α-tocopherol. VE status, which is usually estimated by measuring fasting blood VE concentration, is affected by numerous factors, such as dietary VE intake, VE absorption efficiency, and VE catabolism. Several of these factors are in turn modulated by genetic variations in genes encoding proteins involved in these factors. To identify these genetic variations, two strategies have been used: genome-wide association studies and candidate gene association studies. Each of these strategies has its advantages and its drawbacks, nevertheless they have allowed us to identify a list of single nucleotide polymorphisms associated with fasting blood VE concentration and α-tocopherol bioavailability. However, much work remains to be done to identify, and to replicate in different populations, all the single nucleotide polymorphisms involved, to assess the possible involvement of other kind of genetic variations, e.g., copy number variants and epigenetic modifications, in order to establish a reliable list of genetic variations that will allow us to predict the VE status of an individual by knowing their genotype in these genetic variations. Yet, the potential usefulness of this area of research is exciting with regard to personalized nutrition and for future clinical trials dedicated to assessing the biological effects of the various isoforms of VE.

  20. Propagation of genetic variation in gene regulatory networks.

    Science.gov (United States)

    Plahte, Erik; Gjuvsland, Arne B; Omholt, Stig W

    2013-08-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network's feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation.

  1. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David

    2015-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals...... from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short...... insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications...

  2. Genetic variation in genes affecting milk composition and quality

    DEFF Research Database (Denmark)

    Bertelsen, Henriette Pasgaard

    In the past decade major advances in next generation sequencing technologies have provided new opportuneties for the detection of genetic variation. Combining the knowlegde of genetic variation with phenotypic distributions provides considerable possibilites for detection of candidate genes....... In addition, exploring genetic variation related to the major milk proteins of bovine milk indntified genetic variations with possitive effects on milk coagulation...

  3. Characterization of Genetic Variation in Icelandic Cattle

    DEFF Research Database (Denmark)

    Holm, Lars-Erik; Das, Ashutosh; Momeni, Jamal

    Identification of genetic variation in cattle breeds using next-generation sequencing technology has focused on the modern production cattle breeds. We focused on one of the oldest indigenous breeds, the Icelandic cattle breed. Sequencing of two individuals enabled identification of more than 8...... million SNPs and more than one million short indels. Annotation of the genetic variants identified a substantial number of functional SNPs and variants. The number of genetic variants identified in the Icelandic cattle breed is on the same level as previously seen in other studies on Holstein cattle...

  4. Analysis of DNA methylation variation in wheat genetic background after alien chromatin introduction based on methylation-sensitive amplification polymorphism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    During the process of alien germplasm introduced into wheat genome by chromosome engineering,extensive genetic variations of genome structure and gene expression in recipient could be induced.In this study,we performed GISH(genome in situ hybridization)and AFLP(amplified fragment length polymorphism) on wheat-rye chromosome transIocation lines and their parents to detect the identity in genomic structure of different translocation lines.The results showed that the genome primary structure variations were not obviously detected in different translocation lines except the same 1RS chromosome translocation.Methylation sensitive amplification polymorphism(MSAP)analyses on genomic DNA showed that the ratios of fully-methylated sites were significantly increased in translocation lines(CN12,20.15%;CN17,20.91%;CN18,22.42%),but the ratios of hemimethylated sites were significantly lowered(CN12,21.41%;CN17,23.43%;CN18,22.42%),whereas 16.37%were fully-methylated and 25.44%were hemimethylated in case of their wheat parent.Twenty-nine classes of methylation patterns were identified in a comparative assay of cytosine methylation patterns between wheat-rye translocation lines and their wheat parent,including 13 hypermethylation patterns(33.74%),9 demethylation patterns(22.76%)and 7 uncertain patterns(4.07%).In further sequence analysis,the alterations of methylation pattern affected both repetitive DNA sequences,such as retrotransposons and tandem repetitive sequences,and low-copy DNA.

  5. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David;

    2015-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals ...

  6. Genetic variations in multiple myeloma II

    DEFF Research Database (Denmark)

    Vangsted, A.; Klausen, T.W.; Vogel, U.

    2012-01-01

    Association studies on genetic variation to treatment effect may serve as a predictive marker for effect of treatment and can also uncover biological pathways behind drug effect. Single-nucleotide polymorphisms (SNPs) have been studied in relation to high-dose treatment (HDT), thalidomide- and bo...

  7. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David;

    2015-01-01

    insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications...

  8. Genetic sources of population epigenomic variation

    NARCIS (Netherlands)

    Taudt, Aaron; Colome-Tatche, Maria; Johannes, Frank

    The field of epigenomics has rapidly progressed from the study of individual reference epigenomes to surveying epigenomic variation in populations. Recent studies in a number of species, from yeast to humans, have begun to dissect the cis- and trans-regulatory genetic mechanisms that shape patterns

  9. Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study.

    Science.gov (United States)

    Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice

    2009-11-01

    The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that

  10. Diversity evaluation based on morphological, physiological and isozyme variation in genetic resources of garlic (Allium sativum L.) collected worldwide.

    Science.gov (United States)

    Hirata, Sho; Abdelrahman, Mostafa; Yamauchi, Naoki; Shigyo, Masayoshi

    2016-11-26

    The aim of this study was to obtain primary information about the global diversity of garlic (Allium sativum L.) by evaluating morphological, physiological and isozyme variation. A total of 107 garlic accessions collected worldwide were grown in Yamaguchi, Japan. Five morphological traits (bulb weight, bulb diameter, number of cloves per bulb, number of bulbils and scape length) and one physiological trait (bolting period) of the collected garlic showed wide variation. Meanwhile, a total of 140 garlic accessions, including the 107 mentioned above, were characterized by leucine aminopeptidase (LAP) and phosphoglucoisomerase (PGI) isozyme analyses; they clearly showed polymorphisms in putative isozyme loci (Lap-1, Lap-2 and Pgi-1). Allelic frequencies were estimated in each group of accessions categorized by their geographical origin, and the observed (Ho) and expected (He) heterozygosities were calculated. The allelic frequencies differed between groups. A principal component analysis based on morpho-physiological data indicated a grouping of the garlic accessions into Central Asian and Northern Mediterranean groups as well as others. We discuss the roles of artificial and natural selection that may have caused differentiation in these traits, on the assumption that ancestral domesticated garlic populations have adapted in various regions using standing variation or mutations that accumulated during expansion, and have evolved along with human-preferred traits over a long history of cultivation.

  11. Genetic variation in the CYP1A1 gene is related to circulating PCB118 levels in a population-based sample

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Lars [Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala (Sweden); Penell, Johanna [Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala (Sweden); Syvänen, Anne-Christine; Axelsson, Tomas [Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala (Sweden); Ingelsson, Erik [Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala (Sweden); Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford (United Kingdom); Morris, Andrew P.; Lindgren, Cecilia [Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford (United Kingdom); Salihovic, Samira; Bavel, Bert van [MTM Research Centre, School of Science and Technology, Örebro University, Örebro (Sweden); Lind, P. Monica, E-mail: monica.lind@medsci.uu.se [Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala (Sweden)

    2014-08-15

    Several of the polychlorinated biphenyls (PCBs), i.e. the dioxin-like PCBs, are known to induce the P450 enzymes CYP1A1, CYP1A2 and CYP1B1 by activating the aryl hydrocarbon receptor (Ah)-receptor. We evaluated if circulating levels of PCBs in a population sample were related to genetic variation in the genes encoding these CYPs. In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (1016 subjects all aged 70), 21 SNPs in the CYP1A1, CYP1A2 and CYP1B1 genes were genotyped. Sixteen PCB congeners were analysed by high-resolution chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS). Of the investigated relationships between SNPs in the CYP1A1, CYP1A2 and CYP1B1 and six PCBs (congeners 118, 126, 156, 169, 170 and 206) that captures >80% of the variation of all PCBs measured, only the relationship between CYP1A1 rs2470893 was significantly related to PCB118 levels following strict adjustment for multiple testing (p=0.00011). However, there were several additional SNPs in the CYP1A2 and CYP1B1 that showed nominally significant associations with PCB118 levels (p-values in the 0.003–0.05 range). Further, several SNPs in the CYP1B1 gene were related to both PCB156 and PCB206 with p-values in the 0.005–0.05 range. Very few associations with p<0.05 were seen for PCB126, PCB169 or PCB170. Genetic variation in the CYP1A1 was related to circulating PCB118 levels in the general elderly population. Genetic variation in CYP1A2 and CYP1B1 might also be associated with other PCBs. - Highlights: • We studied the relationship between PCBs and the genetic variation in the CYP genes. • Cross sectional data from a cohort of elderly were analysed. • The PCB levels were evaluated versus 21 SNPs in three CYP genes. • PCB 118 was related to variation in the CYP1A1 gene.

  12. Genetic variation in the CYP1A1 gene is related to circulating PCB118 levels in a population-based sample.

    Science.gov (United States)

    Lind, Lars; Penell, Johanna; Syvänen, Anne-Christine; Axelsson, Tomas; Ingelsson, Erik; Morris, Andrew P; Lindgren, Cecilia; Salihovic, Samira; van Bavel, Bert; Lind, P Monica

    2014-08-01

    Several of the polychlorinated biphenyls (PCBs), i.e. the dioxin-like PCBs, are known to induce the P450 enzymes CYP1A1, CYP1A2 and CYP1B1 by activating the aryl hydrocarbon receptor (Ah)-receptor. We evaluated if circulating levels of PCBs in a population sample were related to genetic variation in the genes encoding these CYPs. In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (1016 subjects all aged 70), 21 SNPs in the CYP1A1, CYP1A2 and CYP1B1 genes were genotyped. Sixteen PCB congeners were analysed by high-resolution chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS). Of the investigated relationships between SNPs in the CYP1A1, CYP1A2 and CYP1B1 and six PCBs (congeners 118, 126, 156, 169, 170 and 206) that captures >80% of the variation of all PCBs measured, only the relationship between CYP1A1 rs2470893 was significantly related to PCB118 levels following strict adjustment for multiple testing (p=0.00011). However, there were several additional SNPs in the CYP1A2 and CYP1B1 that showed nominally significant associations with PCB118 levels (p-values in the 0.003-0.05 range). Further, several SNPs in the CYP1B1 gene were related to both PCB156 and PCB206 with p-values in the 0.005-0.05 range. Very few associations with pPCB126, PCB169 or PCB170. Genetic variation in the CYP1A1 was related to circulating PCB118 levels in the general elderly population. Genetic variation in CYP1A2 and CYP1B1 might also be associated with other PCBs.

  13. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  14. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Science.gov (United States)

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  15. Genetic variation and linkage disequilibrium in Bacillus anthracis.

    Science.gov (United States)

    Zwick, Michael E; Thomason, Maureen Kiley; Chen, Peter E; Johnson, Henry R; Sozhamannan, Shanmuga; Mateczun, Alfred; Read, Timothy D

    2011-01-01

    We performed whole-genome amplification followed by hybridization of custom-designed resequencing arrays to resequence 303 kb of genomic sequence from a worldwide panel of 39 Bacillus anthracis strains. We used an efficient algorithm contained within a custom software program, UniqueMER, to identify and mask repetitive sequences on the resequencing array to reduce false-positive identification of genetic variation, which can arise from cross-hybridization. We discovered a total of 240 single nucleotide variants (SNVs) and showed that B. anthracis strains have an average of 2.25 differences per 10,000 bases in the region we resequenced. Common SNVs in this region are found to be in complete linkage disequilibrium. These patterns of variation suggest there has been little if any historical recombination among B. anthracis strains since the origin of the pathogen. This pattern of common genetic variation suggests a framework for recognizing new or genetically engineered strains.

  16. FINDbase: A worldwide database for genetic variation allele frequencies updated

    NARCIS (Netherlands)

    M. Georgitsi (Marianthi); E. Viennas (Emmanouil); D.I. Antoniou (Dimitris I.); V. Gkantouna (Vassiliki); S. van Baal (Sjozef); E.F. Petricoin (Emanuel F.); K. Poulas (Konstantinos); G. Tzimas (Giannis); G.P. Patrinos (George)

    2011-01-01

    textabstractFrequency of INherited Disorders database (FIND base; http://www.findbase. org) records frequencies of causative genetic variations worldwide. Database records include the population and ethnic group or geographical region, the disorder name and the related gene, accompanied by links to

  17. Mining of lethal recessive genetic variation in Danish cattle

    DEFF Research Database (Denmark)

    Das, Ashutosh

    2015-01-01

    in fertility. The primary objective of this PhD projekt was to identify recessive lethal gentic variants in the main Danish dairy cattle breed. Holstein-Friesian utilzing next generation sequencing (NGS) data. This study shows a potential for the use of the NGS-based reverse genetic approach in identifying...... lethal or semi-lethal recessive gentic variation...

  18. Assessment of genetic diversity and variation of Robinia pseudoacacia seeds induced by short-term spaceflight based on two molecular marker systems and morphological traits.

    Science.gov (United States)

    Yuan, C Q; Li, Y F; Sun, P; Sun, Y H; Zhang, G J; Yang, M S; Zhang, Y Y; Li, Y; Wang, L

    2012-12-17

    The black locust (Robinia pseudoacacia) is a forest legume that is highly valued as a honey plant and for its wood. We explored the effect of short-term spaceflight on development of R. pseudoacacia seedlings derived from seeds that endured a 15-day flight; the genetic diversity and variation of plants sampled from space-mutagenized seeds were compared to plants from parallel ground-based control seeds using molecular markers and morphological traits. In the morphology analysis, the space-mutagenized group had apparent variation compared with the control group in morphological traits, including plant height, basal diameter, number of branches, branch stipular thorn length, branch stipular thorn middle width, leaflet vertex angle, and tippy leaf vertex angle. Simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular marker analyses showed a slightly higher levels of genetic diversity in the space-mutagenized group compared to the control group. In the SRAP analysis, the space-mutagenized group had 115 polymorphic bands vs 98 in the controls; 91.27% polymorphic loci vs 77.78% in the controls; 1.9127 ± 0.2834 alleles vs 1.7778 ± 0.4174 in the controls; Nei's genetic diversity (h) was 0.2930 ± 0.1631 vs 0.2688 ± 0.1862 in the controls, and the Shannon's information index (I) was 0.4452 ± 0.2177 vs 0.4031 ± 0.2596 in the controls. The number of alleles was significantly higher in the space-mutagenized group. In the SSR analysis, the space-mutagenized group also had more polymorphic bands (51 vs 46), a greater percentage of polymorphic loci (89.47% vs 80.70%); h was also higher (0.2534 ± 0.1533 vs 0.2240 ± 0.1743), as was I (0.3980 ± 0.2069 vs 0.3501 ± 0.2412). These results demonstrated that the range of genetic variation in the populations of R. pseudoacacia increased after spaceflight. It also suggested that the SSR and SRAP markers are effective markers for studying mutations and genetic diversity in R. pseudoacacia. The data

  19. Genetic Factors Explain Variation in the Age at Onset of Psoriasis: A Population-based Twin Study.

    Science.gov (United States)

    Lønnberg, Ann Sophie; Skov, Lone; Duffy, David Lorenzo; Skytthe, Axel; Kyvik, Kirsten Ohm; Pedersen, Ole Birger; Thomsen, Simon Francis

    2016-01-01

    The aim of this study was to determine the age at onset of psoriasis in a population-based twin sample. Questionnaire-data in 10,725 twin pairs, 20-71 years of age, from the Danish Twin Registry, was collected, and analysed using survival regression analysis. Median age at onset was 25 and 28 years among women and men, respectively. The correlation between the ages was 0.84 (bootstrap standard error?=?0.044) in monozygotic twin pairs and 0.60 (0.051) in dizygotic twin pairs, permutation p?=?0.001. Age at onset of psoriasis in the index twin did not predict risk of psoriasis in the co-twin, hazard ratio (per year of later onset =?1.01 (0.99-1.03), p?=?0.434. In conclusion, these data support that the age at onset of psoriasis is, in part, an inherited property. Our results do not support that early-onset psoriasis is more genetically determined.

  20. Genetic variation and phylogeographic structure of the cotton aphid, Aphis gossypii, based on mitochondrial DNA and microsatellite markers.

    Science.gov (United States)

    Wang, Xing-Ya; Yang, Xian-Ming; Lu, Bin; Zhou, Li-Hong; Wu, Kong-Ming

    2017-05-15

    Aphis gossypii, one of the most important agricultural pests in the world, can cause serious economic losses in the main crop-producing areas. To clarify issues such as the genetic differentiation, genetic structure, and demographic history of A. gossypii populations, we used 10 nuclear microsatellite loci (SSR) and two mitochondrial gene sequences (COI and Cytb) to investigate genetic diversity and population structure of A. gossypii populations that were collected from 33 sampling sites in China from different climatic zones. SSR and mtDNA data suggested low to moderate levels of genetic diversity. A star-shaped network of mtDNA haplotypes indicated that the maternal ancestor of China cotton aphids likely originated in Xinjiang. The POPTREE, STRUCTURE and principal coordinate analysis (PCoA) revealed two genetic clusters: an eastern and a western region group. Isolation by distance (IBD) results showed a positive correlation between geographic distance and genetic distance in the vast eastern region but not in the western region. Neutrality testing and mismatch distribution analysis provided strong evidence for a recent rapid expansion in most populations. Genetic bottleneck was not detected in A. gossypii populations of China. The present work can help us to develop strategies for managing this pest.

  1. Genetic and phenotypic variation of some reproductive traits in ...

    African Journals Online (AJOL)

    Unknown

    Genetic and phenotypic variation of some reproductive traits in Egyptian buffalo ... genetic and phenotypic parameters for these traits using a multi-trait animal model. Season ..... Genetic improvement of buffalo productivity under farm and field.

  2. Genetic variation in healthy oldest-old.

    Directory of Open Access Journals (Sweden)

    Julius Halaschek-Wiener

    Full Text Available Individuals who live to 85 and beyond without developing major age-related diseases may achieve this, in part, by lacking disease susceptibility factors, or by possessing resistance factors that enhance their ability to avoid disease and prolong lifespan. Healthy aging is a complex phenotype likely to be affected by both genetic and environmental factors. We sequenced 24 candidate healthy aging genes in DNA samples from 47 healthy individuals aged eighty-five years or older (the 'oldest-old', to characterize genetic variation that is present in this exceptional group. These healthy seniors were never diagnosed with cancer, cardiovascular disease, pulmonary disease, diabetes, or Alzheimer disease. We re-sequenced all exons, intron-exon boundaries and selected conserved non-coding sequences of candidate genes involved in aging-related processes, including dietary restriction (PPARG, PPARGC1A, SIRT1, SIRT3, UCP2, UCP3, metabolism (IGF1R, APOB, SCD, autophagy (BECN1, FRAP1, stem cell activation (NOTCH1, DLL1, tumor suppression (TP53, CDKN2A, ING1, DNA methylation (TRDMT1, DNMT3A, DNMT3B Progeria syndromes (LMNA, ZMPSTE24, KL and stress response (CRYAB, HSPB2. We detected 935 variants, including 848 single nucleotide polymorphisms (SNPs and 87 insertion or deletions; 41% (385 were not recorded in dbSNP. This study is the first to present a comprehensive analysis of genetic variation in aging-related candidate genes in healthy oldest-old. These variants and especially our novel polymorphisms are valuable resources to test for genetic association in models of disease susceptibility or resistance. In addition, we propose an innovative tagSNP selection strategy that combines variants identified through gene re-sequencing- and HapMap-derived SNPs.

  3. Genetic variation in healthy oldest-old.

    Science.gov (United States)

    Halaschek-Wiener, Julius; Amirabbasi-Beik, Mahsa; Monfared, Nasim; Pieczyk, Markus; Sailer, Christian; Kollar, Anita; Thomas, Ruth; Agalaridis, Georgios; Yamada, So; Oliveira, Lisa; Collins, Jennifer A; Meneilly, Graydon; Marra, Marco A; Madden, Kenneth M; Le, Nhu D; Connors, Joseph M; Brooks-Wilson, Angela R

    2009-08-14

    Individuals who live to 85 and beyond without developing major age-related diseases may achieve this, in part, by lacking disease susceptibility factors, or by possessing resistance factors that enhance their ability to avoid disease and prolong lifespan. Healthy aging is a complex phenotype likely to be affected by both genetic and environmental factors. We sequenced 24 candidate healthy aging genes in DNA samples from 47 healthy individuals aged eighty-five years or older (the 'oldest-old'), to characterize genetic variation that is present in this exceptional group. These healthy seniors were never diagnosed with cancer, cardiovascular disease, pulmonary disease, diabetes, or Alzheimer disease. We re-sequenced all exons, intron-exon boundaries and selected conserved non-coding sequences of candidate genes involved in aging-related processes, including dietary restriction (PPARG, PPARGC1A, SIRT1, SIRT3, UCP2, UCP3), metabolism (IGF1R, APOB, SCD), autophagy (BECN1, FRAP1), stem cell activation (NOTCH1, DLL1), tumor suppression (TP53, CDKN2A, ING1), DNA methylation (TRDMT1, DNMT3A, DNMT3B) Progeria syndromes (LMNA, ZMPSTE24, KL) and stress response (CRYAB, HSPB2). We detected 935 variants, including 848 single nucleotide polymorphisms (SNPs) and 87 insertion or deletions; 41% (385) were not recorded in dbSNP. This study is the first to present a comprehensive analysis of genetic variation in aging-related candidate genes in healthy oldest-old. These variants and especially our novel polymorphisms are valuable resources to test for genetic association in models of disease susceptibility or resistance. In addition, we propose an innovative tagSNP selection strategy that combines variants identified through gene re-sequencing- and HapMap-derived SNPs.

  4. Population genetic structure of the African elephant in Uganda based on variation at mitochondrial and nuclear loci: evidence for male-biased gene flow.

    Science.gov (United States)

    Nyakaana, S; Arctander, P

    1999-07-01

    A drastic decline has occurred in the size of the Uganda elephant population in the last 40 years, exacerbated by two main factors; an increase in the size of the human population and poaching for ivory. One of the attendant consequences of such a decline is a reduction in the amount of genetic diversity in the surviving populations due to increased effects of random genetic drift. Information about the amount of genetic variation within and between the remaining populations is vital for their future conservation and management. The genetic structure of the African elephant in Uganda was examined using nucleotide variation of mitochondrial control region sequences and four nuclear microsatellite loci in 72 individuals from three localities. Eleven mitochondrial DNA (mtDNA) haplotypes were observed, nine of which were geographically localized. We found significant genetic differentiation between the three populations at the mitochondrial locus while three out of the four microsatellite loci differentiated KV and QE, one locus differentiated KV and MF and no loci differentiated MF and QE. Expected heterozygosity at the four loci varied between 0.51 and 0.84 while nucleotide diversity at the mitochondrial locus was 1.4%. Incongruent patterns of genetic variation within and between populations were revealed by the two genetic systems, and we have explained these in terms of the differences in the effective population sizes of the two genomes and male-biased gene flow between populations.

  5. Influence of human genetic variation on nutritional requirements.

    Science.gov (United States)

    Stover, Patrick J

    2006-02-01

    Genetic variation is known to affect food tolerances among human subpopulations and may also influence dietary requirements, giving rise to the new field of nutritional genomics and raising the possibility of individualizing nutritional intake for optimal health and disease prevention on the basis of an individual's genome. However, because gene-diet interactions are complex and poorly understood, the use of genomic knowledge to adjust population-based dietary recommendations is not without risk. Whereas current recommendations target most of the population to prevent nutritional deficiencies, inclusion of genomic criteria may indicate subpopulations that may incur differential benefit or risk from generalized recommendations and fortification policies. Current efforts to identify gene alleles that affect nutrient utilization have been enhanced by the identification of genetic variations that have expanded as a consequence of selection under extreme conditions. Identification of genetic variation that arose as a consequence of diet as a selective pressure helps to identify gene alleles that affect nutrient utilization. Understanding the molecular mechanisms underlying gene-nutrient interactions and their modification by genetic variation is expected to result in dietary recommendations and nutritional interventions that optimize individual health.

  6. Capacities for population-genetic variation and ecological adaptations

    Directory of Open Access Journals (Sweden)

    Marinković Dragoslav

    2007-01-01

    Full Text Available In contemporary science of population genetics it is equally complex and important to visualize how adaptive limits of individual variation are determined, as well as to describe the amount and sort of this variation. Almost all century the scientists devoted their efforts to explain the principles and structure of biological variation (genetic, developmental, environmental, interactive, etc., basing its maintenance within existing limits mostly on equilibria proclaimed by Hardy-Weinberg rules. Among numerous model-organisms that have been used to prove these rules and demonstrate new variants within mentioned concepts, Drosophila melanogaster is a kind of queen that is used in thousands of experiments for almost exactly 100 years (CARPENTER 1905, with which numerous discoveries and principles were determined that later turned out to be applicable to all other organisms. It is both, in nature and in laboratory, that Drosophilids were used to demonstrate the basic principles of population-genetic variation that was later applied to other species of animals. In ecological-genetic variation their richness in different environments could be used as an exact indicator of the status of a determined habitat, and its population-genetic structure may definitely point out to a possibility that specific resources of the environment start to be in danger to deteriorate, or to disappear in the near future. This paper shows clear-cut differences among environmental habitats, when populations of Drosophilidae are quantitatively observed in different wild, semi-domestic and domestic environments, demonstrating a highly expressed mutual dependence of these two parameters. A crucial approach is how to estimate the causes that determine the limits of biological, i.e. of individual and population-genetic variation. The realized, i.e. adaptive variation, is much lesser than a total possible variation of a polygenic trait, and in this study, using a moderately

  7. Genetic and molecular dissection of naturally occurring variations in rice

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Masahiro [National Institute of Agrobiological Sciences, Tsukuba, Ibaraki (Japan)

    2002-02-01

    The progress for structural analysis of the rice genome has allowed us to embark on the sequencing of the whole rice genome. Resources - genetic markers, sequence data, and genomic clones - derived from many efforts will be used for the functional analysis of rice genes in the next decade. Although artificially induced variations, such as mutants, have been used mainly for genetic and physiological studies in rice and other plant species, the development of DNA markers has made possible access to naturally occurring allelic variations underlying complex traits. Such analysis is often referred to as quantitative traits locus (QTL) analysis. Many QTLs have been mapped for many complex traits in rice. During the analyses of several quantitative traits by the DNA marker-assisted strategy, two questions about QTL analysis have been raised: 1) Does a QTL represent a single Mendelian locus or a cluster of multiple loci? 2) Is it possible to precisely map a QTL and identify QTLs at the molecular level using map-based or other strategies? To answer these questions, a series of analyses on heading date, including the identification of putative QTLs, characterization and fine mapping of QTLs using nearly isogenic lines (NILs), and identification of genes at QTLs for heading date by the map-based strategy has been performed. In addition, several primary permanent mapping populations and secondary genetic resources, such as chromosomal segmental substitution lines, have been developed to facilitate the genetic analysis of naturally occurring allelic variation. (M. Suetake)

  8. Systems genetics analysis of pharmacogenomics variation during antidepressant treatment

    DEFF Research Database (Denmark)

    Madsen, M. B.; Kogelman, L. J. A.; Kadarmideen, H. N.

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are the most widely used antidepressants, but the efficacy of the treatment varies significantly among individuals. It is believed that complex genetic mechanisms play a part in this variation. We have used a network based approach to unravel the in...... genes involved in calcium homeostasis. In conclusion, we suggest a difference in genetic interaction networks between initial and subsequent SSRI response.The Pharmacogenomics Journal advance online publication, 18 October 2016; doi:10.1038/tpj.2016.68....

  9. Genetic variations in regulatory pathways of fatty acid and glucose metabolism are associated with obesity phenotypes : a population-based cohort study

    NARCIS (Netherlands)

    van den Berg, S. W.; Dolle, M. E. T.; Imholz, S.; van der A, D. L.; van 't Slot, R.; Wijmenga, C.; Verschuren, W. M. M.; Strien, C.; Siezen, C. L. E.; Hoebee, B.; Feskens, E. J. M.; Boer, J. M. A.

    2009-01-01

    Background: As nuclear receptors and transcription factors have an important regulatory function in adipocyte differentiation and fat storage, genetic variation in these key regulators and downstream pathways may be involved in the onset of obesity. Objective: To explore associations between single

  10. Population genetic variation of the Southern Ocean krill, Euphausia superba, in the Western Antarctic Peninsula region based on mitochondrial single nucleotide polymorphisms (SNPs)

    Science.gov (United States)

    Batta-Lona, Paola G.; Bucklin, Ann; Wiebe, Peter H.; Patarnello, Tomaso; Copley, Nancy J.

    2011-07-01

    The Southern Ocean krill, Euphausia superba, is one of the best-studied marine zooplankton species in terms of population genetic diversity and structure; with few exceptions, previous studies have shown the species to be genetically homogeneous at larger spatial scales. The goals of this study are to examine sub-regional scale population genetic diversity and structure of E. superba using molecular characters selected with this goal in mind, and to thereby examine hypotheses of the source(s) of recruitment for krill populations of the Western Antarctic Peninsula (WAP). Collections were made throughout the WAP region during US GLOBEC cruises in austral fall, 2001 and 2002. A total of 585 E. superba (including all 6 furcilia larval stages, juveniles, and adults) was analyzed after confirmation of species identification using a competitive multiplexed species-specific PCR (SS-PCR) reaction based on mitochondrial cytochrome oxidase I (mtCOI) sequences. The molecular markers used were allele frequencies at single nucleotide polymorphism (SNP) sites in the gene encoding mitochondrial Cytochrome b (cyt b). Four SNP sites that showed desirable patterns of allelic variation were selected; alleles were detected using a multiplexed single-base extension PCR protocol. A total of 22 SNP haplotypes (i.e., strings of polymorphisms at the four SNP sites) was observed; haplotype diversity (Hd)=0.811 (s.d.=0.008). Analysis of molecular variation within and among samples, areas (i.e., Marguerite Bay, Crystal Sound, shelf, and offshore) and collection years revealed no difference between 2001 and 2002 collections overall, although differences between 2001 and 2002 collections from Marguerite Bay explained 7.4% of the variance ( FST=0.072; p=0.002±0.001). Most of the variation (96.3%) occurred within samples each year, with no significant differentiation among areas. There was small, but significant differentiation among samples within areas in 2001 (4.6%; FST=0.045; p=0.015±0

  11. Natural variation, an underexploited resource of genetic variation for plant genetics

    NARCIS (Netherlands)

    Alonso-Blanco, C.; Koornneef, M.

    2000-01-01

    The definition of gene functions requires the phenotypic characterization of genetic variants. Currently, such functional analysis of Arabidopsis genes is based largely on laboratory-induced mutants that are selected in forward and reverse genetic studies. An alternative complementary source of gene

  12. Genetic variation of indigenous chicken breeds in China and a ...

    African Journals Online (AJOL)

    huis

    Keywords: Indigenous chicken breeds, AFLP markers, genetic variation, genetic relationships ... Some of these breeds have unique meat and/or egg qualities, a low susceptibility to stress and other ... early maturing and resistant to heat.

  13. Evaluation of Genetic Variations in Maize Seedlings Exposed to Electric Field Based on Protein and DNA Markers

    Directory of Open Access Journals (Sweden)

    Asma A. AL-Huqail

    2015-01-01

    Full Text Available The current study analyzed proteins and nuclear DNA of electric fields (ELF exposed and nonexposed maize seedlings for different exposure periods using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, isozymes, random amplified polymorphic DNA (RAPD, and comet assay, respectively. SDS-PAGE analysis revealed total of 46 polypeptides bands with different molecular weights ranging from 186.20 to 36.00 KDa. It generated distinctive polymorphism value of 84.62%. Leucine-aminopeptidase, peroxidase, and catalase isozymes showed the highest values of polymorphism (100% based on zymograms number, relative front (Rf, and optical intensity while esterase isozyme generated polymorphism value of 83.33%. Amino acids were analyzed using high-performance liquid chromatography, which revealed the presence of 17 amino acids of variable contents ranging from 22.65% to 28.09%. RAPD revealed that 78 amplified DNA products had highly polymorphism value (95.08% based on band numbers, with variable sizes ranging from 120 to 992 base pairs and band intensity. Comet assay recorded the highest extent of nuclear DNA damage as percentage of tailed DNA (2.38% and tail moment unit (5.36 at ELF exposure of maize nuclei for 5 days. The current study concluded that the longer ELF exposing periods had genotoxic stress on macromolecules of maize cells and biomarkers used should be augmented for reliable estimates of genotoxicity after exposure of economic plants to ELF stressors.

  14. Antigenic variation: Molecular and genetic mechanisms of relapsing disease

    Energy Technology Data Exchange (ETDEWEB)

    Cruse, J.M.; Lewis, R.E.

    1987-01-01

    This book contains 10 chapters. They are: Contemporary Concepts of Antigenic Variation; Antigenic Variation in the Influenza Viruses; Mechanisms of Escape of Visna Lentiviruses from Immunological Control; A Review of Antigenic Variation by the Equine Infectious Anemia Virus; Biologic and Molecular Variations in AIDS Retrovirus Isolates; Rabies Virus Infection: Genetic Mutations and the Impact on Viral Pathogenicity and Immunity; Immunobiology of Relapsing Fever; Antigenic Variation in African Trypanosomes; Antigenic Variation and Antigenic Diversity in Malaria; and Mechanisms of Immune Evasion in Schistosomiasis.

  15. Human genetic variation database, a reference database of genetic variations in the Japanese population

    Science.gov (United States)

    Higasa, Koichiro; Miyake, Noriko; Yoshimura, Jun; Okamura, Kohji; Niihori, Tetsuya; Saitsu, Hirotomo; Doi, Koichiro; Shimizu, Masakazu; Nakabayashi, Kazuhiko; Aoki, Yoko; Tsurusaki, Yoshinori; Morishita, Shinichi; Kawaguchi, Takahisa; Migita, Osuke; Nakayama, Keiko; Nakashima, Mitsuko; Mitsui, Jun; Narahara, Maiko; Hayashi, Keiko; Funayama, Ryo; Yamaguchi, Daisuke; Ishiura, Hiroyuki; Ko, Wen-Ya; Hata, Kenichiro; Nagashima, Takeshi; Yamada, Ryo; Matsubara, Yoichi; Umezawa, Akihiro; Tsuji, Shoji; Matsumoto, Naomichi; Matsuda, Fumihiko

    2016-01-01

    Whole-genome and -exome resequencing using next-generation sequencers is a powerful approach for identifying genomic variations that are associated with diseases. However, systematic strategies for prioritizing causative variants from many candidates to explain the disease phenotype are still far from being established, because the population-specific frequency spectrum of genetic variation has not been characterized. Here, we have collected exomic genetic variation from 1208 Japanese individuals through a collaborative effort, and aggregated the data into a prevailing catalog. In total, we identified 156 622 previously unreported variants. The allele frequencies for the majority (88.8%) were lower than 0.5% in allele frequency and predicted to be functionally deleterious. In addition, we have constructed a Japanese-specific major allele reference genome by which the number of unique mapping of the short reads in our data has increased 0.045% on average. Our results illustrate the importance of constructing an ethnicity-specific reference genome for identifying rare variants. All the collected data were centralized to a newly developed database to serve as useful resources for exploring pathogenic variations. Public access to the database is available at http://www.genome.med.kyoto-u.ac.jp/SnpDB/. PMID:26911352

  16. Genetic variation of Kaempferia (Zingiberaceae) in Thailand based on chloroplast DNA (psbA-trnH and petA-psbJ) sequences.

    Science.gov (United States)

    Techaprasan, J; Klinbunga, S; Ngamriabsakul, C; Jenjittikul, T

    2010-10-05

    Genetic variation and species authentication of 71 Kaempferia accessions (representing 15 recognized, six new, and four unidentified species) found indigenously in Thailand were examined by determining chloroplast psbA-trnH and partial petA-psbJ spacer sequences. Ten closely related species (Boesenbergia rotunda, Gagnepainia godefroyi, G. thoreliana, Globba substrigosa, Smithatris myanmarensis, S. supraneanae, Scaphochlamys biloba, S. minutiflora, S. rubescens, and Stahlianthus sp) were also included. After sequence alignments, 1010 and 865 bp in length were obtained for the respective chloroplast DNA sequences. Intraspecific sequence variation was not observed in Kaempferia candida, K. angustifolia, K. laotica, K. galanga, K. pardi sp nov., K. bambusetorum sp nov., K. albomaculata sp nov., K. minuta sp nov., Kaempferia sp nov. 1, and G. thoreliana, for which more than one specimen was available. In contrast, intraspecific sequence polymorphisms were observed in various populations of K. fallax, K. filifolia, K. elegans, K. pulchra, K. rotunda, K. marginata, K. parviflora, K. larsenii, K. roscoeana, K. siamensis, and G. godefroyi. A strict consensus tree based on combined psbA-trnH and partial petA-psbJ sequences revealed four major groups of Kaempferia species. We suggest that the genus Kaempferia is a polyphyletic group, as K. candida was distantly related and did not group with other Kaempferia species. Polymorphic sites and indels of psbA-trnH and petA-psbJ can be used as DNA barcodes for species diagnosis of most Kaempferia and outgroup species. Nuclear DNA polymorphism should be examined to determine if there has been interspecific hybridization and chloroplast DNA introgression in these taxa.

  17. Application of Projection Pursuit Evaluation Model Based on Real-Coded Accelerating Genetic Algorithm in Evaluating Wetland Soil Quality Variations in the Sanjiang Plain,China

    Institute of Scientific and Technical Information of China (English)

    FU QIANG; XIE YONGGANG; WEI ZIMIN

    2003-01-01

    A new technique of dimension reduction named projection pursuit is applied to model and evaluatewetland soil quality variations in the Sanjiang Plain, Helongjiang Province, China. By adopting the im-proved real-coded accelerating genetic algorithm (RAGA), the projection direction is optimized and multi-dimensional indexes are converted into low-dimensional space. Classification of wetland soils and evaluationof wetland soil quality variations are realized by pursuing optimum projection direction and projection func-tion value. Therefore, by adopting this new method, any possible human interference can be avoided andsound results can be achieved in researching quality changes and classification of wetland soils.

  18. Genetic Architectures of Quantitative Variation in RNA Editing Pathways.

    Science.gov (United States)

    Gu, Tongjun; Gatti, Daniel M; Srivastava, Anuj; Snyder, Elizabeth M; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L; Dotu, Ivan; Chuang, Jeffrey H; Keller, Mark P; Attie, Alan D; Braun, Robert E; Churchill, Gary A

    2016-02-01

    RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing.

  19. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations.

    Science.gov (United States)

    Porth, Ilga; Klápště, Jaroslav; Skyba, Oleksandr; Lai, Ben S K; Geraldes, Armando; Muchero, Wellington; Tuskan, Gerald A; Douglas, Carl J; El-Kassaby, Yousry A; Mansfield, Shawn D

    2013-02-01

    The increasing ecological and economical importance of Populus species and hybrids has stimulated research into the investigation of the natural variation of the species and the estimation of the extent of genetic control over its wood quality traits for traditional forestry activities as well as the emerging bioenergy sector. A realized kinship matrix based on informative, high-density, biallelic single nucleotide polymorphism (SNP) genetic markers was constructed to estimate trait variance components, heritabilities, and genetic and phenotypic correlations. Seventeen traits related to wood chemistry and ultrastructure were examined in 334 9-yr-old Populus trichocarpa grown in a common-garden plot representing populations spanning the latitudinal range 44° to 58.6°. In these individuals, 9342 SNPs that conformed to Hardy-Weinberg expectations were employed to assess the genomic pair-wise kinship to estimate narrow-sense heritabilities and genetic correlations among traits. The range-wide phenotypic variation in all traits was substantial and several trait heritabilities were > 0.6. In total, 61 significant genetic and phenotypic correlations and a network of highly interrelated traits were identified. The high trait variation, the evidence for moderate to high heritabilities and the identification of advantageous trait combinations of industrially important characteristics should aid in providing the foundation for the enhancement of poplar tree breeding strategies for modern industrial use.

  20. RAPD-PCR and real-time PCR HRM based genetic variation evaluations of Urtica dioica parts, ecotypes and evaluations of morphotypes in Turkey.

    Science.gov (United States)

    Uzonur, Irem; Akdeniz, Gamze; Katmer, Zeynep; Ersoy, Seyda Karaman

    2013-01-01

    Urtica dioica is an ethnobotanically and medicinally important Complementary and Alternative Medicine (CAM) plant worldwide and in Turkey; 90 % of herbal CAM applications depend on it in Turkey. It has a wide range of habitats in nearly all continents. It is found in all three phytogeographical regions in Turkey (Euro-Siberian, Irano-Turanian, Mediterranean) with high adaptivity to heterogeneous geographies such as climate, soil types and altitudes. This fact in relation to the assessment of chemical constituents of the plant and combining with further genetic and morphological variation data can assist and enhance the works for the utility and reliability of CAM applications in effect and activity of this plant species. In this work we have made some preliminary experiments with novel approaches to reveal the ecotypes and genetic variation of mighty ecotypes of Urtica dioica from different phytogeographical regions of Turkey (Euro-Siberian and Mediterranean). The ecotypes have heterogeneity in both its parts (leaf, stem, root) as revealed by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) using random primers and High-resolution Melt (HRM) analysis using Urtica dioica specific primers and universal chloroplast DNA (cpDNA) primers and morphological traits such as phenolic contents and antioxidant capacities of plants' leaf infusions as used in medicinal applications in Turkey. This work will contribute a lot for the development of molecular markers to detect the genetic variation and heterogeneity of Urtica dioica to further relate with expected phenotypes that are most useful and relevant in CAM applications.

  1. Global genetic variation at nine short tandem repeat loci and implications on forensic genetics.

    Science.gov (United States)

    Sun, Guangyun; McGarvey, Stephen T; Bayoumi, Riad; Mulligan, Connie J; Barrantes, Ramiro; Raskin, Salmo; Zhong, Yixi; Akey, Joshua; Chakraborty, Ranajit; Deka, Ranjan

    2003-01-01

    We have studied genetic variation at nine autosomal short tandem repeat loci in 20 globally distributed human populations defined by geographic and ethnic origins, viz., African, Caucasian, Asian, Native American and Oceanic. The purpose of this study is to evaluate the utility and applicability of these nine loci in forensic analysis in worldwide populations. The levels of genetic variation measured by number of alleles, allele size variance and heterozygosity are high in all populations irrespective of their effective sizes. Single- as well as multi-locus genotype frequencies are in conformity with the assumptions of Hardy-Weinberg equilibrium. Further, alleles across the entire set of nine loci are mutually independent in all populations. Gene diversity analysis shows that pooling of population data by major geographic groupings does not introduce substructure effects beyond the levels recommended by the National Research Council, validating the establishment of population databases based on major geographic and ethnic groupings. A network tree based on genetic distances further supports this assertion, in which populations of common ancestry cluster together. With respect to the power of discrimination and exclusion probabilities, even the relatively reduced levels of genetic variation at these nine STR loci in smaller and isolated populations provide an exclusionary power over 99%. However, in paternity testing with unknown genotype of the mother, the power of exclusion could fall below 80% in some isolated populations, and in such cases use of additional loci supplementing the battery of the nine loci is recommended.

  2. Moose body mass variation revisited: disentangling effects of environmental conditions and genetics.

    Science.gov (United States)

    Herfindal, Ivar; Haanes, Hallvard; Solberg, Erling J; Røed, Knut H; Høgda, Kjell Arild; Sæther, Bernt-Erik

    2014-02-01

    Large-scale geographical variation in phenotypic traits within species is often correlated to local environmental conditions and population density. Such phenotypic variation has recently been shown to also be influenced by genetic structuring of populations. In ungulates, large-scale geographical variation in phenotypic traits, such as body mass, has been related to environmental conditions and population density, but little is known about the genetic influences. Research on the genetic structure of moose suggests two distinct genetic lineages in Norway, structured along a north-south gradient. This corresponds with many environmental gradients, thus genetic structuring provides an additional factor affecting geographical phenotypic variation in Norwegian moose. We investigated if genetic structure explained geographical variation in body mass in Norwegian moose while accounting for environmental conditions, age and sex, and if it captured some of the variance in body mass that previously was attributed to environmental factors. Genetic structuring of moose was the most important variable in explaining the geographic variation in body mass within age and sex classes. Several environmental variables also had strong explanatory power, related to habitat diversity, environmental seasonality and winter harshness. The results suggest that environmental conditions, landscape characteristics, and genetic structure should be evaluated together when explaining large-scale patterns in phenotypic characters or life history traits. However, to better understand the role of genetic and environmental effects on phenotypic traits in moose, an extended individual-based study of variation in fitness-related characters is needed, preferably in an area of convergence between different genetic lineages.

  3. Genetic variations strongly influence phenotypic outcome in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Austin S Jelcick

    Full Text Available Variation in genetic background can significantly influence the phenotypic outcome of both disease and non-disease associated traits. Additionally, differences in temporal and strain specific gene expression can also contribute to phenotypes in the mammalian retina. This is the first report of microarray based cross-strain analysis of gene expression in the retina investigating genetic background effects. Microarray analyses were performed on retinas from the following mouse strains: C57BL6/J, AKR/J, CAST/EiJ, and NOD.NON-H2(-nb1 at embryonic day 18.5 (E18.5 and postnatal day 30.5 (P30.5. Over 3000 differentially expressed genes were identified between strains and developmental stages. Differential gene expression was confirmed by qRT-PCR, Western blot, and immunohistochemistry. Three major gene networks were identified that function to regulate retinal or photoreceptor development, visual perception, cellular transport, and signal transduction. Many of the genes in these networks are implicated in retinal diseases such as bradyopsia, night-blindness, and cone-rod dystrophy. Our analysis revealed strain specific variations in cone photoreceptor cell patterning and retinal function. This study highlights the substantial impact of genetic background on both development and function of the retina and the level of gene expression differences tolerated for normal retinal function. These strain specific genetic variations may also be present in other tissues. In addition, this study will provide valuable insight for the development of more accurate models for human retinal diseases.

  4. Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics.

    Science.gov (United States)

    Alonso-Blanco, C; Koornneef, M

    2000-01-01

    The definition of gene functions requires the phenotypic characterization of genetic variants. Currently, such functional analysis of Arabidopsis genes is based largely on laboratory-induced mutants that are selected in forward and reverse genetic studies. An alternative complementary source of genetic variation is available: the naturally occurring variation among accessions. The multigenic nature of most of this variation has limited its application until now. However, the use of genetic methods developed to map quantitative trait loci, in combination with the characteristics and resources available for molecular biology in Arabidopsis, allow this variation to be exploited up to the molecular level. Here, we describe the current tools available for the forward genetic analysis of this variation, and review the recent progress in the detection and mapping of loci and the cloning of large-effect genes.

  5. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome

    DEFF Research Database (Denmark)

    Joseph, Bindu; Corwin, Jason A.; Li, Baohua

    2013-01-01

    affects phenotypic variation. This showed that the cytoplasmic variation had effects similar to, if not larger than, the largest individual nuclear locus. Inclusion of cytoplasmic variation into the genetic model greatly increased the explained phenotypic variation. Cytoplasmic genetic variation...... was a central hub in the epistatic network controlling the plant metabolome. This epistatic influence manifested such that the cytoplasmic background could alter or hide pairwise epistasis between nuclear loci. Thus, cytoplasmic genetic variation plays a central role in controlling natural variation......Understanding genome to phenotype linkages has been greatly enabled by genomic sequencing. However, most genome analysis is typically confined to the nuclear genome. We conducted a metabolomic QTL analysis on a reciprocal RIL population structured to examine how variation in the organelle genomes...

  6. Effects of Genetic Drift and Gene Flow on the Selective Maintenance of Genetic Variation

    OpenAIRE

    Star, Bastiaan; Spencer, Hamish G.

    2013-01-01

    Explanations for the genetic variation ubiquitous in natural populations are often classified by the population–genetic processes they emphasize: natural selection or mutation and genetic drift. Here we investigate models that incorporate all three processes in a spatially structured population, using what we call a construction approach, simulating finite populations under selection that are bombarded with a steady stream of novel mutations. As expected, the amount of genetic variation compa...

  7. Genetic variation among white croaker populations

    Science.gov (United States)

    Han, Zhiqiang; Gao, Tianxiang; Zhuang, Zhimeng; Tang, Qisheng

    2008-02-01

    To investigate the genetic structures and differentiation of different wild populations of white croaker ( Pennahia argentata), horizontal starch gel electrophoresis was performed on 133 individuals collected from five different locations in China and Japan. The eleven enzyme systems revealed 15 loci, of which eleven were polymorphic. The percentage of polymorphic loci of white croaker populations varied from 6.67% to 53.33%; the mean observed and expected heterozygosity ranged from 0.0033 to 0.0133 and 0.0032 to 0.0191, respectively. The expected heterozygosity revealed a low genetic variability for white croaker in comparison with other marine fishes. The genetic distances between populations ranged from 0.00005 to 0.00026. A weak differentiation was observed within each clade and between clades; and no significant differences in gene frequencies among populations were observed in white croaker. Among the five populations, three Chinese populations showed more genetic diversity than that in Japanese populations.

  8. Genetic variation of 12 rice cultivars grown in Brunei Darussalam ...

    African Journals Online (AJOL)

    Dell

    2015-03-25

    Mar 25, 2015 ... Genetic variations of 12 different rice cultivars in Brunei Darussalam were studied using 15 different. SSR markers ..... Principles of plant breeding: John Wiley & Sons Inc.,. New York .... and reproductive development of rice.

  9. Genetic Variation Within and Among Populations of Delmarva Fox Squirrels

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objective of this study was to provide important information about genetic variation in populations of the Delmarva Fox Squirrel in the context of a more general...

  10. Genetic variation of mangrove species Avicennia marina in Iran ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... Key words: Avicennia marina, genetic variation, Iran, microsatellite, ... conservation and sustainable management of mangrove .... Western Australia, New South Wales and South Africa) ... evolutionary geographic center of mangrove forests of ... environment constrains, as well as ecological factors may.

  11. Molecular Darwinism: the contingency of spontaneous genetic variation.

    Science.gov (United States)

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions.

  12. [Genetic ecological monitoring in human populations: heterozygosity, mtDNA haplotype variation, and genetic load].

    Science.gov (United States)

    Balanovskiĭ, O P; Koshel', S M; Zaporozhchenko, V V; Pshenichnov, A S; Frolova, S A; Kuznetsova, M A; Baranova, E E; Teuchezh, I E; Kuznetsova, A A; Romashkina, M V; Utevskaia, O M; Churnosov, M I; Villems, R; Balanovskaia, E V

    2011-11-01

    Yu. P. Altukhov suggested that heterozygosity is an indicator of the state of the gene pool. The idea and a linked concept of genetic ecological monitoring were applied to a new dataset on mtDNA variation in East European ethnic groups. Haplotype diversity (an analog of the average heterozygosity) was shown to gradually decrease northwards. Since a similar trend is known for population density, interlinked changes were assumed for a set of parameters, which were ordered to form a causative chain: latitude increases, land productivity decreases, population density decreases, effective population size decreases, isolation of subpopulations increases, genetic drift increases, and mtDNA haplotype diversity decreases. An increase in genetic drift increases the random inbreeding rate and, consequently, the genetic load. This was confirmed by a significant correlation observed between the incidence of autosomal recessive hereditary diseases and mtDNA haplotype diversity. Based on the findings, mtDNA was assumed to provide an informative genetic system for genetic ecological monitoring; e.g., analyzing the ecology-driven changes in the gene pool.

  13. Genetic variation and the de novo assembly of human genomes.

    Science.gov (United States)

    Chaisson, Mark J P; Wilson, Richard K; Eichler, Evan E

    2015-11-01

    The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation.

  14. Genetic variation in the east Midlands.

    Science.gov (United States)

    Mastana, S S; Sokol, R J

    1998-01-01

    According to history, the population of the British Isles derives its genepool from a succession of invaders and immigrants. The settlement pattern of these invaders gave rise to a patchwork of genepools, shown in previous genetic surveys. Specimens from 1117 blood donors of regionally subdivided East Midlands (Derbyshire, Nottinghamshire and Leicestershire) were analysed for 18 conventional genetic systems (blood groups, serum proteins and red cell enzymes), according to place of residence. Significant differences exist among the five geographically defined sub-populations, and it is argued that these are derived from the historical settlement of continental European populations in the region, especially the Danes and the Vikings.

  15. Global genetic variations predict brain response to faces.

    Science.gov (United States)

    Dickie, Erin W; Tahmasebi, Amir; French, Leon; Kovacevic, Natasa; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun; Büchel, Christian; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Nichols, Thomas; Lathrop, Mark; Loth, Eva; Pausova, Zdenka; Rietschel, Marcela; Smolka, Michal N; Ströhle, Andreas; Toro, Roberto; Schumann, Gunter; Paus, Tomáš

    2014-08-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40-50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R(2) = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R(2) = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network.

  16. Global genetic variations predict brain response to faces.

    Directory of Open Access Journals (Sweden)

    Erin W Dickie

    2014-08-01

    Full Text Available Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML, we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI in a community-based sample of adolescents (n = 1,620. Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40-50% in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R(2 = 0.38, p<0.001. Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001 and the magnitude of brain response (R(2 = 0.32, p<0.001. Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network.

  17. Genetic variations and evolutionary relationships among radishes ...

    African Journals Online (AJOL)

    vera 1

    To determine the genetic diversity and evolutionary relationships among red radishes, ... valuable material in red pigment industry; (2) the white-flesh radish is an ancestor of the red-flesh ..... number of SSR alleles common to landraces i and j.

  18. Intracortical bone remodeling variation shows strong genetic effects.

    Science.gov (United States)

    Havill, L M; Allen, M R; Harris, J A K; Levine, S M; Coan, H B; Mahaney, M C; Nicolella, D P

    2013-11-01

    Intracortical microstructure influences crack propagation and arrest within bone cortex. Genetic variation in intracortical remodeling may contribute to mechanical integrity and, therefore, fracture risk. Our aim was to determine the degree to which normal population-level variation in intracortical microstructure is due to genetic variation. We examined right femurs from 101 baboons (74 females, 27 males; aged 7-33 years) from a single, extended pedigree to determine osteon number, osteon area (On.Ar), haversian canal area, osteon population density, percent osteonal bone (%On.B), wall thickness (W.Th), and cortical porosity (Ct.Po). Through evaluation of the covariance in intracortical properties between pairs of relatives, we quantified the contribution of additive genetic effects (heritability [h (2)]) to variation in these traits using a variance decomposition approach. Significant age and sex effects account for 9 % (Ct.Po) to 21 % (W.Th) of intracortical microstructural variation. After accounting for age and sex, significant genetic effects are evident for On.Ar (h (2) = 0.79, p = 0.002), %On.B (h (2) = 0.82, p = 0.003), and W.Th (h (2) = 0.61, p = 0.013), indicating that 61-82 % of the residual variation (after accounting for age and sex effects) is due to additive genetic effects. This corresponds to 48-75 % of the total phenotypic variance. Our results demonstrate that normal, population-level variation in cortical microstructure is significantly influenced by genes. As a critical mediator of crack behavior in bone cortex, intracortical microstructural variation provides another mechanism through which genetic variation may affect fracture risk.

  19. A Model of Genetic Variation in Human Social Networks

    CERN Document Server

    Fowler, James H; Christakis, Nicholas A

    2008-01-01

    Social networks influence the evolution of cooperation and they exhibit strikingly systematic patterns across a wide range of human contexts. Both of these facts suggest that variation in the topological attributes of human social networks might have a genetic basis. While genetic variation accounts for a significant portion of the variation in many complex social behaviors, the heritability of egocentric social network attributes is unknown. Here we show that three of these attributes (in-degree, transitivity, and centrality) are heritable. We then develop a "mirror network" method to test extant network models and show that none accounts for observed genetic variation in human social networks. We propose an alternative "attract and introduce" model that generates significant heritability as well as other important network features, and we show that this model with two simple forms of heterogeneity is well suited to the modeling of real social networks in humans. These results suggest that natural selection ...

  20. Genetic Variation of Host Populations of Liriomyza sativae Blanchard

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ping; DU Yu-zhou; HE Ya-ting; ZHENG Fu-shan; LU Zi-qiang

    2008-01-01

    In this study, partial sequences of the mitochondrial cytochrome oxidase subunit Ⅰ (mtDNA-COI) gene and the ribosomal internal transcribed spacer 1 (rDNA-ITS1) gene, isolated from five artificial populations of Liriomyza sativae (Diptera:Agromyzidae), were sequenced and compared, to analyze their genetic variation. Analysis of the mtDNA-CO1 gene showed that a low genetic variation was detected among the five populations and only five variable sites were found in the nucleotide sequences. Most of the observed variations that occurred within the populations were because of nucleotide transitions, whereas, the interpopulation variation was because of the differences in haplotype frequencies occurring among the host populations. Analysis of the rDNA-ITS1 gene revealed a small diversity in the five host populations. The trend of genetic differentiation in the host populations was consistent with the preference of L. sativae to the plant hosts.

  1. Spatial arrangement of genetic variation in the marine bivalve Macoma balthica (L.)

    NARCIS (Netherlands)

    Luttikhuizen, Pieternella Christina

    2003-01-01

    Phenotypic similarities come in two kinds: those that are partially based on genetic differences and those that are not. Genetic variation is inherently heritable and without it, evolution by means of natural selection could not occur. It is therefore important to understand the origin and maintenan

  2. Hypertension and genetic variation in endothelial-specific genes.

    Directory of Open Access Journals (Sweden)

    Erik Larsson

    Full Text Available Genome-wide association (GWA studies usually detect common genetic variants with low-to-medium effect sizes. Many contributing variants are not revealed, since they fail to reach significance after strong correction for multiple comparisons. The WTCCC study for hypertension, for example, failed to identify genome-wide significant associations. We hypothesized that genetic variation in genes expressed specifically in the endothelium may be important for hypertension development. Results from the WTCCC study were combined with previously published gene expression data from mice to specifically investigate SNPs located within endothelial-specific genes, bypassing the requirement for genome-wide significance. Six SNPs from the WTCCC study were selected for independent replication in 5205 hypertensive patients and 5320 population-based controls, and successively in a cohort of 16,537 individuals. A common variant (rs10860812 in the DRAM (damage-regulated autophagy modulator locus showed association with hypertension (P = 0.008 in the replication study. The minor allele (A had a protective effect (OR = 0.93; 95% CI 0.88-0.98 per A-allele, which replicates the association in the WTCCC GWA study. However, a second follow-up, in the larger cohort, failed to reveal an association with blood pressure. We further tested the endothelial-specific genes for co-localization with a panel of newly discovered SNPs from large meta-GWAS on hypertension or blood pressure. There was no significant overlap between those genes and hypertension or blood pressure loci. The result does not support the hypothesis that genetic variation in genes expressed in endothelium plays an important role for hypertension development. Moreover, the discordant association of rs10860812 with blood pressure in the case control study versus the larger Malmö Preventive Project-study highlights the importance of rigorous replication in multiple large independent studies.

  3. Genetic Variation Among Open-Pollinated Progeny of Eastern Cottonwood

    Science.gov (United States)

    R. E. Farmer

    1970-01-01

    Improvement programs in eastern cottonwood (Populus deltoides Bartr.) are most frequently designed to produce genetically superior clones for direct commercial use. This paper describes a progeny test to assess genetic variability on which selection might be based.

  4. Genetic variation of Porphyra yezoensis by using AFLP1

    Institute of Scientific and Technical Information of China (English)

    Rui Yang; Biqian Liu; Qijun Luo; Yajun Wang; Jiamei Bao

    2003-01-01

    Genetic variation of 11 lines of Porphyra yezoensis from the coastline of Kagoshima ofJapan, Qingdao, Nantong, Putuo and Nanji Islands of China were studied by using amplified fragmentlength polymorphism (AFLP). 778 bands were obtained with AFLP analysis of 16 primer combina-tions, among which 15 were unique, about 98.07% were polymorphic. The AFLP data showed thatthe closest genetic distance was 0.180 between two Kagoshima samples, and the farthest one was 0.397between Kagoshima No. 1 and Nantong No. 9 line. The genetic distance showed that the variation waswithin the inner species scope. Neighbor-joining cluster and UPGMA cluster indicated that samples fromKagoshima and Qingdao were with high similarity and either with the samples of Nantong, Putuo andNanji Islands. P. yezoensis in China shared high genetic diversity, and the genetic distance showed posi-tive correlation with the geographic distance.

  5. Genetic and phenotypically flexible components of seasonal variation in immune function

    NARCIS (Netherlands)

    Versteegh, M. A.; Helm, B.; Kleynhans, E. J.; Gwinner, E.; Tieleman, B. I.

    2014-01-01

    Animals cope with seasonal variation in environmental factors by adjustments of physiology and life history. When seasonal variation is partly predictable, such adjustments can be based on a genetic component or be phenotypically flexible. Animals have to allocate limited resources over different de

  6. Effect of population size on genetic variation levels in Capparis spinosa (Capparaceae detected by RAPDs

    Directory of Open Access Journals (Sweden)

    Houshang Nosrati

    2012-07-01

    Full Text Available Background: The population size of plants affects on population genetic variation. Materials and Methods: We studied the impact of population size on genetic variation in populations of Capparis spinosa (caper, Capparaceae using RAPDs in East Azerbaijan (Iran. Within-population genetic diversity was estimated based on Nei`s and Shanonn`s diversity using Popgen, and genetic similarity among the populations was studied from a UPGMA dendrogram based the matrix of Nei’s distances obtained through SHAN. Difference in the level genetic variation between small-sized and large-sized populations was tested using Mann-Whitney U test, and correlation between geographical and genetic distances among populations was examined by Pearson test (SPSS, 11.3. Total genetic variation was partitioned into within and among populations based on AMOVA using Arlequin. Results: The polymorphism levels of RAPDs bands among the populations ranged from 48.8% to 81.4%, and within-population Nei’s diversity varied from 0.1667 to 0.2630. Genetic variation in small-sized populations (0.1667 to 0.1809 was significantly lower than the variations in large-sized populations (0.2158 -0.2630 (N= 7, P0.674, Pearson correlation test. Conclusions: Population size has a dramatic impact on its genetic diversity. The results revealed that fragmentation of caper population in the study region has most likely occurred recently. The low genetic diversity revealed within caper populations indicates high risk of extinction and suggests that urgent conservation action is needed to recover diversity in these populations.

  7. Genetic variation of the genus Kengyilia by ISSR markers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We investigated the genetic variation within 32 accessions distributed to 14 species and one variety by using ISSR (inter-simple sequence repeat) markers.The results showed that genetic variation was relatively higher among the accessions.A total of 593 bands were amplified by 12 ISSR primers,of which 535 bands (90.2%) were polymorphic.Eleven to 80 polymorphie bands were amplified from each prime,with an average of 44.6 bands.The interspecies GS (genetic similarity)value ranged from 0.430 to 0.866,and the average was 0.620.Cluster analysis showed that all accessions could be classified into 4 groups by ISSR markers.The different accessions in a species were clustered together,but they had genetic variation in molecular levels.There was obvious interspecies genetic variation.Species with similar morphological characteristics and from the same areas or neighboring geographical regions were clustered together and had close relationships.ISSR markers are useful in analyzing interspecies variation in Kengyilia.

  8. A joint history of the nature of genetic variation and the nature of schizophrenia.

    Science.gov (United States)

    Kendler, K S

    2015-02-01

    This essay traces the history of concepts of genetic variation and schizophrenia from Darwin and Mendel to the present. For Darwin, the important form of genetic variation for evolution is continuous in nature and small in effect. Biometricians led by Pearson agreed and developed statistical genetic approaches utilizing trait correlations in relatives. Mendel studied discontinuous traits and subsequent Mendelians, led by Bateson, assumed that important genetic variation was large in effect producing discontinuous phenotypes. Although biometricians studied 'insanity', schizophrenia genetics under Kraepelin and Rüdin utilized Mendelian approaches congruent with their anatomical-clinical disease model of dementia praecox. Fisher showed, assuming many genes of small effect, Mendelian and Biometrical models were consilient. Echoing prior conflicts, psychiatric genetics since then has utilized both biometrical models, largely in twins, and Mendelian models, based on advancing molecular techniques. In 1968, Gottesman proposed a polygenic model for schizophrenia based on a threshold version of Fisher's theory. Since then, rigorous studies of the schizophrenia spectrum suggest that genetic risk for schizophrenia is more likely continuous than categorical. The last 5 years has seen increasingly convincing evidence from genome-wide association study (GWAS) and sequencing that genetic risk for schizophrenia is largely polygenic, and congruent with Fisher's and Gottesman's models. The gap between biometrical and molecular Mendelian models for schizophrenia has largely closed. The efforts to ground a categorical biomedical model of schizophrenia in Mendelian genetics have failed. The genetic risk for schizophrenia is widely distributed in human populations so that we all carry some degree of risk.

  9. Evolutionary response when selection and genetic variation covary across environments.

    Science.gov (United States)

    Wood, Corlett W; Brodie, Edmund D

    2016-10-01

    Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among-population or among-generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors - temperature and competition - are unlikely to generate the correlation because they affected one parameter more than the other, and identified others - most notably, environmental novelty - that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes.

  10. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior.

    Science.gov (United States)

    Shorter, John; Couch, Charlene; Huang, Wen; Carbone, Mary Anna; Peiffer, Jason; Anholt, Robert R H; Mackay, Trudy F C

    2015-07-07

    Aggression is an evolutionarily conserved complex behavior essential for survival and the organization of social hierarchies. With the exception of genetic variants associated with bioamine signaling, which have been implicated in aggression in many species, the genetic basis of natural variation in aggression is largely unknown. Drosophila melanogaster is a favorable model system for exploring the genetic basis of natural variation in aggression. Here, we performed genome-wide association analyses using the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and replicate advanced intercross populations derived from the most and least aggressive DGRP lines. We identified genes that have been previously implicated in aggressive behavior as well as many novel loci, including gustatory receptor 63a (Gr63a), which encodes a subunit of the receptor for CO2, and genes associated with development and function of the nervous system. Although genes from the two association analyses were largely nonoverlapping, they mapped onto a genetic interaction network inferred from an analysis of pairwise epistasis in the DGRP. We used mutations and RNAi knock-down alleles to functionally validate 79% of the candidate genes and 75% of the candidate epistatic interactions tested. Epistasis for aggressive behavior causes cryptic genetic variation in the DGRP that is revealed by changing allele frequencies in the outbred populations derived from extreme DGRP lines. This phenomenon may pertain to other fitness traits and species, with implications for evolution, applied breeding, and human genetics.

  11. Genetic variation of St. Louis encephalitis virus.

    Science.gov (United States)

    May, Fiona J; Li, Li; Zhang, Shuliu; Guzman, Hilda; Beasley, David W C; Tesh, Robert B; Higgs, Stephen; Raj, Pushker; Bueno, Rudy; Randle, Yvonne; Chandler, Laura; Barrett, Alan D T

    2008-08-01

    St. Louis encephalitis virus (SLEV) has been regularly isolated throughout the Americas since 1933. Previous phylogenetic studies involving 62 isolates have defined seven major lineages (I-VII), further divided into 14 clades. In this study, 28 strains isolated in Texas in 1991 and 2001-2003, and three older, previously unsequenced strains from Jamaica and California were sequenced over the envelope protein gene. The inclusion of these new sequences, and others published since 2001, has allowed better delineation of the previously published SLEV lineages, in particular the clades of lineage II. Phylogenetic analysis of 106 isolates identified 13 clades. All 1991 and 2001-2003 isolates from Nueces, Jefferson and Harris Counties (Texas Gulf Coast) group in clade IIB with other isolates from these counties isolated during the 1980s and 1990s. This lack of evidence for introduction of novel strains into the Texas Gulf Coast over a long period of time is consistent with overwintering of SLEV in this region. Two El Paso isolates, both from 2002, group in clade VA with recent Californian isolates from 1998-2001 and some South American strains with a broad temporal range. Overall, these data are consistent with multiple introductions of SLEV from South America into North America, and provide support for the hypothesis that in most situations, SLEV circulates within a locality, with occasional incursions from other areas. Finally, SLEV has much lower nucleotide (10.1 %) and amino acid variation (2.8 %) than other members of the Japanese encephalitis virus complex (maximum variation 24.6 % nucleotide and 11.8 % amino acid).

  12. Geographic variation and genetic structure in Spotted Owls

    Science.gov (United States)

    Haig, Susan M.; Wagner, R.S.; Forsman, E.D.; Mullins, Thomas D.

    2001-01-01

    We examined genetic variation, population structure, and definition of conservation units in Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory, long-lived, socially monogamous birds that have decreased population viability due to their occupation of highly-fragmented late successional forests in western North America. To investigate potential effects of habitat fragmentation on population structure, we used random amplified polymorphic DNA (RAPD) to examine genetic variation hierarchically among local breeding areas, subregional groups, regional groups, and subspecies via sampling of 21 breeding areas (276 individuals) among the three subspecies of Spotted Owls. Data from 11 variable bands suggest a significant relationship between geographic distance among local breeding groups and genetic distance (Mantel r = 0.53, P genetic drift. Merging nuclear data with recent mitochondrial data provides support for designation of an Evolutionary Significant Unit for Mexican Spotted Owls and two overlapping Management Units for Northern and California Spotted Owls.

  13. Genetic variation in resistance to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, F.J.

    1992-01-01

    Results of an investigation of the gene coding for Cu, Zn superoxide dismutase (Sod) in Drosophila melanogaster seeking to understand the enzyme's role in cell protection against ionizing radiation are reported. Components of the investigation include molecular characterization of the gene; measuring the response of different genotypes to increasing levels of radiation; and investigation of the processes that maintain the Sod polymorphism in populations. While two alleles, S and F, are commonly found at the Sod locus in natural populations of D. melanogaster we have isolated from a natural population a null (CA1) mutant that yields only 3.5% of normal SOD activity. The S, F, and CA1 alleles provide a model system to investigate SOD-dependent radioresistance, because each allele yields different levels of SOD, so that S > F >> CAl. The radioprotective effects of SOD can be established by showing protective effects for the various genotypes that correspond to those inequalities. Because the allele variants studied are derived from natural populations, the proposed investigation avoids problems that arise when mutants obtained my mutagenesis are used. Moreover, each allele is studied in multiple genetic backgrounds, so that we correct for effects attributable to other loci by randomizing these effects.

  14. A Genetic Interpretation of the Variation in Inbreeding Depression

    OpenAIRE

    2005-01-01

    Inbreeding depression is expected to play an important but complicated role in evolution. If we are to understand the evolution of inbreeding depression (i.e., purging), we need quantitative genetic interpretations of its variation. We introduce an experimental design in which sires are mated to multiple dams, some of which are unrelated to the sire but others are genetically related owing to an arbitrary number of prior generations of selfing or sib-mating. In this way we introduce the conce...

  15. Population-based resequencing of APOA1 in 10,330 individuals: spectrum of genetic variation, phenotype, and comparison with extreme phenotype approach.

    Science.gov (United States)

    Haase, Christiane L; Frikke-Schmidt, Ruth; Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2012-01-01

    Rare genetic variants, identified by in-detail resequencing of loci, may contribute to complex traits. We used the apolipoprotein A-I gene (APOA1), a major high-density lipoprotein (HDL) gene, and population-based resequencing to determine the spectrum of genetic variants, the phenotypic characteristics of these variants, and how these results compared with results based on resequencing only the extremes of the apolipoprotein A-I (apoA-I) distribution. First, we resequenced APOA1 in 10,330 population-based participants in the Copenhagen City Heart Study. The spectrum and distribution of genetic variants was determined as a function of the number of individuals resequenced. Second, apoA-I and HDL cholesterol phenotypes were determined for nonsynonymous (NS) and synonymous (S) variants and were validated in the Copenhagen General Population Study (n = 45,239). Third, observed phenotypes were compared with those predicted using an extreme phenotype approach based on the apoA-I distribution. Our results are as follows: First, population-based resequencing of APOA1 identified 40 variants of which only 7 (18%) had minor allele frequencies >1%, and most were exceedingly rare. Second, 0.27% of individuals in the general population were heterozygous for NS variants which were associated with substantial reductions in apoA-I (up to 39 mg/dL) and/or HDL cholesterol (up to 0.9 mmol/L) and, surprisingly, 0.41% were heterozygous for variants predisposing to amyloidosis. NS variants associated with a hazard ratio of 1.72 (1.09-2.70) for myocardial infarction (MI), largely driven by A164S, a variant not associated with apoA-I or HDL cholesterol levels. Third, using the extreme apoA-I phenotype approach, NS variants correctly predicted the apoA-I phenotype observed in the population-based resequencing. However, using the extreme approach, between 79% (screening 0-1(st) percentile) and 21% (screening 0-20(th) percentile) of all variants were not identified; among these were variants

  16. Genetics of the dentofacial variation in human malocclusion.

    Science.gov (United States)

    Moreno Uribe, L M; Miller, S F

    2015-04-01

    Malocclusions affect individuals worldwide, resulting in compromised function and esthetics. Understanding the etiological factors contributing to the variation in dentofacial morphology associated with malocclusions is the key to develop novel treatment approaches. Advances in dentofacial phenotyping, which is the comprehensive characterization of hard and soft tissue variation in the craniofacial complex, together with the acquisition of large-scale genomic data have started to unravel genetic mechanisms underlying facial variation. Knowledge on the genetics of human malocclusion is limited even though results attained thus far are encouraging, with promising opportunities for future research. This review summarizes the most common dentofacial variations associated with malocclusions and reviews the current knowledge of the roles of genes in the development of malocclusions. Lastly, this review will describe ways to advance malocclusion research, following examples from the expanding fields of phenomics and genomic medicine, which aim to better patient outcomes.

  17. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans

    NARCIS (Netherlands)

    Verloop, H.; Dekkers, O.M.; Peeters, R.P.; Schoones, J.W.; Smit, J.W.

    2014-01-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clini

  18. Chum and pink salmon genetics - Genetic and life history variation of southern chum and pink salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The distribution of genetic and life history variation in chum (Oncorhynchus keta) and pink (O. gorbuscha) salmon in their southern range in North America is key to...

  19. The Effect of Genetic and Environmental Variation on Metabolic Gene Expression

    Science.gov (United States)

    Scott, Cinda P.; Williams, Dean A.; Crawford, Douglas L.

    2009-01-01

    What is the relationship between genetic or environmental variation and the variation in mRNA expression? To address this, microarrays were used to examine the effect of genetic and environmental variation on cardiac mRNA expression for metabolic genes in three groups of Fundulus heteroclitus: (1) individuals sampled in the field (field), (2) field individuals acclimated for six months to laboratory conditions (acclimated) or (3) individuals bred for ten successive generations in a laboratory environment (G10). The G10 individuals have significantly less genetic variation than individuals obtained in the field and had a significantly lower variation in mRNA expression across all genes in comparison to the other two groups (p ≤ 0.001). When examining the gene specific variation, twenty-two genes had variation in expression that was significantly different among groups with lower variation in G10 individuals than in acclimated individuals. Additionally, there were fewer genes with significant differences in expression among G10 individuals versus either acclimated or field individuals: 66 genes have statistically different levels of expression versus 107 or 97 for Acclimated or Field groups. Based on the permutation of the data, these differences in the number of genes with significant differences among individuals within a group are unlikely to occur by chance (p < 0.01). Surprisingly, variation in mRNA expression in field individuals is lower than in acclimated individuals. Relative to the variation among individual within a group, few genes have significant differences in expression among groups (seven, 2.3%) and none of these are different between acclimated and field individuals. The results support the concept that genetic variation affects variation in mRNA expression and also suggests that temporal environmental variation associated with estuarine environments does not increase the variation among individuals or add to the differences among groups. PMID

  20. Sequence variation and genetic diversity in the giant panda

    Institute of Scientific and Technical Information of China (English)

    张亚平; Oliver A.Ryder; 范志勇; 张和明; 何廷美; 何光昕; 张安居; 费立松; 钟顺隆; 陈红; 张成林; 杨明海; 朱飞兵; 彭真信; 普天春; 陈玉村; 姚敏达; 郭伟

    1997-01-01

    About 336-444 bp mitochondrial D-loop region and tRNA gene were sequenced for 40 individuals of the giant panda which were collected from Mabian, Meigu, Yuexi, Baoxing, Pingwu, Qingchuan, Nanping and Baishuijiang, respectively. 9 haplotypes were found in 21 founders. The results showed that the giant panda has low genetic variations, and that there is no notable genetic isolation among geographical populations. The ancestor of the living giant panda population perhaps appeared in the late Pleistocene, and unfortunately, might have suffered bottle-neck attacks. Afterwards, its genetic diversity seemed to recover to some extent.

  1. Genetic Variation of Bordetella pertussis in Austria.

    Directory of Open Access Journals (Sweden)

    Birgit Wagner

    Full Text Available In Austria, vaccination coverage against Bordetella pertussis infections during infancy is estimated at around 90%. Within the last years, however, the number of pertussis cases has increased steadily, not only in children but also in adolescents and adults, indicating both insufficient herd immunity and vaccine coverage. Waning immunity in the host and/or adaptation of the bacterium to the immunised hosts could contribute to the observed re-emergence of pertussis. In this study we therefore addressed the genetic variability in B. pertussis strains from several Austrian cities. Between the years 2002 and 2008, 110 samples were collected from Vienna (n = 32, Linz (n = 63 and Graz (n = 15 by nasopharyngeal swabs. DNA was extracted from the swabs, and bacterial sequence polymorphisms were examined by MLVA (multiple-locus variable number of tandem repeat analysis (n = 77, by PCR amplification and conventional Sanger sequencing of the polymorphic regions of the prn (pertactin gene (n = 110, and by amplification refractory mutation system quantitative PCR (ARMS-qPCR (n = 110 to directly address polymorphisms in the genes encoding two pertussis toxin subunits (ptxA and ptxB, a fimbrial adhesin (fimD, tracheal colonisation factor (tcfA, and the virulence sensor protein (bvgS. Finally, the ptxP promoter region was screened by ARMS-qPCR for the presence of the ptxP3 allele, which has been associated with elevated production of pertussis toxin. The MLVA analysis revealed the highest level of polymorphisms with an absence of MLVA Type 29, which is found outside Austria. Only Prn subtypes Prn1/7, Prn2 and Prn3 were found with a predominance of the non-vaccine type Prn2. The analysis of the ptxA, ptxB, fimD, tcfA and bvgS polymorphisms showed a genotype mixed between the vaccine strain Tohama I and a clinical isolate from 2006 (L517. The major part of the samples (93% displayed the ptxP3 allele. The consequences for the vaccination strategy are discussed.

  2. Genetic Variation of Bordetella pertussis in Austria.

    Science.gov (United States)

    Wagner, Birgit; Melzer, Helen; Freymüller, Georg; Stumvoll, Sabine; Rendi-Wagner, Pamela; Paulke-Korinek, Maria; Repa, Andreas; Mooi, Frits R; Kollaritsch, Herwig; Mittermayer, Helmut; Kessler, Harald H; Stanek, Gerold; Steinborn, Ralf; Duchêne, Michael; Wiedermann, Ursula

    2015-01-01

    In Austria, vaccination coverage against Bordetella pertussis infections during infancy is estimated at around 90%. Within the last years, however, the number of pertussis cases has increased steadily, not only in children but also in adolescents and adults, indicating both insufficient herd immunity and vaccine coverage. Waning immunity in the host and/or adaptation of the bacterium to the immunised hosts could contribute to the observed re-emergence of pertussis. In this study we therefore addressed the genetic variability in B. pertussis strains from several Austrian cities. Between the years 2002 and 2008, 110 samples were collected from Vienna (n = 32), Linz (n = 63) and Graz (n = 15) by nasopharyngeal swabs. DNA was extracted from the swabs, and bacterial sequence polymorphisms were examined by MLVA (multiple-locus variable number of tandem repeat analysis) (n = 77), by PCR amplification and conventional Sanger sequencing of the polymorphic regions of the prn (pertactin) gene (n = 110), and by amplification refractory mutation system quantitative PCR (ARMS-qPCR) (n = 110) to directly address polymorphisms in the genes encoding two pertussis toxin subunits (ptxA and ptxB), a fimbrial adhesin (fimD), tracheal colonisation factor (tcfA), and the virulence sensor protein (bvgS). Finally, the ptxP promoter region was screened by ARMS-qPCR for the presence of the ptxP3 allele, which has been associated with elevated production of pertussis toxin. The MLVA analysis revealed the highest level of polymorphisms with an absence of MLVA Type 29, which is found outside Austria. Only Prn subtypes Prn1/7, Prn2 and Prn3 were found with a predominance of the non-vaccine type Prn2. The analysis of the ptxA, ptxB, fimD, tcfA and bvgS polymorphisms showed a genotype mixed between the vaccine strain Tohama I and a clinical isolate from 2006 (L517). The major part of the samples (93%) displayed the ptxP3 allele. The consequences for the vaccination strategy are discussed.

  3. Genetic origin of Behçet's disease population in Denizli, Turkey; population genetics data analysis; historical demography and geographical perspectives based on β-globin gene cluster haplotype variation.

    Science.gov (United States)

    Ozturk, O; Arikan, S; Bahadir, A; Atalay, A; Atalay, E O

    2017-01-01

    In our study, we aimed to investigate the possible genetic drift, relationships, expansion and historical origin based on haplotype frequencies of the β-globin gene cluster of normal and Behçet's disease (BD) population in Denizli, Turkey. We examined blood DNA samples obtained from our DNA bank. The association of population genetic parameters such as haplotypes, diversity, differentiation, Hardy-Weinberg equilibrium and demographic analysis for two populations was performed by Arlequin ver. 3.5. Our results show that both populations have high similarity in genetic parameters in terms of development and expansion based on haplotype diversity through the history. We found that historical levels of gene flow were significantly higher between the two populations. According to historical population, growth parameter of τ values for normal and BD populations dated approximately 42 000 to 38 000 ybp, respectively. In conclusion, historically, two populations show similar genetic parameters and unimodal growth distribution. Our results are consistent with the view that the BD may have occurred in area, independent from Silk Road.

  4. Genetic variation in Toll-like receptors and disease susceptibility

    NARCIS (Netherlands)

    Netea, Mihai G.; Wijmenga, Cisca; O'Neill, Luke A. J.

    Toll-like receptors (TLRs) are key initiators of the innate immune response and promote adaptive immunity. Much has been learned about the role of TLRs in human immunity from studies linking TLR genetic variation with disease. First, monogenic disorders associated with complete deficiency in certain

  5. Genetic architecture of flowering time variation in Brachypodium distachyon

    Science.gov (United States)

    The transition to reproductive development is a crucial step of a plant’s life cycle, and the timing of this transition is an important factor in crop yields. Here, we report new insights into the genetic control of natural variation in flowering time in Brachypodium distachyon, a non-domesticated c...

  6. Genetic variation of white clover (Trifolium repens L.) collections ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... 2Institute of Environment, Resource, soil and fertilizer, Zhejiang ... assessing genetic variation in white clover, and could be helpful for .... management in the experimental garden of China agricultural ..... L) poulations collected from northern New South Wales. Aust. ... Molecular Evolution and Phylogenetics.

  7. Obesity, hypertension and genetic variation in the TIGER Study

    Science.gov (United States)

    Obesity and hypertension are multifactoral conditions in which the onset and severity of the conditions are influenced by the interplay of genetic and environmental factors. We hypothesize that multiple genes and environmental factors account for a significant amount of variation in BMI and blood pr...

  8. When Does Frequency-Independent Selection Maintain Genetic Variation?

    Science.gov (United States)

    Novak, Sebastian; Barton, Nicholas H

    2017-10-01

    Frequency-independent selection is generally considered as a force that acts to reduce the genetic variation in evolving populations, yet rigorous arguments for this idea are scarce. When selection fluctuates in time, it is unclear whether frequency-independent selection may maintain genetic polymorphism without invoking additional mechanisms. We show that constant frequency-independent selection with arbitrary epistasis on a well-mixed haploid population eliminates genetic variation if we assume linkage equilibrium between alleles. To this end, we introduce the notion of frequency-independent selection at the level of alleles, which is sufficient to prove our claim and contains the notion of frequency-independent selection on haploids. When selection and recombination are weak but of the same order, there may be strong linkage disequilibrium; numerical calculations show that stable equilibria are highly unlikely. Using the example of a diallelic two-locus model, we then demonstrate that frequency-independent selection that fluctuates in time can maintain stable polymorphism if linkage disequilibrium changes its sign periodically. We put our findings in the context of results from the existing literature and point out those scenarios in which the possible role of frequency-independent selection in maintaining genetic variation remains unclear. Copyright © 2017 by the Genetics Society of America.

  9. Genetic variation and structure in remnant population of critically endangered Melicope zahlbruckneri

    Science.gov (United States)

    Raji, J. A.; Atkinson, Carter T.

    2016-01-01

    The distribution and amount of genetic variation within and between populations of plant species are important for their adaptability to future habitat changes and also critical for their restoration and overall management. This study was initiated to assess the genetic status of the remnant population of Melicope zahlbruckneri–a critically endangered species in Hawaii, and determine the extent of genetic variation and diversity in order to propose valuable conservation approaches. Estimated genetic structure of individuals based on molecular marker allele frequencies identified genetic groups with low overall differentiation but identified the most genetically diverse individuals within the population. Analysis of Amplified Fragment Length Polymorphic (AFLP) marker loci in the population based on Bayesian model and multivariate statistics classified the population into four subgroups. We inferred a mixed species population structure based on Bayesian clustering and frequency of unique alleles. The percentage of Polymorphic Fragment (PPF) ranged from 18.8 to 64.6% for all marker loci with an average of 54.9% within the population. Inclusion of all surviving M. zahlbruckneri trees in future restorative planting at new sites are suggested, and approaches for longer term maintenance of genetic variability are discussed. To our knowledge, this study represents the first report of molecular genetic analysis of the remaining population of M. zahlbruckneri and also illustrates the importance of genetic variability for conservation of a small endangered population.

  10. Genetic integration of molar cusp size variation in baboons

    Science.gov (United States)

    Koh, Christina; Bates, Elizabeth; Broughton, Elizabeth; Do, Nicholas T.; Fletcher, Zachary; Mahaney, Michael C.; Hlusko, Leslea J.

    2010-01-01

    Many studies of primate diversity and evolution rely on dental morphology for insight into diet, behavior, and phylogenetic relationships. Consequently, variation in molar cusp size has increasingly become a phenotype of interest. In 2007 we published a quantitative genetic analysis of mandibular molar cusp size variation in baboons. Those results provided more questions than answers, as the pattern of genetic integration did not fit predictions from odontogenesis. To follow up, we expanded our study to include data from the maxillary molar cusps. Here we report on these later analyses, as well as inter-arch comparisons with the mandibular data. We analyzed variation in two-dimensional maxillary molar cusp size using data collected from a captive pedigreed breeding colony of baboons, Papio hamadryas, housed at the Southwest National Primate Research Center. These analyses show that variation in maxillary molar cusp size is heritable and sexually dimorphic. We also estimated additive genetic correlations between cusps on the same crown, homologous cusps along the tooth row, and maxillary and mandibular cusps. The pattern for maxillary molars yields genetic correlations of one between the paracone-metacone and protocone-hypocone. Bivariate analyses of cuspal homologues on adjacent teeth yield correlations that are high or not significantly different from one. Between dental arcades, the non-occluding cusps consistently yield high genetic correlations, especially the metaconid-paracone and metaconid-metacone. This pattern of genetic correlation does not immediately accord with the pattern of development and/or calcification, however these results do follow predictions that can be made from the evolutionary history of the tribosphenic molar. PMID:20034010

  11. Conservation genetics of the Philippine tarsier: cryptic genetic variation restructures conservation priorities for an island archipelago primate.

    Science.gov (United States)

    Brown, Rafe M; Weghorst, Jennifer A; Olson, Karen V; Duya, Mariano R M; Barley, Anthony J; Duya, Melizar V; Shekelle, Myron; Neri-Arboleda, Irene; Esselstyn, Jacob A; Dominy, Nathaniel J; Ong, Perry S; Moritz, Gillian L; Luczon, Adrian; Diesmos, Mae Lowe L; Diesmos, Arvin C; Siler, Cameron D

    2014-01-01

    Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier.

  12. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    Science.gov (United States)

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  13. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    Science.gov (United States)

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  14. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae.

    Science.gov (United States)

    Wang, Li; Li, Jing; Zhao, Jing; He, Chaoying

    2015-01-01

    Morphological variations of fruits such as shape and size, and color are a result of adaptive evolution. The evolution of morphological novelties is particularly intriguing. An understanding of these evolutionary processes calls for the elucidation of the developmental and genetic mechanisms that result in particular fruit morphological characteristics, which determine seed dispersal. The genetic and developmental basis for fruit morphological variation was established at a microevolutionary time scale. Here, we summarize the progress on the evolutionary developmental genetics of fruit size, shape and color in the Solanaceae. Studies suggest that the recruitment of a pre-existing gene and subsequent modification of its interaction and regulatory networks are frequently involved in the evolution of morphological diversity. The basic mechanisms underlying changes in plant morphology are alterations in gene expression and/or gene function. We also deliberate on the future direction in evolutionary developmental genetics of fruit morphological variation such as fruit type. These studies will provide insights into plant developmental processes and will help to improve the productivity and fruit quality of crops.

  15. The nature of quantitative genetic variation for Drosophila longevity.

    Science.gov (United States)

    Mackay, Trudy F C

    2002-01-01

    Longevity is a typical quantitative trait: the continuous variation in life span observed in natural populations is attributable to genetic variation at multiple quantitative trait loci (QTL), environmental sensitivity of QTL alleles, and truly continuous environmental variation. To begin to understand the genetic architecture of longevity at the level of individual QTL, we have mapped QTL for Drosophila life span that segregate between two inbred strains that were not selected for longevity. A mapping population of 98 recombinant inbred lines (RIL) was derived from these strains, and life span of virgin male and female flies measured under control culture conditions, chronic heat and cold stress, heat shock and starvation stress, and high and low density larval environments. The genotypes of the RIL were determined for polymorphic roo transposable element insertion sites, and life span QTL were mapped using composite interval mapping methods. A minimum of 19 life span QTL were detected by recombination mapping. The life span QTL exhibited strong genotype by sex, genotype by environment, and genotype by genotype (epistatic) interactions. These interactions complicate mapping efforts, but evolutionary theory predicts such properties of segregating QTL alleles. Quantitative deficiency mapping of four longevity QTL detected in the control environment by recombination mapping revealed a minimum of 11 QTL in these regions. Clearly, longevity is a complex quantitative trait. In the future, linkage disequilibrium mapping can be used to determine which candidate genes in a QTL region correspond to the genetic loci affecting variation in life span, and define the QTL alleles at the molecular level.

  16. A genome-wide survey of genetic variation in gorillas using reduced representation sequencing.

    Directory of Open Access Journals (Sweden)

    Aylwyn Scally

    Full Text Available All non-human great apes are endangered in the wild, and it is therefore important to gain an understanding of their demography and genetic diversity. Whole genome assembly projects have provided an invaluable foundation for understanding genetics in all four genera, but to date genetic studies of multiple individuals within great ape species have largely been confined to mitochondrial DNA and a small number of other loci. Here, we present a genome-wide survey of genetic variation in gorillas using a reduced representation sequencing approach, focusing on the two lowland subspecies. We identify 3,006,670 polymorphic sites in 14 individuals: 12 western lowland gorillas (Gorilla gorilla gorilla and 2 eastern lowland gorillas (Gorilla beringei graueri. We find that the two species are genetically distinct, based on levels of heterozygosity and patterns of allele sharing. Focusing on the western lowland population, we observe evidence for population substructure, and a deficit of rare genetic variants suggesting a recent episode of population contraction. In western lowland gorillas, there is an elevation of variation towards telomeres and centromeres on the chromosomal scale. On a finer scale, we find substantial variation in genetic diversity, including a marked reduction close to the major histocompatibility locus, perhaps indicative of recent strong selection there. These findings suggest that despite their maintaining an overall level of genetic diversity equal to or greater than that of humans, population decline, perhaps associated with disease, has been a significant factor in recent and long-term pressures on wild gorilla populations.

  17. Human genetic variation: new challenges and opportunities for doping control.

    Science.gov (United States)

    Schneider, Angela J; Fedoruk, Matthew N; Rupert, Jim L

    2012-01-01

    Sport celebrates differences in competitors that lead to the often razor-thin margins between victory and defeat. The source of this variation is the interaction between the environment in which the athletes develop and compete and their genetic make-up. However, a darker side of sports may also be genetically influenced: some anti-doping tests are affected by the athlete's genotype. Genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To differentiate between naturally occurring deviations in indirect blood and urine markers from those potentially caused by doping, the "biological-passport" program uses intra-individual variability rather than population values to establish an athlete's expected physiological range. The next step in "personalized" doping control may be the inclusion of genetic data, both for the purposes of documenting an athlete's responses to doping agents and doping-control assays as well facilitating athlete and sample identification. Such applications could benefit "clean" athletes but will come at the expense of risks to privacy. This article reviews the instances where genetics has intersected with doping control, and briefly discusses the potential role, and ethical implications, of genotyping in the struggle to eliminate illicit ergogenic practices.

  18. Additive and nonadditive genetic variation in avian personality traits.

    Science.gov (United States)

    van Oers, K; Drent, P J; de Jong, G; van Noordwijk, A J

    2004-11-01

    Individuals of all vertebrate species differ consistently in their reactions to mildly stressful challenges. These typical reactions, described as personalities or coping strategies, have a clear genetic basis, but the structure of their inheritance in natural populations is almost unknown. We carried out a quantitative genetic analysis of two personality traits (exploration and boldness) and the combination of these two traits (early exploratory behaviour). This study was carried out on the lines resulting from a two-directional artificial selection experiment on early exploratory behaviour (EEB) of great tits (Parus major) originating from a wild population. In analyses using the original lines, reciprocal F(1) and reciprocal first backcross generations, additive, dominance, maternal effects ands sex-dependent expression of exploration, boldness and EEB were estimated. Both additive and dominant genetic effects were important determinants of phenotypic variation in exploratory behaviour and boldness. However, no sex-dependent expression was observed in either of these personality traits. These results are discussed with respect to the maintenance of genetic variation in personality traits, and the expected genetic structure of other behavioural and life history traits in general.

  19. Short communication: Genetic variation in estrus activity traits

    DEFF Research Database (Denmark)

    Løvendahl, P; Chagunda, M G G

    2009-01-01

    Genetic variation in estrus traits derived from hourly measurements by electronic activity tags was studied in an experimental herd of Holstein (n = 211), Jersey (n = 126), and Red Dane (n = 178) cows. Both virgin heifers (n = 132) and lactating cows in the first 4 parities (n = 895 cow parities......) were used, giving a total of 3,284 high-activity episodes indicating estrus. The first estrus after calving was predicted to occur on average, at 39, 44, and 45 d in milk for Red Danes, Holsteins, and Jerseys, respectively. Genetic variance was detected for the trait days to first high activity...

  20. Genetic variations in VEGF and VEGFR2 and glioblastoma outcome

    DEFF Research Database (Denmark)

    Sjöström, S; Wibom, C; Andersson, U

    2010-01-01

    Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) are central components in the development and progression of glioblastoma. To investigate if genetic variation in VEGF and VEGFR2 is associated with glioblastoma prognosis, we examined blood samples from 154 glioblastoma cases...... collected in Sweden and Denmark between 2000 and 2004. Seventeen tagging single nucleotide polymorphisms (SNPs) in VEGF and 27 in VEGFR2 were genotyped and analysed, covering 90% of the genetic variability within the genes. In VEGF, we found no SNPs associated with survival. In VEGFR2, we found two SNPs...

  1. Genetic variations in VEGF and VEGFR2 and glioblastoma outcome

    DEFF Research Database (Denmark)

    Sjöström, S; Wibom, C; Andersson, U

    2011-01-01

    Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) are central components in the development and progression of glioblastoma. To investigate if genetic variation in VEGF and VEGFR2 is associated with glioblastoma prognosis, we examined blood samples from 154 glioblastoma cases...... collected in Sweden and Denmark between 2000 and 2004. Seventeen tagging single nucleotide polymorphisms (SNPs) in VEGF and 27 in VEGFR2 were genotyped and analysed, covering 90% of the genetic variability within the genes. In VEGF, we found no SNPs associated with survival. In VEGFR2, we found two SNPs...

  2. Genetic Variation A mong European Lophodermium piceae Populations - Preliminary Results

    Directory of Open Access Journals (Sweden)

    MÜLLER, Michael M.

    2007-01-01

    Full Text Available Lophodermium piceae is a common needle endophyte of Norway spruce (Picea abies. The aim of the present study was to examine the degree of differentiation within and among European populations separated by various distances and geographical obstacles. For this purpose, populations (including > 10 isolates/subpopulation were collected along a north-south transect stretching from the northern timberline in Finnish Lapland to the southern border of the distribution area of Norway spruce in northern Italy. Differentiation between L. piceae populations was determined from DNA sequences of three genetic markers. One of the markers was the internal transcribed spacer (ITS of the ribosomal DNA and the other two (LP1 and LP2 were based on sequence characterized amplified regions (SCAR designed for L. piceae. Preliminary results including sequences of Finnish, Swiss and Italian isolates show low differentiation among populations. According to analysis of molecular variance the among population variation was 1%, 5% and 0% in ITS, LP1 and LP2 markers, respectively.

  3. Oxytocin receptor genetic variation promotes human trust behavior

    Directory of Open Access Journals (Sweden)

    Frank eKrueger

    2012-02-01

    Full Text Available Given that human trust behavior is heritable and intranasal administration of oxytocin enhances trust, the oxytocin receptor (OXTR gene is an excellent candidate to investigate genetic contributions to individual variations in trust behavior. Although a single-nucleotide polymorphism involving an adenine (A/ guanine (G transition (rs53576 has been associated with socio-emotional phenotypes, its link to trust behavior is unclear. We combined genotyping of healthy male students with the administration of a trust game experiment. Our results show that a naturally occurring genetic variation (rs53576 in the OXTR gene is reliably associated with trust behavior rather than a general increase in trustworthy or risk behaviors. Individuals homozygous for the G allele (GG showed higher trust behavior than individuals with A allele carriers (AA/AG. Although the molecular functionality of this polymorphism is still unknown, future research should clarify how the OXTR gene interacts with other genes and the environment in promoting socio-emotional behaviors.

  4. Basic principles and laboratory analysis of genetic variation.

    Science.gov (United States)

    Gonzalez-Bosquet, Jesus; Chanock, Stephen J

    2011-01-01

    With the draft of the human genome and advances in technology, the approach toward mapping complex diseases and traits has changed. Human genetics has evolved into the study of the genome as a complex structure harbouring clues for multifaceted disease risk with the majority still unknown. The discovery of new candidate regions by genome-wide association studies (GWAS) has changed strategies for the study of genetic predisposition. More genome-wide, "agnostic" approaches, with increasing numbers of participants from high-quality epidemiological studies are for the first time replicating results in different settings. However, new-found regions (which become the new candidate "genes") require extensive follow-up and investigation of their functional significance. Understanding the true effect of genetic variability on the risk of complex diseases is paramount. The importance of designing high-quality studies to assess environmental contributions, as well as the interactions between genes and exposures, cannot be stressed enough. This chapter will address the basic issues of genetic variation, including population genetics, as well as analytical platforms and tools needed to investigate the contribution of genetics to human diseases and traits.

  5. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    Directory of Open Access Journals (Sweden)

    Benjamin J Gosney

    Full Text Available Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  6. COX2 genetic variation, NSAIDs, and advanced prostate cancer risk

    OpenAIRE

    Cheng, I.; Liu, X.; Plummer, S J; Krumroy, L M; Casey, G; Witte, J S

    2007-01-01

    Collective evidence suggests that cyclooxygenase 2 (COX2) plays a role in prostate cancer risk. Cyclooxygenase 2 is the major enzyme that converts arachidonic acid to prostaglandins, which are potent mediators of inflammation. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the enzymatic activity of COX2 and long-term use of NSAIDs appears to modestly lower the risk of prostate cancer. We investigated whether common genetic variation in COX2 influences the risk of advanced prostate canc...

  7. Genetic Variation of Echinococcus canadensis (G7) in Mexico

    Science.gov (United States)

    Rodriguez-Prado, Ulises; Jimenez-Gonzalez, Diego Emiliano; Avila, Guillermina; Gonzalez, Armando E.; Martinez-Flores, Williams Arony; Mondragon de la Peña, Carmen; Hernandez-Castro, Rigoberto; Romero-Valdovinos, Mirza; Flisser, Ana; Martinez-Hernandez, Fernando; Maravilla, Pablo; Martinez-Maya, Jose Juan

    2014-01-01

    We evaluated the genetic variation of Echinococcus G7 strain in larval and adult stages using a fragment of the mitochondrial cox1 gen. Viscera of pigs, bovines, and sheep and fecal samples of dogs were inspected for cystic and canine echinococcosis, respectively; only pigs had hydatid cysts. Bayesian inferences grouped the sequences in an E. canadensis G7 cluster, suggesting that, in Mexico, this strain might be mainly present. Additionally, the population genetic and network analysis showed that E. canadensis in Mexico is very diverse and has probably been introduced several times from different sources. Finally, a scarce genetic differentiation between G6 (camel strain) and G7 (pig strain) populations was identified. PMID:25266350

  8. Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis.

    Science.gov (United States)

    Gu, Junfei; Yin, Xinyou; Stomph, Tjeerd-Jan; Struik, Paul C

    2014-01-01

    Rice productivity can be limited by available photosynthetic assimilates from leaves. However, the lack of significant correlation between crop yield and leaf photosynthetic rate (A) is noted frequently. Engineering for improved leaf photosynthesis has been argued to yield little increase in crop productivity because of complicated constraints and feedback mechanisms when moving up from leaf to crop level. Here we examined the extent to which natural genetic variation in A can contribute to increasing rice productivity. Using the mechanistic model GECROS, we analysed the impact of genetic variation in A on crop biomass production, based on the quantitative trait loci for various photosynthetic components within a rice introgression line population. We showed that genetic variation in A of 25% can be scaled up equally to crop level, resulting in an increase in biomass of 22-29% across different locations and years. This was probably because the genetic variation in A resulted not only from Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase)-limited photosynthesis but also from electron transport-limited photosynthesis; as a result, photosynthetic rates could be improved for both light-saturated and light-limited leaves in the canopy. Rice productivity could be significantly improved by mining the natural variation in existing germ-plasm, especially the variation in parameters determining light-limited photosynthesis.

  9. MetaRanker 2.0: a web server for prioritization of genetic variation data.

    Science.gov (United States)

    Pers, Tune H; Dworzyński, Piotr; Thomas, Cecilia Engel; Lage, Kasper; Brunak, Søren

    2013-07-01

    MetaRanker 2.0 is a web server for prioritization of common and rare frequency genetic variation data. Based on heterogeneous data sets including genetic association data, protein-protein interactions, large-scale text-mining data, copy number variation data and gene expression experiments, MetaRanker 2.0 prioritizes the protein-coding part of the human genome to shortlist candidate genes for targeted follow-up studies. MetaRanker 2.0 is made freely available at www.cbs.dtu.dk/services/MetaRanker-2.0.

  10. MetaRanker 2.0: a web server for prioritization of genetic variation data

    DEFF Research Database (Denmark)

    Pers, Tune Hannes; Dworzynski, Piotr; Thomas, Cecilia Engel;

    2013-01-01

    MetaRanker 2.0 is a web server for prioritization of common and rare frequency genetic variation data. Based on heterogeneous data sets including genetic association data, protein–protein interactions, large-scale text-mining data, copy number variation data and gene expression experiments, Meta......Ranker 2.0 prioritizes the protein-coding part of the human genome to shortlist candidate genes for targeted follow-up studies. MetaRanker 2.0 is made freely available at www.cbs.dtu.dk/services/MetaRanker-2.0....

  11. Genetic variation in V gene of class II Newcastle disease virus.

    Science.gov (United States)

    Hao, Huafang; Chen, Shengli; Liu, Peng; Ren, Shanhui; Gao, Xiaolong; Wang, Yanping; Wang, Xinglong; Zhang, Shuxia; Yang, Zengqi

    2016-01-01

    The genetic variation and molecular evolution of the V gene of the class II Newcastle disease virus (NDV) isolates with genotypes I-XVIII were determined using bioinformatics. Results indicated that low homology existed in different genotype viruses, whereas high homology often for the same genotypes, exception may be existed within genotypes I, V, VI, and XII. Sequence analysis showed that the genetic variation of V protein was consistent with virus genotype, and specific signatures on the V protein for nine genotypes were identified. Phylogenetic analysis demonstrated that the phylogenetic trees were highly consistent between the V and F genes, with slight discrepancies in the sub-genotypes. Evolutionary rate analyses based on V and F genes revealed the evolution rates varied in genotypes. These data indicate that the genetic variation of V protein is genotype-related and will help in elucidating the molecular evolution of NDV.

  12. Genetic bases for glaucoma.

    Science.gov (United States)

    Fuse, Nobuo

    2010-05-01

    Glaucoma is the leading cause of visual impairment and blindness throughout the world. Primary open angle glaucoma (POAG; MIM 137760) is the main type of glaucoma in most populations, and more than 20 genetic loci for POAG have been reported. Only three causative genes have been identified in these loci, viz. myocilin (MYOC), optineurin (OPTN), and WD repeat domain 36 (WDR36). However, mutations in these genes account for only a small percentage of the patients with POAG. Some of these glaucoma cases have a Mendelian inheritance pattern, and a considerable fraction of the cases result from a large number of variants in several genes each contributing small effects. Glaucoma is considered to be a common disease such as diabetes mellitus, coronary disease, Crohn disease, and several( )common cancers. The main technological approaches used to identify the genes associated with glaucoma are the candidate gene approach, linkage analysis, case-control association study, and genome-wide association study. Association studies have found about 27 genes related to POAG, but the glaucoma-causing effects of these genes need to be investigated in more detail. The current trend is to use case-control association studies or genome-wide association studies to map the genes associated with glaucoma. Such studies are expected to greatly advance our understanding of the genetic basis of glaucoma, and to provide information on the effectiveness of glaucoma therapy. This review gives an overview on the genetic aspects of glaucoma.

  13. A simple genetic architecture underlies morphological variation in dogs.

    Directory of Open Access Journals (Sweden)

    Adam R Boyko

    Full Text Available Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs. Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (< or = 3 explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.

  14. Patterns of molecular genetic variation among cat breeds.

    Science.gov (United States)

    Menotti-Raymond, Marilyn; David, Victor A; Pflueger, Solveig M; Lindblad-Toh, Kerstin; Wade, Claire M; O'Brien, Stephen J; Johnson, Warren E

    2008-01-01

    Genetic variation in cat breeds was assessed utilizing a panel of short tandem repeat (STR) loci genotyped in 38 cat breeds and 284 single-nucleotide polymorphisms (SNPs) genotyped in 24 breeds. Population structure in cat breeds generally reflects their recent ancestry and absence of strong breed barriers between some breeds. There is a wide range in the robustness of population definition, from breeds demonstrating high definition to breeds with as little as a third of their genetic variation partitioning into a single population. Utilizing the STRUCTURE algorithm, there was no clear demarcation of the number of population subdivisions; 16 breeds could not be resolved into independent populations, the consequence of outcrossing in established breeds to recently developed breeds with common ancestry. These 16 breeds were divided into 6 populations. Ninety-six percent of cats in a sample set of 1040 were correctly assigned to their classified breed or breed group/population. Average breed STR heterozygosities ranged from moderate (0.53; Havana, Korat) to high (0.85; Norwegian Forest Cat, Manx). Most of the variation in cat breeds was observed within a breed population (83.7%), versus 16.3% of the variation observed between populations. The hierarchical relationships of cat breeds is poorly defined as demonstrated by phylogenetic trees generated from both STR and SNP data, though phylogeographic grouping of breeds derived completely or in part from Southeast Asian ancestors was apparent.

  15. Intraspecific variation in social organization by genetic variation, developmental plasticity, social flexibility or entirely extrinsic factors.

    Science.gov (United States)

    Schradin, Carsten

    2013-05-19

    Previously, it was widely believed that each species has a specific social organization, but we know now that many species show intraspecific variation in their social organization. Four different processes can lead to intraspecific variation in social organization: (i) genetic variation between individuals owing to local adaptation (between populations) or evolutionarily stable strategies within populations; (ii) developmental plasticity evolved in long-term (more than one generation) unpredictable and short-term (one generation) predictable environments, which is mediated by organizational physiological effects during early ontogeny; (iii) social flexibility evolved in highly unpredictable environments, which is mediated by activational physiological effects in adults; (iv) entirely extrinsic factors such as the death of a dominant breeder. Variation in social behaviour occurs between individuals in the case of genetic variation and developmental plasticity, but within individuals in the case of social flexibility. It is important to study intraspecific variation in social organization to understand the social systems of species because it reveals the mechanisms by which species can adapt to changing environments, offers a useful tool to study the ultimate and proximate causes of sociality, and is an interesting phenomenon by itself that needs scientific explanation.

  16. Molecular insights of genetic variation in Erianthus arundinaceus populations native to China.

    Directory of Open Access Journals (Sweden)

    Jianbo Zhang

    Full Text Available BACKGROUND: E. arundinaceus (Retz. Jeswiet is a warm-season, tall-growing perennial species native to much southern portion in China. The grass has been extensively used in sugarcane breeding and is recently targeted as a bioenergy feedstock crop. However, information on the genetic structure of the Chinese wild germplasm is limited. Knowledge of genetic variation within and among populations is essential for breeding new cultivars in the species. The major objective of this study was to quantify the magnitude of genetic variation among and within natural populations in China. METHODOLOGY/PRINCIPAL FINDINGS: In this experiment, we analyzed genetic variation of 164 individuals of 18 populations collected from natural habitats in six Chinese provinces using 20 sequence-related amplified polymorphism (SRAP primer pairs generating 277 polymorphic bands. Among and within the populations, the percentage of polymorphic bands (PPB was 80.00% and 27.07%, genetic diversity (HE was 0.245 and 0.099, effective number of alleles (NE was 1.350 and 1.170, and Shannon's information index (I was 0.340 and 0.147, respectively. The populations were clustered into six groups exhibiting a high level of genetic differentiation, which was highly associated with geographic origins of respective germplasm populations, but was not significantly associated with geographic distances between the populations. CONCLUSIONS/SIGNIFICANCE: This is the first report indicating that large genetic variation exists in the Chinese E. arundinaceus germplasm based on the SRAP molecular marker analysis of native populations. The genetic structure of populations in the species has been substantially affected by geographic landforms and environments. The diverse collection will be highly valuable in genetic improvement in the species per se and likely in sugarcane.

  17. SIRT1 genetic variation is related to BMI and risk of obesity

    NARCIS (Netherlands)

    M.C. Zillikens (Carola); J.B.J. van Meurs (Joyce); F. Rivadeneira Ramirez (Fernando); N. Amin (Najaf); A. Hofman (Albert); B.A. Oostra (Ben); E.J.G. Sijbrands (Eric); J.C.M. Witteman (Jacqueline); H.A.P. Pols (Huib); P. Tikka-Kleemola (Päivi); A.G. Uitterlinden (André)

    2009-01-01

    textabstractOBJECTIVE - SIRT1 has pleiotropic metabolic functions. We investigated whether SIRT1 genetic variation is associated with obesity. RESEARCH DESIGN AND METHODS - In 6,251 elderly subjects from the prospective, population-based Rotterdam Study, three single nucleotide polymorphisms (SNPs)

  18. Interactions between dietary vitamin E intake and SIRT1 genetic variation influence body mass index

    NARCIS (Netherlands)

    M.C. Zillikens (Carola); J.B.J. van Meurs (Joyce); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); B.A. Oostra (Ben); E.J.G. Sijbrands (Eric); J.C.M. Witteman (Jacqueline); H.A.P. Pols (Huib); P. Tikka-Kleemola (Päivi); A.G. Uitterlinden (André)

    2010-01-01

    textabstractBackground: Genetic variation in SIRT1 has been associated with body mass index (BMI) and risk of obesity. SIRT1 may be influenced by diet. Objective: We studied the gene-diet interaction on BMI at the SIRT1 locus. Design: In 4575 elderly men and women in the population-based Rotterdam S

  19. Interactions between dietary vitamin E intake and SIRT1 genetic variation influence body mass index

    NARCIS (Netherlands)

    M.C. Zillikens (Carola); J.B.J. van Meurs (Joyce); F. Rivadeneira Ramirez (Fernando); A. Hofman (Albert); B.A. Oostra (Ben); E.J.G. Sijbrands (Eric); J.C.M. Witteman (Jacqueline); H.A.P. Pols (Huib); P. Tikka-Kleemola (Päivi); A.G. Uitterlinden (André)

    2010-01-01

    textabstractBackground: Genetic variation in SIRT1 has been associated with body mass index (BMI) and risk of obesity. SIRT1 may be influenced by diet. Objective: We studied the gene-diet interaction on BMI at the SIRT1 locus. Design: In 4575 elderly men and women in the population-based Rotterdam

  20. SIRT1 genetic variation is related to BMI and risk of obesity

    NARCIS (Netherlands)

    M.C. Zillikens (Carola); J.B.J. van Meurs (Joyce); F. Rivadeneira Ramirez (Fernando); N. Amin (Najaf); A. Hofman (Albert); B.A. Oostra (Ben); E.J.G. Sijbrands (Eric); J.C.M. Witteman (Jacqueline); H.A.P. Pols (Huib); P. Tikka-Kleemola (Päivi); A.G. Uitterlinden (André)

    2009-01-01

    textabstractOBJECTIVE - SIRT1 has pleiotropic metabolic functions. We investigated whether SIRT1 genetic variation is associated with obesity. RESEARCH DESIGN AND METHODS - In 6,251 elderly subjects from the prospective, population-based Rotterdam Study, three single nucleotide polymorphisms (SNPs)

  1. Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Gaastra, Benjamin; Shatunov, Aleksey; Pulit, Sara; Jones, Ashley R; Sproviero, William; Gillett, Alexandra; Chen, Zhongbo; Kirby, Janine; Fogh, Isabella; Powell, John F; Leigh, P Nigel; Morrison, Karen E; Shaw, Pamela J; Shaw, Christopher E; van den Berg, Leonard H; Veldink, Jan H; Lewis, Cathryn M; Al-Chalabi, Ammar

    2016-01-01

    Our objective was to identify whether rare genetic variation in amyotrophic lateral sclerosis (ALS) candidate survival genes modifies ALS survival. Candidate genes were selected based on evidence for modifying ALS survival. Each tail of the extreme 1.5% of survival was selected from the UK MND DNA

  2. Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach

    NARCIS (Netherlands)

    B. Giardine (Belinda); J. Borg (Joseph); D.R. Higgs (Douglas); K.R. Peterson (Kenneth R.); J.N.J. Philipsen (Sjaak); D. Maglott (Donna); B.K. Singleton (Belinda K.); D.J. Anstee (David J.); A.N. Basak (Nazli); B.H. Clark (Bruce); F.C. Costa (Flavia C.); P. Faustino (Paula); H. Fedosyuk (Halyna); A.E. Felice (Alex); A. Francina (Alain); R. Galanello (Renzo); M.V.E. Gallivan (Monica V. E.); M. Georgitsi (Marianthi); R.J. Gibbons (Richard J.); P.C. Giordano (Piero Carlo); C.L. Harteveld (Cornelis); J.D. Hoyer (James D.); M. Jarvis (Martin); P. Joly (Philippe); E. Kanavakis (Emmanuel); P. Kollia (Panagoula); S. Menzel (Stephan); W.G. Miller (William); K. Moradkhani (Kamran); J. Old (John); A. Papachatzpoulou (Adamantia); M.N. Papadakis (Manoussos); P. Papadopoulos (Petros); S. Pavlovic (Sonja); L. Perseu (Lucia); M. Radmilovic (Milena); C. Riemer (Cathy); S. Satta (Stefania); I.A. Schrijver (Ingrid); M. Stojiljkovic (Maja); S.L. Thein; J. Traeger-Synodinos (Joanne); R. Tully (Ray); T. Wada (Takahito); J.S. Waye (John); C. Wiemann (Claudia); B. Zukic (Branka); D.H.K. Chui (David H. K.); H. Wajcman (Henri); R. Hardison (Ross); G.P. Patrinos (George)

    2011-01-01

    textabstractWe developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public

  3. An evolutionary ecologist's view of how to study the persistence of genetic variation in personality

    NARCIS (Netherlands)

    Dingemanse, Niels J.

    2007-01-01

    Personality is commonly regarded to involve either 'correlations among behavioural traits' or 'consistent individual differences in behaviour across contexts'. Any evolutionary explanation for the existence of genetic variation in personality must therefore not only address why genetic variation in

  4. Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies.

    Science.gov (United States)

    Xiao, X; Chang, H; Li, M

    2017-01-03

    Recent large-scale genetic approaches such as genome-wide association studies have allowed the identification of common genetic variations that contribute to risk architectures of psychiatric disorders. However, most of these susceptibility variants are located in noncoding genomic regions that usually span multiple genes. As a result, pinpointing the precise variant(s) and biological mechanisms accounting for the risk remains challenging. By reviewing recent progresses in genetics, functional genomics and neurobiology of psychiatric disorders, as well as gene expression analyses of brain tissues, here we propose a roadmap to characterize the roles of noncoding risk loci in the pathogenesis of psychiatric illnesses (that is, identifying the underlying molecular mechanisms explaining the genetic risk conferred by those genomic loci, and recognizing putative functional causative variants). This roadmap involves integration of transcriptomic data, epidemiological and bioinformatic methods, as well as in vitro and in vivo experimental approaches. These tools will promote the translation of genetic discoveries to physiological mechanisms, and ultimately guide the development of preventive, therapeutic and prognostic measures for psychiatric disorders.Molecular Psychiatry advance online publication, 3 January 2017; doi:10.1038/mp.2016.241.

  5. Genetic variation in normal tissue toxicity induced by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Popanda, Odilia, E-mail: o.popanda@dkfz.de [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Marquardt, Jens Uwe [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Chang-Claude, Jenny [Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schmezer, Peter [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2009-07-10

    Radiotherapy is an important weapon in the treatment of cancer, but adverse reactions developing in the co-irradiated normal tissue can be a threat for patients. Early reactions might disturb the usual application schedule and limit the radiation dose. Late appearing and degenerative reactions might reduce or destroy normal tissue function. Genetic markers conferring the ability to identify hyper-sensitive patients in advance would considerably improve therapy. Association studies on genetic variation and occurrence of side effects should help to identify such markers. This survey includes published studies and novel data from our own laboratory. It illustrates the presence of candidate polymorphisms in genes involved in the cellular response to irradiation which could be used as predictive markers for radiosensitivity in breast or prostate cancer patients. For other tumor types such as head and neck cancers or brain tumors, the available data are much more limited. In any case, further validation of these markers is needed in large patient cohorts with systematically recorded data on side effects and patient characteristics. Genetic variation contributing to radiosensitivity should be screened on a broader basis using newly developed, more comprehensive approaches such as genome-wide association studies.

  6. Conservation genetics and geographic patterns of genetic variation of the vulnerable officinal herb Fritillaria walujewii (Liliaceae)

    Science.gov (United States)

    Zhihao Su; Borong Pan; Stewart C. Sanderson; Xiaojun Shi; Xiaolong Jiang

    2015-01-01

    The Chinese herb Fritillaria walujewii Regel is an important officinal species that is vulnerable because of over-harvesting. Here, we examined the geographic pattern of genetic variation across the species entire range, to study its evolution process and give implication needed for the conservation. Nine haplotypes were detected on the basis of three chloroplast...

  7. The African Genome Variation Project shapes medical genetics in Africa.

    Science.gov (United States)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S

    2015-01-15

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  8. A simple genetic architecture underlies morphological variation in dogs.

    Science.gov (United States)

    Boyko, Adam R; Quignon, Pascale; Li, Lin; Schoenebeck, Jeffrey J; Degenhardt, Jeremiah D; Lohmueller, Kirk E; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G; vonHoldt, Bridgett M; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G; Castelhano, Marta; Mosher, Dana S; Sutter, Nathan B; Johnson, Gary S; Novembre, John; Hubisz, Melissa J; Siepel, Adam; Wayne, Robert K; Bustamante, Carlos D; Ostrander, Elaine A

    2010-08-10

    Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.

  9. Genetic variation across the historical range of the wild turkey (Meleagris gallopavo).

    Science.gov (United States)

    Mock, K E; Theimer, T C; Rhodes, O E; Greenberg, D L; Keim, P

    2002-04-01

    Genetic differences within and among naturally occurring populations of wild turkeys (Meleagris gallopavo) were characterized across five subspecies' historical ranges using amplified fragment length polymorphism (AFLP) analysis, microsatellite loci and mitochondrial control region sequencing. Current subspecific designations based on morphological traits were generally supported by these analyses, with the exception of the eastern (M. g. silvestris) and Florida (M. g. osceola) subspecies, which consistently formed a single unit. The Gould's subspecies was both the most genetically divergent and the least genetically diverse of the subspecies. These genetic patterns were consistent with current and historical patterns of habitat continuity. Merriam's populations showed a positive association between genetic and geographical distance, Rio Grande populations showed a weaker association and the eastern populations showed none, suggesting differing demographic forces at work in these subspecies. We recommend managing turkeys to maintain subspecies integrity, while recognizing the importance of maintaining regional population structure that may reflect important adaptive variation.

  10. Genetic variation and population history of three Carassius auratus populations in Huaihe River, China.

    Science.gov (United States)

    Chen, Wei; Zhao, Yuanjun; Yang, Chengzhong

    2016-11-01

    In order to investigate the relationships of drainage history of Huaihe River with the genetic history of Carassius auratus along the river, we examined the genetic variations and population histories of three wild C. auratus populations in Huaihe River based on the D-loop gene. The results showed that their nucleotide and haplotype diversities were ranged from 0.00268 to 0.00651 and from 0.863 to 0.902, respectively, and their genetic distance was quite small. The analysis of molecular variance demonstrated that a frequent inter-population connection and large historic gene flows occurred among the three populations. Demographic analysis indicated that expansions had been happened in three populations. After investigating the historic process of the Huaihe River, we presumed that both nature and artificial factors may play important roles in shaping the genetic structure of the three populations. The present study also provided genetic information of C. auratus for further conservation of its germplasm resources.

  11. Performing monkeys of Bangladesh: characterizing their source and genetic variation.

    Science.gov (United States)

    Hasan, M Kamrul; Feeroz, M Mostafa; Jones-Engel, Lisa; Engel, Gregory A; Akhtar, Sharmin; Kanthaswamy, Sree; Smith, David Glenn

    2016-04-01

    The acquisition and training of monkeys to perform is a centuries-old tradition in South Asia, resulting in a large number of rhesus macaques kept in captivity for this purpose. The performing monkeys are reportedly collected from free-ranging populations, and may escape from their owners or may be released into other populations. In order to determine whether this tradition involving the acquisition and movement of animals has influenced the population structure of free-ranging rhesus macaques in Bangladesh, we first characterized the source of these monkeys. Biological samples from 65 performing macaques collected between January 2010 and August 2013 were analyzed for genetic variation using 716 base pairs of mitochondrial DNA. Performing monkey sequences were compared with those of free-ranging rhesus macaque populations in Bangladesh, India and Myanmar. Forty-five haplotypes with 116 (16 %) polymorphic nucleotide sites were detected among the performing monkeys. As for the free-ranging rhesus population, most of the substitutions (89 %) were transitions, and no indels (insertion/deletion) were observed. The estimate of the mean number of pair-wise differences for the performing monkey population was 10.1264 ± 4.686, compared to 14.076 ± 6.363 for the free-ranging population. Fifteen free-ranging rhesus macaque populations were identified as the source of performing monkeys in Bangladesh; several of these populations were from areas where active provisioning has resulted in a large number of macaques. The collection of performing monkeys from India was also evident.

  12. Genetic diversity and population structure: implications for conservation of wild soybean (Glycine soja Sieb. et Zucc) based on nuclear and chloroplast microsatellite variation.

    Science.gov (United States)

    He, Shuilian; Wang, Yunsheng; Volis, Sergei; Li, Dezhu; Yi, Tingshuang

    2012-10-03

    Wild soybean (Glycine soja Sieb. et Zucc) is the most important germplasm resource for soybean breeding, and is currently subject to habitat loss, fragmentation and population decline. In order to develop successful conservation strategies, a total of 604 wild soybean accessions from 43 locations sampled across its range in China, Japan and Korea were analyzed using 20 nuclear (nSSRs) and five chloroplast microsatellite markers (cpSSRs) to reveal its genetic diversity and population structure. Relatively high nSSR diversity was found in wild soybean compared with other self-pollinated species, and the region of middle and lower reaches of Yangtze River (MDRY) was revealed to have the highest genetic diversity. However, cpSSRs suggested that Korea is a center of diversity. High genetic differentiation and low gene flow among populations were detected, which is consistent with the predominant self-pollination of wild soybean. Two main clusters were revealed by MCMC structure reconstruction and phylogenetic dendrogram, one formed by a group of populations from northwestern China (NWC) and north China (NC), and the other including northeastern China (NEC), Japan, Korea, MDRY, south China (SC) and southwestern China (SWC). Contrib analyses showed that southwestern China makes the greatest contribution to the total diversity and allelic richness, and is worthy of being given conservation priority.

  13. Genetic Diversity and Population Structure: Implications for Conservation of Wild Soybean (Glycine soja Sieb. et Zucc Based on Nuclear and Chloroplast Microsatellite Variation

    Directory of Open Access Journals (Sweden)

    Tingshuang Yi

    2012-10-01

    Full Text Available Wild soybean (Glycine soja Sieb. et Zucc is the most important germplasm resource for soybean breeding, and is currently subject to habitat loss, fragmentation and population decline. In order to develop successful conservation strategies, a total of 604 wild soybean accessions from 43 locations sampled across its range in China, Japan and Korea were analyzed using 20 nuclear (nSSRs and five chloroplast microsatellite markers (cpSSRs to reveal its genetic diversity and population structure. Relatively high nSSR diversity was found in wild soybean compared with other self-pollinated species, and the region of middle and lower reaches of Yangtze River (MDRY was revealed to have the highest genetic diversity. However, cpSSRs suggested that Korea is a center of diversity. High genetic differentiation and low gene flow among populations were detected, which is consistent with the predominant self-pollination of wild soybean. Two main clusters were revealed by MCMC structure reconstruction and phylogenetic dendrogram, one formed by a group of populations from northwestern China (NWC and north China (NC, and the other including northeastern China (NEC, Japan, Korea, MDRY, south China (SC and southwestern China (SWC. Contrib analyses showed that southwestern China makes the greatest contribution to the total diversity and allelic richness, and is worthy of being given conservation priority.

  14. How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations.

    Science.gov (United States)

    Schneider, Ralf F; Meyer, Axel

    2017-01-01

    There is increasing evidence that phenotypic plasticity can promote population divergence by facilitating phenotypic diversification and, eventually, genetic divergence. When a 'plastic' population colonizes a new habitat, it has the possibility to occupy multiple niches by expressing several distinct phenotypes. These initially reflect the population's plastic range but may later become genetically fixed by selection via the process of 'genetic assimilation' (GA). Through this process multiple specialized sister lineages can arise that share a common plastic ancestor - the 'flexible stem'. Here, we review possible molecular mechanisms through which natural selection could fix an initially plastic trait during GA. These mechanisms could also explain how GA may contribute to cryptic genetic variation that can subsequently be coopted into other phenotypes or traits, but also lead to nonadaptive responses. We outline the predicted patterns of genetic and transcriptional divergence accompanying flexible stem radiations. The analysis of such patterns of (retained) adaptive and nonadaptive plastic responses within and across radiating lineages can inform on the state of ongoing GA. We conclude that, depending on the stability of the environment, the molecular architecture underlying plastic traits can facilitate diversification, followed by fixation and consolidation of an adaptive phenotype and degeneration of nonadaptive ones. Additionally, the process of GA may increase the cryptic genetic variation of populations, which on one hand may serve as substrate for evolution, but on another may be responsible for nonadaptive responses that consolidate local allopatry and thus reproductive isolation.

  15. Ecology and genetic variation of Amblyomma tonelliae in Argentina.

    Science.gov (United States)

    Tarragona, E L; Mangold, A J; Mastropaolo, M; Guglielmone, A A; Nava, S

    2015-09-01

    The ecology of Amblyomma tonelliae (Ixodida: Ixodidae), including its seasonal distribution and the development periods of each stage, was investigated during a study carried out over two consecutive years in northwestern Argentina. In addition, the genetic variation of this tick was studied through analyses of 16S rDNA sequences. Amblyomma tonelliae has a 1-year lifecycle characterized by a long pre-moult period in larvae with no development of morphogenetic diapause. Larvae peak in abundance during late autumn and early winter; nymphs peak in abundance in spring, and adults do so from late spring to early summer. Amblyomma tonelliae shows a marked ecological preference for the driest areas of the Chaco ecoregion. In analyses of 16S rDNA sequences in genes from different populations of A. tonelliae, values for nucleotide diversity and the average number of nucleotide differences showed genetic diversity within this species to be low. No significant differences were found in comparisons among populations.

  16. Horizontal transfer generates genetic variation in an asexual pathogen

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Huang

    2014-10-01

    Full Text Available There are major gaps in the understanding of how genetic variation is generated in the asexual pathogen Verticillium dahliae. On the one hand, V. dahliae is a haploid organism that reproduces clonally. On the other hand, single-nucleotide polymorphisms and chromosomal rearrangements were found between V. dahliae strains. Lineage-specific (LS regions comprising about 5% of the genome are highly variable between V. dahliae strains. Nonetheless, it is unknown whether horizontal gene transfer plays a major role in generating genetic variation in V. dahliae. Here, we analyzed a previously sequenced V. dahliae population of nine strains from various geographical locations and hosts. We found highly homologous elements in LS regions of each strain; LS regions of V. dahliae strain JR2 are much richer in highly homologous elements than the core genome. In addition, we discovered, in LS regions of JR2, several structural forms of nonhomologous recombination, and two or three homologous sequence types of each form, with almost each sequence type present in an LS region of another strain. A large section of one of the forms is known to be horizontally transferred between V. dahliae strains. We unexpectedly found that 350 kilobases of dynamic LS regions were much more conserved than the core genome between V. dahliae and a closely related species (V. albo-atrum, suggesting that these LS regions were horizontally transferred recently. Our results support the view that genetic variation in LS regions is generated by horizontal transfer between strains, and by chromosomal reshuffling reported previously.

  17. Genetic variation in lipid desaturases and its impact on the development of human disease

    Directory of Open Access Journals (Sweden)

    Mutch David M

    2010-06-01

    Full Text Available Abstract Perturbations in lipid metabolism characterize many of the chronic diseases currently plaguing our society, such as obesity, diabetes, and cardiovascular disease. Thus interventions that target plasma lipid levels remain a primary goal to manage these diseases. The determinants of plasma lipid levels are multi-factorial, consisting of both genetic and lifestyle components. Recent evidence indicates that fatty acid desaturases have an important role in defining plasma and tissue lipid profiles. This review will highlight the current state-of-knowledge regarding three desaturases (Scd-1, Fads1 and Fads2 and their potential roles in disease onset and development. Although research in rodent models has provided invaluable insight into the regulation and functions of these desaturases, the extent to which murine research can be translated to humans remains unclear. Evidence emerging from human-based research demonstrates that genetic variation in human desaturase genes affects enzyme activity and, consequently, disease risk factors. Moreover, this genetic variation may have a trans-generational effect via breastfeeding. Therefore inter-individual variation in desaturase function is attributed to both genetic and lifestyle components. As such, population-based research regarding the role of desaturases on disease risk is challenged by this complex gene-lifestyle paradigm. Unravelling the contribution of each component is paramount for understanding the inter-individual variation that exists in plasma lipid profiles, and will provide crucial information to develop personalized strategies to improve health management.

  18. Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection.

    Science.gov (United States)

    Brooks, R; Endler, J A

    2001-08-01

    Variation among females in mate choice may influence evolution by sexual selection. The genetic basis of this variation is of interest because the elaboration of mating preferences requires additive genetic variation in these traits. Here we measure the repeatability and heritability of two components of female choosiness (responsiveness and discrimination) and of female preference functions for the multiple ornaments borne by male guppies (Poecilia reticulata). We show that there is significant repeatable variation in both components of choosiness and in some preference functions but not in others. There appear to be several male ornaments that females find uniformly attractive and others for which females differ in preference. One consequence is that there is no universally attractive male phenotype. Only responsiveness shows significant additive genetic variation. Variation in responsiveness appears to mask variation in discrimination and some preference functions and may be the most biologically relevant source of phenotypic and genetic variation in mate-choice behavior. To test the potential evolutionary importance of the phenotypic variation in mate choice that we report, we estimated the opportunity for and the intensity of sexual selection under models of mate choice that excluded and that incorporated individual female variation. We then compared these estimates with estimates based on measured mating success. Incorporating individual variation in mate choice generally did not predict the outcome of sexual selection any better than models that ignored such variation.

  19. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...... degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25...

  20. Genetic variation and significance of hepatitis B surface antigen

    Directory of Open Access Journals (Sweden)

    ZHANG Zhenhua

    2013-11-01

    Full Text Available Hepatitis B virus (HBV is prone to genetic variation because there is reverse transcription in the process of HBV replication. The gene mutation of hepatitis B surface antigen may affect clinical diagnosis of HBV infection, viral replication, and vaccine effect. The current research and existing problems are discussed from the following aspects: the mechanism and biological and clinical significance of S gene mutation. Most previous studies focused on S gene alone, so S gene should be considered as part of HBV DNA in the future research on S gene mutation.

  1. A comparison of worldwide phonemic and genetic variation in human populations.

    Science.gov (United States)

    Creanza, Nicole; Ruhlen, Merritt; Pemberton, Trevor J; Rosenberg, Noah A; Feldman, Marcus W; Ramachandran, Sohini

    2015-02-03

    Worldwide patterns of genetic variation are driven by human demographic history. Here, we test whether this demographic history has left similar signatures on phonemes-sound units that distinguish meaning between words in languages-to those it has left on genes. We analyze, jointly and in parallel, phoneme inventories from 2,082 worldwide languages and microsatellite polymorphisms from 246 worldwide populations. On a global scale, both genetic distance and phonemic distance between populations are significantly correlated with geographic distance. Geographically close language pairs share significantly more phonemes than distant language pairs, whether or not the languages are closely related. The regional geographic axes of greatest phonemic differentiation correspond to axes of genetic differentiation, suggesting that there is a relationship between human dispersal and linguistic variation. However, the geographic distribution of phoneme inventory sizes does not follow the predictions of a serial founder effect during human expansion out of Africa. Furthermore, although geographically isolated populations lose genetic diversity via genetic drift, phonemes are not subject to drift in the same way: within a given geographic radius, languages that are relatively isolated exhibit more variance in number of phonemes than languages with many neighbors. This finding suggests that relatively isolated languages are more susceptible to phonemic change than languages with many neighbors. Within a language family, phoneme evolution along genetic, geographic, or cognate-based linguistic trees predicts similar ancestral phoneme states to those predicted from ancient sources. More genetic sampling could further elucidate the relative roles of vertical and horizontal transmission in phoneme evolution.

  2. The genetics of ray pattern variation in Caenorhabditis briggsae

    Directory of Open Access Journals (Sweden)

    Davidson Cynthia R

    2005-01-01

    Full Text Available Abstract Background How does intraspecific variation relate to macroevolutionary change in morphology? This question can be addressed in species in which derived characters are present but not fixed. In rhabditid nematodes, the arrangement of the nine bilateral pairs of peripheral sense organs (rays in tails of males is often the most highly divergent character between species. The development of ray pattern involves inputs from hometic gene expression patterns, TGFβ signalling, Wnt signalling, and other genetic pathways. In Caenorhabditis briggsae, strain-specific variation in ray pattern has provided an entrée into the evolution of ray pattern. Some strains were fixed for a derived pattern. Other strains were more plastic and exhibited derived and ancestral patterns at equal frequencies. Results Recombinant inbred lines (RILs constructed from crosses between the variant C. briggsae AF16 and HK104 strains exhibited a wide range of phenotypes including some that were more extreme than either parental strain. Transgressive segregation was significantly associated with allelic variation in the C. briggsae homolog of abdominal B, Cb-egl-5. At least two genes that affected different elements of ray pattern, ray position and ray fusion, were linked to a second gene, mip-1. Consistent with this, the segregation of ray position and ray fusion phenotypes were only partially correlated in the RILs. Conclusions The evolution of ray pattern has involved allelic variation at multiple loci. Some of these loci impact the specification of ray identities and simultaneously affect multiple ray pattern elements. Others impact individual characters and are not constrained by covariance with other ray pattern elements. Among the genetic pathways that may be involved in ray pattern evolution is specification of anteroposterior positional information by homeotic genes.

  3. Variation in human recombination rates and its genetic determinants.

    Directory of Open Access Journals (Sweden)

    Adi Fledel-Alon

    Full Text Available BACKGROUND: Despite the fundamental role of crossing-over in the pairing and segregation of chromosomes during human meiosis, the rates and placements of events vary markedly among individuals. Characterizing this variation and identifying its determinants are essential steps in our understanding of the human recombination process and its evolution. STUDY DESIGN/RESULTS: Using three large sets of European-American pedigrees, we examined variation in five recombination phenotypes that capture distinct aspects of crossing-over patterns. We found that the mean recombination rate in males and females and the historical hotspot usage are significantly heritable and are uncorrelated with one another. We then conducted a genome-wide association study in order to identify loci that influence them. We replicated associations of RNF212 with the mean rate in males and in females as well as the association of Inversion 17q21.31 with the female mean rate. We also replicated the association of PRDM9 with historical hotspot usage, finding that it explains most of the genetic variance in this phenotype. In addition, we identified a set of new candidate regions for further validation. SIGNIFICANCE: These findings suggest that variation at broad and fine scales is largely separable and that, beyond three known loci, there is no evidence for common variation with large effects on recombination phenotypes.

  4. Genetic variation and demographic history of the Haplochromis laparogramma group of Lake Victoria-An analysis based on SINEs and mitochondrial DNA.

    Science.gov (United States)

    Mzighani, Semvua I; Nikaido, Masato; Takeda, Miyuki; Seehausen, Ole; Budeba, Yohana L; Ngatunga, Benjamin P; Katunzi, Egid F B; Aibara, Mitsuto; Mizoiri, Shinji; Sato, Tetsu; Tachida, Hidenori; Okada, Norihiro

    2010-01-15

    More than 500 endemic haplochromine cichlid species inhabit Lake Victoria. This striking species diversity is a classical example of recent explosive adaptive radiation thought to have happened within the last approximately 15,000 years. In this study, we examined the population structure and historical demography of 3 pelagic haplochromine cichlid species that resemble in morphology and have similar niche, Haplochromis (Yssichromis) laparogramma, Haplochromis (Y.) pyrrhocephalus, and Haplochromis (Y.) sp. "glaucocephalus". We investigated the sequences of the mitochondrial DNA control region and the insertion patterns of short interspersed elements (SINEs) of 759 individuals. We show that sympatric forms are genetically differentiated in 4 of 6 cases, but we also found apparent weakening of the genetic differentiation in areas with turbid water. We estimated the timings of population expansion and species divergence to coincide with the refilling of the lake at the Pleistocene/Holocene boundary. We also found that estimates can be altered significantly by the choice of the shape of the molecular clock. If we employ the nonlinear clock model of evolutionary rates in which the rates are higher towards the recent, the population expansion was dated at around the event of desiccation of the lake ca. 17,000 YBP. Thus, we succeeded in clarifying the species and population structure of closely related Lake Victoria cichlids and in showing the importance of applying appropriate clock calibrations in elucidating recent evolutionary events.

  5. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Science.gov (United States)

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  6. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Directory of Open Access Journals (Sweden)

    Nuno D Pires

    2016-01-01

    Full Text Available Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  7. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Directory of Open Access Journals (Sweden)

    Nuno D Pires

    2016-01-01

    Full Text Available Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  8. Genetic variation of male reproductive success in a laboratory population of Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Voordouw Maarten J

    2007-07-01

    Full Text Available Abstract Background For Anopheline mosquitoes, the vectors of human malaria, genetic variation in male reproductive success can have important consequences for any control strategy based on the release of transgenic or sterile males. Methods A quantitative genetics approach was used to test whether there was a genetic component to variation in male reproductive success in a laboratory population of Anopheles gambiae. Swarms of full sibling brothers were mated with a fixed number of females and their reproductive success was measured as (1 proportion of ovipositing females, (2 proportion of ovipositing females that produced larvae, (3 proportion of females that produced larvae, (4 number of eggs laid per female, (5 number of larvae per ovipositing female and (6 number of larvae per female. Results The proportion of ovipositing females (trait 1 and the proportion of ovipositing females that produced larvae (trait 2 differed among full sib families, suggesting a genetic basis of mating success. In contrast, the other measures of male reproductive success showed little variation due to the full sib families, as their variation are probably mostly due to differences among females. While age at emergence and wing length of the males were also heritable, they were not associated with reproductive success. Larger females produced more eggs, but males did not prefer such partners. Conclusion The first study to quantify genetic variation for male reproductive success in A. gambiae found that while the initial stages of male reproduction (i.e. the proportion of ovipositing females and the proportion of ovipositing females that produced larvae had a genetic basis, the overall reproductive success (i.e. the mean number of larvae per female did not.

  9. Genetic variation in retinal vascular patterning predicts variation in pial collateral extent and stroke severity

    Science.gov (United States)

    Prabhakar, Pranay; Zhang, Hua; Chen, De; Faber, James E.

    2015-01-01

    The presence of a native collateral circulation in tissues lessens injury in occlusive vascular diseases. However, differences in genetic background cause wide variation in collateral number and diameter in mice, resulting in large variation in protection. Indirect estimates of collateral perfusion suggest wide variation also exists in humans. Unfortunately, methods used to obtain these estimates are invasive and not widely available. We sought to determine if differences in genetic background in mice result in variation in branch-patterning of the retinal arterial circulation, and if these differences predict strain-dependent differences in pial collateral extent and severity of ischemic stroke. Retinal patterning metrics, collateral extent, and infarct volume were obtained for 10 strains known to differ widely in collateral extent. Multivariate regression was conducted and model performance assessed using K-fold cross-validation. Twenty-one metrics varied with strain (placunarity, optimality) predicted collateral number and diameter across 7 regression models, with the best model closely predicting (p<0.0001) number (± 1.2-3.4 collaterals, K-fold R2=0.83-0.98), diameter (± 1.2-1.9μm, R2=0.73-0.88) and infarct volume (± 5.1 mm3, R2=0.85-0.87). These metrics obtained for the middle cerebral artery tree in a subset of the above strains also predicted (p<0.0001) collateral number and diameter and diameter, although with less strength (K-fold R2=0.61-0.78) and 0.60-0.86, respectively). Thus, differences in arterial branch-patterning in the retina and the MCA trees are specified by genetic background and predict variation in collateral extent and stroke severity. If also true in human retina, and since genetic variation in cerebral collaterals extends to other tissues at least in mice, a similar “retinal predictor index” could serve as a non-or minimally invasive biomarker for collateral extent in brain and other tissues. This could aid prediction of severity

  10. Living in isolation - population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink).

    Science.gov (United States)

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-09-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.

  11. Genetic variation in virulence among chalkbrood strains infecting honeybees.

    Directory of Open Access Journals (Sweden)

    Svjetlana Vojvodic

    Full Text Available Ascosphaera apis causes chalkbrood in honeybees, a chronic disease that reduces the number of viable offspring in the nest. Although lethal for larvae, the disease normally has relatively low virulence at the colony level. A recent study showed that there is genetic variation for host susceptibility, but whether Ascosphaera apis strains differ in virulence is unknown. We exploited a recently modified in vitro rearing technique to infect honeybee larvae from three colonies with naturally mated queens under strictly controlled laboratory conditions, using four strains from two distinct A. apis clades. We found that both strain and colony of larval origin affected mortality rates. The strains from one clade caused 12-14% mortality while those from the other clade induced 71-92% mortality. Larvae from one colony showed significantly higher susceptibility to chalkbrood infection than larvae from the other two colonies, confirming the existence of genetic variation in susceptibility across colonies. Our results are consistent with antagonistic coevolution between a specialized fungal pathogen and its host, and suggest that beekeeping industries would benefit from more systematic monitoring of this chronic stress factor of their colonies.

  12. Population-level genetic variation and climate change in a biodiversity hotspot.

    Science.gov (United States)

    Schierenbeck, Kristina A

    2017-01-01

    Estimated future climate scenarios can be used to predict where hotspots of endemism may occur over the next century, but life history, ecological and genetic traits will be important in informing the varying responses within myriad taxa. Essential to predicting the consequences of climate change to individual species will be an understanding of the factors that drive genetic structure within and among populations. Here, I review the factors that influence the genetic structure of plant species in California, but are applicable elsewhere; existing levels of genetic variation, life history and ecological characteristics will affect the ability of an individual taxon to persist in the presence of anthropogenic change. Persistence in the face of climate change is likely determined by life history characteristics: dispersal ability, generation time, reproductive ability, degree of habitat specialization, plant-insect interactions, existing genetic diversity and availability of habitat or migration corridors. Existing levels of genetic diversity in plant populations vary based on a number of evolutionary scenarios that include endemism, expansion since the last glacial maximum, breeding system and current range sizes. A number of well-documented examples are provided from the California Floristic Province. Some predictions can be made for the responses of plant taxa to rapid environmental changes based on geographic position, evolutionary history, existing genetic variation, and ecological amplitude. The prediction of how species will respond to climate change will require a synthesis drawing from population genetics, geography, palaeontology and ecology. The important integration of the historical factors that have shaped the distribution and existing genetic structure of California's plant taxa will enable us to predict and prioritize the conservation of species and areas most likely to be impacted by rapid climate change, human disturbance and invasive species.

  13. Evolution of genetic variation for selected traits in successive breeding populations of maritime pine.

    Science.gov (United States)

    Bouffier, L; Raffin, A; Kremer, A

    2008-08-01

    Directional selection impacts a trait distribution by shifting its mean and reducing its variance. The change of variance is of major importance as the response to selection in subsequent generations is highly dependent of the genetic variability available in the population. In this contribution, evolution of genetic variation was investigated through the first breeding populations of the French maritime pine (Pinus pinaster Ait.) breeding program. We considered three populations: P0 (the forest where plus trees were initially selected), G0 (the plus tree population) and G1 (the population composed of trees selected in the progenies of G0). Analyses focused on the following selected traits: total height (H), girth at 1.30 m (D) and stem deviation to verticality (S). More than 150,000 trees from 25 tests of three distinct populations were studied with an individual genetic model. Accurate genetic parameters were obtained by taking all relationships between trees into account. For H and D, we found a strong decrease of the genetic variation from P0 to G0 corresponding to the initial selection of plus trees, which constitutes the base population of the breeding program. Then, despite the second step of selection applied, no appreciable evolution arose from comparisons between G0 and G1 for these traits. For S, the evolution is less significant as phenotypic variation slightly increased, possibly due to changes of silvicultural practices.

  14. Identification of common genetic variation that modulates alternative splicing.

    Directory of Open Access Journals (Sweden)

    Jeremy Hull

    2007-06-01

    Full Text Available Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by naturally occurring DNA sequence variation and in particular by single nucleotide polymorphisms (SNPs. In this study, we surveyed the splicing patterns of 250 exons in 22 individuals who had been previously genotyped by the International HapMap Project. We identified 70 simple cassette exon alternative splicing events in our experimental system; for six of these, we detected consistent differences in splicing pattern between individuals, with a highly significant association between splice phenotype and neighbouring SNPs. Remarkably, for five out of six of these events, the strongest correlation was found with the SNP closest to the intron-exon boundary, although the distance between these SNPs and the intron-exon boundary ranged from 2 bp to greater than 1,000 bp. Two of these SNPs were further investigated using a minigene splicing system, and in each case the SNPs were found to exert cis-acting effects on exon splicing efficiency in vitro. The functional consequences of these SNPs could not be predicted using bioinformatic algorithms. Our findings suggest that phenotypic variation in splicing patterns is determined by the presence of SNPs within flanking introns or exons. Effects on splicing may represent an important mechanism by which SNPs influence gene function.

  15. Natural variation and genetic covariance in adult hippocampal neurogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kempermann, Gerd [Center for Molecular Medicine, Berlin, Germany; Chesler, Elissa J [ORNL; Lu, Lu [University of Tennessee Health Science Center, Memphis; Williams, Robert [University of Tennessee Health Science Center, Memphis; Gage, Fred [Salk Institute for Biological Studies, The, San Diego, CA

    2006-01-01

    Adult hippocampal neurogenesis is highly variable and heritable among laboratory strains of mice. Adult neurogenesis is also remarkably plastic and can be modulated by environment and activity. Here, we provide a systematic quantitative analysis of adult hippocampal neurogenesis in two large genetic reference panels of recombinant inbred strains (BXD and AXB?BXA, n ? 52 strains). We combined data on variation in neurogenesis with a new transcriptome database to extract a set of 190 genes with expression patterns that are also highly variable and that covary with rates of (i) cell proliferation, (ii) cell survival, or the numbers of surviving (iii) new neurons, and (iv) astrocytes. Expression of a subset of these neurogenesis-associated transcripts was controlled in cis across the BXD set. These self-modulating genes are particularly interesting candidates to control neurogenesis. Among these were musashi (Msi1h) and prominin1?CD133 (Prom1), both of which are linked to stem-cell maintenance and division. Twelve neurogenesis-associated transcripts had significant cis-acting quantitative trait loci, and, of these, six had plausible biological association with adult neurogenesis (Prom1, Ssbp2, Kcnq2, Ndufs2, Camk4, and Kcnj9). Only one cis- cting candidate was linked to both neurogenesis and gliogenesis, Rapgef6, a downstream target of ras signaling. The use of genetic reference panels coupled with phenotyping and global transcriptome profiling thus allowed insight into the complexity of the genetic control of adult neurogenesis.

  16. Improved characterization of nod factors and genetically based variation in LysM Receptor domains identify amino acids expendable for nod factor recognition in Lotus spp.

    Science.gov (United States)

    Bek, Anita S; Sauer, Jørgen; Thygesen, Mikkel B; Duus, Jens Ø; Petersen, Bent O; Thirup, Søren; James, Euan; Jensen, Knud J; Stougaard, Jens; Radutoiu, Simona

    2010-01-01

    Formation of functional nodules is a complex process depending on host-microsymbiont compatibility in all developmental stages. This report uses the contrasting symbiotic phenotypes of Lotus japonicus and L. pedunculatus, inoculated with Mesorhizobium loti or the Bradyrhizobium sp. (Lotus), to investigate the role of Nod factor structure and Nod factor receptors (NFR) for rhizobial recognition, infection thread progression, and bacterial persistence within nodule cells. A key contribution was the use of 800 MHz nuclear magnetic resonance spectroscopy and ultrahigh-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry for Nod factor analysis. The Nod factor decorations at the nonreducing end differ between Bradyrhizobium sp. (Lotus) and M. loti, and the NFR1/NFR5 extracellular regions of L. pedunculatus and L. japonicus were found to vary in amino acid composition. Genetic transformation experiments using chimeric and wild-type receptors showed that both receptor variants recognize the structurally different Nod factors but the later symbiotic phenotype remained unchanged. These results highlight the importance of additional checkpoints during nitrogen-fixing symbiosis and define several amino acids in the LysM domains as expendable for perception of the two differentially carbamoylated Nod factors.

  17. Genetic variation in organisms with sexual and asexual reproduction.

    Science.gov (United States)

    Bengtsson, B O

    2003-03-01

    The genetic variation in a partially asexual organism is investigated by two models suited for different time scales. Only selectively neutral variation is considered. Model 1 shows, by the use of a coalescence argument, that three sexually derived individuals per generation are sufficient to give a population the same pattern of allelic variation as found in fully sexually reproducing organisms. With less than one sexual event every third generation, the characteristic pattern expected for asexual organisms appear, with strong allelic divergence between the gene copies in individuals. At intermediary levels of sexuality, a complex situation reigns. The pair-wise allelic divergence under partial sexuality exceeds, however, always the corresponding value under full sexuality. These results apply to large populations with stable reproductive systems. In a more general framework, Model 2 shows that a small number of sexual individuals per generation is sufficient to make an apparently asexual population highly genotypically variable. The time scale in terms of generations needed to produce this effect is given by the population size and the inverse of the rate of sexuality.

  18. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds.

    Directory of Open Access Journals (Sweden)

    James W Kijas

    Full Text Available The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability.

  19. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans.

    Science.gov (United States)

    Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A

    2014-09-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation. © 2014 European Society of Endocrinology.

  20. Translating inter-individual genetic variation to biological function in complex phenotypes

    DEFF Research Database (Denmark)

    Yadav, Rachita

    . The project work discussed in chapter 6 is aimed towards understanding the various underlying differences in obesity responses in fat cells from different white adipose tissue depots under diet-induced and genetic obesity by decoding the global epigenetic modifications. The fourth section of this thesis work...... examines epigenetic, genetic, transcriptomic and proteomic variations within different multifactorial diseases and this pivotal information is then annotated and associated to its corresponding phenotype. Childhood asthma and obesity are the two main phenotypic themes in this thesis. In the first section...... artificial neural network (ANN) based methodology of selecting genetic and clinical features with predictive power for childhood asthma. The goal of these studies is to understand the complex genetics of childhood asthma. The third part of this thesis (chapters 5 and 6) focuses on various mechanisms involved...

  1. Genetic and environmental variation in lung function drives subsequent variation in aging of fluid intelligence.

    Science.gov (United States)

    Finkel, Deborah; Reynolds, Chandra A; Emery, Charles F; Pedersen, Nancy L

    2013-07-01

    Longitudinal studies document an association of pulmonary function with cognitive function in middle-aged and older adults. Previous analyses have identified a genetic contribution to the relationship between pulmonary function with fluid intelligence. The goal of the current analysis was to apply the biometric dual change score model to consider the possibility of temporal dynamics underlying the genetic covariance between aging trajectories for pulmonary function and fluid intelligence. Longitudinal data from the Swedish Adoption/Twin Study of Aging were available from 808 twins ranging in age from 50 to 88 years at the first wave. Participants completed up to six assessments covering a 19-year period. Measures at each assessment included spatial and speed factors and pulmonary function. Model-fitting indicated that genetic variance for FEV1 was a leading indicator of variation in age changes for spatial and speed factors. Thus, these data indicate a genetic component to the directional relationship from decreased pulmonary function to decreased function of fluid intelligence.

  2. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm.

    Science.gov (United States)

    Pironon, Samuel; Papuga, Guillaume; Villellas, Jesús; Angert, Amy L; García, María B; Thompson, John D

    2016-11-27

    The 'centre-periphery hypothesis' (CPH) is a long-standing postulate in ecology that states that genetic variation and demographic performance of a species decrease from the centre to the edge of its geographic range. This hypothesis is based on an assumed concordance between geographical peripherality and ecological marginality such that environmental conditions become harsher towards the limits of a species range. In this way, the CPH sets the stage for understanding the causes of distribution limits. To date, no study has examined conjointly the consistency of these postulates. In an extensive literature review we discuss the birth and development of the CPH and provide an assessment of the CPH by reviewing 248 empirical studies in the context of three main themes. First, a decrease in species occurrence towards their range limits was observed in 81% of studies, while only 51% demonstrated reduced abundance of individuals. A decline in genetic variation, increased differentiation among populations and higher rates of inbreeding were demonstrated by roughly one in two studies (47, 45 and 48%, respectively). However, demographic rates, size and population performance less often followed CPH expectations (20-30% of studies). We highlight the impact of important methodological, taxonomic, and biogeographical biases on such validation rates. Second, we found that geographic and ecological marginality gradients are not systematically concordant, which casts doubt on the reliability of a main assumption of the CPH. Finally, we attempt to disentangle the relative contribution of geographical, ecological and historical processes on the spatial distribution of genetic and demographic parameters. While ecological marginality gradients explain variation in species' demographic performance better than geographic gradients, contemporary and historical factors may contribute interactively to spatial patterns of genetic variation. We thereby propose a framework that integrates

  3. SWDreader: a wavelet-based algorithm using spectral phase to characterize spike-wave morphological variation in genetic models of absence epilepsy.

    Science.gov (United States)

    Richard, C D; Tanenbaum, A; Audit, B; Arneodo, A; Khalil, A; Frankel, W N

    2015-03-15

    Spike-wave discharges (SWD) found in neuroelectrical recordings are pathognomonic to absence epilepsy. The characteristic spike-wave morphology of the spike-wave complex (SWC) constituents of SWDs can be mathematically described by a subset of possible spectral power and phase values. Morlet wavelet transform (MWT) generates time-frequency representations well-suited to identifying this SWC-associated subset. MWT decompositions of SWDs reveal spectral power concentrated at harmonic frequencies. The phase relationships underlying SWC morphology were identified by calculating the differences between phase values at SWD fundamental frequency from the 2nd, 3rd, and 4th harmonics, then using the three phase differences as coordinates to generate a density distribution in a {360°×360°×360°} phase difference space. Strain-specific density distributions were generated from SWDs of mice carrying the Gria4, Gabrg2, or Scn8a mutations to determine whether SWC morphological variants reliably mapped to the same regions of the distribution, and if distribution values could be used to detect SWD. To the best of our knowledge, this algorithm is the first to employ spectral phase to quantify SWC morphology, making it possible to computationally distinguish SWC morphological subtypes and detect SWDs. Proof-of-concept testing of the SWDfinder algorithm shows: (1) a major pattern of variation in SWC morphology maps to one axis of the phase difference distribution, (2) variability between the strain-specific distributions reflects differences in the proportions of SWC subtypes generated during SWD, and (3) regularities in the spectral power and phase profiles of SWCs can be used to detect waveforms possessing SWC-like morphology. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Framework for Interpretation of Genetic Variations in Pancreatitis Patients

    Directory of Open Access Journals (Sweden)

    David eWhitcomb

    2012-12-01

    Full Text Available Chronic pancreatitis (CP is defined by irreversible damage to the pancreas as a result of inflammation-driven pancreatic tissue destruction and fibrosis occurring over many years. The disorder is complex, with multiple etiologies leading to the same tissue pathology, and unpredictable clinical courses with variable pain, exocrine and endocrine organ dysfunction and cancer. Underlying genetic variants are central CP susceptibility and progression. Three genes, with Mendelian genetic biology (PRSS1, CFTR, SPINK1 have been recognized for over a decade, and little progress has been made since then.. Furthermore, application of high-throughput genetic techniques, including genome-wide association studies (GWAS and next generation sequencing (NGS will provide a large volume of new genetic variants that are associated with CP, but with small independent effect that are impossible to apply in the clinic. The problem of interpretation is using the old framework of the germ theory of disease to understand complex genetic disorders. To understand these variants and translate them into clinically useful information requires a new framework based on modeling and simulation of physiological processes with or without genetic, metabolic and environmental variables considered at the cellular and organ levels, with integration of the immune system, nervous system, tissue injury and repair system and DNA repair system. The North American Pancreatitis Study II (NAPS2 study was designed to capture this type of date and construct a time line to understand and later predict rates of disease progression from the initial symptom to end-stage disease. This effort is needed to target the etiology of pancreatic dysfunction beginning at the first signs of disease and thereby prevent the development of irreversible damage and the complications of CP. The need for a new framework and the rational for implementing it into clinical practice are described.

  5. Genetic sorting of subordinate species in grassland modulated by intraspecific variation in dominant species.

    Directory of Open Access Journals (Sweden)

    Danny J Gustafson

    Full Text Available Genetic variation in a single species can have predictable and heritable effects on associated communities and ecosystem processes, however little is known about how genetic variation of a dominant species affects plant community assembly. We characterized the genetic structure of a dominant grass (Sorghastrum nutans and two subordinate species (Chamaecrista fasciculata, Silphium integrifolium, during the third growing season in grassland communities established with genetically distinct (cultivated varieties or local ecotypes seed sources of the dominant grasses. There were genetic differences between subordinate species growing in the cultivar versus local ecotype communities, indicating that intraspecific genetic variation in the dominant grasses affected the genetic composition of subordinate species during community assembly. A positive association between genetic diversity of S. nutans, C. fasciculata, and S. integrifolium and species diversity established the role of an intraspecific biotic filter during community assembly. Our results show that intraspecific variation in dominant species can significantly modulate the genetic composition of subordinate species.

  6. Common genetic variations in the CYP2R1 and GC genes are determinants of vitamin D status in Danes

    DEFF Research Database (Denmark)

    Nissen, Ioanna

    ), after 6 months intake of vitamin D3-fortified bread and milk (paper II) and in 92 participants in the VitDgen study after artificial UVB irradiation during winter (paper III). Common genetic variations in the CYP2R1 and GC genes were found to be important determinants of vitamin D status in three out...... by genetic variation in vitamin D modulating genes. Twin and family-based studies indicate that genetic variation may have an appreciable influence on vitamin D status. Moreover, several candidate gene studies including two genome-wide association studies (GWAS) have found single nucleotide polymorphisms...... (SNPs) in CYP2R1, CYP24A1, CYP27B1, C10orf88, DHCR7/NADSYN1, GC and VDR genes to be associated with vitamin D status. The main hypothesis of this work was that genetically determined variation in vitamin D metabolism would influence the effect of vitamin D sources (vitamin D...

  7. Genetic variations and miRNA-target interactions contribute to natural phenotypic variations in Populus.

    Science.gov (United States)

    Chen, Jinhui; Xie, Jianbo; Chen, Beibei; Quan, Mingyang; Li, Ying; Li, Bailian; Zhang, Deqiang

    2016-10-01

    Variation in regulatory factors, including microRNAs (miRNAs), contributes to variation in quantitative and complex traits. However, in plants, variants in miRNAs and their target genes that contribute to natural phenotypic variation, and the underlying regulatory networks, remain poorly characterized. We investigated the associations and interactions of single-nucleotide polymorphisms (SNPs) in miRNAs and their target genes with phenotypes in 435 individuals from a natural population of Populus. We used RNA-seq to identify 217 miRNAs differentially expressed in a tension wood system, and identified 1196 candidate target genes; degradome sequencing confirmed 60 of the target sites. In addition, 72 miRNA-target pairs showed significant co-expression. Gene ontology (GO) term analysis showed that most of the genes in the co-regulated pairs participate in biological regulation. Genome resequencing found 5383 common SNPs (frequency ≥ 0.05) in 139 miRNAs and 31 037 SNPs in 819 target genes. Single-SNP association analyses identified 232 significant associations between wood traits (P ≤ 0.05) and SNPs in 102 miRNAs and 1387 associations with 478 target genes. Among these, 102 miRNA-target pairs associated with the same traits. Multi-SNP associations found 102 epistatic pairs associated with traits. Furthermore, a reconstructed regulatory network contained 12 significantly co-expressed pairs, including eight miRNAs and nine targets associated with traits. Lastly, both expression and genetic association showed that miR156i, miR156j, miR396a and miR6445b were involved in the formation of tension wood. This study shows that variants in miRNAs and target genes contribute to natural phenotypic variation and annotated roles and interactions of miRNAs and their target genes by genetic association analysis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Population genetic variation in gene expression is associated withphenotypic variation in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Fay, Justin C.; McCullough, Heather L.; Sniegowski, Paul D.; Eisen, Michael B.

    2004-02-25

    The relationship between genetic variation in gene expression and phenotypic variation observable in nature is not well understood. Identifying how many phenotypes are associated with differences in gene expression and how many gene-expression differences are associated with a phenotype is important to understanding the molecular basis and evolution of complex traits. Results: We compared levels of gene expression among nine natural isolates of Saccharomyces cerevisiae grown either in the presence or absence of copper sulfate. Of the nine strains, two show a reduced growth rate and two others are rust colored in the presence of copper sulfate. We identified 633 genes that show significant differences in expression among strains. Of these genes,20 were correlated with resistance to copper sulfate and 24 were correlated with rust coloration. The function of these genes in combination with their expression pattern suggests the presence of both correlative and causative expression differences. But the majority of differentially expressed genes were not correlated with either phenotype and showed the same expression pattern both in the presence and absence of copper sulfate. To determine whether these expression differences may contribute to phenotypic variation under other environmental conditions, we examined one phenotype, freeze tolerance, predicted by the differential expression of the aquaporin gene AQY2. We found freeze tolerance is associated with the expression of AQY2. Conclusions: Gene expression differences provide substantial insight into the molecular basis of naturally occurring traits and can be used to predict environment dependent phenotypic variation.

  9. Independent natural genetic variation of punishment- versus relief-memory

    Science.gov (United States)

    Appel, Mirjam; Kocabey, Samet; Savage, Sinead; König, Christian

    2016-01-01

    A painful event establishes two opponent memories: cues that are associated with pain onset are remembered negatively, whereas cues that coincide with the relief at pain offset acquire positive valence. Such punishment- versus relief-memories are conserved across species, including humans, and the balance between them is critical for adaptive behaviour with respect to pain and trauma. In the fruit fly, Drosophila melanogaster as a study case, we found that both punishment- and relief-memories display natural variation across wild-derived inbred strains, but they do not covary, suggesting a considerable level of dissociation in their genetic effectors. This provokes the question whether there may be heritable inter-individual differences in the balance between these opponent memories in man, with potential psycho-clinical implications. PMID:28003518

  10. Genetic variation in alkaloid accumulation in leaves of Nicotiana

    Institute of Scientific and Technical Information of China (English)

    Bo SUN; Fen ZHANG; Guo-jun ZHOU; Guo-hai CHU; Fang-fang HUANG; Qiao-mei WANG; Li-feng JIN; Fu-cheng LIN; Jun YANG

    2013-01-01

    Alkaloids are plant secondary metabolites that are widely distributed in Nicotiana species and contribute greatly to the quality of tobacco leaves. Some alkaloids, such as nornicotine and myosmine, have adverse effects on human health. To reduce the content of harmful alkaloids in tobacco leaves through conventional breeding, a genetic study of the alkaloid variation among different genotypes is required. In this study, alkaloid profiles in leaves of five Nicotiana tabacum cultivars and Nicotiana tomentosiformis were investigated. Six alkaloids were identified from al six genotypes via gas chromatograph-mass spectrometry (GC-MS). Significant differences in alkaloid content were ob-served both among different leaf positions and among cultivars. The contents of nornicotine and myosmine were positively and significantly correlated (R2=0.881), and were also separated from those of other alkaloids by clustering. Thus, the genotype plays a major role in alkaloid accumulation, indicating a high potential for manipulation of alkaloid content through traditional breeding.

  11. Genetic variation in alkaloid accumulation in leaves of Nicotiana.

    Science.gov (United States)

    Sun, Bo; Zhang, Fen; Zhou, Guo-jun; Chu, Guo-hai; Huang, Fang-fang; Wang, Qiao-mei; Jin, Li-feng; Lin, Fu-cheng; Yang, Jun

    2013-12-01

    Alkaloids are plant secondary metabolites that are widely distributed in Nicotiana species and contribute greatly to the quality of tobacco leaves. Some alkaloids, such as nornicotine and myosmine, have adverse effects on human health. To reduce the content of harmful alkaloids in tobacco leaves through conventional breeding, a genetic study of the alkaloid variation among different genotypes is required. In this study, alkaloid profiles in leaves of five Nicotiana tabacum cultivars and Nicotiana tomentosiformis were investigated. Six alkaloids were identified from all six genotypes via gas chromatograph-mass spectrometry (GC-MS). Significant differences in alkaloid content were observed both among different leaf positions and among cultivars. The contents of nornicotine and myosmine were positively and significantly correlated (R(2)=0.881), and were also separated from those of other alkaloids by clustering. Thus, the genotype plays a major role in alkaloid accumulation, indicating a high potential for manipulation of alkaloid content through traditional breeding.

  12. Human copy number variation and complex genetic disease.

    Science.gov (United States)

    Girirajan, Santhosh; Campbell, Catarina D; Eichler, Evan E

    2011-01-01

    Copy number variants (CNVs) play an important role in human disease and population diversity. Advancements in technology have allowed for the analysis of CNVs in thousands of individuals with disease in addition to thousands of controls. These studies have identified rare CNVs associated with neuropsychiatric diseases such as autism, schizophrenia, and intellectual disability. In addition, copy number polymorphisms (CNPs) are present at higher frequencies in the population, show high diversity in copy number, sequence, and structure, and have been associated with multiple phenotypes, primarily related to immune or environmental response. However, the landscape of copy number variation still remains largely unexplored, especially for smaller CNVs and those embedded within complex regions of the human genome. An integrated approach including characterization of single nucleotide variants and CNVs in a large number of individuals with disease and normal genomes holds the promise of thoroughly elucidating the genetic basis of human disease and diversity.

  13. Genetic variation in the dopamine pathway and smoking cessation.

    Science.gov (United States)

    David, Sean P; Munafò, Marcus R

    2008-09-01

    Twin and family studies have established that genetic factors account for much of the variation in tobacco dependence. Therefore, identification of genetic variants predictive of successful smoking cessation has implications for the future prospect of personalized smoking cessation therapies. Converging data implicate the dopamine pathway as an important neural substrate for tobacco dependence. Several candidate genes within the dopamine pathway (e.g., DRD2 and COMT) have been reported to be associated with the efficacy of bupropion and nicotine replacement therapy, and others (e.g., SLC6A3 and DRD4) have been reported to be associated with smoking cessation independent of pharmacotherapy. However, few of these candidate genes are present within regions of suggestive or significant linkage or overlap with genome-wide linkage or association studies of tobacco dependence or smoking cessation. Future studies should seek to replicate genome-wide association analyses with individual-level genotyping, and use better-defined smoking cessation phenotypes. Once robust evidence for association is established, which may take several more years, further research into the likely cost-effectiveness, feasibility and acceptability of personalized medicine for smoking cessation will be necessary before it can be translated into practice.

  14. Genetic variation of Mycobacterium tuberculosis circulating in Kharkiv Oblast, Ukraine

    Directory of Open Access Journals (Sweden)

    Khrapov Eugeny A

    2011-03-01

    Full Text Available Abstract Background A persistent increase of tuberculosis cases has recently been noted in the Ukraine. The reported incidence of drug-resistant isolates of M. tuberculosis is growing steadily; however, data on the genetic variation of isolates of M. tuberculosis circulating in northern Ukraine and on the spectrum and frequency of occurrence of mutations determining resistance to the principal anti-tuberculosis drugs isoniazid and rifampicin have not yet been reported. Methods Isolates of M. tuberculosis from 98 tuberculosis patients living in Kharkiv Oblast (Ukraine were analyzed using VNTR- and RFLP-IS6110-typing methods. Mutations associated with resistance to rifampicin and isoniazid were detected by RFLP-PCR methods, and also confirmed by sequencing. Results We identified 75 different genetic profiles. Thirty four (34% isolates belonged to the Beijing genotype and 23 (23% isolates belonged to the LAM family. A cluster of isolates belonging to the LAM family had significant genetic heterogeneity, indicating that this family had an ancient distribution and circulation in this geographical region. Moreover, we found a significant percentage of the isolates (36% belonged to as yet unidentified families of M. tuberculosis or had individual non-clustering genotypes. Mutations conferring rifampicin and isoniazid resistance were detected in 49% and 54% isolates, respectively. Mutations in codon 531 of the rpoB gene and codon 315 of the katG gene were predominant among drug-resistant isolates. An association was found for belonging to the LAM strain family and having multiple drug resistance (R = 0.27, p = 0.0059 and also for the presence of a mutation in codon 531 of the rpoB gene and belonging to the Beijing strain family (R = 0.2, p = 0.04. Conclusions Transmission of drug-resistant isolates seems to contribute to the spread of resistant TB in this oblast. The Beijing genotype and LAM genotype should be seen as a major cause of drug resistant TB

  15. COX2 genetic variation, NSAIDs, and advanced prostate cancer risk.

    Science.gov (United States)

    Cheng, I; Liu, X; Plummer, S J; Krumroy, L M; Casey, G; Witte, J S

    2007-08-20

    Collective evidence suggests that cyclooxygenase 2 (COX2) plays a role in prostate cancer risk. Cyclooxygenase 2 is the major enzyme that converts arachidonic acid to prostaglandins, which are potent mediators of inflammation. Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the enzymatic activity of COX2 and long-term use of NSAIDs appears to modestly lower the risk of prostate cancer. We investigated whether common genetic variation in COX2 influences the risk of advanced prostate cancer. Nine single-nucleotide polymorphisms (SNPs) in COX2 were genotyped among 1012 men in our case-control study of advanced prostate cancer. Gene-environment interactions between COX2 polymorphisms and NSAID use were also evaluated. Information on NSAID use was obtained by questionnaire. Three SNPs demonstrated nominally statistically significant associations with prostate cancer risk, with the most compelling polymorphism (rs2745557) associated with a lower risk of disease (odds ratio (OR) GC vs GG=0.64; 95% confidence interval (CI): 0.49-0.84; P=0.002). We estimated through permutation analysis that a similarly strong result would occur by chance 2.7% of the time. Nonsteroidal anti-inflammatory drug use was associated with a lower risk of disease in comparison to no use (OR=0.67; 95% CI: 0.52-0.87). No significant statistical interaction between NSAID use and rs2745557 was observed (P=0.12). Our findings suggest that variation in COX2 is associated with prostate cancer risk.

  16. Impact of genetic variation in SORCS1 on memory retention.

    Directory of Open Access Journals (Sweden)

    Christiane Reitz

    Full Text Available OBJECTIVE: We previously reported that genetic variants in SORCS1 increase the risk of AD, that over-expression of SorCS1 reduces γ-secretase activity and Aβ levels, and that SorCS1 suppression increases γ-secretase processing of APP and Aβ levels. We now explored the effect of variation in SORCS1 on memory. METHODS: We explored associations between SORCS1-SNPs and memory retention in the NIA-LOAD case control dataset (162 cases,670 controls and a cohort of Caribbean Hispanics (549 cases,544 controls using single marker and haplotype analyses. RESULTS: Three SNPs in intron 1, were associated with memory retention in the NIA-LOAD dataset or the Caribbean Hispanic dataset (rs10884402(A allele:β = -0.15,p = 0.008, rs7078098(C allele:β = 0.18,p = 0.007 and rs950809(C allele:β = 0.17,p = 0.008 and all three SNPs were significant in a meta-analysis of both datasets (0.002Variation in intron 1 in SORCS1 is associated with memory changes in AD.

  17. Genetic variation at the MHC in a population of introduced wild turkeys.

    Science.gov (United States)

    Bauer, Miranda M; Miller, Marcia M; Briles, W Elwood; Reed, Kent M

    2013-01-01

    Genetic variation in the major histocompatibility complex (MHC) is known to affect disease resistance in many species. Investigations of MHC diversity in populations of wild species have focused on the antigen presenting class IIβ molecules due to the known polymorphic nature of these genes and the role these molecules play in pathogen recognition. Studies of MHC haplotype variation in the turkey ( Meleagris gallopavo ) are limited. This study was designed to examine MHC diversity in a group of Eastern wild turkeys ( Meleagris gallopavo silvestris ) collected during population expansion following reintroduction of the species in southern Wisconsin, USA. Southern blotting with BG and class IIβ probes and single nucleotide polymorphism (SNP) genotyping was used to measure MHC variation. SNP analysis focused on single copy MHC genes flanking the highly polymorphic class IIβ genes. Southern blotting identified 27 class IIβ phenotypes, whereas SNP analysis identified 13 SNP haplotypes occurring in 28 combined genotypes. Results show that genetic diversity estimates based on RFLP (Southern blot) analysis underestimate the level of variation detected by SNP analysis. Sequence analysis of the mitochondrial D-loop identified 7 mitochondrial haplotypes (mitotypes) in the sampled birds. Results show that wild turkeys located in southern Wisconsin have a genetically diverse MHC and originate from several maternal lineages.

  18. Molecular and structural analysis of genetic variations in congenital cataract

    Science.gov (United States)

    Kumar, Manoj; Agarwal, Tushar; Kaur, Punit; Kumar, Manoj; Khokhar,, Sudarshan

    2013-01-01

    Objective To determine the relative contributions of mutations in congenital cataract cases in an Indian population by systematic screening of genes associated with cataract. Methods We enrolled 100 congenital cataract cases presenting at the Dr. R. P. Centre for Ophthalmic Sciences, a tertiary research and referral hospital (AIIMS, New Delhi, India). Crystallin, alpha A (CRYAA), CRYAB, CRYGs, CRYBA1, CRYBA4, CRYBB1, CRYBB2, CRYBB3, beaded filament structural protein 1 (BFSP1), gap function protein, alpha 3 (GJA3), GJA8, and heat shock transcription factor 4 gene genes were amplified. Protein structure differences analysis was performed using Discovery Studio (DS) 2.0. Results The mean age of the patients was 17.45±16.51 months, and the age of onset was 1.618±0.7181 months. Sequencing analysis of 14 genes identified 18 nucleotide variations. Fourteen variations were found in the crystallin genes, one in Cx-46 (GJA3), and three in BFSP1. Conclusions Congenital cataract shows marked clinical and genetic heterogeneity. Five nucleotide variations (CRYBA4:p.Y67N, CRYBB1:p.D85N, CRYBB1:p.E75K, CRYBB1:p.E155K, and GJA3:p.M1V) were predicted to be pathogenic. Variants in other genes might also be involved in maintaining lens development, growth, and transparency. The study confirms that the crystallin beta cluster on chromosome 22, Cx-46, and BFSP1 plays a major role in maintaining lens transparency. This study also expands the mutation spectrum of the genes associated with congenital cataract. PMID:24319337

  19. Genetic variations in marine natural population - Measurement and utility in resource management and conservation: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Parulekar, A.H.

    the laboratory methods and genetic interpretation of gel phenotypes along with statistical methods for data analysis. The applications and perspectives for identifying and protecting genetic variation within and among marine populations are discussed in the light...

  20. Genetic variation in a closed line of the white shrimp Litopenaeus vannamei (Penaeidae

    Directory of Open Access Journals (Sweden)

    Eloize Luvesuto

    2007-01-01

    Full Text Available The culture of the marine shrimp Litopenaeus vannamei has recently boosted the Brazilian shrimp industry. However, it is well known that selection methods based solely on phenotypic characteristics, a reduced number of breeders and the practice of inbreeding may promote a significant raise in the genetic similarity of the captive populations, leading to greater disease susceptibility and impairing both the growth and final size of the shrimps. We used four microsatellite loci to investigate genetic variation in three generations (F5, F6 and F7 of a closed and reared L. vannamei lineage. Although an accentuated heterozygosis deficit was detected, we also observed that the captive propagation of this lineage did not lead to a significant loss of genetic variability over the three generations studied. One possible reason for this is that the breeding conditions of this lineage were good enough to prevent any significant loss of genetic variability. However, three generations may have been insufficient to produce detectable changes in genetic frequencies in the loci studied. Alternatively, the microsatellite loci may have been non-neutral (biased and related to the conditions in which the shrimps were kept, resulting in a similar allele pool in respect to these four microsatellites over the three generations studied. Any generalizations regarding microsatellite variation in closed shrimp lines may thus be incomplete and should be carefully analyzed.

  1. Molecular Genetic Variation in a Clonal Plant Population of Leymus chinensis (Trin.) Tzvel.

    Institute of Scientific and Technical Information of China (English)

    Yu-Sheng WANG; Li-Ming ZHAO; Hua WANG; Jie WANG; Da-Ming HUANG; Rui-Min HONG; Xiao-Hua TENG; Nakamura MIKI

    2005-01-01

    Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic distance, and the molecular variation and population size. The effects of geographic and genetic distances, as well as of genetic differentiation and population size, on genetic variations of Leymus chinensis (Trin.) Tzvel. are discussed. The present study showed that there was significant RAPD variation between the Baicheng region population and the Daqing region population, with a molecular variance of 6.35% (P < 0.04), and for differentiation among area populations of the Daqing region, with a molecular variance of 8.78% (P < 0.002). A 21.06% RAPD variation among all 16 populations among two regions was found (P < 0.001), as well as 72.59% variation within populations (P < 0.001). Molecular variation within populations was significantly different among 16 populations.

  2. Genetic variation for parental effects on the propensity to gregarise in Locusta migratoria

    Directory of Open Access Journals (Sweden)

    Foucart Antoine

    2008-02-01

    Full Text Available Abstract Background Environmental parental effects can have important ecological and evolutionary consequences, yet little is known about genetic variation among populations in the plastic responses of offspring phenotypes to parental environmental conditions. This type of variation may lead to rapid phenotypic divergence among populations and facilitate speciation. With respect to density-dependent phenotypic plasticity, locust species (Orthoptera: family Acrididae, exhibit spectacular developmental and behavioural shifts in response to population density, called phase change. Given the significance of phase change in locust outbreaks and control, its triggering processes have been widely investigated. Whereas crowding within the lifetime of both offspring and parents has emerged as a primary causal factor of phase change, less is known about intraspecific genetic variation in the expression of phase change, and in particular in response to the parental environment. We conducted a laboratory experiment that explicitly controlled for the environmental effects of parental rearing density. This design enabled us to compare the parental effects on offspring expression of phase-related traits between two naturally-occurring, genetically distinct populations of Locusta migratoria that differed in their historical patterns of high population density outbreak events. Results We found that locusts from a historically outbreaking population of L. migratoria expressed parentally-inherited density-dependent phase changes to a greater degree than those from a historically non-outbreaking population. Conclusion Because locusts from both populations were raised in a common environment during our experiment, a genetically-based process must be responsible for the observed variation in the propensity to express phase change. This result emphasizes the importance of genetic factors in the expression of phase traits and calls for further investigations on density

  3. Inter-chromosomal variation in the pattern of human population genetic structure

    Directory of Open Access Journals (Sweden)

    Baye Tesfaye M

    2011-05-01

    Full Text Available Abstract Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC, cluster, discriminant, fixation index (FST and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homogeneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2, hect domain and RLD 2 (HERC2, ectodysplasin A receptor (EDAR and solute carrier family 45, member 2 (SLC45A2. These genes are associated with melanin production, which is involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes encoding interferon-γ (IFNG and death-associated protein kinase 1 (DAPK1, which are associated with cell death, inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing chromosome-based population structure and differentiation, and demonstrates the

  4. The distribution of nuclear genetic variation and historical demography of sea otters

    Science.gov (United States)

    Aguilar, A.; Jessup, David A.; Estes, James; Garza, J.C.

    2008-01-01

    The amount and distribution of population genetic variation is crucial information for the design of effective conservation strategies for endangered species and can also be used to provide inference about demographic processes and patterns of migration. Here, we describe variation at a large number of nuclear genes in sea otters Enhydra lutris ssp. We surveyed 14 variable microsatellite loci and two genes of the major histocompatibility complex (MHC) in up to 350 California sea otters Enhydra lutris nereis, which represents ???10% of the subspecies' population, and 46 otters from two Alaskan sites. We utilized methods for detecting past reductions in effective population size to examine the effects of near extinction from the fur trade. Summary statistic tests largely failed to find a signal of a recent population size reduction (within the past 200years), but a Bayesian method found a signal of a strong reduction over a longer time scale (up to 500years ago). These results indicate that the reduction in size began long enough ago that much genetic variation was lost before the 19th century fur trade. A comparison of geographic distance and pairwise relatedness for individual otters found no evidence of kin-based spatial clustering for either gender. This indicates that there is no population structure, due to extended family groups, within the California population. A survey of population genetic variation found that two of the MHC genes, DQB and DRB, had two alleles present and one of the genes, DRA, was monomorphic in otters. This contrasts with other mammals, where they are often the most variable coding genes known. Genetic variation in the sea otter is among the lowest observed for a mammal and raises concerns about the long-term viability of the species, particularly in the face of future environmental changes. ?? Journal compilation ?? 2007 The Zoological Society of London No claim to original US government works.

  5. Genetic variation of common walnut (Juglans regia in Piedmont, Northwestern Italy

    Directory of Open Access Journals (Sweden)

    Ferrazzini D

    2007-12-01

    Full Text Available The European or common walnut is a large tree prized as a multipurpose species: it provides valuable timber and produces a high-quality edible nut. The diffusion of the species in Italy has been largely influenced by the human activity, mainly through germplasm movement, selection of genotypes most suited for wood or fruit production and adaptation induced on fruit crop reproductive materials. As a consequence, genetic variability has been reduced, so that programs aimed at its preservation appear of the utmost importance. 104 walnut plants growing in Piedmont, northwestern Italy, were investigated through genetic variation scored at RAPD loci, yielded by PCR amplification of 10 decamer primers. Among the 101 studied loci, only 53 were polymorphic, showing a low level of genetic variation within the studied material. Genetic differentiation was estimated both at individual and geographical area level. Only in few cases trees growing in the same area showed to be genetically similar, while the differentiation between areas accounted for about 10% of the total variation, according to AMOVA. No significant correlation was found between genetic and geographic distances. The results of the study showed that also in Piedmont (such as it was already demonstrated in other parts of Italy the distribution of common walnut is a direct consequence of the human activity. The selection of individual trees, to be used as basic materials for seed supply, should therefore be based mainly on phenotypic traits, rather than ecological features of the location: in species characterized by artificial diffusion, the adoption of Region of Provenance has a scarce significance and prominence should be given to the phenotype selection.

  6. Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study

    Directory of Open Access Journals (Sweden)

    Wernimont Susan M

    2011-11-01

    Full Text Available Abstract Background Sequence variants in genes functioning in folate-mediated one-carbon metabolism are hypothesized to lead to changes in levels of homocysteine and DNA methylation, which, in turn, are associated with risk of cardiovascular disease. Methods 330 SNPs in 52 genes were studied in relation to plasma homocysteine and global genomic DNA methylation. SNPs were selected based on functional effects and gene coverage, and assays were completed on the Illumina Goldengate platform. Age-, smoking-, and nutrient-adjusted genotype--phenotype associations were estimated in regression models. Results Using a nominal P ≤ 0.005 threshold for statistical significance, 20 SNPs were associated with plasma homocysteine, 8 with Alu methylation, and 1 with LINE-1 methylation. Using a more stringent false discovery rate threshold, SNPs in FTCD, SLC19A1, and SLC19A3 genes remained associated with plasma homocysteine. Gene by vitamin B-6 interactions were identified for both Alu and LINE-1 methylation, and epistatic interactions with the MTHFR rs1801133 SNP were identified for the plasma homocysteine phenotype. Pleiotropy involving the MTHFD1L and SARDH genes for both plasma homocysteine and Alu methylation phenotypes was identified. Conclusions No single gene was associated with all three phenotypes, and the set of the most statistically significant SNPs predictive of homocysteine or Alu or LINE-1 methylation was unique to each phenotype. Genetic variation in folate-mediated one-carbon metabolism, other than the well-known effects of the MTHFR c.665C>T (known as c.677 C>T, rs1801133, p.Ala222Val, is predictive of cardiovascular disease biomarkers.

  7. Genetic variation in telomere maintenance genes in relation to ovarian cancer survival.

    Science.gov (United States)

    Harris, Holly R; Vivo, Immaculata De; Titus, Linda J; Vitonis, Allison F; Wong, Jason Y Y; Cramer, Daniel W; Terry, Kathryn L

    2012-01-01

    Telomeres are repetitive non-coding DNA sequences at the ends of chromosomes that provide protection against chromosomal instability. Telomere length and stability are influenced by proteins, including telomerase which is partially encoded by the TERT gene. Genetic variation in the TERT gene is associated with ovarian cancer risk, and predicts survival in lung cancer and glioma. We investigated whether genetic variation in five telomere maintenance genes was associated with survival among 1480 cases of invasive epithelial ovarian cancer in the population-based New England Case-Control Study. Cox proportional hazard models were used to calculate hazard ratios and 95% confidence intervals. Overall we observed no significant associations between SNPs in telomere maintenance genes and mortality using a significance threshold of p=0.001. However, we observed some suggestive associations in subgroup analyses. Future studies with larger populations may further our understanding of what role telomeres play in ovarian cancer survival.

  8. Heritable influences on amygdala and orbitofrontal cortex contribute to genetic variation in core dimensions of personality

    Science.gov (United States)

    Lewis, G.J.; Panizzon, M.S.; Eyler, L.; Fennema-Notestine, C.; Chen, C.-H.; Neale, M.C.; Jernigan, T.L.; Lyons, M.J.; Dale, A.M.; Kremen, W.S.; Franz, C.E.

    2015-01-01

    While many studies have reported that individual differences in personality traits are genetically influenced, the neurobiological bases mediating these influences have not yet been well characterized. To advance understanding concerning the pathway from genetic variation to personality, here we examined whether measures of heritable variation in neuroanatomical size in candidate regions (amygdala and medial orbitofrontal cortex) were associated with heritable effects on personality. A sample of 486 middle-aged (mean = 55 years) male twins (complete MZ pairs = 120; complete DZ pairs = 84) underwent structural brain scans and also completed measures of two core domains of personality: positive and negative emotionality. After adjusting for estimated intracranial volume, significant phenotypic (rp) and genetic (rg) correlations were observed between left amygdala volume and positive emotionality (rp = .16, p < .01; rg = .23, p < .05, respectively). In addition, after adjusting for mean cortical thickness, genetic and nonshared-environmental correlations (re) between left medial orbitofrontal cortex thickness and negative emotionality were also observed (rg = .34, p < .01; re = −.19, p < .05, respectively). These findings support a model positing that heritable bases of personality are, at least in part, mediated through individual differences in the size of brain structures, although further work is still required to confirm this causal interpretation. PMID:25263286

  9. Genetic and phenotypically flexible components of seasonal variation in immune function.

    Science.gov (United States)

    Versteegh, M A; Helm, B; Kleynhans, E J; Gwinner, E; Tieleman, B I

    2014-05-01

    Animals cope with seasonal variation in environmental factors by adjustments of physiology and life history. When seasonal variation is partly predictable, such adjustments can be based on a genetic component or be phenotypically flexible. Animals have to allocate limited resources over different demands, including immune function. Accordingly, immune traits could change seasonally, and such changes could have a genetic component that differs between environments. We tested this hypothesis in genotypically distinct groups of a widespread songbird, the stonechat (Saxicola torquata). We compared variation in immunity during 1 year in long-distance migrants, short-distance migrants, tropical residents and hybrids in a common garden environment. Additionally, we investigated phenotypically flexible responses to temperature by applying different temperature regimes to one group. We assessed constitutive immunity by measuring hemagglutination, hemolysis, haptoglobin and bactericidal ability against Escherichia coli and Staphylococcus aureus. Genotypic groups differed in patterns of variation of all measured immune indices except haptoglobin. Hybrids differed from, but were rarely intermediate to, parental subspecies. Temperature treatment only influenced patterns of hemolysis and bactericidal ability against E. coli. We conclude that seasonal variation in constitutive immunity has a genetic component, that heredity does not follow simple Mendelian rules, and that some immune measures are relatively rigid while others are more flexible. Furthermore, our results support the idea that seasonal variability in constitutive immunity is associated with variability in environment and annual-cycle demands. This study stresses the importance of considering seasonal variation in immune function in relation to the ecology and life history of the organism of interest.

  10. Transferrin variation and genetic structure of reindeer populations in Scandinavia

    Directory of Open Access Journals (Sweden)

    Knut H. Røed

    1987-06-01

    Full Text Available Polyacrylamide gel electrophoresis was used to analyse transferrin variation in herds of semi-domestic reindeer from Scandinavia. The results are compared with previously reported values for other populations of both semi-domestic and wild reindeer using the same techniques as in the present study. In all populations the number of alleles was high, ranging from seven to eleven, and the heterozygosity was correspondingly high, with a mean of 0.749. This high genetic variation in all populations suggests that inbreeding is not widespread among Scandinavian reindeer. The pattern of allele frequency distribution indicates a high degree of genetic heterogeneity in the transferrin locus, both between the different semi-domestic herds and between the different wild populations. The mean value of genetic distance was 0.069 between semi-domestic herds and 0.091 between wild populations. Between semi-domestic and wild populations the genetic distance was particularly high, with a mean of 0.188. This high value was mainly due to a different pattern in the distribution of the two most common transferrin alleles: Tfu was most common among semi-domestic herds, while TfEI was most common among wild populations. These differences in transferrin allele distribution are discussed in relation to possible different origins of semi-domestic and wild reindeer in Scandinavia, or alternatively, to different selection forces acting on transferrin genotypes in semi-domestic and wild populations.Transferrin-variasjon og genetisk struktur hos rein i Skandinavia.Abstact in Norwegian / Sammendrag: Transferrin-variasjon i tamreinflokker ble analysert ved hjelp av polyacrylamid gel elektroforese. Resultatene er sammenlignet med verdier som tidligere er beskrevet for både tamrein og villrein hvor det ble benyttet samme metode som i denne undersøkelsen. I alle populasjonene ble det registrert et høyt antall alleler (7-11 og heterozygositeten var tilsvarende høy med en

  11. [Genetic Bases of Human Comorbidity].

    Science.gov (United States)

    Puzyrev, V P

    2015-04-01

    In this review, the development of ideas focused on the phenomenon of disease combination (comorbidity) in humans is discussed. The genetic bases of the three forms of the phenomenon, comorbidity (syntropias), inverse comorbidity (dystropias), and comorbidity of Mendelian and multifactorial diseases, are analyzed. The results of personal genome-wide association studies of the genetic risk profile that may predispose an individual to cardiovascular disease continuum (CDC), including coronary heart disease, type 2 diabetes, hypertension, and hypercholesterolemia (CDC syntropy), as well as the results of bioinformatic analysis of common genes and the networks of molecular interactions for two (bronchial asthma and pulmonary tuberculosis) diseases rarely found in one patient (dystropy), are presented. The importance of the diseasome and network medicine concepts in the study of comorbidity is emphasized. Promising areas in genomic studies of comorbidities for disease classification and the development of personalized medicine are designated.

  12. Genetic variation of cowslip (Primula veris L. populations (West Poland

    Directory of Open Access Journals (Sweden)

    Maria Morozowska

    2011-04-01

    Full Text Available Genetic variation of twelve Polish populations of Primula veris L. from western Poland was investigated in respect of six enzyme systems: 6-phosphogluconate dehydrogenase (6PGD, diaphorase (DIA, menadione reductase (MNR, formate dehydrogenase (FDH, isocitrate dehydrogenase (IDH and glutamate oxaloacetate transaminase (GOT. Only two of them (6PGD and DIA were polymorphic and all populations were compared according to four loci and eight alleles. For 6PGD only one out of the two detected loci (locus 6PGD-2 was polymorphic and consisted of three alleles a, b and c. For DIA each of two detected loci had two alleles. For 6PGD-2 one population was monomorphic and four populations were monomorphic for DIA-1 and DIA-2. The rest of the populations were polymorphic with low frequency of heterozygotes. The low heterozygosity level, found in the examined populations, was confirmed by high values of the fixation index (F. The level of genetic differentiation among GST populations specified for each polymorphic loci, was equal to 0.045 for 6PGD-2 and had the value of 0.078 for DIA-2 and 0.186 for DIA-1. Nm value for polymorphic loci was 1.10 for DIA-1 and 2.94 for DIA-2, and for 6PGD-2 was 5.33, what indicates some gene flow between the examined populations. The dendrogram constructed on the basis of genotype frequencies showed that the populations were divided into two groups, however the most southern population No. 2 was clearly similar to the northern population No. 8.

  13. Mine, yours, ours? Sharing data on human genetic variation.

    Directory of Open Access Journals (Sweden)

    Nicola Milia

    Full Text Available The achievement of a robust, effective and responsible form of data sharing is currently regarded as a priority for biological and bio-medical research. Empirical evaluations of data sharing may be regarded as an indispensable first step in the identification of critical aspects and the development of strategies aimed at increasing availability of research data for the scientific community as a whole. Research concerning human genetic variation represents a potential forerunner in the establishment of widespread sharing of primary datasets. However, no specific analysis has been conducted to date in order to ascertain whether the sharing of primary datasets is common-practice in this research field. To this aim, we analyzed a total of 543 mitochondrial and Y chromosomal datasets reported in 508 papers indexed in the Pubmed database from 2008 to 2011. A substantial portion of datasets (21.9% was found to have been withheld, while neither strong editorial policies nor high impact factor proved to be effective in increasing the sharing rate beyond the current figure of 80.5%. Disaggregating datasets for research fields, we could observe a substantially lower sharing in medical than evolutionary and forensic genetics, more evident for whole mtDNA sequences (15.0% vs 99.6%. The low rate of positive responses to e-mail requests sent to corresponding authors of withheld datasets (28.6% suggests that sharing should be regarded as a prerequisite for final paper acceptance, while making authors deposit their results in open online databases which provide data quality control seems to provide the best-practice standard. Finally, we estimated that 29.8% to 32.9% of total resources are used to generate withheld datasets, implying that an important portion of research funding does not produce shared knowledge. By making the scientific community and the public aware of this important aspect, we may help popularize a more effective culture of data sharing.

  14. Mine, Yours, Ours? Sharing Data on Human Genetic Variation

    Science.gov (United States)

    Montinaro, Francesco; Capocasa, Marco; Sanna, Emanuele; Bisol, Giovanni Destro

    2012-01-01

    The achievement of a robust, effective and responsible form of data sharing is currently regarded as a priority for biological and bio-medical research. Empirical evaluations of data sharing may be regarded as an indispensable first step in the identification of critical aspects and the development of strategies aimed at increasing availability of research data for the scientific community as a whole. Research concerning human genetic variation represents a potential forerunner in the establishment of widespread sharing of primary datasets. However, no specific analysis has been conducted to date in order to ascertain whether the sharing of primary datasets is common-practice in this research field. To this aim, we analyzed a total of 543 mitochondrial and Y chromosomal datasets reported in 508 papers indexed in the Pubmed database from 2008 to 2011. A substantial portion of datasets (21.9%) was found to have been withheld, while neither strong editorial policies nor high impact factor proved to be effective in increasing the sharing rate beyond the current figure of 80.5%. Disaggregating datasets for research fields, we could observe a substantially lower sharing in medical than evolutionary and forensic genetics, more evident for whole mtDNA sequences (15.0% vs 99.6%). The low rate of positive responses to e-mail requests sent to corresponding authors of withheld datasets (28.6%) suggests that sharing should be regarded as a prerequisite for final paper acceptance, while making authors deposit their results in open online databases which provide data quality control seems to provide the best-practice standard. Finally, we estimated that 29.8% to 32.9% of total resources are used to generate withheld datasets, implying that an important portion of research funding does not produce shared knowledge. By making the scientific community and the public aware of this important aspect, we may help popularize a more effective culture of data sharing. PMID:22679483

  15. Intersubtype Genetic Variation of HIV-1 Tat Exon 1.

    Science.gov (United States)

    Roy, Chandra Nath; Khandaker, Irona; Oshitani, Hitoshi

    2015-06-01

    HIV-1 Tat is a regulatory protein that plays a pivotal role in viral transcription and replication. Our study aims to investigate the genetic variation of Tat exon 1 in all subtypes of HIV-1: A, B, C, D, F, G, H, J, and K. We performed phylogenetic, mutation, and selection pressure analyses on a total of 1,179 sequences of different subtypes of HIV-1 Tat obtained from the Los Alamos National Laboratory (LANL). The mean nucleotide divergences (%) among the analyzed sequences of subtypes A, B, C, D, F, G, H, J, and K were 88, 89, 90, 88, 86, 89, 88, 97, and 97, respectively. We revealed that subtype B evolved relatively faster than other subtypes. The second and fifth domains were found comparatively more variable among all subtypes. Site-by-site tests of positive selection revealed that several positions in all subtypes were under significant positive selection. Positively selected sites were found in the acidic domain at positions 3, 4, and 19, in the cysteine-rich domains at positions 24, 29, 32, and 36, in the core domain at position 40, and in the basic domain for the rest of the positions for all subtypes. Positions 58 and 68 in the basic domain were positively selected in subtypes A, B, C and B, C, F, respectively. We also observed high variability within positively selected sites in amino acid positions. Our study findings on HIV-1 Tat genetic variability may contribute to a better understanding of HIV-1 evolution as well as to the development of effective Tat-targeted therapeutics and vaccines.

  16. Pubertal Onset in Girls is Strongly Influenced by Genetic Variation Affecting FSH Action

    Science.gov (United States)

    Hagen, Casper P.; Sørensen, Kaspar; Aksglaede, Lise; Mouritsen, Annette; Mieritz, Mikkel G.; Tinggaard, Jeanette; Wohlfart-Veje, Christine; Petersen, Jørgen Holm; Main, Katharina M.; Meyts, Ewa Rajpert-De; Almstrup, Kristian; Juul, Anders

    2014-01-01

    Age at pubertal onset varies substantially in healthy girls. Although genetic factors are responsible for more than half of the phenotypic variation, only a small part has been attributed to specific genetic polymorphisms identified so far. Follicle-stimulating hormone (FSH) stimulates ovarian follicle maturation and estradiol synthesis which is responsible for breast development. We assessed the effect of three polymorphisms influencing FSH action on age at breast deveopment in a population-based cohort of 964 healthy girls. Girls homozygous for FSHR -29AA (reduced FSH receptor expression) entered puberty 7.4 (2.5–12.4) months later than carriers of the common variants FSHR -29GG+GA, p = 0.003. To our knowledge, this is the strongest genetic effect on age at pubertal onset in girls published to date. PMID:25231187

  17. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population

    DEFF Research Database (Denmark)

    Robinson, Elise B; St Pourcain, Beate; Anttila, Verneri

    2016-01-01

    Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of this risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortium and population-based resources (total n > 38,000), we...... find genome-wide genetic links between ASDs and typical variation in social behavior and adaptive functioning. This finding is evidenced through both LD score correlation and de novo variant analysis, indicating that multiple types of genetic risk for ASDs influence a continuum of behavioral...... and developmental traits, the severe tail of which can result in diagnosis with an ASD or other neuropsychiatric disorder. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology....

  18. Genetic and epigenetic variations contributed by Alu retrotransposition

    Directory of Open Access Journals (Sweden)

    de Andrade Alexandre

    2011-12-01

    Full Text Available Abstract Background De novo retrotransposition of Alu elements has been recognized as a major driver for insertion polymorphisms in human populations. In this study, we exploited Alu-anchored bisulfite PCR libraries to identify evolutionarily recent Alu element insertions, and to investigate their genetic and epigenetic variation. Results A total of 327 putatively recent Alu insertions were identified, altogether represented by 1,762 sequence reads. Nearly all such de novo retrotransposition events (316/327 were novel. Forty-seven out of forty-nine randomly selected events, corresponding to nineteen genomic loci, were sequence-verified. Alu element insertions remained hemizygous in one or more individuals in sixteen of the nineteen genomic loci. The Alu elements were found to be enriched for young Alu families with characteristic sequence features, such as the presence of a longer poly(A tail. In addition, we documented the occurrence of a duplication of the AT-rich target site in their immediate flanking sequences, a hallmark of retrotransposition. Furthermore, we found the sequence motif (TT/AAAA that is recognized by the ORF2P protein encoded by LINE-1 in their 5'-flanking regions, consistent with the fact that Alu retrotransposition is facilitated by LINE-1 elements. While most of these Alu elements were heavily methylated, we identified an Alu localized 1.5 kb downstream of TOMM5 that exhibited a completely unmethylated left arm. Interestingly, we observed differential methylation of its immediate 5' and 3' flanking CpG dinucleotides, in concordance with the unmethylated and methylated statuses of its internal 5' and 3' sequences, respectively. Importantly, TOMM5's CpG island and the 3 Alu repeats and 1 MIR element localized upstream of this newly inserted Alu were also found to be unmethylated. Methylation analyses of two additional genomic loci revealed no methylation differences in CpG dinucleotides flanking the Alu insertion sites in

  19. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    Science.gov (United States)

    Yang, Aiyuan; Yan, Chunxia; Zhu, Feng; Zhao, Zhongmeng; Cao, Zhi

    2013-01-01

    Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR) is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR), which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds. PMID:23984382

  20. Genetic copy number variation and general cognitive ability.

    Directory of Open Access Journals (Sweden)

    Andrew K MacLeod

    Full Text Available Differences in genomic structure between individuals are ubiquitous features of human genetic variation. Specific copy number variants (CNVs have been associated with susceptibility to numerous complex psychiatric disorders, including attention-deficit-hyperactivity disorder, autism-spectrum disorders and schizophrenia. These disorders often display co-morbidity with low intelligence. Rare chromosomal deletions and duplications are associated with these disorders, so it has been suggested that these deletions or duplications may be associated with differences in intelligence. Here we investigate associations between large (≥500kb, rare (<1% population frequency CNVs and both fluid and crystallized intelligence in community-dwelling older people. We observe no significant associations between intelligence and total CNV load. Examining individual CNV regions previously implicated in neuropsychological disorders, we find suggestive evidence that CNV regions around SHANK3 are associated with fluid intelligence as derived from a battery of cognitive tests. This is the first study to examine the effects of rare CNVs as called by multiple algorithms on cognition in a large non-clinical sample, and finds no effects of such variants on general cognitive ability.

  1. The role of genetic and chemical variation of Pinus sylvestris seedlings in influencing slug herbivory.

    Science.gov (United States)

    O'Reilly-Wapstra, Julianne M; Iason, Glenn R; Thoss, Vera

    2007-05-01

    This study investigated the genetic and chemical basis of resistance of Pinus sylvestris seedlings to herbivory by a generalist mollusc, Arion ater. Using feeding trials with captive animals, we examined selective herbivory by A. ater of young P. sylvestris seedlings of different genotypes and correlated preferences with seedling monoterpene levels. We also investigated the feeding responses of A. ater to artificial diets laced with two monoterpenes, Delta(3)-carene and alpha-pinene. Logistic regression indicated that two factors were the best predictors of whether seedlings in the trial would be consumed. Individual slug variation (replicates) was the most significant factor in the model; however, alpha-pinene concentration (also representing beta-pinene, Delta(3)-carene and total monoterpenes due to multicollinearity) of needles was also a significant factor. While A. ater did not select seedlings on the basis of family, seedlings not eaten were significantly higher in levels of alpha-pinene compared to seedlings that were consumed. We also demonstrated significant genetic variation in alpha-pinene concentration of seedlings between different families of P. sylvestris. Nitrogen and three morphological seedling characteristics (stem length, needle length and stem diameter) also showed significant genetic variation between P. sylvestris families. Artificial diets laced with high (5 mg g(-1) dry matter) quantities of either Delta(3)-carene or alpha-pinene, were eaten significantly less than control diets with no added monoterpenes, supporting the results of the seedling feeding trial. This study demonstrates that A. ater selectively feed on P. sylvestris seedlings and that this selection is based, in part, on the monoterpene concentration of seedlings. These results, coupled with significant genetic variation in alpha-pinene concentration of seedlings and evidence that slug herbivory is detrimental to P. sylvestris fitness, are discussed as possible evidence for A

  2. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18.

    Directory of Open Access Journals (Sweden)

    Stephen D Bentley

    2007-02-01

    Full Text Available The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an

  3. Genetic basis of continuous variation in the levels and modular inheritance of pigmentation in cichlid fishes.

    Science.gov (United States)

    Albertson, R Craig; Powder, Kara E; Hu, Yinan; Coyle, Kaitlin P; Roberts, Reade B; Parsons, Kevin J

    2014-11-01

    Variation in pigmentation type and levels is a hallmark of myriad evolutionary radiations, and biologists have long been fascinated by the factors that promote and maintain variation in coloration across populations. Here, we provide insights into the genetic basis of complex and continuous patterns of colour variation in cichlid fishes, which offer a vast diversity of pigmentation patterns that have evolved in response to both natural and sexual selection. Specifically, we crossed two divergent cichlid species to generate an F2 mapping population that exhibited extensive variation in pigmentation levels and patterns. Our experimental design is robust in that it combines traditional quantitative trait locus (QTL) analysis with population genomics, which has allowed us to move efficiently from QTL interval to candidate gene. In total, we detected 41 QTL and 13 epistatic interactions that underlie melanocyte- and xanthophore-based coloration across the fins and flanks of these fishes. We also identified 2 QTL and 1 interaction for variation in the magnitude of integration among these colour traits. This finding in particular is notable as there are marked differences both within and between species with respect to the complexity of pigmentation patterns. While certain individuals are characterized by more uniform 'integrated' colour patterns, others exhibit many more degrees of freedom with respect to the distribution of colour 'modules' across the fins and flank. Our data reveal, for the first time, a genetic basis for this difference. Finally, we implicate pax3a as a mediator of continuous variation in the levels of xanthophore-based colour along the cichlid flank.

  4. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18.

    Directory of Open Access Journals (Sweden)

    Stephen D Bentley

    2007-02-01

    Full Text Available The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an

  5. Next-generation sequencing approaches in genetic rodent model systems to study functional effects of human genetic variation

    NARCIS (Netherlands)

    Guryev, Victor; Cuppen, Edwin

    2009-01-01

    Rapid advances in DNA sequencing improve existing techniques and enable new approaches in genetics and functional genomics, bringing about unprecedented coverage, resolution and sensitivity. Enhanced toolsets can facilitate the untangling of connections between genomic variation, environmental

  6. Next-generation sequencing approaches in genetic rodent model systems to study functional effects of human genetic variation.

    NARCIS (Netherlands)

    Guryev, V.; Cuppen, E.

    2009-01-01

    Rapid advances in DNA sequencing improve existing techniques and enable new approaches in genetics and functional genomics, bringing about unprecedented coverage, resolution and sensitivity. Enhanced toolsets can facilitate the untangling of connections between genomic variation, environmental facto

  7. Next-generation sequencing approaches in genetic rodent model systems to study functional effects of human genetic variation

    NARCIS (Netherlands)

    Guryev, Victor; Cuppen, Edwin

    2009-01-01

    Rapid advances in DNA sequencing improve existing techniques and enable new approaches in genetics and functional genomics, bringing about unprecedented coverage, resolution and sensitivity. Enhanced toolsets can facilitate the untangling of connections between genomic variation, environmental facto

  8. Large intraspecific genetic variation within the Saffron-Crocus group (Crocus L., Series Crocus; Iridaceae)

    DEFF Research Database (Denmark)

    Larsen, Bjarne; Orabi, Jihad; Pedersen, Carsten

    2015-01-01

    Series Crocus comprises ten autumn-flowering species, including the cultivated Crocus sativus, Saffron-Crocus. Interspecific genetic variation was examined in all species of the series, except for C. naqabensis. Intraspecific genetic and morphological variation was considered in the three Greek...

  9. Unexpectedly high genetic variation in large unisexual clumps of the subdioecious plant Honckenya peploides

    DEFF Research Database (Denmark)

    Sánchez-Vilas, Julia; Philipp, Marianne; Retuerto, Rubén

    2010-01-01

    Honckenya peploides is a subdioecious dune plant that reproduces both sexually and by clonal growth. In northwest Spain this species was found to exhibit an extreme spatial segregation of the sexes, and our objective was to investigate genetic variation in unisexual clumps. Genetic variation was ...

  10. Multi-trophic consequences of plant genetic variation in sex and growth.

    Science.gov (United States)

    Abdala-Roberts, Luis; Pratt, Jessica D; Pratt, Riley; Schreck, Tadj K; Hanna, Victoria; Mooney, Kailen A

    2016-03-01

    There is growing evidence for the influence of plant intraspecific variation on associated multi-trophic communities, but the traits driving such effects are largely unknown. We conducted a field experiment with selected genetic lines of the dioecious shrub Baceharis salicifolia to investigate the effects of plant growth rate (two-fold variation) and gender (males vs. females of the same growth rate) on above- and belowground insect and fungal associates. We documented variation in associate density to test for effects occurring through plant-based habitat quality (controlling for effects of plant size) as well as variation in associate abundance to test for effects occurring through both habitat quality and abundance (including effects of plant size). Whereas the dietary specialist aphid Uroleucon macaolai was unaffected by plant sex and growth rate, the generalist aphid Aphis gossypii and its tending ants (Linepithema humile) had higher abundances and densities on male (vs. female) plants, suggesting males provide greater habitat quality. In contrast, Aphis and ant abundance and density were unaffected by plant growth rate, while Aphis parasitoids were unaffected by either plant sex or growth rate. Arbuscular mycorrhizal fungi had higher abundance and density (both marginally significant) on females (vs. males), suggesting females provide greater habitat quality, but lower abundances (marginally significant) and higher densities on slow- (vs. fast-) growing genotypes, suggesting slow-growing genotypes provided lower resource abundance but greater habitat quality. Overall, plant sex and growth rate effects on associates acted independently (i.e., no interactive effects), and these effects were of a greater magnitude than those coming from other axes of plant genetic variation. These findings thus demonstrate that plant genetic effects on associated communities may be driven by a small number of trait-specific mechanisms.

  11. The influence of mitonuclear genetic variation on personality in seed beetles.

    Science.gov (United States)

    Løvlie, Hanne; Immonen, Elina; Gustavsson, Emil; Kazancioğlu, Erem; Arnqvist, Göran

    2014-12-07

    There is a growing awareness of the influence of mitochondrial genetic variation on life-history phenotypes, particularly via epistatic interactions with nuclear genes. Owing to their direct effect on traits such as metabolic and growth rates, mitonuclear interactions may also affect variation in behavioural types or personalities (i.e. behavioural variation that is consistent within individuals, but differs among individuals). However, this possibility is largely unexplored. We used mitonuclear introgression lines, where three mitochondrial genomes were introgressed into three nuclear genetic backgrounds, to disentangle genetic effects on behavioural variation in a seed beetle. We found within-individual consistency in a suite of activity-related behaviours, providing evidence for variation in personality. Composite measures of overall activity of individuals in behavioural assays were influenced by both nuclear genetic variation and by the interaction between nuclear and mitochondrial genomes. More importantly, the degree of expression of behavioural and life-history phenotypes was correlated and mitonuclear genetic variation affected expression of these concerted phenotypes. These results show that mitonuclear genetic variation affects both behavioural and life-history traits, and they provide novel insights into the maintenance of genetic variation in behaviour and personality.

  12. Genetic variation in Norwegian piscine myocarditis virus in Atlantic salmon, Salmo salar L.

    Science.gov (United States)

    Wiik-Nielsen, J; Alarcón, M; Fineid, B; Rode, M; Haugland, Ø

    2013-02-01

    Cardiomyopathy syndrome (CMS) in Atlantic salmon, Salmo salar L., is a severe cardiac disease characterized by a necrotizing myocarditis involving the atrium and the spongious part of the ventricle. The disease is caused by piscine myocarditis virus (PMCV), a double-stranded RNA virus likely belonging to the family Totiviridae. The objective of this study was to evaluate the genetic variation in Norwegian PMCV isolates focusing on the putative structural proteins encoded by open reading frames (ORFs) 1 and 3. The virus isolates were sampled from a total of 36 farms along the Norwegian coastline. This study represents the first investigation of PMCV genome variation and shows that Norwegian isolates are highly similar, with the most divergent isolates sharing 98.6% nucleotide identity. Interestingly, amino acid sequence diversity within ORF3 is approximately threefold higher than for ORF1. While phylogenetic analysis based on concatenated nucleotide data covering ORF1 and ORF3 revealed four main clusters, the maximum sequence variation of 1.4% at the nucleotide level suggests that all Norwegian isolates belong to a single genogroup. Substantial sequence variation within farms was also observed, which may complicate future molecular epidemiological investigations. The genetic homogeneity among the Norwegian isolates might facilitate development of both diagnostic tools and an efficient vaccine against CMS in the future.

  13. Does advertisement call variation coincide with genetic variation in the genetically diverse frog taxon currently known as Leptodactylus fuscus (Amphibia: Leptodactylidae?

    Directory of Open Access Journals (Sweden)

    HEYER W. RONALD

    2003-01-01

    Full Text Available The frog Leptodactylus fuscus is found throughout much of South America in open and disturbed habitats. Previous study of genetic differentiation in L. fuscus demonstrated that there was lack of genetic exchange among population units consistent with multiple species, rather than a single species. We examine advertisement vocalizations of L. fuscus to determine whether call variation coincides with genetic differentiation. Calls were analyzed for 32 individual frogs from 25 localities throughout the distributional range of L. fuscus. Although there is variation in calls among geographic samples, call variation is not concordant with genetic variation or geographic distance and the call variation observed is less than that typically found among other closely related species of Leptodactylus. This study is an example of the rare pattern of strong genetic differentiation unaccompanied by salient differences in advertisement calls. The relative infrequency of this pattern as currently understood may only reflect the lack of detailed analyses of genetic and acoustic differentiation within population systems currently understood as single species with substantial geographic distributions.

  14. Genetic variation and population structure of willowy flounder ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... Key words: Tanakius kitaharai, mitochondrial DNA control region, genetic variability, genetic .... geneity among sites and nucleotide sequence evolution models ..... Application to human mitochondrial DNA restriction data.

  15. Folk beliefs about genetic variation predict avoidance of biracial individuals

    Directory of Open Access Journals (Sweden)

    Sonia K Kang

    2015-04-01

    Full Text Available People give widely varying estimates for the amount of genetic overlap that exists between humans. While some laypeople believe that humans are highly genetically similar to one another, others believe that humans share very little genetic overlap. These studies examine how beliefs about genetic overlap affect neural and evaluative reactions to racially-ambiguous and biracial targets. In Study 1, we found that lower genetic overlap estimates predicted a stronger neural avoidance response to biracial compared to monoracial targets. In Study 2, we found that lower genetic overlap estimates predicted longer response times to classify biracial (versus monoracial faces into racial categories. In Study 3, we manipulated genetic overlap beliefs and found that participants in the low overlap condition explicitly rated biracial targets more negatively than those in the high overlap condition. Taken together, these data suggest that genetic overlap beliefs influence perceivers’ processing fluency and evaluation of biracial and racially-ambiguous individuals.

  16. Gene diversity and genetic variation in lung flukes (genus Paragonimus).

    Science.gov (United States)

    Blair, David; Nawa, Yukifumi; Mitreva, Makedonka; Doanh, Pham Ngoc

    2016-01-01

    Paragonimiasis caused by lung flukes (genus Paragonimus) is a neglected disease occurring in Asia, Africa and the Americas. The genus is species-rich, ancient and widespread. Genetic diversity is likely to be considerable, but investigation of this remains confined to a few populations of a few species. In recent years, studies of genetic diversity have moved from isoenzyme analysis to molecular phylogenetic analysis based on selected DNA sequences. The former offered better resolution of questions relating to allelic diversity and gene flow, whereas the latter is more suitable for questions relating to molecular taxonomy and phylogeny. A picture is emerging of a highly diverse taxon of parasites, with the greatest diversity found in eastern and southern Asia where ongoing speciation might be indicated by the presence of several species complexes. Diversity of lung flukes in Africa and the Americas is very poorly sampled. Functional molecules that might be of value for immunodiagnosis, or as targets for medical intervention, are of great interest. Characterisation of these from Paragonimus species has been ongoing for a number of years. However, the imminent release of genomic and transcriptomic data for several species of Paragonimus will dramatically increase the rate of discovery of such molecules, and illuminate their diversity within and between species.

  17. Detailed, standardized and systematic phenotyping for the interpretation of genetic variation

    NARCIS (Netherlands)

    Vulto-van Silfhout, A.T.

    2014-01-01

    The identification of the underlying genetic causes for neurodevelopmental disorders and/or congenital anomalies is complicated due to the high genetic heterogeneity of these disorders and the large amount of genetic variation in each individual. Therefore, the aim of this thesis is to improve the i

  18. Habitat Fragmentation Differentially Affects Genetic Variation, Phenotypic Plasticity and Survival in Populations of a Gypsum Endemic.

    Science.gov (United States)

    Matesanz, Silvia; Rubio Teso, María Luisa; García-Fernández, Alfredo; Escudero, Adrián

    2017-01-01

    Habitat fragmentation, i.e., fragment size and isolation, can differentially alter patterns of neutral and quantitative genetic variation, fitness and phenotypic plasticity of plant populations, but their effects have rarely been tested simultaneously. We assessed the combined effects of size and connectivity on these aspects of genetic and phenotypic variation in populations of Centaurea hyssopifolia, a narrow endemic gypsophile that previously showed performance differences associated with fragmentation. We grew 111 maternal families sampled from 10 populations that differed in their fragment size and connectivity in a common garden, and characterized quantitative genetic variation, phenotypic plasticity to drought for key functional traits, and plant survival, as a measure of population fitness. We also assessed neutral genetic variation within and among populations using eight microsatellite markers. Although C. hyssopifolia is a narrow endemic gypsophile, we found substantial neutral genetic variation and quantitative variation for key functional traits. The partition of genetic variance indicated that a higher proportion of variation was found within populations, which is also consistent with low population differentiation in molecular markers, functional traits and their plasticity. This, combined with the generally small effect of habitat fragmentation suggests that gene flow among populations is not restricted, despite large differences in fragment size and isolation. Importantly, population's similarities in genetic variation and plasticity did not reflect the lower survival observed in isolated populations. Overall, our results indicate that, although the species consists of genetically variable populations able to express functional plasticity, such aspects of adaptive potential may not always reflect populations' survival. Given the differential effects of habitat connectivity on functional traits, genetic variation and fitness, our study highlights

  19. Habitat Fragmentation Differentially Affects Genetic Variation, Phenotypic Plasticity and Survival in Populations of a Gypsum Endemic

    Directory of Open Access Journals (Sweden)

    Silvia Matesanz

    2017-05-01

    Full Text Available Habitat fragmentation, i.e., fragment size and isolation, can differentially alter patterns of neutral and quantitative genetic variation, fitness and phenotypic plasticity of plant populations, but their effects have rarely been tested simultaneously. We assessed the combined effects of size and connectivity on these aspects of genetic and phenotypic variation in populations of Centaurea hyssopifolia, a narrow endemic gypsophile that previously showed performance differences associated with fragmentation. We grew 111 maternal families sampled from 10 populations that differed in their fragment size and connectivity in a common garden, and characterized quantitative genetic variation, phenotypic plasticity to drought for key functional traits, and plant survival, as a measure of population fitness. We also assessed neutral genetic variation within and among populations using eight microsatellite markers. Although C. hyssopifolia is a narrow endemic gypsophile, we found substantial neutral genetic variation and quantitative variation for key functional traits. The partition of genetic variance indicated that a higher proportion of variation was found within populations, which is also consistent with low population differentiation in molecular markers, functional traits and their plasticity. This, combined with the generally small effect of habitat fragmentation suggests that gene flow among populations is not restricted, despite large differences in fragment size and isolation. Importantly, population’s similarities in genetic variation and plasticity did not reflect the lower survival observed in isolated populations. Overall, our results indicate that, although the species consists of genetically variable populations able to express functional plasticity, such aspects of adaptive potential may not always reflect populations’ survival. Given the differential effects of habitat connectivity on functional traits, genetic variation and fitness

  20. Genetic Variations in SLCO Transporter Genes Contributing to Racial Disparity in Aggressiveness of Prostate Cancer

    Science.gov (United States)

    2015-10-01

    occupation, and smoking . 2. To examine the modifying effect of genetic variants in ITC-metabolizing genes on the associations between cruciferous...AWARD NUMBER: W81XWH-14-1-0453 TITLE: Genetic Variations in SLCO Transporter Genes Contributing to Racial Disparity in Aggressiveness of...COVERED 15 Sep 2014 - 14 Sep 2015 4. TITLE AND SUBTITLE Genetic Variations in SLCO Transporter Genes Contributing to Racial Disparity in

  1. Genetic variation in the endocannabinoid system and response to Cognitive Behavior Therapy for child anxiety disorders.

    Science.gov (United States)

    Lester, Kathryn J; Coleman, Jonathan R I; Roberts, Susanna; Keers, Robert; Breen, Gerome; Bögels, Susan; Creswell, Cathy; Hudson, Jennifer L; McKinnon, Anna; Nauta, Maaike; Rapee, Ronald M; Schneider, Silvia; Silverman, Wendy K; Thastum, Mikael; Waite, Polly; Wergeland, Gro Janne H; Eley, Thalia C

    2017-03-01

    Extinction learning is an important mechanism in the successful psychological treatment of anxiety. Individual differences in response and relapse following Cognitive Behavior Therapy may in part be explained by variability in the ease with which fears are extinguished or the vulnerability of these fears to re-emerge. Given the role of the endocannabinoid system in fear extinction, this study investigates whether genetic variation in the endocannabinoid system explains individual differences in response to CBT. Children (N = 1,309) with a primary anxiety disorder diagnosis were recruited. We investigated the relationship between variation in the CNR1, CNR2, and FAAH genes and change in primary anxiety disorder severity between pre- and post-treatment and during the follow-up period in the full sample and a subset with fear-based anxiety disorder diagnoses. Change in symptom severity during active treatment was nominally associated (P < 0.05) with two SNPs. During the follow-up period, five SNPs were nominally associated with a poorer treatment response (rs806365 [CNR1]; rs2501431 [CNR2]; rs2070956 [CNR2]; rs7769940 [CNR1]; rs2209172 [FAAH]) and one with a more favorable response (rs6928813 [CNR1]). Within the fear-based subset, the effect of rs806365 survived multiple testing corrections (P < 0.0016). We found very limited evidence for an association between variants in endocannabinoid system genes and treatment response once multiple testing corrections were applied. Larger, more homogenous cohorts are needed to allow the identification of variants of small but statistically significant effect and to estimate effect sizes for these variants with greater precision in order to determine their potential clinical utility. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by

  2. Heritable influences on amygdala and orbitofrontal cortex contribute to genetic variation in core dimensions of personality.

    Science.gov (United States)

    Lewis, G J; Panizzon, M S; Eyler, L; Fennema-Notestine, C; Chen, C-H; Neale, M C; Jernigan, T L; Lyons, M J; Dale, A M; Kremen, W S; Franz, C E

    2014-12-01

    While many studies have reported that individual differences in personality traits are genetically influenced, the neurobiological bases mediating these influences have not yet been well characterized. To advance understanding concerning the pathway from genetic variation to personality, here we examined whether measures of heritable variation in neuroanatomical size in candidate regions (amygdala and medial orbitofrontal cortex) were associated with heritable effects on personality. A sample of 486 middle-aged (mean=55 years) male twins (complete MZ pairs=120; complete DZ pairs=84) underwent structural brain scans and also completed measures of two core domains of personality: positive and negative emotionality. After adjusting for estimated intracranial volume, significant phenotypic (r(p)) and genetic (r(g)) correlations were observed between left amygdala volume and positive emotionality (r(p)=.16, porbitofrontal cortex thickness and negative emotionality were also observed (r(g)=.34, p<.01; r(e)=-.19, p<.05, respectively). These findings support a model positing that heritable bases of personality are, at least in part, mediated through individual differences in the size of brain structures, although further work is still required to confirm this causal interpretation.

  3. Temporal patterns of genetic and phenotypic variation in the epidemiologically important drone fly, Eristalis tenax.

    Science.gov (United States)

    Francuski, Lj; Matić, I; Ludoški, J; Milankov, V

    2011-06-01

    Eristalis tenax L. (Diptera: Syrphidae) is commonly known as the drone fly (adult) or rat-tailed maggot (immature). Both adults and immature stages are identified as potential mechanical vectors of mycobacterial pathogens, and early-stage maggots cause accidental myiasis. We compared four samples from Mount Fruška Gora, Serbia, with the aim of obtaining insights into the temporal variations and sexual dimorphism in the species. This integrative approach was based on allozyme loci, morphometric wing parameters (shape and size) and abdominal colour patterns. Consistent sexual dimorphism was observed, indicating that male specimens had lighter abdomens and smaller and narrower wings than females. The distribution of genetic diversity at polymorphic loci indicated genetic divergence among collection dates. Landmark-based geometric morphometrics revealed, contrary to the lack of divergence in wing size, significant wing shape variation throughout the year. In addition, temporal changes in the frequencies of the abdominal patterns observed are likely to relate to the biology of the species and ecological factors in the locality. Hence, the present study expands our knowledge of the genetic diversity and phenotypic plasticity of E. tenax. The quantification of such variability represents a step towards the evaluation of the adaptive potential of this species of medical and epidemiological importance.

  4. Genetic variation and plasticity of Plantago coronopus under saline conditions

    Science.gov (United States)

    Smekens, Marret J.; van Tienderen, Peter H.

    2001-08-01

    Phenotypic plasticity may allow organisms to cope with variation in the environmental conditions they encounter in their natural habitats. Salt adaptation appears to be an excellent example of such a plastic response. Many plant species accumulate organic solutes in response to saline conditions. Comparative and molecular studies suggest that this is an adaptation to osmotic stress. However, evidence relating the physiological responses to fitness parameters is rare and requires assessing the potential costs and benefits of plasticity. We studied the response of thirty families derived from plants collected in three populations of Plantago coronopus in a greenhouse experiment under saline and non-saline conditions. We indeed found a positive selection gradient for the sorbitol percentage under saline conditions: plant families with a higher proportion of sorbitol produced more spikes. No effects of sorbitol on fitness parameters were found under non-saline conditions. Populations also differed genetically in leaf number, spike number, sorbitol concentration and percentages of different soluble sugars. Salt treatment led to a reduction of vegetative biomass and spike production but increased leaf dry matter percentage and leaf thickness. Both under saline and non-saline conditions there was a negative trade-off between vegetative growth and reproduction. Families with a high plasticity in leaf thickness had a lower total spike length under non-saline conditions. This would imply that natural selection under predominantly non-saline conditions would lead to a decrease in the ability to change leaf morphology in response to exposure to salt. All other tests revealed no indication for any costs of plasticity to saline conditions.

  5. Genetic variation of Garra rufa fish in Kermanshah and Bushehr provinces, Iran, using SSR microsatellite markers

    Directory of Open Access Journals (Sweden)

    Ali Shabani

    2013-09-01

    Full Text Available Six highly variable microsatellite loci were used to investigate the genetic diversity and population structure of the Garra rufa in Kermanshah and Bushehr provinces, Iran. All of the 6 microsatellite loci screened in this study showed polymorphism. A total of 90 individual fish from 3 populations were genotyped and 60 alleles were observed in all loci. The number of alleles per locus ranged from 6 to14. The average allelic number of these polymorphic markers was 10. The averages of observed (Ho and expected heterozygosity (He was 0.529 and 0.826, respectively. The genetic distance values ranged between 0.235-0.570. The UPGMA dendrogram based on genetic distance resulted in three clusters: Gamasiab population alone was classified as one and the other two populations as the second cluster. This study revealed a fairly high level of genetic variation in the microsatellite loci within the three populations, and identified distinct population groups of Garra rufa. This study gains significance for the analysis of the populations’ genetic diversity as well as the management of this important fish resource.

  6. Genetic variation in flowering phenology and avoidance of seed predation in native populations of Ulex europaeus.

    Science.gov (United States)

    Atlan, A; Barat, M; Legionnet, A S; Parize, L; Tarayre, M

    2010-02-01

    The genetic variation in flowering phenology may be an important component of a species' capacity to colonize new environments. In native populations of the invasive species Ulex europaeus, flowering phenology has been shown to be bimodal and related to seed predation. The aim of the present study was to determine if this bimodality has a genetic basis, and to investigate whether the polymorphism in flowering phenology is genetically linked to seed predation, pod production and growth patterns. We set up an experiment raising maternal families in a common garden. Based on mixed analyses of variance and correlations among maternal family means, we found genetic differences between the two main flowering types and confirmed that they reduced seed predation in two different ways: escape in time or predator satiation. We suggest that this polymorphism in strategy may facilitate maintain high genetic diversity for flowering phenology and related life-history traits in native populations of this species, hence providing high evolutionary potential for these traits in invaded areas.

  7. The Effect of Genetic and Environmental Variation on Metabolic Gene Expression

    OpenAIRE

    Cinda P Scott; Williams, Dean A; Crawford, Douglas L.

    2009-01-01

    What is the relationship between genetic or environmental variation and the variation in mRNA expression? To address this, microarrays were used to examine the effect of genetic and environmental variation on cardiac mRNA expression for metabolic genes in three groups of Fundulus heteroclitus: (1) individuals sampled in the field (field), (2) field individuals acclimated for six months to laboratory conditions (acclimated) or (3) individuals bred for ten successive generations in a laboratory...

  8. Genetic variation assessed with microsatellites in mass selection lines of the Pacific oyster ( Crassostrea gigas) in China

    Science.gov (United States)

    Wang, Xubo; Li, Qi; Yu, Hong; Kong, Lingfeng

    2016-12-01

    Four successive mass selection lines of the Pacific oyster, Crassostrea gigas, selected for faster growth in breeding programs in China were examined at ten polymorphic microsatellite loci to assess the level of allelic diversity and estimate the effective population size. These data were compared with those of their base population. The results showed that the genetic variation of the four generations were maintained at high levels with an average allelic richness of 18.8-20.6, and a mean expected heterozygosity of 0.902-0.921. They were not reduced compared with those of their base population. Estimated effective population sizes based on temporal variances in microsatellite frequencies were smaller to that of sex ratio-corrected broodstock count estimates. Using a relatively large number of broodstock and keeping an equal sex ratio in the broodstock each generation may have contributed to retaining the original genetic diversity and maintaining relatively large effective population size. The results obtained in this study showed that the genetic variation was not affected greatly by mass selection progress and high genetic variation still existed in the mass selection lines, suggesting that there is still potential for increasing the gains in future generations of C. gigas. The present study provided important information for future genetic improvement by selective breeding, and for the design of suitable management guidelines for genetic breeding of C. gigas.

  9. Thlaspi caerulescens (Brassicaceae) population genetics in western Switzerland: is the genetic structure affected by natural variation of soil heavy metal concentrations?

    Science.gov (United States)

    Besnard, Guillaume; Basic, Nevena; Christin, Pascal-Antoine; Savova-Bianchi, Dessislava; Galland, Nicole

    2009-03-01

    Thlaspi caerulescens (Brassicaceae) is a promising plant model with which to study heavy metal hyperaccumulation. Population genetics studies are necessary for a better understanding of its history, which will be useful for further genomic studies on the evolution of heavy metal hyperaccumulation.The genetic structure of 24 natural Swiss locations was investigated using nuclear and plastid loci. Population genetics parameters were estimated and genetic pools were identified using Bayesian inference on eight putatively neutral nuclear loci.Finally, the effect of cadmium (Cd) and zinc (Zn) soil concentrations on genetic differentiation at loci located in genes putatively involved in heavy metal responses was examined using partial Mantel tests in Jura, western Switzerland.Four main genetic clusters were recognized based on nuclear and plastid loci,which gave mostly congruent signals. In Jura, genetic differentiation linked to heavy metal concentrations in soil was shown at some candidate loci, particularly for genes encoding metal transporters. This suggests that natural selection limits gene flow between metalliferous and non metalliferous locations at such loci.Strong historical factors explain the present genetic structure of Swiss T. caerulescens populations, which has to be considered in studies testing for relationships between environmental and genetic variations. Linking of genetic differentiation at candidate genes with soil characteristics offers new perspectives in the study of heavy metal hyperaccumulation.

  10. Spatial structure of morphological and neutral genetic variation in Brook Trout

    Science.gov (United States)

    Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.

    2015-01-01

    Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.

  11. Learned vocal variation is associated with abrupt cryptic genetic change in a parrot species complex.

    Directory of Open Access Journals (Sweden)

    Raoul F H Ribot

    Full Text Available Contact zones between subspecies or closely related species offer valuable insights into speciation processes. A typical feature of such zones is the presence of clinal variation in multiple traits. The nature of these traits and the concordance among clines are expected to influence whether and how quickly speciation will proceed. Learned signals, such as vocalizations in species having vocal learning (e.g. humans, many birds, bats and cetaceans, can exhibit rapid change and may accelerate reproductive isolation between populations. Therefore, particularly strong concordance among clines in learned signals and population genetic structure may be expected, even among continuous populations in the early stages of speciation. However, empirical evidence for this pattern is often limited because differences in vocalisations between populations are driven by habitat differences or have evolved in allopatry. We tested for this pattern in a unique system where we may be able to separate effects of habitat and evolutionary history. We studied geographic variation in the vocalizations of the crimson rosella (Platycercus elegans parrot species complex. Parrots are well known for their life-long vocal learning and cognitive abilities. We analysed contact calls across a ca 1300 km transect encompassing populations that differed in neutral genetic markers and plumage colour. We found steep clinal changes in two acoustic variables (fundamental frequency and peak frequency position. The positions of the two clines in vocal traits were concordant with a steep cline in microsatellite-based genetic variation, but were discordant with the steep clines in mtDNA, plumage and habitat. Our study provides new evidence that vocal variation, in a species with vocal learning, can coincide with areas of restricted gene flow across geographically continuous populations. Our results suggest that traits that evolve culturally can be strongly associated with reduced gene flow

  12. Evaluation of Genetic Variation Induced by Gamma Ray Irradiation in Morphological Traits in M2 Mutant Lines of Canola

    Directory of Open Access Journals (Sweden)

    S. M. AbtahiForushani

    2014-09-01

    Full Text Available Mutation induction is considered as an effective way to enrich plant genetic variation, particularly for traits with a very low level of genetic variation. The objectives of this study were to evaluate the effect of 1200 GY gamma ray irradiation on morphophenological traits, yield and yield components and to identify useful mutants in two spring rapeseed "RGS003" and" Sarigol" cultivars. The results revealed that there are highly significant difference sa mong mutant lines. Based on the results of phenotypic and genetic correlations, 1000 seed weight had the highest relationship with see dyieldper plant. Stepwise regression analysis also showed that 1000 seed weight was one of the most important traits contributing in seed yield.In viewpoint of the exploitation of the induced variation at morphological traits, M2 lines 9 from RGS003 and 16, 25 and 26 from Sarigol could be suggested as the most desirable lines for canola breeding.

  13. Range-based estimation of quadratic variation

    DEFF Research Database (Denmark)

    Christensen, Kim; Podolskij, Mark

    This paper proposes using realized range-based estimators to draw inference about the quadratic variation of jump-diffusion processes. We also construct a range-based test of the hypothesis that an asset price has a continuous sample path. Simulated data shows that our approach is efficient...

  14. The Genetic Basis of Baculum Size and Shape Variation in Mice

    Science.gov (United States)

    Schultz, Nicholas G.; Ingels, Jesse; Hillhouse, Andrew; Wardwell, Keegan; Chang, Peter L.; Cheverud, James M.; Lutz, Cathleen; Lu, Lu; Williams, Robert W.; Dean, Matthew D.

    2016-01-01

    The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL) that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology. PMID:26935419

  15. Genetic variation and population structure of interleukin genes among seven ethnic populations from Karnataka, India

    Indian Academy of Sciences (India)

    Srilakshmi M. Raj; Diddahally R. Govindaraju; Ranajit Chakraborty

    2007-12-01

    The extent of genetic variation and the degree of genetic differentiation among seven ethnic populations from Karnataka, India (Bunt, Havyak, Iyengar, Lingayath, Smartha, Vaishya, Vokkaliga), was investigated using four single nucleotide polymorphisms (SNPs: IL-1A 4845, IL-1B 3954, IL-1B 511 and IL-1RA 2018) of the interleukin gene cluster. Allele frequencies varied by threefold among these populations, which also differed for gene diversity and heterozygosity levels. The average degree of population subdivision among these castes was low ($F_{ST} = 0.02$). However, pair-wise interpopulation differentiation ranged from 0–7%, indicating no detectable differentiation to moderate differentiation between specific populations. The results of phylogenetic analysis based on genetic distances between populations agreed with known social and cultural data on these ethnic groups. Variation in the allele frequencies, as well as differentiation, may be attributed to differential selection and demographic factors including consanguinity among the ethnic groups. Information on the distribution of functionally relevant polymorphisms among ethnic populations may be important towards developing community medicine and public health policies.

  16. The Genetic Basis of Baculum Size and Shape Variation in Mice

    Directory of Open Access Journals (Sweden)

    Nicholas G. Schultz

    2016-05-01

    Full Text Available The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology.

  17. The Genetic Basis of Baculum Size and Shape Variation in Mice.

    Science.gov (United States)

    Schultz, Nicholas G; Ingels, Jesse; Hillhouse, Andrew; Wardwell, Keegan; Chang, Peter L; Cheverud, James M; Lutz, Cathleen; Lu, Lu; Williams, Robert W; Dean, Matthew D

    2016-05-03

    The rapid divergence of male genitalia is a preeminent evolutionary pattern. This rapid divergence is especially striking in the baculum, a bone that occurs in the penis of many mammalian species. Closely related species often display diverse baculum morphology where no other morphological differences can be discerned. While this fundamental pattern of evolution has been appreciated at the level of gross morphology, nearly nothing is known about the genetic basis of size and shape divergence. Quantifying the genetic basis of baculum size and shape variation has been difficult because these structures generally lack obvious landmarks, so comparing them in three dimensions is not straightforward. Here, we develop a novel morphometric approach to quantify size and shape variation from three-dimensional micro-CT scans taken from 369 bacula, representing 75 distinct strains of the BXD family of mice. We identify two quantitative trait loci (QTL) that explain ∼50% of the variance in baculum size, and a third QTL that explains more than 20% of the variance in shape. Together, our study demonstrates that baculum morphology may diverge relatively easily, with mutations at a few loci of large effect that independently modulate size and shape. Based on a combination of bioinformatic investigations and new data on RNA expression, we prioritized these QTL to 16 candidate genes, which have hypothesized roles in bone morphogenesis and may enable future genetic manipulation of baculum morphology.

  18. [Genetic variation analysis of canine parvovirus VP2 gene in China].

    Science.gov (United States)

    Yi, Li; Cheng, Shi-Peng; Yan, Xi-Jun; Wang, Jian-Ke; Luo, Bin

    2009-11-01

    To recognize the molecular biology character, phylogenetic relationship and the state quo prevalent of Canine parvovirus (CPV), Faecal samnples from pet dogs with acute enteritis in the cities of Beijing, Wuhan, and Nanjing were collected and tested for CPV by PCR and other assay between 2006 and 2008. There was no CPV to FPV (MEV) variation by PCR-RFLP analysis in all samples. The complete ORFs of VP2 genes were obtained by PCR from 15 clinical CPVs and 2 CPV vaccine strains. All amplicons were cloned and sequenced. Analysis of the VP2 sequences showed that clinical CPVs both belong to CPV-2a subtype, and could be classified into a new cluster by amino acids contrasting which contains Tyr-->Ile (324) mutation. Besides the 2 CPV vaccine strains belong to CPV-2 subtype, and both of them have scattered variation in amino acids residues of VP2 protein. Construction of the phylogenetic tree based on CPV VP2 sequence showed these 15 CPV clinical strains were in close relationship with Korea strain K001 than CPV-2a isolates in other countries at early time, It is indicated that the canine parvovirus genetic variation was associated with location and time in some degree. The survey of CPV capsid protein VP2 gene provided the useful information for the identification of CPV types and understanding of their genetic relationship.

  19. The Grandest Genetic Experiment Ever Performed on Man? - A Y-Chromosomal Perspective on Genetic Variation in India.

    Science.gov (United States)

    Carvalho-Silva, Denise R; Tyler-Smith, Chris

    2008-05-01

    We have analysed Y-chromosomal data from Indian caste, Indian tribal and East Asian populations in order to investigate the impact of the caste system on male genetic variation. We find that variation within populations is lower in India than in East Asia, while variation between populations is overall higher. This observation can be explained by greater subdivision within the Indian population, leading to more genetic drift. However, the effect is most marked in the tribal populations, and the level of variation between caste populations is similar to the level between Chinese populations. The caste system has therefore had a detectable impact on Y-chromosomal variation, but this has been less strong than the influence of the tribal system, perhaps because of larger population sizes in the castes, more gene flow or a shorter period of time.

  20. Perspectives on human genetic variation from the HapMap Project.

    Science.gov (United States)

    McVean, Gil; Spencer, Chris C A; Chaix, Raphaelle

    2005-10-01

    The completion of the International HapMap Project marks the start of a new phase in human genetics. The aim of the project was to provide a resource that facilitates the design of efficient genome-wide association studies, through characterising patterns of genetic variation and linkage disequilibrium in a sample of 270 individuals across four geographical populations. In total, over one million SNPs have been typed across these genomes, providing an unprecedented view of human genetic diversity. In this review we focus on what the HapMap Project has taught us about the structure of human genetic variation and the fundamental molecular and evolutionary processes that shape it.

  1. Genetic Variation in Myosin 1H Contributes to Mandibular Prognathism

    Science.gov (United States)

    Tassopoulou-Fishell, Maria; Deeley, Kathleen; Harvey, Erika M.; Sciote, James; Vieira, Alexandre R.

    2013-01-01

    Introduction Several candidate loci have been suggested as influencing mandibular prognathism (1p22.1, 1p22.2, 1p36, 3q26.2, 5p13-p12, 6q25, 11q22.2-q22.3, 12q23, 12q13.13, and 19p13.2). The goal of this study was to replicate these results in a well-characterized homogeneous sample set. Methods Thirty-three single nucleotide polymorphisms spanning all candidate regions were studied in 44 prognathic and 35 Class I subjects from the University of Pittsburgh School of Dental Medicine Dental Registry and DNA Repository. The 44 mandibular prognathism subjects had an average age of 18.4 years, 31 were females and 13 males, and 24 were White, 15 African American, two Hispanic, and three Asian. The 35 Class I subjects had an average age of 17.6 years, 27 were females and 9 males, and 27 were White, six African Americans, one Hispanic, and two Asian. Skeletal mandibular prognathism diagnosis included cephalometric values indicative of Class III such as ANB smaller than two degrees, negative Witts appraisal, and positive A–B plane. Additional mandibular prognathism criteria included negative OJ and visually prognathic (concave) profile as determined by the subject's clinical evaluation. Orthognathic subjects without jaw deformations were used as a comparison group. Mandibular prognathism and orthognathic subjects were matched based on race, sex and age. Genetic markers were tested by polymerase chain reaction using TaqMan chemistry. Chi-square and Fisher exact tests were used to determine overrepresentation of marker allele with alpha of 0.05. Results An association was unveiled between a marker in MYO1H (rs10850110) and the mandibular prognathism phenotype (p=0.03). MYO1H is a Class-I myosin that is in a different protein group than the myosin isoforms of muscle sarcomeres, which are the basis of skeletal muscle fiber typing. Class I myosins are necessary for cell motility, phagocytosis and vesicle transport. Conclusions More strict clinical definitions may increase

  2. Evolutionary genetic bases of longevity and senescence.

    Science.gov (United States)

    Govindaraju, Diddahally R

    2015-01-01

    Senescence, as a time-dependent developmental process, affects all organisms at every stage in their development and growth. During this process, genetic, epigenetic and environmental factors are known to introduce a wide range of variation for longevity among individuals. As an important life-history trait, longevity shows ontogenetic relationships with other complex traits, and hence may be viewed as a composite trait. Factors that influence the origin and maintenance of diversity of life are ultimately governed by Darwinian processes. Here we review evolutionary genetic mechanisms underlying longevity and senescence in humans from a life-history and genotype-epigenetic-phenotype (G-E-P) map prospective. We suggest that synergistic and cascading effects of cis-ruptive mechanisms in the genome, and epigenetic disruptive processes in relation to environmental factors may lead to sequential slippage in the G-E-P space. These mechanisms accompany age, stage and individual specific senescent processes, influenced by positive pleiotropy of certain genes, superior genome integrity, negative-frequency dependent selection and other factors that universally regulate rarity in nature. Finally we interpret life span as an inherent property of self-organizing systems that, accordingly, maintain species-specific limits for the entire complex of fitness traits. We conclude that Darwinian approaches provide unique opportunities to discover the biological bases of longevity as well as devise individual specific medical or other interventions toward improving health span.

  3. Genetic Variation in Field Populations of Baculoviruses: Mechanisms for Generating Variation and Its Potential Role in Baculovirus Epizootiology

    Institute of Scientific and Technical Information of China (English)

    Martin A. Erlandson

    2009-01-01

    Baculoviridae is a family of insect-specific DNA viruses that have been used as biological control agents for insect pest control. In most cases these baculovirus control agents are natural field isolates that have been selected based on their infectivity and virulence. The advent of molecular tools such as restriction endonucleases, targeted polymerase chain reaction and new DNA sequencing strategies have allowed for efficient detection and characterization of genotypic variants within and among geographic and temporal isolates of baculovirus species. It has become evident that multiple genotypic variants occur even within individual infected larvae. Clonal strains of baculovirus species derived either by in vitro or in vivo approaches have been shown to vary with respect to infectivity and virulence. Many of the cell culture derived plague-purified strains have deletions that interrupt egt expression leading to virus strains that kill infected hosts more quickly. As well, in vitro clones often involve larger genomic deletions with the loss of pif gene function, resulting in strains deficient for oral infectivity. There are an increasing number of baculovirus species for which complete genome sequences are available for more than one strain or field isolate. Results of comparative analysis of these strains indicated that hr regions and bro genes often mark "hot spots" of genetic variability between strains and of potential recombination events. In addition, the degree of nucleotide polymorphisms between and within strains and their role in amino acid substitutions within ORFs and changes in promoter motifs is also beginning to be appreciated. In this short review the potential mechanisms that generate and maintain this genetic diversity within baculovirus populations is discussed, as is the potential role of genetic variation in host-pathogen interactions.

  4. Microevolutionary Patterns and Molecular Markers: The Genetics of Geographic Variation in Ascaris suum

    Science.gov (United States)

    Nadler, S. A.

    1996-01-01

    Molecular markers have been used only rarely to characterize the population genetic structure of nematodes. Published studies have suggested that different taxa may show distinct genetic architectures. Isoenzyme and RAPD markers have been used to investigate geographic variation of Ascaris suum at the level of infrapopulations (nematodes within individual hosts), within localities, and among geographic regions. Independent estimates of genetic differentiation among population samples based on isoenzyme and RAPD data showed similar patterns and substantial correlation. Heterozygote deficiencies within infrapopulations and large values for inbreeding coefficients among infrapopulations suggested that the composition of these populations was not consistent with a model of random recruitment from a large panmictic pool of life-cycle stages. Both isoenzyme and RAPD markers revealed moderate levels of genetic differentiation among samples representing infrapopulations and localities. Of total gene diversity, 9.4% (isoenzyme) and 9.2% (RAPD) was partitioned among infrapopulations. Geographic localities accounted for 7.8% (isoenzyme) and 6.2% (RAPD) of total diversity. Only infrapopulations from the same farm had low levels of differentiation. PMID:19277145

  5. Analysis of genetic variation and potential applications in genome-scale metabolic modeling

    Directory of Open Access Journals (Sweden)

    João Gonçalo Rocha Cardoso

    2015-02-01

    Full Text Available Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic variation during a long term production process may lead to significant economic losses and it is important to understand how to control this type of variation. With the emergence of next-generation sequencing technologies, genetic variation in microbial strains can now be determined on an unprecedented scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function, and discuss approaches for interfacing existing bioinformatics approaches with genome-scale models of cellular processes in order to predict effects of sequence variation on cellular phenotypes.

  6. Genetic Variation of 28 microsatellite markers in Australian merino ...

    African Journals Online (AJOL)

    ratiyat

    2016-02-26

    Feb 26, 2016 ... management practices (McKenzie et al., 2010; Gowane et al., 2013). ..... Agriculture Organization (FAO, 1995) and European Association of Animal Science (EAAP) data .... Fine-scale genetic structure in a free-living ungulate.

  7. Asymmetry of genetic variation in fitness-related traits: apparent stabilizing selection on g(max).

    Science.gov (United States)

    McGuigan, Katrina; Blows, Mark W

    2009-11-01

    The maintenance of genetic variation in traits closely associated with fitness remains a key unresolved issue in evolutionary genetics. One important qualification on the observation of genetic variation in fitness-related traits is that such traits respond asymmetrically to selection, evolving to a greater extent in the direction of lower fitness. Here we test the hypothesis that standing genetic variation in fitness-related traits is principally maintained for unfit phenotypes. Male Drosophila bunnanda vary in mating success (the primary determinant of male fitness) due to female mate choice. We used competitive mating success to partitioning males into two groups: successful (high fitness) and unsuccessful (low fitness). Relative to successful males, unsuccessful males harbored considerably greater levels of additive genetic variation for sexual signaling traits. This genetic asymmetry was detected for a multivariate trait that we demonstrated was not directly under stabilizing sexual selection, leading us to conclude the trait was under apparent stabilizing selection. Consequently, our results suggest genetic variance might be biased toward low fitness even for traits that are not themselves the direct targets of selection. Simple metrics of genetic variance are unlikely to be adequate descriptors of the complex nature of the genetic basis of traits under selection.

  8. Extensive natural variation for cellular hydrogen peroxide release is genetically controlled.

    Directory of Open Access Journals (Sweden)

    Homa Attar

    Full Text Available Natural variation in DNA sequence contributes to individual differences in quantitative traits. While multiple studies have shown genetic control over gene expression variation, few additional cellular traits have been investigated. Here, we investigated the natural variation of NADPH oxidase-dependent hydrogen peroxide (H(2O(2 release, which is the joint effect of reactive oxygen species (ROS production, superoxide metabolism and degradation, and is related to a number of human disorders. We assessed the normal variation of H(2O(2 release in lymphoblastoid cell lines (LCL in a family-based 3-generation cohort (CEPH-HapMap, and in 3 population-based cohorts (KORA, GenCord, HapMap. Substantial individual variation was observed, 45% of which were associated with heritability in the CEPH-HapMap cohort. We identified 2 genome-wide significant loci of Hsa12 and Hsa15 in genome-wide linkage analysis. Next, we performed genome-wide association study (GWAS for the combined KORA-GenCord cohorts (n = 279 using enhanced marker resolution by imputation (>1.4 million SNPs. We found 5 significant associations (p<5.00×10-8 and 54 suggestive associations (p<1.00×10-5, one of which confirmed the linked region on Hsa15. To replicate our findings, we performed GWAS using 58 HapMap individuals and ∼2.1 million SNPs. We identified 40 genome-wide significant and 302 suggestive SNPs, and confirmed genome signals on Hsa1, Hsa12, and Hsa15. Genetic loci within 900 kb from the known candidate gene p67phox on Hsa1 were identified in GWAS in both cohorts. We did not find replication of SNPs across all cohorts, but replication within the same genomic region. Finally, a highly significant decrease in H(2O(2 release was observed in Down Syndrome (DS individuals (p<2.88×10-12. Taken together, our results show strong evidence of genetic control of H(2O(2 in LCL of healthy and DS cohorts and suggest that cellular phenotypes, which themselves are also complex, may be

  9. Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation

    Directory of Open Access Journals (Sweden)

    Shriver Mark D

    2005-06-01

    Full Text Available Abstract Understanding the distribution of human genetic variation is an important foundation for research into the genetics of common diseases. Some of the alleles that modify common disease risk are themselves likely to be common and, thus, amenable to identification using gene-association methods. A problem with this approach is that the large sample sizes required for sufficient statistical power to detect alleles with moderate effect make gene-association studies susceptible to false-positive findings as the result of population stratification 12. Such type I errors can be eliminated by using either family-based association tests or methods that sufficiently adjust for population stratification 345. These methods require the availability of genetic markers that can detect and, thus, control for sources of genetic stratification among populations. In an effort to investigate population stratification and identify appropriate marker panels, we have analysed 11,555 single nucleotide polymorphisms in 203 individuals from 12 diverse human populations. Individuals in each population cluster to the exclusion of individuals from other populations using two clustering methods. Higher-order branching and clustering of the populations are consistent with the geographic origins of populations and with previously published genetic analyses. These data provide a valuable resource for the definition of marker panels to detect and control for population stratification in population-based gene identification studies. Using three US resident populations (European-American, African-American and Puerto Rican, we demonstrate how such studies can proceed, quantifying proportional ancestry levels and detecting significant admixture structure in each of these populations.

  10. Genetic Variation in Dopamine Pathways Differentially Associated with Smoking Progression in Adolescence

    Science.gov (United States)

    Laucht, Manfred; Becker, Katja; Frank, Josef; Schmidt, Martin H.; Esser, Gunter; Treutlein, Jens; Skowronek, Markus H.; Schumann, Gunter

    2008-01-01

    A study examines whether genetic variation in dopamine pathways differentially associate with smoking progression in adolescence. Results indicate the influence of specific dopamine genes in different stages of smoking progression in adolescents.

  11. Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies.

    Science.gov (United States)

    Coe, T S; Hamilton, P B; Griffiths, A M; Hodgson, D J; Wahab, M A; Tyler, C R

    2009-01-01

    There is substantial evidence that genetic variation, at both the level of the individual and population, has a significant effect on behaviour, fitness and response to toxicants. Using DNA microsatellites, we examined the genetic variation in samples of several commonly used laboratory strains of zebrafish, Danio rerio, a model species in toxicological studies. We compared the genetic variation to that found in a sample of wild fish from Bangladesh. Our findings show that the wild fish were significantly more variable than the laboratory strains for several measures of genetic variability, including allelic richness and expected heterozygosity. This lack of variation should be given due consideration for any study which attempts to extrapolate the results of ecotoxicological laboratory tests to wild populations.

  12. Genetic Variation in Dopamine Pathways Differentially Associated with Smoking Progression in Adolescence

    Science.gov (United States)

    Laucht, Manfred; Becker, Katja; Frank, Josef; Schmidt, Martin H.; Esser, Gunter; Treutlein, Jens; Skowronek, Markus H.; Schumann, Gunter

    2008-01-01

    A study examines whether genetic variation in dopamine pathways differentially associate with smoking progression in adolescence. Results indicate the influence of specific dopamine genes in different stages of smoking progression in adolescents.

  13. Salmon and steelhead genetics and genomics - Epigenetic and genomic variation in salmon and steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Conduct analyses of epigenetic and genomic variation in Chinook salmon and steelhead to determine influence on phenotypic expression of life history traits. Genetic,...

  14. Range-based estimation of quadratic variation

    DEFF Research Database (Denmark)

    Christensen, Kim; Podolskij, Mark

    In this paper, we propose using realized range-based estimation to draw inference about the quadratic variation of jump-diffusion processes. We also construct a new test of the hypothesis that an asset price has a continuous sample path. Simulated data shows that our approach is efficient, the test...

  15. Dominant Genetic Variation and Missing Heritability for Human Complex Traits: Insights from Twin versus Genome-wide Common SNP Models.

    Science.gov (United States)

    Chen, Xu; Kuja-Halkola, Ralf; Rahman, Iffat; Arpegård, Johannes; Viktorin, Alexander; Karlsson, Robert; Hägg, Sara; Svensson, Per; Pedersen, Nancy L; Magnusson, Patrik K E

    2015-11-05

    In order to further illuminate the potential role of dominant genetic variation in the "missing heritability" debate, we investigated the additive (narrow-sense heritability, h(2)) and dominant (δ(2)) genetic variance for 18 human complex traits. Within the same study base (10,682 Swedish twins), we calculated and compared the estimates from classic twin-based structural equation model with SNP-based genomic-relatedness-matrix restricted maximum likelihood [GREML(d)] method. Contributions of δ(2) were evident for 14 traits in twin models (average δ(2)twin = 0.25, range 0.14-0.49), two of which also displayed significant δ(2) in the GREMLd analyses (triglycerides δ(2)SNP = 0.28 and waist circumference δ(2)SNP = 0.19). On average, the proportion of h(2)SNP/h(2)twin was 70% for ADE-fitted traits (for which the best-fitting model included additive and dominant genetic and unique environmental components) and 31% for AE-fitted traits (for which the best-fitting model included additive genetic and unique environmental components). Independent evidence for contribution from shared environment, also in ADE-fitted traits, was obtained from self-reported within-pair contact frequency and age at separation. We conclude that despite the fact that additive genetics appear to constitute the bulk of genetic influences for most complex traits, dominant genetic variation might often be masked by shared environment in twin and family studies and might therefore have a more prominent role than what family-based estimates often suggest. The risk of erroneously attributing all inherited genetic influences (additive and dominant) to the h(2) in too-small twin studies might also lead to exaggerated "missing heritability" (the proportion of h(2) that remains unexplained by SNPs). Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. MSH1-induced non-genetic variation provides a source of phenotypic diversity in Sorghum bicolor.

    Directory of Open Access Journals (Sweden)

    Roberto de la Rosa Santamaria

    Full Text Available MutS Homolog 1 (MSH1 encodes a plant-specific protein that functions in mitochondria and chloroplasts. We showed previously that disruption or suppression of the MSH1 gene results in a process of developmental reprogramming that is heritable and non-genetic in subsequent generations. In Arabidopsis, this developmental reprogramming process is accompanied by striking changes in gene expression of organellar and stress response genes. This developmentally reprogrammed state, when used in crossing, results in a range of variation for plant growth potential. Here we investigate the implications of MSH1 modulation in a crop species. We found that MSH1-mediated phenotypic variation in Sorghum bicolor is heritable and potentially valuable for crop breeding. We observed phenotypic variation for grain yield, plant height, flowering time, panicle architecture, and above-ground biomass. Focusing on grain yield and plant height, we found some lines that appeared to respond to selection. Based on amenability of this system to implementation in a range of crops, and the scope of phenotypic variation that is derived, our results suggest that MSH1 suppression provides a novel approach for breeding in crops.

  17. Genetic variation among agamid lizards of the trapelus agiliscomplex in the caspian-aral basin

    Energy Technology Data Exchange (ETDEWEB)

    Macey, J. Robert; Ananjeva, Natalia B.

    2004-05-19

    Allozyme variation is examined in eight populations of Trapelus from the Caspian-Aral Basin of the former USSR. Thirty-one loci (15 variable) exhibit remarkably low levels of genetic variation with only a Nei's genetic distance of 0.117 across 2500 km. An isolated population on the European side of the Caspian Sea is found to phenetically cluster inside the Asian populations examined, suggesting that it should not be considered taxonomically distinct.

  18. Picroilmenites in Yakutian kimberlites: variations and genetic models

    Science.gov (United States)

    Ashchepkov, I. V.; Alymova, N. V.; Logvinova, A. M.; Vladykin, N. V.; Kuligin, S. S.; Mityukhin, S. I.; Downes, H.; Stegnitsky, Yu. B.; Prokopiev, S. A.; Salikhov, R. F.; Palessky, V. S.; Khmel'nikova, O. S.

    2014-09-01

    Major and trace element variations in picroilmenites from Late Devonian kimberlite pipes in Siberia reveal similarities within the region in general, but show individual features for ilmenites from different fields and pipes. Empirical ilmenite thermobarometry (Ashchepkov et al., 2010), as well as common methods of mantle thermobarometry and trace element geochemical modeling, shows long compositional trends for the ilmenites. These are a result of complex processes of polybaric fractionation of protokimberlite melts, accompanied by the interaction with mantle wall rocks and dissolution of previous wall rock and metasomatic associations. Evolution of the parental magmas for the picroilmenites was determined for the three distinct phases of kimberlite activity from Yubileynaya and nearby Aprelskaya pipes, showing heating and an increase of Fe# (Fe# = Fe / (Fe + Mg) a.u.) of mantle peridotite minerals from stage to stage and splitting of the magmatic system in the final stages. High-pressure (5.5-7.0 GPa) Cr-bearing Mg-rich ilmenites (group 1) reflect the conditions of high-temperature metasomatic rocks at the base of the mantle lithosphere. Trace element patterns are enriched to 0.1-10/relative to primitive mantle (PM) and have flattened, spoon-like or S- or W-shaped rare earth element (REE) patterns with Pb > 1. These result from melting and crystallization in melt-feeding channels in the base of the lithosphere, where high-temperature dunites, harzburgites and pyroxenites were formed. Cr-poor ilmenite megacrysts (group 2) trace the high-temperature path of protokimberlites developed as result of fractional crystallization and wall rock assimilation during the creation of the feeder systems prior to the main kimberlite eruption. Inflections in ilmenite compositional trends probably reflect the mantle layering and pulsing melt intrusion during melt migration within the channels. Group 2 ilmenites have inclined REE enriched patterns (10-100)/PM with La / Ybn ~ 10

  19. Genetic variation and population structure in native Americans.

    Directory of Open Access Journals (Sweden)

    Sijia Wang

    2007-11-01

    Full Text Available We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians--signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1 a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2 a relative lack of differentiation between Mesoamerican and Andean populations, (3 a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4 a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas.

  20. Genetic Variation and Geographic Differentiation Among Populations of the Nonmigratory Agricultural Pest Oedaleus infernalis (Orthoptera: Acridoidea) in China

    Science.gov (United States)

    Sun, Wei; Dong, Hui; Gao, Yue-Bo; Su, Qian-Fu; Qian, Hai-Tao; Bai, Hong-Yan; Zhang, Zhu-Ting; Cong, Bin

    2015-01-01

    The nonmigratory grasshopper Oedaleus infernalis Saussure (Orthoptera : Acridoidea) is an agricultural pest to crops and forage grasses over a wide natural geographical distribution in China. The genetic diversity and genetic variation among 10 geographically separated populations of O. infernalis was assessed using polymerase chain reaction-based molecular markers, including the intersimple sequence repeat and mitochondrial cytochrome oxidase sequences. A high level of genetic diversity was detected among these populations from the intersimple sequence repeat (H: 0.2628, I: 0.4129, Hs: 0.2130) and cytochrome oxidase analyses (Hd: 0.653). There was no obvious geographical structure based on an unweighted pair group method analysis and median-joining network. The values of FST, θII, and Gst estimated in this study are low, and the gene flow is high (Nm > 4). Analysis of the molecular variance suggested that most of the genetic variation occurs within populations, whereas only a small variation takes place between populations. No significant correlation was found between the genetic distance and geographical distance. Overall, our results suggest that the geographical distance plays an unimpeded role in the gene flow among O. infernalis populations. PMID:26496789

  1. Human Genetic Variation and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sun Ju Chung

    2010-05-01

    Full Text Available Parkinson’s disease (PD is a chronic neurodegenerative disorder with multifactorial etiology. In the past decade, the genetic causes of monogenic forms of familial PD have been defined. However, the etiology and pathogenesis of the majority of sporadic PD cases that occur in outbred populations have yet to be clarified. The recent development of resources such as the International HapMap Project and technological advances in high-throughput genotyping have provided new basis for genetic association studies of common complex diseases, including PD. A new generation of genome-wide association studies will soon offer a potentially powerful approach for mapping causal genes and will likely change treatment and alter our perception of the genetic determinants of PD. However, the execution and analysis of such studies will require great care.

  2. Genetic base of Brazilian irrigated rice cultivars

    Directory of Open Access Journals (Sweden)

    Hudson de Oliveira Rabelo

    2015-08-01

    Full Text Available The aim of this study was to estimate the genetic base of Brazilian irrigated rice cultivars released in the period from 1965 to 2012. The genealogies of the cultivars were obtained based on information from marketing folders, websites, crossings records, and scientific articles. The following factors were calculated: relative genetic contribution (RGC, accumulated genetic contribution (AGC, frequency (in percentage of each ancestor in the genealogy (FAG, number of ancestors that constitute each cultivar (NAC,number of ancestors responsible for 60%, 70%, 80% and 90% of the genetic base (NAGB, and average number of ancestor per cultivar (ANAC. The cultivars were also grouped based on the period of release (1965-1980, 1981-1990, 1991-2000 and 2001-2012. For each grouping, the previously described factors were also estimated. A total of 110 cultivars were studied and it was concluded that the genetic base of Brazilian irrigated rice cultivars is narrow.

  3. Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression

    NARCIS (Netherlands)

    Fu, Jingyuan; Wolfs, Marcel G M; Deelen, Patrick; Westra, Harm Jan; Fehrmann, Rudolf S N; te Meerman, Gerhardus; Buurman, Wim A; Rensen, Sander S M; Groen, Hendricus; Weersma, Rinse K; van den Berg, Leonard H; Veldink, Jan; Ophoff, Roel A; Snieder, Harold; van Heel, David; Jansen, Ritsert C; Hofker, Marten H; Wijmenga, Cisca; Franke, Lude

    2012-01-01

    It is known that genetic variants can affect gene expression, but it is not yet completely clear through what mechanisms genetic variation mediate this expression. We therefore compared the cis-effect of single nucleotide polymorphisms (SNPs) on gene expression between blood samples from 1,240 human

  4. Revealing the Genetic Variation and Allele Heterozygote Javanese and Arab Families in Malang East Java Indonesia

    Directory of Open Access Journals (Sweden)

    Nila Kartika Sari

    2014-02-01

    Results: Our result showed that the genetic variability and heterozygote allele increasing by using the 13 CODIS markers from the first generation to the next generation with paternity testing from each family were matched. Conclusion: We can conclude that in a Javanese-Arab family ethnic seems stimulate the increasing genetic variation and allele heterozygote.

  5. Estimation of genetic variation in residual variance in female and male broiler chickens

    NARCIS (Netherlands)

    Mulder, H.A.; Hill, W.G.; Vereijken, A.; Veerkamp, R.F.

    2009-01-01

    In breeding programs, robustness of animals and uniformity of end product can be improved by exploiting genetic variation in residual variance. Residual variance can be defined as environmental variance after accounting for all identifiable effects. The aims of this study were to estimate genetic va

  6. Building high resolution genetic variation map for Mongolians

    DEFF Research Database (Denmark)

    Guo, Xiaosen

    ,000 years ago). Harsh environmental conditions and characteristic lifestyle result in extremely high prevalence of several genetic diseases in Mongolians, such as alcohol dependency, obesity, Type 2 Diabetes (T2D) and lipid metabolism related diseases. As invention and wide application of new generation...... discovered the genetic structure of the ethnic group presents the features of spreading widely, high admixed and some level of population stratification. In further inferences of demographic history and gene flow events, we found different tribes present diverse population history and observed frequent gene...

  7. Human loci involved in drug biotransformation: worldwide genetic variation, population structure, and pharmacogenetic implications.

    Science.gov (United States)

    Maisano Delser, Pierpaolo; Fuselli, Silvia

    2013-05-01

    Understanding the role of inheritance in individual variation in drug response is the focus of pharmacogenetics (PGx). A key part of this understanding is quantifying the role of genetic ancestry in this phenotypic outcome. To provide insight into the relationship between ethnicity and drug response, this study first infers the global distribution of PGx variation and defines its structure. Second, the study evaluates if geographic population structure stems from all PGx loci in general, or if structure is caused by specific genes. Lastly, we identify the genetic variants contributing the greatest proportion of such structure. Our study describes the global genetic structure of PGx loci across the 52 populations of the Human Genome Diversity Cell-Line Panel, the most inclusive set of human populations freely available for studies on human genetic variation. By analysing genetic variation at 1,001 single nucleotide polymorphisms (SNPs) involved in biotransformation of exogenous substances, we describe the between-populations PGx variation, as well geographical groupings of diversity. In addition, with discriminant analysis of principal component (DAPC), we infer how many and which groups of populations are supported by PGx variation, and identify which SNPs actually contribute to the PGx structure between such groups. Our results show that intergenic, synonymous and non-synonymous SNPs show similar levels of genetic variation across the globe. Conversely, loci coding for Cytochrome P450s (mainly metabolizing exogenous substances) show significantly higher levels of genetic diversity between populations than the other gene categories. Overall, genetic variation at PGx loci correlates with geographic distances between populations, and the apportionment of genetic variation is similar to that observed for the rest of the genome. In other words, the pattern of PGx variation has been mainly shaped by the demographic history of our species, as in the case of most of our

  8. Genetic variation and population structure in Oryza malampuzhaensis Krish. et Chand. endemic to Western Ghats, South India

    Indian Academy of Sciences (India)

    George Thomas; Sreejayan; Latha Joseph; Philomena Kuriachan

    2001-12-01

    Oryza malampuzhaensis Krish. et Chand. ($2n = 4x = 48$; Poaceae, Oryza) is endemic to Western Ghats, South India, and shows a highly localized distribution over a small geographical area in this region. This is the most poorly understood taxon in genus Oryza and is often misidentified as O. officinalis owing to their close morphology. We assessed the nature and distribution of genetic variation among 11 populations of O. malampuzhaensis using random amplified polymorphic DNA markers. The analysis revealed low genetic variation in O. malampuzhaensis. Cluster analysis of pairwise genetic distances of populations revealed three distinct clusters and the grouping of populations largely corresponded to their geographical proximity. Restricted gene flow and a geography-dependent differentiation were evident among populations. The altitude-influenced differences in ecological factors among the natural habitats of the populations seem to be the cause of the geography-dependent differentiation. Genetically isolated smaller populations and a narrow genetic base in O. malampuzhaensis point to its vulnerability to genetic drift and genetic depauperation. Thus O. malampuzhaensis appears to be under the threat of extinction and needs to be conserved by use of suitable methods. The present study also identified molecular markers diagnostic for O. malampuzhaensis.

  9. ALDH1A2 (RALDH2 genetic variation in human congenital heart disease

    Directory of Open Access Journals (Sweden)

    Mesquita Sonia MF

    2009-11-01

    Full Text Available Abstract Background Signaling by the vitamin A-derived morphogen retinoic acid (RA is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2 is critical for cardiac development, we screened patients with congenital heart disease (CHDs for genetic variation at the ALDH1A2 locus. Methods One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430 at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay. Results We describe in Tetralogy of Fallot (TOF the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT design using single marker genotype, or haplotype information do not show differences between cases and controls. Conclusion In summary, our screen indicates that

  10. Some Variations on Total Variation-Based Image Smoothing

    Science.gov (United States)

    2009-03-01

    influential paper, Rudin, Osher, and Fatemi [23] suggested using the bounded variation seminorm to smooth images. The functional proposed in their work has...unit square I = [0, 1]2, where the bounded variation seminorm is defined as |f |BV(I) := ∫ I |Df(x)| dx := sup {∫ I f ∇ · p ∣∣∣ p : I → R2,(1) p ∈ C1(I...approximation to the ROF functional. In Section 3, we propose a new formulation of an upwind finite-difference approximation to the bounded variation seminorm

  11. The combined effects of genetic variation in the SIRT1 gene and dietary intake of n-3 and n-6 polyunsaturated fatty acids on serum LDL-C and HDL-C levels: a population based study

    Directory of Open Access Journals (Sweden)

    Inamori Tomoko

    2013-01-01

    Full Text Available Abstract Background Dyslipidemia due to high total cholesterol, LDL-cholesterol, triglycerides, or low HDL-cholesterol is an important risk factor for coronary heart disease (CHD. Both SIRT1 and PUFAs can influence the expression of genes for nuclear receptors and transcription factors related to lipid metabolism such as LXRα, LXRβ, PPARα, SREBP-1c. Methods A total of 707 Japanese males and 723 females were randomly selected from the participants who visited a medical center for routine medical check-ups. We analyzed the combined effects of the genotype/haplotype of the SIRT1 gene and dietary n-6/n-3 PUFA intake ratio on the determination of serum lipid levels. Results We found that the SIRT1 gene marked with haplotype 2 was associated with decreased serum LDL-cholesterol and increased HDL-cholesterol levels. In addition, the associations between the SIRT1 haplotype 2 and decreased LDL-C and increased HDL-C levels were only observed in the low n-6/n-3 PUFA intake ratio group, but not in the high n-6/n-3 PUFA intake ratio group. Conclusions Our findings indicate that the combination of genetic variation in the SIRT1 gene and dietary n-6 and/or n-3 PUFA intake influence the determination of inter-individual variations of serum levels of LDL-C and HDL-C.

  12. Variation, "evolution", immortality and genetic instabilities in tumour cells.

    Science.gov (United States)

    Bignold, L P

    2007-08-18

    The pathological characteristics of tumour cells often include variation of their histopathological features (i.e. "degrees of de-differentiation") between cases of the same tumour type and between different foci within individual tumours. Usually, only a few cell lines from tumours are immortal. Currently, somatic mutation, replicative infidelity of DNA and aneuploidy are suggested as alternative mechanisms of genomic disturbance underlying tumours. Nevertheless, apart from Hansemann's ideas of "anaplasia" and "de-differentiation" (proposed in the 1890s), and supposed "evolutionary themes" in cancer cell biology, little has been published concerning how histopathologic variation and immortality in tumour cells might arise. This paper reviews applications of the concepts of "variation" to tumours, including concepts of "evolution" and "cellular Darwinism". It is proposed that combinations of somatic mutation, DNA replicative infidelity and aneuploidy may explain the variabilities in tumours, and provide immortality in occasional tumour cells. A possible model involves (i) an initial somatic mutation causing reduced replicative fidelity of DNA, which could be variable in intensity, and thus give rise to variations between cases; (ii) a phase of replicative infidelity of DNA causing daughter cells lines to develop various abnormalities to different degrees, and hence provide for variation between areas of the same tumour. As a last event (iii) occasional asymmetric chromosomal distributions (aneuploidy) might "refresh" the ability of a daughter cell to replicate DNA faithfully causing them to become immortal. Thus extensively mutant and variable, hyperploid, and occasionally immortal cells might arise.

  13. Ecological genetics of floret mass variation in Bromus tectorum (Poaceae)

    Science.gov (United States)

    Susan E. Meyer

    2010-01-01

    Bromus tectorum L. (cheatgrass, downy brome) is a highly invasive inbreeding annual grass that dominates millions of hectares of former shrubland in interior western North America. Factors contributing to its success include strong genetic regulation of key adaptive traits coupled with high phenotypic plasticity in response to resource availability (Meyer and Allen...

  14. Natural and induced genetic variation in the rat

    NARCIS (Netherlands)

    Smits, Bartholomeus Mathijs Godefridus

    2005-01-01

    The laboratory rat is one of the most studied model organisms for human heath and disease. Researchers have developed many inbred strains that specifically mimic aspects of human genetic disease, like hypertension, diabetes, and neurological disorders, like anxiety, schizophrenia, and many others. T

  15. Additive and nonadditive genetic variation in avian personality traits

    NARCIS (Netherlands)

    Van Oers, K.; Drent, P.J.; de Jong, G.; Van Noordwijk, A.J.

    2004-01-01

    Individuals of all vertebrate species differ consistently in their reactions to mildly stressful challenges. These typical reactions, described as personalities or coping strategies, have a clear genetic basis, but the structure of their inheritance in natural populations is almost unknown. We carri

  16. Genetic variation may influence the development of persistent postsurgical pain

    DEFF Research Database (Denmark)

    Jeppesen, Maja Haunstrup; Gögenur, Ismail

    2014-01-01

    Persistent postsurgical pain is a major clinical problem. It is not fully understood why some patients develop persistent postsurgical pain while others do not. The genetic profile might play an important role in this development. In this article, we summarize the existing studies examining...

  17. Global genetic variations predict brain response to faces

    DEFF Research Database (Denmark)

    Dickie, Erin W; Tahmasebi, Amir; French, Leon;

    2014-01-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximu...

  18. Variation and Genetic Structure in Platanus mexicana (Platanaceae along Riparian Altitudinal Gradient

    Directory of Open Access Journals (Sweden)

    Dulce M. Galván-Hernández

    2015-01-01

    Full Text Available Platanus mexicana is a dominant arboreal species of riparian ecosystems. These ecosystems are associated with altitudinal gradients that can generate genetic differences in the species, especially in the extremes of the distribution. However, studies on the altitudinal effect on genetic variation to riparian species are scarce. In Mexico, the population of P. mexicana along the Colipa River (Veracruz State grows below its reported minimum altitude range, possibly the lowest where this tree grows. This suggests that altitude might be an important factor in population genetics differentiation. We examined the genetic variation and population structuring at four sites with different altitudes (70, 200, 600 and 1700 m a.s.l. using ten inter-simple sequence repeats (ISSR markers. The highest value for Shannon index and Nei’s gene diversity was obtained at 1700 m a.s.l. (He = 0.27, Ne = 1.47, I = 0.42 and polymorphism reached the top value at the middle altitude (% p = 88.57. Analysis of molecular variance (AMOVA and STRUCTURE analysis indicated intrapopulation genetic differentiation. The arithmetic average (UPGMA dendrogram identified 70 m a.s.l. as the most genetically distant site. The genetic structuring resulted from limited gene flow and genetic drift. This is the first report of genetic variation in populations of P. mexicana in Mexico. This research highlights its importance as a dominant species, and its ecological and evolutionary implications in altitudinal gradients of riparian ecosystems.

  19. Inbreeding and loss of genetic variation in a reintroduced population of Mauritius Kestrel.

    Science.gov (United States)

    Ewing, Steven R; Nager, Ruedi G; Nicoll, Malcolm A C; Aumjaud, Aurelien; Jones, Carl G; Keller, Lukas F

    2008-04-01

    Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N(eI)= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N(eV)= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.

  20. Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility.

    Science.gov (United States)

    Hosgood, H Dean; Cawthon, Richard; He, Xingzhou; Chanock, Stephen; Lan, Qing

    2009-11-01

    Telomeres are responsible for the protection of the chromosome ends and shortened telomere length has been associated with risk of multiple cancers. Genetic variation in telomere-related genes may alter cancer risk associated with telomere length. Using lung cancer cases (n=120) and population-based controls (n=110) from Xuanwei, China, we analyzed telomere length separately and in conjunction with single nucleotide polymorphisms in the telomere maintenance genes POT1, TERT, and TERF2, which we have previously reported were associated with risk of lung cancer in this study. POT1 rs10244817, TERT rs2075786, and TERF2 rs251796 were significantly associated with lung cancer (p(trend)telomere length was not significantly associated with risk of lung cancer (OR=1.58; 95% CI=0.79-3.18) when compared to the longest tertile of telomere length. When stratified by genotype, there was a suggestion of a dose-response relationship between tertiles of telomere length and risk of lung cancer among the POT1 rs10244817 common variant carriers (OR (95% CI)=1.33 (0.47-3.75), 3.30 (1.14-9.56), respectively) but not among variant genotype carriers (p(interaction)=0.05). Our findings provide evidence that telomere length and genetic variation in telomere maintenance genes may be associated with risk of lung cancer susceptibility and warrant replication in larger studies.

  1. Other tetraploid species and conspecific diploids as sources of genetic variation for an autotetraploid

    NARCIS (Netherlands)

    Stift, M.; Bregman, R.; Oostermeijer, J.G.B.; van Tienderen, P.H.

    2010-01-01

    • Premise of the study: Most plants are polyploid and have more than two copies of the genome. The evolutionary success of polyploids is often attributed to their potential to harbor increased genetic variation, but it is poorly understood how polyploids can attain such variation. Because of their f

  2. Recurrent Coding Sequence Variation Explains Only A Small Fraction of the Genetic Architecture of Colorectal Cancer

    NARCIS (Netherlands)

    Timofeeva, Maria N.; Ben Kinnersley, [Unknown; Farrington, Susan M.; Whiffin, Nicola; Palles, Claire; Svinti, Victoria; Lloyd, Amy; Gorman, Maggie; Ooi, Li-Yin; Hosking, Fay; Barclay, Ella; Zgaga, Lina; Dobbins, Sara; Martin, Lynn; Theodoratou, Evropi; Broderick, Peter; Tenesa, Albert; Smillie, Claire; Grimes, Graeme; Hayward, Caroline; Campbell, Archie; Porteous, David; Deary, Ian J.; Harris, Sarah E.; Northwood, Emma L.; Barrett, Jennifer H.; Smith, Gillian; Wolf, Roland; Forman, David; Morreau, Hans; Ruano, Dina; Tops, Carli; Wijnen, Juul; Schrumpf, Melanie; Boot, Arnoud; Vasen, Hans F. A.; Hes, Frederik J.; van Wezel, Tom; Franke, Andre; Lieb, Wolgang; Schafmayer, Clemens; Hampe, Jochen; Buch, Stephan; Propping, Peter; Hemminki, Kari; Foersti, Asta; Westers, Helga; Hofstra, Robert; Pinheiro, Manuela; Pinto, Carla; Teixeira, Manuel; Ruiz-Ponte, Clara; Fernandez-Rozadilla, Ceres; Carracedo, Angel; Castells, Antoni; Castellvi-Bel, Sergi; Campbell, Harry; Bishop, D. Timothy; Tomlinson, Ian P. M.; Dunlop, Malcolm G.; Houlston, Richard S.

    2015-01-01

    Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,0

  3. Recurrent Coding Sequence Variation Explains Only A Small Fraction of the Genetic Architecture of Colorectal Cancer

    NARCIS (Netherlands)

    Timofeeva, Maria N.; Ben Kinnersley, [Unknown; Farrington, Susan M.; Whiffin, Nicola; Palles, Claire; Svinti, Victoria; Lloyd, Amy; Gorman, Maggie; Ooi, Li-Yin; Hosking, Fay; Barclay, Ella; Zgaga, Lina; Dobbins, Sara; Martin, Lynn; Theodoratou, Evropi; Broderick, Peter; Tenesa, Albert; Smillie, Claire; Grimes, Graeme; Hayward, Caroline; Campbell, Archie; Porteous, David; Deary, Ian J.; Harris, Sarah E.; Northwood, Emma L.; Barrett, Jennifer H.; Smith, Gillian; Wolf, Roland; Forman, David; Morreau, Hans; Ruano, Dina; Tops, Carli; Wijnen, Juul; Schrumpf, Melanie; Boot, Arnoud; Vasen, Hans F. A.; Hes, Frederik J.; van Wezel, Tom; Franke, Andre; Lieb, Wolgang; Schafmayer, Clemens; Hampe, Jochen; Buch, Stephan; Propping, Peter; Hemminki, Kari; Foersti, Asta; Westers, Helga; Hofstra, Robert; Pinheiro, Manuela; Pinto, Carla; Teixeira, Manuel; Ruiz-Ponte, Clara; Fernandez-Rozadilla, Ceres; Carracedo, Angel; Castells, Antoni; Castellvi-Bel, Sergi; Campbell, Harry; Bishop, D. Timothy; Tomlinson, Ian P. M.; Dunlop, Malcolm G.; Houlston, Richard S.

    2015-01-01

    Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,0

  4. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region

    DEFF Research Database (Denmark)

    Silventoinen, Karri; Jelenkovic, Aline; Sund, Reijo

    2017-01-01

    Background: Genes and the environment contribute to variation in adult body mass index [BMI (in kg/m2)], but factors modifying these variance components are poorly understood. Objective: We analyzed genetic and environmental variation in BMI between men and women from young adulthood to old age f...

  5. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region

    DEFF Research Database (Denmark)

    Silventoinen, Karri; Jelenkovic, Aline; Sund, Reijo

    2017-01-01

    Background: Genes and the environment contribute to variation in adult body mass index [BMI (in kg/m(2))], but factors modifying these variance components are poorly understood.Objective: We analyzed genetic and environmental variation in BMI between men and women from young adulthood to old age ...

  6. Recurrent Coding Sequence Variation Explains only A Small Fraction of the Genetic Architecture of Colorectal Cancer

    NARCIS (Netherlands)

    M.N. Timofeeva (Maria N.); B. Kinnersley (Ben); S.M. Farrington (Susan M.); N. Whiffin (Nicola); C. Palles (Claire); V. Svinti (Victoria); A. Lloyd (Amy); M. Gorman (Maggie); L.-Y. Ooi (Li-Yin); F. Hosking (Fay); E. Barclay (Ella); L. Zgaga (Lina); S.E. Dobbins (Sara E.); L. Martin (Lynn); E. Theodoratou (Evropi); P. Broderick (Peter); A. Tenesa (Albert); C. Smillie (Claire); G. Grimes (Graeme); C. Hayward (Caroline); A. Campbell (Archie); D. Porteous (David); I.J. Deary (Ian J.); S.E. Harris (Sarah); J.B. Northwood (John Blackman); J.H. Barrett (Jennifer H.); G. Smith (Gillian); R. Wolf (Roland); D. Forman (David); H. Morreau (Hans); D. Ruano (Dina); C. Tops (Carli); J.T. Wijnen (Juul); M. Schrumpf (Melanie); A. Boot (Arnoud); H. Vasen (Hans); F.J. Hes (Frederik); T. van Wezel (Tom); A. Franke (Andre); W. Lieb (Wolgang); C. Schafmayer (Clemens); J. Hampe (Jochen); T. Buch (Thorsten); P. Propping (Peter); K. Hemminki (Kari); A. Försti (Asta); H. Westers (Helga); R.M.W. Hofstra (Robert); M. Pinheiro (Manuela); C. Pinto (Carla); P.J. Teixeira; C. Ruiz-Ponte (Clara); C. Fernández-Rozadilla (Ceres); A. Carracedo (Angel); A. Castells; S. Castellví-Bel; H. Campbell (Harry); D.T. Bishop (David Timothy); I. Tomlinson (Ian); M.G. Dunlop (Malcolm); R. Houlston (Richard)

    2015-01-01

    textabstractWhilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs ca

  7. Genetic variation in variability: phenotypic variability of fledging weight and its evolution in a songbird population

    NARCIS (Netherlands)

    Mulder, H.A.; Gienapp, P; Visser, ME

    2016-01-01

    Variation in traits is essential for natural selection to operate and genetic and environmental effects can contribute to this phenotypic variation. From domesticated populations, we know that families can differ in their level of within-family variance, which leads to the intriguing situation that

  8. Genetic variation in variability : phenotypic variability of fledging weight and its evolution in a songbird population

    NARCIS (Netherlands)

    Mulder, Han A.; Gienapp, P; Visser, Marcel

    2016-01-01

    Variation in traits is essential for natural selection to operate and genetic and environmental effects can contribute to this phenotypic variation. From domesticated populations we know that families can differ in their level of within-family variance, which leads to the intriguing situation that w

  9. Recurrent Coding Sequence Variation Explains only A Small Fraction of the Genetic Architecture of Colorectal Cancer

    NARCIS (Netherlands)

    M.N. Timofeeva (Maria N.); B. Kinnersley (Ben); S.M. Farrington (Susan M.); N. Whiffin (Nicola); C. Palles (Claire); V. Svinti (Victoria); A. Lloyd (Amy); M. Gorman (Maggie); L.-Y. Ooi (Li-Yin); F. Hosking (Fay); E. Barclay (Ella); L. Zgaga (Lina); S.E. Dobbins (Sara E.); L. Martin (Lynn); E. Theodoratou (Evropi); P. Broderick (Peter); A. Tenesa (Albert); C. Smillie (Claire); G. Grimes (Graeme); C. Hayward (Caroline); A. Campbell (Archie); D. Porteous (David); I.J. Deary (Ian J.); S.E. Harris (Sarah); J.B. Northwood (John Blackman); J.H. Barrett (Jennifer H.); G. Smith (Gillian); R. Wolf (Roland); D. Forman (David); H. Morreau (Hans); D. Ruano (Dina); C. Tops (Carli); J.T. Wijnen (Juul); M. Schrumpf (Melanie); A. Boot (Arnoud); H. Vasen (Hans); F.J. Hes (Frederik); T. van Wezel (Tom); A. Franke (Andre); W. Lieb (Wolgang); C. Schafmayer (Clemens); J. Hampe (Jochen); T. Buch (Thorsten); P. Propping (Peter); K. Hemminki (Kari); A. Försti (Asta); H. Westers (Helga); R.M.W. Hofstra (Robert); M. Pinheiro (Manuela); C. Pinto (Carla); P.J. Teixeira; C. Ruiz-Ponte (Clara); C. Fernández-Rozadilla (Ceres); A. Carracedo (Angel); A. Castells; S. Castellví-Bel; H. Campbell (Harry); D.T. Bishop (David Timothy); I. Tomlinson (Ian); M.G. Dunlop (Malcolm); R. Houlston (Richard)

    2015-01-01

    textabstractWhilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs ca

  10. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length

    NARCIS (Netherlands)

    Cook, D.C.; Zdraljevic, S.; Tanny, R.E.; Seo, B.; Riccardi, D.D.; Noble, L.M.; Rockman, M.V.; Alkema, M.J.; Braendle, C.; Kammenga, J.E.; Wang, J.; Kruglyak, L.; Felix, M.A.; Lee, J.; Andersen, E.C.

    2016-01-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organis

  11. Recurrent Coding Sequence Variation Explains only A Small Fraction of the Genetic Architecture of Colorectal Cancer

    NARCIS (Netherlands)

    M.N. Timofeeva (Maria N.); B. Kinnersley (Ben); S.M. Farrington (Susan M.); N. Whiffin (Nicola); C. Palles (Claire); V. Svinti (Victoria); A. Lloyd (Amy); M. Gorman (Maggie); L.-Y. Ooi (Li-Yin); F. Hosking (Fay); E. Barclay (Ella); L. Zgaga (Lina); S.E. Dobbins (Sara E.); L. Martin (Lynn); E. Theodoratou (Evropi); P. Broderick (Peter); A. Tenesa (Albert); C. Smillie (Claire); G. Grimes (Graeme); C. Hayward (Caroline); A. Campbell (Archie); D. Porteous (David); I.J. Deary (Ian J.); S.E. Harris (Sarah); J.B. Northwood (John Blackman); J.H. Barrett (Jennifer H.); G. Smith (Gillian); R. Wolf (Roland); D. Forman (David); H. Morreau (Hans); D. Ruano (Dina); C. Tops (Carli); J.T. Wijnen (Juul); M. Schrumpf (Melanie); A. Boot (Arnoud); H. Vasen (Hans); F.J. Hes (Frederik); T. van Wezel (Tom); A. Franke (Andre); W. Lieb (Wolgang); C. Schafmayer (Clemens); J. Hampe (Jochen); T. Buch (Thorsten); P. Propping (Peter); K. Hemminki (Kari); A. Försti (Asta); H. Westers (Helga); R.M.W. Hofstra (Robert); M. Pinheiro (Manuela); C. Pinto (Carla); P.J. Teixeira; C. Ruiz-Ponte (Clara); C. Fernández-Rozadilla (Ceres); A. Carracedo (Angel); A. Castells; S. Castellví-Bel; H. Campbell (Harry); D.T. Bishop (David Timothy); I. Tomlinson (Ian); M.G. Dunlop (Malcolm); R. Houlston (Richard)

    2015-01-01

    textabstractWhilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs

  12. Genetic variation in a tropical tree species influences the associated epiphytic plant and invertebrate communities in a complex forest ecosystem.

    Science.gov (United States)

    Zytynska, Sharon E; Fay, Michael F; Penney, David; Preziosi, Richard F

    2011-05-12

    Genetic differences among tree species, their hybrids and within tree species are known to influence associated ecological communities and ecosystem processes in areas of limited species diversity. The extent to which this same phenomenon occurs based on genetic variation within a single tree species, in a diverse complex ecosystem such as a tropical forest, is unknown. The level of biodiversity and complexity of the ecosystem may reduce the impact of a single tree species on associated communities. We assessed the influence of within-species genetic variation in the tree Brosimum alicastrum (Moraceae) on associated epiphytic and invertebrate communities in a neotropical rainforest. We found a significant positive association between genetic distance of trees and community difference of the epiphytic plants growing on the tree, the invertebrates living among the leaf litter around the base of the tree, and the invertebrates found on the tree trunk. This means that the more genetically similar trees are host to more similar epiphyte and invertebrate communities. Our work has implications for whole ecosystem conservation management, since maintaining sufficient genetic diversity at the primary producer level will enhance species diversity of other plants and animals.

  13. The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis).

    Science.gov (United States)

    Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor

    2010-09-01

    The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.

  14. Range-based estimation of quadratic variation

    DEFF Research Database (Denmark)

    Christensen, Kim; Podolskij, Mark

    This paper proposes using realized range-based estimators to draw inference about the quadratic variation of jump-diffusion processes. We also construct a range-based test of the hypothesis that an asset price has a continuous sample path. Simulated data shows that our approach is efficient, the ......, the test is well-sized and more powerful than a return-based t-statistic for sampling frequencies normally used in empirical work. Applied to equity data, we show that the intensity of the jump process is not as high as previously reported....

  15. Representing genetic variation as continuous surfaces: An approach for identifying spatial dependency in landscape genetic studies

    Science.gov (United States)

    Melanie A. Murphy; Jeffrey S. Evans; Samuel A. Cushman; Andrew Storfer

    2008-01-01

    Landscape genetics, an emerging field integrating landscape ecology and population genetics, has great potential to influence our understanding of habitat connectivity and distribution of organisms. Whereas typical population genetics studies summarize gene flow as pairwise measures between sampling localities, landscape characteristics that influence population...

  16. Moderate multiple parentage and low genetic variation reduces the potential for genetic incompatibility avoidance despite high risk of inbreeding.

    Directory of Open Access Journals (Sweden)

    Cristina Tuni

    Full Text Available BACKGROUND: Polyandry is widespread throughout the animal kingdom. In the absence of direct benefits of mating with different males, the underlying basis for polyandry is enigmatic because it can carry considerable costs such as elevated exposure to sexual diseases, physical injury or other direct fitness costs. Such costs may be balanced by indirect genetic benefits to the offspring of polyandrous females. We investigated polyandry and patterns of parentage in the spider Stegodyphus lineatus. This species experiences relatively high levels of inbreeding as a result of its spatial population structure, philopatry and limited male mating dispersal. Polyandry may provide an opportunity for post mating inbreeding avoidance that reduces the risk of genetic incompatibilities arising from incestuous matings. However, multiple mating carries direct fitness costs to females suggesting that genetic benefits must be substantial to counter direct costs. METHODOLOGY/PRINCIPAL FINDINGS: Genetic parentage analyses in two populations from Israel and a Greek island, showed mixed-brood parentage in approximately 50% of the broods. The number of fathers ranged from 1-2 indicating low levels of multiple parentage and there was no evidence for paternity bias in mixed-broods from both populations. Microsatellite loci variation suggested limited genetic variation within populations, especially in the Greek island population. Relatedness estimates among females in the maternal generation and potentially interacting individuals were substantial indicating full-sib and half-sib relationships. CONCLUSIONS/SIGNIFICANCE: Three lines of evidence indicate limited potential to obtain substantial genetic benefits in the form of reduced inbreeding. The relatively low frequency of multiple parentage together with low genetic variation among potential mates and the elevated risk of mating among related individuals as corroborated by our genetic data suggest that there are limited

  17. Genetic variation and plasticity of Plantago coronopus under saline conditions

    NARCIS (Netherlands)

    Smekens, Marret; Van Tienderen, P.H.

    2001-01-01

    Phenotypic plasticity may allow organisms to cope with variation in the environmental conditions they encounter in their natural habitats. Salt adaptation appears to be an excellent example of such a plastic response. Many plant species accumulate organic solutes in response to saline conditions. Co

  18. Diversity and Genetic Variation among Brevipalpus Populations from Brazil and Mexico

    Science.gov (United States)

    Sánchez-Velázquez, E. J.; Santillán-Galicia, M. T.; Novelli, V. M.; Nunes, M. A.; Mora-Aguilera, G.; Valdez-Carrasco, J. M.; Otero-Colina, G.; Freitas-Astúa, J.

    2015-01-01

    Brevipalpus phoenicis s.l. is an economically important vector of the Citrus leprosis virus-C (CiLV-C), one of the most severe diseases attacking citrus orchards worldwide. Effective control strategies for this mite should be designed based on basic information including its population structure, and particularly the factors that influence its dynamics. We sampled sweet orange orchards extensively in eight locations in Brazil and 12 in Mexico. Population genetic structure and genetic variation between both countries, among locations and among sampling sites within locations were evaluated by analysing nucleotide sequence data from fragments of the mitochondrial cytochrome oxidase subunit I (COI). In both countries, B. yothersi was the most common species and was found in almost all locations. Individuals from B. papayensis were found in two locations in Brazil. Brevipalpus yothersi populations collected in Brazil were more genetically diverse (14 haplotypes) than Mexican populations (four haplotypes). Although geographical origin had a low but significant effect (ca. 25%) on the population structure, the greatest effect was from the within location comparison (37.02 %). Potential factors driving our results were discussed. PMID:26207373

  19. Diversity and Genetic Variation among Brevipalpus Populations from Brazil and Mexico.

    Directory of Open Access Journals (Sweden)

    E J Sánchez-Velázquez

    Full Text Available Brevipalpus phoenicis s.l. is an economically important vector of the Citrus leprosis virus-C (CiLV-C, one of the most severe diseases attacking citrus orchards worldwide. Effective control strategies for this mite should be designed based on basic information including its population structure, and particularly the factors that influence its dynamics. We sampled sweet orange orchards extensively in eight locations in Brazil and 12 in Mexico. Population genetic structure and genetic variation between both countries, among locations and among sampling sites within locations were evaluated by analysing nucleotide sequence data from fragments of the mitochondrial cytochrome oxidase subunit I (COI. In both countries, B. yothersi was the most common species and was found in almost all locations. Individuals from B. papayensis were found in two locations in Brazil. Brevipalpus yothersi populations collected in Brazil were more genetically diverse (14 haplotypes than Mexican populations (four haplotypes. Although geographical origin had a low but significant effect (ca. 25% on the population structure, the greatest effect was from the within location comparison (37.02 %. Potential factors driving our results were discussed.

  20. Emotional voice processing: investigating the role of genetic variation in the serotonin transporter across development.

    Directory of Open Access Journals (Sweden)

    Tobias Grossmann

    Full Text Available The ability to effectively respond to emotional information carried in the human voice plays a pivotal role for social interactions. We examined how genetic factors, especially the serotonin transporter genetic variation (5-HTTLPR, affect the neurodynamics of emotional voice processing in infants and adults by measuring event-related brain potentials (ERPs. The results revealed that infants distinguish between emotions during an early perceptual processing stage, whereas adults recognize and evaluate the meaning of emotions during later semantic processing stages. While infants do discriminate between emotions, only in adults was genetic variation associated with neurophysiological differences in how positive and negative emotions are processed in the brain. This suggests that genetic association with neurocognitive functions emerges during development, emphasizing the role that variation in serotonin plays in the maturation of brain systems involved in emotion recognition.

  1. Pedigree- and SNP-Associated Genetics and Recent Environment are the Major Contributors to Anthropometric and Cardiometabolic Trait Variation.

    Science.gov (United States)

    Xia, Charley; Amador, Carmen; Huffman, Jennifer; Trochet, Holly; Campbell, Archie; Porteous, David; Hastie, Nicholas D; Hayward, Caroline; Vitart, Veronique; Navarro, Pau; Haley, Chris S

    2016-02-01

    Genome-wide association studies have successfully identified thousands of loci for a range of human complex traits and diseases. The proportion of phenotypic variance explained by significant associations is, however, limited. Given the same dense SNP panels, mixed model analyses capture a greater proportion of phenotypic variance than single SNP analyses but the total is generally still less than the genetic variance estimated from pedigree studies. Combining information from pedigree relationships and SNPs, we examined 16 complex anthropometric and cardiometabolic traits in a Scottish family-based cohort comprising up to 20,000 individuals genotyped for ~520,000 common autosomal SNPs. The inclusion of related individuals provides the opportunity to also estimate the genetic variance associated with pedigree as well as the effects of common family environment. Trait variation was partitioned into SNP-associated and pedigree-associated genetic variation, shared nuclear family environment, shared couple (partner) environment and shared full-sibling environment. Results demonstrate that trait heritabilities vary widely but, on average across traits, SNP-associated and pedigree-associated genetic effects each explain around half the genetic variance. For most traits the recently-shared environment of couples is also significant, accounting for ~11% of the phenotypic variance on average. On the other hand, the environment shared largely in the past by members of a nuclear family or by full-siblings, has a more limited impact. Our findings point to appropriate models to use in future studies as pedigree-associated genetic effects and couple environmental effects have seldom been taken into account in genotype-based analyses. Appropriate description of the trait variation could help understand causes of intra-individual variation and in the detection of contributing loci and environmental factors.

  2. Genetic variations involved in interindividual variability in carotenoid status.

    OpenAIRE

    Borel, Patrick

    2012-01-01

    International audience; As shown in most clinical studies dedicated to carotenoids, there is a huge interindividual variability in absorption, and blood and tissue responses, of dietary carotenoids. The recent discovery that several proteins are involved in carotenoid metabolism in humans has prompted a possible explanation for this phenomenon: genetic variants in genes encoding for these proteins may affect their expression or activity, and in turn carotenoid metabolism and carotenoid status...

  3. Genet Variation of Ectomycorrhizal Suillus granulatus Fruiting Bodies in Pinus strobus Stands.

    Science.gov (United States)

    Lee, Hwa-Yong; Koo, Chang-Duck

    2016-03-01

    The genets of Suillus granulatus in a Pinus strobus stand (13 m × 60 m) were identified using random amplified polymorphic DNA molecular markers and the DNA of mushrooms that fruited for two years, and variations in genet size and distribution were analyzed. From a total of 116 mushrooms, 73 genets were identified and were grouped into three locations. The genets of mushrooms in close proximity differed from each other. The genet sizes varied at any of the three locations. The lengths of the identified genets in the pine stand ranged from 0.09 to 2.90 m. The average number of mushrooms per genet was 1.2 to 2.3, and the percentage of genets that were represented by a single mushroom was 44% to 94%. This variation in the genets of mushrooms in close proximity suggests that the ectomycorrhizal mycelial bodies of S. granulatus propagated sexually by fusing haploid spores derived from the mushrooms gills with below-ground mycelia. Therefore, it is necessary further to investigate the formation of new genets through spores in ectomycorrhizal fungal colonies.

  4. Role of novel DSP_p.Q986X genetic variation in arrhythmogenic right ventricular cardiomyopathy.

    Science.gov (United States)

    Campuzano, Oscar; Alcalde, Mireia; Berne, Paola; Zorio, Esther; Iglesias, Anna; Navarro-Manchón, Josep; Brugada, Josep; Brugada, Ramon

    2013-10-01

    Arrhythmogenic right ventricular cardiomyopathy is an inherited disease characterized by a progressive myocardium fibrofatty replacement. This abnormality disrupts electrical transmission causing ventricular arrhythmias and sudden cardiac death. This genetic disease is transmitted mainly with an autosomal dominant pattern. Our aim was to identify the genetic defect responsible for the pathology in a Spanish family, and to perform its phenotype connotations. A total of 15 individuals in a three-generation Spanish family were screened after the sudden cardiac death of one family member. All they underwent a complete physical examination, 12-lead electrocardiogram, 2-dimensional echocardiography, magnetic resonance imaging, exercise stress test, 24-h Holter and genetic testing. Autopsy revealed the presence of biventricular arrhythmogenic dysplasia in deceased member. Six family members showed clinical symptoms but only three of them fulfilled definite diagnostic criteria of the disease. Genetic analysis showed a novel nonsense genetic variation in nine family members. All family members with clinical symptoms carried the genetic variation. Genetic testing in families affected by arrhythmogenic right ventricular cardiomyopathy helps to identify the genetic cause responsible for the disease. The incomplete penetrance and variable phenotypic expression highlights the need of comprehensive genetic analysis and further phenotype implications of genetics to clarify the pathophysiology of the disease. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Temporal variation in genetic diversity and effective population size of Mediterranean and subalpine Arabidopsis thaliana populations.

    Science.gov (United States)

    Gomaa, Nasr H; Montesinos-Navarro, Alicia; Alonso-Blanco, Carlos; Picó, F Xavier

    2011-09-01

    Currently, there exists a limited knowledge on the extent of temporal variation in population genetic parameters of natural populations. Here, we study the extent of temporal variation in population genetics by genotyping 151 genome-wide SNP markers polymorphic in 466 individuals collected from nine populations of the annual plant Arabidopsis thaliana during 4 years. Populations are located along an altitudinal climatic gradient from Mediterranean to subalpine environments in NE Spain, which has been shown to influence key demographic attributes and life cycle adaptations. Genetically, A. thaliana populations were more variable across space than over time. Common multilocus genotypes were detected several years in the same population, whereas low-frequency multilocus genotypes appeared only 1 year. High-elevation populations were genetically poorer and more variable over time than low-elevation populations, which might be caused by a higher overall demographic instability at higher altitudes. Estimated effective population sizes were low but also showed a significant decreasing trend with increasing altitude, suggesting a deeper impact of genetic drift at high-elevation populations. In comparison with single-year samplings, repeated genotyping over time captured substantially higher amount of genetic variation contained in A. thaliana populations. Furthermore, repeated genotyping of populations provided novel information on the genetic properties of A. thaliana populations and allowed hypothesizing on their underlying mechanisms. Therefore, including temporal genotyping programmes into traditional population genetic studies can significantly increase our understanding of the dynamics of natural populations.

  6. Recombination networks as genetic markers in a human variation study of the Old World.

    Science.gov (United States)

    Javed, Asif; Melé, Marta; Pybus, Marc; Zalloua, Pierre; Haber, Marc; Comas, David; Netea, Mihai G; Balanovsky, Oleg; Balanovska, Elena; Jin, Li; Yang, Yajun; Arunkumar, Ganeshprasad; Pitchappan, Ramasamy; Bertranpetit, Jaume; Calafell, Francesc; Parida, Laxmi

    2012-04-01

    We have analyzed human genetic diversity in 33 Old World populations including 23 populations obtained through Genographic Project studies. A set of 1,536 SNPs in five X chromosome regions were genotyped in 1,288 individuals (mostly males). We use a novel analysis employing subARG network construction with recombining chromosomal segments. Here, a subARG is constructed independently for each of five gene-free regions across the X chromosome, and the results are aggregated across them. For PCA, MDS and ancestry inference with STRUCTURE, the subARG is processed to obtain feature vectors of samples and pairwise distances between samples. The observed population structure, estimated from the five short X chromosomal segments, supports genome-wide frequency-based analyses: African populations show higher genetic diversity, and the general trend of shared variation is seen across the globe from Africa through Middle East, Europe, Central Asia, Southeast Asia, and East Asia in broad patterns. The recombinational analysis was also compared with established methods based on SNPs and haplotypes. For haplotypes, we also employed a fixed-length approach based on information-content optimization. Our recombinational analysis suggested a southern migration route out of Africa, and it also supports a single, rapid human expansion from Africa to East Asia through South Asia.

  7. Range-based estimation of quadratic variation

    DEFF Research Database (Denmark)

    Christensen, Kim; Podolskij, Mark

    In this paper, we propose using realized range-based estimation to draw inference about the quadratic variation of jump-diffusion processes. We also construct a new test of the hypothesis that an asset price has a continuous sample path. Simulated data shows that our approach is efficient, the te...... is well-sized and more powerful than a return-based t-statistic for sampling frequencies normally used in empirical work. Applied to equity data, we find that the intensity of the jump process is not as high as previously reported....

  8. Human genetic variation and the gut microbiome in disease.

    Science.gov (United States)

    Hall, Andrew Brantley; Tolonen, Andrew C; Xavier, Ramnik J

    2017-08-21

    Taxonomic and functional changes to the composition of the gut microbiome have been implicated in multiple human diseases. Recent microbiome genome-wide association studies reveal that variants in many human genes involved in immunity and gut architecture are associated with an altered composition of the gut microbiome. Although many factors can affect the microbial organisms residing in the gut, a number of recent findings support the hypothesis that certain host genetic variants predispose an individual towards microbiome dysbiosis. This condition, in which the normal microbiome population structure is disturbed, is a key feature in disorders of metabolism and immunity.

  9. Genetic variation of phytate and ionorganic phosphorus in maize population

    OpenAIRE

    2009-01-01

    Analysis of 60 maize populations was conducted to identify genotypes that had either low or high concentration of phytate. Genetic variability in seed phytate content was observed, with values ranging from 1,147 to 4, 13 g kg-1. Inorganic phosphorus (Pi) concentrations were between 0, 35 and 1, 29 and averaged 0, 65 g kg-1. Three groups of populations were identified as having low, intermediate and high phytate content. The low phytate concentration was measured in eight, intermediate in 25 a...

  10. Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster.

    Science.gov (United States)

    Dembeck, Lauren M; Böröczky, Katalin; Huang, Wen; Schal, Coby; Anholt, Robert R H; Mackay, Trudy F C

    2015-11-14

    Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

  11. Identification of species and genetic variation in Taenia isolates from human and swine of North India.

    Science.gov (United States)

    Singh, Satyendra K; Prasad, Kashi N; Singh, Aloukick K; Gupta, Kamlesh K; Chauhan, Ranjeet S; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Pati, Binod K

    2016-10-01

    Taenia solium is the major cause of taeniasis and cysticercosis/neurocysticercosis (NCC) in the developing countries including India, but the existence of other Taenia species and genetic variation have not been studied in India. So, we studied the existence of different Taenia species, and sequence variation in Taenia isolates from human (proglottids and cysticerci) and swine (cysticerci) in North India. Amplification of cytochrome c oxidase subunit 1 gene (cox1) was done by polymerase chain reaction (PCR) followed by sequencing and phylogenetic analysis. We identified two species of Taenia i.e. T. solium and Taenia asiatica in our isolates. T. solium isolates showed similarity with Asian genotype and nucleotide variations from 0.25 to 1.01 %, whereas T. asiatica displayed nucleotide variations ranged from 0.25 to 0.5 %. These findings displayed the minimal genetic variations in North Indian isolates of T. solium and T. asiatica.

  12. A high-definition view of functional genetic variation from natural yeast genomes.

    Science.gov (United States)

    Bergström, Anders; Simpson, Jared T; Salinas, Francisco; Barré, Benjamin; Parts, Leopold; Zia, Amin; Nguyen Ba, Alex N; Moses, Alan M; Louis, Edward J; Mustonen, Ville; Warringer, Jonas; Durbin, Richard; Liti, Gianni

    2014-04-01

    The question of how genetic variation in a population influences phenotypic variation and evolution is of major importance in modern biology. Yet much is still unknown about the relative functional importance of different forms of genome variation and how they are shaped by evolutionary processes. Here we address these questions by population level sequencing of 42 strains from the budding yeast Saccharomyces cerevisiae and its closest relative S. paradoxus. We find that genome content variation, in the form of presence or absence as well as copy number of genetic material, is higher within S. cerevisiae than within S. paradoxus, despite genetic distances as measured in single-nucleotide polymorphisms being vastly smaller within the former species. This genome content variation, as well as loss-of-function variation in the form of premature stop codons and frameshifting indels, is heavily enriched in the subtelomeres, strongly reinforcing the relevance of these regions to functional evolution. Genes affected by these likely functional forms of variation are enriched for functions mediating interaction with the external environment (sugar transport and metabolism, flocculation, metal transport, and metabolism). Our results and analyses provide a comprehensive view of genomic diversity in budding yeast and expose surprising and pronounced differences between the variation within S. cerevisiae and that within S. paradoxus. We also believe that the sequence data and de novo assemblies will constitute a useful resource for further evolutionary and population genomics studies.

  13. Study of genetic variation in sesame (Sesamum indicum L.) using agro-morphological traits and ISSR markers.

    Science.gov (United States)

    Parsaeian, M; Mirlohi, A; Saeidi, G

    2011-03-01

    This research was conducted to study the genetic variation among eighteen genotypes of sesame (Sesamum indicum L.) collected from various agro-climatic regions of Iran along with six exotic genotypes from the Asian countries using both agro-morphological and ISSR marker traits. The results showed significant differences among genotypes for all agro-morphological traits and a relatively high genetic coefficient of variation observed for number of fruiting branches per plant, capsules per plant, plant height and seed yield per plant. Cluster analysis based on these traits grouped the genotypes into five separate clusters. Larger inter- than intra cluster distances implies the presence of higher genetic variability between the genotypes of different groups. Genotypes of two clusters with a good amount of genetic divergence and desirable agronomic traits were detected as promising genotypes for hybridization programs. The 13 ISSR primers chosen for molecular analysis revealed 170 bands, of which 130 (76.47%) were polymorphic. The generated dendrogram based on ISSR profiles divided the genotypes into seven groups. A principal coordinate analysis confirmed the results of clustering. The agro-morphological traits and ISSR markers reflected different aspects of genetic variation among the genotypes as revealed by a non significant cophenetic correlation in the Mantel test. Therefore the complementary application of both types of information is recommended to maximize the efficiency of sesame breeding programs. The discordance among diversity patterns and geographical distribution of genotypes found in this investigation implies that the parental lines for hybridization should be selected based on genetic diversity rather than the geographical distribution.

  14. Genetic variation in Miscanthus x giganteus and the importance of estimating genetic distance tresholds for differentiating clones

    DEFF Research Database (Denmark)

    Glowacka, K; Clark, L; Adhikari, S;

    2015-01-01

    with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD......-seq, the former is currently more cost-effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type-specimen of eight...... new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much-needed variation to growers...

  15. Genetic diversity and antigenicity variation of Babesia bovis merozoite surface antigen-1 (MSA-1) in Thailand.

    Science.gov (United States)

    Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Takemae, Hitoshi; Simking, Pacharathon; Jittapalapong, Sathaporn; Igarashi, Ikuo; Yokoyama, Naoaki

    2016-07-01

    Babesia bovis, an intraerythrocytic protozoan parasite, causes severe clinical disease in cattle worldwide. The genetic diversity of parasite antigens often results in different immune profiles in infected animals, hindering efforts to develop immune control methodologies against the B. bovis infection. In this study, we analyzed the genetic diversity of the merozoite surface antigen-1 (msa-1) gene using 162 B. bovis-positive blood DNA samples sourced from cattle populations reared in different geographical regions of Thailand. The identity scores shared among 93 msa-1 gene sequences isolated by PCR amplification were 43.5-100%, and the similarity values among the translated amino acid sequences were 42.8-100%. Of 23 total clades detected in our phylogenetic analysis, Thai msa-1 gene sequences occurred in 18 clades; seven among them were composed of sequences exclusively from Thailand. To investigate differential antigenicity of isolated MSA-1 proteins, we expressed and purified eight recombinant MSA-1 (rMSA-1) proteins, including an rMSA-1 from B. bovis Texas (T2Bo) strain and seven rMSA-1 proteins based on the Thai msa-1 sequences. When these antigens were analyzed in a western blot assay, anti-T2Bo cattle serum strongly reacted with the rMSA-1 from T2Bo, as well as with three other rMSA-1 proteins that shared 54.9-68.4% sequence similarity with T2Bo MSA-1. In contrast, no or weak reactivity was observed for the remaining rMSA-1 proteins, which shared low sequence similarity (35.0-39.7%) with T2Bo MSA-1. While demonstrating the high genetic diversity of the B. bovis msa-1 gene in Thailand, the present findings suggest that the genetic diversity results in antigenicity variations among the MSA-1 antigens of B. bovis in Thailand.

  16. Cluster-based exposure variation analysis.

    Science.gov (United States)

    Samani, Afshin; Mathiassen, Svend Erik; Madeleine, Pascal

    2013-04-04

    Static posture, repetitive movements and lack of physical variation are known risk factors for work-related musculoskeletal disorders, and thus needs to be properly assessed in occupational studies. The aims of this study were (i) to investigate the effectiveness of a conventional exposure variation analysis (EVA) in discriminating exposure time lines and (ii) to compare it with a new cluster-based method for analysis of exposure variation. For this purpose, we simulated a repeated cyclic exposure varying within each cycle between "low" and "high" exposure levels in a "near" or "far" range, and with "low" or "high" velocities (exposure change rates). The duration of each cycle was also manipulated by selecting a "small" or "large" standard deviation of the cycle time. Theses parameters reflected three dimensions of exposure variation, i.e. range, frequency and temporal similarity.Each simulation trace included two realizations of 100 concatenated cycles with either low (ρ = 0.1), medium (ρ = 0.5) or high (ρ = 0.9) correlation between the realizations. These traces were analyzed by conventional EVA, and a novel cluster-based EVA (C-EVA). Principal component analysis (PCA) was applied on the marginal distributions of 1) the EVA of each of the realizations (univariate approach), 2) a combination of the EVA of both realizations (multivariate approach) and 3) C-EVA. The least number of principal components describing more than 90% of variability in each case was selected and the projection of marginal distributions along the selected principal component was calculated. A linear classifier was then applied to these projections to discriminate between the simulated exposure patterns, and the accuracy of classified realizations was determined. C-EVA classified exposures more correctly than univariate and multivariate EVA approaches; classification accuracy was 49%, 47% and 52% for EVA (univariate and multivariate), and C-EVA, respectively (p analysis are the advantages

  17. How the Magnitude of Prey Genetic Variation Alters Predator-Prey Eco-Evolutionary Dynamics.

    Science.gov (United States)

    Cortez, Michael H

    2016-09-01

    Evolution can alter the stability and dynamics of ecological communities; for example, prey evolution can drive cyclic dynamics in predator-prey systems that are not possible in the absence of evolution. However, it is unclear how the magnitude of additive genetic variation in the evolving species mediates those effects. In this study, I explore how the magnitude of prey additive genetic variation determines what effects prey evolution has on the dynamics and stability of predator-prey systems. I use linear stability analysis to decompose the stability of a general eco-evolutionary predator-prey model into components representing the stabilities of the ecological and evolutionary subsystems as well as the interactions between those subsystems. My results show that with low genetic variation, the cyclic dynamics and stability of the system are determined by the ecological subsystem. With increased genetic variation, disruptive selection always destabilizes stable communities, stabilizing selection can stabilize or destabilize communities, and prey evolution can alter predator-prey phase lags. Stability changes occur approximately when the magnitude of genetic variation balances the (in)stabilities of the ecological and evolutionary subsystems. I discuss the connections between my stability results and prior results from the theory of adaptive dynamics.

  18. Impact of restricted marital practices on genetic variation in an endogamous Gujarati group.

    Science.gov (United States)

    Pemberton, Trevor J; Li, Fang-Yuan; Hanson, Erin K; Mehta, Niyati U; Choi, Sunju; Ballantyne, Jack; Belmont, John W; Rosenberg, Noah A; Tyler-Smith, Chris; Patel, Pragna I

    2012-09-01

    Recent studies have examined the influence on patterns of human genetic variation of a variety of cultural practices. In India, centuries-old marriage customs have introduced extensive social structuring into the contemporary population, potentially with significant consequences for genetic variation. Social stratification in India is evident as social classes that are defined by endogamous groups known as castes. Within a caste, there exist endogamous groups known as gols (marriage circles), each of which comprises a small number of exogamous gotra (lineages). Thus, while consanguinity is strictly avoided and some randomness in mate selection occurs within the gol, gene flow is limited with groups outside the gol. Gujarati Patels practice this form of "exogamic endogamy." We have analyzed genetic variation in one such group of Gujarati Patels, the Chha Gaam Patels (CGP), who comprise individuals from six villages. Population structure analysis of 1,200 autosomal loci offers support for the existence of distinctive multilocus genotypes in the CGP with respect to both non-Gujaratis and other Gujaratis, and indicates that CGP individuals are genetically very similar. Analysis of Y-chromosomal and mitochondrial haplotypes provides support for both patrilocal and patrilineal practices within the gol, and a low-level of female gene flow into the gol. Our study illustrates how the practice of gol endogamy has introduced fine-scale genetic structure into the population of India, and contributes more generally to an understanding of the way in which marriage practices affect patterns of genetic variation. Copyright © 2012 Wiley Periodicals, Inc.

  19. Bioactive constituents in Prunus africana: geographical variation throughout Africa and associations with environmental and genetic parameters.

    Science.gov (United States)

    Kadu, Caroline A C; Parich, Alexandra; Schueler, Silvio; Konrad, Heino; Muluvi, Geoffrey M; Eyog-Matig, Oscar; Muchugi, Alice; Williams, Vivienne L; Ramamonjisoa, Lolona; Kapinga, Consolatha; Foahom, Bernard; Katsvanga, Cuthbert; Hafashimana, David; Obama, Crisantos; Vinceti, Barbara; Schumacher, Rainer; Geburek, Thomas

    2012-11-01

    Prunus africana--an evergreen tree found in Afromontane forests--is used in traditional medicine to cure benign prostate hyperplasia. Different bioactive constituents derived from bark extracts from 20 tree populations sampled throughout the species' natural range in Africa were studied by means of GC-MSD. The average concentration [mg/kgw/w] in increasing order was: lauric acid (18), myristic acid (22), n-docosanol (25), ferulic acid (49), β-sitostenone (198), β-sitosterol (490), and ursolic acid (743). The concentrations of many bark constituents were significantly correlated and concentration of n-docosanol was highly significantly correlated with all other analytes. Estimates of variance components revealed the highest variation among populations for ursolic acid (66%) and the lowest for β-sitosterol (20%). In general, environmental parameters recorded (temperature, precipitation, altitude) for the samples sites were not correlated with the concentration of most constituents; however, concentration of ferulic acid was significantly correlated with annual precipitation. Because the concentration of compounds in bark extracts may be affected by tree size, the diameter of sampled plants at 1.3m tree height (as proxy of age) was recorded. The only relationship with tree diameter was a negative correlation with ursolic acid. Under the assumption that genetically less variable populations have less variable concentrations of bark compounds, correlations between variation parameters of the concentration and the respective genetic composition based on chloroplast and nuclear DNA markers were assessed. Only variation of β-sitosterol concentration was significantly correlated with haplotypic diversity. The fixation index (F(IS)) was positively correlated with the variation in concentration of ferulic acid. Principal Components Analysis (PCA) indicated a weak geographic pattern. Mantel tests, however, revealed associations between the geographic patterns of bioactive

  20. Genetic variations among Mycoplasma bovis strains isolated from Danish cattle

    DEFF Research Database (Denmark)

    Kusiluka, L.J.M.; Kokotovic, Branko; Ojeniyi, B.

    2000-01-01

    strain of M. bovis (PG45(T)) were assayed for variations in the BglII and MfeI restriction sites in the chromosomal DNA by using the amplified fragment length polymorphism (AFLP) fingerprinting technique. The obtained genomic fingerprints consisted of 62-68 AFLP fragments in the size range of 50-500 bp....... Among the analyzed strains, 18 different AFLP profiles were detected. The similarity between individual fingerprints, calculated by Dice similarity coefficient, ranged from 0.9 to 1.0. Twenty-five strains, including 23 which were isolated during two outbreaks of M. bovis-induced mastitis which occurred...

  1. Genetic variation and spread pattern of invasive Conyza sumatrensis around China’s Three Gorges Dam

    Science.gov (United States)

    Ren, Ming-Xun; Li, Xiao-Qiong; Ding, Jian-Qing

    2010-11-01

    Genetic diversity and structure within and between 17 populations of invasive Conyza sumatrensis (Asteraceae) around the world's biggest hydroelectric dam (Three Gorges Dam (TGD) on the Yangtze River in China) and nearby localities were surveyed using inter-simple sequence repeat (ISSR) markers to determine the spread pattern of this invader in TGD and nearby regions. A total of 434 individuals were analysed, for which 15 ISSR primers amplified 81 bands, with 54 (66.7%) being polymorphic. The percentage of polymorphic loci within a population ranged from 31% to 58%, Nei's gene diversity was 0.385 ± 0.056, and mean Shannon's Index was 0.5815 ± 0.0833, indicating a high genetic variation in this self-fertile plant. Mass seed production and multiple introductions associated with dam construction and local development were thought to be responsible for the high level of genetic variation. Analysis of Molecular Variance revealed 36.5% of genetic variation residing within populations, 35.0% among populations within regions, and 28.5% among the three regions: TGD, upper reaches of TGD, and lower reaches of TGD. Most populations were genetically related to their nearest neighbors, while gene flow (mainly via seed movement) across TGD existed. Long-distance dispersal of seeds and pollen such as by water current, wind and human transportation could explain the low level of geographic structure of genetic variation. The highest genetic variation was found in a population in TGD, and most populations from TGD showed closer genetic relationship to the lower reaches population, which indicated that C. sumatrensis at TGD has likely experienced multiple introductions mainly from lower reaches, which is near the area of primary introduction (southern China) of C. sumatrensis.

  2. HPA Axis in Major Depression: Cortisol, Clinical Symptomatology, and Genetic Variation Predict Cognition

    Science.gov (United States)

    Keller, Jennifer; Gomez, Rowena; Williams, Gordon; Lembke, Anna; Lazzeroni, Laura; Murphy, Greer M.; Schatzberg, Alan F.

    2016-01-01

    The Hypothalamic Pituitary Adrenal (HPA) axis has been implicated in the pathophysiology of a variety of mood and cognitive disorders. Neuroendocrine studies have demonstrated HPA axis overactivity in major depression, a relationship of HPA axis activity to cognitive performance, and a potential role of HPA axis genetic variation in cognition. The present study investigated the simultaneous roles HPA axis activity, clinical symptomatology, and HPA genetic variation play in cognitive performance. Patients with major depression with psychosis (PMD) and without psychosis (NPMD) and healthy controls (HC) were studied. All participants underwent a diagnostic interview and psychiatric ratings, a comprehensive neuropsychological battery, overnight hourly blood sampling for cortisol, and genetic assessment. Cognitive performance differed as a function of depression subtype. Across all subjects, cognitive performance was negatively correlated with higher cortisol, and PMD patients had higher cortisol than did NPMDs and HCs. Cortisol, clinical symptoms, and variation in genes, NR3C1 (glucocorticoid receptor - GR) and NR3C2 (minercorticoid receptor – MR) that encode for glucocorticoid and mineralcorticoid receptors, predicted cognitive performance. Beyond the effects of cortisol, demographics, and clinical symptoms, NR3C1 variation predicted attention and working memory, whereas NR3C2 polymorphisms predicted memory performance. These findings parallel the distribution of GR and MR in primate brain and their putative roles in specific cognitive tasks. HPA axis genetic variation and activity were important predictors of cognition across the entire sample of depressed subjects and healthy controls. GR and MR genetic variation predicted unique cognitive functions, beyond the influence of cortisol and clinical symptoms. GR genetic variation was implicated in attention and working memory, whereas MR was implicated in verbal memory. PMID:27528460

  3. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition.

    Science.gov (United States)

    Keller, J; Gomez, R; Williams, G; Lembke, A; Lazzeroni, L; Murphy, G M; Schatzberg, A F

    2016-08-16

    The hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of a variety of mood and cognitive disorders. Neuroendocrine studies have demonstrated HPA axis overactivity in major depression, a relationship of HPA axis activity to cognitive performance and a potential role of HPA axis genetic variation in cognition. The present study investigated the simultaneous roles HPA axis activity, clinical symptomatology and HPA genetic variation play in cognitive performance. Patients with major depression with psychotic major depression (PMD) and with nonpsychotic major depression (NPMD) and healthy controls (HC) were studied. All participants underwent a diagnostic interview and psychiatric ratings, a comprehensive neuropsychological battery, overnight hourly blood sampling for cortisol and genetic assessment. Cognitive performance differed as a function of depression subtype. Across all subjects, cognitive performance was negatively correlated with higher cortisol, and PMD patients had higher cortisol than did NPMDs and HCs. Cortisol, clinical symptoms and variation in genes, NR3C1 (glucocorticoid receptor; GR) and NR3C2 (mineralocorticoid receptor; MR) that encode for GRs and MRs, predicted cognitive performance. Beyond the effects of cortisol, demographics and clinical symptoms, NR3C1 variation predicted attention and working memory, whereas NR3C2 polymorphisms predicted memory performance. These findings parallel the distribution of GR and MR in primate brain and their putative roles in specific cognitive tasks. HPA axis genetic variation and activity were important predictors of cognition across the entire sample of depressed subjects and HR. GR and MR genetic variation predicted unique cognitive functions, beyond the influence of cortisol and clinical symptoms. GR genetic variation was implicated in attention and working memory, whereas MR was implicated in verbal memory.Molecular Psychiatry advance online publication, 16 August 2016; doi

  4. A genetic variation map for chicken with 2.8 million single nucleotide polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Wong, G K; Hillier, L; Brandstrom, M; Croojmans, R; Ovcharenko, I; Gordon, L; Stubbs, L; Lucas, S; Glavina, T; Kaiser, P; Gunnarsson, U; Webber, C; Overton, I

    2005-02-20

    We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines--contrary to the idea that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.

  5. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout

    Science.gov (United States)

    Kovach, Ryan; Muhlfeld, Clint C.; Wade, Alisa A.; Hand, Brian K.; Whited, Diane C.; DeHaan, Patrick W.; Al-Chokhachy, Robert K.; Luikart, Gordon

    2015-01-01

    Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = −0.77;P bull trout and other imperiled species. Genetic diversity is already depressed where climatic vulnerability is highest; it will likely erode further in the very places where diversity may be most needed for future persistence.

  6. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Valeria Paula Carreira

    Full Text Available Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may

  7. Genetic variation of phytate and ionorganic phosphorus in maize population

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2009-01-01

    Full Text Available Analysis of 60 maize populations was conducted to identify genotypes that had either low or high concentration of phytate. Genetic variability in seed phytate content was observed, with values ranging from 1,147 to 4, 13 g kg-1. Inorganic phosphorus (Pi concentrations were between 0, 35 and 1, 29 and averaged 0, 65 g kg-1. Three groups of populations were identified as having low, intermediate and high phytate content. The low phytate concentration was measured in eight, intermediate in 25 and high in 27 populations. Positive correlation was found between phytate and protein. Population 216 had the lowest phytate concentration of 1, 14 gkg-1, and a Pi concentration 40% greater than Pi mean but lower than average protein content. This population will be used for further breeding genotypes with low phytate content and good agronomic traits.

  8. Temporal genetic variation of Fasciola hepatica from sheep in Galicia (NW Spain).

    Science.gov (United States)

    Vázquez-Prieto, Severo; Vilas, Román; Ubeira, Florencio M; Paniagua, Esperanza

    2015-04-30

    We found low genetic differentiation between two temporal samples of Fasciola hepatica (2006 and 2008) collected from nine sheep of the same flock that shared the same pasture for at least 2 years. However, each sample, represented by four and five infrapopulations respectively, showed strong heterozygote deficits regarding Hardy-Weinberg expectations and a high degree of genetic structure at infrapopulation level. This is an unexpected result since genetic drift should increase temporal variation among years. Our findings are most likely explained by the fact that the parasite can survive many years in the definitive host. Temporal gene flow favored by high longevity probably increases levels of genetic variability of the population but could also contribute to the observed heterozygote deficits within temporal samples and infrapopulations if it favors the Wahlund effect. Despite the homogenizing effect of gene flow, the high genetic divergence observed between infrapopulations is most likely a consequence of strong genetic drift associated to the complexity of the life cycle.

  9. Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis.

    Science.gov (United States)

    Yativ, Merav; Harary, Idan; Wolf, Shmuel

    2010-05-15

    Sugar accumulation, the key process determining fruit quality, is controlled by both the translocation of sugars and their metabolism in developing fruits. Sugar composition in watermelon, as in all cucurbit fruits, includes sucrose, fructose and glucose. The proportions of these three sugars are determined primarily by three enzyme families: invertases, sucrose synthases (SuSys) and sucrose phosphate synthases (SPSs). The goal of the present research was to explore the process of sugar metabolism in watermelon fruits. Crosses between the domestic watermelon (Citrullus lanatus) and three wild species provided a wide germplasm to explore genetic variability in sugar composition and metabolism. This survey demonstrated great genetic variability in sugar content and in the proportions of sucrose, glucose and fructose in mature fruits. Genotypes accumulating high and low percentage of sucrose provided an experimental system to study sugar metabolism in developing fruits. Insoluble invertase activity was high and constant throughout fruit development in control lines and in genotypes accumulating low levels of sucrose, while in genotypes accumulating high levels of sucrose, activity declined sharply 4 weeks after pollination. Soluble acid invertase activity was significantly lower in genotypes accumulating high levels of sucrose than in low-sucrose-accumulating genotypes. Conversely, activities of SuSy and SPS were higher in the high-sucrose-accumulating genotypes. The present results establish that, within the genus Citrullus, there are genotypes that accumulate a high percentage of sucrose in the fruit, while others accumulate high percentages of glucose and fructose. The significant negative correlation between insoluble invertase activity and fruit sucrose level suggests that sucrose accumulation is affected by both phloem unloading and sugar metabolism. (c) 2009 Elsevier GmbH. All rights reserved.

  10. Genetic effects on sleep/wake variation of seizures

    Science.gov (United States)

    Winawer, Melodie R.; Shih, Jerry; Beck, Erin S.; Hunter, Jessica E.; Epstein, Michael P.

    2016-01-01

    Summary Objective There is a complex bidirectional relationship between sleep and epilepsy. Sleep/wake timing of seizures has been investigated for several individual seizure types and syndromes, but few large-scale studies of the timing of seizures exist in people with varied epilepsy types. In addition, the genetic contributions to seizure timing have not been well studied. Methods Sleep/wake timing of seizures was determined for 1,395 subjects in 546 families enrolled in the Epilepsy Phenome/Genome Project (EPGP). We examined seizure timing among subjects with different epilepsy types, seizure types, epilepsy syndromes, and localization. We also examined the familial aggregation of sleep/wake occurrence of seizures. Results Seizures in nonacquired focal epilepsy (NAFE) were more likely to occur during sleep than seizures in generalized epilepsy (GE), for both convulsive (odds ratio [OR] 5.2, 95% confidence interval [CI] 3.59–7.52) and nonconvulsive seizures (OR 4.2, 95% CI 2.48–7.21). Seizures occurring within 1 h of awakening were more likely to occur in patients with GE than with NAFE for both convulsive (OR 2.3, 95% CI 1.54– 3.39) and nonconvulsive (OR 1.7, 95% CI 1.04–2.66) seizures. Frontal onset seizures were more likely than temporal onset seizures to occur during sleep. Sleep/wake timing of seizures in first-degree relatives predicted timing of seizures in the proband. Significance We found that sleep/wake timing of seizures is associated with both epilepsy syndrome and seizure type. In addition, we provide the first evidence for a genetic contribution to sleep/wake timing of seizures in a large group of individuals with common epilepsy syndromes. PMID:26948972

  11. Genetic variation in the free-living amoeba Naegleria fowleri.

    Science.gov (United States)

    Pélandakis, M; De Jonckheere, J F; Pernin, P

    1998-08-01

    In this study, 30 strains of the pathogenic free-living amoeba Naegleria fowleri were investigated by using the randomly amplified polymorphic DNA (RAPD) method. The present study confirmed our previous finding that RAPD variation is not correlated with geographical origin. In particular, Mexican strains belong to the variant previously detected in Asia, Europe, and the United States. In France, surprisingly, strains from Cattenom gave RAPD patterns identical to those of the Japanese strains. In addition, all of these strains, together with an additional French strain from Chooz, exhibited similarities to South Pacific strains. The results also confirmed the presence of numerous variants in Europe, whereas only two variants were detected in the United States. The two variants found in the United States were different from the South Pacific variants. These findings do not support the previous hypothesis concerning the origin and modes of dispersal of N. fowleri.

  12. dbSNP: the NCBI database of genetic variation.

    Science.gov (United States)

    Sherry, S T; Ward, M H; Kholodov, M; Baker, J; Phan, L; Smigielski, E M; Sirotkin, K

    2001-01-01

    In response to a need for a general catalog of genome variation to address the large-scale sampling designs required by association studies, gene mapping and evolutionary biology, the National Center for Biotechnology Information (NCBI) has established the dbSNP database [S.T.Sherry, M.Ward and K. Sirotkin (1999) Genome Res., 9, 677-679]. Submissions to dbSNP will be integrated with other sources of information at NCBI such as GenBank, PubMed, LocusLink and the Human Genome Project data. The complete contents of dbSNP are available to the public at website: http://www.ncbi.nlm.nih.gov/SNP. The complete contents of dbSNP can also be downloaded in multiple formats via anonymous FTP at ftp://ncbi.nlm.nih.gov/snp/.

  13. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages.

    Science.gov (United States)

    Bikard, David; Marraffini, Luciano A

    2012-02-01

    Bacteria are constantly challenged by bacteriophages (viruses that infect bacteria), the most abundant microorganism on earth. Bacteria have evolved a variety of immunity mechanisms to resist bacteriophage infection. In response, bacteriophages can evolve counter-resistance mechanisms and launch a 'virus versus host' evolutionary arms race. In this context, rapid evolution is fundamental for the survival of the bacterial cell. Programmed genetic variation mechanisms at loci involved in immunity against bacteriophages generate diversity at a much faster rate than random point mutation and enable bacteria to quickly adapt and repel infection. Diversity-generating retroelements (DGRs) and phase variation mechanisms enhance the generic (innate) immune response against bacteriophages. On the other hand, the integration of small bacteriophage sequences in CRISPR loci provide bacteria with a virus-specific and sequence-specific adaptive immune response. Therefore, although using different molecular mechanisms, both prokaryotes and higher organisms rely on programmed genetic variation to increase genetic diversity and fight rapidly evolving infectious agents.

  14. Studies of Genetic Variation of Essential Oil and Alkaloid Content in Boldo (Peumus boldus).

    Science.gov (United States)

    Vogel, H; Razmilic, I; Muñoz, M; Doll, U; Martin, J S

    1999-02-01

    Boldo is a tree or shrub with medicinal properties native to Chile. The leaves contain alkaloids and essential oils. Variation of total alkaloid concentration, of the alkaloid boldine, and essential oil components were studied in different populations from northern, central, and southern parts of its geographic range and in their progenies (half-sib families). Total alkaloid concentration showed genetic variation between progenies of the central population but not between populations. Boldine content found in concentrations of 0.007 to 0.009% did not differ significantly between populations. Principal components of the essential oil were determined genetically, with highest values for ascaridole in the population of the north and for P-cymene in the south. Between half-sib families genetic variation was found in the central and northern populations for these components. The high heritability coefficients found indicate considerable potential for successful selection of individuals for these characters.

  15. Spontaneous mutations and the origin and maintenance of quantitative genetic variation.

    Science.gov (United States)

    Huang, Wen; Lyman, Richard F; Lyman, Rachel A; Carbone, Mary Anna; Harbison, Susan T; Magwire, Michael M; Mackay, Trudy Fc

    2016-05-23

    Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms. Stabilizing selection could act directly on the traits, or indirectly from pleiotropic effects on fitness. However, our data are not consistent with simple models of mutation-stabilizing selection balance; therefore, further empirical work is needed to assess the balance of evolutionary forces responsible for quantitative genetic variation.

  16. Interactions between meat intake and genetic variation in relation to colorectal cancer

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Vogel, Ulla

    2015-01-01

    Meat intake is associated with the risk of colorectal cancer. The objective of this systematic review was to evaluate interactions between meat intake and genetic variation in order to identify biological pathways involved in meat carcinogenesis. We performed a literature search of Pub...... a polymorphism in XPC and meat was found in one prospective and one case-control study; however, the directions of the risk estimates were opposite. Thus, none of the findings were replicated. The results from this systematic review suggest that genetic variation in the inflammatory response and DNA repair...... pathway is involved in meat-related colorectal carcinogenesis, whereas no support for the involvement of heme and iron from meat or cooking mutagens was found. Further studies assessing interactions between meat intake and genetic variation in relation to CRC in large well-characterised prospective...

  17. A multivariate analysis of genetic variation in the advertisement call of the gray treefrog, Hyla versicolor.

    Science.gov (United States)

    Welch, Allison M; Smith, Michael J; Gerhardt, H Carl

    2014-06-01

    Genetic variation in sexual displays is crucial for an evolutionary response to sexual selection, but can be eroded by strong selection. Identifying the magnitude and sources of additive genetic variance underlying sexually selected traits is thus an important issue in evolutionary biology. We conducted a quantitative genetics experiment with gray treefrogs (Hyla versicolor) to investigate genetic variances and covariances among features of the male advertisement call. Two energetically expensive traits showed significant genetic variation: call duration, expressed as number of pulses per call, and call rate, represented by its inverse, call period. These two properties also showed significant genetic covariance, consistent with an energetic constraint to call production. Combining the genetic variance-covariance matrix with previous estimates of directional sexual selection imposed by female preferences predicts a limited increase in call duration but no change in call rate despite significant selection on both traits. In addition to constraints imposed by the genetic covariance structure, an evolutionary response to sexual selection may also be limited by high energetic costs of long-duration calls and by preferences that act most strongly against very short-duration calls. Meanwhile, the persistence of these preferences could be explained by costs of mating with males with especially unattractive calls.

  18. Genetic and environmental variation in bovine milk infrared spectra.

    Science.gov (United States)

    Wang, Qiuyu; Hulzebosch, Alex; Bovenhuis, Henk

    2016-08-01

    Fourier transform infrared (FTIR) spectroscopy is widely used to determine milk composition. In this study, 1,060 milk infrared wavenumbers ranging from 925 to 5,008cm(-1) of 1,748 Holstein Friesian cows on 371 herds in the Netherlands were available. The extent to which infrared wavenumbers are affected by genetic and environmental factors was investigated. Inter-herd heritabilities of 1,060 infrared wavenumbers ranged from 0 to 0.63, indicating that the genetic background of infrared wavenumbers differs considerably. The majority of the wavenumbers have moderate to high inter-herd heritabilities ranging from 0.20 to 0.60. The diacylglycerol O-acyltransferase 1 (DGAT1), stearoyl-CoA desaturase (SCD1), κ-casein (CSN3), and β-lactoglobulin (LGB) polymorphisms are known to have a large effect on milk composition, and therefore we studied the effects of these polymorphisms on infrared wavenumbers. The DGAT1 polymorphism had highly significant effects on many wavenumbers. In contrast, the SCD1 polymorphism did not significantly affect any of the wavenumbers. The SCD1 is known to have a strong effect on the content of C10:1, C12:1, C14:1, and C16:1 fatty acids. Therefore, these results suggest that FTIR spectra contain little direct information on these monounsaturated fatty acids. The CSN3 and LGB polymorphisms had significant effects on a few wavenumbers. Differences between herds explained 10 to 25% of the total variance for most wavenumbers. This suggests that the wavenumbers of milk FTIR spectra are indicative for differences in feeding and management between herds. The wavenumbers between 1,619 and 1,674cm(-1) and between 3,073 and 3,667cm(-1) are strongly influenced by water absorption and usually excluded when setting up prediction equations. However, we found that some of the wavenumbers in the water absorption region are affected by the DGAT1 polymorphism and lactation stage. This suggests that these wavenumbers contain useful information regarding milk

  19. Genetic variation in offspring indirectly influences the quality of maternal behaviour in mice.

    Science.gov (United States)

    Ashbrook, David George; Gini, Beatrice; Hager, Reinmar

    2015-12-23

    Conflict over parental investment between parent and offspring is predicted to lead to selection on genes expressed in offspring for traits influencing maternal investment, and on parentally expressed genes affecting offspring behaviour. However, the specific genetic variants that indirectly modify maternal or offspring behaviour remain largely unknown. Using a cross-fostered population of mice, we map maternal behaviour in genetically uniform mothers as a function of genetic variation in offspring and identify loci on offspring chromosomes 5 and 7 that modify maternal behaviour. Conversely, we found that genetic variation among mothers influences offspring development, independent of offspring genotype. Offspring solicitation and maternal behaviour show signs of coadaptation as they are negatively correlated between mothers and their biological offspring, which may be linked to costs of increased solicitation on growth found in our study. Overall, our results show levels of parental provisioning and offspring solicitation are unique to specific genotypes.

  20. Phenotypic and genetic variation between two populations of the Chinese yellow pond turtle, Mauremys mutica (Cantor, 1842)

    Institute of Scientific and Technical Information of China (English)

    Zhu Xinping; Zhou Li; Chen Yongle; Du Hejun; Gui Jianfang

    2008-01-01

    Mauremys mutica (Cantor, 1842) is an endangered species in China. Main phenotypic variations in body color, body weight, body shape, clutch size, egg size, and hatchling size were revealed between the southern and northern populations. Both populations have the phenomenon of "larger male" sexual size dimorphism (SSD), especially in the southern population. Furthermore, genetic variations between the two populations were analyzed by RAPD band patterns of 30 random individuals in each population. The average genetic distance was 0.299±0.108 among the samples of two populations. The average genetic distance between southern and northern populations was 0.305±0.046. Cluster analysis indicated that all the individuals from the southern and northern populations were clustered among themselves to form two distinct clades. A total of 20 population-specific RAPD fragments were scored from 16 primers, and could be used as RAPD markers for distinguishing the southern and the northern population. Based on the nucleotide sequences of two RAPD markers, two pairs of SCAR primers (SC1-S and SC2-S) were designed, which could be used as SCAR markers for the southern population. According to the significant phenotypic and genetic variations, we suggested that the northern population and southern population might be considered as two separate taxa, the "northern taxon" and the "southern taxon", and the conservation should be respectively conducted on the two taxa.

  1. Juglans regia L., phenotypic selection and assessment of genetic variation within a simulated seed orchard

    Directory of Open Access Journals (Sweden)

    Fulvio Ducci

    2010-12-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Noble hardwoods are very important for the Italian furniture industry. Since 1985, approximately 170,000 ha have been planted in Italy with noble hardwoods. Among them, about 50% of species are represented by walnuts. Walnut (Juglans regia L., not native in Italy, has been the focus of a substantial research effort for breeding and improvement programmes. The priority has been to preserve the in situ genetic resource still existing after intensive felling. Phenotypes suitable for timber production showing important traits such as straight stem, nice branch architecture, dominance and adaptation (phenology have needed to be developed and selected. In order to reach this goals, selection of valuable progenies and the evaluation of the interaction genotype x environment, methods based essentially on a multi-trait Selection Index, were developed. Studies have been undertaken also to measure the variation of phenological traits, more correlated to traits valuable for architecture; in addition, neutral markers were used to assess genetic variation among different intensities of the adopted selections. The individual genetic component was found to be higher than at the inter-population level. Results showed that a hypothetical seed orchard made with progenies selected by morphology, phenology and genetic traits could provide material with a good performance and supply a variability similar to larger populations as the total plantation or the pseudo-natural system chosen for comparison. st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso

  2. Phylogenetic Relationships and Genetic Variation in Longidorus and Xiphinema Species (Nematoda: Longidoridae) Using ITS1 Sequences of Nuclear Ribosomal DNA.

    Science.gov (United States)

    Ye, Weimin; Szalanski, Allen L; Robbins, R T

    2004-03-01

    Genetic analyses using DNA sequences of nuclear ribosomal DNA ITS1 were conducted to determine the extent of genetic variation within and among Longidorus and Xiphinema species. DNA sequences were obtained from samples collected from Arkansas, California and Australia as well as 4 Xiphinema DNA sequences from GenBank. The sequences of the ITS1 region including the 3' end of the 18S rDNA gene and the 5' end of the 5.8S rDNA gene ranged from 1020 bp to 1244 bp for the 9 Longidorus species, and from 870 bp to 1354 bp for the 7 Xiphinema species. Nucleotide frequencies were: A = 25.5%, C = 21.0%, G = 26.4%, and T = 27.1%. Genetic variation between the two genera had a maximum divergence of 38.6% between X. chambersi and L. crassus. Genetic variation among Xiphinema species ranged from 3.8% between X. diversicaudatum and X. bakeri to 29.9% between X. chambersi and X. italiae. Within Longidorus, genetic variation ranged from 8.9% between L. crassus and L. grandis to 32.4% between L. fragilis and L. diadecturus. Intraspecific genetic variation in X. americanum sensu lato ranged from 0.3% to 1.9%, while genetic variation in L. diadecturus had 0.8% and L. biformis ranged from 0.6% to 10.9%. Identical sequences were obtained between the two populations of L. grandis, and between the two populations of X. bakeri. Phylogenetic analyses based on the ITS1 DNA sequence data were conducted on each genus separately using both maximum parsimony and maximum likelihood analysis. Among the Longidorus taxa, 4 subgroups are supported: L. grandis, L. crassus, and L. elongatus are in one cluster; L. biformis and L. paralongicaudatus are in a second cluster; L. fragilis and L. breviannulatus are in a third cluster; and L. diadecturus is in a fourth cluster. Among the Xiphinema taxa, 3 subgroups are supported: X. americanum with X. chambersi, X. bakeri with X. diversicaudatum, and X. italiae and X. vuittenezi forming a sister group with X. index. The relationships observed in this study

  3. Forward Genetics by Sequencing EMS Variation-Induced Inbred Lines

    Directory of Open Access Journals (Sweden)

    Charles Addo-Quaye

    2017-02-01

    Full Text Available In order to leverage novel sequencing techniques for cloning genes in eukaryotic organisms with complex genomes, the false positive rate of variant discovery must be controlled for by experimental design and informatics. We sequenced five lines from three pedigrees of ethyl methanesulfonate (EMS-mutagenized Sorghum bicolor, including a pedigree segregating a recessive dwarf mutant. Comparing the sequences of the lines, we were able to identify and eliminate error-prone positions. One genomic region contained EMS mutant alleles in dwarfs that were homozygous reference sequences in wild-type siblings and heterozygous in segregating families. This region contained a single nonsynonymous change that cosegregated with dwarfism in a validation population and caused a premature stop codon in the Sorghum ortholog encoding the gibberellic acid (GA biosynthetic enzyme ent-kaurene oxidase. Application of exogenous GA rescued the mutant phenotype. Our method for mapping did not require outcrossing and introduced no segregation variance. This enables work when line crossing is complicated by life history, permitting gene discovery outside of genetic models. This inverts the historical approach of first using recombination to define a locus and then sequencing genes. Our formally identical approach first sequences all the genes and then seeks cosegregation with the trait. Mutagenized lines lacking obvious phenotypic alterations are available for an extension of this approach: mapping with a known marker set in a line that is phenotypically identical to starting material for EMS mutant generation.

  4. Influence of barriers to movement on within-watershed genetic variation of coastal cutthroat trout

    Science.gov (United States)

    Wofford, John E.B.; Gresswell, Robert E.; Banks, M.A.

    2005-01-01

    Because human land use activities often result in increased fragmentation of aquatic and terrestrial habitats, a better understanding of the effects of fragmentation on the genetic heterogeneity of animal populations may be useful for effective management. We used eight microsatellites to examine the genetic structure of coastal cutthroat trout (Oncorhynchus clarki clarki) in Camp Creek, an isolated headwater stream in western Oregon. Our objectives were to determine if coastal cutthroat trout were genetically structured within streams and to assess the effects of natural and anthropogenic barriers on coastal cutthroat trout genetic variation. Fish sampling occurred at 10 locations, and allele frequencies differed significantly among all sampling sections. Dispersal barriers strongly influenced coastal cutthroat trout genetic structure and were associated with reduced genetic diversity and increased genetic differentiation. Results indicate that Camp Creek coastal cutthroat trout exist as many small, partially independent populations that are strongly affected by genetic drift. In headwater streams, barriers to movement can result in genetic and demographic isolation leading to reduced coastal cutthroat trout genetic diversity, and potentially compromising long-term population persistence. When habitat fragmentation eliminates gene flow among small populations, similar results may occur in other species.

  5. Genetic variations may help identify best candidates for preventive breast cancer drugs | Division of Cancer Prevention

    Science.gov (United States)

    Newly discovered genetic variations may help predict breast cancer risk in women who receive preventive breast cancer therapy with the selective estrogen receptor modulator drugs tamoxifen andraloxifene, a Mayo Clinic-led study has found. The study is published in the journal Cancer Discovery. "Our findings are important because we identified genetic factors that could eventually be used to select women who should be offered the drugs for prevention," said James Ingle, M.D., an oncologist at Mayo Clinic. |

  6. Perspectives on human genetic variation from the HapMap Project.

    OpenAIRE

    2005-01-01

    ABSTRACT The completion of the International HapMap Project marks the start of a new phase in human genetics. The aim of the project was to provide a resource that facilitates the design of efficient genome-wide association studies, through characterising patterns of genetic variation and linkage disequilibrium in a sample of 270 individuals across four geographical populations. In total, over one million SNPs have been typed across these genomes, providing an unprecedented view of human gene...

  7. GENETIC VARIATION IN TASTE PERCEPTION AND ITS ROLE IN FOOD LIKING AND HEALTH STATUS

    OpenAIRE

    Robino, Antonietta

    2014-01-01

    Taste has been described as the body's “nutritional gatekeeper”, affecting the identification of nutrients and toxins and guiding food choices. Genetic variation in taste receptor genes can influence perception of sweet, umami and bitter tastes, whereas less is known about the genetics of sour and salty taste. Differences in taste perception, influencing food selection and dietary behavior, have also shown important long-term health implications, especially for food-related diseases such as o...

  8. Intraspecific morphological and genetic variation of common species predicts ranges of threatened ones

    Science.gov (United States)

    Fuller, Trevon L.; Thomassen, Henri A.; Peralvo, Manuel; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M.; Jarrín-V, Pablo; Devitt, Susan E. Cameron; Mason, Eliza; Schweizer, Rena M.; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Schneider, Christopher J.; Pollinger, John P.; Saatchi, Sassan; Graham, Catherine H.; Wayne, Robert K.; Smith, Thomas B.

    2013-01-01

    Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible. PMID:23595273

  9. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui

    2011-01-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations....... these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination...

  10. [The genetic bases of neurodevelopmental disorders].

    Science.gov (United States)

    Artigas-Pallarés, Josep; Guitart, Miriam; Gabau-Vila, Elisabeth

    2013-02-22

    In the last decade, progress made in genetics is questioning the current implicit nosological model in the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, text revision (DSM-IV-TR) and the International Classification of Diseases, tenth revision. Both the categorical nature and the comorbidity detected on applying diagnostic criteria become unsustainable in the light of the genetic architecture that is emerging from studies being conducted on the genetics of mental disorders. The classical paradigms -one gene for one disease- or even a specific distinctive genetic pattern for each condition, are concepts restricted to specific cases. In this review the objective is to describe the current scenario that has arisen following the latest advances in genetics. The lines of work being traced by research both in the present and in the near future include: the identification of variations in the number of copies (both frequent and rare), indiscriminately linked to different disorders; the concurrence of multiple variants for a single disorder; the double hit phenomenon; and epigenetic modulation. The new version of the DSM, fully aware of the deficiencies in the current model, will mark a turning point that, while somewhat timid, is decidedly oriented towards incorporating a dimensional conception of mental disorders.

  11. Genetic variation changes the interactions between the parasitic plant-ecosystem engineer Rhinanthus and its hosts.

    Science.gov (United States)

    Rowntree, Jennifer K; Cameron, Duncan D; Preziosi, Richard F

    2011-05-12

    Within-species genetic variation is a potent factor influencing between-species interactions and community-level structure. Species of the hemi-parasitic plant genus Rhinanthus act as ecosystem engineers, significantly altering above- and below-ground community structure in grasslands. Here, we show the importance of genotypic variation within a single host species (barley-Hordeum vulgare), and population-level variation among two species of parasite (Rhinanthus minor and Rhinanthus angustifolius) on the outcome of parasite infection for both partners. We measured host fitness (number of seeds) and calculated parasite virulence as the difference in seed set between infected and uninfected hosts (the inverse of host tolerance). Virulence was determined by genetic variation within the host species and among the parasite species, but R. angustifolius was consistently more virulent than R. minor. The most tolerant host had the lowest inherent fitness and did not gain a fitness advantage over other infected hosts. We measured parasite size as a proxy for transmission ability (ability to infect further hosts) and host resistance. Parasite size depended on the specific combination of host genotype, parasite species and parasite population, and no species was consistently larger. We demonstrate that the outcome of infection by Rhinanthus depends not only on the host species, but also on the underlying genetics of both host and parasite. Thus, genetic variations within host and parasite are probably essential components of the ecosystem-altering effects of Rhinanthus.

  12. The variation game: Cracking complex genetic disorders with NGS and omics data.

    Science.gov (United States)

    Cui, Hongzhu; Dhroso, Andi; Johnson, Nathan; Korkin, Dmitry

    2015-06-01

    Tremendous advances in Next Generation Sequencing (NGS) and high-throughput omics methods have brought us one step closer towards mechanistic understanding of the complex disease at the molecular level. In this review, we discuss four basic regulatory mechanisms implicated in complex genetic diseases, such as cancer, neurological disorders, heart disease, diabetes, and many others. The mechanisms, including genetic variations, copy-number variations, posttranscriptional variations, and epigenetic variations, can be detected using a variety of NGS methods. We propose that malfunctions detected in these mechanisms are not necessarily independent, since these malfunctions are often found associated with the same disease and targeting the same gene, group of genes, or functional pathway. As an example, we discuss possible rewiring effects of the cancer-associated genetic, structural, and posttranscriptional variations on the protein-protein interaction (PPI) network centered around P53 protein. The review highlights multi-layered complexity of common genetic disorders and suggests that integration of NGS and omics data is a critical step in developing new computational methods capable of deciphering this complexity.

  13. SCoT标记技术鉴定湖南甜橙变异类型%Identification of Genetic Variation in Citrus sinensis from Hunan Based on Start Codon Targeted Polymorphism

    Institute of Scientific and Technical Information of China (English)

    蒋巧巧; 龙桂友; 李武文; 邓子牛

    2011-01-01

    [目的]根据SCoT多态性对湖南甜橙变异类型进行鉴定和分析。[方法]首先对SCoT反应体系进行优化,并筛选合适的引物,然后对24份试材进行SCoT标记,获得的目的片段克隆测序,通过测序结果探讨其遗传变异。[结果]甜橙SCoT标记的20μl优化反应体系为:DNA模板80ng,Mg2+1.6mmol/L,dNTPs0.3mmol/L,引物0.2μmol/L,TaqDNA聚合酶用量1.6U,扩增产物在100~2000bp,扩增条带明亮清晰,反应体系具有良好的稳定性和可重复性。24份试材的测序片段的大小为1090-1091bp,一致性达到99.84%,存在单碱基缺失与替换;利用单碱基变异可以区分其中的12个甜橙变异株系和‘安江香柚’。[结论]本研究将为甜橙的育种工作提供科学的理论依据。%[Objective] The aim was to identify genetic variation in Citrus sinensis (sweet orange) germplasm from Hunan Province according to the Start Codon Targeted (SCoT) Polymorphism. [Method] The reaction system for SCoT amplification from sweet orange was first optimized, and then the SCoT fragments were amplified from 24 sweet orange cultivars collected in Hunan Province and sequenced for genetic variation analysis. [Result] The optimum reaction system for SCoT markers amplification was 2.0 μl containing 80 ng of template DNA, 0.3 mmol/L dNTPs, 0.2 μmol/L primer, 1.6 mmol/L Mg2+, 1.6 U of Taq DNA polymerase and 10×PCR buffer. By using this reaction system, the PCR products from the sweet orange cultivars produced clear and reproducible bands at 100-2 000 bp through electrophoresis. The SCoT fragments of the 24 sweet orange cultivars were 1 090-1 091 bp, with the homology of 99.84% and nucleotide deletion and substitution. After being sequenced, the SCoT polymorphisms could distinguish 12 sweet orange cultivars. In addition, the BLAST result showed that part of the SCoT fragments coding region shared high homology with ribosomal protein S3 N superfamily. [Conclusion] This study will provide a

  14. Analysis of protein-coding genetic variation in 60,706 humans.

    Science.gov (United States)

    Lek, Monkol; Karczewski, Konrad J; Minikel, Eric V; Samocha, Kaitlin E; Banks, Eric; Fennell, Timothy; O'Donnell-Luria, Anne H; Ware, James S; Hill, Andrew J; Cummings, Beryl B; Tukiainen, Taru; Birnbaum, Daniel P; Kosmicki, Jack A; Duncan, Laramie E; Estrada, Karol; Zhao, Fengmei; Zou, James; Pierce-Hoffman, Emma; Berghout, Joanne; Cooper, David N; Deflaux, Nicole; DePristo, Mark; Do, Ron; Flannick, Jason; Fromer, Menachem; Gauthier, Laura; Goldstein, Jackie; Gupta, Namrata; Howrigan, Daniel; Kiezun, Adam; Kurki, Mitja I; Moonshine, Ami Levy; Natarajan, Pradeep; Orozco, Lorena; Peloso, Gina M; Poplin, Ryan; Rivas, Manuel A; Ruano-Rubio, Valentin; Rose, Samuel A; Ruderfer, Douglas M; Shakir, Khalid; Stenson, Peter D; Stevens, Christine; Thomas, Brett P; Tiao, Grace; Tusie-Luna, Maria T; Weisburd, Ben; Won, Hong-Hee; Yu, Dongmei; Altshuler, David M; Ardissino, Diego; Boehnke, Michael; Danesh, John; Donnelly, Stacey; Elosua, Roberto; Florez, Jose C; Gabriel, Stacey B; Getz, Gad; Glatt, Stephen J; Hultman, Christina M; Kathiresan, Sekar; Laakso, Markku; McCarroll, Steven; McCarthy, Mark I; McGovern, Dermot; McPherson, Ruth; Neale, Benjamin M; Palotie, Aarno; Purcell, Shaun M; Saleheen, Danish; Scharf, Jeremiah M; Sklar, Pamela; Sullivan, Patrick F; Tuomilehto, Jaakko; Tsuang, Ming T; Watkins, Hugh C; Wilson, James G; Daly, Mark J; MacArthur, Daniel G

    2016-08-18

    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.

  15. Genetic Variation and Diversity of Japanese Loach Inferred from Mitochondrial DNA

    Science.gov (United States)

    Koizumi, Noriyuki; Takemura, Takeshi; Watabe, Keiji; Mori, Atsushi

    We conducted a phylogenetic analysis of the cytochrome b gene sequences (1,131-bp) in mitochondrial DNA, to elucidate genetic variation and diversity of the loach Misgurnus anguillicaudatus population in Japan. There were 147 haplotypes that were identified from 444 specimens collected from 123 sites. The phylogenetic tree based on the maximum parsimony method indicated three clades (A, B and C). Clade A resembled genetically the European loach M. fossilis, and the haplotypes were distributed from the North Kanto region northward. Clade B was closely related to the Chinese loach M. anguillicaudatus, and the haplotypes were distributed over the South Tohoku region westward. Clade C that composed of seven subclades seemed to be endemic to Japan, and the haplotypes of these subclades indicated regional or nationwide distribution. Distribution of Clade A and B in Japan appeared to derive from not only artificial release of individuals imported recently from China or Korea, but also diastrophism related to formation processes of the Japanese Islands. Also the estimated divergence time for evolutionary separations between clades was from the upper Miocene to the lower Pliocene (7.4 to 3.8 mya).

  16. Interpopulation genetic-ecological variation of Scots pine (Pinus sylvestris L. in Serbia

    Directory of Open Access Journals (Sweden)

    Lučić Aleksandar

    2011-01-01

    Full Text Available The genetic-ecological variation of Scots pine (Pinus sylvestris L. in Serbia was studied in the populations at five localities in western and south-western Serbia. Three groups of Scots pine (Pinus sylvestris L. populations were differentiated based on genetic research (seed protein analysis and plant community research. The first group consists of Scots pine populations on Šargan (FMU “Šargan“ and on Tara (FMU “Kaluderske Bare”, where the forests belong to the community of Scots pine and Austrian pine (Pinetum sylvestris-nigrae Pavlovic 1951. The second group covers the localities Stolovi (FMU “Radocelo-Crepuljnik“ and Zlatar (FMU “Zlatar I“, where the forests belong to the community of Scots pine and spruce (Piceo abietis-Pinetum sylvestris Stefanovic 1960. The third group comprises the Scots pine population on Pešter (FMU “Dubocica-Bare“ which belongs to the community of Scots pine with erica (Erico-Pinetum sylvestris Stefanovic 1963. Cluster analysis was performed on the basis of seed protein data and showed that there are three groups of Scots pine populations. The three populations coincide with plant communities. The community of Scots pine with erica (Erico-Pinetum sylvestris Stefanovic 1963 recorded on Pešter at the locality “Dubocica- Bare“ in the area of FE “Golija“ Ivanjica, is a special Scots pine population displayed at the greatest distance from all other populations in the cluster analysis dendrogram.

  17. Genetic Variation in the Natriuretic Peptide System, Circulating Natriuretic Peptide Levels, and Blood Pressure

    DEFF Research Database (Denmark)

    Jeppesen, Jørgen L; Nielsen, Søren J; Torp-Pedersen, Christian;

    2012-01-01

    BackgroundIn a large collaborative study (n > 50,000), common variants in the natriuretic peptide (NP) genes were found to be associated with circulating NP levels and also with blood pressure (BP) levels based on office BP measurements (OBPMs). It is unknown if determining an individual's BP by ...... evidence that the NP system plays an important role in BP regulation.American Journal of Hypertension 2012; doi:10.1038/ajh.2012.96.......-h ambulatory BP measurements (ABPMs) will influence the effect of NP gene variations on BP levels.MethodsWe used rs632793 at the NPPB (NP precursor B) locus to investigate the relationship between genetically determined serum N-terminal pro-brain NP (NT-proBNP) concentrations and BP levels......). Office BP decreased across the genotypes from A:A to G:G, but the differences did not reach statistical significance (P = 0.12).ConclusionsThis study suggests that 24-h ABPMs is a better method than OBPMs to detect significant differences in BP levels related to genetic variance and provides further...

  18. Inter individual variations of the fish skin microbiota: host genetics basis of mutualism?

    Directory of Open Access Journals (Sweden)

    Sébastien Boutin

    Full Text Available The commensal microbiota of fish skin is suspected to provide a protection against opportunist infections. The skin of fish harbors a complex and diverse microbiota that closely interacts with the surrounding water microbial communities. Up to now there is no clear evidence as to whether the host regulates the recruitment of environmental bacteria to build a specific skin microbiota. To address this question, we detected Quantitative Trait Loci (QTL associated with the abundance of specific skin microbiota bacterial strains in brook charr (Salvelinus fontinalis, combining 16S RNA tagged-amplicon 454 pyrosequencing with genetic linkage analysis. Skin microbiota analysis revealed high inter-individual variation among 86 F2 fish progeny based upon the relative abundance of bacterial operational taxonomic units (OTUs. Out of those OTUs, the pathogenic strain Flavobacterium psychrophilum and the non-pathogenic strain Methylobacterium rhodesianum explained the majority of inter-individual distances. Furthermore, a strong negative correlation was found between Flavobacterium and Methylobacterium, suggesting a mutually competitive relationship. Finally, after considering a total of 266 markers, genetic linkage analysis highlighted three major QTL associated with the abundance of Lysobacter, Rheinheimera and Methylobacterium. All these three genera are known for their beneficial antibacterial activity. Overall, our results provide evidence that host genotype may regulate the abundance of specific genera among their surface microbiota. They also indicate that Lysobacter, Rheinheimera and Methylobacterium are potentially important genera in providing protection against pathogens.

  19. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle.

    Science.gov (United States)

    Bickhart, Derek M; Xu, Lingyang; Hutchison, Jana L; Cole, John B; Null, Daniel J; Schroeder, Steven G; Song, Jiuzhou; Garcia, Jose Fernando; Sonstegard, Tad S; Van Tassell, Curtis P; Schnabel, Robert D; Taylor, Jeremy F; Lewin, Harris A; Liu, George E

    2016-06-01

    The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1 Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future. Published by Oxford University Press on behalf of Kazusa DNA Research Institute 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  20. Quantitative genetic variation for oviposition preference with respect to phenylthiocarbamide in Drosophila melanogaster.

    Science.gov (United States)

    Possidente, B; Mustafa, M; Collins, L

    1999-05-01

    Seven isogenic strains of Drosophila melanogaster were assayed for oviposition preference on food with phenylthiocarbamide (PTC) versus plain food. There was significant variation among strains for the percentage of eggs oviposited on each medium, ranging from 70 +/- 4% (SE) preference for plain food to no significant preference. Reciprocal hybrid, backcross, and F2 generations derived from two extreme parent strains revealed significant additive and nonadditive genetic variation but no evidence of maternal, paternal, or sex-chromosome effects.

  1. Mitochondrial Genetic Variation in Iranian Infertile Men with Varicocele

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Heidari

    2016-09-01

    Full Text Available Background: Several recent studies have shown that mitochondrial DNA mutations lead to major disabilities and premature death in carriers. More than 150 mutations in human mitochondrial DNA (mtDNA genes have been associated with a wide spectrum of disorders. Varicocele, one of the causes of infertility in men wherein abnormal inflexion and distension of veins of the pampiniform plexus is observed within spermatic cord, can increase reactive oxygen species (ROS production in semen and cause oxidative stress and sperm dysfunction in patients. Given that mitochondria are the source of ROS production in cells, the aim of this study was to scan nine mitochondrial genes (MT-COX2, MT-tRNALys, MT-ATP8, MT-ATP6, MT-COX3, MT-tRNAGly, MT-ND3, MT-tRNAArg and MT-ND4L for mutations in infertile patients with varicocele. Materials and Methods: In this cross-sectional study, polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP and DNA sequencing were used to detect and identify point mutations respectively in 9 mitochondrial genes in 72 infertile men with varicocele and 159 fertile men. In brief, the samples showing altered electrophoretic patterns of DNA in the SSCP gel were sent for DNA sequencing to identify the exact nucleotide variation. Results: Ten type nucleotide variants were detected exclusively in mitochondrial DNA of infertile men. These include six novel nucleotide changes and four variants previously reported for other disorders. Conclusion: Mutations in mitochondrial genes may affect respiratory complexes in combination with environmental risk factors. Therefore these nucleotide variants probably lead to impaired ATP synthesis and mitochondrial function ultimately interfering with sperm motility and infertility.

  2. Single-strand conformation polymorphism (SSCP) for the analysis of genetic variation.

    Science.gov (United States)

    Gasser, Robin B; Hu, Min; Chilton, Neil B; Campbell, Bronwyn E; Jex, Aaron J; Otranto, Domenico; Cafarchia, Claudia; Beveridge, Ian; Zhu, Xingquan

    2006-01-01

    The accurate analysis of genetic variation has major implications in many areas of biomedical research, including the identification of infectious agents (such as parasites), the diagnosis of infections, and the detection of unknown or known disease-causing mutations. Mutation scanning methods, including PCR-coupled single-strand conformation polymorphism (SSCP), have significant advantages over many other nucleic acid techniques for the accurate analysis of allelic and mutational sequence variation. The present protocol describes the SSCP method of analysis, including all steps from the small-scale isolation of genomic DNA and PCR amplification of target sequences, through to the gel-based separation of amplicons and scanning for mutations by SSCP (either by the analysis of radiolabeled amplicons in mutation detection enhancement (MDE) gels or by non-isotopic SSCP using precast GMA gels). The subsequent sequence analysis of polymorphic bands isolated from gels is also detailed. The SSCP protocol can readily detect point mutations for amplicon sizes of up to 450-500 bp, and usually takes 1-2 days to carry out. This user-friendly, low-cost, potentially high-throughput platform has demonstrated the utility to study a wide range of pathogens and diseases, and has the potential to be applied to any gene of any organism.

  3. Genetic variation and genetic trends in hip and elbow dysplasia in Swedish Rottweiler and Bernese Mountain Dog.

    Science.gov (United States)

    Malm, S; Fikse, W F; Danell, B; Strandberg, E

    2008-12-01

    The aim of this study was to estimate genetic parameters and genetic trends for hip (HD) and elbow dysplasia (ED) in Swedish Rottweiler (RW) and Bernese Mountain Dog (BMD). Analyses were based on screening results of hip status for 14 693 RW and 8221 BMD and elbow status for 11 891 RW and 7963 BMD, as well as pedigree data for 16 614 RW and 9835 BMD, recorded by the Swedish Kennel Club. Components of (co)variance and breeding values were obtained with a mixed linear animal model. The model included the fixed effects of sex, birth month, age at screening and a combined random effect of clinic and year of examination. The need to include genetic groups for phantom parents in the model was evaluated by comparison of two different models: with and without genetic groups. Estimated heritabilities for HD and ED were between 0.34 and 0.42. The genetic correlation between the traits was weak and positive for RW (r(g) = 0.23 +/- 0.05) and not different from zero for BMD (r(g) = 0.06 +/- 0.06). F-statistics of the genetic group effects were not significant, implying that genetic groups do not need to be included in the model. Genetic trends indicated a genetic improvement in both traits. However, a faster genetic progress is expected if selection is based on predicted breeding values rather than phenotype. Based on the results, a statistical model for routine prediction of breeding values for HD and ED in Swedish dogs was suggested.

  4. Imaging genetics in obsessive-compulsive disorder: linking genetic variations to alterations in neuroimaging.

    Science.gov (United States)

    Grünblatt, Edna; Hauser, Tobias U; Walitza, Susanne

    2014-10-01

    Obsessive-compulsive disorder (OCD) occurs in ∼1-3% of the general population, and its often rather early onset causes major disabilities in the everyday lives of patients. Although the heritability of OCD is between 35 and 65%, many linkage, association, and genome-wide association studies have failed to identify single genes that exhibit high effect sizes. Several neuroimaging studies have revealed structural and functional alterations mainly in cortico-striato-thalamic loops. However, there is also marked heterogeneity across studies. These inconsistencies in genetic and neuroimaging studies may be due to the heterogeneous and complex phenotypes of OCD. Under the consideration that genetic variants may also influence neuroimaging in OCD, researchers have started to combine both domains in the field of imaging genetics. Here, we conducted a systematic search of PubMed and Google Scholar literature for articles that address genetic imaging in OCD and related disorders (published through March 2014). We selected 8 publications that describe the combination of imaging genetics with OCD, and extended it with 43 publications of comorbid psychiatric disorders. The most promising findings of this systematic review point to the involvement of variants in genes involved in the serotonergic (5-HTTLPR, HTR2A), dopaminergic (COMT, DAT), and glutamatergic (SLC1A1, SAPAP) systems. However, the field of imaging genetics must be further explored, best through investigations that combine multimodal imaging techniques with genetic profiling, particularly profiling techniques that employ polygenetic approaches, with much larger sample sizes than have been used up to now. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Human genetic variation in VAC14 regulates Salmonella invasion and typhoid fever through modulation of cholesterol.

    Science.gov (United States)

    Alvarez, Monica I; Glover, Luke C; Luo, Peter; Wang, Liuyang; Theusch, Elizabeth; Oehlers, Stefan H; Walton, Eric M; Tram, Trinh Thi Bich; Kuang, Yu-Lin; Rotter, Jerome I; McClean, Colleen M; Chinh, Nguyen Tran; Medina, Marisa W; Tobin, David M; Dunstan, Sarah J; Ko, Dennis C

    2017-09-12

    Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi (S Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches.

  6. Common genetic variation and the control of HIV-1 in humans

    DEFF Research Database (Denmark)

    Fellay, J.; Ge, D.; Shianna, K.V.

    2009-01-01

    To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. ...... genetic variation in HIV-1 control in Caucasians Udgivelsesdato: 2009/12......To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We...

  7. Genetic variation in the vulnerable and endemic Monkey Puzzle tree, detected using RAPDs.

    Science.gov (United States)

    Bekessy, Sarah A; Allnutt, T R; Premoli, A C; Lara, A; Ennos, R A; Burgman, M A; Cortes, M; Newton, A C

    2002-04-01

    Araucaria araucana (Monkey Puzzle), a southern South American tree species of exceptional cultural and economic importance, is of conservation concern owing to extensive historical clearance and current human pressures. Random amplified polymorphic DNA (RAPD) markers were used to characterise genetic heterogeneity within and among 13 populations of this species from throughout its natural range. Extensive genetic variability was detected and partitioned by analysis of molecular variance, with the majority of variation existing within populations (87.2%), but significant differentiation was recorded among populations (12.8%). Estimates of Shannon's genetic diversity and percent polymorphism were relatively high for all populations and provide no evidence for a major reduction in genetic diversity from historical events, such as glaciation. All pairwise genetic distance values derived from analysis of molecular variance (Phi(ST)) were significant when individual pairs of populations were compared. Although populations are geographically divided into Chilean Coastal, Chilean Andes and Argentinean regions, this grouping explained only 1.77% of the total variation. Within Andean groups there was evidence of a trend of genetic distance with increasing latitude, and clustering of populations across the Andes, suggesting postglacial migration routes from multiple refugia. Implications of these results for the conservation and use of the genetic resource of this species are discussed.

  8. Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics

    Directory of Open Access Journals (Sweden)

    Liu Melissa M

    2012-08-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a complex and multifaceted disease involving contributions from both genetic and environmental influences. Previous work exploring the genetic contributions of AMD has implicated numerous genomic regions and a variety of candidate genes as modulators of AMD susceptibility. Nevertheless, much of this work has revolved around single-nucleotide polymorphisms (SNPs, and it is apparent that a significant portion of the heritability of AMD cannot be explained through these mechanisms. In this review, we consider the role of common variants, rare variants, copy number variations, epigenetics, microRNAs, and mitochondrial genetics in AMD. Copy number variations in regulators of complement activation genes (CFHR1 and CFHR3 and glutathione S transferase genes (GSTM1 and GSTT1 have been associated with AMD, and several additional loci have been identified as regions of potential interest but require further evaluation. MicroRNA dysregulation has been linked to the retinal pigment epithelium degeneration in geographic atrophy, ocular neovascularization, and oxidative stress, all of which are hallmarks in the pathogenesis of AMD. Certain mitochondrial DNA haplogroups and SNPs in mitochondrially encoded NADH dehydrogenase genes have also been associated with AMD. The role of these additional mechanisms remains only partly understood, but the importance of their further investigation is clear to elucidate more completely the genetic basis of AMD.

  9. Genetic Variation of Groundnut (Arachis hypogaea L. Genotypes in Semi-Arid Zone Sudan

    Directory of Open Access Journals (Sweden)

    Salih AI Sabiel

    2014-09-01

    Full Text Available Twelve genotypes of groundnut (Arachis hypogaea L. were executed under rain-fed conditions in a semi-arid zone at the Research farm of El Fasher Research Station, Sudan for two consecutive seasons 2006 and 2007. Genotypic and phenotypic variability, heritability in a broad sense and genetic advance were estimated in a randomized complete block design with four replications. High heritability estimate (above 95 % was recorded by hay yield (kg/ha in both seasons and 100- seed weight in season 2006. Moreover, the high genetic advance was recorded for hay yield (kg/ha and pod yield (kg/ha in both seasons. However, a day to 50% flowering was expressed low genotypic coefficient of variation with low genetic advances in both seasons. Highly significant different among genotypes were found for days to 50% flowering, hay yield (kg/ha, shelling (%, while pod yield (kg/ha and 100- seed weight were observed non-significant. The high yielding genotype was ICGV93260 with a pod yield of 1389.1 kg/ha. Pod yield (kg/ha was highly significantly and positively correlated with hay yield (kg/ha, shelling (% and 100- seed weight, while non-significant and negative correlated with days to 50% flowering. Based on the results the characters hay yield (kg/ha, shelling (%, 100- seed weight and days to 50% flowering to be the important characters which would be used in selection for groundnut improvement. The promising genotype identified in this study could provide valuable sources of resistance to climate-change-related stresses and for other consequent breeding activities in groundnut improvement. DOI: http://dx.doi.org/10.3126/ije.v3i3.11060 International Journal of Environment Vol.3(3 2014: 16-23

  10. Novel Detection Features for SSVEP Based BCI: Coefficient of Variation and Variation Speed

    OpenAIRE

    Abdullah Talha Sözer; Can Bülent

    2017-01-01

    This paper introduces novel detection features for the steady-state visually evoked potential (SSVEP) based brain computer interfaces. The coefficient of variation and variation speed features were developed using the stability of SSVEP response. The developed features were tested on 13 subjects. On this dataset, for which the chance level is 12.5%, about 70% detection accuracy was obtained. Based on these results, it is considered that the coefficient of variation and the variation speed can...

  11. Genetic variation of natural and cultured stocks of Paralichthys olivaceus by allozyme and RAPD

    Institute of Scientific and Technical Information of China (English)

    YOU Feng; ZHANG Peijun; WANG Keling; XIANG Jianhai

    2007-01-01

    Population genetics of the left-eyed flounder, Paralichthys olivaceus, including natural and cultured stocks distributed in the coastal waters near Qingdao of eastern maritime China, was analyzed in allozyme and RAPD. The results showed that among total 29 gene loci of 15 isozymes, 9 and 7 were polymorphic in natural and cultured stocks, respectively. The status of genetic diversity in P olivaceus is low in terms of polymorphic loci in chi-square test and genetic departure index of Hardy-Weinberg equilibrium. More alleles in IDHP, CAT, GDH and Ldh-C allozymes were found in the fish, which could be used as markers in assortive breeding and distinguishing stock, population or species evolution. Total 88 and 86 RAPD bands ranging from 200 to 2 500 bp were recognized individually in average of 7.8-8.0 bands per primer. The genetic diversity in cultured stock is lower than that in natural ones showing an obviously decreasing genetic divergence. Therefore, effective countermeasures must be taken to protect genetic resources of marine cultured fishes. The 2 markers have their own pros and cons. Combining the 2 markers to investigate the genetic variation of populations is suggested. The results provide basic data of this flounder and they are useful for studying genetic improvement and genetic resources of the fish.

  12. Population genetic variation in the tree fern Alsophila spinulosa (Cyatheaceae: effects of reproductive strategy.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available BACKGROUND: Essentially all ferns can perform both sexual and asexual reproduction. Their populations represent suitable study objects to test the population genetic effects of different reproductive systems. Using the diploid homosporous fern Alsophila spinulosa as an example species, the main purpose of this study was to assess the relative impact of sexual and asexual reproduction on the level and structure of population genetic variation. METHODOLOGY/PRINCIPAL FINDINGS: Inter-simple sequence repeats analysis was conducted on 140 individuals collected from seven populations (HSG, LCH, BPC, MPG, GX, LD, and ZHG in China. Seventy-four polymorphic bands discriminated a total of 127 multilocus genotypes. Character compatibility analysis revealed that 50.0 to 70.0% of the genotypes had to be deleted in order to obtain a tree-like structure in the data set from populations HSG, LCH, MPG, BPC, GX, and LD; and there was a gradual decrease of conflict in the data set when genotypes with the highest incompatibility counts were successively deleted. In contrast, in population ZHG, only 33.3% of genotypes had to be removed to achieve complete compatibility in the data set, which showed a sharp decline in incompatibility upon the deletion of those genotypes. All populations examined possessed similar levels of genetic variation. Population ZHG was not found to be more differentiated than the other populations. CONCLUSIONS/SIGNIFICANCE: Sexual recombination is the predominant source of genetic variation in most of the examined populations of A. spinulosa. However, somatic mutation contributes most to the genetic variation in population ZHG. This change of the primary mode of reproduction does not cause a significant difference in the population genetic composition. Character compatibility analysis represents an effective approach to separate the role of sexual and asexual components in shaping the genetic pattern of fern populations.

  13. Chemical variation in a dominant tree species: population divergence, selection and genetic stability across environments.

    Directory of Open Access Journals (Sweden)

    Julianne M O'Reilly-Wapstra

    Full Text Available Understanding among and within population genetic variation of ecologically important plant traits provides insight into the potential evolutionary processes affecting those traits. The strength and consistency of selection driving variability in traits would be affected by plasticity in differences among genotypes across environments (G×E. We investigated population divergence, selection and environmental plasticity of foliar plant secondary metabolites (PSMs in a dominant tree species, Eucalyptus globulus. Using two common garden trials we examined variation in PSMs at multiple genetic scales; among 12 populations covering the full geographic range of the species and among up to 60 families within populations. Significant genetic variation in the expression of many PSMs resides both among and within populations of E. globulus with moderate (e.g., sideroxylonal A h(2op = 0.24 to high (e.g., macrocarpal G h(2op = 0.48 narrow sense heritabilities and high coefficients of additive genetic variation estimated for some compounds. A comparison of Qst and Fst estimates suggest that variability in some of these traits may be due to selection. Importantly, there was no genetic by environment interaction in the expression of any of the quantitative chemical traits despite often significant site effects. These results provide evidence that natural selection has contributed to population divergence in PSMs in E. globulus, and identifies the formylated phloroglucinol compounds (particularly sideroxylonal and a dominant oil, 1,8-cineole, as candidates for traits whose genetic architecture has been shaped by divergent selection. Additionally, as the genetic differences in these PSMs that influence community phenotypes is stable across environments, the role of plant genotype in structuring communities is strengthened and these genotypic differences may be relatively stable under global environmental changes.

  14. Morph-specific genetic and environmental variation in innate and acquired immune response in a color polymorphic raptor.

    Science.gov (United States)

    Gangoso, Laura; Roulin, Alexandre; Ducrest, Anne-Lyse; Grande, Juan Manuel; Figuerola, Jordi

    2015-08-01

    Genetic color polymorphism is widespread in nature. There is an increasing interest in understanding the adaptive value of heritable color variation and trade-off resolution by differently colored individuals. Melanin-based pigmentation is often associated with variation in many different life history traits. These associations have recently been suggested to be the outcome of pleiotropic effects of the melanocortin system. Although pharmacological research supports that MC1R, a gene with a major role in vertebrate pigmentation, has important immunomodulatory effects, evidence regarding pleiotropy at MC1R in natural populations is still under debate. We experimentally assessed whether MC1R-based pigmentation covaries with both inflammatory and humoral immune responses in the color polymorphic Eleonora's falcon. By means of a cross-fostering experiment, we disentangled potential genetic effects from environmental effects on the covariation between coloration and immunity. Variation in both immune responses was primarily due to genetic factors via the nestlings' MC1R-related color genotype/phenotype, although environmental effects via the color morph of the foster father also had an influence. Overall, dark nestlings had lower immune responses than pale ones. The effect of the color morph of the foster father was also high, but in the opposite direction, and nestlings raised by dark eumelanic foster fathers had higher immune responses than those raised by pale foster fathers. Although we cannot completely discard alternative explanations, our results suggest that MC1R might influence immunity in this species. Morph-specific variation in immunity as well as pathogen pressure may therefore contribute to the long-term maintenance of genetic color polymorphism in natural populations.

  15. Eight genetic loci associated with variation in lipoprotein-associated phospholipase A2 mass and activity and coronary heart disease: meta-analysis of genome-wide association studies from five community-based studies

    Science.gov (United States)

    Grallert, Harald; Dupuis, Josée; Bis, Joshua C.; Dehghan, Abbas; Barbalic, Maja; Baumert, Jens; Lu, Chen; Smith, Nicholas L.; Uitterlinden, André G.; Roberts, Robert; Khuseyinova, Natalie; Schnabel, Renate B.; Rice, Kenneth M.; Rivadeneira, Fernando; Hoogeveen, Ron C.; Fontes, João Daniel; Meisinger, Christa; Keaney, John F.; Lemaitre, Rozenn; Aulchenko, Yurii S.; Vasan, Ramachandran S.; Ellis, Stephen; Hazen, Stanley L.; van Duijn, Cornelia M.; Nelson, Jeanenne J.; März, Winfried; Schunkert, Heribert; McPherson, Ruth M.; Stirnadel-Farrant, Heide A.; Psaty, Bruce M.; Gieger, Christian; Siscovick, David; Hofman, Albert; Illig, Thomas; Cushman, Mary; Yamamoto, Jennifer F.; Rotter, Jerome I.; Larson, Martin G.; Stewart, Alexandre F.R.; Boerwinkle, Eric; Witteman, Jacqueline C.M.; Tracy, Russell P.; Koenig, Wolfgang; Benjamin, Emelia J.; Ballantyne, Christie M.

    2012-01-01

    Aims Lipoprotein-associated phospholipase A2 (Lp-PLA2) generates proinflammatory and proatherogenic compounds in the arterial vascular wall and is a potential therapeutic target in coronary heart disease (CHD). We searched for genetic loci related to Lp-PLA2 mass or activity by a genome-wide association study as part of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Methods and results In meta-analyses of findings from five population-based studies, comprising 13 664 subjects, variants at two loci (PLA2G7, CETP) were associated with Lp-PLA2 mass. The strongest signal was at rs1805017 in PLA2G7 [P = 2.4 × 10−23, log Lp-PLA2 difference per allele (beta): 0.043]. Variants at six loci were associated with Lp-PLA2 activity (PLA2G7, APOC1, CELSR2, LDL, ZNF259, SCARB1), among which the strongest signals were at rs4420638, near the APOE–APOC1–APOC4–APOC2 cluster [P = 4.9 × 10−30; log Lp-PLA2 difference per allele (beta): −0.054]. There were no significant gene–environment interactions between these eight polymorphisms associated with Lp-PLA2 mass or activity and age, sex, body mass index, or smoking status. Four of the polymorphisms (in APOC1, CELSR2, SCARB1, ZNF259), but not PLA2G7, were significantly associated with CHD in a second study. Conclusion Levels of Lp-PLA2 mass and activity were associated with PLA2G7, the gene coding for this protein. Lipoprotein-associated phospholipase A2 activity was also strongly associated with genetic variants related to low-density lipoprotein cholesterol levels. PMID:22003152

  16. Amplified fragment length polymorphism: an adept technique for genome mapping, genetic differentiation, and intraspecific variation in protozoan parasites.

    Science.gov (United States)

    Kumar, Awanish; Misra, Pragya; Dube, Anuradha

    2013-02-01

    With the advent of polymerase chain reaction (PCR), genetic markers are now accessible for all organisms, including parasites. Amplified fragment length polymorphism (AFLP) is a PCR-based marker for the rapid screening of genetic diversity and intraspecific variation. It is a potent fingerprinting technique for genomic DNAs of any origin or complexity and rapidly generates a number of highly replicable markers that allow high-resolution genotyping. AFLPs are convenient and reliable in comparison to other markers like random amplified polymorphic DNA, restriction fragment length polymorphism, and simple sequence repeat in terms of time and cost efficiency, reproducibility, and resolution as it does not require template DNA sequencing. In addition, AFLP essentially probes the entire genome at random, without prior sequence knowledge. So, AFLP markers have emerged as an advance type of genetic marker with broad application in genomic mapping, population genetics, and DNA fingerprinting and are ideally suited as screening tool for molecular markers linked with biological and clinical traits. This review describes the AFLP procedure and its applications and overview in the fingerprinting of a genome, which has been currently used in parasite genome research. We outline the AFLP procedure adapted for Leishmania genome study and discuss the benefits of AFLPs for assessing genetic variation and genome mapping over other existing molecular techniques. We highlight the possible use of AFLPs as genetic markers with its broad application in parasitological research because it allows random screening of the entire genome for linkage with genetic and clinical properties of the parasite. In this review, we have taken a pragmatic approach on the study of AFLP for genome mapping and polymorphism in protozoan parasites and conclude that AFLP is a very useful tool.

  17. Genetic variation in Phoca vitulina (the harbour seal) revealed by DNA fingerprinting and RAPDs

    NARCIS (Netherlands)

    Kappe, A.L.; van de Zande, L.; Vedder, E.J.; Bijlsma, R.; van Delden, Wilke

    Genetic variation in two harbour seal (Phoca vitulina) populations from the Dutch Wadden Sea and Scotland was examined by RAPD analysis and DNA fingerprinting. For comparison a population of grey seals (Halichoerus grypus) was studied. The RAPD method revealed a very low number of polymorphic bands.

  18. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    Science.gov (United States)

    The diversity and population-genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analyzed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, Romagnola), sequenced to 11-fold...

  19. Analysis of genetic variation and potential applications in genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Cardoso, Joao; Andersen, Mikael Rørdam; Herrgard, Markus;

    2015-01-01

    Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology, there...

  20. Genetic variation and differentiation in parent-descendant cattle and bison populations

    Science.gov (United States)

    Genetic variation and differentiation at 32 microsatellite DNA loci is quantified for parent-descendant cattle populations and parent-descendant bison (Bison bison) populations. Heterozygosity (Ho) and numbers of alleles/locus (AR) are less in the Line 1 Hereford inbred cattle population than in t...

  1. Genetic variation in the hTAS2R38 taste receptor and brassica vegetable intake

    DEFF Research Database (Denmark)

    Gorovic, Nela; Afzal, Shoaib; Tjonneland, Anne

    2011-01-01

    investigated the relationship between genetic variation in the hTAS2R38 receptor and the actual consumption of brassica vegetables with the hypothesis that taster status was associated with intake of these vegetables. Furthermore, secondary intake information on alcohol, chocolate, coffee, smoking, BMI...

  2. A framework for the study of genetic variation in migratory behaviour

    NARCIS (Netherlands)

    Van Noordwijk, A.J.; Pulido, F.; Helm, B.; Coppack, T.; Delingat, J.; Dingle, H.; Hedenström, A.; Van der Jeugd, H.; Marchetti, C.M.; Nilsson, A.; Pérez-Tris, J.

    2006-01-01

    Evolutionary change results from selection acting on genetic variation. For migration to be successful, many different aspects of an animal’s physiology and behaviour need to function in a co-coordinated way. Changes in one migratory trait are therefore likely to be accompanied by changes in other m

  3. Natural Selection and Evolution: Using Multimedia Slide Shows to Emphasize the Role of Genetic Variation

    Science.gov (United States)

    Malone, Molly

    2012-01-01

    Most middle school students comprehend that organisms have adaptations that enable their survival and that successful adaptations prevail in a population over time. Yet they often miss that those bird beaks, moth-wing colors, or whatever traits are the result of random, normal genetic variations that just happen to confer a negative, neutral, or…

  4. Human Disease-Associated Genetic Variation Impacts Large Intergenic Non-Coding RNA Expression

    NARCIS (Netherlands)

    Kumar, Vinod; Westra, Harm-Jan; Karjalainen, Juha; Zhernakova, Daria V.; Esko, Tonu; Hrdlickova, Barbara; Almeida, Rodrigo; Zhernakova, Alexandra; Reinmaa, Eva; Hofker, Marten H.; Fehrmann, Rudolf S. N.; Fu, Jingyuan; Withoff, Sebo; Metspalu, Andres; Franke, Lude; Wijmenga, Cisca; Vosa, Urmo

    2013-01-01

    Recently it has become clear that only a small percentage (7%) of disease-associated single nucleotide polymorphisms (SNPs) are located in protein-coding regions, while the remaining 93% are located in gene regulatory regions or in intergenic regions. Thus, the understanding of how genetic variation

  5. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    DEFF Research Database (Denmark)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovari...

  6. Genetic variation of milk fatty acid composition between and within dairy cattle breeds

    NARCIS (Netherlands)

    Maurice - Van Eijndhoven, M.H.T.

    2014-01-01

    Abstract Maurice – Van Eijndhoven, M.H.T. (2014). Genetic variation of milk fatty acid composition between and within dairy cattle breeds. PhD thesis, Wageningen University, the Netherlands Fat is one of the main components in bovine milk and comprises a large number of indivi

  7. Classification, genetic variation and pathogenicity of Lymantria dispar nucleopolyhedrovirus isolates from Asia, Europe, and North America

    Science.gov (United States)

    Robert L. Harrison; Melody A. Keena; Daniel L. Rowley

    2014-01-01

    Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) has been formulated and applied to control outbreaks of the gypsy moth, L. dispar. To classify and determine the degree of genetic variation among isolates of L. dispar NPVs from different parts of the range of the gypsy moth, partial sequences of the

  8. Independence of genetic variation between circadian rhythm and development time in the seed beetle, Callosobruchus chinensis.

    Science.gov (United States)

    Harano, Tomohiro; Miyatake, Takahisa

    2011-03-01

    A positive genetic correlation between periods of circadian rhythm and developmental time supports the hypothesis that circadian clocks are implicated in the timing of development. Empirical evidence for this genetic correlation in insects has been documented in two fly species. In contrast, here we show that there is no evidence of genetic correlation between circadian rhythm and development time in the adzuki bean beetle, Callosobruchus chinensis. This species has variation that is explained by a major gene in the expression and period length of circadian rhythm between strains. In this study, we found genetic variation in development time between the strains. The development time was not covaried with either the incidence or the period length of circadian rhythm among the strains. Crosses between strains suggest that development time is controlled by a polygene. In the F(2) individuals from the crosses, the circadian rhythm is attributable to allelic variation in the major gene. Across the F(2) individuals, development time was not correlated with either the expression or the period length of circadian rhythm. Thus, we found no effects of major genes responsible for variation in the circadian rhythm on development time in C. chinensis. Our findings collectively give no support to the hypothesis that the circadian clock is involved in the regulation of development time in this species.

  9. Genetic variation in Phoca vitulina (the harbour seal) revealed by DNA fingerprinting and RAPDs

    NARCIS (Netherlands)

    Kappe, A.L.; van de Zande, L.; Vedder, E.J.; Bijlsma, R.; van Delden, Wilke

    1995-01-01

    Genetic variation in two harbour seal (Phoca vitulina) populations from the Dutch Wadden Sea and Scotland was examined by RAPD analysis and DNA fingerprinting. For comparison a population of grey seals (Halichoerus grypus) was studied. The RAPD method revealed a very low number of polymorphic bands.

  10. Genetic variation in serotonin transporter function affects human fear expression indexed by fear-potentiated startle

    NARCIS (Netherlands)

    Klumpers, F.; Heitland, I.; Oosting, R.S.; Kenemans, J.L.; Baas, J.M.

    2012-01-01

    The serotonin transporter (SERT) plays a crucial role in anxiety. Accordingly, variance in SERT functioning appears to constitute an important pathway to individual differences in anxiety. The current study tested the hypothesis that genetic variation in SERT function is associated with variability

  11. Genetic variation of inbreeding depression among floral and fitness traits in Silene nutans

    DEFF Research Database (Denmark)

    Thiele, Jan; Hansen, Thomas Møller; Siegismund, Hans Redlef

    2010-01-01

    decoupled. There was a trend that the smaller population was less affected by ID than the large one, although the differences were not significant for most traits. Hence, evidence for purging of deleterious alleles remains inconclusive in this study. Genetic variation in ID among paternal families...

  12. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing

    NARCIS (Netherlands)

    Aflitos, S.; Schijlen, E.; de Jong, H.; de Ridder, D.; Smit, S.; Finkers, R.; Wang, J.; Zhang, G.; Li, N.; Mao, L.; Bakker, F.; Dirks, R.; Breit, T.; Gravendeel, B.; Huits, H.; Struss, D.; Swanson-Wagner, R.; van Leeuwen, H.; van Ham, R.C.H.J.; Fito, L.; Guignier, L.; Sevilla, M.; Ellul, P.; Ganko, E.; Kapur, A.; Reclus, E.; de Geus, B.; van de Geest, H.; te Lintel Hekkert, B.; van Haarst, J.; Smits, L.; Koops, A.; Sanchez-Perez, G.; van Heusden, A.W.; Visser, R.; Quan, Z.; Min, J.; Liao, L.; Wang, X.; Wang, G.; Yue, Z.; Yang, X.; Xu, N.; Schranz, E.; Smets, E.; Vos, R.; Rauwerda, J.; Ursem, R.; Schuit, C.; Kerns, M.; van den Berg, J.; Vriezen, W.; Janssen, A.; Datema, E.; Jahrman, T.; Moquet, F.; Bonnet, J.; Peters, S.

    2014-01-01

    We explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon, Arcanum, Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new referen

  13. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population

    DEFF Research Database (Denmark)

    Frikke-Schmidt, Ruth; Nordestgaard, Børge G; Jensen, Gorm B;

    2004-01-01

    Homozygosity for mutations in ABC transporter A1 (ABCA1) causes Tangier disease, a rare HDL-deficiency syndrome. Whether heterozygosity for genetic variation in ABCA1 also contributes to HDL cholesterol (HDL-C) levels in the general population is presently unclear. We determined whether mutations...

  14. Patterns of Genetic Variation in Woody Plant Species in the Missouri Ozark Forest Ecosystem Project

    Science.gov (United States)

    Victoria L. Sork; Anthony Koop; Marie Ann de la Fuente; Paul Foster; Jay. Raveill

    1997-01-01

    We quantified current patterns of genetic variation of three woody plant species—Carya tomentosa (Juglandaceae), Quercus alba (Fagaceae), and Sassafras albidum (Lauraceae)—distributed throughout the nine Missouri Ozark Forest Ecosystem Project (MOFEP) study sites and evaluated the data in light of the MOFEP...

  15. Latitudinal variation in genetic divergence of populations and the potential for future speciation.

    Science.gov (United States)

    Martin, Paul R; McKay, John K

    2004-05-01

    The increase in biological diversity with decreasing latitude is widely appreciated but the cause of the pattern is unknown. This pattern reflects latitudinal variation in both the origin of new species (cladogenesis) and the number of species that coexist. Here we address latitudinal variation in species origination, by examining population genetic processes that influence speciation. Previous data suggest a greater number of speciation events at lower latitudes. If speciation events occur more frequently at lower latitudes, we predicted that genetic divergence among populations within species, an important component of cladogenesis, should be greater among lower latitude populations. We tested this prediction using within-species patterns of mtDNA variation across 60 vertebrate species that collectively spanned six continents, two oceans, and 119 degrees latitude. We found greater genetic divergence of populations, controlling for geographic distance, at lower latitudes within species. This pattern remained statistically significant after removing populations that occur in localities previously covered by continental glaciers during the last glaciation. Results suggest that lower latitude populations within species exhibit greater evolutionary independence, increasing the likelihood that mutation, recombination, selection, and/or drift will lead to divergence of traits important for reproductive isolation and speciation. Results are consistent with a greater influence of seasonality, reduced energy, and/or glacial (Milankovitch) cycles acting on higher latitude populations, and represent one of the few tests of predictions of latitudinal variation in speciation rates using population genetic data.

  16. Effects of common germ-line genetic variation in cell cycle genes on ovarian cancer survival

    DEFF Research Database (Denmark)

    Song, H.; Hogdall, E.; Ramus, S.J.

    2008-01-01

    PURPOSE: Somatic alterations have been shown to correlate with ovarian cancer prognosis and survival, but less is known about the effects on survival of common inherited genetic variation. Of particular interest are genes involved in cell cycle pathways, which regulate cell division and could pla...

  17. Structural Variation (SV Markers in the Basidiomycete Volvariella volvacea and Their Application in the Construction of a Genetic Map

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-07-01

    Full Text Available Molecular markers and genetic maps are useful tools in genetic studies. Novel molecular markers and their applications have been developed in recent years. With the recent advancements in sequencing technology, the genomic sequences of an increasingly great number of fungi have become available. A novel type of molecular marker was developed to construct the first reported linkage map of the edible and economically important basidiomycete Volvariella volvacea by using 104 structural variation (SV markers that are based on the genomic sequences. Because of the special and simple life cycle in basidiomycete, SV markers can be effectively developed by genomic comparison and tested in single spore isolates (SSIs. This stable, convenient and rapidly developed marker may assist in the construction of genetic maps and facilitate genomic research for other species of fungi.

  18. Genetic architecture of transcript-level variation in differentiating xylem of a eucalyptus hybrid.

    Science.gov (United States)

    Kirst, Matias; Basten, Christopher J; Myburg, Alexander A; Zeng, Zhao-Bang; Sederoff, Ronald R

    2005-04-01

    Species diversity may have evolved by differential regulation of a similar set of genes. To analyze and compare the genetic architecture of transcript regulation in different genetic backgrounds of Eucalyptus, microarrays were used to examine variation in mRNA abundance in the differentiating xylem of a E. grandis pseudobackcross population [E. grandis x F(1) hybrid (E. grandis x E. globulus)]. Least-squares mean estimates of transcript levels were generated for 2608 genes in 91 interspecific backcross progeny. The quantitative measurements of variation in transcript abundance for specific genes were mapped as expression QTL (eQTL) in two single-tree genetic linkage maps (F(1) hybrid paternal and E. grandis maternal). EQTL were identified for 1067 genes in the two maps, of which 811 were located in the F(1) hybrid paternal map, and 451 in the E. grandis maternal map. EQTL for 195 genes mapped to both parental maps, the majority of which localized to nonhomologous linkage groups, suggesting trans-regulation by different loci in the two genetic backgrounds. For 821 genes, a single eQTL that explained up to 70% of the transcript-level variation was identified. Hotspots with colocalized eQTL were identified in both maps and typically contained genes associated with specific metabolic and regulatory pathways, suggesting coordinated genetic regulation.

  19. Water Detection Based on Color Variation

    Science.gov (United States)

    Rankin, Arturo L.

    2012-01-01

    This software has been designed to detect water bodies that are out in the open on cross-country terrain at close range (out to 30 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). This detector exploits the fact that the color variation across water bodies is generally larger and more uniform than that of other naturally occurring types of terrain, such as soil and vegetation. Non-traversable water bodies, such as large puddles, ponds, and lakes, are detected based on color variation, image intensity variance, image intensity gradient, size, and shape. At ranges beyond 20 meters, water bodies out in the open can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. But at closer range, the color coming out of a water body dominates sky reflections, and the water cue from sky reflections is of marginal use. Since there may be times during UGV autonomous navigation when a water body does not come into a perception system s field of view until it is at close range, the ability to detect water bodies at close range is critical. Factors that influence the perceived color of a water body at close range are the amount and type of sediment in the water, the water s depth, and the angle of incidence to the water body. Developing a single model of the mixture ratio of light reflected off the water surface (to the camera) to light coming out of the water body (to the camera) for all water bodies would be fairly difficult. Instead, this software detects close water bodies based on local terrain features and the natural, uniform change in color that occurs across the surface from the leading edge to the trailing edge.

  20. Partitioning of genetic variation between regulatory and coding gene segments: the predominance of software variation in genes encoding introvert proteins.

    Science.gov (United States)

    Mitchison, A

    1997-01-01

    In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unusually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics.

  1. Genetic variation of a global germplasm collection of chickpea (Cicer arietinum L.) including Italian accessions at risk of genetic erosion.

    Science.gov (United States)

    De Giovanni, C; Pavan, S; Taranto, F; Di Rienzo, V; Miazzi, M M; Marcotrigiano, A R; Mangini, G; Montemurro, C; Ricciardi, L; Lotti, C

    2017-01-01

    Chickpea (Cicer arietinum L.) is one of the most important legumes worldwide. We addressed this study to the genetic characterization of a germplasm collection from main chickpea growing countries. Several Italian traditional landraces at risk of genetic erosion were included in the analysis. Twenty-two simple sequence repeat (SSR) markers, widely used to explore genetic variation in plants, were selected and yielded 218 different alleles. Structure analysis and hierarchical clustering indicated that a model with three distinct subpopulations best fits the data. The composition of two subpopulations, named K1 and K2, broadly reflects the commercial classification of chickpea in the two types desi and kabuli, respectively. The third subpopulation (K3) is composed by both desi and kabuli genotypes. Italian accessions group both in K2 and K3. Interestingly, this study highlights genetic distance between desi genotypes cultivated in Asia and Ethiopia, which respectively represent the chickpea primary and the secondary centres of diversity. Moreover, European desi are closer to the Ethiopian gene pool. Overall, this study will be of importance for chickpea conservation genetics and breeding, which is limited by the poor characterization of germplasm collection.

  2. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    NARCIS (Netherlands)

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can

  3. RNA splicing is a primary link between genetic variation and disease.

    Science.gov (United States)

    Li, Yang I; van de Geijn, Bryce; Raj, Anil; Knowles, David A; Petti, Allegra A; Golan, David; Gilad, Yoav; Pritchard, Jonathan K

    2016-04-29

    Noncoding variants play a central role in the genetics of complex traits, but we still lack a full understanding of the molecular pathways through which they act. We quantified the contribution of cis-acting genetic effects at all major stages of gene regulation from chromatin to proteins, in Yoruba lymphoblastoid cell lines (LCLs). About ~65% of expression quantitative trait loci (eQTLs) have primary effects on chromatin, whereas the remaining eQTLs are enriched in transcribed regions. Using a novel method, we also detected 2893 splicing QTLs, most of which have little or no effect on gene-level expression. These splicing QTLs are major contributors to complex traits, roughly on a par with variants that affect gene expression levels. Our study provides a comprehensive view of the mechanisms linking genetic variation to variation in human gene regulation.

  4. Genetic Variation in DNA of Coho Salmon from the Lower Columbia River : Final Report 1993.

    Energy Technology Data Exchange (ETDEWEB)

    Fobes, Stephen; Knudsen, Kathy; Allendorf, Fred

    1993-04-01

    The goal of this project was to develop techniques to provide the information needed to determine if Lower Columbia River coho salmon represent a 'species' under the Endangered Species Act. Our report features two new nuclear DNA approaches to the improved detection of genetic variation: (1) Studies of DNA-level genetic variation for two nuclear growth hormone genes; (2) Use of arbitrary DNA primers (randomly amplified polymorphic DNA, or 'RAPD' primers) to detect variation at large numbers of nuclear genes. We used the polymerase chain reaction (PCR) to amplify variable sections (introns) of two growth hormone genes (GH-I and G/f-Z) in several salmonid species. Coho salmon had three DNA length variants for G/-I intron C. Restriction analysis and sequencing provided valuable information about the mode of evolution of these DNA sequences. We tested segregation of the variants in captive broods of coho salmon, and demonstrated that they are alleles at a single Mendelian locus. Population studies using the GH-1 alleles showed highly significant frequency differences between Lower Columbia River and Oregon Coast coho salmon, and marginal differences among stocks within these regions. These new markers are adequately defined and tested to use in coho salmon population studies of any size. The nature of the variation at GH-1 (Variable Number Tandem Repeats, or 'VNTRs') suggests that more genetic variants will be found in coho salmon from other areas. GH-2 intron C also showed length variation in coho salmon, and this variation was found to be sex-linked. Because PCR methods require minute amounts of tissue, this discovery provides a technique to determine the gender of immature coho salmon without killing them. Chinook salmon had restriction patterns and sequence divergences similar to coho salmon. Thus, we expect that sex linkage of GH-2 alleles predates the evolutionary divergence of Pacific salmon species, and that gender testing with

  5. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem

    Science.gov (United States)

    Rudman, Seth M.; Rodriguez-Cabal, Mariano A.; Stier, Adrian; Sato, Takuya; Heavyside, Julian; El-Sabaawi, Rana W.; Crutsinger, Gregory M.

    2015-01-01

    Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns. PMID:26203004

  6. Developmental plasticity and the origin of novel forms: unveiling cryptic genetic variation via "use and disuse".

    Science.gov (United States)

    Palmer, A Richard

    2012-09-01

    Natural selection eliminates phenotypic variation from populations, generation after generation-an observation that haunted Darwin. So, how does new phenotypic variation arise, and is it always random with respect to fitness? Repeated behavioral responses to a novel environment-particularly those that are learned-are typically advantageous. If those behaviors yield more extreme or novel morphological variants via developmental plasticity, then previously cryptic genetic variation may be exposed to natural selection. Significantly, because the mean phenotypic effect of "use and disuse" is also typically favorable, previously cryptic genetic variation can be transformed into phenotypic variation that is both visible to selection and biased in an adaptive direction. Therefore, use-induced developmental plasticity in a very real sense "creates" new phenotypic variation that is nonrandom with respect to fitness, in contrast to the random phenotypic effects of mutation, recombination, and "direct effects" of environment (stress, nutrition). I offer here (a) a brief review of the immense literature on the effects of "use and disuse" on morphology, (b) a simple yet general model illustrating how cryptic genetic variation may be exposed to selection by developmentally plastic responses that alter trait performance in response to "use and disuse," and (c) a more detailed model of a positive feedback loop between learning (handed behavior) and morphological plasticity (use-induced morphological asymmetry) that may rapidly generate novel phenotypic variation and facilitate the evolution of conspicuous morphological asymmetries. Evidence from several sources suggests that handed behaviors played an important role both in the origin of novel forms (asymmetries) and in their subsequent evolution. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  7. Association of genetic variations in the mitochondrial DNA control region with presbycusis

    Directory of Open Access Journals (Sweden)

    Falah M

    2017-03-01

    Full Text Available Masoumeh Falah,1 Mohammad Farhadi,1 Seyed Kamran Kamrava,1 Saeid Mahmoudian,1 Ahmad Daneshi,1 Maryam Balali,1 Alimohamad Asghari,2 Massoud Houshmand1,3 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Skull Base Research Center, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran Background: The prominent role of mitochondria in the generation of reactive oxygen species, cell death, and energy production contributes to the importance of this organelle in the intracellular mechanism underlying the progression of the common sensory disorder of the elderly, presbycusis. Reduced mitochondrial DNA (mtDNA gene expression and coding region variation have frequently been reported as being associated with the development of presbycusis. The mtDNA control region regulates gene expression and replication of the genome of this organelle. To comprehensively understand of the role of mitochondria in the progression of presbycusis, we compared variations in the mtDNA control region between subjects with presbycusis and controls.Methods: A total of 58 presbycusis patients and 220 control subjects were enrolled in the study after examination by the otolaryngologist and audiology tests. Variations in the mtDNA control region were investigated by polymerase chain reaction and Sanger sequencing.Results: A total of 113 sequence variants were observed in mtDNA, and variants were detected in 100% of patients, with 84% located in hypervariable regions. The frequencies of the variants, 16,223 C>T, 16,311 T>C, 16,249 T>C, and 15,954 A>C, were significantly different between presbycusis and control subjects.Conclusion: The statistically significant difference in the frequencies of four nucleotide variants in the mtDNA control region of presbycusis patients and controls is in agreement with previous experimental

  8. Genetic variation of Border disease virus species strains

    Directory of Open Access Journals (Sweden)

    Massimo Giangaspero

    2011-12-01

    Full Text Available The 5´-untranslated region of Pestivirus strains isolated from domestic and wild animals were analysed to determine their taxonomic status according to nucleotide changes in the secondary genomic structure using the palindromic nucleotide substitutions (PNS method. A total of 131 isolates out of 536 Pestivirus strains evaluated, were clustered as Border disease virus (BDV species. The BDV strains were further divided into at least 8 genotypes or subspecies. Thirty-two isolates from small ruminants suffering from clinical symptoms of Border disease were clustered into bovine viral diarrhoea virus 1 (BVDV-1, BVDV-2 and classical swine fever (hog cholera virus species and also into the tentative BDV-2 species. Since the definition of an infectious disease is based primarily on a specific causative pathogen and taking into account the heterogeneity of the genus Pestivirus, clinical cases should be named according to the laboratory results. The PNS procedure could be useful for laboratory diagnosis of Border disease in domestic and wild ruminants.

  9. Assessment of genetic variation for pathogen-specific mastitis resistance in Valle del Belice dairy sheep.

    Science.gov (United States)

    Tolone, Marco; Larrondo, Cristian; Yáñez, José M; Newman, Scott; Sardina, Maria Teresa; Portolano, Baldassare

    2016-07-28

    Mastitis resistance is a complex and multifactorial trait, and its expression depends on both genetic and environmental factors, including infection pressure. The objective of this research was to determine the genetic basis of mastitis resistance to specific pathogens using a repeatability threshold probit animal model. The most prevalent isolated pathogens were coagulase-negative staphylococci (CNS); 39 % of records and 77 % of the animals infected at least one time in the whole period of study. There was significant genetic variation only for Streptococci (STR). In addition, there was a positive genetic correlation between STR and all pathogens together (ALL) (0.36 ± 0.22), and CNS and ALL (0.92 ± 0.04). The results of our study support the presence of significant genetic variation for mastitis caused by Streptococci and suggest the importance of discriminating between different pathogens causing mastitis due to the fact that they most likely influence different genetic traits. Low heritabilities for pathogen specific-mastitis resistance may be considered when including bacteriological status as a measure of mastitis presence to implement breeding strategies for improving udder health in dairy ewes.

  10. The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations.

    Science.gov (United States)

    Morrissey, Michael B; de Kerckhove, Derrick T

    2009-12-01

    Dendritic landscapes can have ecological properties that differ importantly from simpler spatial arrangements of habitats. Most dendritic landscapes are structured by elevation, and therefore, migration is likely to be directionally biased. While the population-genetic consequences of both dendritic landscape arrangements and asymmetric migration have begun to be studied, these processes have not been considered together. Simple conceptual models predict that if migration into branch (headwater) populations is limited, such populations can act as reservoirs for potentially unique alleles. As a consequence of the fact that dendritic landscapes have, by definition, more branches than internal habitat patches, this process may lead to the maintenance of higher overall genetic diversities in metapopulations inhabiting dendritic networks where migration is directionally biased. Here we begin to address the generality of these simple predictions using genetic models and a review of empirical literature. We show, for a range of demographic parameters, that dendritic systems with asymmetric migration can maintain levels of genetic variation that are very different, sometimes very elevated, compared with more classical models of geographical population structure. Furthermore, predicted patterns of genetic variation within metapopulations--that is, stepwise increases in genetic diversity at nodes--do occur in some empirical data.

  11. Deciphering the genic basis of yeast fitness variation by simultaneous forward and reverse genetics.

    Science.gov (United States)

    Maclean, Calum J; Metzger, Brian P H; Yang, Jian-Rong; Ho, Wei-Chin; Moyers, Bryan; Zhang, Jianzhi

    2017-05-04

    The budding yeast Saccharomyces cerevisiae is the best studied eukaryote in molecular and cell biology, but its utility for understanding the genetic basis of phenotypic variation in natural populations is limited by inefficient association mapping due to strong and complex population structure. To overcome this challenge, we generated genome sequences for 85 strains and performed a comprehensive population genomic survey of a total of 190 diverse strains. We identified considerable variation in population structure among chromosomes and identified 181 genes that are absent from the reference genome. Many of these non-reference genes are expressed and we functionally confirmed that two of these genes confer increased resistance to antifungals. Next, we simultaneously measured the growth rates of over 4500 laboratory strains, each of which lacks a nonessential gene, and 81 natural strains across multiple environments using unique DNA barcode present in each strain. By combining the genome-wide reverse genetic information gained from the gene deletion strains with a genome-wide association analysis from the natural strains, we identified genomic regions associated with fitness variation in natural populations. To experimentally validate a subset of these associations, we used reciprocal hemizygosity tests, finding that while the combined forward and reverse genetic approaches can identify a single causal gene, the phenotypic consequences of natural genetic variation often follow a complicated pattern. The resources and approach provided outline an efficient and reliable route to association mapping in yeast and significantly enhance its value as a model for understanding the genetic mechanisms underlying phenotypic variation and evolution in natural populations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Genetic variation in a female genital trait evolved by sexual coevolution.

    Science.gov (United States)

    Jiménez Ambriz, Georgina; Mota, Diana; Cordero, Carlos

    2011-10-01

    Understanding the patterns of genetic variation of traits subject to sexual selection is fundamental for explaining its evolutionary dynamics and potential for sexual coevolution. The signa of female Lepidoptera are sclerotized structures located on the inner surface of the genital receptacle that receives the spermatophore during copulation (the corpus bursae), whose main function is tearing the spermatophore envelope. Comparative data indicate that the evolution of signa has been influenced by sexually antagonistic coevolution with spermatophore envelopes. We looked for additive genetic variation in the size and shape of signa in females of the butterfly Callophrys xami (Lycaenidae) from two localities (BG and FC) in Mexico City. We also looked for genetic variation in female body size and in the size of corpus bursae. There were significant between-population differences in female body size, signa width and three signa shape traits. We found significant extranuclear maternal effects in one component of signa shape in the BG population, and in body weight, signa length and in one uniform component of signa shape in the FC population. Extranuclear maternal contributions could permit the evolution of female adaptations even if these reduce male fitness. We found additive genetic variation in signa length and width only in one population (BG); heritability estimates were high: 0.96 and 0.8, respectively. The existence of additive genetic variation in signa size could be, at least in part, a result of relaxed sexually antagonistic selection pressures due to the low level of polyandry exhibited by this species. Our results imply that there is currently potential for further sexual coevolution in this trait.

  13. Recurrent Coding Sequence Variation Explains Only A Small Fraction of the Genetic Architecture of Colorectal Cancer

    Science.gov (United States)

    Timofeeva, Maria N.; Kinnersley, Ben; Farrington, Susan M.; Whiffin, Nicola; Palles, Claire; Svinti, Victoria; Lloyd, Amy; Gorman, Maggie; Ooi, Li-Yin; Hosking, Fay; Barclay, Ella; Zgaga, Lina; Dobbins, Sara; Martin, Lynn; Theodoratou, Evropi; Broderick, Peter; Tenesa, Albert; Smillie, Claire; Grimes, Graeme; Hayward, Caroline; Campbell, Archie; Porteous, David; Deary, Ian J.; Harris, Sarah E.; Northwood, Emma L.; Barrett, Jennifer H.; Smith, Gillian; Wolf, Roland; Forman, David; Morreau, Hans; Ruano, Dina; Tops, Carli; Wijnen, Juul; Schrumpf, Melanie; Boot, Arnoud; Vasen, Hans F A; Hes, Frederik J.; van Wezel, Tom; Franke, Andre; Lieb, Wolgang; Schafmayer, Clemens; Hampe, Jochen; Buch, Stephan; Propping, Peter; Hemminki, Kari; Försti, Asta; Westers, Helga; Hofstra, Robert; Pinheiro, Manuela; Pinto, Carla; Teixeira, Manuel; Ruiz-Ponte, Clara; Fernández-Rozadilla, Ceres; Carracedo, Angel; Castells, Antoni; Castellví-Bel, Sergi; Campbell, Harry; Bishop, D. Timothy; Tomlinson, Ian P M; Dunlop, Malcolm G.; Houlston, Richard S.

    2015-01-01

    Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10−7), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10−7); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10−7 and OR = 1.09, P = 7.4 × 10−8); rs1129406 (12q13) in ATF1 (OR = 1.11, P = 8.3 × 10−9), all reaching exome-wide significance levels. Gene based tests identified associations between CRC and PCDHGA genes (P < 2.90 × 10−6). We found an excess of rare, damaging variants in base-excision (P = 2.4 × 10−4) and DNA mismatch repair genes (P = 6.1 × 10−4) consistent with a recessive mode of inheritance. This study comprehensively explores the contribution of coding sequence variation to CRC risk, identifying associations with coding variation in 4 genes and PCDHG gene cluster and several candidate recessive alleles. However, these findings suggest that recurrent, low-frequency coding variants account for a minority of the unexplained heritability of CRC. PMID:26553438

  14. Within-population Y-linked genetic variation for lifespan in Drosophila melanogaster.

    Science.gov (United States)

    Griffin, R M; Le Gall, D; Schielzeth, H; Friberg, U

    2015-11-01

    The view that the Y chromosome is of little importance for phenotypic evolution stems from early studies of Drosophila melanogaster. This species' Y chromosome contains only 13 protein-coding genes, is almost entirely heterochromatic and is not necessary for male viability. Population genetic theory further suggests that non-neutral variation can only be maintained at the Y chromosome under special circumstances. Yet, recent studies suggest that the D. melanogaster Y chromosome trans-regulates hundreds to thousands of X and autosomal genes. This finding suggests that the Y chromosome may play a far more active role in adaptive evolution than has previously been assumed. To evaluate the potential for the Y chromosome to contribute to phenotypic evolution from standing genetic variation, we test for Y-linked variation in lifespan within a population of D. melanogaster. Assessing variation for lifespan provides a powerful test because lifespan (i) shows sexual dimorphism, which the Y is primarily predicted to contribute to, (ii) is influenced by many genes, which provides the Y with many potential regulatory targets and (iii) is sensitive to heterochromatin remodelling, a mechanism through which the Y chromosome is believed to regulate gene expression. Our results show a small but significant effect of the Y chromosome and thus suggest that the Y chromosome has the potential to respond to selection from standing genetic variation. Despite its small effect size, Y-linked variation may still be important, in particular when evolution of sexual dimorphism is genetically constrained elsewhere in the genome.

  15. Standing genetic variation and compensatory evolution in transgenic organisms: a growth-enhanced salmon simulation.

    Science.gov (United States)

    Ahrens, Robert N M; Devlin, Robert H

    2011-06-01

    Genetically modified strains usually are generated within defined genetic backgrounds to minimize variation for the engineered characteristic in order to facilitate basic research investigations or for commercial application. However, interactions between transgenes and genetic background have been documented in both model and commercial agricultural species, indicating that allelic variation at transgene-modifying loci are not uncommon in genomes. Engineered organisms that have the potential to allow entry of transgenes into natural populations may cause changes to ecosystems via the interaction of their specific phenotypes with ecosystem components and services. A transgene introgressing through natural populations is likely to encounter a range of natural genetic variation (among individuals or sub-populations) that could result in changes in phenotype, concomitant with effects on fitness and ecosystem consequences that differ from that seen in the progenitor transgenic strain. In the present study, using a growth hormone transgenic salmon example, we have modeled selection of modifier loci (single and multiple) in the presence of a transgene and have found that accounting for genetic background can significantly affect the persistence of transgenes in populations, potentially reducing or reversing a "Trojan gene" effect. Influences from altered life history characteristics (e.g., developmental timing, age of maturation) and compensatory demographic/ecosystem controls (e.g., density dependence) also were found to have a strong influence on transgene effects. Further, with the presence of a transgene in a population, genetic backgrounds were found to shift in non-transgenic individuals as well, an effect expected to direct phenotypes away from naturally selected optima. The present model has revealed the importance of understanding effects of selection for background genetics on the evolution of phenotypes in populations harbouring transgenes.

  16. Characterization of the genetic variation present in CYP3A4 in three South African populations

    Directory of Open Access Journals (Sweden)

    Britt Ingrid Drögemöller

    2013-02-01

    Full Text Available TThe CYP3A4 enzyme is the most abundant human cytochrome P450 and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study was to identify genetic variation within CYP3A4 in three South African population groups comprising of 29 Khoisan, 65 Xhosa and 65 Mixed Ancestry individuals. To identify known and novel CYP3A4 variants, 15 individuals were randomly selected from each of the population groups for bi-directional Sanger sequencing of approximately 600 bp of the 5’-upstream region and all thirteen exons including flanking intronic regions. Genetic variants detected were genotyped in the rest of the cohort. In total, 24 SNPs were detected, including CYP3A4*12, CYP3A4*15, and the reportedly functional CYP3A4*1B promoter polymorphism, as well as two novel non-synonymous variants. These putatively functional variants, p.R162W and p.Q200H, were present in two of the three populations and all three populations, respectively, and in silico analysis predicted that the former would damage the protein product. Furthermore, the three populations were shown to exhibit distinct genetic profiles. These results confirm that South African populations show unique patterns of variation in the genes encoding xenobiotic metabolizing enzymes. This research suggests that population-specific genetic profiles for CYP3A4 and other drug metabolizing genes would be essential to make full use of pharmacogenetics in Southern Africa. Further investigation is needed to determine if the identified genetic variants influence CYP3A4 metabolism phenotype in these populations.

  17. Random amplified polymorphic DNA and amplified fragment length polymorphism assessment of genetic variation in Nicaraguan populations of Pinus oocarpa.

    Science.gov (United States)

    Díaz, V; Muñiz, L M; Ferrer, E

    2001-11-01

    Pinus oocarpa is the most widely distributed pine species of Mexico and Central America. The natural populations of Nicaragua have been affected by extensive human activities. As a consequence, their size has been reduced, and there is a serious threat to the development of mature woodland. Knowledge of population structures and the genetic diversity of the species is required for the design of sustainable use and conservation strategies. Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) markers were used to assess the genetic variation among 10 populations from three geographical regions of Nicaragua. Both markers revealed high levels of diversity in these populations. G(ST) values and analyses of molecular variance (AMOVA) found that most variation was within populations but there is still a significant differentiation between populations indicating that the populations sampled cannot be considered a single panmictic unit. The partitions created by AMOVA also showed that there was little differentiation between populations of different regions, although cluster analyses based on RAPDs and AFLPs indicated a closer relationship among most of the populations from a same geographical region. Management of P. oocarpa in Nicaragua should be aimed to maintain the high degree of genetic variation within individual populations that is still observed even in some of these highly degraded populations.

  18. Function Optimization Based on Quantum Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2014-01-01

    Full Text Available Optimization method is important in engineering design and application. Quantum genetic algorithm has the characteristics of good population diversity, rapid convergence and good global search capability and so on. It combines quantum algorithm with genetic algorithm. A novel quantum genetic algorithm is proposed, which is called Variable-boundary-coded Quantum Genetic Algorithm (vbQGA in which qubit chromosomes are collapsed into variable-boundary-coded chromosomes instead of binary-coded chromosomes. Therefore much shorter chromosome strings can be gained. The method of encoding and decoding of chromosome is first described before a new adaptive selection scheme for angle parameters used for rotation gate is put forward based on the core ideas and principles of quantum computation. Eight typical functions are selected to optimize to evaluate the effectiveness and performance of vbQGA against standard Genetic Algorithm (sGA and Genetic Quantum Algorithm (GQA. The simulation results show that vbQGA is significantly superior to sGA in all aspects and outperforms GQA in robustness and solving velocity, especially for multidimensional and complicated functions.

  19. Identification of quantitative genetic components of fitness variation in farmed, hybrid and native salmon in the wild.

    Science.gov (United States)

    Besnier, F; Glover, K A; Lien, S; Kent, M; Hansen, M M; Shen, X; Skaala, Ø

    2015-07-01

    Feral animals represent an important problem in many ecosystems due to interbreeding with wild conspecifics. Hybrid offspring from wild and domestic parents are often less adapted to local environment and ultimately, can reduce the fitness of the native population. This problem is an important concern in Norway, where each year, hundreds of thousands of farm Atlantic salmon escape from fish farms. Feral fish outnumber wild populations, leading to a possible loss of local adaptive genetic variation and erosion of genetic structure in wild populations. Studying the genetic factors underlying relative performance between wild and domesticated conspecific can help to better understand how domestication modifies the genetic background of populations, and how it may alter their ability to adapt to the natural environment. Here, based upon a large-scale release of wild, farm and wild x farm salmon crosses into a natural river system, a genome-wide quantitative trait locus (QTL) scan was performed on the offspring of 50 full-sib families, for traits related to fitness (length, weight, condition factor and survival). Six QTLs were detected as significant contributors to the phenotypic variation of the first three traits, explaining collectively between 9.8 and 14.8% of the phenotypic variation. The seventh QTL had a significant contribution to the variation in survival, and is regarded as a key factor to understand the fitness variability observed among salmon in the river. Interestingly, strong allelic correlation within one of the QTL regions in farmed salmon might reflect a recent selective sweep due to artificial selection.

  20. Explaining spatial heterogeneity in population dynamics and genetics from spatial variation in resources for a large herbivore.

    Science.gov (United States)

    Contasti, Adrienne L; Tissier, Emily J; Johnstone, Jill F; McLoughlin, Philip D

    2012-01-01

    Fine-scale spatial variation in genetic relatedness and inbreeding occur across continuous distributions of several populations of vertebrates; however, the basis of observed variation is often left untested. Here we test the hypothesis that prior observations of spatial patterns in genetics for an island population of feral horses (Sable Island, Canada) were the result of spatial variation in population dynamics, itself based in spatial heterogeneity in underlying habitat quality. In order to assess how genetic and population structuring related to habitat, we used hierarchical cluster analysis of water sources and an indicator analysis of the availability of important forage species to identify a longitudinal gradient in habitat quality along the length of Sable Island. We quantify a west-east gradient in access to fresh water and availability of two important food species to horses: sandwort, Honckenya peploides, and beach pea, Lathyrus japonicas. Accordingly, the population clusters into three groups that occupy different island segments (west, central, and east) that vary markedly in their local dynamics. Density, body condition, and survival and reproduction of adult females were highest in the west, followed by central and east areas. These results mirror a previous analysis of genetics, which showed that inbreeding levels are highest in the west (with outbreeding in the east), and that there are significant differences in fixation indices among groups of horses along the length of Sable Island. Our results suggest that inbreeding depression is not an important limiting factor to the horse population. We conclude that where habitat gradients exist, we can anticipate fine-scale heterogeneity in population dynamics and hence genetics.

  1. Plant genetics predicts intra-annual variation in phytochemistry and arthropod community structure.

    Science.gov (United States)

    Wimp, G M; Wooley, S; Bangert, R K; Young, W P; Martinsen, G D; Keim, P; Rehill, B; Lindroth, R L; Whitham, T G

    2007-12-01

    With the emerging field of community genetics, it is important to quantify the key mechanisms that link genetics and community structure. We studied cottonwoods in common gardens and in natural stands and examined the potential for plant chemistry to be a primary mechanism linking plant genetics and arthropod communities. If plant chemistry drives the relationship between plant genetics and arthropod community structure, then several predictions followed. We would find (i) the strongest correlation between plant genetic composition and chemical composition; (ii) an intermediate correlation between plant chemical composition and arthropod community composition; and (iii) the weakest relationship between plant genetic composition and arthropod community composition. Our results supported our first prediction: plant genetics and chemistry had the strongest correlation in the common garden and the wild. Our results largely supported our second prediction, but varied across space, seasonally, and according to arthropod feeding group. Plant chemistry played a larger role in structuring common garden arthropod communities relative to wild communities, free-living arthropods relative to leaf and stem modifiers, and early-season relative to late-season arthropods. Our results did not support our last prediction, as host plant genetics was at least as tightly linked to arthropod community structure as plant chemistry, if not more so. Our results demonstrate the consistency of the relationship between plant genetics and biodiversity. Additionally, plant chemistry can be an important mechanism by which plant genetics affects arthropod community composition, but other genetic-based factors are likely involved that remain to be measured.

  2. Allelic Variation and Genetic Diversity at Glu-1 Loci in Chinese Wheat (Triticum aestivum L.) Germplasms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-yong; PANG Bin-shuang; YOU Guang-xia; WANG Lan-fen; JIA Ji-zeng; DONG Yu-chen

    2002-01-01

    Wheat processing quality is greatly influenced by the seed proteins especially the high molecular weight glutenin subunit (HMW-GS) components, the low molecular weight glutenin subunit (LMW-GS) components and gliadin components. Genes encoding the HMW-GS and LMW-GS components were located on the long arms and the short arms of homoeologous group 1 chromosomes, respectively. HMW-GS components in 5 129 accessions of wheat germplasms were analyzed systematically, including 3 459 landraces and 1 670 modern varieties. These accessions were chosen as candidate core collections to represent the genetic diversity of Chinese common wheat (Triticum aestivum ) germplasms documented and conserved in the National Gene Bank. These candidate core collections covered the 10 wheat production regions in China. In the whole country, the dominating alleles at the three loci are Glu-A1b (null), Glu-B1b (7 + 8), and Glu- D1a (2 + 12), respectively. The obvious difference between the land race and the modern variety is the dramatic frequency increase of alleles Glu-A1a (1), Glu-B1c (7 + 9), Glu-B1h (14 + 15), Glu-D1d (5 + 10) and allele cording 5 + 12 subunits in the later ones. In the whole view, there is minor difference on the genetic(allelic)richness between the landrace and the modern variety at Glu-1, which is 28 and 30 respectively. However, the genetic dispersion index (Simpson index) based on allelic variation and frequencies at Glu-A1, Glu-B1 and Glu-D1 suggested that the modern varieties had much higher genetic diversity than the landraces. This revealed that various isolating mechanisms (such as auto-gamous nature, low migration because of undeveloped transposition system) limited the gene flow and exchange between populations of the landraces, which led up to some genotypes localized in very small areas. Modern breeding has strongly promoted gene exchanges and introgression between populations and previous isolated populations. In the three loci, Glu-B1 has the highest

  3. Effect of Isolation of Hainan Island from the Mainland on the Genetic Variation of Podocarpus imbricatus

    Institute of Scientific and Technical Information of China (English)

    Li Jingwen; Zhang Huarong; Li Junqing

    2003-01-01

    Random amplified polymorphic DNA (RAPD) markers were used to analyze genetic variation of Podocarpus imbricatus in Hainan Island and Mainland of China. Two populations of Dacrydium pierrei were used as comparison materials. Both Podocarpus imbricatus and Dacrydium pierrei showed a low level of genetic diversity. However, Podocarpus imbricatus showed higher genetic diversity and higher population differentiation than Dacrydium pierrei. The geographic range may affect the genetic diversity of Podocarpus imbricatus and Dacrydium pierrei significantly. The UPGMA cluster tree showed that populations of Podocarpus imbricatus in Hainan Island and Guangxi Zhuang Autonomous Region were closer than those in Yunnan Province, indicating possible gene flow between Hainan Island and Guangxi Zhuang Autonomous Region. The young geological history of Hainan Island and the three times of unification and separation between Hainan Island and the Mainland may give the two species more possibilities of gene flow.

  4. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui;

    2011-01-01

    throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has......A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations...

  5. Genetic variation in the emblematic Puya raimondii (Bromeliaceae from Huascarán National Park, Peru

    Directory of Open Access Journals (Sweden)

    Claudia Teresa Hornung-Leoni

    2013-04-01

    Full Text Available Puya raimondii, the giant Peruvian and Bolivian terrestrial bromeliad, is an emblematic endemic Andean species well represented in Huascarán National Park in Peru. This park is the largest reserve of puna (high altitude plateau vegetation. The objective of this study is to report on genetic variation in populations of P. raimondii from Huascarán and neighboring areas. AFLP profiles with four selective primer combinations were retrieved for 60 individuals from different zones. Genetic variability was estimated and a total of 172 bands were detected, of which 79.1% were polymorphic loci. The results showed genetic differentiation among populations, and gene flow. A cluster analysis showed that individuals of P. raimondii populations located in different mountain systems could be grouped together, suggesting long distance dispersal. Thus, conservation strategies for P. raimondii have to take into account exchange between populations located far apart in distance in order to preserve the genetic diversity of this showy species.

  6. Geographic variation and genetic structure in the Bahama Oriole (Icterus northropi, a critically endangered synanthropic species

    Directory of Open Access Journals (Sweden)

    Melissa R. Price

    2015-11-01

    Full Text Available Bird species may exhibit unexpected population structuring over small distances, with gene flow restricted by geographic features such as water or mountains. The Bahama Oriole (Icterus northropi is a critically endangered, synanthropic island endemic with a declining population of fewer than 300 individuals. It now remains only on Andros Island (The Bahamas, which is riddled with waterways that past studies assumed did not hinder gene flow. We examined 1,858 base pairs of mitochondrial DNA sequenced from four gene regions in 14 birds (roughly 5% of the remaining population found on the largest land masses of Andros Island (North Andros and Mangrove Cay/South Andros. We sought to discern genetic structuring between the remaining subpopulations and its relationship to current conservation concerns. Four unique haplotypes were identified, with only one shared between the two subpopulations. Nucleotide and haplotype diversity were higher for the North Andros subpopulation than for the Mangrove Cay/South Andros subpopulation. Analysis of molecular variance (AMOVA yielded a Wright’s fixation index (Fst of 0.60 (PFst = 0.016, with 40.2% of the molecular variation explained by within-population differences and 59.8% by among-population differences. Based on the mitochondrial regions examined in this study, we suggest the extant subpopulations of Bahama Oriole exhibit significant population structuring over short distances, consistent with some other non-migratory tropical songbird species.

  7. Thyroid hormone transport and metabolism by OATP1C1 and consequences of genetic variation

    DEFF Research Database (Denmark)

    van der Deure, Wendy M; Hansen, Pia Skov; Peeters, Robin P

    2008-01-01

    OATP1C1 has been characterized as a specific thyroid hormone transporter. Based on its expression in capillaries in different brain regions, OATP1C1 is thought to play a key-role in transporting thyroid hormone across the blood-brain barrier. For this reason, we studied the specificity of iodothy......OATP1C1 has been characterized as a specific thyroid hormone transporter. Based on its expression in capillaries in different brain regions, OATP1C1 is thought to play a key-role in transporting thyroid hormone across the blood-brain barrier. For this reason, we studied the specificity...... of iodothyronine transport by OATP1C1 in detail by analysis of thyroid hormone uptake in OATP1C1-transfected COS1 cells. Furthermore, we examined whether OATP1C1 is rate-limiting in subsequent thyroid hormone metabolism in cells co-transfected with deiodinases. We also studied the effect of genetic variation...... (T4S), little transport of rT3 and no transport of T3 or T3S compared to mock transfected cells. Metabolism of T4, T4S and rT3 by co-transfected deiodinases was greatly augmented in the presence of OATP1C1. The OATP1C1-intron3C>T, Pro143Thr and C3035T polymorphisms were not consistently associated...

  8. Identification of genetic variations of a Chinese family with paramyotonia congenita via whole exome sequencing

    Directory of Open Access Journals (Sweden)

    Jinxin Li

    2015-06-01

    Full Text Available Paramyotonia congenita (PC is a rare autosomal dominant neuromuscular disorder characterized by juvenile onset and development of cold-induced myotonia after repeated activities. The disease is mostly caused by genetic mutations of the sodium channel, voltage-gated, type IV, alpha subunit (SCN4A gene. This study intended to systematically identify the causative genetic variations of a Chinese Han PC family. Seven members of this PC family, including four patients and three healthy controls, were selected for whole exome sequencing (WES using the Illumina HiSeq platform. Sequence variations were identified using the SoftGenetics program. The mutation R1448C of SCN4A was found to be the only causative mutation. This study applied WES technology to sequence multiple members of a large PC family and was the first to systematically confirm that the genetic change in SCN4A is the only causative variation in this PC family and the SCN4A mutation is sufficient to lead to PC.

  9. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice.

    Science.gov (United States)

    Tong, Wei; He, Qiang; Park, Yong-Jin

    2017-03-03

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucleotide diversity than landrace and/or weedy, and landrace rice has higher diversity than weedy rice. Genetic distance was suggestive of a high level of breeding between landrace and weedy rice, and the landrace showing a closer association with wild rice than weedy rice. Population structure and principal component analyses showed no obvious difference in the genetic backgrounds of landrace and weedy rice in mitochondrial genome level. Phylogenetic, population split, and haplotype network evaluations were suggestive of independent origins of the indica and japonica varieties. The origin of weedy rice is supposed to be more likely from cultivated rice rather than from wild rice in mitochondrial genome level.

  10. Surviving in isolation: genetic variation, bottlenecks and reproductive strategies in the Canarian endemic Limonium macrophyllum (Plumbaginaceae).

    Science.gov (United States)

    Jiménez, Ares; Weigelt, Barbara; Santos-Guerra, Arnoldo; Caujapé-Castells, Juli; Fernández-Palacios, José María; Conti, Elena

    2017-02-01

    Oceanic archipelagos are typically rich in endemic taxa, because they offer ideal conditions for diversification and speciation in isolation. One of the most remarkable evolutionary radiations on the Canary Islands comprises the 16 species included in Limonium subsection Nobiles, all of which are subject to diverse threats, and legally protected. Since many of them are single-island endemics limited to one or a few populations, there exists a risk that a loss of genetic variation might limit their long-term survival. In this study, we used eight newly developed microsatellite markers to characterize the levels of genetic variation and inbreeding in L. macrophyllum, a species endemic to the North-east of Tenerife that belongs to Limonium subsection Nobiles. We detected generally low levels of genetic variation over all populations (H T = 0.363), and substantial differentiation among populations (F ST = 0.188; R ST = 0.186) coupled with a negligible degree of inbreeding (F = 0.042). Obligate outcrossing may have maintained L. macrophyllum relatively unaffected by inbreeding despite the species' limited dispersal ability and the genetic bottlenecks likely caused by a prolonged history of grazing. Although several factors still constitute a risk for the conservation of L. macrophyllum, the lack of inbreeding and the recent positive demographic trends observed in the populations of this species are factors that favour its future persistence.

  11. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice

    Science.gov (United States)

    Tong, Wei; He, Qiang; Park, Yong-Jin

    2017-01-01

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucleotide diversity than landrace and/or weedy, and landrace rice has higher diversity than weedy rice. Genetic distance was suggestive of a high level of breeding between landrace and weedy rice, and the landrace showing a closer association with wild rice than weedy rice. Population structure and principal component analyses showed no obvious difference in the genetic backgrounds of landrace and weedy rice in mitochondrial genome level. Phylogenetic, population split, and haplotype network evaluations were suggestive of independent origins of the indica and japonica varieties. The origin of weedy rice is supposed to be more likely from cultivated rice rather than from wild rice in mitochondrial genome level. PMID:28256554

  12. Genetic variation in plant morphology contributes to the species-level structure of grassland communities.

    Science.gov (United States)

    Whitlock, Raj; Grime, J Phil; Burke, Terry

    2010-05-01

    It is becoming apparent that genetic diversity can influence the species diversity and structure of ecological communities. Here, we investigated the intraspecific trait variation responsible for this relationship. We grew 10 genotypes of the sedge Carex caryophyllea, as monocultures, under standardized conditions and measured traits related to morphology, growth, and life history. The same genotypes had been prominent in determining the structure of multispecies experimental communities, equivalent in species diversity, in which the genetic diversity of the constituent plant species had been varied in parallel. The trait measurements revealed substantial phenotypic variation among Carex genotypes, related predominantly to differences in physical size and to the spatial deployment of above- and belowground tissue. Genotypes successful in experimental communities were larger in size and tended to adopt a "guerrilla" clonal growth strategy. In general, multivariate trait summaries of genotype size (and to a lesser extent, variation along a linear discriminant axis) predicted genotype and species abundance in experimental communities. However, one genotype exhibited a large disparity in this respect. The performance of this genotype lay closer to prediction when it was growing with a highly competitive grass genotype. The strength of the relationship between genotype size and performance within communities decreased with decreasing community genetic diversity. These results indicate that intraspecific trait measurements are useful for predicting and understanding community structure. They also imply that competitive interactions between the genotypes of different species play an increased role in determining phenotype in genetically impoverished communities.

  13. Recommendations for genetic variation data capture in developing countries to ensure a comprehensive worldwide data collection.

    Science.gov (United States)

    Patrinos, George P; Al Aama, Jumana; Al Aqeel, Aida; Al-Mulla, Fahd; Borg, Joseph; Devereux, Andrew; Felice, Alex E; Macrae, Finlay; Marafie, Makia J; Petersen, Michael B; Qi, Ming; Ramesar, Rajkumar S; Zlotogora, Joel; Cotton, Richard G H

    2011-01-01

    Developing countries have significantly contributed to the elucidation of the genetic basis of both common and rare disorders, providing an invaluable resource of cases due to large family sizes, consanguinity, and potential founder effects. Moreover, the recognized depth of genomic variation in indigenous African populations, reflecting the ancient origins of humanity on the African continent, and the effect of selection pressures on the genome, will be valuable in understanding the range of both pathological and nonpathological variations. The involvement of these populations in accurately documenting the extant genetic heterogeneity is more than essential. Developing nations are regarded as key contributors to the Human Variome Project (HVP; http://www.humanvariomeproject.org), a major effort to systematically collect mutations that contribute to or cause human disease and create a cyber infrastructure to tie databases together. However, biomedical research has not been the primary focus in these countries even though such activities are likely to produce economic and health benefits for all. Here, we propose several recommendations and guidelines to facilitate participation of developing countries in genetic variation data documentation, ensuring an accurate and comprehensive worldwide data collection. We also summarize a few well-coordinated genetic data collection initiatives that would serve as paradigms for similar projects.

  14. Harnessing Genetic Variation in Leaf Angle to Increase Productivity of Sorghum bicolor.

    Science.gov (United States)

    Truong, Sandra K; McCormick, Ryan F; Rooney, William L; Mullet, John E

    2015-11-01

    The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance.

  15. Genetic Variation among 82 Pharmacogenes: the PGRN-Seq data from the eMERGE Network

    Science.gov (United States)

    Obeng, Aniwaa Owusu; Wallace, John; Almoguera, Berta; Basford, Melissa A.; Bielinski, Suzette J.; Carrell, David S.; Connolly, John J.; Crawford, Dana; Doheny, Kimberly F.; Gallego, Carlos J.; Gordon, Adam S.; Keating, Brendan; Kirby, Jacqueline; Kitchner, Terrie; Manzi, Shannon; Mejia, Ana R.; Pan, Vivian; Perry, Cassandra L.; Peterson, Josh F.; Prows, Cynthia A.; Ralston, James; Scott, Stuart A.; Scrol, Aaron; Smith, Maureen; Stallings, Sarah C.; Veldhuizen, Tamra; Wolf, Wendy; Volpi, Simona; Wiley, Ken; Li, Rongling; Manolio, Teri; Bottinger, Erwin; Brilliant, Murray H.; Carey, David; Chisholm, Rex L.; Chute, Christopher G.; Haines, Jonathan L.; Hakonarson, Hakon; Harley, John B.; Holm, Ingrid A.; Kullo, Iftikhar J.; Jarvik, Gail P.; Larson, Eric B.; McCarty, Catherine A.; Williams, Marc S.; Denny, Joshua C.; Rasmussen-Torvik, Laura J.; Roden, Dan M.; Ritchie, Marylyn D.

    2016-01-01

    Genetic variation can affect drug response in multiple ways, though it remains unclear how rare genetic variants affect drug response. The electronic Medical Records and Genomics (eMERGE) Network, collaborating with the Pharmacogenomics Research Network, began eMERGE-PGx, a targeted sequencing study to assess genetic variation in 82 pharmacogenes critical for implementation of “precision medicine.” The February 2015 eMERGE-PGx data release includes sequence-derived data from ~5000 clinical subjects. We present the variant frequency spectrum categorized by variant type, ancestry, and predicted function. We found 95.12% of genes have variants with a scaled CADD score above 20, and 96.19% of all samples had one or more Clinical Pharmacogenetics Implementation Consortium Level A actionable variants. These data highlight the distribution and scope of genetic variation in relevant pharmacogenes, identifying challenges associated with implementing clinical sequencing for drug treatment at a broader level, underscoring the importance for multifaceted research in the execution of precision medicine. PMID:26857349

  16. Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus).

    Science.gov (United States)

    Jensen, H; Saether, B E; Ringsby, T H; Tufto, J; Griffith, S C; Ellegren, H

    2003-11-01

    Estimates of genetic components are important for our understanding of how individual characteristics are transferred between generations. We show that the level of heritability varies between 0.12 and 0.68 in six morphological traits in house sparrows (Passer domesticus L.) in northern Norway. Positive and negative genetic correlations were present among traits, suggesting evolutionary constraints on the evolution of some of these characters. A sexual difference in the amount of heritable genetic variation was found in tarsus length, wing length, bill depth and body condition index, with generally higher heritability in females. In addition, the structure of the genetic variance-covariance matrix for the traits differed between the sexes. Genetic correlations between males and females for the morphological traits were however large and not significantly different from one, indicating that sex-specific responses to selection will be influenced by intersexual differences in selection differentials. Despite this, some traits had heritability above 0.1 in females, even after conditioning on the additive genetic covariance between sexes and the additive genetic variances in males. Moreover, a meta-analysis indicated that higher heritability in females than in males may be common in birds. Thus, this indicates sexual differences in the genetic architecture of birds. Consequently, as in house sparrows, the evolutionary responses to selection will often be larger in females than males. Hence, our results suggest that sex-specific additive genetic variances and covariances, although ignored in most studies, should be included when making predictions of evolutionary changes from standard quantitative genetic models.

  17. Genetic variation in walnuts (Juglans regia and J. sigillata; Juglandaceae): Species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan, China.

    Science.gov (United States)

    Gunn, Bee F; Aradhya, Mallikarjuna; Salick, Jan M; Miller, Allison J; Yongping, Yang; Lin, Liu; Xian, Hai

    2010-04-01

    Walnuts are a major crop of many countries and mostly cultivated in large-scale plantations with few cultivars. Landraces provide important genetic reservoirs; thus, understanding factors influencing the geographic distribution of genetic variation in crop resources is a fundamental goal of agrobiodiversity conservation. Here, we investigated the role of human settlements and kinship on genetic variation and population structure of two walnut species: Juglans regia, an introduced species widely cultivated for its nuts, and J. sigillata, a native species cultivated locally in Yunnan. The objectives of this study were to characterize sympatric populations of J. regia and J. sigillata using 14 molecular markers and evaluate the role of Tibetan villages and kin groups (related households) on genotypic variation and population structure of J. regia and J. sigillata. Our results based on 220 walnut trees from six Tibetan villages show that although J. regia and J. sigillata are morphologically distinct, the two species are indistinguishable based on microsatellite data. Despite the lack of interspecific differences, AMOVAs partitioned among villages (5.41%, P = 0.0068) and kin groups within villages (3.34%, P = 0.0068) showed significant genetic variation. These findings suggest that village environments and familial relationships are factors contributing to the geographic structure of genetic variation in Tibetan walnuts.

  18. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier's algorithm.

    Science.gov (United States)

    Manni, Franz; Guérard, Etienne; Heyer, Evelyne

    2004-04-01

    When sampling locations are known, the association between genetic and geographic distances can be tested by spatial autocorrelation or regression methods. These tests give some clues to the possible shape of the genetic landscape. Nevertheless, correlation analyses fail when attempting to identify where genetic barriers exist, namely, the areas where a given variable shows an abrupt rate of change. To this end, a computational geometry approach is more suitable because it provides the locations and the directions of barriers and because it can show where geographic patterns of two or more variables are similar. In this frame we have implemented Monmonier's (1973) maximum difference algorithm in a new software package to identify genetic barriers. To provide a more realistic representation of the barriers in a genetic landscape, we implemented in the software a significance test by means of bootstrap matrices analysis. As a result, the noise associated with genetic markers can be visualized on a geographic map and the areas where genetic barriers are more robust can be identified. Moreover, this multiple matrices approach can visualize the patterns of variation associated with different markers in the same overall picture. This improved Monmonier's method is highly reliable and can be applied to nongenetic data whenever sampling locations and a distance matrix between corresponding data are available.

  19. Genetic Variation in Growth Traits of Two Years Old Ficus variegata Blume

    Directory of Open Access Journals (Sweden)

    Liliek Haryjanto

    2015-06-01

    Full Text Available A progeny trial of nyawai (Ficus variegata Blume with subline system was established in Mangunan, Bantul, Yogyakarta and designed as a Randomized Completely Block Design. Lombok subline comprised of 17 families and Cilacap-Pangandaran subline comprised of 19 families. This study was aimed to observe  growth variation and genetic parameter of these sublines  at two years after planting. Varians analysis was performed  to find out family  effect on survival,  height, and diameter traits.  Component varians analysis was used to estimate coefficient of genetic variation and heritability. This study showed that survival rate of the trial ranged from 89.01%  to 91.42%. Family effect on height and diameter variation was very significant at both sublines. Estimation coefficient of genetic variation for height and diameter traits ranged from 4.41% to 9.04% or categorized as intermediate. Individual heritabilities for height traits ranged from 0.15 to 0.22;  diameter ranged from 0.18 to 0.09, while family heritabilities for height and diameter traits  ranged from 0.49 to 0.60 and 0.29 to 0.66 respectively.

  20. From homothally to heterothally: Mating preferences and genetic variation within clones of the dinoflagellate Gymnodinium catenatum

    Science.gov (United States)

    Figueroa, Rosa Isabel; Rengefors, Karin; Bravo, Isabel; Bensch, Staffan

    2010-02-01

    The chain-forming dinoflagellate Gymnodinium catenatum Graham is responsible for outbreaks of paralytic shellf